1
|
Ramasamy C, Neelamegam K, Ramachandran S, Xia H, Kapusta DR, Danesh FR, Pandey KN. Podocyte cell-specific Npr1 is required for blood pressure and renal homeostasis in male and female mice: role of sex-specific differences. Physiol Genomics 2024; 56:672-690. [PMID: 39101921 PMCID: PMC11495182 DOI: 10.1152/physiolgenomics.00137.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
Atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase A/natriuretic peptide receptor A (GC-A/NPRA), stimulating natriuresis and diuresis and reducing blood pressure (BP), but the role of ANP/NPRA signaling in podocytes (highly specialized epithelial cells covering the outer surfaces of renal glomerular capillaries) remains unclear. This study aimed to determine the effect of conditional deletion of podocyte-specific Npr1 (encoding NPRA) gene knockout (KO) in male and female mice. Tamoxifen-treated wild-type control (PD Npr1 f/f; WT), heterozygous (PD-Cre-Npr1 f/+; HT), and KO (PD-Cre-Npr1 f/-) mice were fed a normal-, low-, or high-salt diet for 4 wk. Podocytes isolated from HT and KO male and female mice showed complete absence of Npr1 mRNA and NPRA protein compared with WT mice. BP, plasma creatinine, plasma sodium, urinary protein, and albumin/creatinine ratio were significantly increased, whereas plasma total protein, albumin, creatinine clearance, and urinary sodium levels were significantly reduced in the HT and KO male and female mice compared with WT mice. These changes were significantly greater in males than in females. On a normal-salt diet, glomerular filtration rate was significantly decreased in PD Npr1 HT and KO male and female mice compared with WT mice. Immunofluorescence of podocin and synaptopodin was also significantly reduced in HT and KO mice compared with WT mice. These observations suggest that in podocytes, ANP/NPRA signaling may be crucial in the maintenance and regulation of glomerular filtration and BP and serve as a biomarker of renal function in a sex-dependent manner.NEW & NOTEWORTHY Our results demonstrate that the podocyte-specific deletion of Npr1 showed increased blood pressure (BP) and altered biomarkers of renal functions, with greater magnitudes in animals fed a high-salt diet in a sex-dependent manner. The results suggest a direct and sex-dependent effect of Npr1 ablation in podocytes on the regulation of BP and renal function and reveal that podocytes may be considered an important target for the ANP-BNP/NPRA/cGMP signaling cascade.
Collapse
Affiliation(s)
- Chandramohan Ramasamy
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Kandasamy Neelamegam
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Samivel Ramachandran
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| | - Huijing Xia
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Daniel R Kapusta
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States
| | - Farhad R Danesh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Kailash N Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana, United States
| |
Collapse
|
2
|
Zhang F, Armando I, Jose PA, Zeng C, Yang J. G protein-coupled receptor kinases in hypertension: physiology, pathogenesis, and therapeutic targets. Hypertens Res 2024; 47:2317-2336. [PMID: 38961282 PMCID: PMC11374685 DOI: 10.1038/s41440-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/10/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to a myriad of hormones and neurotransmitters that play vital roles in the regulation of physiological processes such as blood pressure. In organs such as the artery and kidney, hormones or neurotransmitters, such as angiotensin II (Ang II), dopamine, epinephrine, and norepinephrine exert their functions via their receptors, with the ultimate effect of keeping normal vascular reactivity, normal body sodium, and normal blood pressure. GPCR kinases (GRKs) exert their biological functions, by mediating the regulation of agonist-occupied GPCRs, non-GPCRs, or non-receptor substrates. In particular, increasing number of studies show that aberrant expression and activity of GRKs in the cardiovascular system and kidney inhibit or stimulate GPCRs (e.g., dopamine receptors, Ang II receptors, and α- and β-adrenergic receptors), resulting in hypertension. Current studies focus on the effect of selective GRK inhibitors in cardiovascular diseases, including hypertension. Moreover, genetic studies show that GRK gene variants are associated with essential hypertension, blood pressure response to antihypertensive medicines, and adverse cardiovascular outcomes of antihypertensive treatment. In this review, we present a comprehensive overview of GRK-mediated regulation of blood pressure, role of GRKs in the pathogenesis of hypertension, and highlight potential strategies for the treatment of hypertension. Schematic representation of GPCR desensitization process. Activation of GPCRs begins with the binding of an agonist to its corresponding receptor. Then G proteins activate downstream effectors that are mediated by various signaling pathways. GPCR signaling is halted by GRK-mediated receptor phosphorylation, which causes receptor internalization through β-arrestin.
Collapse
Affiliation(s)
- Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Department of Physiology/Pharmacology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, PR China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, PR China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
3
|
Kumar P, Neelamegam K, Ramasamy C, Samivel R, Xia H, Kapusta DR, Pandey KN. Epigenetic mechanisms differentially regulate blood pressure and renal dysfunction in male and female Npr1 haplotype mice. FASEB J 2024; 38:e23858. [PMID: 39109516 PMCID: PMC11309581 DOI: 10.1096/fj.202400714r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
We determined the epigenetic mechanisms regulating mean arterial pressure (MAP) and renal dysfunction in guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) gene-targeted mice. The Npr1 (encoding NPRA) gene-targeted mice were treated with class 1 specific histone deacetylase inhibitor (HDACi) mocetinostat (MGCD) to determine the epigenetic changes in a sex-specific manner. Adult male and female Npr1 haplotype (1-copy; Npr1+/-), wild-type (2-copy; Npr1+/+), and gene-duplicated heterozygous (3-copy; Npr1++/+) mice were intraperitoneally injected with MGCD (2 mg/kg) for 14 days. BP, renal function, histopathology, and epigenetic changes were measured. One-copy male mice showed significantly increased MAP, renal dysfunction, and fibrosis than 2-copy and 3-copy mice. Furthermore, HDAC1/2, collagen1alpha-2 (Col1α-2), and alpha smooth muscle actin (α-SMA) were significantly increased in 1-copy mice compared with 2-copy controls. The expression of antifibrotic microRNA-133a was attenuated in 1-copy mice but to a greater extent in males than females. NF-κB was localized at significantly lower levels in cytoplasm than in the nucleus with stronger DNA binding activity in 1-copy mice. MGCD significantly lowered BP, improved creatinine clearance, and repaired renal histopathology. The inhibition of class I HDACs led to a sex-dependent distinctive stimulation of acetylated positive histone marks and inhibition of methylated repressive histone marks in Npr1 1-copy mice; however, it epigenetically lowered MAP, repaired renal fibrosis, and proteinuria and suppressed NF-kB differentially in males versus females. Our results suggest a role for epigenetic targets affecting hypertension and renal dysfunction in a sex-specific manner.
