1
|
Stathoulopoulos A, König CS, Ramachandran S, Balabani S. Statin-treated RBC dynamics in a microfluidic porous-like network. Microvasc Res 2024; 158:104765. [PMID: 39571747 DOI: 10.1016/j.mvr.2024.104765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
The impact of therapeutic interventions on red blood cell (RBC) deformability and microscale transport is investigated, using statins as an exemplar. Human RBCs were treated in vitro with two commonly prescribed statins, atorvastatin and rosuvastatin, at clinically relevant concentrations. Changes in RBC deformability were quantified using a microfluidic-based ektacytometer and expressed in terms of the elongation index. Dilute suspensions of the statin-treated RBCs were then perfused through a microfluidic pillar array, at a constant flow rate and negligible inertia, and imaged. Particle Tracking Velocimetry (PTV) was applied to track RBCs, identify preferential paths and estimate their velocities, whereas image processing was used to estimate cell dynamics, perfusion metrics and distributions. The findings were compared against those of healthy, untreated cells. Statins enhanced RBC deformability in agreement with literature. The extent of enhancement was found to be statin-dependent. The softer statin-treated cells were found to flow in straight, less tortuous paths, spend more time inside the pillar array and exhibit lower velocities compared to healthy RBCs, attributed to their enhanced deformation and longer shape recovery time upon impact with the array posts. The in vitro microfluidic approach demonstrated here may serve as a monitoring tool to personalise and maximise the outcome of a therapeutic treatment.
Collapse
Affiliation(s)
| | - Carola S König
- Department of Mechanical and Aerospace Engineering, Brunel University of London, Uxbridge, UK
| | - Sudarshan Ramachandran
- Department of Mechanical and Aerospace Engineering, Brunel University of London, Uxbridge, UK; Department of Clinical Biochemistry, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Department of Clinical Biochemistry, University Hospitals of North Midlands, Staffordshire, UK; Institute for Science and Technology in Medicine, Keele University/Faculty of Health Sciences, Staffordshire University, Staffordshire, UK
| | - Stavroula Balabani
- FluME, Department of Mechanical Engineering, University College London, London, UK; UCL Hawkes Institute, University College London, London, UK.
| |
Collapse
|
2
|
López-Yerena A, Muñoz-García N, de Santisteban Villaplana V, Padro T, Badimon L. Effect of Moderate Beer Intake on the Lipid Composition of Human Red Blood Cell Membranes. Nutrients 2024; 16:3541. [PMID: 39458535 PMCID: PMC11510343 DOI: 10.3390/nu16203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Growing evidence suggests that erythrocyte membrane lipids are subject to changes during their lifespan. Factors such as the type of dietary intake and its composition contribute to the changes in red blood cell (RBC) membranes. Due to the high antioxidant content of beer, we aimed to investigate the effect of moderate beer consumption on the lipid composition of RBCs membranes from healthy overweight individuals. Methods: We conducted a four-weeks, prospective two-arm longitudinal crossed-over study, where participants (n = 36) were randomly assigned to alcohol-free beer group or traditional beer group. The lipids of RBCs membranes were assessed at the beginning and the end of the intervention by thin-layer chromatography. Results: Four-weeks of alcohol-free beer promoted changes in fatty acids (FA), free cholesterol (FC), phosphatidylethanolamine (PE) and phosphatidylcholine (PC) (p < 0.05). Meanwhile, traditional beer intake led to changes in FA, FC, phospholipids (PL), PE and PC (p < 0.05). The observed alterations in membrane lipids were found to be independent of sex and BMI as influencing factors. Conclusions: The lipid composition of erythrocyte membranes is distinctly but mildly influenced by the consumption of both non-alcoholic and conventional beer, with no effects on RBC membrane fluidity.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
| | - Natalia Muñoz-García
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
| | - Victoria de Santisteban Villaplana
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- School of Pharmacy and Food Sciences, University of Barcelona (UB), 08036 Barcelona, Spain
| | - Teresa Padro
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Lina Badimon
- Institut Recerca Sant Pau, Sant Antoni Maria Claret 167, 08025 Barcelona, Spain; (A.L.-Y.); (N.M.-G.); (V.d.S.V.); (T.P.)
- Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Research Chair, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
| |
Collapse
|
3
|
Karkhanis AV, Harwood MD, Stader F, Bois FY, Neuhoff S. Applications of the Cholesterol Metabolite, 4β-Hydroxycholesterol, as a Sensitive Endogenous Biomarker for Hepatic CYP3A Activity Evaluated within a PBPK Framework. Pharmaceutics 2024; 16:1284. [PMID: 39458613 PMCID: PMC11510160 DOI: 10.3390/pharmaceutics16101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Plasma levels of 4β-hydroxycholesterol (4β-OHC), a CYP3A-specific metabolite of cholesterol, are elevated after administration of CYP3A inducers like rifampicin and carbamazepine. To simulate such plasma 4β-OHC increase, we developed a physiologically based pharmacokinetic (PBPK) model of cholesterol and 4β-OHC in the Simcyp PBPK Simulator (Version 23, Certara UK Ltd.) using a middle-out approach. Methods: Relevant physicochemical properties and metabolic pathway data for CYP3A and CYP27A1 was incorporated in the model. Results: The PBPK model recovered the observed baseline plasma 4β-OHC levels in Caucasian, Japanese, and Korean populations. The model also captured the higher baseline 4β-OHC levels in females compared to males, indicative of sex-specific differences in CYP3A abundance. More importantly, the model recapitulated the increased 4β-OHC plasma levels after multiple-dose rifampicin treatment in six independent studies, indicative of hepatic CYP3A induction. The verified model also captured the altered 4β-OHC levels in CYP3A4/5 polymorphic populations and with other CYP3A inducers. The model is limited by scant data on relative contributions of CYP3A and CYP27A1 pathways and does not account for regulatory mechanisms that control plasma cholesterol and 4β-OHC levels. Conclusion: This study provides a quantitative fit-for-purpose and framed-for-future modelling framework for an endogenous biomarker to evaluate the DDI risk with hepatic CYP3A induction.
Collapse
Affiliation(s)
- Aneesh V. Karkhanis
- Certara UK Limited, Certara Predictive Technologies, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK; (M.D.H.); (F.S.); (F.Y.B.); (S.N.)
| | | | | | | | | |
Collapse
|
4
|
Kandalgaonkar MR, Yeoh BS, Joe B, Schmidt NW, Vijay-Kumar M, Saha P. Hypertension Increases Susceptibility to Experimental Malaria in Mice. FUNCTION 2024; 5:zqae009. [PMID: 38706961 PMCID: PMC11065114 DOI: 10.1093/function/zqae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 05/07/2024] Open
Abstract
Global prevalence of hypertension is on the rise, burdening healthcare, especially in developing countries where infectious diseases, such as malaria, are also rampant. Whether hypertension could predispose or increase susceptibility to malaria, however, has not been extensively explored. Previously, we reported that hypertension is associated with abnormal red blood cell (RBC) physiology and anemia. Since RBC are target host cells for malarial parasite, Plasmodium, we hypothesized that hypertensive patients with abnormal RBC physiology are at greater risk or susceptibility to Plasmodium infection. To test this hypothesis, normotensive (BPN/3J) and hypertensive (BPH/2J) mice were characterized for their RBC physiology and subsequently infected with Plasmodium yoelii (P. yoelii), a murine-specific non-lethal strain. When compared to BPN mice, BPH mice displayed microcytic anemia with RBC highly resistant to osmotic hemolysis. Further, BPH RBC exhibited greater membrane rigidity and an altered lipid composition, as evidenced by higher levels of phospholipids and saturated fatty acid, such as stearate (C18:0), along with lower levels of polyunsaturated fatty acid like arachidonate (C20:4). Moreover, BPH mice had significantly greater circulating Ter119+ CD71+ reticulocytes, or immature RBC, prone to P. yoelii infection. Upon infection with P. yoelii, BPH mice experienced significant body weight loss accompanied by sustained parasitemia, indices of anemia, and substantial increase in systemic pro-inflammatory mediators, compared to BPN mice, indicating that BPH mice were incompetent to clear P. yoelii infection. Collectively, these data demonstrate that aberrant RBC physiology observed in hypertensive BPH mice contributes to an increased susceptibility to P. yoelii infection and malaria-associated pathology.
