1
|
Nordström J, Badia-I-Mompel P, Witasp A, Schwarz A, Evenepoel P, Moor MB, Wennberg L, Saez-Rodriguez J, Wernerson A, Olauson H. Defining the molecular response to ischemia-reperfusion injury and remote ischemic preconditioning in human kidney transplantation. PLoS One 2024; 19:e0311613. [PMID: 39471208 PMCID: PMC11521294 DOI: 10.1371/journal.pone.0311613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/22/2024] [Indexed: 11/01/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) inevitably occurs during kidney transplantation and extended ischemia is associated with delayed graft function and poor outcomes. Remote ischemic preconditioning (RIPC) is a simple, noninvasive procedure aimed at reducing IRI and improving graft function. Experimental studies have implicated the kynurenine pathway as a protective mechanism behind RIPC. METHODS First, paired biopsies from 11 living kidney donors were analyzed to characterize the acute transcriptomic response to IRI. Second, 16 living kidney donors were subjected to either RIPC (n = 9) or no pretreatment (n = 7) to evaluate the impact of RIPC on the transcriptomic response to IRI. Finally, the effect of RIPC on plasma metabolites was analyzed in 49 healthy subjects. RESULTS There was a robust immediate response to IRI in the renal transcriptomes of living-donor kidney transplantation, including activation of the mitogen-activated protein kinase (MAPK) and epidermal growth factor receptor (EGFR) pathways. Preconditioning with RIPC did not significantly alter the transcriptomic response to IRI or the concentration of plasma metabolites. CONCLUSIONS The present data validate living-donor kidney transplantation as a suitable model for mechanistic studies of IRI in human kidneys. The failure of RIPC to alter transcriptomic responses or metabolites in the kynurenine pathway raises the question of the robustness of the standard procedure used to induce RIPC, and might explain the mixed results in clinical trials evaluating RIPC as a method to attenuate IRI.
Collapse
Affiliation(s)
- Johan Nordström
- Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pau Badia-I-Mompel
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Anna Witasp
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Angelina Schwarz
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Pieter Evenepoel
- Department of Microbiology, Immunology and Transplantation, Nephrology and Renal Transplantation Research Group, KU Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, KU Leuven, Belgium
| | - Matthias B. Moor
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Wennberg
- Department of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg University, Heidelberg, Germany
| | - Annika Wernerson
- Division of Renal Medicine, Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Olauson
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Chiari P, Fellahi JL. Myocardial protection in cardiac surgery: a comprehensive review of current therapies and future cardioprotective strategies. Front Med (Lausanne) 2024; 11:1424188. [PMID: 38962735 PMCID: PMC11220133 DOI: 10.3389/fmed.2024.1424188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Cardiac surgery with cardiopulmonary bypass results in global myocardial ischemia-reperfusion injury, leading to significant postoperative morbidity and mortality. Although cardioplegia is the cornerstone of intraoperative cardioprotection, a number of additional strategies have been identified. The concept of preconditioning and postconditioning, despite its limited direct clinical application, provided an essential contribution to the understanding of myocardial injury and organ protection. Therefore, physicians can use different tools to limit perioperative myocardial injury. These include the choice of anesthetic agents, remote ischemic preconditioning, tight glycemic control, optimization of respiratory parameters during the aortic unclamping phase to limit reperfusion injury, appropriate choice of monitoring to optimize hemodynamic parameters and limit perioperative use of catecholamines, and early reintroduction of cardioprotective agents in the postoperative period. Appropriate management before, during, and after cardiopulmonary bypass will help to decrease myocardial damage. This review aimed to highlight the current advancements in cardioprotection and their potential applications during cardiac surgery.
Collapse
Affiliation(s)
- Pascal Chiari
- Service d’Anesthésie Réanimation, Hôpital Universitaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard Lyon 1, Lyon, France
| | - Jean-Luc Fellahi
- Service d’Anesthésie Réanimation, Hôpital Universitaire Louis Pradel, Hospices Civils de Lyon, Lyon, France
- Laboratoire CarMeN, Inserm UMR 1060, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
3
|
Kashiwagi S, Mihara T, Yokoi A, Yokoyama C, Nakajima D, Goto T. Effect of remote ischemic preconditioning on lung function after surgery under general anesthesia: a systematic review and meta-analysis. Sci Rep 2023; 13:17720. [PMID: 37853024 PMCID: PMC10584824 DOI: 10.1038/s41598-023-44833-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Remote ischemic preconditioning (RIPC) protects organs from ischemia-reperfusion injury. Recent trials showed that RIPC improved gas exchange in patients undergoing lung or cardiac surgery. We performed a systematic search to identify randomized controlled trials involving RIPC in surgery under general anesthesia. The primary outcome was the PaO2/FIO2 (P/F) ratio at 24 h after surgery. Secondary outcomes were A-a DO2, the respiratory index, duration of postoperative mechanical ventilation (MV), incidence of acute respiratory distress syndrome (ARDS), and serum cytokine levels. The analyses included 71 trials comprising 7854 patients. Patients with RIPC showed higher P/F ratio than controls (mean difference [MD] 36.6, 95% confidence interval (CI) 12.8 to 60.4, I2 = 69%). The cause of heterogeneity was not identified by the subgroup analysis. Similarly, A-a DO2 (MD 15.2, 95% CI - 29.7 to - 0.6, I2 = 87%) and respiratory index (MD - 0.17, 95% CI - 0.34 to - 0.01, I2 = 94%) were lower in the RIPC group. Additionally, the RIPC group was weaned from MV earlier (MD - 0.9 h, 95% CI - 1.4 to - 0.4, I2 = 78%). Furthermore, the incidence of ARDS was lower in the RIPC group (relative risk 0.73, 95% CI 0.60 to 0.89, I2 = 0%). Serum TNFα was lower in the RIPC group (SMD - 0.6, 95%CI - 1.0 to - 0.3 I2 = 87%). No significant difference was observed in interleukin-6, 8 and 10. Our meta-analysis suggested that RIPC improved oxygenation after surgery under general anesthesia.Clinical trial number: This study protocol was registered in the University Hospital Medical Information Network (registration number: UMIN000030918), https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000035305.