Collapse
Affiliation(s)
- Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| | - Kandasamy Neelamegam
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| | - Chandramohan Ramasamy
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| | - Ramachandran Samivel
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| | - Huijing Xia
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Daniel R. Kapusta
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Kailash N. Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Wu J, Wu Z, Kuang W, Shi D, Yang Y, Li X, Huang J, Li X, Liao Y, Zhou Z, Qiu Z. Combined vaccines against angiotensin II receptor type 1 and alpha 1D-adrenergic receptor for hypertension. J Hypertens 2024; 42:1184-1196. [PMID: 38690916 DOI: 10.1097/hjh.0000000000003710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE Compared with monotherapy, combination therapy with multiple antihypertensive drugs has demonstrated superior efficacy in the management of hypertension. The aim of this study was to explore the efficacy of multitarget combined vaccines in achieving simultaneous antihypertensive and target organ protection effects. METHODS Our team has developed ATRQβ-001 and ADRQβ-004 vaccines targeting Ang II type 1 receptor (AT1R) and α1D-adrenergic receptor (α1D-AR), respectively. In NG-nitroarginine methyl ester ( l -NAME) + abilities spontaneously hypertensive rats (SHRs) model, SHRs were simultaneously inoculated with ATRQβ-001 and ADRQβ-004 vaccines. Histological and biochemical analyses were performed to evaluate the antihypertensive effects and target organ protection of the ATRQβ-001 and ADRQβ-004 combined vaccines in comparison with those of the single vaccine. RESULTS Both ATRQβ-001 and ADRQβ-004 vaccines induced robust antibody production, resulting in persistent high antibody titers in rats. Notably, the combined administration of both vaccines significantly decreased SBP in SHRs compared with treatment with a single vaccine, both before and after l -NAME administration. Furthermore, the combined vaccine regimen demonstrated superior efficacy in protecting against vascular remodeling, myocardial hypertrophy and fibrosis, and kidney injury in SHRs. Mechanistically, the combined vaccines exhibited significantly downregulated the expression of angiotensin II type 1 receptor (AT1R) and α1D-adrenergic receptor (α1D-AR). Importantly, no apparent immune-related adverse effects were observed in animals immunized with the combined vaccines. CONCLUSION Preliminary findings from this investigation suggest that co-administration of the novel ATRQβ-001 and ADRQβ-004 vaccines holds potential as a groundbreaking therapeutic strategy for managing hypertension.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Zhijie Wu
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Wenlong Kuang
- Department of Cardiology, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Cardiology, Wuhan No.1 Hospital, Wuhan, Hubei, China
| | - Dingyang Shi
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yulu Yang
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xin Li
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Jianwu Huang
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xuehan Li
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Zihua Zhou
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Zhihua Qiu
- Department of Cardiology, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
5
|
Taylor CA, Jung JU, Kankanamalage SG, Li J, Grzemska M, Jaykumar AB, Earnest S, Stippec S, Saha P, Sauceda E, Cobb MH. Predictive and Experimental Motif Interaction Analysis Identifies Functions of the WNK-OSR1/SPAK Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600905. [PMID: 38979344 PMCID: PMC11230372 DOI: 10.1101/2024.06.26.600905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The WNK-OSR1/SPAK protein kinase signaling pathway regulates ion homeostasis and cell volume, but its other functions are poorly understood. To uncover undefined signaling functions of the pathway we analyzed the binding specificity of the conserved C-terminal (CCT) domains of OSR1 and SPAK to find all possible interaction motifs in human proteins. These kinases bind the core consensus sequences R-F-x-V/I and R-x-F-x-V/I. Motifs were ranked based on sequence, conservation, cellular localization, and solvent accessibility. Out of nearly 3,700 motifs identified, 90% of previously published motifs were within the top 2% of those predicted. Selected candidates (TSC22D1, CAVIN1, ATG9A, NOS3, ARHGEF5) were tested. Upstream kinases WNKs 1-4 and their close relatives, the pseudokinases NRBP1/2, contain CCT-like domains as well. We identified additional distinct motif variants lacking the conserved arginine previously thought to be required, and found that the NRBP1 CCT-like domain binds TSC22D1 via the same motif as OSR1 and SPAK. Our results further highlight the rich and diverse functionality of CCT and CCT-like domains in connecting WNK signaling to cellular processes.
Collapse
|
6
|
Yang D, Tang M, Zhang M, Ren H, Li X, Zhang Z, He B, Peng S, Wang W, Fang D, Song Y, Xiong Y, Liu ZZ, Liang L, Shi W, Fu C, Hu Y, Jose PA, Zhou L, Han Y, Zeng C. Downregulation of G protein-coupled receptor kinase 4 protects against kidney ischemia-reperfusion injury. Kidney Int 2023; 103:719-734. [PMID: 36669643 DOI: 10.1016/j.kint.2022.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023]
Abstract
Ischemia/reperfusion injury of the kidney is associated with high morbidity and mortality, and treatment of this injury remains a challenge. G protein-coupled receptor kinase 4 (GRK4) plays a vital role in essential hypertension and myocardial infarction, but its function in kidney ischemia/reperfusion injury remains undetermined. Among the GRK subtypes (GRK2-6) expressed in kidneys, the increase in GRK4 expression was much more apparent than that of the other four GRKs 24 hours after injury and was found to accumulate in the nuclei of injured mouse and human renal tubule cells. Gain- and loss-of-function experiments revealed that GRK4 overexpression exacerbated acute kidney ischemia/reperfusion injury, whereas kidney tubule-specific knockout of GRK4 decreased injury-induced kidney dysfunction. Necroptosis was the major type of tubule cell death mediated by GRK4, because GRK4 significantly increased receptor interacting kinase (RIPK)1 expression and phosphorylation, subsequently leading to RIPK3 and mixed lineage kinase domain-like protein (MLKL) phosphorylation after kidney ischemia/reperfusion injury, but was reversed by necrostatin-1 pretreatment (an RIPK1 inhibitor). Using co-immunoprecipitation, mass spectrometry, and siRNA screening studies, we identified signal transducer and activator of transcription (STAT)1 as a GRK4 binding protein, which co-localized with GRK4 in the nuclei of renal tubule cells. Additionally, GRK4 phosphorylated STAT1 at serine 727, whose inactive mutation effectively reversed GRK4-mediated RIPK1 activation and tubule cell death. Kidney-targeted GRK4 silencing with nanoparticle delivery considerably ameliorated kidney ischemia/reperfusion injury. Thus, our findings reveal that GRK4 triggers necroptosis and aggravates kidney ischemia/reperfusion injury, and its downregulation may provide a promising therapeutic strategy for kidney protection.