Collapse
Affiliation(s)
- Mrunmayee R Kandalgaonkar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Nathan W Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, and Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Matam Vijay-Kumar
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Piu Saha
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
5
|
Morvaridzadeh M, Zoubdane N, Heshmati J, Alami M, Berrougui H, Khalil A. High-Density Lipoprotein Metabolism and Function in Cardiovascular Diseases: What about Aging and Diet Effects? Nutrients 2024; 16:653. [PMID: 38474781 DOI: 10.3390/nu16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) have become the leading global cause of mortality, prompting a heightened focus on identifying precise indicators for their assessment and treatment. In this perspective, the plasma levels of HDL have emerged as a pivotal focus, given the demonstrable correlation between plasma levels and cardiovascular events, rendering them a noteworthy biomarker. However, it is crucial to acknowledge that HDLs, while intricate, are not presently a direct therapeutic target, necessitating a more nuanced understanding of their dynamic remodeling throughout their life cycle. HDLs exhibit several anti-atherosclerotic properties that define their functionality. This functionality of HDLs, which is independent of their concentration, may be impaired in certain risk factors for CVD. Moreover, because HDLs are dynamic parameters, in which HDL particles present different atheroprotective properties, it remains difficult to interpret the association between HDL level and CVD risk. Besides the antioxidant and anti-inflammatory activities of HDLs, their capacity to mediate cholesterol efflux, a key metric of HDL functionality, represents the main anti-atherosclerotic property of HDL. In this review, we will discuss the HDL components and HDL structure that may affect their functionality and we will review the mechanism by which HDL mediates cholesterol efflux. We will give a brief examination of the effects of aging and diet on HDL structure and function.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Nada Zoubdane
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Javad Heshmati
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Mehdi Alami
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Hicham Berrougui
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Abdelouahed Khalil
- Department of Medicine, Geriatric Service, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| |
Collapse
|
6
|
Fadaei R, Davies SS. Oxidative modification of HDL by lipid aldehydes impacts HDL function. Arch Biochem Biophys 2022; 730:109397. [PMID: 36116503 PMCID: PMC9670862 DOI: 10.1016/j.abb.2022.109397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022]
Abstract
Reduced levels of high-density lipoprotein (HDL) cholesterol correlate with increased risk for atherosclerotic cardiovascular diseases and HDL performs functions including reverse cholesterol transport, inhibition of lipid peroxidation, and suppression of inflammation, that would appear critical for cardioprotection. However, several large clinical trials utilizing pharmacologic interventions that elevated HDL cholesterol levels failed to provide cardioprotection to at-risk individuals. The reasons for these unexpected results have only recently begun to be elucidated. HDL cholesterol levels and HDL function can be significantly discordant, so that elevating HDL cholesterol levels may not necessarily lead to increased functional capacity, particularly under conditions that cause HDL to become oxidatively modified, resulting in HDL dysfunction. Here we review evidence that oxidative modifications of HDL, including by reactive lipid aldehydes generated by lipid peroxidation, reduce HDL functionality and that dicarbonyl scavengers that protect HDL against lipid aldehyde modification are beneficial in pre-clinical models of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sean S Davies
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Niesor EJ, Nader E, Perez A, Lamour F, Benghozi R, Remaley A, Thein SL, Connes P. Red Blood Cell Membrane Cholesterol May Be a Key Regulator of Sickle Cell Disease Microvascular Complications. MEMBRANES 2022; 12:1134. [PMID: 36422126 PMCID: PMC9694375 DOI: 10.3390/membranes12111134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Cell membrane lipid composition, especially cholesterol, affects many functions of embedded enzymes, transporters and receptors in red blood cells (RBC). High membrane cholesterol content affects the RBCs' main vital function, O2 and CO2 transport and delivery, with consequences on peripheral tissue physiology and pathology. A high degree of deformability of RBCs is required to accommodate the size of micro-vessels with diameters significantly lower than RBCs. The potential therapeutic role of high-density lipoproteins (HDL) in the removal of cholesterol and its activity regarding maintenance of an optimal concentration of RBC membrane cholesterol have not been well investigated. On the contrary, the focus for HDL research has mainly been on the clearance of cholesterol accumulated in atherosclerotic macrophages and plaques. Since all interventions aiming at decreasing cardiovascular diseases by increasing the plasma level of HDL cholesterol have failed so far in large outcome studies, we reviewed the potential role of HDL to remove excess membrane cholesterol from RBC, especially in sickle cell disease (SCD). Indeed, abundant literature supports a consistent decrease in cholesterol transported by all plasma lipoproteins in SCD, in addition to HDL, low- (LDL) and very low-density lipoproteins (VLDL). Unexpectedly, these decreases in plasma were associated with an increase in RBC membrane cholesterol. The concentration and activity of the main enzyme involved in the removal of cholesterol and generation of large HDL particles-lecithin cholesterol ester transferase (LCAT)-are also significantly decreased in SCD. These observations might partially explain the decrease in RBC deformability, diminished gas exchange and tendency of RBCs to aggregate in SCD. We showed that incubation of RBC from SCD patients with human HDL or the HDL-mimetic peptide Fx5A improves the impaired RBC deformability and decreases intracellular reactive oxygen species levels. We propose that the main physiological role of HDL is to regulate the cholesterol/phospholipid ratio (C/PL), which is fundamental to the transport of oxygen and its delivery to peripheral tissues.
Collapse
Affiliation(s)
| | - Elie Nader
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, 69007 Lyon, France
| | - Anne Perez
- Hartis Pharma SA Nyon, 1260 Nyon, Switzerland
| | | | | | - Alan Remaley
- National Institutes of Health, Bethesda, MD 20814, USA
| | | | - Philippe Connes
- Laboratory LIBM EA7424, Vascular Biology and Red Blood Cell Team, University of Lyon, 69007 Lyon, France
| |
Collapse
|
8
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
9
|
Charan J, Riyad P, Ram H, Purohit A, Ambwani S, Kashyap P, Singh G, Hashem A, Abd_Allah EF, Gupta VK, Kumar A, Panwar A. Ameliorations in dyslipidemia and atherosclerotic plaque by the inhibition of HMG-CoA reductase and antioxidant potential of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd in rabbits. PLoS One 2022; 17:e0264646. [PMID: 35239727 PMCID: PMC8893677 DOI: 10.1371/journal.pone.0264646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
The assigned work was aimed to examine the capability of phytoconstituents of an aqueous seed extract of Acacia senegal (L.) Willd to inhibit HMG-CoA reductase and regression of the atherosclerotic plaque. The chemical fingerprinting of the test extract was assessed by LC-MS/MS. Consequently, the analyses of in-vitro, in-vivo, and in-silico were executed by using the standard protocols. The in-vitro assessment of the test extract revealed 74.1% inhibition of HMG-CoA reductase. In-vivo assessments of the test extract indicated that treated hypercholesterolemic rabbits exhibited a significant (P≤0.001) amelioration in the biomarker indices of the dyslipidaemia i.e., atherogenic index, Castelli risk index(I&II), atherogenic coefficient along with lipid profile. Subsequently, significant reductions were observed in the atherosclerotic plaque and antioxidant levels. The in-silico study of molecular docking shown interactions capabilities of the leading phytoconstituents of the test extract i.e., eicosanoic acid, linoleic acid, and flavan-3-ol with target protein of HMG-CoA reductase. The values of RSMF and potential energy of top docked complexes were show significant interactions. Accordingly, the free energy of solvation, interaction angle, radius of gyration and SASA were shown significant stabilities of top docked complex. The cumulative data of results indicate phytoconstituents of an aqueous seed extract of Acacia senegal have capabilities to inhibit the HMG-CoA reductase and improve the levels of antioxidants.
Collapse
Affiliation(s)
- Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Priyanka Riyad
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Ashok Purohit
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Sneha Ambwani
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Priya Kashyap
- University School of Biotechnology, GGS Indraprastha University, New Delhi, India
| | - Garima Singh
- Department of Botany, Pachhunga University College, Aizawl, Mizoram, India
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Vijai Kumar Gupta
- Center for Safe and Improved Food & Biorefining and Advanced Biomaterials Research Center, SRUC, Kings Buildings, Scotland, United Kingdom
| | - Ashok Kumar
- Centre for Systems biology and bioinformatics, Panjab University Chandigarh, Punjab, India
| | - Anil Panwar
- Centre for Systems biology and bioinformatics, Panjab University Chandigarh, Punjab, India
| |
Collapse
|
10
|
Paukner K, Králová Lesná I, Poledne R. Cholesterol in the Cell Membrane-An Emerging Player in Atherogenesis. Int J Mol Sci 2022; 23:533. [PMID: 35008955 PMCID: PMC8745363 DOI: 10.3390/ijms23010533] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Membrane cholesterol is essential for cell membrane properties, just as serum cholesterol is important for the transport of molecules between organs. This review focuses on cholesterol transport between lipoproteins and lipid rafts on the surface of macrophages. Recent studies exploring this mechanism and recognition of the central dogma-the key role of macrophages in cardiovascular disease-have led to the notion that this transport mechanism plays a major role in the pathogenesis of atherosclerosis. The exact molecular mechanism of this transport remains unclear. Future research will improve our understanding of the molecular and cellular bases of lipid raft-associated cholesterol transport.
Collapse
Affiliation(s)
- Karel Paukner
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Physiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
- Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Small Animal Clinic, 612 00 Brno, Czech Republic
| | - Ivana Králová Lesná
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
- Department of Anesthesia and Intensive Medicine, First Faculty of Medicine, Charles University and University Military Hospital, 128 08 Prague, Czech Republic
| | - Rudolf Poledne
- Laboratory for Atherosclerosis Research, Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (I.K.L.); (R.P.)
| |
Collapse
|
11
|
Zanotti I, Potì F, Cuchel M. HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159065. [PMID: 34637925 DOI: 10.1016/j.bbalip.2021.159065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches.
Collapse
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Potì
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Darabi M, Kontush A. High-density lipoproteins (HDL): Novel function and therapeutic applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159058. [PMID: 34624514 DOI: 10.1016/j.bbalip.2021.159058] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 12/30/2022]
Abstract
The failure of high-density lipoprotein (HDL)-raising agents to reduce cardiovascular disease (CVD) together with recent findings of increased cardiovascular mortality in subjects with extremely high HDL-cholesterol levels provide new opportunities to revisit our view of HDL. The concept of HDL function developed to explain these contradictory findings has recently been expanded by a role played by HDL in the lipolysis of triglyceride-rich lipoproteins (TGRLs) by lipoprotein lipase. According to the reverse remnant-cholesterol transport (RRT) hypothesis, HDL critically contributes to TGRL lipolysis via acquirement of surface lipids, including free cholesterol, released from TGRL. Ensuing cholesterol transport to the liver with excretion into the bile may reduce cholesterol influx in the arterial wall by accelerating removal from circulation of atherogenic, cholesterol-rich TGRL remnants. Such novel function of HDL opens wide therapeutic applications to reduce CVD in statin-treated patients, which primarily involve activation of cholesterol flux upon lipolysis.
