1
|
Xiao X, Yang J, Bai Q, Wang Z, Chen Y, Si Y, Xu Y, Li Z, Bu H. Involvement of spinal NADPH oxidase 4 and endoplasmic reticulum stress in morphine-tolerant rats. J Neurochem 2024; 168:3745-3759. [PMID: 38069511 DOI: 10.1111/jnc.16026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 10/25/2024]
Abstract
Morphine tolerance (MT) is currently a challenging issue related to intractable pain treatment. Studies have shown that reactive oxygen species (ROSs) derived from NADPH oxidase (NOX) and produced in response to endoplasmic reticulum (ER) stress participate in MT development. However, which NOX subtype initiates ER stress during MT development is unclear. NOX4 is mainly expressed on intracellular membranes, such as the ER and mitochondrial membranes, and its sole function is to produce ROS. Whether NOX4 is activated during MT development and the mechanisms underlying the association between NOX4 and ER stress during this process still need to be confirmed. In our study, we used the classic morphine-tolerant rat model and evaluated the analgesic effect of intrathecally injected morphine through a hot water tail-flick assay. Our research demonstrated for the first time that chronic morphine administration upregulates NOX4 expression in the spinal cord by activating three ER stress sensors, protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and activating transcription factor 6 (ATF6), subsequently leading to the activation of microtubule-associated protein 1 light chain 3 b (LC3B) and P62 (a well-known autophagy marker) in GABAergic neurons. Our results may suggest that regulating NOX4 and the key mechanism underlying ER stress or autophagy may be a promising strategy to treat and prevent MT development.
Collapse
Affiliation(s)
- Xuyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjie Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhitao Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue Si
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaowei Xu
- Institute of Neuroscience, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhisong Li
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huilian Bu
- Department of Pain Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Daga P, Singh G, Menon T, Sztukowska M, Kalra DK. Emerging RNAi Therapies to Treat Hypertension. Mol Diagn Ther 2024:10.1007/s40291-024-00747-5. [PMID: 39400663 DOI: 10.1007/s40291-024-00747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Hypertension (HTN), often dubbed the "silent killer," poses a significant global health challenge, affecting over 1.3 billion individuals. Despite advances in treatment, effective long-term blood pressure (BP) control remains elusive, necessitating novel therapeutic approaches. Poor control of BP remains a leading cause of cardiovascular morbidity and mortality worldwide and is becoming an even larger global health problem due to the aging population, rising rates of obesity, poorer dietary patterns and overall cardiometabolic health, and suboptimal rates of patient adherence and optimal BP control. Ribonucleic acid interference (RNAi) technology, which leverages the body's natural gene-silencing mechanism, has emerged as a promising strategy for several diseases and has recently been tested for its antihypertensive effects. We systematically reviewed peer-reviewed articles from databases including PubMed, EMBASE, and Scopus for studies examining RNAi's role in managing HTN, focusing on mechanisms, clinical utility, and safety profile. Key early-phase trials of some RNAi-leading candidate drugs are detailed. Also highlighted are challenges such as target specificity, delivery mechanisms, durability of effect, and immunogenicity. We conclude by summarizing how RNAi has a significant potential role in HTN therapy due to their unique benefits, such as long-term duration of action, infrequent dosing, and lack of major side effects.
Collapse
Affiliation(s)
- Pawan Daga
- Department of Internal Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Gurnoor Singh
- Division of Cardiology, Department of Medicine, Rudd Heart and Lung Center, University of Louisville School of Medicine, 201 Abraham Flexner Way, Suite 600, Louisville, KY, 40202, USA
| | - Tushar Menon
- Division of Cardiology, Department of Medicine, Rudd Heart and Lung Center, University of Louisville School of Medicine, 201 Abraham Flexner Way, Suite 600, Louisville, KY, 40202, USA
| | - Maryta Sztukowska
- Clinical Trials Unit, University of Louisville School of Medicine, Louisville, KY, USA
- University of Information Technology and Management, Rzeszow, Poland
| | - Dinesh K Kalra
- Division of Cardiology, Department of Medicine, Rudd Heart and Lung Center, University of Louisville School of Medicine, 201 Abraham Flexner Way, Suite 600, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Lan Q, Chen J, Yang Y. Chromofungin mitigates free fatty acids-induced endothelial inflammation via inhibition of NOD-like receptor thermal protein domain-associated protein 3 mediated by adenosine 5'-monophosphate-activated protein kinase. Biotechnol Appl Biochem 2024. [PMID: 39358914 DOI: 10.1002/bab.2676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Free fatty acids (FFAs) have emerged as significant risk factors for atherosclerosis (AS). Prolonged exposure to FFAs induces vascular endothelial injury, including inflammatory responses and oxidative stress, which are central events in AS. Chromofungin (CHR), a peptide derived from chromogranin A (CGA), has been implicated in various biological functions. However, its physiological roles in endothelial biology and its involvement in the pathological development of AS have not been previously reported. In the present study, we investigated the underlying mechanisms through which CHR exerts its beneficial effects on FFA-challenged human aortic endothelial cells (HAECs). We found that treatment with CHR ameliorated the FFA-induced reduction in cell viability and increase in lactate dehydrogenase (LDH) release. Additionally, CHR mitigated oxidative stress by reducing mitochondrial reactive oxygen species (ROS) levels and increasing superoxide dismutase (SOD) activity. Furthermore, exposure to FFAs increased NADPH oxidase (NOX) 4 expression at both the mRNA and protein levels, which were attenuated by CHR in a dose-dependent manner. Notably, CHR reduced the levels of nucleotide-binding domain and leucine-rich repeat-containing (NLR) family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 (p10), key components of the NLRP3 inflammasome complex, as well as interleukin 1β (IL-1β) and interleukin-18 (IL-18) expression. Mechanistically, it was demonstrated that FFAs reduced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), which were rescued by CHR in a dose-dependent manner. Conversely, inhibition of AMPK with its specific inhibitor compound C abolished the protective effects of CHR against FFA-induced activation of the NLRP3 inflammasome in HAECs. Based on these findings, we conclude that CHR may serve as a promising agent for maintaining normal endothelial cell function and treating AS.
Collapse
Affiliation(s)
- Qing Lan
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| | - Jian Chen
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| | - Yongqiang Yang
- Department of Cardiology, Deyang People's Hospital, Deyang, Sichuan, China
| |
Collapse
|
4
|
Kong YX, Chiu J, Passam FH. "Sticki-ER": Functions of the Platelet Endoplasmic Reticulum. Antioxid Redox Signal 2024; 41:637-660. [PMID: 38284332 DOI: 10.1089/ars.2024.0566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Significance: The primary role of platelets is to generate a thrombus by platelet activation. Platelet activation relies on calcium mobilization from the endoplasmic reticulum (ER). ER resident proteins, which are externalized upon platelet activation, are essential for the function of platelet surface receptors and intercellular interactions. Recent Advances: The platelet ER is a conduit for changes in cellular function in response to the extracellular milieu. ER homeostasis is maintained by an appropriate redox balance, regulated calcium stores and normal protein folding. Alterations in ER function and ER stress results in ER proteins externalizing to the cell surface, including members of the protein disulfide isomerase family (PDIs) and chaperones. Critical Issues: The platelet ER is central to platelet function, but our understanding of its regulation is incomplete. Previous studies have focused on the function of PDIs in the extracellular space, and much less on their intracellular role. How platelets maintain ER homeostasis and how they direct ER chaperone proteins to facilitate intercellular signalling is unknown. Future Directions: An understanding of ER functions in the platelet is essential as these may determine critical platelet activities such as secretion and adhesion. Studies are necessary to understand the redox reactions of PDIs in the intracellular versus extracellular space, as these differentially affect platelet function. An unresolved question is how platelet ER proteins control calcium release. Regulation of protein folding in the platelet and downstream pathways of ER stress require further evaluation. Targeting the platelet ER may have therapeutic application in metabolic and neoplastic disease.
Collapse
Affiliation(s)
- Yvonne X Kong
- Haematology Research Group, Charles Perkins Centre; The University of Sydney, Camperdown, New South Wales, Australia
- Central Clinical School, Faculty of Medicine and Health; The University of Sydney, Camperdown, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Joyce Chiu
- ACRF Centenary Cancer Research Centre, The Centenary Institute; The University of Sydney, Camperdown, New South Wales, Australia
| | - Freda H Passam
- Haematology Research Group, Charles Perkins Centre; The University of Sydney, Camperdown, New South Wales, Australia
- Central Clinical School, Faculty of Medicine and Health; The University of Sydney, Camperdown, New South Wales, Australia
- Department of Haematology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
5
|
Galli F, Bartolini D, Ronco C. Oxidative stress, defective proteostasis and immunometabolic complications in critically ill patients. Eur J Clin Invest 2024; 54:e14229. [PMID: 38676423 DOI: 10.1111/eci.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Oxidative stress (OS) develops in critically ill patients as a metabolic consequence of the immunoinflammatory and degenerative processes of the tissues. These induce increased and/or dysregulated fluxes of reactive species enhancing their pro-oxidant activity and toxicity. At the same time, OS sustains its own inflammatory and immunometabolic pathogenesis, leading to a pervasive and vitious cycle of events that contribute to defective immunity, organ dysfunction and poor prognosis. Protein damage is a key player of these OS effects; it generates increased levels of protein oxidation products and misfolded proteins in both the cellular and extracellular environment, and contributes to forms DAMPs and other proteinaceous material to be removed by endocytosis and proteostasis processes of different cell types, as endothelial cells, tissue resident monocytes-macrophages and peripheral immune cells. An excess of OS and protein damage in critical illness can overwhelm such cellular processes ultimately interfering with systemic proteostasis, and consequently with innate immunity and cell death pathways of the tissues thus sustaining organ dysfunction mechanisms. Extracorporeal therapies based on biocompatible/bioactive membranes and new adsorption techniques may hold some potential in reducing the impact of OS on the defective proteostasis of patients with critical illness. These can help neutralizing reactive and toxic species, also removing solutes in a wide spectrum of molecular weights thus improving proteostasis and its immunometabolic corelates. Pharmacological therapy is also moving steps forward which could help to enhance the efficacy of extracorporeal treatments. This narrative review article explores the aspects behind the origin and pathogenic role of OS in intensive care and critically ill patients, with a focus on protein damage as a cause of impaired systemic proteostasis and immune dysfunction in critical illness.