Collapse
Affiliation(s)
- Donghai Yang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Ming Tang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Mingming Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Xiaoping Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Ziyue Zhang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Bo He
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Song Peng
- Department of Urology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Wei Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Dandong Fang
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yi Song
- Department of Cardiac Surgery, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Yao Xiong
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Zhi Zhao Liu
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Lijia Liang
- Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China
| | - Weibin Shi
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Chunjiang Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yijie Hu
- Department of Cardiac Surgery, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine and Pharmacology-Physiology, The George Washington University School of Medicine & Health Sciences, Washington D.C., USA
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China
| | - Yu Han
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China; Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, People's Republic of China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, People's Republic of China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Gildea JJ, Xu P, Schiermeyer KA, Yue W, Carey RM, Jose PA, Felder RA. Inverse Salt Sensitivity of Blood Pressure Is Associated with an Increased Renin-Angiotensin System Activity. Biomedicines 2022; 10:2811. [PMID: 36359330 PMCID: PMC9687845 DOI: 10.3390/biomedicines10112811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
High and low sodium diets are associated with increased blood pressure and cardiovascular morbidity and mortality. The paradoxical response of elevated BP in low salt diets, aka inverse salt sensitivity (ISS), is an understudied vulnerable 11% of the adult population with yet undiscovered etiology. A linear relationship between the number of single nucleotide polymorphisms (SNPs) in the dopamine D2 receptor (DRD2, rs6276 and 6277), and the sodium myo-inositol cotransporter 2 (SLC5A11, rs11074656), as well as decreased expression of these two genes in urine-derived renal proximal tubule cells (uRPTCs) isolated from clinical study participants suggest involvement of these cells in ISS. Insight into this newly discovered paradoxical response to sodium is found by incubating cells in low sodium (LS) conditions that unveil cell physiologic differences that are then reversed by mir-485-5p miRNA blocker transfection and bypassing the genetic defect by DRD2 re-expression. The renin-angiotensin system (RAS) is an important counter-regulatory mechanism to prevent hyponatremia under LS conditions. Oversensitive RAS under LS conditions could partially explain the increased mortality in ISS. Angiotensin-II (AngII, 10 nmol/L) increased sodium transport in uRPTCs to a greater extent in individuals with ISS than SR. Downstream signaling of AngII is verified by identifying lowered expression of nuclear factor erythroid 2-related factor 2 (NRF2), CCCTC-binding factor (CTCF), and manganese-dependent mitochondrial superoxide dismutase (SOD2) only in ISS-derived uRPTCs and not SR-derived uRPTCs when incubated in LS conditions. We conclude that DRD2 and SLC5A11 variants in ISS may cause an increased low sodium sensitivity to AngII and renal sodium reabsorption which can contribute to inverse salt-sensitive hypertension.
Collapse
Affiliation(s)
- John J. Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Peng Xu
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Katie A. Schiermeyer
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Wei Yue
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| | - Robert M. Carey
- Division of Endocrinology and Metabolism, Department of Medicine, The University of Virginia, Charlottesville, VA 22903, USA;
| | - Pedro A. Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA;
- Department of Physiology/Pharmacology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20052, USA
| | - Robin A. Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA 22903, USA; (J.J.G.); (P.X.); (K.A.S.); (W.Y.)
| |
Collapse
|
8
|
Yang J, Hall JE, Jose PA, Chen K, Zeng C. Comprehensive insights in GRK4 and hypertension: From mechanisms to potential therapeutics. Pharmacol Ther 2022; 239:108194. [PMID: 35487286 PMCID: PMC9728143 DOI: 10.1016/j.pharmthera.2022.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/30/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
G protein-coupled receptors (GPCRs) mediate cellular responses to diverse extracellular stimuli that play vital roles in the regulation of biology, including behavior. Abnormal G protein-coupled receptor kinase (GRK)-mediated regulation of GPCR function is involved in the pathogenesis of hypertension. Among the seven GRK subtypes, GRK4 has attracted attention because of its constitutive activity and tissue-specific expression. Increasing number of studies show that GRK4 affects blood pressure by GPCR-mediated regulation of renal and arterial function. The target receptor of GRK4 is confined not only to GPCRs, but also to other blood pressure-regulating receptors, such as the adiponectin receptor. Genetic studies in humans show that in several ethnic groups, GRK4 gene variants (R65L, A142V, and A486V) are associated with salt-sensitive or salt-resistant essential hypertension and blood pressure responses to antihypertensive medicines. In this article, we present a comprehensive overview of GRK-mediated regulation of blood pressure, focusing on the latest research progress on GRK4 and hypertension and highlighting potential and novel strategies for the prevention and treatment of hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China; Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - John E Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China; Department of Cardiology, Chongqing General Hospital, Chongqing, PR China; Cardiovascular Research Center of Chongqing College, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Chongqing, PR China.
| |
Collapse
|
9
|
Felder RA, Gildea JJ, Xu P, Yue W, Armando I, Carey RM, Jose PA. Inverse Salt Sensitivity of Blood Pressure: Mechanisms and Potential Relevance for Prevention of Cardiovascular Disease. Curr Hypertens Rep 2022; 24:361-374. [PMID: 35708819 PMCID: PMC9728138 DOI: 10.1007/s11906-022-01201-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW To review the etiology of inverse salt sensitivity of blood pressure (BP). RECENT FINDINGS Both high and low sodium (Na+) intake can be associated with increased BP and cardiovascular morbidity and mortality. However, little is known regarding the mechanisms involved in the increase in BP in response to low Na+ intake, a condition termed inverse salt sensitivity of BP, which affects approximately 15% of the adult population. The renal proximal tubule is important in regulating up to 70% of renal Na+ transport. The renin-angiotensin and renal dopaminergic systems play both synergistic and opposing roles in the regulation of Na+ transport in this nephron segment. Clinical studies have demonstrated that individuals express a "personal salt index" (PSI) that marks whether they are salt-resistant, salt-sensitive, or inverse salt-sensitive. Inverse salt sensitivity results in part from genetic polymorphisms in various Na+ regulatory genes leading to a decrease in natriuretic activity and an increase in renal tubular Na+ reabsorption leading to an increase in BP. This article reviews the potential mechanisms of a new pathophysiologic entity, inverse salt sensitivity of BP, which affects approximately 15% of the general adult population.
Collapse
Affiliation(s)
- Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA.
| | - John J Gildea
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| | - Peng Xu
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| | - Wei Yue
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| | - Ines Armando
- Department of Medicine and Department of Physiology/Pharmacology, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert M Carey
- Department of Medicine, Division of Endocrinology and Metabolism, The University of Virginia, Charlottesville, VA, USA
| | - Pedro A Jose
- Department of Medicine and Department of Physiology/Pharmacology, Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
10
|
Jiang X, Liu Y, Zhang XY, Liu X, Liu X, Wu X, Jose PA, Duan S, Xu FJ, Yang Z. Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) Ameliorates Salt-Sensitive Hypertension by Inhibiting Intestinal Na +/H + Exchanger 3 Activity Through a PKC (Protein Kinase C)-Mediated NHERF1 and NHERF2 Pathway. Hypertension 2022; 79:1668-1679. [PMID: 35674015 PMCID: PMC9278716 DOI: 10.1161/hypertensionaha.121.18791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The present study directly tested the crucial role of intestinal gastrin/CCKBR (cholecystokinin B receptor) in the treatment of salt-sensitive hypertension. Methods: Adult intestine-specific Cckbr-knockout mice (Cckbrfl/flvillin-Cre) and Dahl salt-sensitive rats were studied on the effect of high salt intake (8% NaCl, 6–7 weeks) on intestinal Na+/H+ exchanger 3 expression, urine sodium concentration, and blood pressure. High-salt diet increased urine sodium concentration and systolic blood pressure to a greater extent in Cckbrfl/flvillin-Cre mice and Dahl salt-sensitive rats than their respective controls, Cckbrfl/flvillin mice and SS13BN rats. We constructed gastrin-SiO2 microspheres to enable gastrin to stimulate specifically and selectively intestinal CCKBR without its absorption into the circulation. Results: Gastrin-SiO2 microspheres treatment prevented the high salt-induced hypertension and increase in urine Na concentration by inhibiting intestinal Na+/H+ exchanger 3 trafficking and activity, increasing stool sodium without inducing diarrhea. Gastrin-mediated inhibition of intestinal Na+/H+ exchanger 3 activity, related to a PKC (protein kinase C)-mediated activation of NHERF1 and NHERF2. Conclusions: These results support a crucial role of intestinal gastrin/CCKBR in decreasing intestinal sodium absorption and keeping the blood pressure in the normal range. The gastrointestinal administration of gastrin-SiO2 microspheres is a promising and safe strategy to treat salt-sensitive hypertension without side effects.