Collapse
Affiliation(s)
- Shizuka Kashiwagi
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
- Department of Anesthesiology, Yokohama City University Hospital, 3-9 Fukuura, Kanazawa-Ku, Yokohama City, Kanagawa-Ken, 236-0004, Japan.
| | - Takahiro Mihara
- Department of Health Data Science, Yokohama City University Graduate School of Data Science, Yokohama, Japan
| | - Ayako Yokoi
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Chisaki Yokoyama
- Department of Anesthesia, Chiba Children's Hospital, Chiba, Japan
| | - Daisuke Nakajima
- Department of Anesthesiology, Yokohama City University Medical Center, Yokohama City, Japan
| | - Takahisa Goto
- Department of Anesthesiology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
4
|
Kotani Y, Pruna A, Turi S, Borghi G, Lee TC, Zangrillo A, Landoni G, Pasin L. Propofol and survival: an updated meta-analysis of randomized clinical trials. Crit Care 2023; 27:139. [PMID: 37046269 PMCID: PMC10099692 DOI: 10.1186/s13054-023-04431-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Propofol is one of the most widely used hypnotic agents in the world. Nonetheless, propofol might have detrimental effects on clinically relevant outcomes, possibly due to inhibition of other interventions' organ protective properties. We performed a systematic review and meta-analysis of randomized controlled trials to evaluate if propofol reduced survival compared to any other hypnotic agent in any clinical setting. METHODS We searched eligible studies in PubMed, Google Scholar, and the Cochrane Register of Clinical Trials. The following inclusion criteria were used: random treatment allocation and comparison between propofol and any comparator in any clinical setting. The primary outcome was mortality at the longest follow-up available. We conducted a fixed-effects meta-analysis for the risk ratio (RR). Using this RR and 95% confidence interval, we estimated the probability of any harm (RR > 1) through Bayesian statistics. We registered this systematic review and meta-analysis in PROSPERO International Prospective Register of Systematic Reviews (CRD42022323143). RESULTS We identified 252 randomized trials comprising 30,757 patients. Mortality was higher in the propofol group than in the comparator group (760/14,754 [5.2%] vs. 682/16,003 [4.3%]; RR = 1.10; 95% confidence interval, 1.01-1.20; p = 0.03; I2 = 0%; number needed to harm = 235), corresponding to a 98.4% probability of any increase in mortality. A statistically significant mortality increase in the propofol group was confirmed in subgroups of cardiac surgery, adult patients, volatile agent as comparator, large studies, and studies with low mortality in the comparator arm. CONCLUSIONS Propofol may reduce survival in perioperative and critically ill patients. This needs careful assessment of the risk versus benefit of propofol compared to other agents while planning for large, pragmatic multicentric randomized controlled trials to provide a definitive answer.
Collapse
Affiliation(s)
- Yuki Kotani
- Department of Anesthesia and Intensive Care, San Raffaele Hospital, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
- Department of Intensive Care Medicine, Kameda Medical Center, Kamogawa, Japan
| | - Alessandro Pruna
- Department of Anesthesia and Intensive Care, San Raffaele Hospital, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy
| | - Stefano Turi
- Department of Anesthesia and Intensive Care, San Raffaele Hospital, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy
| | - Giovanni Borghi
- Department of Anesthesia and Intensive Care, San Raffaele Hospital, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy
| | - Todd C Lee
- Division of Infectious Diseases, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Alberto Zangrillo
- Department of Anesthesia and Intensive Care, San Raffaele Hospital, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, San Raffaele Hospital, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60-20132, Milan, Italy.
- School of Medicine, Vita-Salute San Raffaele University, Milan, Italy.
| | - Laura Pasin
- Anesthesia and Intensive Care Unit, Padua University Hospital, Padua, Italy
| |
Collapse
|
5
|
Milne B, Gilbey T, Kunst G. Perioperative Management of the Patient at High-Risk for Cardiac Surgery-Associated Acute Kidney Injury. J Cardiothorac Vasc Anesth 2022; 36:4460-4482. [PMID: 36241503 DOI: 10.1053/j.jvca.2022.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/27/2022] [Accepted: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Acute kidney injury (AKI) is one of the most common major complications of cardiac surgery, and is associated with increased morbidity and mortality. Cardiac surgery-associated AKI has a complex, multifactorial etiology, including numerous factors such as primary cardiac dysfunction, hemodynamic derangements of cardiac surgery and cardiopulmonary bypass, and the possibility of a large volume of blood transfusion. There are no truly effective pharmacologic therapies for the management of AKI, and, therefore, anesthesiologists, intensivists, and cardiac surgeons must remain vigilant and attempt to minimize the risk of developing renal dysfunction. This narrative review describes the current state of the scientific literature concerning the specific aspects of cardiac surgery-associated AKI, and presents it in a chronological fashion to aid the perioperative clinician in their approach to this high-risk patient group. The evidence was considered for risk prediction models, preoperative optimization, and the intraoperative and postoperative management of cardiac surgery patients to improve renal outcomes.
Collapse
Affiliation(s)
- Benjamin Milne
- Department of Anaesthetics and Pain Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom; National Institute of Health Research Academic Clinical Fellow, King's College London, London, United Kingdom
| | - Tom Gilbey
- Department of Anaesthetics and Pain Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom; National Institute of Health Research Academic Clinical Fellow, King's College London, London, United Kingdom
| | - Gudrun Kunst
- Department of Anaesthetics and Pain Medicine, King's College Hospital NHS Foundation Trust, London, United Kingdom; School of Cardiovascular Medicine and Metabolic Medicine and Sciences, King's College London, British Heart Foundation Centre of Excellence, Faculty of Life Sciences and Medicine, London, United Kingdom.
| |
Collapse
|
6
|
Lehmann M, Zarbock A, Rossaint J. [New aspects of perioperative organ protection]. DIE ANAESTHESIOLOGIE 2022; 71:741-749. [PMID: 36064976 DOI: 10.1007/s00101-022-01197-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Acutely occurring organ damage significantly contributes to morbidity and mortality in the perioperative context. OBJECTIVE This article highlights new clinical perspectives on how perioperative organ damage can be prevented and ameliorated by influencing the high mobility group box 1 protein (HMGB1) signaling. MATERIAL AND METHODS A MEDLINE search was performed in the fields of clinical and basic research. The presentation of basic mechanisms of perioperative organ damage and the discussion of the importance of HMGB1 in prevention and treatment by pharmaceutical and nonpharmaceutical interventions are the focus of the review. RESULTS The HMGB1 is a central element in the pathogenesis of septic and aseptic inflammation-induced organ damage. Remote ischemic preconditioning (RIPC) and dexmedetomidine are highly effective approaches to mitigate or prevent organ damage. CONCLUSION The RIPC and dexmedetomidine offer protective properties in ischemia-reperfusion injury as well as in inflammation-related organ damage, which are mediated by HMGB1, among others. This effectively protects the kidneys, heart, lungs, liver and brain. The application of these concepts should be considered in routine clinical practice.