Collapse
Affiliation(s)
- Francesco Galli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Ronco
- Department of Medicine, International Renal Research Institute of Vicenza, University of Padova, San Bortolo Hospital Vicenza, Vicenza, Italy
| |
Collapse
|
6
|
Esposito E, Indolfi C, Bello I, Smimmo M, Vellecco V, Schettino A, Montanaro R, Morroni F, Sita G, Graziosi A, Panza E, Sorrentino R, d'Emmanuele di Villa Bianca R, Mitidieri E. The endocrine disruptor vinclozolin causes endothelial injury via eNOS/Nox4/IRE1α signaling. Eur J Pharmacol 2024; 977:176758. [PMID: 38901528 DOI: 10.1016/j.ejphar.2024.176758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Vinclozolin (VCZ) is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor, and its effects on various organs have been described but its influence on vasculature has not yet been addressed. This study focuses on the potential mechanism of VCZ-induced vascular injury. The effect of VCZ on vascular function in terms of relaxing and contracting response was evaluated in mice aorta. A short exposure to VCZ affected the endothelial but not the smooth muscle component. Specifically, it caused a disruption of the eNOS/NO signaling. In line, a short exposure to VCZ in bovine aortic endothelial cells promoted eNOS uncoupling resulting in a reduction of NO bioavailability and eNOS dimer/monomer ratio, and in turn an increase of nitro-tyrosine levels and ROS formation. Prolonging the exposure to VCZ (3 and 6h) an up-regulation of Nox4, enzyme-generating ROS constitutively expressed in endothelial cells, and an increase in ROS and malondialdehyde content coupled with a reduction in NO levels were found. These events were strictly linked to endoplasmic reticulum stress as demonstrated by the phosphorylation of inositol-requiring transmembrane kinase endoribonuclease 1α (IRE1α), a stress sensor and its reversion by using a selective inhibitor. Collectively, these results demonstrated that VCZ provokes endothelial dysfunction by oxidative stress involving eNOS/Nox4/IRE1α axis. The rapid exposure affected the endothelial function promoting eNOS uncoupling while a post-transcriptional modification, involving Nox4/IRE1α signaling, occurred following prolonged exposure. Thus, exposure to VCZ could contribute to the onset and/or progression of cardiovascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Erika Esposito
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Chiara Indolfi
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine and Surgery, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Ivana Bello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Martina Smimmo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Valentina Vellecco
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Anna Schettino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Rosangela Montanaro
- Department of Science, University of Basilicata, Macchia Romana Campus 10, Viale dell'Ateneo Lucano, 85100, Potenza, Italy.
| | - Fabiana Morroni
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Giulia Sita
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Agnese Graziosi
- Department of Pharmacy and BioTechnology-FaBiT, Alma Mater Studiorum-University of Bologna, via Irnerio 48, 40126, Bologna, Italy.
| | - Elisabetta Panza
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | - Raffaella Sorrentino
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| | | | - Emma Mitidieri
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via D. Montesano 49, 80131, Naples, Italy.
| |
Collapse
|
7
|
Camargo LL, Rios FJ, Montezano AC, Touyz RM. Reactive oxygen species in hypertension. Nat Rev Cardiol 2024:10.1038/s41569-024-01062-6. [PMID: 39048744 DOI: 10.1038/s41569-024-01062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Hypertension is a leading risk factor for stroke, heart disease and chronic kidney disease. Multiple interacting factors and organ systems increase blood pressure and cause target-organ damage. Among the many molecular elements involved in the development of hypertension are reactive oxygen species (ROS), which influence cellular processes in systems that contribute to blood pressure elevation (such as the cardiovascular, renal, immune and central nervous systems, or the renin-angiotensin-aldosterone system). Dysregulated ROS production (oxidative stress) is a hallmark of hypertension in humans and experimental models. Of the many ROS-generating enzymes, NADPH oxidases are the most important in the development of hypertension. At the cellular level, ROS influence signalling pathways that define cell fate and function. Oxidative stress promotes aberrant redox signalling and cell injury, causing endothelial dysfunction, vascular damage, cardiovascular remodelling, inflammation and renal injury, which are all important in both the causes and consequences of hypertension. ROS scavengers reduce blood pressure in almost all experimental models of hypertension; however, clinical trials of antioxidants have yielded mixed results. In this Review, we highlight the latest advances in the understanding of the role and the clinical implications of ROS in hypertension. We focus on cellular sources of ROS, molecular mechanisms of oxidative stress and alterations in redox signalling in organ systems, and their contributions to hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada.
- Department of Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Department of Family Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Liou GY, C’lay-Pettis R, Kavuri S. Involvement of Reactive Oxygen Species in Prostate Cancer and Its Disparity in African Descendants. Int J Mol Sci 2024; 25:6665. [PMID: 38928370 PMCID: PMC11203985 DOI: 10.3390/ijms25126665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Reactive oxygen species (ROS) participate in almost all disorders, including cancer. Many factors, including aging, a high-fat diet, a stressful lifestyle, smoking, infection, genetic mutations, etc., lead to elevated levels of ROS. Prostate cancer, the most prevalent type of cancer in senior American men and the second leading cause of cancer mortality in American men, results from chronic oxidative stress. The doubled incident rate as well as the doubled mortality numbers of prostate cancer have persisted in African Americans in comparison with Caucasian Americans and other racial groups, indicating a prostate cancer disparity in African American men. In this review, we mainly focus on the latest findings on ROS in prostate cancer development and progression within the last five years to update our understanding in this area, as several comprehensive literature reviews addressing oxidative stress and/or inflammation in prostate cancer before 2020 are available. In addition to other known factors such as socioeconomic disadvantage, cultural mistrust of the health care system, etc. that are long-existing in the African American group, we also summarize the latest evidence that demonstrated high systemic oxidative stress and inflammation in African Americans for their potential contribution to the racial prostate cancer disparity in this population.
Collapse
Affiliation(s)
- Geou-Yarh Liou
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
- Department of Biological Sciences, Clark Atlanta University, Atlanta, GA 30314, USA
| | | | - Sravankumar Kavuri
- Department of Pathology, Augusta University Health, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Kim HS, Lee D, Shen S. Endoplasmic reticular stress as an emerging therapeutic target for chronic pain: a narrative review. Br J Anaesth 2024; 132:707-724. [PMID: 38378384 PMCID: PMC10925894 DOI: 10.1016/j.bja.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 01/05/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic pain is a severely debilitating condition with enormous socioeconomic costs. Current treatment regimens with nonsteroidal anti-inflammatory drugs (NSAIDs), steroids, or opioids have been largely unsatisfactory with uncertain benefits or severe long-term side effects. This is mainly because chronic pain has a multifactorial aetiology. Although conventional pain medications can alleviate pain by keeping several dysfunctional pathways under control, they can mask other underlying pathological causes, ultimately worsening nerve pathologies and pain outcome. Recent preclinical studies have shown that endoplasmic reticulum (ER) stress could be a central hub for triggering multiple molecular cascades involved in the development of chronic pain. Several ER stress inhibitors and unfolded protein response modulators, which have been tested in randomised clinical trials or apprpoved by the US Food and Drug Administration for other chronic diseases, significantly alleviated hyperalgesia in multiple preclinical pain models. Although the role of ER stress in neurodegenerative disorders, metabolic disorders, and cancer has been well established, research on ER stress and chronic pain is still in its infancy. Here, we critically analyse preclinical studies and explore how ER stress can mechanistically act as a central node to drive development and progression of chronic pain. We also discuss therapeutic prospects, benefits, and pitfalls of using ER stress inhibitors and unfolded protein response modulators for managing intractable chronic pain. In the future, targeting ER stress to impact multiple molecular networks might be an attractive therapeutic strategy against chronic pain refractory to steroids, NSAIDs, or opioids. This novel therapeutic strategy could provide solutions for the opioid crisis and public health challenge.
Collapse
Affiliation(s)
- Harper S Kim
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donghwan Lee
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shiqian Shen
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Veluthakal R, Esparza D, Hoolachan JM, Balakrishnan R, Ahn M, Oh E, Jayasena CS, Thurmond DC. Mitochondrial Dysfunction, Oxidative Stress, and Inter-Organ Miscommunications in T2D Progression. Int J Mol Sci 2024; 25:1504. [PMID: 38338783 PMCID: PMC10855860 DOI: 10.3390/ijms25031504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Type 2 diabetes (T2D) is a heterogenous disease, and conventionally, peripheral insulin resistance (IR) was thought to precede islet β-cell dysfunction, promoting progression from prediabetes to T2D. New evidence suggests that T2D-lean individuals experience early β-cell dysfunction without significant IR. Regardless of the primary event (i.e., IR vs. β-cell dysfunction) that contributes to dysglycemia, significant early-onset oxidative damage and mitochondrial dysfunction in multiple metabolic tissues may be a driver of T2D onset and progression. Oxidative stress, defined as the generation of reactive oxygen species (ROS), is mediated by hyperglycemia alone or in combination with lipids. Physiological oxidative stress promotes inter-tissue communication, while pathological oxidative stress promotes inter-tissue mis-communication, and new evidence suggests that this is mediated via extracellular vesicles (EVs), including mitochondria containing EVs. Under metabolic-related stress conditions, EV-mediated cross-talk between β-cells and skeletal muscle likely trigger mitochondrial anomalies leading to prediabetes and T2D. This article reviews the underlying molecular mechanisms in ROS-related pathogenesis of prediabetes, including mitophagy and mitochondrial dynamics due to oxidative stress. Further, this review will describe the potential of various therapeutic avenues for attenuating oxidative damage, reversing prediabetes and preventing progression to T2D.
Collapse
Affiliation(s)
- Rajakrishnan Veluthakal
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| | | | | | | | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope Beckman Research Institute, 1500 E. Duarte Rd, Duarte, CA 91010, USA; (D.E.); (J.M.H.); (R.B.); (M.A.); (E.O.); (C.S.J.)
| |
Collapse
|
11
|
Santana-Garrido Á, Durán-Lobato M, Mate A, Martín-Banderas L, Vázquez CM. Ophthalmic wild olive (ACEBUCHE) oil nanoemulsions exert oculoprotective effects against oxidative stress induced by arterial hypertension. Int J Pharm 2024; 649:123602. [PMID: 37967686 DOI: 10.1016/j.ijpharm.2023.123602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/07/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Oxidative stress plays a key role in several systemic and ocular diseases, including hypertensive eye diseases. In this context, we previously showed that oral administration of wild olive (acebuche, ACE) oil from Olea europaea var. sylvestris can counteract ocular damage secondary to arterial hypertension by modulating excess reactive oxygen species (ROS) produced by the enzyme nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Therefore, this work describes the development of an ACE oil-based formulation for ocular administration as a local therapy to counteract hypertension-related oxidative damage. Specifically, ACE oil nanoemulsions (NEs) were successfully produced and characterized, exhibiting appropriate features for ophthalmic administration, including a nanometer size (<200 nm), moderate negative ZP, adequate osmolality and pH, and colloidal stability in biorelevant fluids. Likewise, the NEs presented a shear thinning behavior, especially convenient for ocular instillation. In vivo evaluation was performed through either intravitreal injection or topical ophthalmic administration in mice with hypertension induced via administration of Nω-nitro-L-arginine-methyl-ester (L-NAME). Both routes of administration reduced hypertensive morphological alterations and demonstrated a noticeable antioxidant effect thanks to the reduction of the activity/expression of NADPH oxidase in cornea and retina. Thus, an ACE oil ophthalmic formulation represent a promising therapy for ocular pathologies associated with arterial hypertension.
Collapse
Affiliation(s)
- Á Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| | - M Durán-Lobato
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain
| | - A Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain.
| | - L Martín-Banderas
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain.
| | - C M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González 2, 41012 Sevilla, Spain; Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío - Consejo Superior de Investigaciones Científicas - Universidad de Sevilla. Avda. Manuel Siurot s/n, 41013 Sevilla, Spain
| |
Collapse
|
12
|
Camargo LL, Wang Y, Rios FJ, McBride M, Montezano AC, Touyz RM. Oxidative Stress and Endoplasmic Reticular Stress Interplay in the Vasculopathy of Hypertension. Can J Cardiol 2023; 39:1874-1887. [PMID: 37875177 DOI: 10.1016/j.cjca.2023.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
Under physiologic conditions, reactive oxygen species (ROS) function as signalling molecules that control cell function. However, in pathologic conditions, increased generation of ROS triggers oxidative stress, which plays a role in vascular changes associated with hypertension, including endothelial dysfunction, vascular reactivity, and arterial remodelling (termed the vasculopathy of hypertension). The major source of ROS in the vascular system is NADPH oxidase (NOX). Increased NOX activity drives vascular oxidative stress in hypertension. Molecular mechanisms underlying vascular damage in hypertension include activation of redox-sensitive signalling pathways, post-translational modification of proteins, and oxidative damage of DNA and cytoplasmic proteins. In addition, oxidative stress leads to accumulation of proteins in the endoplasmic reticulum (ER) (termed ER stress), with consequent activation of the unfolded protein response (UPR). ER stress is emerging as a potential player in hypertension as abnormal protein folding in the ER leads to oxidative stress and dysregulated activation of the UPR promotes inflammation and injury in vascular and cardiac cells. In addition, the ER engages in crosstalk with exogenous sources of ROS, such as mitochondria and NOX, which can amplify redox processes. Here we provide an update of the role of ROS and NOX in hypertension and discuss novel concepts on the interplay between oxidative stress and ER stress.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Yu Wang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Martin McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; McGill University, Department of Medicine and Department of Family Medicine, Montréal, Québec, Canada.
| |
Collapse
|
13
|
Zhang J, Zhao Y, Gong N. XBP1 Modulates the Aging Cardiorenal System by Regulating Oxidative Stress. Antioxidants (Basel) 2023; 12:1933. [PMID: 38001786 PMCID: PMC10669121 DOI: 10.3390/antiox12111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
X-box binding protein 1 (XBP1) is a unique basic-region leucine zipper (bZIP) transcription factor. Over recent years, the powerful biological functions of XBP1 in oxidative stress have been gradually revealed. When the redox balance remains undisturbed, oxidative stress plays a role in physiological adaptations and signal transduction. However, during the aging process, increased cellular senescence and reduced levels of endogenous antioxidants cause an oxidative imbalance in the cardiorenal system. Recent studies from our laboratory and others have indicated that these age-related cardiorenal diseases caused by oxidative stress are guided and controlled by a versatile network composed of diversified XBP1 pathways. In this review, we describe the mechanisms that link XBP1 and oxidative stress in a range of cardiorenal disorders, including mitochondrial instability, inflammation, and alterations in neurohumoral drive. Furthermore, we propose that differing degrees of XBP1 activation may cause beneficial or harmful effects in the cardiorenal system. Gaining a comprehensive understanding of how XBP1 exerts influence on the aging cardiorenal system by regulating oxidative stress will enhance our ability to provide new directions and strategies for cardiovascular and renal safety outcomes.