Collapse
Affiliation(s)
- Maryam Darabi
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France
| | - Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMRS 1166 ICAN, Faculty of Medicine Pitié-Salpêtrière, Sorbonne University, Paris, France.
| |
Collapse
|
13
|
Papotti B, Escolà-Gil JC, Julve J, Potì F, Zanotti I. Impact of Dietary Lipids on the Reverse Cholesterol Transport: What We Learned from Animal Studies. Nutrients 2021; 13:nu13082643. [PMID: 34444804 PMCID: PMC8401548 DOI: 10.3390/nu13082643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Reverse cholesterol transport (RCT) is a physiological mechanism protecting cells from an excessive accumulation of cholesterol. When this process begins in vascular macrophages, it acquires antiatherogenic properties, as has been widely demonstrated in animal models. Dietary lipids, despite representing a fundamental source of energy and exerting multiple biological functions, may induce detrimental effects on cardiovascular health. In the present review we summarize the current knowledge on the mechanisms of action of the most relevant classes of dietary lipids, such as fatty acids, sterols and liposoluble vitamins, with effects on different steps of RCT. We also provide a critical analysis of data obtained from experimental models which can serve as a valuable tool to clarify the effects of dietary lipids on cardiovascular disease.
Collapse
Affiliation(s)
- Bianca Papotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain; (J.C.E.-G.); (J.J.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Josep Julve
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica (IIB) Sant Pau, 08041 Barcelona, Spain; (J.C.E.-G.); (J.J.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Francesco Potì
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy;
| | - Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
- Correspondence: ; Tel.: +39-0521905040
| |
Collapse
|
14
|
Ohkawa R, Low H, Mukhamedova N, Fu Y, Lai SJ, Sasaoka M, Hara A, Yamazaki A, Kameda T, Horiuchi Y, Meikle PJ, Pernes G, Lancaster G, Ditiatkovski M, Nestel P, Vaisman B, Sviridov D, Murphy A, Remaley AT, Sviridov D, Tozuka M. Cholesterol transport between red blood cells and lipoproteins contributes to cholesterol metabolism in blood. J Lipid Res 2020; 61:1577-1588. [PMID: 32907987 PMCID: PMC7707172 DOI: 10.1194/jlr.ra120000635] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Lipoproteins play a key role in transport of cholesterol to and from tissues. Recent studies have also demonstrated that red blood cells (RBCs), which carry large quantities of free cholesterol in their membrane, play an important role in reverse cholesterol transport. However, the exact role of RBCs in systemic cholesterol metabolism is poorly understood. RBCs were incubated with autologous plasma or isolated lipoproteins resulting in a significant net amount of cholesterol moved from RBCs to HDL, while cholesterol from LDL moved in the opposite direction. Furthermore, the bi-directional cholesterol transport between RBCs and plasma lipoproteins was saturable and temperature-, energy-, and time-dependent, consistent with an active process. We did not find LDLR, ABCG1, or scavenger receptor class B type 1 in RBCs but found a substantial amount of ABCA1 mRNA and protein. However, specific cholesterol efflux from RBCs to isolated apoA-I was negligible, and ABCA1 silencing with siRNA or inhibition with vanadate and Probucol did not inhibit the efflux to apoA-I, HDL, or plasma. Cholesterol efflux from and cholesterol uptake by RBCs from Abca1+/+ and Abca1-/- mice were similar, arguing against the role of ABCA1 in cholesterol flux between RBCs and lipoproteins. Bioinformatics analysis identified ABCA7, ABCG5, lipoprotein lipase, and mitochondrial translocator protein as possible candidates that may mediate the cholesterol flux. Together, these results suggest that RBCs actively participate in cholesterol transport in the blood, but the role of cholesterol transporters in RBCs remains uncertain.
Collapse
Affiliation(s)
- Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Baker Heart and Diabetes Institute, Melbourne, Australia.
| | - Hann Low
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Ying Fu
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Shao-Jui Lai
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mai Sasaoka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ayuko Hara
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Azusa Yamazaki
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Kameda
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuna Horiuchi
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Gerard Pernes
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | | | - Paul Nestel
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Boris Vaisman
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Denis Sviridov
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Murphy
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alan T Remaley
- Lipoprotein Section, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dmitri Sviridov
- Baker Heart and Diabetes Institute, Melbourne, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia.
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Life Science Research Center, Nagano Children's Hospital, Azumino, Japan
| |
Collapse
|
15
|
HDL and Reverse Remnant-Cholesterol Transport (RRT): Relevance to Cardiovascular Disease. Trends Mol Med 2020; 26:1086-1100. [DOI: 10.1016/j.molmed.2020.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022]
|
16
|
Papadopoulos C, Panopoulou M, Anagnostopoulos K, Tentes I. Immune and Metabolic Interactions of Human Erythrocytes: A Molecular Perspective. Endocr Metab Immune Disord Drug Targets 2020; 21:843-853. [PMID: 33148159 DOI: 10.2174/1871530320666201104115016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/15/2020] [Accepted: 09/24/2020] [Indexed: 11/22/2022]
Abstract
Apart from their main function as oxygen carriers in vertebrates, erythrocytes are also involved in immune regulation. By circulating throughout the body, the erythrocytes are exposed and interact with tissues that are damaged as a result of a disease. In this study, we summarize the literature regarding the contribution of erythrocytes to immune regulation and metabolism. Under the circumstances of a disease state, the erythrocytes may lose their antioxidant capacity and release Damage Associated Molecular Patterns, resulting in the regulation of innate and adaptive immunity. In addition, the erythrocytes scavenge and affect the levels of chemokines, circulating cell-free mtDNA, and C3b attached immune complexes. Furthermore, through surface molecules, erythrocytes control the function of T lymphocytes, macrophages, and dendritic cells. Through an array of enzymes, red blood cells contribute to the pool of blood's bioactive lipids. Finally, the erythrocytes contribute to reverse cholesterol transport through various mechanisms. Our study is highlighting overlooked molecular interactions between erythrocytes and immunity and metabolism, which could lead to the discovery of potent therapeutic targets for immunometabolic diseases.
Collapse
Affiliation(s)
| | - Maria Panopoulou
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Ioannis Tentes
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
17
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
18
|
Fawaz MV, Kim SY, Li D, Ming R, Xia Z, Olsen K, Pogozheva ID, Tesmer JJG, Schwendeman A. Phospholipid Component Defines Pharmacokinetic and Pharmacodynamic Properties of Synthetic High-Density Lipoproteins. J Pharmacol Exp Ther 2019; 372:193-204. [PMID: 31776208 DOI: 10.1124/jpet.119.257568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Synthetic high-density lipoprotein (sHDL) nanoparticles composed of apolipoprotein A-I mimetic peptide and phospholipids have been shown to reduce atherosclerosis in animal models. Cholesterol is mobilized from atheroma macrophages by sHDL into the blood compartment and delivered to the liver for elimination. Historically, sHDL drug discovery efforts were focused on optimizing peptide sequences for interaction with cholesterol cellular transporters rather than understanding how both sHDL components, peptide and lipid, influence its pharmacokinetic and pharmacodynamic profiles. We designed two sets of sHDL having either identical phospholipid but variable peptide sequences with different plasma stability or identical peptide and phospholipids with variable fatty acid chain length and saturation. We found that sHDL prepared with proteolytically stable 22A-P peptide had 2-fold longer circulation half-time relative to the less stable 22A peptide. Yet, longer half-life did not translate into any improvement in cholesterol mobilization. In contrast, sHDL with variable phospholipid compositions showed significant differences in phospholipid PK, with distearoyl phosphatidylcholine-based sHDL demonstrating the longest half-life of 6.0 hours relative to 1.0 hour for palmitoyl-oleoyl phosphatidylcholine-based sHDL. This increase in half-life corresponded to an approx. 6.5-fold increase in the area under the curve for the mobilized cholesterol. Therefore, the phospholipid component in sHDL plays a major role in cholesterol mobilization in vivo and should not be overlooked in the design of future sHDL. SIGNIFICANCE STATEMENT: The phospholipid composition in sHDL plays a critical role in determining half-life and cholesterol mobilization in vivo.