Collapse
Affiliation(s)
- Xiaoliang Jiang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Yunpeng Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xin-Yang Zhang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Xue Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xing Liu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Xianxian Wu
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| | - Pedro A Jose
- Department of Pharmacology and Physiology (P.A.J.), The George Washington University School of Medicine and Health Sciences, Washington, DC.,Division of Kidney Diseases and Hypertension, Department of Medicine (P.A.J.), The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Shun Duan
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, P.R. China (X.-Y.Z., S.D., F.-J.X.)
| | - Zhiwei Yang
- NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, P.R. China (X.J., Y.L., Xue Liu, Xing Liu, X.W., Z.Y.)
| |
Collapse
|
11
|
G-protein-coupled receptor kinase 4 causes renal angiotensin II type 2 receptor dysfunction by increasing its phosphorylation. Clin Sci (Lond) 2022; 136:989-1003. [PMID: 35695067 PMCID: PMC9793447 DOI: 10.1042/cs20220236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022]
Abstract
Activation of the angiotensin II type 2 receptor (AT2R) induces diuresis and natriuresis. Increased expression or/and activity of G-protein-coupled receptor kinase 4 (GRK4) or genetic variants (e.g., GRK4γ142V) cause sodium retention and hypertension. Whether GRK4 plays a role in the regulation of AT2R in the kidney remains unknown. In the present study, we found that spontaneously hypertensive rats (SHRs) had increased AT2R phosphorylation and impaired AT2R-mediated diuretic and natriuretic effects, as compared with normotensive Wistar-Kyoto (WKY) rats. The regulation by GRK4 of renal AT2R phosphorylation and function was studied in human (h) GRK4γ transgenic mice. hGRK4γ142V transgenic mice had increased renal AT2R phosphorylation and impaired AT2R-mediated natriuresis, relative to hGRK4γ wild-type (WT) littermates. These were confirmed in vitro; AT2R phosphorylation was increased and AT2R-mediated inhibition of Na+-K+-ATPase activity was decreased in hGRK4γ142V, relative to hGRK4γ WT-transfected renal proximal tubule (RPT) cells. There was a direct physical interaction between renal GRK4 and AT2R that was increased in SHRs, relative to WKY rats. Ultrasound-targeted microbubble destruction of renal GRK4 decreased the renal AT2R phosphorylation and restored the impaired AT2R-mediated diuresis and natriuresis in SHRs. In vitro studies showed that GRK4 siRNA reduced AT2R phosphorylation and reversed the impaired AT2R-mediated inhibition of Na+-K+-ATPase activity in SHR RPT cells. Our present study shows that GRK4, at least in part, impairs renal AT2R-mediated diuresis and natriuresis by increasing its phosphorylation; inhibition of GRK4 expression and/or activity may be a potential strategy to improve the renal function of AT2R.
Collapse
|
12
|
Hu C, Tao Y, Deng Y, Cai Q, Ren H, Yu C, Zheng S, Yang J, Zeng C. Paternal long-term PM2.5 exposure causes hypertension via increased renal AT1R expression and function in male offspring. Clin Sci (Lond) 2021; 135:2575-2588. [PMID: 34779863 PMCID: PMC8628185 DOI: 10.1042/cs20210802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023]
Abstract
Maternal exposure to fine particulate matter (PM2.5) causes hypertension in offspring. However, paternal contribution of PM2.5 exposure to hypertension in offspring remains unknown. In the present study, male Sprague-Dawley rats were treated with PM2.5 suspension (10 mg/ml) for 12 weeks and/or fed with tap water containing an antioxidant tempol (1 mM/L) for 16 weeks. The blood pressure, 24 h-urine volume and sodium excretion were determined in male offspring. The offspring were also administrated with losartan (20 mg/kg/d) for 4 weeks. The expressions of angiotensin II type 1 receptor (AT1R) and G-protein-coupled receptor kinase type 4 (GRK4) were determined by qRT-PCR and immunoblotting. We found that long-term PM2.5 exposure to paternal rats caused hypertension and impaired urine volume and sodium excretion in male offspring. Both the mRNA and protein expression of GRK4 and its downstream target AT1R were increased in offspring of PM2.5-exposed paternal rats, which was reflected in its function because treatment with losartan, an AT1R antagonist, decreased the blood pressure and increased urine volume and sodium excretion. In addition, the oxidative stress level was increased in PM2.5-treated paternal rats. Administration with tempol in paternal rats restored the increased blood pressure and decreased urine volume and sodium excretion in the offspring of PM2.5-exposed paternal rats. Treatment with tempol in paternal rats also reversed the increased expressions of AT1R and GRK4 in the kidney of their offspring. We suggest that paternal PM2.5 exposure causes hypertension in offspring. The mechanism may be involved that paternal PM2.5 exposure-associated oxidative stress induces the elevated renal GRK4 level, leading to the enhanced AT1R expression and its-mediated sodium retention, consequently causes hypertension in male offspring.
Collapse
Affiliation(s)
- Cuimei Hu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yu Tao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Yi Deng
- Department of General Practice Medicine, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qi Cai
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Cheng Yu
- Department of Cardiology, Fujian Heart Center, Provincial Institute of Coronary Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P. R. China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
13
|
Epigenetic modifications of the renin-angiotensin system in cardiometabolic diseases. Clin Sci (Lond) 2021; 135:127-142. [PMID: 33416084 DOI: 10.1042/cs20201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/01/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022]
Abstract
Cardiometabolic diseases (CMDs) are among the most prevalent and the highest mortality diseases. Single disease etiology such as gene mutation, polymorphisms, or environmental exposure has failed to explain the origin of CMD. This can be evident in the discrepancies in disease susceptibility among individuals exposed to the same environmental insult or who acquire the same genetic variation. Epigenetics is the intertwining of genetic and environmental factors that results in diversity in the disease course, severity, and prognosis among individuals. Environmental exposures modify the epigenome and thus provide a link for translating environmental impact on changes in gene expression and precipitation to pathological conditions. Renin-angiotensin system (RAS) is comprising genes responsible for the regulation of cardiovascular, metabolic, and glycemic functions. Epigenetic modifications of RAS genes can lead to overactivity of the system, increased sympathetic activity and autonomic dysfunction ultimately contributing to the development of CMD. In this review, we describe the three common epigenetic modulations targeting RAS components and their impact on the susceptibility to cardiometabolic dysfunction. Additionally, we highlight the therapeutic efforts of targeting these epigenetic imprints to the RAS and its effects.