Collapse
Affiliation(s)
- Martin Lehmann
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland
| | - Alexander Zarbock
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland
| | - Jan Rossaint
- Klinik für Anästhesiologie, operative Intensivmedizin und Schmerztherapie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude A1, 48149, Münster, Deutschland.
| |
Collapse
|
7
|
Chen JJ, Lee TH, Kuo G, Huang YT, Chen PR, Chen SW, Yang HY, Hsu HH, Hsiao CC, Yang CH, Lee CC, Chen YC, Chang CH. Strategies for post-cardiac surgery acute kidney injury prevention: A network meta-analysis of randomized controlled trials. Front Cardiovasc Med 2022; 9:960581. [PMID: 36247436 PMCID: PMC9555275 DOI: 10.3389/fcvm.2022.960581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Objects Cardiac surgery is associated with acute kidney injury (AKI). However, the effects of various pharmacological and non-pharmacological strategies for AKI prevention have not been thoroughly investigated, and their effectiveness in preventing AKI-related adverse outcomes has not been systematically evaluated. Methods Studies from PubMed, Embase, and Medline and registered trials from published through December 2021 that evaluated strategies for preventing post-cardiac surgery AKI were identified. The effectiveness of these strategies was assessed through a network meta-analysis (NMA). The secondary outcomes were prevention of dialysis-requiring AKI, mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS. The interventions were ranked using the P-score method. Confidence in the results of the NMA was assessed using the Confidence in NMA (CINeMA) framework. Results A total of 161 trials (involving 46,619 participants) and 53 strategies were identified. Eight pharmacological strategies {natriuretic peptides [odds ratio (OR): 0.30, 95% confidence interval (CI): 0.19-0.47], nitroprusside [OR: 0.29, 95% CI: 0.12-0.68], fenoldopam [OR: 0.36, 95% CI: 0.17-0.76], tolvaptan [OR: 0.35, 95% CI: 0.14-0.90], N-acetyl cysteine with carvedilol [OR: 0.37, 95% CI: 0.16-0.85], dexmedetomidine [OR: 0.49, 95% CI: 0.32-0.76;], levosimendan [OR: 0.56, 95% CI: 0.37-0.84], and erythropoietin [OR: 0.62, 95% CI: 0.41-0.94]} and one non-pharmacological intervention (remote ischemic preconditioning, OR: 0.76, 95% CI: 0.63-0.92) were associated with a lower incidence of post-cardiac surgery AKI with moderate to low confidence. Among these nine strategies, five (fenoldopam, erythropoietin, natriuretic peptides, levosimendan, and remote ischemic preconditioning) were associated with a shorter ICU LOS, and two (natriuretic peptides [OR: 0.30, 95% CI: 0.15-0.60] and levosimendan [OR: 0.68, 95% CI: 0.49-0.95]) were associated with a lower incidence of dialysis-requiring AKI. Natriuretic peptides were also associated with a lower risk of mortality (OR: 0.50, 95% CI: 0.29-0.86). The results of a sensitivity analysis support the robustness and effectiveness of natriuretic peptides and dexmedetomidine. Conclusion Nine potentially effective strategies were identified. Natriuretic peptide therapy was the most effective pharmacological strategy, and remote ischemic preconditioning was the only effective non-pharmacological strategy. Preventive strategies might also help prevent AKI-related adverse outcomes. Additional studies are required to explore the optimal dosages and protocols for potentially effective AKI prevention strategies.
Collapse
Affiliation(s)
- Jia-Jin Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - George Kuo
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yen-Ta Huang
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Rung Chen
- Department of Anesthesiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shao-Wei Chen
- Department of Cardiothoracic and Vascular Surgery, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ching-Chung Hsiao
- Department of Nephrology, New Taipei Municipal TuCheng Hospital, New Taipei City, Taiwan
| | - Chia-Hung Yang
- Department of Cardiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Chia Lee
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chih-Hsiang Chang
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Nephrology, Kidney Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
8
|
Zheng XM, Yang Z, Yang GL, Huang Y, Peng JR, Wu MJ. Lung injury after cardiopulmonary bypass: Alternative treatment prospects. World J Clin Cases 2022; 10:753-761. [PMID: 35127892 PMCID: PMC8790450 DOI: 10.12998/wjcc.v10.i3.753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Although the lung injury caused by cardiopulmonary bypass (CPB) has been extensively investigated, the incidence and mortality of lung injury after CPB remain a prominent clinical problem. The poor outcome has been attributed to multifactorial etiology, including the systemic inflammatory response and ischemia reperfusion (I/R) injury during CPB. Lung injury after CPB is a complex pathophysiological process and has many clinical manifestations of mild to severe disease. Which is associated with prognosis. To alleviate this lung injury, interventions that address the pathogenesis are particularly important. This review summarizes the pathogenesis, mechanism and treatment options of lung injury after CPB, such as lung protection with intralipid.