Collapse
Affiliation(s)
- Maria V Fawaz
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Sang Yeop Kim
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Dan Li
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ran Ming
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Ziyun Xia
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Karl Olsen
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Irina D Pogozheva
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - John J G Tesmer
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| | - Anna Schwendeman
- Departments of Medicinal Chemistry (M.V.F., I.D.P.) and Pharmaceutical Sciences (S.Y.K., D.L., R.M., Z.X., K.O., A.S.), College of Pharmacy, and Biointerfaces Institute (A.S.), University of Michigan, Ann Arbor, Michigan; and Department of Biological Sciences, Purdue University, West Lafayette, Indiana (J.J.G.T.)
| |
Collapse
|
19
|
McCullough A, Previs SF, Dasarathy J, Lee K, Osme A, Kim C, Ilchenko S, Lorkowski SW, Smith JD, Dasarathy S, Kasumov T. HDL flux is higher in patients with nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab 2019; 317:E852-E862. [PMID: 31503515 PMCID: PMC6879863 DOI: 10.1152/ajpendo.00193.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/09/2019] [Accepted: 08/25/2019] [Indexed: 12/13/2022]
Abstract
Altered lipid metabolism and inflammation are involved in the pathogenesis of both nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD). Even though high-density lipoprotein (HDL), a CVD protective marker, is decreased, whether HDL metabolism and function are perturbed in NAFLD are currently unknown. We examined the effect of NAFLD and disease severity on HDL metabolism and function in patients with biopsy-proven simple steatosis (SS), nonalcoholic steatohepatitis (NASH), and healthy controls. HDL turnover and HDL protein dynamics in SS (n = 7), NASH (n = 8), and healthy controls (n = 9) were studied in vivo. HDL maturation and remodeling, antioxidant, cholesterol efflux properties, and activities of lecithin-cholesterol ester acyltransferase and cholesterol ester transfer protein (CETP) were quantified using in vitro assays. All patients with NAFLD had increased turnover of both HDL cholesterol (HDLc; 0.16 ± 0.09 vs. 0.34 ± 0.18 days, P < 0.05) and apolipoprotein A1 (ApoAI) (0.26 ± 0.04 vs. 0.34 ± 0.06 days, P < 0.005) compared with healthy controls. The fractional catabolic rates of other HDL proteins, including ApoAII (and ApoAIV) were higher (P < 0.05) in patients with NAFLD who also had higher CETP activity, ApoAI/HDLc ratio (P < 0.05). NAFLD-induced alterations were associated with lower antioxidant (114.2 ± 46.6 vs. 220.5 ± 48.2 nmol·mL-1·min-1) but higher total efflux properties of HDL (23.4 ± 1.3% vs. 25.5 ± 2.3%) (both P < 0.05), which was more pronounced in individuals with NASH. However, no differences were observed in either HDL turnover, antioxidant, and cholesterol efflux functions of HDL or HDL proteins' turnover between subjects with SS and subjects with NASH. Thus, HDL metabolism and function are altered in NAFLD without any significant differences between SS and NASH.
Collapse
Affiliation(s)
| | | | | | - Kwangwon Lee
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Abdullah Osme
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Chunki Kim
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Serguei Ilchenko
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - Shuhui W Lorkowski
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Jonathan D Smith
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Takhar Kasumov
- Department of Gastroenterology, Cleveland Clinic, Cleveland, Ohio
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| |
Collapse
|
20
|
Hafiane A, Gasbarrino K, Daskalopoulou SS. The role of adiponectin in cholesterol efflux and HDL biogenesis and metabolism. Metabolism 2019; 100:153953. [PMID: 31377319 DOI: 10.1016/j.metabol.2019.153953] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022]
Abstract
Cholesterol efflux is the initial step in the reverse cholesterol transport pathway by which excess cholesterol in peripheral cells is exported and subsequently packaged into high-density lipoprotein (HDL) particles. Adiponectin is the most abundantly secreted adipokine that possesses anti-inflammatory and vasculoprotective properties via interaction with transmembrane receptors, AdipoR1 and AdipoR2. Evidence suggests that low levels of adiponectin may be a useful marker for atherosclerotic disease. A proposed anti-atherogenic mechanism of adiponectin involves its ability to promote cholesterol efflux. We performed a systematic review of the role of adiponectin in cholesterol efflux and HDL biogenesis, and of the proteins and receptors believed to be implicated in this process. Nineteen eligible studies (7 clinical, 11 fundamental, 1 clinical + fundamental) were identified through Ovid Medline, Ovid Embase, and Pubmed, that support the notion that adiponectin plays a key role in promoting ABCA1-dependent cholesterol efflux and in modulating HDL biogenesis via activation of the PPAR-γ/LXR-α signalling pathways in macrophages. AdipoR1 and AdipoR2 are suggested to also be implicated in this process, however the data are conflicting/insufficient to establish any firm conclusions. Once the exact mechanisms are unravelled, adiponectin may be critical in defining future treatment strategies directed towards increasing HDL functionality and ultimately reducing atherosclerotic disease.
Collapse
Affiliation(s)
- Anouar Hafiane
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| | - Karina Gasbarrino
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| | - Stella S Daskalopoulou
- Department of Medicine, Faculty of Medicine, Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Bianchetti G, Di Giacinto F, Pitocco D, Rizzi A, Rizzo GE, De Leva F, Flex A, di Stasio E, Ciasca G, De Spirito M, Maulucci G. Red blood cells membrane micropolarity as a novel diagnostic indicator of type 1 and type 2 diabetes. Anal Chim Acta X 2019; 3:100030. [PMID: 33117983 PMCID: PMC7587021 DOI: 10.1016/j.acax.2019.100030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 01/06/2023] Open
Abstract
Classification of the category of diabetes is extremely important for clinicians to diagnose and select the correct treatment plan. Glycosylation, oxidation and other post-translational modifications of membrane and transmembrane proteins, as well as impairment in cholesterol homeostasis, can alter lipid density, packing, and interactions of Red blood cells (RBC) plasma membranes in type 1 and type 2 diabetes, thus varying their membrane micropolarity. This can be estimated, at a submicrometric scale, by determining the membrane relative permittivity, which is the factor by which the electric field between the charges is decreased relative to vacuum. Here, we employed a membrane micropolarity sensitive probe to monitor variations in red blood cells of healthy subjects (n=16) and patients affected by type 1 (T1DM, n=10) and type 2 diabetes mellitus (T2DM, n=24) to provide a cost-effective and supplementary indicator for diabetes classification. We find a less polar membrane microenvironment in T2DM patients, and a more polar membrane microenvironment in T1DM patients compared to control healthy patients. The differences in micropolarity are statistically significant among the three groups (p<0.01). The role of serum cholesterol pool in determining these differences was investigated, and other factors potentially altering the response of the probe were considered in view of developing a clinical assay based on RBC membrane micropolarity. These preliminary data pave the way for the development of an innovative assay which could become a tool for diagnosis and progression monitoring of type 1 and type 2 diabetes. Dynamic flux of cholesterol is differentially altered in T1DM and T2DM. Red blood cell senses the dynamic flux of lipids by changing its micropolarity. Laurdan can measure micropolarity in red blood cells membranes. Differences in micropolarity between the three groups are statistically significant. Red blood cell Micropolarity is an innovative assay for diabetes classification.
Collapse
Key Words
- DMPC, dimyristoylphosphatidylcholine
- DPPC, dipalmitoilphosphatidylcholine
- Diabetes mellitus
- Fluorescence lifetime microscopy
- HDL, high-density lipoproteins
- HDL-C, high-density lipoprotein cholesterol
- HbA1c, glycated Haemoglobin
- LDL, low-density lipoproteins
- LDL-C, low-density lipoprotein cholesterol
- Membrane micropolarity
- Metabolic imaging
- PC, phosphatydilcholine
- Personalized medicine
- RBC, red blood cells
- Red blood cells
- T1DM, Type 1 Diabetes Mellitus
- T2DM, Type 2 diabetes Mellitus
Collapse
Affiliation(s)
- Giada Bianchetti
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Istituto di Fisica, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Flavio Di Giacinto
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Istituto di Fisica, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Dario Pitocco
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Alessandro Rizzi
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gaetano Emanuele Rizzo
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Francesca De Leva
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Diabetes Care Unit, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Andrea Flex
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Cardiovascular Disease Division, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Enrico di Stasio
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Istituto di Biochimica Clinica, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Istituto di Fisica, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Istituto di Fisica, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A, Gemelli IRCSS, Rome, Italy.,Istituto di Fisica, Università Cattolica Del Sacro Cuore, Rome, Italy
| |
Collapse
|
22
|
Abstract
Cholesterol homeostasis is of central importance for life. Therefore, cells have developed a divergent set of pathways to meet their cholesterol needs. In this review, we focus on the direct transfer of cholesterol from lipoprotein particles to the cell membrane. More molecular details on the transfer of lipoprotein-derived lipids were gained by recent studies using phospholipid bilayers. While amphiphilic lipids are transferred right after contact of the lipoprotein particle with the membrane, the transfer of core lipids is restricted. Amphiphilic lipid transfer gains special importance in genetic diseases impairing lipoprotein metabolism like familial hypercholesterolemia. Taken together, these data indicate that there is a constant exchange of amphiphilic lipids between lipoprotein particles and the cell membrane.