Collapse
|
14
|
Liu C, Li X, Fu J, Chen K, Liao Q, Wang J, Chen C, Luo H, Jose PA, Yang Y, Yang J, Zeng C. Increased AT 1 receptor expression mediates vasoconstriction leading to hypertension in Snx1 -/- mice. Hypertens Res 2021; 44:906-917. [PMID: 33972750 PMCID: PMC8590203 DOI: 10.1038/s41440-021-00661-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 02/18/2021] [Accepted: 03/17/2021] [Indexed: 02/03/2023]
Abstract
Angiotensin II type 1 receptor (AT1R) is a vital therapeutic target for hypertension. Sorting nexin 1 (SNX1) participates in the sorting and trafficking of the renal dopamine D5 receptor, while angiotensin and dopamine are counterregulatory factors in the regulation of blood pressure. The effect of SNX1 on AT1R is not known. We hypothesized that SNX1, through arterial AT1R sorting and trafficking, is involved in blood pressure regulation. CRISPR/Cas9 system-generated SNX1-/- mice showed dramatic elevations in blood pressure compared to their wild-type littermates. The angiotensin II-mediated contractile reactivity of the mesenteric arteries and AT1R expression in the aortas were also increased. Moreover, immunofluorescence and immunoprecipitation analyses revealed that SNX1 and AT1R were colocalized and interacted in the aortas of wild-type mice. In vitro studies revealed that AT1R protein levels and downstream calcium signaling were upregulated in A10 cells treated with SNX1 siRNA. This may have resulted from decreased AT1R protein degradation since the AT1R mRNA levels showed no changes. AT1R protein was less degraded when SNX1 was downregulated, as reflected by a cycloheximide chase assay. Furthermore, proteasomal rather than lysosomal inhibition increased AT1R protein content, and this effect was accompanied by decayed binding of ubiquitin and AT1R after SNX1 knockdown. Confocal microscopy revealed that AT1R colocalized with PSMD6, a proteasomal marker, and the colocalization was reduced after SNX1 knockdown. These findings suggest that SNX1 sorts AT1R for proteasomal degradation and that SNX1 impairment increases arterial AT1R expression, leading to increased vasoconstriction and blood pressure.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xingyue Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, China
| | - Jinjuan Fu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Hao Luo
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yongjian Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China.
- Department of Cardiovascular Medicine, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan, China.
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China.
- Chongqing Institute of Cardiology & Chongqing Key Laboratory of Hypertension Research, Chongqing, China.
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China.
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China.
| |
Collapse
|
15
|
Abstract
Histone deacetylases (HDACs) are part of the epigenetic machinery that regulates transcriptional processes. The current paradigm is that HDACs silence gene expression via regulation of histone protein lysine deacetylation, or by forming corepressor complexes with transcription factors. However, HDACs are more than just nuclear proteins, and they can interact and deacetylate a growing number of nonhistone proteins to regulate cellular function. Cancer-field studies have shown that deranged HDAC activity results in uncontrolled proliferation, inflammation, and fibrosis; all pathologies that also may occur in kidney disease. Over the past decade, studies have emerged suggesting that HDAC inhibitors may prevent and potentially treat various models of acute kidney injury. This review focuses on the physiology of kidney HDACs and highlights the recent advances using HDAC inhibitors to potentially treat kidney disease patients.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
16
|
Cao N, Tang H, Tian M, Gong X, Xu Z, Zhou B, Lan C, Chen C, Qu S, Zheng S, Ren H, Fan C, Jose PA, Zeng C, Xia T. Genetic variants of GRK4 influence circadian rhythm of blood pressure and response to candesartan in hypertensive patients. Clin Exp Hypertens 2021; 43:597-603. [PMID: 33899625 DOI: 10.1080/10641963.2021.1919357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Genetic variants of coding genes related to blood pressure regulation participate in the pathogenesis of hypertension and determines the response to specific antihypertensive drugs. G protein-coupled receptor kinase 4 (GRK4) and its variants are of great importance in pathogenesis of hypertension. However, little is known about role of GRK4 variants in determine circadian rhythm of blood pressure and response to candesartan in hypertension. The aim of this study was to analyze the correlation of GRK4 variants and circadian rhythm of blood pressure, and to explore their effect on antihypertensive efficiency of candestartan.Methods: In this study, a total of 1239 cases were eligible, completed ambulatory blood pressure monitoring (ABPm) observation and exon sequencing of G protein-coupled receptor kinase 4 (GRK4). ABPm was obtained before and after 4-week treatment of candesartan. Diurnal variation of systolic blood pressure and antihypertensive effect of candesartan were then assessed.Results: Compared to GRK4 wild type (GRK4-WT), patients with GRK4 variants were more likely to be non-dippers (odds ratio (OR) 6.672, 95% confidence interval (CI) 5.124-8.688, P < .001), with GRK4 A142V (OR 5.888, 95% CI 4.332-8.003, P < .001), A486V (OR 7.102, 95% CI 5.334-9.455, P < .001) and GRK4 R65L (OR 3.273, 95% CI 2.271-4.718, P < .001), respectively. Correlation analysis revealed that non-dippers rhythm of blood pressure were associated with GRK4 variants (r = .420, P < .001), with GRK4 A142V (r = .416, P < .001), A486V (r = .465, P < .001) and GRK4 R65L (r = .266, P < .001), respectively. When given 4-week candesartan, patients with GRK4 variants showed better antihypertensive effect as to drop in blood pressure (24 h mSBP, 21.21 ± 4.99 vs 12.34 ± 4.78 mmHg, P < .001) and morning peak (MP-SBP, 16.54 ± 4.37 vs 11.52 ± 4.14 mmHg, P < .001), as well as greater increase in trough to peak ratio (SBP-T/P, .71 ± .07 vs .58 ± .07, P < .001) and smoothness index (SBP-SI, 1.44 ± .16 vs 1.17 ± .11, P < .001) than those with GRK4 WT.Conclusion: This study indicates that hypertensive patients with GRK4 variants are more likely to be non-dippers. What's more, patients with GRK4 variants possess a significantly better antihypertensive response to candesartan than those with GRK4 WT.
Collapse
Affiliation(s)
- Nian Cao
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Hui Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Xue Gong
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Binqing Zhou
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Cong Lan
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Shuang Qu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Chao Fan
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| | - Pedro A Jose
- Department of Medicine and Pharmacology-Physiology, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China.,State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, P.R. China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, P.R. China
| |
Collapse
|
17
|
Li L, Fu W, Gong X, Chen Z, Tang L, Yang D, Liao Q, Xia X, Wu H, Liu C, Tian M, Zeng A, Zhou L, Jose PA, Chen K, Wang WE, Zeng C. The role of G protein-coupled receptor kinase 4 in cardiomyocyte injury after myocardial infarction. Eur Heart J 2021; 42:1415-1430. [PMID: 33280021 PMCID: PMC8026279 DOI: 10.1093/eurheartj/ehaa878] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 01/03/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
AIMS G protein-coupled receptor kinase 4 (GRK4) has been reported to play an important role in hypertension, but little is known about its role in cardiomyocytes and myocardial infarction (MI). The goal of present study is to explore the role of GRK4 in the pathogenesis and progression of MI. METHODS AND RESULTS We studied the expression and distribution pattern of GRK4 in mouse heart after MI. GRK4 A486V transgenic mice, inducible cardiomyocyte-specific GRK4 knockout mice, were generated and subjected to MI with their control mice. Cardiac infarction, cardiac function, cardiomyocyte apoptosis, autophagic activity, and HDAC4 phosphorylation were assessed. The mRNA and protein levels of GRK4 in the heart were increased after MI. Transgenic mice with the overexpression of human GRK4 wild type (WT) or human GRK4 A486V variant had increased cardiac infarction, exaggerated cardiac dysfunction and remodelling. In contrast, the MI-induced cardiac dysfunction and remodelling were ameliorated in cardiomyocyte-specific GRK4 knockout mice. GRK4 overexpression in cardiomyocytes aggravated apoptosis, repressed autophagy, and decreased beclin-1 expression, which were partially rescued by the autophagy agonist rapamycin. MI also induced the nuclear translocation of GRK4, which inhibited autophagy by increasing HDAC4 phosphorylation and decreasing its binding to the beclin-1 promoter. HDAC4 S632A mutation partially restored the GRK4-induced inhibition of autophagy. MI caused greater impairment of cardiac function in patients carrying the GRK4 A486V variant than in WT carriers. CONCLUSION GRK4 increases cardiomyocyte injury during MI by inhibiting autophagy and promoting cardiomyocyte apoptosis. These effects are mediated by the phosphorylation of HDAC4 and a decrease in beclin-1 expression.