Collapse
Affiliation(s)
- Xue-Mei Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Zhuo Yang
- Department of Pharmacy, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Guang-Li Yang
- Department of Medical Administration, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Yan Huang
- National Institute of Drug Clinical Trial, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Jie-Ru Peng
- Department of Medical Records Statistics, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610000, Sichuan Province, China
| | - Meng-Jun Wu
- Department of Anesthesiology, The Affiliated Hospital, School of Medicine, Chengdu Women's and Children's Central Hospital, University of Electronic Science and Technology, Chengdu 610000, Sichuan Province, China
| |
Collapse
|
9
|
Prevention of Ischemic Injury in Cardiac Surgery. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00011-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
10
|
Preservation of Renal Function. Perioper Med (Lond) 2022. [DOI: 10.1016/b978-0-323-56724-4.00017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Xiang R, Fu J, Ge Y, Ren J, Song W, Fu T. Identification of Subtypes and a Prognostic Gene Signature in Colon Cancer Using Cell Differentiation Trajectories. Front Cell Dev Biol 2021; 9:705537. [PMID: 34966734 PMCID: PMC8710730 DOI: 10.3389/fcell.2021.705537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Research on the heterogeneity of colon cancer (CC) cells is limited. This study aimed to explore the CC cell differentiation trajectory and its clinical implication and to construct a prognostic risk scoring (RS) signature based on CC differentiation-related genes (CDRGs). Cell trajectory analysis was conducted on the GSE148345 dataset, and CDRG-based molecular subtypes were identified from the GSE39582 dataset. A CDRG-based prognostic RS signature was constructed using The Cancer Genome Atlas as the training set and GSE39582 as the validation set. Two subsets with distinct differentiation states, involving 40 hub CDRGs regulated by YY1 and EGR2, were identified by single-cell RNA sequencing data, of which subset I was related to hypoxia, metabolic disorders, and inflammation, and subset II was associated with immune responses and ferroptosis. The CDRG-based molecular subtypes could successfully predict the clinical outcomes of the patients, the tumor microenvironment status, the immune infiltration status, and the potential response to immunotherapy and chemotherapy. A nomogram integrating a five-CDRG-based RS signature and prognostic clinicopathological characteristics could successfully predict overall survival, with strong predictive performance and high accuracy. The study emphasizes the relevance of CC cell differentiation for predicting the prognosis and therapeutic response of patients to immunotherapy and chemotherapy and proposes a promising direction for CC treatment and clinical decision-making.
Collapse
Affiliation(s)
- Renshen Xiang
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jincheng Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuhang Ge
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Ren
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Song
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
CSA-AKI: Incidence, Epidemiology, Clinical Outcomes, and Economic Impact. J Clin Med 2021; 10:jcm10245746. [PMID: 34945041 PMCID: PMC8706363 DOI: 10.3390/jcm10245746] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common complication following cardiac surgery and reflects a complex biological combination of patient pathology, perioperative stress, and medical management. Current diagnostic criteria, though increasingly standardized, are predicated on loss of renal function (as measured by functional biomarkers of the kidney). The addition of new diagnostic injury biomarkers to clinical practice has shown promise in identifying patients at risk of renal injury earlier in their course. The accurate and timely identification of a high-risk population may allow for bundled interventions to prevent the development of CSA-AKI, but further validation of these interventions is necessary. Once the diagnosis of CSA-AKI is established, evidence-based treatment is limited to supportive care. The cost of CSA-AKI is difficult to accurately estimate, given the diverse ways in which it impacts patient outcomes, from ICU length of stay to post-hospital rehabilitation to progression to CKD and ESRD. However, with the global rise in cardiac surgery volume, these costs are large and growing.
Collapse
|
13
|
Long YQ, Feng XM, Shan XS, Chen QC, Xia Z, Ji FH, Liu H, Peng K. Remote Ischemic Preconditioning Reduces Acute Kidney Injury After Cardiac Surgery: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Anesth Analg 2021; 134:592-605. [PMID: 34748518 DOI: 10.1213/ane.0000000000005804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Results from previous studies evaluating the effects of remote ischemic preconditioning (RIPC) on morbidity and mortality after cardiac surgery are inconsistent. This meta-analysis of randomized controlled trials (RCTs) aims to determine whether RIPC improves cardiac and renal outcomes in adults undergoing cardiac surgery. METHODS PubMed, EMBASE, and Cochrane Library were comprehensively searched to identify RCTs comparing RIPC with control in cardiac surgery. The coprimary outcomes were the incidence of postoperative myocardial infarction (MI) and the incidence of postoperative acute kidney injury (AKI). Meta-analyses were performed using a random-effect model. Subgroup analyses were conducted according to volatile only anesthesia versus propofol anesthesia with or without volatiles, high-risk patients versus non-high-risk patients, and Acute Kidney Injury Network (AKIN) or Kidney Disease Improving Global Outcomes (KDIGO) criteria versus other criteria for AKI diagnosis. RESULTS A total of 79 RCTs with 10,814 patients were included. While the incidence of postoperative MI did not differ between the RIPC and control groups (8.2% vs 9.7%; risk ratio [RR] = 0.87, 95% confidence interval [CI], 0.76-1.01, P = .07, I2 = 0%), RIPC significantly reduced the incidence of postoperative AKI (22% vs 24.4%; RR = 0.86, 95% CI, 0.77-0.97, P = .01, I2 = 34%). The subgroup analyses showed that RIPC was associated with a reduced incidence of MI in non-high-risk patients, and that RIPC was associated with a reduced incidence of AKI in volatile only anesthesia, in non-high-risk patients, and in the studies using AKIN or KDIGO criteria for AKI diagnosis. CONCLUSIONS This meta-analysis demonstrates that RIPC reduces the incidence of AKI after cardiac surgery. This renoprotective effect of RIPC is mainly evident during volatile only anesthesia, in non-high-risk patients, and when AKIN or KDIGO criteria used for AKI diagnosis.
Collapse
Affiliation(s)
- Yu-Qin Long
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiao-Mei Feng
- Department of Anesthesiology, University of Utah Health, Salt Lake City, Utah.,Transitional Residency Program, Intermountain Medical Center, Murray, Utah
| | - Xi-Sheng Shan
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing-Cai Chen
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengyuan Xia
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California
| | - Fu-Hai Ji
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, California
| | - Ke Peng
- From the Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Kirschner A, Koch SE, Robbins N, Karthik F, Mudigonda P, Ramasubramanian R, Nieman ML, Lorenz JN, Rubinstein J. Pharmacologic Inhibition of Pain Response to Incomplete Vascular Occlusion Blunts Cardiovascular Preconditioning Response. Cardiovasc Toxicol 2021; 21:889-900. [PMID: 34324134 DOI: 10.1007/s12012-021-09680-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/22/2021] [Indexed: 12/01/2022]
Abstract
Complete vascular occlusion to distant tissue prior to an ischemic cardiac event can provide significant cardioprotection via remote ischemic preconditioning (RIPC). Despite understanding its mechanistic basis, its translation to clinical practice has been unsuccessful, likely secondary to the inherent impossibility of predicting (and therefore preconditioning) an ischemic event, as well as the discomfort that is associated with traditional, fully occlusive RIPC stimuli. Our laboratory has previously shown that non-occlusive banding (NOB) via wrapping of a leather band (similar to a traditional Jewish ritual) can elicit an RIPC response in healthy human subjects. This study sought to further the pain-mediated aspect of this observation in a mouse model of NOB with healthy mice that were exposed to treatment with and without lidocaine to inhibit pain sensation prior to ischemia/reperfusion injury. We demonstrated that NOB downregulates key inflammatory markers resulting in a preconditioning response that is partially mediated via pain sensation.