Collapse
Affiliation(s)
- Ji Zhang
- Anhui Province Key Laboratory of Genitourinary Diseases, Department of Urology, The First Affiliated Hospital of Anhui Medical University, Institute of Urology, Anhui Medical University, Hefei 230022, China;
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yuanyuan Zhao
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Nianqiao Gong
- Key Laboratory of Organ Transplantation of Ministry of Education, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, National Health Commission and Chinese Academy of Medical Sciences, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
14
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
15
|
Cipriano A, Viviano M, Feoli A, Milite C, Sarno G, Castellano S, Sbardella G. NADPH Oxidases: From Molecular Mechanisms to Current Inhibitors. J Med Chem 2023; 66:11632-11655. [PMID: 37650225 PMCID: PMC10510401 DOI: 10.1021/acs.jmedchem.3c00770] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Indexed: 09/01/2023]
Abstract
NADPH oxidases (NOXs) form a family of electron-transporting membrane enzymes whose main function is reactive oxygen species (ROS) generation. Strong evidence suggests that ROS produced by NOX enzymes are major contributors to oxidative damage under pathologic conditions. Therefore, blocking the undesirable actions of these enzymes is a therapeutic strategy for treating various pathological disorders, such as cardiovascular diseases, inflammation, and cancer. To date, identification of selective NOX inhibitors is quite challenging, precluding a pharmacologic demonstration of NOX as therapeutic targets in vivo. The aim of this Perspective is to furnish an updated outlook about the small-molecule NOX inhibitors described over the last two decades. Structures, activities, and in vitro/in vivo specificity are discussed, as well as the main biological assays used.
Collapse
Affiliation(s)
- Alessandra Cipriano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Monica Viviano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Alessandra Feoli
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Ciro Milite
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Giuliana Sarno
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Sabrina Castellano
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| | - Gianluca Sbardella
- Department
of Pharmacy, Epigenetic Med Chem Lab, and PhD Program in Drug Discovery and
Development, University of Salerno, via Giovanni Paolo II 132, I-84084 Fisciano, Salerno, Italy
| |
Collapse
|
16
|
Morris HE, Neves KB, Nilsen M, Montezano AC, MacLean MR, Touyz RM. Notch3/Hes5 Induces Vascular Dysfunction in Hypoxia-Induced Pulmonary Hypertension Through ER Stress and Redox-Sensitive Pathways. Hypertension 2023; 80:1683-1696. [PMID: 37254738 PMCID: PMC10355806 DOI: 10.1161/hypertensionaha.122.20449] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Notch3 (neurogenic locus notch homolog protein 3) is implicated in vascular diseases, including pulmonary hypertension (PH)/pulmonary arterial hypertension. However, molecular mechanisms remain elusive. We hypothesized increased Notch3 activation induces oxidative and endoplasmic reticulum (ER) stress and downstream redox signaling, associated with procontractile pulmonary artery state, pulmonary vascular dysfunction, and PH development. METHODS Studies were performed in TgNotch3R169C mice (harboring gain-of-function [GOF] Notch3 mutation) exposed to chronic hypoxia to induce PH, and examined by hemodynamics. Molecular and cellular studies were performed in pulmonary artery smooth muscle cells from pulmonary arterial hypertension patients and in mouse lung. Notch3-regulated genes/proteins, ER stress, ROCK (Rho-associated kinase) expression/activity, Ca2+ transients and generation of reactive oxygen species, and nitric oxide were measured. Pulmonary vascular reactivity was assessed in the presence of fasudil (ROCK inhibitor) and 4-phenylbutyric acid (ER stress inhibitor). RESULTS Hypoxia induced a more severe PH phenotype in TgNotch3R169C mice versus controls. TgNotch3R169C mice exhibited enhanced Notch3 activation and expression of Notch3 targets Hes Family BHLH Transcription Factor 5 (Hes5), with increased vascular contraction and impaired vasorelaxation that improved with fasudil/4-phenylbutyric acid. Notch3 mutation was associated with increased pulmonary vessel Ca2+ transients, ROCK activation, ER stress, and increased reactive oxygen species generation, with reduced NO generation and blunted sGC (soluble guanylyl cyclase)/cGMP signaling. These effects were ameliorated by N-acetylcysteine. pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension recapitulated Notch3/Hes5 signaling, ER stress and redox changes observed in PH mice. CONCLUSIONS Notch3 GOF amplifies vascular dysfunction in hypoxic PH. This involves oxidative and ER stress, and ROCK. We highlight a novel role for Notch3/Hes5-redox signaling and important interplay between ER and oxidative stress in PH.
Collapse
Affiliation(s)
- Hannah E Morris
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.E.M., K.B.N., A.C.M., R.M.T.)
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.E.M., K.B.N., A.C.M., R.M.T.)
| | - Margaret Nilsen
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, United Kingdom (M.N., M.R.M.)
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.E.M., K.B.N., A.C.M., R.M.T.)
| | - Margaret R MacLean
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, United Kingdom (M.N., M.R.M.)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (H.E.M., K.B.N., A.C.M., R.M.T.)
- Research Institute of McGill University Health Centre, McGill University, Canada (R.M.T.)
| |
Collapse
|
17
|
Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int J Mol Sci 2023; 24:7898. [PMID: 37175603 PMCID: PMC10178199 DOI: 10.3390/ijms24097898] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Metabolic syndrome is a cluster of conditions associated with the risk of diabetes mellitus type 2 and cardiovascular diseases (CVDs). Metabolic syndrome is closely related to obesity. Increased adiposity promotes inflammation and oxidative stress, which are precursors of various complications involving metabolic syndrome components, namely insulin resistance, hypertension, and hyperlipidemia. An increasing number of studies confirm the importance of oxidative stress and chronic inflammation in the etiology of metabolic syndrome. However, few studies have reviewed the mechanisms underlying the role of oxidative stress in contributing to metabolic syndrome. In this review, we highlight mechanisms by which reactive oxygen species (ROS) increase mitochondrial dysfunction, protein damage, lipid peroxidation, and impair antioxidant function in metabolic syndrome. Biomarkers of oxidative stress can be used in disease diagnosis and evaluation of severity.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| | - Lombe S. Kabwe
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Martin Chakulya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone P.O. Box 60009, Zambia
| | - Annet Kirabo
- Department of Medicine, Room 536 Robinson Research Building, Vanderbilt University Medical Centre, Nashville, TN 37232-6602, USA
| |
Collapse
|
18
|
Camargo LL, Touyz RM. Phenotype-Specific Induced Pluripotent Stem Cell-Derived Vascular Smooth Muscle Cells to Model Vascular Disease: Implications of Differentiation Protocols. Hypertension 2023; 80:754-756. [PMID: 36921028 DOI: 10.1161/hypertensionaha.123.20871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
He B, Zhang Z, Huang Z, Duan X, Wang Y, Cao J, Li L, He K, Nice EC, He W, Gao W, Shen Z. Protein persulfidation: Rewiring the hydrogen sulfide signaling in cell stress response. Biochem Pharmacol 2023; 209:115444. [PMID: 36736962 DOI: 10.1016/j.bcp.2023.115444] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The past few decades have witnessed significant progress in the discovery of hydrogen sulfide (H2S) as a ubiquitous gaseous signaling molecule in mammalian physiology, akin to nitric oxide and carbon monoxide. As the third gasotransmitter, H2S is now known to exert a wide range of physiological and cytoprotective functions in the biological systems. However, endogenous H2S concentrations are usually low, and its potential biologic mechanisms responsible have not yet been fully clarified. Recently, a growing body of evidence has demonstrated that protein persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH) elicited by H2S, is a fundamental mechanism of H2S-mediated signaling pathways. Persulfidation, as a biological switch for protein function, plays an important role in the maintenance of cell homeostasis in response to various internal and external stress stimuli and is also implicated in numerous diseases, such as cardiovascular and neurodegenerative diseases and cancer. In this review, the biological significance of protein persulfidation by H2S in cell stress response is reviewed providing a framework for understanding the multifaceted roles of H2S. A mechanism-guided perspective can help open novel avenues for the exploitation of therapeutics based on H2S-induced persulfidation in the context of diseases.
Collapse
Affiliation(s)
- Bo He
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhe Zhang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Zhao Huang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xirui Duan
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yu Wang
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jiangjun Cao
- West China School of Basic Medical Sciences & Forensic Medicine, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Kai He
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Weifeng He
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Military Medical University, Chongqing 400038, China.
| | - Wei Gao
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, Affiliated Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| |
Collapse
|
20
|
Yao G, Li H, Zuo X, Wang C, Xiao Y, Zhao Y, Wang X. Oscillatory shear stress promotes vein graft intimal hyperplasia via NADPH oxidase-related pathways. Front Surg 2023; 10:1073557. [PMID: 36860953 PMCID: PMC9968757 DOI: 10.3389/fsurg.2023.1073557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
Background Uncontrolled intimal hyperplasia (IH) after autologous saphenous vein grafting triggers a high restenosis rate; however, its association with the activation of NADPH oxidase (NOX)-related pathways is unclear. Here, we investigated the effects and mechanism of oscillatory shear stress (OSS) on grafted vein IH. Methods Thirty male New Zealand rabbits were randomly divided into control, high-OSS (HOSS), and low-OSS (LOSS) groups, and the vein grafts were harvested after 4 weeks. Hematoxylin and eosin staining and Masson staining assays were used to observe morphological and structural changes. Immunohistochemical staining was used to detect α-SMA, PCNA, MMP-2, and MMP-9 expression. Immunofluorescence staining was used to observe reactive oxygen species (ROS) production in the tissues. Western blotting was used to determine the expression levels of pathway-related proteins (NOX1, NOX2, AKT, p-AKT, and BIRC5), PCNA, BCL-2, BAX, and caspase-3/cleaved caspase-3 in tissues. Results Blood flow velocity was lower in the LOSS group than in the HOSS group, while vessel diameter did not change significantly. Shear rate was elevated in both HOSS and LOSS groups but was higher in the HOSS group. Additionally, vessel diameter increased with time in the HOSS and LOSS groups, whereas flow velocity did not. Intimal hyperplasia was significantly lower in the LOSS group than in the HOSS group. IH was dominated by smooth muscle fibers in the grafted veins and collagen fibers in the media. OSS restriction significantly reduced the α-SMA, PCNA, MMP-2, and MMP-9 levels. Moreover, ROS production and the expression of NOX1, NOX2, p-AKT, BIRC5, PCNA, BCL-2, BAX, and cleaved caspase-3 were phase-reduced in LOSS compared to the levels in the HOSS group. Total AKT was not differentially expressed among the three groups. Conclusion OSS promotes the proliferation, migration, and survival of subendothelial vascular smooth muscle cells in grafted veins, which may be related to the regulation of downstream p-AKT/BIRC5 levels through the increased production of ROS by NOX. Drugs inhibiting this pathway might be used to prolong vein graft survival time.