Collapse
Affiliation(s)
- Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Wenbin Fu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Xue Gong
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Zhi Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Luxun Tang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Dezhong Yang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Xuewei Xia
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Hao Wu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Chao Liu
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Miao Tian
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Andi Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 745C, 2300 I Street, N.W. Washington, DC 20037, USA
| | - Ken Chen
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
| | - Wei Eric Wang
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
- Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, China
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
18
|
Kundu N, Nandula SR, Asico LD, Fakhri M, Banerjee J, Jose PA, Sen S. Transplantation of Apoptosis-Resistant Endothelial Progenitor Cells Improves Renal Function in Diabetic Kidney Disease. J Am Heart Assoc 2021; 10:e019365. [PMID: 33759548 PMCID: PMC8174326 DOI: 10.1161/jaha.120.019365] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Diabetic kidney disease is associated with glomerulosclerosis and poor renal perfusion. Increased capillary formation and improved perfusion may help to halt or reverse the injury. Transplanting apoptosis‐resistant p53‐silenced endothelial progenitor cells (p53sh‐EPCs) may help improve vascularization and renal perfusion and could be more beneficial than another stem cell such as the mouse mesenchymal stromal cell (mMSC). Methods and Results Hyperglycemia and proteinuria were confirmed at 8 to 10 weeks in streptozotocin‐induced type1 diabetic C57Bl/6 mice, followed by transplantation of 0.3 million p53sh‐EPCs, Null‐EPCs (control), or mMSC under each kidney capsule. Urine was collected weekly for creatinine and protein levels. Blood pressure was measured by direct arterial cannulation and renal perfusion was measured by renal ultrasound. The kidneys were harvested for histology and mRNA expression. Reduction of protein/creatinine (AUC) was observed in p53sh‐EPC‐transplanted mice more than null‐EPC (1.8‐fold, P=0.03) or null‐mMSC (1.6‐fold, P=0.04, n=4) transplanted mice. Markers for angiogenesis, such as endothelial nitric oxide synthase (1.7‐fold, P=0.06), were upregulated post p53sh‐EPC transplantation compared with null EPC. However, vascular endothelial growth factor‐A expression was reduced (7‐fold, P=0.0004) in mMSC‐transplanted mice, compared with p53sh‐EPC‐transplanted mice. Isolectin‐B4 staining of kidney section showed improvement of glomerular sclerosis when p53sh‐EPC was transplanted, compared with null‐EPC or mMSC. In addition, mean and peak renal blood velocity (1.3‐fold, P=0.01, 1.4‐fold, P=0.001, respectively) were increased in p53sh‐EPC‐transplanted mice, relative to null‐EPC transplanted mice. Conclusions Apoptosis‐resistant p53sh EPC transplantation could be beneficial in the treatment of diabetic kidney disease by decreasing proteinuria, and improving renal perfusion and glomerular architecture.
Collapse
Affiliation(s)
- Nabanita Kundu
- Department of Medicine School of Medicine and Health Sciences The George Washington University Washington DC
| | - Seshagiri R Nandula
- Department of Medicine School of Medicine and Health Sciences The George Washington University Washington DC.,Department of Medicine Veterans Affairs Medical Center Washington DC
| | - Laureano D Asico
- Department of Medicine School of Medicine and Health Sciences The George Washington University Washington DC
| | - Mona Fakhri
- Department of Medicine School of Medicine and Health Sciences The George Washington University Washington DC
| | - Jaideep Banerjee
- Department of Surgery School of Medicine and Health Sciences The George Washington University Washington DC
| | - Pedro A Jose
- Department of Medicine School of Medicine and Health Sciences The George Washington University Washington DC.,Department of Pharmacology and Physiology School of Medicine and Health Sciences The George Washington University Washington DC
| | - Sabyasachi Sen
- Department of Medicine School of Medicine and Health Sciences The George Washington University Washington DC.,Department of Medicine Veterans Affairs Medical Center Washington DC.,Department of Biochemistry and Molecular Medicine School of Medicine and Health Sciences The George Washington University Washington DC
| |
Collapse
|
19
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|
20
|
Lipid Rafts and Dopamine Receptor Signaling. Int J Mol Sci 2020; 21:ijms21238909. [PMID: 33255376 PMCID: PMC7727868 DOI: 10.3390/ijms21238909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
The renal dopaminergic system has been identified as a modulator of sodium balance and blood pressure. According to the Centers for Disease Control and Prevention, in 2018 in the United States, almost half a million deaths included hypertension as a primary or contributing cause. Renal dopamine receptors, members of the G protein-coupled receptor family, are divided in two groups: D1-like receptors that act to keep the blood pressure in the normal range, and D2-like receptors with a variable effect on blood pressure, depending on volume status. The renal dopamine receptor function is regulated, in part, by its expression in microdomains in the plasma membrane. Lipid rafts form platforms within the plasma membrane for the organization and dynamic contact of molecules involved in numerous cellular processes such as ligand binding, membrane sorting, effector specificity, and signal transduction. Understanding all the components of lipid rafts, their interaction with renal dopamine receptors, and their signaling process offers an opportunity to unravel potential treatment targets that could halt the progression of hypertension, chronic kidney disease (CKD), and their complications.