Collapse
|
23
|
Paul A, Lydic TA, Hogan R, Goo YH. Cholesterol Acceptors Regulate the Lipidome of Macrophage Foam Cells. Int J Mol Sci 2019; 20:E3784. [PMID: 31382484 PMCID: PMC6695943 DOI: 10.3390/ijms20153784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/17/2022] Open
Abstract
Arterial foam cells are central players of atherogenesis. Cholesterol acceptors, apolipoprotein A-I (apoA-I) and high-density lipoprotein (HDL), take up cholesterol and phospholipids effluxed from foam cells into the circulation. Due to the high abundance of cholesterol in foam cells, most previous studies focused on apoA-I/HDL-mediated free cholesterol (FC) transport. However, recent lipidomics of human atherosclerotic plaques also identified that oxidized sterols (oxysterols) and non-sterol lipid species accumulate as atherogenesis progresses. While it is known that these lipids regulate expression of pro-inflammatory genes linked to plaque instability, how cholesterol acceptors impact the foam cell lipidome, particularly oxysterols and non-sterol lipids, remains unexplored. Using lipidomics analyses, we found cholesterol acceptors remodel foam cell lipidomes. Lipid subclass analyses revealed various oxysterols, sphingomyelins, and ceramides, species uniquely enriched in human plaques were significantly reduced by cholesterol acceptors, especially by apoA-I. These results indicate that the function of lipid-poor apoA-I is not limited to the efflux of cholesterol and phospholipids but suggest that apoA-I serves as a major regulator of the foam cell lipidome and might play an important role in reducing multiple lipid species involved in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Antoni Paul
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Todd A Lydic
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Ryan Hogan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA
| | - Young-Hwa Goo
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
24
|
Zhang Z, Zhou Q, Huangfu G, Wu Y, Zhang J. Anthocyanin extracts of lingonberry (
Vaccinium vitis‐idaea
L.) attenuate serum lipids and cholesterol metabolism in
HCD
‐induced hypercholesterolaemic male mice. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zi‐cheng Zhang
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Qing Zhou
- Department of Pharmacy Wuhan City Central Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430014 China
| | - Gu‐yu Huangfu
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
| | - Ying Wu
- Department of Pharmacy Wuhan No.8 Hospital Wuhan 430010 China
| | - Jiu‐liang Zhang
- College of Food Science and Technology Huazhong Agricultural University Wuhan 430070 China
- Key Laboratory of Environment Correlative Dietology Ministry of Education Wuhan 430070 China
| |
Collapse
|
25
|
Kashyap SR, Osme A, Ilchenko S, Golizeh M, Lee K, Wang S, Bena J, Previs SF, Smith JD, Kasumov T. Glycation Reduces the Stability of ApoAI and Increases HDL Dysfunction in Diet-Controlled Type 2 Diabetes. J Clin Endocrinol Metab 2018; 103:388-396. [PMID: 29077935 PMCID: PMC5800833 DOI: 10.1210/jc.2017-01551] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
Abstract
CONTEXT Hyperglycemia plays a key role in the pathogenesis of cardiovascular complications of diabetes. Type 2 diabetes mellitus (T2DM) is associated with high-density lipoprotein (HDL) dysfunction and increased degradation of apolipoprotein I (ApoAI). The mechanism(s) of these changes is largely unknown. OBJECTIVE To study the role of hyperglycemia-induced glycation on ApoAI kinetics and stability in patients with diet-controlled T2DM. DESIGN 2H2O-metabolic labeling approach was used to study ApoAI turnover in patients with diet-controlled T2DM [n = 9 (5 F); 59.3 ± 8.5 years] and matched healthy controls [n = 8 (4 F); 50.7 ± 11.6 years]. The effect of Amadori glycation on in vivo ApoAI stability and the antioxidant and cholesterol efflux properties of HDL were assessed using a proteomics approach and in vitro assays. RESULTS Patients with T2DM had increased turnover of ApoAI and impaired cholesterol efflux and antioxidant properties of HDL. Glycated hemoglobin was negatively correlated with the half-life of ApoAI and cholesterol efflux function of HDL. Proteomics analysis identified several nonenzymatic early (Amadori) glycations of ApoAI at lysine sites. The kinetics analysis of glycated and native ApoAI peptides in patients with T2DM revealed that glycation resulted in a threefold shorter ApoAI half-life. CONCLUSIONS The 2H2O method allowed the detection of early in vivo impairments in HDL metabolism and function that were related to hyperglycemia-induced glycation of ApoAI in T2DM.
Collapse
Affiliation(s)
- Sangeeta R. Kashyap
- Department of Endocrinology and Metabolism, Cleveland Clinic, Cleveland, Ohio 44195
| | - Abdullah Osme
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Serguei Ilchenko
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Makan Golizeh
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Kwangwon Lee
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
| | - Shuhui Wang
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - James Bena
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio 44195
| | | | - Jonathan D. Smith
- Department of Cellular & Molecular Medicine, Cleveland Clinic, Cleveland, Ohio 44195
| | - Takhar Kasumov
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio 44272
- Department of Hepatology, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Cholesterol metabolism has been the object of intense investigation for decades. This review focuses on classical and novel methods assessing in vivo cholesterol metabolism in humans. Two factors have fueled cholesterol metabolism studies in the last few years: the renewed interest in the study of reverse cholesterol transport (RCT) as an atheroprotective mechanism and the importance of the gut microbiome in affecting cholesterol metabolism. RECENT FINDINGS Recent applications of these methods have spanned from the assessment of the effect on cholesterol synthesis, absorption or excretion of drugs (such as ezetimibe, PCSK9 inhibitors and plant sterols) and the gut microbiome to the more complex assessment of transintestinal cholesterol excretion (TICE) and RCT. SUMMARY These methods continue to be a valuable tool to answer novel questions and investigate the complexity of in-vivo cholesterol metabolism.
Collapse
Affiliation(s)
- John S Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
27
|
Sacks FM, Jensen MK. From High-Density Lipoprotein Cholesterol to Measurements of Function: Prospects for the Development of Tests for High-Density Lipoprotein Functionality in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2018; 38:487-499. [PMID: 29371248 DOI: 10.1161/atvbaha.117.307025] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/05/2018] [Indexed: 01/13/2023]
Abstract
The evidence is strong that biological functions contained in high-density lipoproteins (HDL) are antiatherogenic. These functions may track with HDL cholesterol or apolipoprotein A1 concentration to explain the strongly inverse risk curve for cardiovascular disease. Moreover, there are harmful as well as protective HDL subspecies in regard to cardiovascular disease, which could be responsible for paradoxical responses to HDL-directed treatments. Recent metabolic studies show that apolipoprotein A1-containing HDL is secreted into the circulation as mostly spherical cholesterol ester-rich lipoproteins that span the HDL size range. Most of the flux of apolipoprotein A1 HDL into and out of the circulation occurs in these spherical cholesterol-replete particles. Discoidal cholesterol-poor HDL comprises a minority of HDL secretion. We propose that much cholesterol in reverse cholesterol transport enters and exits medium and large size HDL without changing a size category, and its flux may be estimated provisionally from holoparticle clearance of cholesterol ester-rich HDL. An accurate framework for metabolism of HDL is essential to finding steady-state biomarkers that reflect HDL function in vivo. Whereas cholesterol efflux from cells to mainly discoidal HDL, mediated by ABCA1 (ATP-binding cassette transporter ABCA1), predicts cardiovascular disease, cholesterol transfers to spherical HDL also can be measured and may be relevant to protection against atherosclerosis. We propose several investigative paths on which human HDL biology may be investigated leading to convenient biomarkers of HDL quality and function having potential not only to improve risk prediction but also to more accurately target drug treatments.
Collapse
Affiliation(s)
- Frank M Sacks
- From the Departments of Nutrition and Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA.
| | - Majken K Jensen
- From the Departments of Nutrition and Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
28
|
Talbot CP, Plat J, Ritsch A, Mensink RP. Determinants of cholesterol efflux capacity in humans. Prog Lipid Res 2018; 69:21-32. [PMID: 29269048 DOI: 10.1016/j.plipres.2017.12.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
|
29
|
Lin X, Racette SB, Ma L, Wallendorf M, Dávila-Román VG, Ostlund RE. Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans. Arterioscler Thromb Vasc Biol 2017; 37:2364-2369. [PMID: 28982667 DOI: 10.1161/atvbaha.117.310081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/21/2017] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Epidemiological studies strongly suggest that lipid factors independent of low-density lipoprotein cholesterol contribute significantly to cardiovascular disease risk. Because circulating lipoproteins comprise only a small fraction of total body cholesterol, the mobilization and excretion of cholesterol from plasma and tissue pools may be an important determinant of cardiovascular disease risk. Our hypothesis is that fecal excretion of endogenous cholesterol is protective against atherosclerosis. APPROACH AND RESULTS Cholesterol metabolism and carotid intima-media thickness were quantitated in 86 nondiabetic adults. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d7 solubilized in a lipid emulsion and dietary cholesterol by cholesterol-d5 and the nonabsorbable stool marker sitostanol-d4. Plasma and stool samples were collected while subjects consumed a cholesterol- and phytosterol-controlled metabolic kitchen diet and were analyzed by mass spectrometry. Carotid intima-media thickness was negatively correlated with fecal excretion of endogenous cholesterol (r=-0.426; P<0.0001), total cholesterol (r=-0.472; P≤0.0001), and daily percent excretion of cholesterol from the rapidly mixing cholesterol pool (r=-0.343; P=0.0012) and was positively correlated with percent cholesterol absorption (r=+0.279; P=0.0092). In a linear regression model controlling for age, sex, systolic blood pressure, hemoglobin A1c, low-density lipoprotein, high-density lipoprotein cholesterol, and statin drug use, fecal excretion of endogenous cholesterol remained significant (P=0.0008). CONCLUSIONS Excretion of endogenous cholesterol is strongly, independently, and negatively associated with carotid intima-media thickness. The reverse cholesterol transport pathway comprising the intestine and the rapidly mixing plasma, and tissue cholesterol pool could be an unrecognized determinant of cardiovascular disease risk not reflected in circulating lipoproteins. Further work is needed to relate measures of reverse cholesterol transport to atherosclerotic disease. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758.