Collapse
Affiliation(s)
- Akiva Kirschner
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sheryl E Koch
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Nathan Robbins
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Felix Karthik
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Parvathi Mudigonda
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Cardiology, University of Washington, Seattle, WA, USA
| | - Ranjani Ramasubramanian
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
15
|
Al-Adhami A, Avtaar Singh SS, De SD, Singh R, Panjrath G, Shah A, Dalzell JR, Schroder J, Al-Attar N. Primary Graft Dysfunction after Heart Transplantation - Unravelling the Enigma. Curr Probl Cardiol 2021; 47:100941. [PMID: 34404551 DOI: 10.1016/j.cpcardiol.2021.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 11/03/2022]
Abstract
Primary graft dysfunction (PGD) remains the main cause of early mortality following heart transplantation despite several advances in donor preservation techniques and therapeutic strategies for PGD. With that aim of establishing the aetiopathogenesis of PGD and the preferred management strategies, the new consensus definition has paved the way for multiple contemporaneous studies to be undertaken and accurately compared. This review aims to provide a broad-based understanding of the pathophysiology, clinical presentation and management of PGD.
Collapse
Affiliation(s)
- Ahmed Al-Adhami
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK
| | - Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK; Institute of Cardiovascular and Medical Sciences (ICAMS), University of Glasgow.
| | - Sudeep Das De
- Department of Cardiothoracic Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Ramesh Singh
- Mechanical Circulatory Support, Inova Health System, Falls Church, Virginia
| | - Gurusher Panjrath
- Heart Failure and Mechanical Circulatory Support Program, George Washington University Hospital, Washington, DC
| | - Amit Shah
- Advanced Heart Failure and Cardiac Transplant Unit, Fiona Stanley Hospital, Perth, Australia
| | - Jonathan R Dalzell
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, UK
| | - Jacob Schroder
- Heart Transplantation Program, Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC
| | - Nawwar Al-Attar
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow UK; Institute of Cardiovascular and Medical Sciences (ICAMS), University of Glasgow
| |
Collapse
|
16
|
Chung J, Hur M, Cho H, Bae J, Yoon HK, Lee HJ, Jeong YH, Cho YJ, Ku JH, Kim WH. The Effect of Remote Ischemic Preconditioning on Serum Creatinine in Patients Undergoing Partial Nephrectomy: A Randomized Controlled Trial. J Clin Med 2021; 10:jcm10081636. [PMID: 33921503 PMCID: PMC8069991 DOI: 10.3390/jcm10081636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023] Open
Abstract
Renal function declines after partial nephrectomy due to ischemic reperfusion injury induced by surgical insult or renal artery clamping. The effect of remote ischemic preconditioning (RIPC) on reducing renal injury after partial nephrectomy has not been studied regarding urinary biomarkers. Eighty-one patients undergoing partial nephrectomy were randomly assigned to either RIPC or the control group. RIPC protocol consisted of four cycles of five-min inflation and deflation of a blood pressure cuff to 250 mmHg. Serum creatinine levels were compared at the following time points: preoperative baseline, immediate postoperative, on the first and third days after surgery, and two weeks after surgery. The incidence of acute kidney injury, other surgical complication rates, and urinary biomarkers, including urine creatinine, β-2 microglobulin, microalbumin, and N-acetyl-beta-D-glucosaminidase were compared. Split renal functions measured by renal scan were compared up to 18 months after surgery. There was no significant difference in the serum creatinine level on the first postoperative day (median (interquartile range) 0.87 mg/dL (0.72–1.03) in the RIPC group vs. 0.92 mg/dL (0.71–1.12) in the control group, p = 0.728), nor at any other time point. There was no significant difference in the incidence of acute kidney injury. Secondary outcomes, including urinary biomarkers, were not significantly different between the groups. RIPC showed no significant effect on the postoperative serum creatinine level of the first postoperative day. We could not reveal any significant difference in the urinary biomarkers and clinical outcomes. However, further larger randomized trials are required, because our study was not sufficiently powered for the secondary outcomes.
Collapse
Affiliation(s)
- Jaeyeon Chung
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Min Hur
- Department of Anesthesiology and Pain Medicine, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Hyeyeon Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Jinyoung Bae
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Hyun-Kyu Yoon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Ho-Jin Lee
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Young Hyun Jeong
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
| | - Ja Hyeon Ku
- Department of Urology, National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea;
| | - Won Ho Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, 101 Daehak-Ro, Jongno-Gu, Seoul 03080, Korea; (J.C.); (H.C.); (J.B.); (H.-K.Y.); (H.-J.L.); (Y.H.J.); (Y.J.C.)
- Correspondence:
| |
Collapse
|
17
|
Liu Z, Zhao Y, Lei M, Zhao G, Li D, Sun R, Liu X. Remote Ischemic Preconditioning to Prevent Acute Kidney Injury After Cardiac Surgery: A Meta-Analysis of Randomized Controlled Trials. Front Cardiovasc Med 2021; 8:601470. [PMID: 33816572 PMCID: PMC8012491 DOI: 10.3389/fcvm.2021.601470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/15/2021] [Indexed: 11/18/2022] Open
Abstract
Objective: Randomized controlled trials (RCTs) evaluating the influence of remote ischemic preconditioning (RIPC) on acute kidney injury (AKI) after cardiac surgery showed inconsistent results. We performed a meta-analysis to evaluate the efficacy of RIPC on AKI after cardiac surgery. Methods: Relevant studies were obtained by search of PubMed, Embase, and Cochrane's Library databases. A random-effect model was used to pool the results. Meta-regression and subgroup analyses were used to determine the source of heterogeneity. Results: Twenty-two RCTs with 5,389 patients who received cardiac surgery −2,702 patients in the RIPC group and 2,687 patients in the control group—were included. Moderate heterogeneity was detected (p for Cochrane's Q test = 0.03, I2 = 40%). Pooled results showed that RIPC significantly reduced the incidence of AKI compared with control [odds ratio (OR): 0.76, 95% confidence intervals (CI): 0.61–0.94, p = 0.01]. Results limited to on-pump surgery (OR: 0.78, 95% CI: 0.64–0.95, p = 0.01) or studies with acute RIPC (OR: 0.78, 95% CI: 0.63–0.97, p = 0.03) showed consistent results. Meta-regression and subgroup analyses indicated that study characteristics, including study design, country, age, gender, diabetic status, surgery type, use of propofol or volatile anesthetics, cross-clamp time, RIPC protocol, definition of AKI, and sample size did not significantly affect the outcome of AKI. Results of stratified analysis showed that RIPC significantly reduced the risk of mild-to-moderate AKI that did not require renal replacement therapy (RRT, OR: 0.76, 95% CI: 0.60–0.96, p = 0.02) but did not significantly reduce the risk of severe AKI that required RRT in patients after cardiac surgery (OR: 0.73, 95% CI: 0.50–1.07, p = 0.11). Conclusions: Current evidence supports RIPC as an effective strategy to prevent AKI after cardiac surgery, which seems to be mainly driven by the reduced mild-to-moderate AKI events that did not require RRT. Efforts are needed to determine the influences of patient characteristics, procedure, perioperative drugs, and RIPC protocol on the outcome.