Collapse
Affiliation(s)
- Guoqing Yao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huanhuan Li
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Emergency, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Xiangyi Zuo
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunkai Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yelei Xiao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuehu Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Correspondence: Xuehu Wang
| |
Collapse
|
21
|
Nabeebaccus AA, Reumiller CM, Shen J, Zoccarato A, Santos CXC, Shah AM. The regulation of cardiac intermediary metabolism by NADPH oxidases. Cardiovasc Res 2023; 118:3305-3319. [PMID: 35325070 PMCID: PMC9847558 DOI: 10.1093/cvr/cvac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
NADPH oxidases (NOXs), enzymes whose primary function is to generate reactive oxygen species, are important regulators of the heart's physiological function and response to pathological insults. The role of NOX-driven redox signalling in pathophysiological myocardial remodelling, including processes such as interstitial fibrosis, contractile dysfunction, cellular hypertrophy, and cell survival, is well recognized. While the NOX2 isoform promotes many detrimental effects, the NOX4 isoform has attracted considerable attention as a driver of adaptive stress responses both during pathology and under physiological states such as exercise. Recent studies have begun to define some of the NOX4-modulated mechanisms that may underlie these adaptive responses. In particular, novel functions of NOX4 in driving cellular metabolic changes have emerged. Alterations in cellular metabolism are a recognized hallmark of the heart's response to physiological and pathological stresses. In this review, we highlight the emerging roles of NOX enzymes as important modulators of cellular intermediary metabolism in the heart, linking stress responses not only to myocardial energetics but also other functions. The novel interplay of NOX-modulated redox signalling pathways and intermediary metabolism in the heart is unravelling a new aspect of the fascinating biology of these enzymes which will inform a better understanding of how they drive adaptive responses. We also discuss the implications of these new findings for therapeutic approaches that target metabolism in cardiac disease.
Collapse
Affiliation(s)
- Adam A Nabeebaccus
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Christina M Reumiller
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jie Shen
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Anna Zoccarato
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
22
|
Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: New insights and potential therapeutic targets. Front Immunol 2023; 13:1098725. [PMID: 36703963 PMCID: PMC9871625 DOI: 10.3389/fimmu.2022.1098725] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Hypertension is regarded as the most prominent risk factor for cardiovascular diseases, which have become a primary cause of death, and recent research has demonstrated that chronic inflammation is involved in the pathogenesis of hypertension. Both innate and adaptive immunity are now known to promote the elevation of blood pressure by triggering vascular inflammation and microvascular remodeling. For example, as an important part of innate immune system, classically activated macrophages (M1), neutrophils, and dendritic cells contribute to hypertension by secreting inflammatory cy3tokines. In particular, interferon-gamma (IFN-γ) and interleukin-17 (IL-17) produced by activated T lymphocytes contribute to hypertension by inducing oxidative stress injury and endothelial dysfunction. However, the regulatory T cells and alternatively activated macrophages (M2) may have a protective role in hypertension. Although inflammation is related to hypertension, the exact mechanisms are complex and unclear. The present review aims to reveal the roles of inflammation, immunity, and oxidative stress in the initiation and evolution of hypertension. We envisage that the review will strengthen public understanding of the pathophysiological mechanisms of hypertension and may provide new insights and potential therapeutic strategies for hypertension.
Collapse
Affiliation(s)
| | | | | | - Xu Meng
- *Correspondence: Xianliang Zhou, ; Xu Meng,
| | | |
Collapse
|
23
|
Li Z, Xu T, Peng L, Tang X, Chi Q, Li M, Li S. Polystyrene nanoplastics aggravates lipopolysaccharide-induced apoptosis in mouse kidney cells by regulating IRE1/XBP1 endoplasmic reticulum stress pathway via oxidative stress. J Cell Physiol 2023; 238:151-164. [PMID: 36370432 DOI: 10.1002/jcp.30913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022]
Abstract
Nanoplastics (NPs) pollution poses a huge threat to the ecosystem and has become one of the environmental pollutants that have attracted much attention. There is increasing evidence that both oxidative stress and endoplasmic reticulum stress (ERS) are associated with polystyrene nanoplastics (PS-NPs) exposure. Lipopolysaccharide (LPS) has been shown to induce apoptotic damage in various tissues, but whether PS-NPs can aggravate LPS-induced apoptosis in mouse kidneys through oxidative stress-regulated inositol-requiring enzyme 1 (IRE1)/X-box binding protein 1 (XBP1) ERS pathway remains unclear. In this study, based on the establishment of in vitro and in vivo PS-NPs and LPS exposure models alone and in combination in mice and HEK293 cells, the effects and mechanisms of PS-NPs on LPS-induced renal cell apoptosis were investigated. The results showed that PS-NPs could aggravate LPS-induced apoptosis. PS-NPs/LPS can induce ERS through oxidative stress, activate the IRE1/XBP1 pathway, and promote the expression of apoptosis markers (Caspase-3 and Caspase-12). Kidney oxidative stress, ERS, and apoptosis in PS-NPs + LPS combined exposure group were more severe than those in the single exposure group. Interestingly, 4-phenylbutyric acid-treated HEK293 cells inhibited the expression of the IRE1/XBP1 ERS pathway and apoptotic factors in the PS-NPs + LPS combined exposure group. N-acetyl-L-cysteine effectively blocked the activation of the IRE1/XBP1 ERS pathway, suggesting that PS-NPs-induced oxidative stress is an early event that triggers ERS. Collectively, these results confirmed that PS-NPs aggravated LPS-induced apoptosis through the oxidative stress-induced IRE1/XBP1 ERS pathway. Our study provides new insights into the health threats of PS-NPs exposed to mammals and humans.
Collapse
Affiliation(s)
- Zhe Li
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Tong Xu
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Lin Peng
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Xinyu Tang
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Qianru Chi
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Ming Li
- Department of Animal Ecology, College of Life and environmental Science, Wenzhou University, Wenzhou, P.R. China
| | - Shu Li
- Department of Animal Physiology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| |
Collapse
|
24
|
Molecular Mechanism Underlying Role of the XBP1s in Cardiovascular Diseases. J Cardiovasc Dev Dis 2022; 9:jcdd9120459. [PMID: 36547457 PMCID: PMC9782920 DOI: 10.3390/jcdd9120459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Spliced X-box binding protein-1 (XBP1s) is a protein that belongs to the cAMP-response element-binding (CREB)/activating transcription factor (ATF) b-ZIP family with a basic-region leucine zipper (bZIP). There is mounting evidence to suggest that XBP1s performs a critical function in a range of different cardiovascular diseases (CVDs), indicating that it is necessary to gain a comprehensive knowledge of the processes involved in XBP1s in various disorders to make progress in research and clinical therapy. In this research, we provide a summary of the functions that XBP1s performs in the onset and advancement of CVDs such as atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. Furthermore, we discuss XBP1s as a novel therapeutic target for CVDs.
Collapse
|
25
|
Hu XQ, Zhang L. Oxidative Regulation of Vascular Ca v1.2 Channels Triggers Vascular Dysfunction in Hypertension-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11122432. [PMID: 36552639 PMCID: PMC9774363 DOI: 10.3390/antiox11122432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Blood pressure is determined by cardiac output and peripheral vascular resistance. The L-type voltage-gated Ca2+ (Cav1.2) channel in small arteries and arterioles plays an essential role in regulating Ca2+ influx, vascular resistance, and blood pressure. Hypertension and preeclampsia are characterized by high blood pressure. In addition, diabetes has a high prevalence of hypertension. The etiology of these disorders remains elusive, involving the complex interplay of environmental and genetic factors. Common to these disorders are oxidative stress and vascular dysfunction. Reactive oxygen species (ROS) derived from NADPH oxidases (NOXs) and mitochondria are primary sources of vascular oxidative stress, whereas dysfunction of the Cav1.2 channel confers increased vascular resistance in hypertension. This review will discuss the importance of ROS derived from NOXs and mitochondria in regulating vascular Cav1.2 and potential roles of ROS-mediated Cav1.2 dysfunction in aberrant vascular function in hypertension, diabetes, and preeclampsia.
Collapse
|
26
|
Zhou J, Weng J, Huang X, Sun S, Yang Q, Lin H, Yang J, Guo H, Chi J. Repair effect of the poly (D,L-lactic acid) nanoparticle containing tauroursodeoxycholic acid-eluting stents on endothelial injury after stent implantation. Front Cardiovasc Med 2022; 9:1025558. [PMID: 36426231 PMCID: PMC9678935 DOI: 10.3389/fcvm.2022.1025558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background Chronic endoplasmic reticulum stress (ERS) plays a crucial role in cardiovascular diseases. Thus, it can be considered a therapeutic target for these diseases. In this study, poly (D,L-lactic acid) (PDLLA) nanoparticle-eluting stents loaded with tauroursodeoxycholic acid (TUDCA), an ER stress inhibitor, was fabricated to assess their ability to reduce endothelial cell apoptosis and promote re-endothelialization after stent implantation. Materials and methods PDLLA nanoparticles loaded with TUDCA were prepared via the emulsification-solvent evaporation method. The cumulative release rates of TUDCA were measured in vitro via high-performance liquid chromatography. The carotid arteries of rabbits were subsequently implanted with stents in vivo. The rabbits were then sacrificed after 4 weeks for scanning electron microscopy. Meanwhile, TUDCA concentration in the homogenate of the peripheral blood and distal vascular tissue after stent implantation was measured. The effect of TUDCA on ERS, apoptosis, and human umbilical vein endothelial cell (HUVEC) function was investigated in vitro by performing cell migration assay, wound healing assay, cell proliferation assays, endoplasmic reticulum (ER)-specific fluorescence staining, immunofluorescence, and western blotting. Results TUDCA nanoparticles were released slowly over 28 days. In addition, TUDCA-eluting stents enhanced re-endothelialization and accelerated the recovery of endotheliocytes in vivo. ERS and apoptosis significantly increased in H2O2-treated HUVECs in vitro. Meanwhile, TUDCA reduced apoptosis and improved function by inhibiting ERS in H2O2-treated HUVECs. Decreased rates of apoptosis and ERS were observed after silencing XBP-1s in H2O2-treated HUVECs. Conclusion TUDCA can inhibit apoptosis and promote re-endothelialization after stent implantation by inhibiting IRE/XBP1s-related ERS. These results indicate the potential therapeutic application of TUDCA as a drug-coated stent.