Collapse
Affiliation(s)
- Xiaobo Lin
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine (X.L., S.B.R., L.M., R.E.O.), Program in Physical Therapy (S.B.R.), Division of Biostatistics (M.W.), and Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine (V.G.D.-R.), Washington University School of Medicine, St. Louis, MO
| | - Susan B Racette
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine (X.L., S.B.R., L.M., R.E.O.), Program in Physical Therapy (S.B.R.), Division of Biostatistics (M.W.), and Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine (V.G.D.-R.), Washington University School of Medicine, St. Louis, MO
| | - Lina Ma
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine (X.L., S.B.R., L.M., R.E.O.), Program in Physical Therapy (S.B.R.), Division of Biostatistics (M.W.), and Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine (V.G.D.-R.), Washington University School of Medicine, St. Louis, MO
| | - Michael Wallendorf
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine (X.L., S.B.R., L.M., R.E.O.), Program in Physical Therapy (S.B.R.), Division of Biostatistics (M.W.), and Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine (V.G.D.-R.), Washington University School of Medicine, St. Louis, MO
| | - Victor G Dávila-Román
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine (X.L., S.B.R., L.M., R.E.O.), Program in Physical Therapy (S.B.R.), Division of Biostatistics (M.W.), and Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine (V.G.D.-R.), Washington University School of Medicine, St. Louis, MO
| | - Richard E Ostlund
- From the Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine (X.L., S.B.R., L.M., R.E.O.), Program in Physical Therapy (S.B.R.), Division of Biostatistics (M.W.), and Cardiovascular Imaging and Clinical Research Core Laboratory, Cardiovascular Division, Department of Medicine (V.G.D.-R.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
30
|
Chakrabarti RS, Ingham SA, Kozlitina J, Gay A, Cohen JC, Radhakrishnan A, Hobbs HH. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife 2017; 6. [PMID: 28169829 PMCID: PMC5323040 DOI: 10.7554/elife.23355] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/28/2017] [Indexed: 01/07/2023] Open
Abstract
Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans. DOI:http://dx.doi.org/10.7554/eLife.23355.001
Collapse
Affiliation(s)
- Rima S Chakrabarti
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sally A Ingham
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Julia Kozlitina
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Austin Gay
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jonathan C Cohen
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Arun Radhakrishnan
- Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| | - Helen H Hobbs
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
31
|
Cuchel M, Raper AC, Conlon DM, Pryma DA, Freifelder RH, Poria R, Cromley D, Li X, Dunbar RL, French B, Qu L, Farver W, Su CC, Lund-Katz S, Baer A, Ruotolo G, Akerblad P, Ryan CS, Xiao L, Kirchgessner TG, Millar JS, Billheimer JT, Rader DJ. A novel approach to measuring macrophage-specific reverse cholesterol transport in vivo in humans. J Lipid Res 2017; 58:752-762. [PMID: 28167703 DOI: 10.1194/jlr.m075226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 11/20/2022] Open
Abstract
Reverse cholesterol transport (RCT) is thought to be an atheroprotective function of HDL, and macrophage-specific RCT in mice is inversely associated with atherosclerosis. We developed a novel method using 3H-cholesterol nanoparticles to selectively trace macrophage-specific RCT in vivo in humans. Use of 3H-cholesterol nanoparticles was initially tested in mice to assess the distribution of tracer and response to interventions known to increase RCT. Thirty healthy subjects received 3H-cholesterol nanoparticles intravenously, followed by blood and stool sample collection. Tracer counts were assessed in plasma, nonHDL, HDL, and fecal fractions. Data were analyzed by using multicompartmental modeling. Administration of 3H-cholesterol nanoparticles preferentially labeled macrophages of the reticuloendothelial system in mice, and counts were increased in mice treated with a liver X receptor agonist or reconstituted HDL, as compared with controls. In humans, tracer disappeared from plasma rapidly after injection of nanoparticles, followed by reappearance in HDL and nonHDL fractions. Counts present as free cholesterol increased rapidly and linearly in the first 240 min after nadir; counts in cholesteryl ester increased steadily over time. Estimates of fractional transfer rates of key RCT steps were obtained. These results support the use of 3H-cholesterol nanoparticles as a feasible approach for the measurement of macrophage RCT in vivo in humans.
Collapse
Affiliation(s)
- Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA.
| | - Anna C Raper
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Donna M Conlon
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Rahul Poria
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Debra Cromley
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xiaoyu Li
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard L Dunbar
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin French
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Liming Qu
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - William Farver
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Sissel Lund-Katz
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amanda Baer
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Lan Xiao
- Bristol-Myers Squibb R&D, Princeton, NJ
| | | | - John S Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jeffrey T Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
32
|
Boets E, Gomand SV, Deroover L, Preston T, Vermeulen K, De Preter V, Hamer HM, Van den Mooter G, De Vuyst L, Courtin CM, Annaert P, Delcour JA, Verbeke KA. Systemic availability and metabolism of colonic-derived short-chain fatty acids in healthy subjects: a stable isotope study. J Physiol 2016; 595:541-555. [PMID: 27510655 DOI: 10.1113/jp272613] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/20/2016] [Indexed: 12/11/2022] Open
Abstract
KEY POINTS The short-chain fatty acids (SCFAs) are bacterial metabolites produced during the colonic fermentation of undigested carbohydrates, such as dietary fibre and prebiotics, and can mediate the interaction between the diet, the microbiota and the host. We quantified the fraction of colonic administered SCFAs that could be recovered in the systemic circulation, the fraction that was excreted via the breath and urine, and the fraction that was used as a precursor for glucose, cholesterol and fatty acids. This information is essential for understanding the molecular mechanisms by which SCFAs beneficially affect physiological functions such as glucose and lipid metabolism and immune function. ABSTRACT The short-chain fatty acids (SCFAs), acetate, propionate and butyrate, are bacterial metabolites that mediate the interaction between the diet, the microbiota and the host. In the present study, the systemic availability of SCFAs and their incorporation into biologically relevant molecules was quantified. Known amounts of 13 C-labelled acetate, propionate and butyrate were introduced in the colon of 12 healthy subjects using colon delivery capsules and plasma levels of 13 C-SCFAs 13 C-glucose, 13 C-cholesterol and 13 C-fatty acids were measured. The butyrate-producing capacity of the intestinal microbiota was also quantified. Systemic availability of colonic-administered acetate, propionate and butyrate was 36%, 9% and 2%, respectively. Conversion of acetate into butyrate (24%) was the most prevalent interconversion by the colonic microbiota and was not related to the butyrate-producing capacity in the faecal samples. Less than 1% of administered acetate was incorporated into cholesterol and <15% in fatty acids. On average, 6% of colonic propionate was incorporated into glucose. The SCFAs were mainly excreted via the lungs after oxidation to 13 CO2 , whereas less than 0.05% of the SCFAs were excreted into urine. These results will allow future evaluation and quantification of SCFA production from 13 C-labelled fibres in the human colon by measurement of 13 C-labelled SCFA concentrations in blood.
Collapse
Affiliation(s)
- Eef Boets
- Translational Research in Gastrointestinal Disorders.,Leuven Food Science and Nutrition Research Centre
| | - Sara V Gomand
- Leuven Food Science and Nutrition Research Centre.,Center for Food and Microbial Technology
| | - Lise Deroover
- Translational Research in Gastrointestinal Disorders.,Leuven Food Science and Nutrition Research Centre
| | - Tom Preston
- Stable Isotope Biochemistry Laboratory, Scottish Universities Environmental Research Centre, University of Glasgow, Glasgow, UK
| | - Karen Vermeulen
- Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Merelbeke, Belgium
| | - Vicky De Preter
- Translational Research in Gastrointestinal Disorders.,Group Health and Social Work, UC Leuven-Limburg, Leuven, Belgium
| | - Henrike M Hamer
- Translational Research in Gastrointestinal Disorders.,Leuven Food Science and Nutrition Research Centre
| | | | - Luc De Vuyst
- Industrial Microbiology and Food Biotechnology, Vrije Universiteit Brussel, Brussel, Belgium
| | - Christophe M Courtin
- Leuven Food Science and Nutrition Research Centre.,Center for Food and Microbial Technology
| | - Pieter Annaert
- Drug Delivery and Disposition, KU Leuven, Leuven, Belgium
| | - Jan A Delcour
- Leuven Food Science and Nutrition Research Centre.,Center for Food and Microbial Technology
| | - Kristin A Verbeke
- Translational Research in Gastrointestinal Disorders.,Leuven Food Science and Nutrition Research Centre
| |
Collapse
|
33
|
Nemes K, Åberg F, Gylling H, Isoniemi H. Cholesterol metabolism in cholestatic liver disease and liver transplantation: From molecular mechanisms to clinical implications. World J Hepatol 2016; 8:924-932. [PMID: 27574546 PMCID: PMC4976211 DOI: 10.4254/wjh.v8.i22.924] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/07/2016] [Accepted: 07/13/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of this review is to enlighten the critical roles that the liver plays in cholesterol metabolism. Liver transplantation can serve as gene therapy or a source of gene transmission in certain conditions that affect cholesterol metabolism, such as low-density-lipoprotein (LDL) receptor gene mutations that are associated with familial hypercholesterolemia. On the other hand, cholestatic liver disease often alters cholesterol metabolism. Cholestasis can lead to formation of lipoprotein X (Lp-X), which is frequently mistaken for LDL on routine clinical tests. In contrast to LDL, Lp-X is non-atherogenic, and failure to differentiate between the two can interfere with cardiovascular risk assessment, potentially leading to prescription of futile lipid-lowering therapy. Statins do not effectively lower Lp-X levels, and cholestasis may lead to accumulation of toxic levels of statins. Moreover, severe cholestasis results in poor micellar formation, which reduces cholesterol absorption, potentially impairing the cholesterol-lowering effect of ezetimibe. Apolipoprotein B-100 measurement can help distinguish between atherogenic and non-atherogenic hypercholesterolemia. Furthermore, routine serum cholesterol measurements alone cannot reflect cholesterol absorption and synthesis. Measurements of serum non-cholesterol sterol biomarkers - such as cholesterol precursor sterols, plant sterols, and cholestanol - may help with the comprehensive assessment of cholesterol metabolism. An adequate cholesterol supply is essential for liver-regenerative capacity. Low preoperative and perioperative serum cholesterol levels seem to predict mortality in liver cirrhosis and after liver transplantation. Thus, accurate lipid profile evaluation is highly important in liver disease and after liver transplantation.