Collapse
Affiliation(s)
- Zigang Liu
- Department of Thoracic and Cardiovascular Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Guangzhou, China
| | - Yongmei Zhao
- Department of Thoracic and Cardiovascular Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Guangzhou, China
| | - Ming Lei
- Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Beijing, China
| | - Guancong Zhao
- Department of Thoracic and Cardiovascular Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Guangzhou, China
| | - Dongcheng Li
- Department of Thoracic and Cardiovascular Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Guangzhou, China
| | - Rong Sun
- Department of Thoracic and Cardiovascular Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Guangzhou, China
| | - Xian Liu
- Department of Thoracic and Cardiovascular Surgery, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Guduric-Fuchs J, Pedrini E, Lechner J, Chambers SE, O’Neill CL, Mendes Lopes de Melo J, Pathak V, Church RH, McKeown S, Bojdo J, Mcloughlin KJ, Stitt AW, Medina RJ. miR-130a activates the VEGFR2/STAT3/HIF1α axis to potentiate the vasoregenerative capacity of endothelial colony-forming cells in hypoxia. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:968-981. [PMID: 33614244 PMCID: PMC7869000 DOI: 10.1016/j.omtn.2021.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023]
Abstract
Hypoxia modulates reparative angiogenesis, which is a tightly regulated pathophysiological process. MicroRNAs (miRNAs) are important regulators of gene expression in hypoxia and angiogenesis. However, we do not yet have a clear understanding of how hypoxia-induced miRNAs fine-tune vasoreparative processes. Here, we identify miR-130a as a mediator of the hypoxic response in human primary endothelial colony-forming cells (ECFCs), a well-characterized subtype of endothelial progenitors. Under hypoxic conditions of 1% O2, miR-130a gain-of-function enhances ECFC pro-angiogenic capacity in vitro and potentiates their vasoreparative properties in vivo. Mechanistically, miR-130a orchestrates upregulation of VEGFR2, activation of STAT3, and accumulation of HIF1α via translational inhibition of Ddx6. These findings unveil a new role for miR-130a in hypoxia, whereby it activates the VEGFR2/STAT3/HIF1α axis to enhance the vasoregenerative capacity of ECFCs.
Collapse
Affiliation(s)
- Jasenka Guduric-Fuchs
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Edoardo Pedrini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Judith Lechner
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Sarah E.J. Chambers
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Christina L. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Joana Mendes Lopes de Melo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Varun Pathak
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Rachel H. Church
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Stuart McKeown
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - James Bojdo
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Kiran J. Mcloughlin
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Alan W. Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Reinhold J. Medina
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
19
|
Xiang R, Rong Y, Ge Y, Song W, Ren J, Fu T. Cell differentiation trajectory predicts patient potential immunotherapy response and prognosis in gastric cancer. Aging (Albany NY) 2021; 13:5928-5945. [PMID: 33612483 PMCID: PMC7950306 DOI: 10.18632/aging.202515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/29/2020] [Indexed: 04/12/2023]
Abstract
The purpose of this study was to investigate the differentiation trajectory of gastric cancer (GC) cells and its clinical relevance and generate a prognostic risk scoring (RS) signature based on GC differentiation-related genes (GDRGs) to predict overall survival (OS). Integrated single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data from GC samples were used for analysis. The cell differentiation trajectory analysis identified three subsets with distinct differentiation states, of which subsets I/II were involved in metabolic disorders, subset II were also associated with hypoxia tolerance, and subset III were related to immune-related pathways. GC samples were divided into three GDRG-based molecular subtypes, and it was found that molecular typing based on cell differentiation successfully predicted patient OS, clinicopathological features, immune infiltration status, and immune checkpoint gene expression. An eight-GDRG-based prognostic RS signature was generated, and the OS of the high-risk group was significantly worse than that of the low-risk group. By integrating the GDRG-based RS signature with prognostic clinicopathological characteristics, a clinicopathologic-genomic nomogram was constructed, and this nomogram yielded strong predictive performance and high accuracy. The study highlights the implication of GC cell differentiation for predicting patient clinical outcome and potential immunotherapy response and proposes a promising treatment direction for GC.
Collapse
Affiliation(s)
- Renshen Xiang
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- The Central Laboratory of the First Clinical College of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yuping Rong
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yuhang Ge
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wei Song
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- The Central Laboratory of the First Clinical College of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jun Ren
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
- The Central Laboratory of the First Clinical College of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Tao Fu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
20
|
Torregroza C, Raupach A, Feige K, Weber NC, Hollmann MW, Huhn R. Perioperative Cardioprotection: General Mechanisms and Pharmacological Approaches. Anesth Analg 2020; 131:1765-1780. [PMID: 33186163 DOI: 10.1213/ane.0000000000005243] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardioprotection encompasses a variety of strategies protecting the heart against myocardial injury that occurs during and after inadequate blood supply to the heart during myocardial infarction. While restoring reperfusion is crucial for salvaging myocardium from further damage, paradoxically, it itself accounts for additional cell death-a phenomenon named ischemia/reperfusion injury. Therefore, therapeutic strategies are necessary to render the heart protected against myocardial infarction. Ischemic pre- and postconditioning, by short periods of sublethal cardiac ischemia and reperfusion, are still the strongest mechanisms to achieve cardioprotection. However, it is highly impractical and far too invasive for clinical use. Fortunately, it can be mimicked pharmacologically, for example, by volatile anesthetics, noble gases, opioids, propofol, dexmedetomidine, and phosphodiesterase inhibitors. These substances are all routinely used in the clinical setting and seem promising candidates for successful translation of cardioprotection from experimental protocols to clinical trials. This review presents the fundamental mechanisms of conditioning strategies and provides an overview of the most recent and relevant findings on different concepts achieving cardioprotection in the experimental setting, specifically emphasizing pharmacological approaches in the perioperative context.