Collapse
Affiliation(s)
- Jiedong Zhou
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jingfan Weng
- Zhejiang Hospital Affiliated to Medical College of Zhejiang University, Hangzhou, China
| | - Xingxiao Huang
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Shimin Sun
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Qi Yang
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Jinjin Yang
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Hangyuan Guo
- Shaoxing University School of Medicine, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
- *Correspondence: Jufang Chi,
| |
Collapse
|
27
|
Micovic K, Satkunarajah T, Carnet A, Hurst M, Viirre R, Olson MF. Synthesis and Use of the Bifunctional Sulfenic Acid Probe BCN-E-BCN for In Vitro and Cell-Based Assays of Protein Oxidation. Curr Protoc 2022; 2:e559. [PMID: 36200822 DOI: 10.1002/cpz1.559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The reversible oxidation of cysteine thiol groups to sulfenic acid by reactive oxygen species (ROS) such as hydrogen peroxide can impact protein function, activity, and localization. As a consequence, ROS have profound effects on cell functions including proliferation, differentiation, and survival. Furthermore, there are clear associations between the effects of ROS on cells and the etiology of several diseases including cancer and neurodegeneration. In spite of the importance of cysteine sulfenylation as a validated post-translational modification, its labile nature impedes efficient and reproducible detection of proteins with cysteine sulfenic acid residues. To overcome this challenge, we developed a novel cell-permeable bifunctional reagent, consisting of two linked bicyclo[6.1.0]nonyne (BCN) moieties coupled with a short ethylenediamine-derived linker (BCN-E-BCN) that enables the detection of sulfenylated proteins in vitro and in intact cells. The two symmetrical BCN groups allow protein sulfenic acids to be selectively tagged with a BCN at one end while allowing for copper-free click chemistry with azide-tagged reagents of the opposite BCN. In this protocol, the synthesis of BCN-E-BCN and its use to detect cysteine sulfenic acids will be detailed. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Copper-mediated cyclopropanation of 1,5-cyclooctadiene Basic Protocol 2: Synthesis of endo- and exo-bicyclononyne Basic Protocol 3: Synthesis of endo-BCN-E-BCN Basic Protocol 4: BCN-E-BCN treatment of wild-type and cysteine-deficient mutant recombinant cofilin protein Basic Protocol 5: BCN-E-BCN labeling in live cells Basic Protocol 6: Western blotting and visualization of BCN-E-BCN-labeled samples.
Collapse
Affiliation(s)
- Katarina Micovic
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Thershan Satkunarajah
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Alexandre Carnet
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Mackenzie Hurst
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Russell Viirre
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Michael F Olson
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
28
|
Begum R, Thota S, Abdulkadir A, Kaur G, Bagam P, Batra S. NADPH oxidase family proteins: signaling dynamics to disease management. Cell Mol Immunol 2022; 19:660-686. [PMID: 35585127 DOI: 10.1038/s41423-022-00858-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/12/2022] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) are pervasive signaling molecules in biological systems. In humans, a lack of ROS causes chronic and extreme bacterial infections, while uncontrolled release of these factors causes pathologies due to excessive inflammation. Professional phagocytes such as neutrophils (PMNs), eosinophils, monocytes, and macrophages use superoxide-generating NADPH oxidase (NOX) as part of their arsenal of antimicrobial mechanisms to produce high levels of ROS. NOX is a multisubunit enzyme complex composed of five essential subunits, two of which are localized in the membrane, while three are localized in the cytosol. In resting phagocytes, the oxidase complex is unassembled and inactive; however, it becomes activated after cytosolic components translocate to the membrane and are assembled into a functional oxidase. The NOX isoforms play a variety of roles in cellular differentiation, development, proliferation, apoptosis, cytoskeletal control, migration, and contraction. Recent studies have identified NOX as a major contributor to disease pathologies, resulting in a shift in focus on inhibiting the formation of potentially harmful free radicals. Therefore, a better understanding of the molecular mechanisms and the transduction pathways involved in NOX-mediated signaling is essential for the development of new therapeutic agents that minimize the hyperproduction of ROS. The current review provides a thorough overview of the various NOX enzymes and their roles in disease pathophysiology, highlights pharmacological strategies, and discusses the importance of computational modeling for future NOX-related studies.
Collapse
Affiliation(s)
- Rizwana Begum
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Shilpa Thota
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Abubakar Abdulkadir
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Gagandeep Kaur
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Department of Environmental Medicine, University of Rochester, School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Prathyusha Bagam
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.,Division of Systems Biology, National Center for Toxicological Research, Jefferson, AR, 72079, USA
| | - Sanjay Batra
- Laboratory of Pulmonary Immunotoxicology, Department of Environmental Toxicology, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
29
|
Szczepaniak P, Siedlinski M, Hodorowicz-Zaniewska D, Nosalski R, Mikolajczyk TP, Dobosz AM, Dikalova A, Dikalov S, Streb J, Gara K, Basta P, Krolczyk J, Sulicka-Grodzicka J, Jozefczuk E, Dziewulska A, Saju B, Laksa I, Chen W, Dormer J, Tomaszewski M, Maffia P, Czesnikiewicz-Guzik M, Crea F, Dobrzyn A, Moslehi J, Grodzicki T, Harrison DG, Guzik TJ. Breast cancer chemotherapy induces vascular dysfunction and hypertension through NOX4 dependent mechanism. J Clin Invest 2022; 132:149117. [PMID: 35617030 PMCID: PMC9246378 DOI: 10.1172/jci149117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease is the major cause of morbidity and mortality in breast cancer survivors. Chemotherapy contributes to this risk. We aimed to define the mechanisms of long-term vascular dysfunction caused by neoadjuvant chemotherapy (NACT) and identify novel therapeutic targets.We studied arteries from postmenopausal women who had undergone breast cancer treatment using docetaxel, doxorubicin and cyclophosphamide (NACT), and women with no history of such treatment matched for key clinical parameters. Mechanisms were explored in wild-type and Nox4-/- mice and human microvascular endothelial cells.Endothelium-dependent vasodilatation is severely impaired in patients after NACT, while endothelium-independent responses remain normal. This was mimicked by 24-hour exposure of arteries to NACT agents ex-vivo. When applied individually, only docetaxel impaired endothelial function in human vessels. Mechanistic studies showed that NACT increased inhibitory eNOS phosphorylation of threonine 495 in a ROCK-dependent manner and augmented vascular superoxide and hydrogen peroxide production and NADPH oxidase activity. Docetaxel increased expression of NADPH oxidase NOX4 in endothelial and smooth muscle cells and NOX2 in the endothelium. NOX4 increase in human arteries may be mediated epigenetically by diminished DNA methylation of the NOX4 promoter. Docetaxel induced endothelial dysfunction and hypertension in mice. These were prevented in Nox4-/- and by pharmacological inhibition of Nox4 or Rock.Commonly used chemotherapeutic agents, and in particular, docetaxel, alter vascular function by promoting inhibitory phosphorylation of eNOS and enhancing ROS production by NADPH oxidases.
Collapse
Affiliation(s)
- Piotr Szczepaniak
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Mateusz Siedlinski
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | | | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Tomasz P Mikolajczyk
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Aneta M Dobosz
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Anna Dikalova
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Sergey Dikalov
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Joanna Streb
- Department of Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Katarzyna Gara
- Department of Surgery, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Pawel Basta
- Department of Gynecology and Gynecological Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Jaroslaw Krolczyk
- Department of Internal Medicine and Gerontology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | | | - Ewelina Jozefczuk
- Department of Medicine, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Anna Dziewulska
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Blessy Saju
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iwona Laksa
- Department of Oncology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - Wei Chen
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - John Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, United Kingdom
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Pasquale Maffia
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marta Czesnikiewicz-Guzik
- Department of Periodontology and Oral Sciences Research Group, University of Glasgow, Glasgow, United Kingdom
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, University of the Sacred Heart, Rome, Italy
| | - Agnieszka Dobrzyn
- Laboratory of Cell Signaling and Metabolic Disorders, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Javid Moslehi
- University of California San Fransisco, San Francisco, United States of America
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Collegium Medicum, Jagiellonian University, Krakow, Poland
| | - David G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University, Nashville, United States of America
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
30
|
Lucas-Herald AK, Montezano AC, Alves-Lopes R, Haddow L, Alimussina M, O’Toole S, Flett M, Lee B, Amjad SB, Steven M, Brooksbank K, McCallum L, Delles C, Padmanabhan S, Ahmed SF, Touyz RM. Vascular dysfunction and increased cardiovascular risk in hypospadias. Eur Heart J 2022; 43:1832-1845. [PMID: 35567552 PMCID: PMC9113289 DOI: 10.1093/eurheartj/ehac112] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/30/2021] [Accepted: 02/15/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS Hypogonadism is associated with cardiovascular disease. However, the cardiovascular impact of hypogonadism during development is unknown. Using hypospadias as a surrogate of hypogonadism, we investigated whether hypospadias is associated with vascular dysfunction and is a risk factor for cardiovascular disease. METHODS AND RESULTS Our human study spanned molecular mechanistic to epidemiological investigations. Clinical vascular phenotyping was performed in adolescents with hypospadias and controls. Small subcutaneous arteries from penile skin from boys undergoing hypospadias repair and controls were isolated and functional studies were assessed by myography. Vascular smooth muscle cells were used to assess: Rho kinase, reactive oxygen species (ROS), nitric oxide synthase/nitric oxide, and DNA damage. Systemic oxidative stress was assessed in plasma and urine. Hospital episode data compared men with a history of hypospadias vs. controls. In adolescents with hypospadias, systolic blood pressure (P = 0.005), pulse pressure (P = 0.03), and carotid intima-media thickness standard deviation scores (P = 0.01) were increased. Arteries from boys with hypospadias demonstrated increased U46619-induced vasoconstriction (P = 0.009) and reduced acetylcholine-induced endothelium-dependent (P < 0.0001) and sodium nitroprusside-induced endothelium-independent vasorelaxation (P < 0.0001). Men born with hypospadias were at increased risk of arrhythmia [odds ratio (OR) 2.8, 95% confidence interval (CI) 1.4-5.6, P = 0.003]; hypertension (OR 4.2, 95% CI 1.5-11.9, P = 0.04); and heart failure (OR 1.9, 95% CI 1.7-114.3, P = 0.02). CONCLUSION Hypospadias is associated with vascular dysfunction and predisposes to hypertension and cardiovascular disease in adulthood. Underlying mechanisms involve perturbed Rho kinase- and Nox5/ROS-dependent signalling. Our novel findings delineate molecular mechanisms of vascular injury in hypogonadism, and identify hypospadias as a cardiovascular risk factor in males.
Collapse
Affiliation(s)
- Angela K Lucas-Herald
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow G45 8TF, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Laura Haddow
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Malika Alimussina
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow G45 8TF, UK
| | - Stuart O’Toole
- Department of Pediatric Surgery, Royal Hospital for Children, 1345 Govan Road, Glasgow G45 8TF, UK
| | - Martyn Flett
- Department of Pediatric Surgery, Royal Hospital for Children, 1345 Govan Road, Glasgow G45 8TF, UK
| | - Boma Lee
- Department of Pediatric Surgery, Royal Hospital for Children, 1345 Govan Road, Glasgow G45 8TF, UK
| | - S Basith Amjad
- Department of Pediatric Surgery, Royal Hospital for Children, 1345 Govan Road, Glasgow G45 8TF, UK
| | - Mairi Steven
- Department of Pediatric Surgery, Royal Hospital for Children, 1345 Govan Road, Glasgow G45 8TF, UK
| | - Katriona Brooksbank
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Linsay McCallum
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine, Dentistry and Nursing, University of Glasgow, Royal Hospital for Children, 1345 Govan Road, Glasgow G45 8TF, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Centre for Research Excellence, University of Glasgow, 126 University Avenue, Glasgow G12 8TA, UK
| |
Collapse
|
31
|
Camargo LL, Montezano AC, Hussain M, Wang Y, Zou Z, Rios FJ, Neves KB, Alves-Lopes R, Awan FR, Guzik TJ, Jensen T, Hartley RC, Touyz RM. Central role of c-Src in NOX5- mediated redox signalling in vascular smooth muscle cells in human hypertension. Cardiovasc Res 2022; 118:1359-1373. [PMID: 34320175 PMCID: PMC8953456 DOI: 10.1093/cvr/cvab171] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
AIMS NOX-derived reactive oxygen species (ROS) are mediators of signalling pathways implicated in vascular smooth muscle cell (VSMC) dysfunction in hypertension. Among the numerous redox-sensitive kinases important in VSMC regulation is c-Src. However, mechanisms linking NOX/ROS to c-Src are unclear, especially in the context of oxidative stress in hypertension. Here, we investigated the role of NOX-induced oxidative stress in VSMCs in human hypertension focusing on NOX5, and explored c-Src, as a putative intermediate connecting NOX5-ROS to downstream effector targets underlying VSMC dysfunction. METHODS AND RESULTS VSMC from arteries from normotensive (NT) and hypertensive (HT) subjects were studied. NOX1,2,4,5 expression, ROS generation, oxidation/phosphorylation of signalling molecules, and actin polymerization and migration were assessed in the absence and presence of NOX5 (melittin) and Src (PP2) inhibitors. NOX5 and p22phox-dependent NOXs (NOX1-4) were down-regulated using NOX5 siRNA and p22phox-siRNA approaches. As proof of concept in intact vessels, vascular function was assessed by myography in transgenic mice expressing human NOX5 in a VSMC-specific manner. In HT VSMCs, NOX5 was up-regulated, with associated oxidative stress, hyperoxidation (c-Src, peroxiredoxin, DJ-1), and hyperphosphorylation (c-Src, PKC, ERK1/2, MLC20) of signalling molecules. NOX5 siRNA reduced ROS generation in NT and HT subjects. NOX5 siRNA, but not p22phox-siRNA, blunted c-Src phosphorylation in HT VSMCs. NOX5 siRNA reduced phosphorylation of MLC20 and FAK in NT and HT. In p22phox- silenced HT VSMCs, Ang II-induced phosphorylation of MLC20 was increased, effects blocked by melittin and PP2. NOX5 and c-Src inhibition attenuated actin polymerization and migration in HT VSMCs. In NOX5 transgenic mice, vascular hypercontractilty was decreased by melittin and PP2. CONCLUSION We define NOX5/ROS/c-Src as a novel feedforward signalling network in human VSMCs. Amplification of this system in hypertension contributes to VSMC dysfunction. Dampening the NOX5/ROS/c-Src pathway may ameliorate hypertension-associated vascular injury.