Collapse
|
34
|
Hypocholesterolemic effect of quercetin-rich onion peel extract in C57BL/6J mice fed with high cholesterol diet. Food Sci Biotechnol 2016; 25:855-860. [PMID: 30263345 DOI: 10.1007/s10068-016-0141-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/09/2016] [Accepted: 03/15/2016] [Indexed: 02/08/2023] Open
Abstract
Onion peel (OP) extract is known as a rich source of flavonoids, mainly quercetin. We hypothesized that OP has hypocholesterolemic effects. To investigate the effect of OP, C57BL/6J mice were divided into 4 dietary groups (n=10); normal diet (ND); high cholesterol diet (HC); and high cholesterol diet with 100 or 200 mg OP extract (OP-100 or OP-200, respectively) per kg of body weight. After 12 weeks, lower values of liver weight, serum total cholesterol levels, LDL cholesterol, atherogenic index, cardiac risk factor, hepatic triacylglycerol, and total cholesterol, and higher fecal cholesterol levels were observed in the OP-200 than in the HC group. The hepatic mRNA expression levels of low-density lipoprotein receptors (LDL-R) and cholesterol 7-alpha-monooxygenase (CYP7A1) were high in the OP-200 compared to the HC group. These observations suggest that OP promoted lowering of serum and hepatic cholesterol in mice primarily via fecal excretion.
Collapse
|
35
|
Ossoli A, Pavanello C, Calabresi L. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis. Endocrinol Metab (Seoul) 2016; 31:223-9. [PMID: 27302716 PMCID: PMC4923405 DOI: 10.3803/enm.2016.31.2.223] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 12/26/2022] Open
Abstract
Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system.
Collapse
Affiliation(s)
- Alice Ossoli
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Chiara Pavanello
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy
| | - Laura Calabresi
- Center E. Grossi Paoletti, Department of Pharmacological and Biomolecular Sciences, University of Milano, Milano, Italy.
| |
Collapse
|
36
|
Abstract
Since their introduction, statin (HMG-CoA reductase inhibitor) drugs have advanced the practice of cardiology to unparalleled levels. Even so, coronary heart disease (CHD) still remains the leading cause of death in developed countries, and is predicted to soon dominate the causes of global mortality and disability as well. The currently available non-statin drugs have had limited success in reversing the burden of heart disease, but new information suggests they have roles in sizeable subpopulations of those affected. In this review, the status of approved non-statin drugs and the significant potential of newer drugs are discussed. Several different ways to raise plasma high-density lipoprotein (HDL) cholesterol (HDL-C) levels have been proposed, but disappointments are now in large part attributed to a preoccupation with HDL quantity, rather than quality, which is more important in cardiovascular (CV) protection. Niacin, an old drug with many antiatherogenic properties, was re-evaluated in two imperfect randomized controlled trials (RCTs), and failed to demonstrate clear effectiveness or safety. Fibrates, also with an attractive antiatherosclerotic profile and classically used for hypertriglyceridemia, lacks evidence-based proof of efficacy, save for a subgroup of diabetic patients with atherogenic dyslipidemia. Omega-3 fatty acids fall into this category as well, even with an impressive epidemiological evidence base. Omega-3 research has been plagued with methodological difficulties yielding tepid, uncertain, and conflicting results; well-designed studies over longer periods of time are needed. Addition of ezetimibe to statin therapy has now been shown to decrease levels of low-density lipoprotein (LDL) cholesterol (LDL-C), accompanied by a modest decrease in the number of CV events, though without any improvement in CV mortality. Importantly, the latest data provide crucial evidence that LDL lowering is central to the management of CV disease. Of drugs that inhibit cholesteryl ester transfer protein (CETP) tested thus far, two have failed and two remain under investigation and may yet prove to be valuable therapeutic agents. Monoclonal antibodies to proprotein convertase subtilisin/kexin type 9, now in phase III trials, lower LDL-C by over 50 % and are most promising. These drugs offer new ability to lower LDL-C in patients in whom statin drug use is, for one reason or another, limited or insufficient. Mipomersen and lomitapide have been approved for use in patients with familial hypercholesterolemia, a more common disease than appreciated. Anti-inflammatory drugs are finally receiving due attention in trials to elucidate potential clinical usefulness. All told, even though statins remain the standard of care, non-statin drugs are poised to assume a new, vital role in managing dyslipidemia.
Collapse
|
37
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
38
|
Charles-Schoeman C, Gonzalez-Gay MA, Kaplan I, Boy M, Geier J, Luo Z, Zuckerman A, Riese R. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist. Semin Arthritis Rheum 2016; 46:71-80. [PMID: 27079757 DOI: 10.1016/j.semarthrit.2016.03.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 03/02/2016] [Accepted: 03/07/2016] [Indexed: 12/26/2022]
Abstract
Cardiovascular (CV) morbidity and mortality are increased in patients with active, untreated rheumatoid arthritis (RA), despite lower levels of total and low-density lipoprotein cholesterol reported in individuals with active RA compared with those without RA. Alterations in non-traditional lipid assessments, such as high-density lipoprotein (HDL) function and HDL-associated proteins, have been described in patients with active RA, including elevated HDL-associated serum amyloid A and decreased paraoxonase-1 activity. We review changes in both traditional lipoprotein concentrations and non-traditional lipoprotein assessments in multiple studies of treatment with disease-modifying antirheumatic drugs (DMARDs), including non-biologic and biologic DMARDs and tofacitinib. In addition, data from a recently published clinical trial with tofacitinib that describe a potential mechanism for suppression of cholesterol levels in active RA patients are reviewed. Finally, CV event data from various studies of DMARDs are presented, and the current management of RA patients with regard to the CV risk is reviewed.
Collapse
|
39
|
Bravo K, Velarde GP. Ethnicity and coronary artery disease: the role of high-density lipoprotein - a change in paradigm. Expert Rev Cardiovasc Ther 2015; 13:923-31. [PMID: 26159553 DOI: 10.1586/14779072.2015.1065178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cardiovascular disease (CVD) is the number one killer of men and women across ethnic groups in the USA. Health disparities in CVD, especially coronary artery disease (CAD), are well documented in the diverse American population. Despite efforts taken toward reducing cardiovascular health disparities, there are still gaps in its diagnosis and management. Current risk assessment guidelines consider high high-density lipoprotein (HDL) levels a protective factor against CAD, although its significance across races remains poorly understood. Recent clinical trials focused on increasing HDL levels have been disappointing. In this article, the authors have explored the role of HDL in CAD, have analyzed its significance across gender and ethnic groups and have challenged the broad application of widely used HDL level cutoffs in CAD risk assessment tools across these vulnerable groups. The current evidence suggests a paradigm change from HDL quantity to quality and function in future CVD risk research. This may better explain why some ethnic minority groups with a seemingly more benign lipid profile experience a higher CAD burden.
Collapse
Affiliation(s)
- Katia Bravo
- Department of Internal Medicine - Rochester, University of Rochester, New York, NY, USA
| | | |
Collapse
|
40
|
Charles-Schoeman C, Fleischmann R, Davignon J, Schwartz H, Turner SM, Beysen C, Milad M, Hellerstein MK, Luo Z, Kaplan IV, Riese R, Zuckerman A, McInnes IB. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol 2015; 67:616-25. [PMID: 25470338 PMCID: PMC5024065 DOI: 10.1002/art.38974] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 11/20/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). Systemic inflammation is proposed to play a fundamental role in the altered lipid metabolism associated with RA; however, the underlying mechanisms are unknown. We undertook this study to compare cholesterol and lipoprotein kinetics in patients with active RA with those in matched healthy volunteers. METHODS This was a phase I open-label mechanism-of-action study. Cholesterol and lipoprotein kinetics were assessed with (13) C-cholesterol and (13) C-leucine infusions. RA patients were reevaluated after receiving oral tofacitinib 10 mg twice daily for 6 weeks. RESULTS Levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol, and apolipoprotein A-I (Apo A-I) as well as HDL cholesterol particle number were lower in RA patients (n = 36) than in healthy volunteers (n = 33). In contrast, the cholesterol ester fractional catabolic rate was higher in RA patients, but no differences were observed in cholesterol ester transfer protein, cholesterol ester production rate, HDL-associated Apo A-I fractional catabolic rate, or LDL-associated Apo B fractional catabolic rate. Following tofacitinib treatment in RA patients, the cholesterol ester fractional catabolic rate decreased and cholesterol levels increased. The decrease in cholesterol ester fractional catabolic rate correlated significantly with the increase in HDL cholesterol. Additionally, HDL cholesterol particle number increased and markers of HDL cholesterol function improved. CONCLUSION This is the first study to assess cholesterol and lipoprotein kinetics in patients with active RA and matched healthy volunteers. The data suggest that low cholesterol levels in patients with active RA may be driven by increases in cholesterol ester catabolism. Tofacitinib treatment reduced cholesterol ester catabolism, thereby increasing cholesterol levels toward those in healthy volunteers, and markers of antiatherogenic HDL function improved.