Collapse
Affiliation(s)
- Carolin Torregroza
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.,Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Annika Raupach
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Katharina Feige
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nina C Weber
- Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Ragnar Huhn
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
21
|
Molinari L, Sakhuja A, Kellum JA. Perioperative Renoprotection: General Mechanisms and Treatment Approaches. Anesth Analg 2020; 131:1679-1692. [PMID: 33186157 DOI: 10.1213/ane.0000000000005107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the perioperative setting, acute kidney injury (AKI) is a frequent complication, and AKI itself is associated with adverse outcomes such as higher risk of chronic kidney disease and mortality. Various risk factors are associated with perioperative AKI, and identifying them is crucial to early interventions addressing modifiable risk and increasing monitoring for nonmodifiable risk. Different mechanisms are involved in the development of postoperative AKI, frequently picturing a multifactorial etiology. For these reasons, no single renoprotective strategy will be effective for all surgical patients, and efforts have been attempted to prevent kidney injury in different ways. Some renoprotective strategies and treatments have proven to be useful, some are no longer recommended because they are ineffective or even harmful, and some strategies are still under investigation to identify the best timing, setting, and patients for whom they could be beneficial. With this review, we aim to provide an overview of recent findings from studies examining epidemiology, risk factors, and mechanisms of perioperative AKI, as well as different renoprotective strategies and treatments presented in the literature.
Collapse
Affiliation(s)
- Luca Molinari
- From the Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Dipartimento di Medicina Traslazionale, Università degli Studi del Piemonte Orientale, Novara, Italy
| | - Ankit Sakhuja
- From the Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Division of Cardiovascular Critical Care, Department of Cardiovascular and Thoracic Surgery, West Virginia University, Morgantown, West Virginia
| | - John A Kellum
- From the Department of Critical Care Medicine, Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Intralipid postconditioning in patients of cardiac surgery undergoing cardiopulmonary bypass (iCPB): study protocol for a randomized controlled trial. Trials 2020; 21:953. [PMID: 33228739 PMCID: PMC7686691 DOI: 10.1186/s13063-020-04854-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 11/01/2020] [Indexed: 02/08/2023] Open
Abstract
Background Intralipid is a necessary fatty acid carrier that has been safely used as an energy supplier in the clinic. It has played an important role in rescuing the cardiac arrest caused by local anesthetic toxicity. In recent years, experimental studies have shown that intralipid postconditioning (ILPC) could reduce myocardial ischemic/reperfusion (I/R) injuries. Our research group has innovatively conducted a pilot randomized controlled trial (RCT), and the results showed that ILPC could reduce the release of cTnT and CK-MB, biomarkers of myocardial I/R injury, in valve replacement surgery. However, the potential effects of ILPC on the clinical outcome of adult cardiac surgery patients are unclear. Intralipid postconditioning in patients of cardiac surgery undergoing cardiopulmonary bypass (iCPB) trial is aimed to further study whether ILPC could improve short-term and long-term clinical outcome, as well as cardiac function in adult cardiac surgery patients. Methods The iCPB trial is an ongoing, single-center, prospective, double-blinded, large sample RCT. In total, 1000 adults undergoing cardiac surgery will be randomly allocated to either the ILPC group or the control group. The intervention group received an intravenous infusion of 2 mL/kg of 20% intralipid (medium-chain and long-chain fat emulsion injection C6~C24, Pharmaceutical) within 10 min before aortic cross-unclamping, and the control group received an equivalent volume of normal saline. The primary endpoints are complex morbidity of major complications during hospitalization and all-cause mortality within 30 days after surgery. The secondary endpoints include (1) all-cause mortality 6 months and 1 year postoperatively; (2) the quality of life within 1 year after surgery, using the QoR-15 questionnaire; (3) the postoperative cardiac function evaluated by LVEF, LVEDS, and LVEDD, and the myocardial injury evaluated by CK-MB, cTnT, and BNP; and (4) short-term clinical outcomes during hospitalization and total cost are also detailed evaluated. Discussion The iCPB trial is the first to explore ILPC on the clinical outcome of adult cardiac surgery patients. The results are expected to provide potential evidences about whether ILPC could reduce the morbidity and mortality and improve the cardiac function and quality of life. Therefore, the results will provide a rationale for the evaluation of the potentially clinically relevant benefit of intralipid therapy. Trial registration Chictr.org.cn ChiCTR1900024387. Prospectively registered on 9 July 2019.
Collapse
|
23
|
Ganesh A, Barber P, Black SE, Corbett D, Field TS, Frayne R, Hachinski V, Ismail Z, Mai LM, McCreary CR, Sahlas D, Sharma M, Swartz RH, Smith EE. Trial of remote ischaemic preconditioning in vascular cognitive impairment (TRIC-VCI): protocol. BMJ Open 2020; 10:e040466. [PMID: 33055122 PMCID: PMC7559076 DOI: 10.1136/bmjopen-2020-040466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Cerebral small vessel disease (cSVD) accounts for 20%-25% of strokes and is the most common cause of vascular cognitive impairment (VCI). In an animal VCI model, inducing brief periods of limb ischaemia-reperfusion reduces subsequent ischaemic brain injury with remote and local protective effects, with hindlimb remote ischaemic conditioning (RIC) improving cerebral blood flow, decreasing white-matter injury and improving cognition. Small human trials suggest RIC is safe and may prevent recurrent strokes. It remains unclear what doses of chronic daily RIC are tolerable and safe, whether effects persist after treatment cessation, and what parameters are optimal for treatment response. METHODS AND ANALYSIS This prospective, open-label, randomised controlled trial (RCT) with blinded end point assessment and run-in period, will recruit 24 participants, randomised to one of two RIC intensity groups: one arm treated once daily or one arm twice daily for 30 consecutive days. RIC will consistent of 4 cycles of blood pressure cuff inflation to 200 mm Hg for 5 min followed by 5 min deflation (total 35 min). Selection criteria include: age 60-85 years, evidence of cSVD on brain CT/MRI, Montreal Cognitive Assessment (MoCA) score 13-24 and preserved basic activities of living. Outcomes will be assessed at 30 days and 90 days (60 days after ceasing treatment). The primary outcome is adherence (completing ≥80% of sessions). Secondary safety/tolerability outcomes include the per cent of sessions completed and pain/discomfort scores from patient diaries. Efficacy outcomes include changes in cerebral blood flow (per arterial spin-label MRI), white-matter hyperintensity volume, diffusion tensor imaging, MoCA and Trail-Making tests. ETHICS AND DISSEMINATION Research Ethics Board approval has been obtained. The results will provide information on feasibility, dose, adherence, tolerability and outcome measures that will help design a phase IIb RCT of RIC, with the potential to prevent VCI. Results will be disseminated through peer-reviewed publications, organisations and meetings. TRIAL REGISTRATION NUMBER NCT04109963.