Collapse
|
21
|
GRK4-mediated adiponectin receptor-1 phosphorylative desensitization as a novel mechanism of reduced renal sodium excretion in hypertension. Clin Sci (Lond) 2020; 134:2453-2467. [PMID: 32940654 DOI: 10.1042/cs20200671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
Hypertensive patients have impaired sodium excretion. However, the mechanisms are incompletely understood. Despite the established association between obesity/excess adiposity and hypertension, whether and how adiponectin, one of the adipokines, contributes to impaired sodium excretion in hypertension has not been previously investigated. The current study tested the hypothesis that adiponectin promotes natriuresis and diuresis in the normotensive state. However, impaired adiponectin-mediated natriuresis and diuresis are involved in pathogenesis of hypertension. We found that sodium excretion was reduced in adiponectin knockout (Adipo-/-) mice; intrarenal arterial infusion of adiponectin-induced natriuresis and diuresis in Wistar-Kyoto (WKY) rats. However, the natriuretic and diuretic effects of adiponectin were impaired in spontaneously hypertensive rats (SHRs), which were ascribed to the hyperphosphorylation of adiponectin receptor and subsequent uncoupling from Gαi. Inhibition of adiponectin receptor phosphorylation by a specific point mutation restored its coupling with Gαi and the adiponectin-mediated inhibition of Na+-K+-ATPase activity in renal proximal tubule (RPT) cells from SHRs. Finally, we identified G protein-coupled receptor kinase 4 (GRK4) as a mediator of adiponectin receptor hyperphosphorylation; mice transgenic for a hyperphosphorylating variant of GRK4 replicated the abnormal adiponectin function observed in SHRs, whereas down-regulation of GRK4 by renal ultrasound-directed small interfering RNA (siRNA) restored the adiponectin-mediated sodium excretion and reduced the blood pressure in SHRs. We conclude that the stimulatory effect of adiponectin on sodium excretion is impaired in hypertension, which is ascribed to the increased renal GRK4 expression and activity. Targeting GRK4 restores impaired adiponectin-mediated sodium excretion in hypertension, thus representing a novel strategy against hypertension.
Collapse
|
22
|
Arise KK, Kumar P, Garg R, Samivel R, Zhao H, Pandya K, Nguyen C, Lindsey S, Pandey KN. Angiotensin II represses Npr1 expression and receptor function by recruitment of transcription factors CREB and HSF-4a and activation of HDACs. Sci Rep 2020; 10:4337. [PMID: 32152395 PMCID: PMC7062852 DOI: 10.1038/s41598-020-61041-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/20/2020] [Indexed: 01/10/2023] Open
Abstract
The two vasoactive hormones, angiotensin II (ANG II; vasoconstrictive) and atrial natriuretic peptide (ANP; vasodilatory) antagonize the biological actions of each other. ANP acting through natriuretic peptide receptor-A (NPRA) lowers blood pressure and blood volume. We tested hypothesis that ANG II plays critical roles in the transcriptional repression of Npr1 (encoding NPRA) and receptor function. ANG II significantly decreased NPRA mRNA and protein levels and cGMP accumulation in cultured mesangial cells and attenuated ANP-mediated relaxation of aortic rings ex vivo. The transcription factors, cAMP-response element-binding protein (CREB) and heat-shock factor-4a (HSF-4a) facilitated the ANG II-mediated repressive effects on Npr1 transcription. Tyrosine kinase (TK) inhibitor, genistein and phosphatidylinositol 3-kinase (PI-3K) inhibitor, wortmannin reversed the ANG II-dependent repression of Npr1 transcription and receptor function. ANG II enhanced the activities of Class I histone deacetylases (HDACs 1/2), thereby decreased histone acetylation of H3K9/14ac and H4K8ac. The repressive effect of ANG II on Npr1 transcription and receptor signaling seems to be transduced by TK and PI-3K pathways and modulated by CREB, HSF-4a, HDACs, and modified histones. The current findings suggest that ANG II-mediated repressive mechanisms of Npr1 transcription and receptor function may provide new molecular targets for treatment and prevention of hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Kiran K Arise
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Prerna Kumar
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Renu Garg
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Ramachandran Samivel
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Hanqing Zhao
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Krishna Pandya
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Christian Nguyen
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Sarah Lindsey
- Department of Pharmacology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
23
|
Pushpakumar S, Ahmad A, Ketchem CJ, Jose PA, Weinman EJ, Sen U, Lederer ED, Khundmiri SJ. Sodium-hydrogen exchanger regulatory factor-1 (NHERF1) confers salt sensitivity in both male and female models of hypertension in aging. Life Sci 2020; 243:117226. [PMID: 31904366 PMCID: PMC7015806 DOI: 10.1016/j.lfs.2019.117226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Hypertension is a risk factor for premature death and roughly 50% of hypertensive patients are salt-sensitive. The incidence of salt-sensitive hypertension increases with age. However, the mechanisms of salt-sensitive hypertension are not well understood. We had demonstrated decreased renal sodium‑hydrogen exchanger regulatory factor 1 (NHERF1) expression in old salt-resistant F344 rats. Based on those studies we hypothesized that NHERF1 expression is required for the development of some forms of salt-sensitive hypertension. To address this hypothesis, we measured blood pressure in NHERF1 expressing salt-sensitive 4-mo and 24-mo-old male and female Fischer Brown Norway (FBN) rats male and female 18-mo-old NHERF1 knock-out (NHERF1-/-) mice and wild-type (WT) littermates on C57BL/6J background after feeding high salt (8% NaCl) diet for 7 days. Our data demonstrate that 8% salt diet increased blood pressure in both male and female 24-mo-old FBN rats but not in 4-mo-old FBN rats and in 18-mo-old male and female WT mice but not in NHERF1-/- mice. Renal dopamine 1 receptor (D1R) expression was decreased in 24-mo-old rats, compared with 4-mo-old FBN rats. However, sodium chloride cotransporter (NCC) expression increased in 24-mo-old FBN rats. In FBN rats, age had no effect on NaK ATPase α1 and NKCC2 expression. By contrast, high salt diet increased the renal expressions of NKCC2, and NCC in 24-mo-old FBN rats. High salt diet also increased NKCC2 and NCC expression in WT mice but not NHERF1-/- mice. Our data suggest that renal NHERF1 expression confers salt sensitivity with aging, associated with increased expression of sodium transporters.
Collapse
Affiliation(s)
- Sathnur Pushpakumar
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Asrar Ahmad
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America
| | - Corey J Ketchem
- Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, United States of America
| | - Edward J Weinman
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Utpal Sen
- Department of Physiology, University of Louisville, Louisville, KY, United States of America
| | - Eleanor D Lederer
- Department of Physiology, University of Louisville, Louisville, KY, United States of America; Department of Medicine, Nephrology and Hypertension, University of Louisville, Louisville, KY, United States of America; Robley Rex VA Medical Center, Louisville, KY, United States of America
| | - Syed J Khundmiri
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC, United States of America.
| |
Collapse
|
24
|
Affiliation(s)
- Mingyu Liang
- From the Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
25
|
Affiliation(s)
- Gengze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Pedro A. Jose
- Division of Renal Disease & Hypertension, Departments of Medicine and Pharmacology/Physiology.The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
26
|
Tiu AC, Bishop MD, Asico LD, Jose PA, Villar VAM. Primary Pediatric Hypertension: Current Understanding and Emerging Concepts. Curr Hypertens Rep 2017; 19:70. [PMID: 28780627 PMCID: PMC6314210 DOI: 10.1007/s11906-017-0768-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The rising prevalence of primary pediatric hypertension and its tracking into adult hypertension point to the importance of determining its pathogenesis to gain insights into its current and emerging management. Considering that the intricate control of BP is governed by a myriad of anatomical, molecular biological, biochemical, and physiological systems, multiple genes are likely to influence an individual's BP and susceptibility to develop hypertension. The long-term regulation of BP rests on renal and non-renal mechanisms. One renal mechanism relates to sodium transport. The impaired renal sodium handling in primary hypertension and salt sensitivity may be caused by aberrant counter-regulatory natriuretic and anti-natriuretic pathways. The sympathetic nervous and renin-angiotensin-aldosterone systems are examples of antinatriuretic pathways. An important counter-regulatory natriuretic pathway is afforded by the renal autocrine/paracrine dopamine system, aberrations of which are involved in the pathogenesis of hypertension, including that associated with obesity. We present updates on the complex interactions of these two systems with dietary salt intake in relation to obesity, insulin resistance, inflammation, and oxidative stress. We review how insults during pregnancy such as maternal and paternal malnutrition, glucocorticoid exposure, infection, placental insufficiency, and treatments during the neonatal period have long-lasting effects in the regulation of renal function and BP. Moreover, these effects have sex differences. There is a need for early diagnosis, frequent monitoring, and timely management due to increasing evidence of premature target organ damage. Large controlled studies are needed to evaluate the long-term consequences of the treatment of elevated BP during childhood, especially to establish the validity of the current definition and treatment of pediatric hypertension.