Collapse
Affiliation(s)
- Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Misbah Hussain
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Yu Wang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Zhiguo Zou
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Fazli R Awan
- Diabetes and Cardio-Metabolic Disorders Laboratory, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Jensen
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, G12 8QQ Glasgow, UK
| | - Richard C Hartley
- WestCHEM School of Chemistry, University of Glasgow, University Avenue, G12 8QQ Glasgow, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
32
|
Tanyeli A, Guzel Erdogan D, Comakli S, Polat E, Guler MC, Eraslan E, Doganay S. Therapeutic effects of apocynin on ovarian ischemia-reperfusion induced lung injury. Biotech Histochem 2022; 97:536-545. [PMID: 35152781 DOI: 10.1080/10520295.2022.2036368] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Ovarian ischemia-reperfusion (I-R) injury may damage remote organs, including the lungs. We investigated whether apocynin, a NADPH oxidase inhibitor, might protect against ovarian I-R induced apoptosis in the lungs of rats. Bilateral ovarian I-R was induced for 3 h, then apocynin was applied at two concentrations. Lung tissue was evaluated using spectrophotometric and immunohistochemical methods. We found that I-R increased total oxidant status (TOS), oxidative stress index (OSI) and myeloperoxidase (MPO) levels, and immunostaining of nuclear factor kappa-B (NF-κB), light chain 3B (LC3B), interleukin 1-beta (IL-1β), caspase-3 and tumor necrosis factor-alpha (TNF-α), but decreased superoxide dismutase (SOD) values. Apocynin application to I-R injured rats enhanced recovery of lung tissue oxidants and improved both histology and frequency of apoptosis.
Collapse
Affiliation(s)
- Ayhan Tanyeli
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Derya Guzel Erdogan
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Selim Comakli
- Department of Pathology, Veterinary Faculty, Atatürk University, Erzurum, Turkey
| | - Elif Polat
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Mustafa Can Guler
- Department of Physiology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ersen Eraslan
- Department of Physiology, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Songul Doganay
- Department of Physiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
33
|
Han D, Wang F, Wang B, Qiao Z, Cui X, Zhang Y, Jiang Q, Liu M, Shangguan J, Zheng X, Bai Y, Du C, Shen D. A Novel Compound, Tanshinol Borneol Ester, Ameliorates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Oxidative Stress via the mTOR/β-TrCP/NRF2 Pathway. Front Pharmacol 2022; 13:830763. [PMID: 35185583 PMCID: PMC8850779 DOI: 10.3389/fphar.2022.830763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 01/14/2023] Open
Abstract
Tanshinol borneol ester (DBZ) exerts anti-atherosclerotic and anti-inflammatory effects. However, its effects on cardiac hypertrophy are not well understood. In this work, we investigated the treatment effects and potential mechanisms of DBZ on the hypertrophic heart under oxidative stress and endoplasmic reticulum (ER) stress. A hypertrophic model was established in rats using transverse-aortic constriction (TAC) surgery and in neonatal rat cardiomyocytes (NRCMs) using angiotensin II (Ang II). Our results revealed that DBZ remarkably inhibited oxidative stress and ER stress, blocked autophagy flow, and decreased apoptosis in vivo and in vitro through nuclear NRF2 accumulation, and enhanced NRF2 stability via regulating the mTOR/β-TrcP/NRF2 signal pathway. Thus, DBZ may serve as a promising therapeutic for stress-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuhang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhentao Qiao
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyue Cui
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingjiao Jiang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miaomiao Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiahong Shangguan
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an, China
| | - Yajun Bai
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| | - Chunyan Du
- Laboratory Animal Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yajun Bai, ; Chunyan Du, ; Deliang Shen,
| |
Collapse
|
34
|
Reyes-Goya C, Santana-Garrido Á, Aguilar-Espejo G, Pérez-Camino MC, Mate A, Vázquez CM. Daily consumption of wild olive (acebuche) oil reduces blood pressure and ameliorates endothelial dysfunction and vascular remodelling in rats with NG-nitro-L-arginine methyl ester-induced hypertension. Br J Nutr 2022; 128:1-14. [PMID: 35000635 PMCID: PMC9530918 DOI: 10.1017/s0007114522000034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/13/2021] [Accepted: 01/03/2022] [Indexed: 11/12/2022]
Abstract
Despite numerous reports on the beneficial effects of olive oil in the cardiovascular context, very little is known about the olive tree's wild counterpart (Olea europaea, L. var. sylvestris), commonly known as acebuche (ACE) in Spain. The aim of this study was to analyse the possible beneficial effects of an extra virgin ACE oil on vascular function in a rodent model of arterial hypertension (AH) induced by NG-nitro-l-arginine methyl ester (L-NAME). Four experimental groups of male Wistar rats were studied: (1) normotensive rats (Control group); (2) normotensive rats fed a commercial diet supplemented with 15 % (w/w) ACE oil (Acebuche group); (3) rats made hypertensive following administration of L-NAME (L-NAME group); and (4) rats treated with L-NAME and simultaneously supplemented with 15 % ACE oil (LN + ACE group). All treatments were maintained for 12 weeks. Besides a significant blood pressure (BP)-lowering effect, the ACE oil-enriched diet counteracted the alterations found in aortas from hypertensive rats in terms of morphology and responsiveness to vasoactive mediators. In addition, a decrease in hypertension-related fibrotic and oxidative stress processes was observed in L-NAME-treated rats subjected to ACE oil supplement. Therefore, using a model of AH via nitric oxide depletion, here we demonstrate the beneficial effects of a wild olive oil based upon its vasodilator, antihypertensive, antioxidant, antihypertrophic and antifibrotic properties. We postulate that regular inclusion of ACE oil in the diet can alleviate the vascular remodelling and endothelial dysfunction processes typically found in AH, thus resulting in a significant reduction of BP.
Collapse
Affiliation(s)
- Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
| | - Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, E-41013Sevilla, Spain
| | - Gema Aguilar-Espejo
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
| | - M. Carmen Pérez-Camino
- Departamento de Caracterización y Calidad de lípidos, Instituto de la Grasa-CSIC, E-41013Sevilla, Spain
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, E-41013Sevilla, Spain
| | - Carmen M. Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, E-41012Sevilla, Spain
- Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, E-41013Sevilla, Spain
| |
Collapse
|
35
|
Guo S, Wehbe A, Syed S, Wills M, Guan L, Lv S, Li F, Geng X, Ding Y. Cerebral Glucose Metabolism and Potential Effects on Endoplasmic Reticulum Stress in Stroke. Aging Dis 2022; 14:450-467. [PMID: 37008060 PMCID: PMC10017147 DOI: 10.14336/ad.2022.0905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic stroke is an extremely common pathology with strikingly high morbidity and mortality rates. The endoplasmic reticulum (ER) is the primary organelle responsible for conducting protein synthesis and trafficking as well as preserving intracellular Ca2+ homeostasis. Mounting evidence shows that ER stress contributes to stroke pathophysiology. Moreover, insufficient circulation to the brain after stroke causes suppression of ATP production. Glucose metabolism disorder is an important pathological process after stroke. Here, we discuss the relationship between ER stress and stroke and treatment and intervention of ER stress after stroke. We also discuss the role of glucose metabolism, particularly glycolysis and gluconeogenesis, post-stroke. Based on recent studies, we speculate about the potential relationship and crosstalk between glucose metabolism and ER stress. In conclusion, we describe ER stress, glycolysis, and gluconeogenesis in the context of stroke and explore how the interplay between ER stress and glucose metabolism contributes to the pathophysiology of stroke.
Collapse
Affiliation(s)
- Sichao Guo
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Alexandra Wehbe
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Harvard T.H. Chan School of Public Health, USA
| | - Shabber Syed
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Melissa Wills
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
| | - Shuyu Lv
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
| | - Fengwu Li
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, China
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, China
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, USA
- Correspondence should be addressed to: Dr. Xiaokun Geng, Beijing Luhe Hospital, Capital Medical University, Beijing, China. E-mail: ; Dr. Yuchuan Ding, Wayne State University School of Medicine, Detroit, MI 48201, USA. E-mail:
| |
Collapse
|
36
|
Mary S, Boder P, Rossitto G, Graham L, Scott K, Flynn A, Kipgen D, Graham D, Delles C. Salt loading decreases urinary excretion and increases intracellular accumulation of uromodulin in stroke-prone spontaneously hypertensive rats. Clin Sci (Lond) 2021; 135:2749-2761. [PMID: 34870708 PMCID: PMC8689196 DOI: 10.1042/cs20211017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
Uromodulin (UMOD) is the most abundant renal protein secreted into urine by the thick ascending limb (TAL) epithelial cells of the loop of Henle. Genetic studies have demonstrated an association between UMOD risk variants and hypertension. We aimed to dissect the role of dietary salt in renal UMOD excretion in normotension and chronic hypertension. Normotensive Wistar-Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP) (n=8/sex/strain) were maintained on 1% NaCl for 3 weeks. A subset of salt-loaded SHRSP was treated with nifedipine. Salt-loading in SHRSP increased blood pressure (ΔSBP 35 ± 5 mmHg, P<0.0001) and kidney injury markers such as kidney injury marker-1 (KIM-1; fold change, FC 3.4; P=0.003), neutrophil gelatinase-associated lipocalin (NGAL; FC, 2.0; P=0.012) and proteinuria. After salt-loading there was a reduction in urinary UMOD excretion in WKY and SHRSP by 26 and 55% respectively, compared with baseline. Nifedipine treatment reduced blood pressure (BP) in SHRSP, however, did not prevent salt-induced reduction in urinary UMOD excretion. In all experiments, changes in urinary UMOD excretion were dissociated from kidney UMOD protein and mRNA levels. Colocalization and ex-vivo studies showed that salt-loading increased intracellular UMOD retention in both WKY and SHRSP. Our study provides novel insights into the interplay among salt, UMOD, and BP. The role of UMOD as a cardiovascular risk marker deserves mechanistic reappraisal and further investigations based on our findings.