Collapse
|
41
|
Sontag TJ, Chellan B, Bhanvadia CV, Getz GS, Reardon CA. Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis. J Lipid Res 2014; 56:470-83. [PMID: 25465389 DOI: 10.1194/jlr.d052985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Macrophage conversion to atherosclerotic foam cells is partly due to the balance of uptake and efflux of cholesterol. Cholesterol efflux from cells by HDL and its apoproteins for subsequent hepatic elimination is known as reverse cholesterol transport. Numerous methods have been developed to measure in vivo macrophage cholesterol efflux. Most methods do not allow for macrophage recovery for analysis of changes in cellular cholesterol status. We describe a novel method for measuring cellular cholesterol balance using the in vivo entrapment of macrophages in alginate, which retains incorporated cells while being permeable to lipoproteins. Recipient mice were injected subcutaneously with CaCl2 forming a bubble into which a macrophage/alginate suspension was injected, entrapping the macrophages. Cells were recovered after 24 h. Cellular free and esterified cholesterol mass were determined enzymatically and normalized to cellular protein. Both normal and cholesterol loaded macrophages undergo measureable changes in cell cholesterol when injected into WT and apoA-I-, LDL-receptor-, or apoE-deficient mice. Cellular cholesterol balance is dependent on initial cellular cholesterol status, macrophage cholesterol transporter expression, and apolipoprotein deficiency. Alginate entrapment allows for the in vivo measurement of macrophage cholesterol homeostasis and is a novel platform for investigating the role of genetics and therapeutic interventions in atherogenesis.
Collapse
Affiliation(s)
| | - Bijoy Chellan
- Department of Pathology, University of Chicago, Chicago, IL
| | | | - Godfrey S Getz
- Department of Pathology, University of Chicago, Chicago, IL
| | | |
Collapse
|
42
|
Abstract
The cholesterol contained within HDL is inversely associated with risk of coronary heart disease and is a key component of predicting cardiovascular risk. However, despite its properties consistent with atheroprotection, the causal relation between HDL and atherosclerosis is uncertain. Human genetics and failed clinical trials have created scepticism about the HDL hypothesis. Nevertheless, drugs that raise HDL-C concentrations, cholesteryl ester transfer protein inhibitors, are in late-stage clinical development, and other approaches that promote HDL function, including reverse cholesterol transport, are in early-stage clinical development. The final chapters regarding the effect of HDL-targeted therapeutic interventions on coronary heart disease events remain to be written.
Collapse
Affiliation(s)
- Daniel J Rader
- Department of Medicine and Department of Genetics, Institute for Translational Medicine and Therapeutics, and Cardiovascular Institute, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA.
| | - G Kees Hovingh
- Department of Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
43
|
Ghosh S, Bie J, Wang J, Yuan Q, Ghosh SS. Cholesterol removal from plaques and elimination from the body: change in paradigm to reduce risk for heart disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.14.35] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
44
|
Abstract
PURPOSE OF REVIEW The serum noncholesterol sterols are widely used today in clinical lipid research as surrogate markers of cholesterol absorption and synthesis. Their applicability and some aspects related to their analysis, use, and interpretations are discussed. RECENT FINDINGS The serum markers of cholesterol metabolism have been carefully validated in several populations and during different interventions. If the homeostasis between cholesterol absorption and synthesis is lost, the markers cannot be used as surrogates. The markers have been applied in large population and cohort studies to find out how cholesterol metabolism is related to coronary artery disease. Most of the large studies suggested that increased levels of the markers of cholesterol absorption may conceivably be a risk factor for coronary artery disease. SUMMARY Results even from large population studies vary from population to population. The large number of factors, which interfere with cholesterol metabolism, such as age, sex, BMI, diet, health status, medication, and genetic background, and differences in the analysis methods of the serum markers should be taken into consideration when interpreting the data.
Collapse
Affiliation(s)
- Helena Gylling
- Division of Internal Medicine, Department of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Reverse cholesterol transport (RCT) is considered a significant component of the atheroprotective effects of HDL. Methods for quantifying flux through the RCT pathway have not been available until recently. There is a need to improve our understanding of HDL function, including the role of RCT in general and individual steps of RCT in particular, on atherosclerosis. This review highlights new information about cholesterol flux through the RCT pathway. RECENT FINDINGS Recent clinical studies have demonstrated several important quantitative features of cholesterol fluxes in vivo, providing insight into variability and control of specific components of the RCT pathway. The findings illustrate the independent nature of individual steps in the RCT pathway and their apparently weak relationship to plasma HDL cholesterol levels. Nonclinical studies provide some mechanistic data re-enforcing the importance of apoB particles in RCT and role roles for serum albumin and erythrocytes in free cholesterol flux. These findings suggest that the HDL-centric view of RCT may need revision. SUMMARY The constellation of known lipoproteins and other players involved in this pathway continues to increase. Further research, particularly in humans, is needed in order to understand which parts of the RCT pathway are most relevant to the pathophysiology and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Marc Hellerstein
- aKineMed, Inc., Emeryville bDepartment of Nutritional Sciences and Toxicology, University of California, Berkeley cDepartment of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, California, USA
| | | |
Collapse
|
46
|
Abstract
High-density lipoprotein (HDL) is a complex mixture of lipoproteins that is associated with many minor proteins and lipids that influence the function of HDL. Although HDL is a promising marker and potential therapeutic target based on its epidemiological data and the effects of healthy HDL in vitro in endothelial cells and macrophages, as well as based on infusion studies of reconstituted HDL in patients with hypercholesterolemia, it remains still uncertain whether or not HDL cholesterol–raising drugs will improve outcomes. Recent studies suggest that HDL becomes modified in patients with coronary artery disease or acute coronary syndrome because of oxidative processes that result in alterations in its proteome composition (proteome remodelling) leading to HDL dysfunction.
Collapse
Affiliation(s)
- Thomas F. Lüscher
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Ulf Landmesser
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Arnold von Eckardstein
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| | - Alan M. Fogelman
- From Department of Cardiology, University Heart Center (T.F.L., U.L.), and Department of Clinical Chemistry (A.v.E.), University Hospital Zurich, Zurich, Switzerland; Division of Cardiovascular Research, Institute of Physiology, University of Zurich, Zurich, Switzerland (T.F.L., U.L.); and Department of Medicine, University of California, Los Angeles, CA (A.M.F.)
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW New therapeutic strategies are needed for the rapid stabilization of acute coronary syndrome (ACS) patients by treating nonculprit lesions. Reconstituted HDL (rHDL), which is apoA-I combined with phospholipids, is currently being tested in clinical trials for this purpose and is the subject of this review. RECENT FINDINGS At least four different formulations (SRC-rHDL, CSL-111, CSL-112 and ETC-216) have been tested in clinical trials. The various rHDL preparations have been shown to be effective in the rapid mobilization of excess cholesterol from cells and in regressing atherosclerotic plaques in animal models. Two of the rHDL agents, namely ETC-216 and CSL-111, have been shown to be effective after only a few treatments in reducing plaque volume in ACS patients, as assessed by intravascular ultrasound, but no clinical trials assessing clinical endpoints have yet been completed. SUMMARY rHDL is a promising new potential therapy for ACS patients, but much work remains to be done, and there are many unresolved questions. Progress in developing rHDL into a therapy will depend on improving our understanding of their mechanism of action, determining the optimum formulation and delivery and how to monitor rHDL therapy.
Collapse
Affiliation(s)
- Brian R Krause
- aAlphaCore Pharma, Ann Arbor, Michigan bLipoprotein Metabolism Section, Cardiopulmonary Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
48
|
Lu J, Mazer NA, Hübner K. Mathematical models of lipoprotein metabolism and kinetics: current status and future perspective. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, D'Agostino RB, Davidson MH, Davidson WS, Heinecke JW, Karas RH, Kontush A, Krauss RM, Miller M, Rader DJ. High-density lipoproteins: A consensus statement from the National Lipid Association. J Clin Lipidol 2013; 7:484-525. [DOI: 10.1016/j.jacl.2013.08.001] [Citation(s) in RCA: 240] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/03/2013] [Indexed: 12/21/2022]
|
50
|
Kasumov T, Willard B, Li L, Li M, Conger H, Buffa JA, Previs S, McCullough A, Hazen SL, Smith JD. 2H2O-based high-density lipoprotein turnover method for the assessment of dynamic high-density lipoprotein function in mice. Arterioscler Thromb Vasc Biol 2013; 33:1994-2003. [PMID: 23766259 DOI: 10.1161/atvbaha.113.301700] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE High-density lipoprotein (HDL) promotes reverse cholesterol transport from peripheral tissues to the liver for clearance. Reduced HDL-cholesterol (HDLc) is associated with atherosclerosis; however, as a predictor of cardiovascular disease, HDLc has limitations because it is not a direct marker of HDL functionality. Our objective was to develop a mass spectrometry-based method for the simultaneous measurement of HDLc and ApoAI kinetics in mice, using a single (2)H2O tracer, and use it to examine genetic and drug perturbations on HDL turnover in vivo. APPROACH AND RESULTS Mice were given (2)H2O in the drinking water, and serial blood samples were collected at different time points. HDLc and ApoAI gradually incorporated (2)H, allowing experimental measurement of fractional catabolic rates and production rates for HDLc and ApoAI. ApoE(-/-) mice displayed increased fractional catabolic rates (P<0.01) and reduced production rates of both HDLc and ApoAI (P<0.05) compared with controls. In human ApoAI transgenic mice, levels and production rates of HDLc and human ApoAI were strikingly higher than in wild-type mice. Myriocin, an inhibitor of sphingolipid synthesis, significantly increased both HDL flux and macrophage-to-feces reverse cholesterol transport, indicating compatibility of this HDL turnover method with the macrophage-specific reverse cholesterol transport assay. CONCLUSIONS (2)H2O-labeling can be used to measure HDLc and ApoAI flux in vivo, and to assess the role of genetic and pharmacological interventions on HDL turnover in mice. Safety, simplicity, and low cost of the (2)H2O-based HDL turnover approach suggest that this assay can be scaled for human use to study effects of HDL targeted therapies on dynamic HDL function.
Collapse
Affiliation(s)
- Takhar Kasumov
- Department of Gastroenterology and Hepatology, Case Western Reserve University School of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|