Collapse
Affiliation(s)
- Andrew C Tiu
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA.
| | - Michael D Bishop
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Laureano D Asico
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Pedro A Jose
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| | - Van Anthony M Villar
- Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, 2300 I Street, N.W. Washington, DC, 20037, USA
| |
Collapse
|
27
|
Diao Z, Asico LD, Villar VAM, Zheng X, Cuevas S, Armando I, Jose PA, Wang X. Increased renal oxidative stress in salt-sensitive human GRK4γ486V transgenic mice. Free Radic Biol Med 2017; 106:80-90. [PMID: 28189851 PMCID: PMC5376361 DOI: 10.1016/j.freeradbiomed.2017.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/16/2022]
Abstract
We tested the hypothesis that salt-sensitive hypertension is caused by renal oxidative stress by measuring the blood pressure and reactive oxygen species-related proteins in the kidneys of human G protein-coupled receptor kinase 4γ (hGRK4γ) 486V transgenic mice and non-transgenic (Non-T) littermates on normal and high salt diets. High salt diet increased the blood pressure, associated with impaired sodium excretion, in hGRK4γ486V mice. Renal expressions of NOX isoforms were similar in both strains on normal salt diet but NOX2 was decreased by high salt diet to a greater extent in Non-T than hGRK4γ486V mice. Renal HO-2, but not HO-1, protein was greater in hGRK4γ486V than Non-T mice on normal salt diet and normalized by high salt diet. On normal salt diet, renal CuZnSOD and ECSOD proteins were similar but renal MnSOD was lower in hGRK4γ486V than Non-T mice and remained low on high salt diet. High salt diet decreased renal CuZnSOD in hGRK4γ486V but not Non-T mice and decreased renal ECSOD to a greater extent in hGRK4γ486V than Non-T mice. Renal SOD activity, superoxide production, and NOS3 protein were similar in two strains on normal salt diet. However, high salt diet decreased SOD activity and NOS3 protein and increased superoxide production in hGRK4γ486V mice but not in Non-T mice. High salt diet also increased urinary 8-isoprostane and 8-hydroxydeoxyguanosine to a greater extent in hGRK4γ486V than Non-T mice. hGRK4γwild-type mice were normotensive and hGRK4γ142V mice were hypertensive but both were salt-resistant and in normal redox balance. Chronic tempol treatment partially prevented the salt-sensitivity of hGRK4γ486V mice. Thus, hGRK4γ486V causes salt-sensitive hypertension due, in part, to defective renal antioxidant mechanisms.
Collapse
Affiliation(s)
- Zhenyu Diao
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China
| | - Laureano D Asico
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Xiaoxu Zheng
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Santiago Cuevas
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Xiaoyan Wang
- Department of Obstetrics & Gynecology, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu, China; Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
28
|
Huang H, Li X, Zheng S, Chen Y, Chen C, Wang J, Tong H, Zhou L, Yang J, Zeng C. Downregulation of Renal G Protein-Coupled Receptor Kinase Type 4 Expression via Ultrasound-Targeted Microbubble Destruction Lowers Blood Pressure in Spontaneously Hypertensive Rats. J Am Heart Assoc 2016; 5:e004028. [PMID: 27792639 PMCID: PMC5121504 DOI: 10.1161/jaha.116.004028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/01/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND G protein-coupled receptor kinase type 4 (GRK4) plays a vital role in the long-term control of blood pressure (BP) and sodium excretion by regulating renal G protein-coupled receptor phosphorylation, including dopamine type 1 receptor (D1R). Ultrasound-targeted microbubble destruction (UTMD) is a promising method for gene delivery. Whether this method can deliver GRK4 small interfering RNA (siRNA) and lower BP is not known. METHODS AND RESULTS BP, 24-hour sodium excretion, and urine volume were measured after UTMD-targeted GRK4 siRNA delivery to the kidney in spontaneously hypertensive rats. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. The present study revealed that UTMD-mediated renal GRK4 siRNA delivery efficiently reduced GRK4 expression and lowered BP in spontaneously hypertensive rats, accompanied by increased sodium excretion. The increased sodium excretion might be accounted for by the UTMD regulation of D1R phosphorylation and function in spontaneously hypertensive rats. Further analysis showed that, although UTMD had no effect on D1R expression, it reduced D1R phosphorylation in spontaneously hypertensive rats kidneys and consequently increased D1R-mediated natriuresis and diuresis. CONCLUSIONS Taken together, these study results indicate that UTMD-targeted GRK4 siRNA delivery to the kidney effectively reduces D1R phosphorylation by inhibiting renal GRK4 expression, improving D1R-mediated natriuresis and diuresis, and lowering BP, which may provide a promising novel strategy for gene therapy for hypertension.
Collapse
Affiliation(s)
- Hefei Huang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China
| | - Xiaolong Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China Department of Cardiology, The First Affiliated Hospital, Shantou Medical College, Shantou, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China
| | - Yue Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China
| | - Jialiang Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China
| | - Haipeng Tong
- Department of Radiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China
| | - Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China Chongqing Institute of Cardiology & Chongqing Cardiovascular Clinical Research Center, Chongqing, China
| |
Collapse
|
29
|
Yang J, Villar VAM, Armando I, Jose PA, Zeng C. G Protein-Coupled Receptor Kinases: Crucial Regulators of Blood Pressure. J Am Heart Assoc 2016; 5:JAHA.116.003519. [PMID: 27390269 PMCID: PMC5015388 DOI: 10.1161/jaha.116.003519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ines Armando
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Key Laboratory for Hypertension, Chongqing Institute of Cardiology, Chongqing Cardiovascular Clinical Research Center, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
30
|
Affiliation(s)
- Pedro A Jose
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.).
| | - Robin A Felder
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Zhiwei Yang
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Chunyu Zeng
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| | - Gilbert M Eisner
- From the Departments of Medicine and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC (P.A.J.); Department of Pathology, The University of Virginia, Charlottesville (R.A.F.); Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Centre, Peking Union Medical College, Beijing, P.R. China (Z.Y.); Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing Institute of Cardiology, Chongqing, P.R. China (C.Z.); and Department of Medicine, Georgetown University Medical Center, Washington, DC (G.M.E.)
| |
Collapse
|