Collapse
Affiliation(s)
- Sheon Mary
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Philipp Boder
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Giacomo Rossitto
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
- Department of Medicine, University of Padua, Padua, Italy
| | - Lesley Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Kayley Scott
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Arun Flynn
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - David Kipgen
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, Scotland, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, U.K
| |
Collapse
|
37
|
Alves-Lopes R, Neves KB, Strembitska A, Harvey AP, Harvey KY, Yusuf H, Haniford S, Hepburn RT, Dyet J, Beattie W, Haddow L, McAbney J, Graham D, Montezano AC. Osteoprotegerin regulates vascular function through syndecan-1 and NADPH oxidase-derived reactive oxygen species. Clin Sci (Lond) 2021; 135:2429-2444. [PMID: 34668009 DOI: 10.1042/cs20210643] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 01/27/2023]
Abstract
Osteogenic factors, such as osteoprotegerin (OPG), are protective against vascular calcification. However, OPG is also positively associated with cardiovascular damage, particularly in pulmonary hypertension, possibly through processes beyond effects on calcification. In the present study, we focused on calcification-independent vascular effects of OPG through activation of syndecan-1 and NADPH oxidases (Noxs) 1 and 4. Isolated resistance arteries from Wistar-Kyoto (WKY) rats, exposed to exogenous OPG, studied by myography exhibited endothelial and smooth muscle dysfunction. OPG decreased nitric oxide (NO) production, eNOS activation and increased reactive oxygen species (ROS) production in endothelial cells. In VSMCs, OPG increased ROS production, H2O2/peroxynitrite levels and activation of Rho kinase and myosin light chain. OPG vascular and redox effects were also inhibited by the syndecan-1 inhibitor synstatin (SSNT). Additionally, heparinase and chondroitinase abolished OPG effects on VSMCs-ROS production, confirming syndecan-1 as OPG molecular partner and suggesting that OPG binds to heparan/chondroitin sulphate chains of syndecan-1. OPG-induced ROS production was abrogated by NoxA1ds (Nox1 inhibitor) and GKT137831 (dual Nox1/Nox4 inhibitor). Tempol (SOD mimetic) inhibited vascular dysfunction induced by OPG. In addition, we studied arteries from Nox1 and Nox4 knockout (KO) mice. Nox1 and Nox4 KO abrogated OPG-induced vascular dysfunction. Vascular dysfunction elicited by OPG is mediated by a complex signalling cascade involving syndecan-1, Nox1 and Nox4. Our data identify novel molecular mechanisms beyond calcification for OPG, which may underlie vascular injurious effects of osteogenic factors in conditions such as hypertension and/or diabetes.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Hemodynamics/drug effects
- Male
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/enzymology
- Mesenteric Arteries/physiopathology
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- NADPH Oxidase 1/genetics
- NADPH Oxidase 1/metabolism
- NADPH Oxidase 4/genetics
- NADPH Oxidase 4/metabolism
- NADPH Oxidases/genetics
- NADPH Oxidases/metabolism
- Osteoprotegerin/toxicity
- Oxidative Stress
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Syndecan-1/metabolism
- Mice
- Rats
Collapse
Affiliation(s)
- Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Karla Bianca Neves
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | | | - Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Katie Y Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Hiba Yusuf
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Susan Haniford
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Ross T Hepburn
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Jennifer Dyet
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Wendy Beattie
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Laura Haddow
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - John McAbney
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, U.K
| |
Collapse
|
38
|
Forestalling age-impaired angiogenesis and blood flow by targeting NOX: Interplay of NOX1, IL-6, and SASP in propagating cell senescence. Proc Natl Acad Sci U S A 2021; 118:2015666118. [PMID: 34654740 DOI: 10.1073/pnas.2015666118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
In an aging population, intense interest has shifted toward prolonging health span. Mounting evidence suggests that cellular reactive species are propagators of cell damage, inflammation, and cellular senescence. Thus, such species have emerged as putative provocateurs and targets for senolysis, and a clearer understanding of their molecular origin and regulation is of paramount importance. In an inquiry into signaling triggered by aging and proxy instigator, hyperglycemia, we show that NADPH Oxidase (NOX) drives cell DNA damage and alters nuclear envelope integrity, inflammation, tissue dysfunction, and cellular senescence in mice and humans with similar causality. Most notably, selective NOX1 inhibition rescues age-impaired blood flow and angiogenesis, vasodilation, and the endothelial cell wound response. Indeed, NOX1i delivery in vivo completely reversed age-impaired hind-limb blood flow and angiogenesis while disrupting a NOX1-IL-6 senescence-associated secretory phenotype (SASP) proinflammatory signaling loop. Relevant to its comorbidity with age, clinical samples from diabetic versus nondiabetic subjects reveal as operant this NOX1-mediated vascular senescence and inflammation in humans. On a mechanistic level, our findings support a previously unidentified role for IL-6 in this feedforward inflammatory loop and peroxisome proliferator-activated receptor gamma (PPARγ) down-regulation as inversely modulating p65-mediated NOX1 transcription. Targeting this previously unidentified NOX1-SASP signaling axis in aging is predicted to be an effective strategy for mitigating senescence in the vasculature and other organ systems.
Collapse
|
39
|
Chen NX, O'Neill KD, Dominguez JM, Moe SM. Regulation of reactive oxygen species in the pathogenesis of matrix vesicles induced calcification of recipient vascular smooth muscle cells. Vasc Med 2021; 26:585-594. [PMID: 34338093 DOI: 10.1177/1358863x211024721] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Increased oxidative stress is associated with vascular calcification in patients with chronic kidney disease (CKD). We have previously demonstrated that cellular-derived matrix vesicles (MV), but not media-derived MV, are endocytosed in the presence of phosphorus by recipient normal rat vascular smooth muscle cells (VSMC) and induce calcification through ERK1/2 and [Ca2+]i signaling. We hypothesized that these changes were mediated by increased reactive oxygen species (ROS) production. METHODS MV were co-cultured with recipient VSMC in the presence of high phosphorus and ROS production and cell signaling assessed. RESULTS The results demonstrated MV endocytosis led to increased ROS production in recipient VSMC with no increase in mitochondrial oxygen consumption or oxidative phosphorylation (OXPHOS), indicating the ROS was not from the mitochondria. The use of inhibitors demonstrated that endocytosis of these MV by VSMC led to a signaling cascade in the cytoplasm beginning with ERK1/2 signaling, then increased [Ca2+]i and stimulation of ROS production, mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX)1/4. Media-derived MV did not induce this cascade, indicating endocytosis itself was not a factor. Furthermore, inhibition of either ERK1/2 activation or [Ca2+]i reduced vascular calcification. CONCLUSION We conclude that endocytosis of pro-mineralizing MV can induce a series of signaling events in normal VSMC that culminate in generation of ROS via activation of NOX1/4. Understanding these pathways will allow the development of future targeted therapeutics.
Collapse
Affiliation(s)
- Neal X Chen
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kalisha D O'Neill
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James M Dominguez
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sharon M Moe
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.,Roduebush Veterans Affairs Medical Center, Indianapolis, IN, USA
| |
Collapse
|
40
|
Lysophosphatidylcholine induces oxidative stress in human endothelial cells via NOX5 activation - implications in atherosclerosis. Clin Sci (Lond) 2021; 135:1845-1858. [PMID: 34269800 DOI: 10.1042/cs20210468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVE The mechanisms involved in NOX5 activation in atherosclerotic processes are not completely understood. This study tested the hypothesis that lysophosphatidylcholine (LPC), a proatherogenic component of oxLDL, induces endothelial calcium influx, which drives NOX5-dependent reactive oxygen species (ROS) production, oxidative stress, and endothelial cell dysfunction. Approach: Human aortic endothelial cells (HAEC) were stimulated with LPC (10-5 M, for different time points). Pharmacological inhibition of NOX5 (Melittin, 10-7 M) and NOX5 gene silencing (siRNA) were used to determine the role of NOX5-dependent ROS production in endothelial oxidative stress induced by LPC. ROS production was determined by lucigenin assay and electron paramagnetic spectroscopy (EPR), calcium transients by Fluo4 fluorimetry, and NOX5 activity and protein expression by pharmacological assays and immunoblotting, respectively. RESULTS LPC increased ROS generation in endothelial cells at short (15 min) and long (4 h) stimulation times. LPC-induced ROS was abolished by a selective NOX5 inhibitor and by NOX5 siRNA. NOX1/4 dual inhibition and selective NOX1 inhibition only decreased ROS generation at 4 h. LPC increased HAEC intracellular calcium, important for NOX5 activation, and this was blocked by nifedipine and thapsigargin. Bapta-AM, selective Ca2+ chelator, prevented LPC-induced ROS production. NOX5 knockdown decreased LPC-induced ICAM-1 mRNA expression and monocyte adhesion to endothelial cells. CONCLUSION These results suggest that NOX5, by mechanisms linked to increased intracellular calcium, is key to early LPC-induced endothelial oxidative stress and pro-inflammatory processes. Since these are essential events in the formation and progression of atherosclerotic lesions, this study highlights an important role for NOX5 in atherosclerosis.
Collapse
|
41
|
Quesada I, de Paola M, Alvarez MS, Hapon MB, Gamarra-Luques C, Castro C. Antioxidant and Anti-atherogenic Properties of Prosopis strombulifera and Tessaria absinthioides Aqueous Extracts: Modulation of NADPH Oxidase-Derived Reactive Oxygen Species. Front Physiol 2021; 12:662833. [PMID: 34335290 PMCID: PMC8322988 DOI: 10.3389/fphys.2021.662833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/20/2021] [Indexed: 12/05/2022] Open
Abstract
Despite popular usage of medicinal plants, their effects as cardiovascular protective agents have not been totally elucidated. We hypothesized that treatment with aqueous extract from Prosopis strombulifera (AEPs) and Tessaria absinthioides (AETa), Argentinian native plants, produces antioxidant effects on vascular smooth muscle cells (VSMCs) and attenuates atherogenesis on apolipoprotein E-knockout (ApoE-KO) mice. In VSMCs, both extracts (5–40 μg/ml) inhibited 10% fetal calf serum-induced cell proliferation, arrested cell in G2/M phase, reduced angiotensin II-induced reactive oxygen species (ROS) generation, and decreased NADPH oxidase subunit expression. In ApoE-KO mice, extracts significantly reduced triglycerides and lipid peroxidation [plasma thiobarbituric acid reactive substances (TBARS)], increased plasma total antioxidant status (TAS), and improved glutathione peroxidase activity in the liver. Under high-fat diet (HFD), both extracts were able to inhibit O2– generation in the aortic tissue and caused a significant regression of atheroma plaques (21.4 ± 1.6% HFD group vs. 10.2 ± 1.2%∗ AEPs group and 14.3 ± 1.0%∗ AETa group; ∗p < 0.01). Consumption of AEPs and AETa produces antioxidant/antimitogenic/anti-atherosclerotic effects, and their use may be beneficial as a complementary strategy regarding cardiovascular disease therapies.
Collapse
Affiliation(s)
- Isabel Quesada
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Matilde de Paola
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Soledad Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina
| | - María Belén Hapon
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Fisiología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia Castro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Mendoza, Argentina.,Facultad de Ciencias Médicas, Instituto de Bioquímica y Biotecnología, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
42
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
43
|
Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, Wada Y, Ahmad MH, Ahmad WANW, Rasool AHG, Mokhtar SS. Potential Roles of Endoplasmic Reticulum Stress and Cellular Proteins Implicated in Diabesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8830880. [PMID: 33995826 PMCID: PMC8099518 DOI: 10.1155/2021/8830880] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sagir Mustapha
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang, Malaysia
- Department of Clinical Pharmacy and Pharmacy Practice, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Ismaeel Yunusa
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, College of Pharmacy, Columbia, SC, USA
| | - Aishatu Shehu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Lukman Mustapha
- Department of Pharmaceutical and Medicinal Chemistry, Kaduna State University, Kaduna, Nigeria
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
- School of Pharmacy Technician, Aminu Dabo College of Health Sciences and Technology, Kano, Nigeria
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
44
|
Abstract
A link between oxidative stress and hypertension has been firmly established in multiple animal models of hypertension but remains elusive in humans. While initial studies focused on inactivation of nitric oxide by superoxide, our understanding of relevant reactive oxygen species (superoxide, hydrogen peroxide, and peroxynitrite) and how they modify complex signaling pathways to promote hypertension has expanded significantly. In this review, we summarize recent advances in delineating the primary and secondary sources of reactive oxygen species (nicotinamide adenine dinucleotide phosphate oxidases, uncoupled endothelial nitric oxide synthase, endoplasmic reticulum, and mitochondria), the posttranslational oxidative modifications they induce on protein targets important for redox signaling, their interplay with endogenous antioxidant systems, and the role of inflammasome activation and endoplasmic reticular stress in the development of hypertension. We highlight how oxidative stress in different organ systems contributes to hypertension, describe new animal models that have clarified the importance of specific proteins, and discuss clinical studies that shed light on how these processes and pathways are altered in human hypertension. Finally, we focus on the promise of redox proteomics and systems biology to help us fully understand the relationship between ROS and hypertension and their potential for designing and evaluating novel antihypertensive therapies.
Collapse
Affiliation(s)
- Kathy K Griendling
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, USA
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Francisco Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow
| |
Collapse
|
45
|
Abstract
Cells respond to stress by activating a variety of defense signaling pathways, including cell survival and cell death pathways. Although cell survival signaling helps the cell to recover from acute insults, cell death or senescence pathways induced by chronic insults can lead to unresolved pathologies. Arterial hypertension results from chronic physiological maladaptation against various stressors represented by abnormal circulating or local neurohormonal factors, mechanical stress, intracellular accumulation of toxic molecules, and dysfunctional organelles. Hypertension and aging share common mechanisms that mediate or prolong chronic cell stress, such as endoplasmic reticulum stress and accumulation of protein aggregates, oxidative stress, metabolic mitochondrial stress, DNA damage, stress-induced senescence, and proinflammatory processes. This review discusses common adaptive signaling mechanisms against these stresses including unfolded protein responses, antioxidant response element signaling, autophagy, mitophagy, and mitochondrial fission/fusion, STING (signaling effector stimulator of interferon genes)-mediated responses, and activation of pattern recognition receptors. The main molecular mechanisms by which the vasculature copes with hypertensive and aging stressors are presented and recent advancements in stress-adaptive signaling mechanisms as well as potential therapeutic targets are discussed.
Collapse
Affiliation(s)
- Stephanie M. Cicalese
- These authors contributed equally and are considered co-first authors
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Josiane Fernandes da Silva
- These authors contributed equally and are considered co-first authors
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fernanda Priviero
- These authors contributed equally and are considered co-first authors
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - R. Clinton Webb
- Cardiovascular Translational Research Center and Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina, USA
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
46
|
Santana-Garrido Á, Reyes-Goya C, Fernández-Bobadilla C, Blanca AJ, André H, Mate A, Vázquez CM. NADPH oxidase-induced oxidative stress in the eyes of hypertensive rats. Mol Vis 2021; 27:161-178. [PMID: 33907371 PMCID: PMC8056463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 03/31/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Increased reactive oxygen species (ROS) released by NADPH oxidase and inflammation are associated with arterial hypertension and eye diseases associated with high blood pressure, including glaucoma, retinopathies (e.g., age-related macular degeneration), and choroidopathies affecting ocular function; however, the mechanisms underlying these adverse outcomes remain undefined. The present study was designed to highlight the importance of oxidative stress in severe hypertension-related eye damage. Methods Male Wistar rats (n = 7, unless otherwise specified for specific experiments) were administered an oral dose of 30 mg of Nω-nitro-L-arginine methyl ester (L-NAME) per kilogram of bodyweight and day for 3 weeks; chronic administration with L-NAME is a validated experimental approach resulting in severe hypertension secondary to nitric oxide (NO) depletion and subsequent vasoconstriction in the systemic circulation. Upon treatment completion, histomorphometric studies, NADPH oxidase activity, and ROS production were measured in eyecup homogenates and paraffin-embedded sections from control and L-NAME-treated animals. In addition, immunohistofluorescence, western blotting, and real-time PCR (RT-qPCR) analyses were performed in the eye and the retina to evaluate the expression of i) NADPH oxidase main isoforms (NOX1, NOX2, and NOX4) and subunits (p22phox and p47phox); ii) glial fibrillary acidic protein (GFAP), as a marker of microglial activation in the retina; iii) antioxidant enzymes; and iv) endothelial constitutive (eNOS) and inflammation inducible (iNOS) nitric oxide synthase isoforms, and nitrotyrosine as a versatile biomarker of oxidative stress. Results Increased activity of NADPH oxidase and superoxide anion production, accompanied by transcriptional upregulation of this enzyme isoforms, was found in the retina and choroid of the hypertensive rats in comparison with the untreated controls. Histomorphometric analyses revealed a significant reduction in the thickness of the ganglion cell layer and the outer retinal layers in the hypertensive animals, which also showed a positive strong signal of GFAP in the retinal outer segment and plexiform layers. In addition, L-NAME-treated animals presented with upregulation of nitric oxide synthase (including inducible and endothelial isoforms) and abnormally elevated nitrotyrosine levels. Experiments on protein and mRNA expression of antioxidant enzymes revealed depletion of superoxide dismutase and glutathione peroxidase in the eyes of the hypertensive animals; however, glutathione reductase was significantly higher than in the normotensive controls. Conclusions The present study demonstrated structural changes in the retinas of the L-NAME-treated hypertensive animals and strengthens the importance of NADPH oxidase as a major ROS-generating enzyme system in the oxidative and inflammatory processes surrounding hypertensive eye diseases. These observations might contribute to unveiling pathogenic mechanisms responsible for developing ocular disturbances in the context of severe hypertension.
Collapse
Affiliation(s)
- Álvaro Santana-Garrido
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| | - Claudia Reyes-Goya
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Carmen Fernández-Bobadilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Antonio J. Blanca
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain
| | - Helder André
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| | - Carmen M. Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla. CL Profesor García González, Sevilla, Spain,Epidemiología Clínica y Riesgo Cardiovascular, Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío – Consejo Superior de Investigaciones Científicas – Universidad de Sevilla. Avda. Manuel Siurot s/n, Sevilla, Spain
| |
Collapse
|
47
|
Protein Disulphide Isomerase and NADPH Oxidase 1 Cooperate to Control Platelet Function and Are Associated with Cardiometabolic Disease Risk Factors. Antioxidants (Basel) 2021; 10:antiox10030497. [PMID: 33806982 PMCID: PMC8004975 DOI: 10.3390/antiox10030497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Protein disulphide isomerase (PDI) and NADPH oxidase 1 (Nox-1) regulate platelet function and reactive oxygen species (ROS) generation, suggesting potentially interdependent roles. Increased platelet reactivity and ROS production have been correlated with cardiometabolic disease risk factors. Objectives: To establish whether PDI and Nox-1 cooperate to control platelet function. Methods: Immunofluorescence microscopy was utilised to determine expression and localisation of PDI and Nox-1. Platelet aggregation, fibrinogen binding, P-selectin exposure, spreading and calcium mobilization were measured as markers of platelet function. A cross-sectional population study (n = 136) was conducted to assess the relationship between platelet PDI and Nox-1 levels and cardiometabolic risk factors. Results: PDI and Nox-1 co-localized upon activation induced by the collagen receptor GPVI. Co-inhibition of PDI and Nox-1 led to additive inhibition of GPVI-mediated platelet aggregation, activation and calcium flux. This was confirmed in murine Nox-1−/− platelets treated with PDI inhibitor bepristat, without affecting bleeding. PDI and Nox-1 together contributed to GPVI signalling that involved the phosphorylation of p38 MAPK, p47phox, PKC and Akt. Platelet PDI and Nox-1 levels were upregulated in obesity, with platelet Nox-1 also elevated in hypertensive individuals. Conclusions: We show that PDI and Nox-1 cooperate to control platelet function and are associated with cardiometabolic risk factors.
Collapse
|
48
|
Yang J, Villar VAM, Jose PA, Zeng C. Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal 2021; 34:716-735. [PMID: 32349533 PMCID: PMC7910420 DOI: 10.1089/ars.2020.8106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significance: The kidney plays an important role in the long-term control of blood pressure. Oxidative stress is one of the fundamental mechanisms responsible for the development of hypertension. Dopamine, via five subtypes of receptors, plays an important role in the control of blood pressure by various mechanisms, including the inhibition of oxidative stress. Recent Advances: Dopamine receptors exert their regulatory function to decrease the oxidative stress in the kidney and ultimately maintain normal sodium balance and blood pressure homeostasis. An aberration of this regulation may be involved in the pathogenesis of hypertension. Critical Issues: Our present article reviews the important role of oxidative stress and intrarenal dopaminergic system in the regulation of blood pressure, summarizes the current knowledge on renal dopamine receptor-mediated antioxidation, including decreasing reactive oxygen species production, inhibiting pro-oxidant enzyme nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, and stimulating antioxidative enzymes, and also discusses its underlying mechanisms, including the increased activity of G protein-coupled receptor kinase 4 (GRK4) and abnormal trafficking of renal dopamine receptors in hypertensive status. Future Directions: Identifying the mechanisms of renal dopamine receptors in the regulation of oxidative stress and their contribution to the pathogenesis of hypertension remains an important research focus. Increased understanding of the role of reciprocal regulation between renal dopamine receptors and oxidative stress in the regulation of blood pressure may give us novel insights into the pathogenesis of hypertension and provide a new treatment strategy for hypertension.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Chunyu Zeng
- Department of Cardiology, Fujian Heart Medical Center, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, People's Republic of China
| |
Collapse
|
49
|
ERAP1 and ERAP2 Enzymes: A Protective Shield for RAS against COVID-19? Int J Mol Sci 2021; 22:ijms22041705. [PMID: 33567739 PMCID: PMC7914632 DOI: 10.3390/ijms22041705] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with coronavirus disease 2019 (COVID-19) have a wide variety of clinical outcomes ranging from asymptomatic to severe respiratory syndrome that can progress to life-threatening lung lesions. The identification of prognostic factors can help to improve the risk stratification of patients by promptly defining for each the most effective therapy to resolve the disease. The etiological agent causing COVID-19 is a new coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that enters cells via the ACE2 receptor. SARS-CoV-2 infection causes a reduction in ACE2 levels, leading to an imbalance in the renin-angiotensin system (RAS), and consequently, in blood pressure and systemic vascular resistance. ERAP1 and ERAP2 are two RAS regulators and key components of MHC class I antigen processing. Their polymorphisms have been associated with autoimmune and inflammatory conditions, hypertension, and cancer. Based on their involvement in the RAS, we believe that the dysfunctional status of ERAP1 and ERAP2 enzymes may exacerbate the effect of SARS-CoV-2 infection, aggravating the symptomatology and clinical outcome of the disease. In this review, we discuss this hypothesis.
Collapse
|
50
|
The Role of the Renal Dopaminergic System and Oxidative Stress in the Pathogenesis of Hypertension. Biomedicines 2021; 9:biomedicines9020139. [PMID: 33535566 PMCID: PMC7912729 DOI: 10.3390/biomedicines9020139] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/11/2023] Open
Abstract
The kidney is critical in the long-term regulation of blood pressure. Oxidative stress is one of the many factors that is accountable for the development of hypertension. The five dopamine receptor subtypes (D1R–D5R) have important roles in the regulation of blood pressure through several mechanisms, such as inhibition of oxidative stress. Dopamine receptors, including those expressed in the kidney, reduce oxidative stress by inhibiting the expression or action of receptors that increase oxidative stress. In addition, dopamine receptors stimulate the expression or action of receptors that decrease oxidative stress. This article examines the importance and relationship between the renal dopaminergic system and oxidative stress in the regulation of renal sodium handling and blood pressure. It discusses the current information on renal dopamine receptor-mediated antioxidative network, which includes the production of reactive oxygen species and abnormalities of renal dopamine receptors. Recognizing the mechanisms by which renal dopamine receptors regulate oxidative stress and their degree of influence on the pathogenesis of hypertension would further advance the understanding of the pathophysiology of hypertension.
Collapse
|