Collapse
Affiliation(s)
- Aravind Ganesh
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Philip Barber
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Sandra E Black
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Dale Corbett
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Thalia S Field
- Department of Medicine (Neurology), University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard Frayne
- Seaman Family MR Centre, University of Calgary, Calgary, Alberta, Canada
- Department of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Zahinoor Ismail
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Lauren M Mai
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Cheryl R McCreary
- Department of Clinical Neurosciences and Radiology, University of Calgary Faculty of Medicine, Calgary, Alberta, Canada
| | - Demetrios Sahlas
- Department of Medicine (Neurology), McMaster University Population Health Research Institute, Hamilton, Ontario, Canada
| | - Mukul Sharma
- Department of Medicine (Neurology), McMaster University Population Health Research Institute, Hamilton, Ontario, Canada
| | - Richard H Swartz
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Eric E Smith
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Gameiro J, Fonseca JA, Marques F, Lopes JA. Management of Acute Kidney Injury Following Major Abdominal Surgery: A Contemporary Review. J Clin Med 2020; 9:E2679. [PMID: 32824854 PMCID: PMC7463962 DOI: 10.3390/jcm9082679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a frequent occurrence following major abdominal surgery and is independently associated with both in-hospital and long-term mortality, as well as with a higher risk of progressing to chronic kidney disease (CKD) and cardiovascular events. Postoperative AKI can account for up to 40% of in-hospital AKI cases. Given the differences in patient characteristics and the pathophysiology of postoperative AKI, it is inappropriate to assume that the management after noncardiac and nonvascular surgery are the same as those after cardiac and vascular surgery. This article provides a comprehensive review on the available evidence on the management of postoperative AKI in the setting of major abdominal surgery.
Collapse
Affiliation(s)
- Joana Gameiro
- Division of Nephrology and Renal Transplantation, Department of Medicine, Centro Hospitalar Lisboa Norte, EPE. Av. Prof. Egas Moniz, 1649-035 Lisboa, Portugal; (J.A.F.); (F.M.); (J.A.L.)
| | | | | | | |
Collapse
|
25
|
Roy JP, Devarajan P. Acute Kidney Injury: Diagnosis and Management. Indian J Pediatr 2020; 87:600-607. [PMID: 31713215 DOI: 10.1007/s12098-019-03096-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
Pediatric medicine is growing in complexity and an increasing number of children with co-morbidities are exposed to potential renal damage. Initially ill-defined and thought to be mostly a transient phenomenon in children, acute kidney injury (AKI) has now emerged as a complex clinical syndrome independently associated with increased mortality and morbidity, including the development of chronic renal sequelae. Recent advances in molecular nephrology have better elucidated the early phase of AKI, where evidence of renal tissue damage is associated with adverse outcomes even without decrease in glomerular filtration rate, illustrating the flaws of the old paradigm based solely on an insensitive filtration marker, the serum creatinine. Prevention, prompt evaluation and early interventions are of essence to decrease AKI incidence and severity. Emerging data reveal that AKI is commonly encountered in hospitalized children, especially critically ill ones, hence the importance for all clinicians to be able to identify high risk patients, recognize AKI early and be comfortable with the initial medical management. In recent years, significant advances have been made in AKI definition and prediction, allowing early preventive measures in high risk children that are now proven to reduce AKI incidence. This review covers recent advances in the diagnosis, risk stratification, prevention and management of AKI in children.
Collapse
Affiliation(s)
- Jean-Philippe Roy
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Prasad Devarajan
- Center for Acute Care Nephrology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2020. [PMID: 31820474 DOI: 10.1012/med.21650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
27
|
Heybeli C, Canaslan K, Oktan MA, Yıldız S, Arda HÜ, Çavdar C, Çelik A, Gökmen N, Cömert B. Acute kidney injury following colistin treatment in critically-ill patients: may glucocorticoids protect? J Chemother 2020; 33:85-94. [PMID: 32500843 DOI: 10.1080/1120009x.2020.1770027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Nephrotoxicity following colistin administration is common and factors alleviating nephrotoxicity are yet to be determined. We retrospectively evaluated outcomes of subjects who were treated with colistin (n = 133) and with antibiotics other than colistin (control, n = 133) in intensive care units. Acute kidney injury (AKI) occurred in 69.2% and 29.3% of patients in colistin and control groups, respectively (p < 0.001). In the colistin group, glucocorticoid exposure was more common in subjects who did not develop AKI (p < 0.001). This was not the case in the control group. In the colistin cohort, older age (per 10 years, odds ratio [OR] 1.41, 95% CI 1.05-1.91; p = 0.025), PPI use (OR 3.30, 95% CI 1.18-9.23; p = 0.023) and furosemide treatment (OR 2.66, 95% CI 1.01-6.98; p = 0.047) were independently associated with the development of AKI while glucocorticoid treatment (OR 0.23, 95% CI 0.10-0.53; p = 0.001) was independently associated with reduced risk of AKI. Mortality was observed in 74 patients in the colistin cohort (55.6%). A higher APACHE-II score (OR 1.17, 95% CI 1.08-1.26; p < 0.001) was independently associated with mortality while a higher serum albumin level (per 1 g/dL increase, OR 0.20, 95% CI 0.070-0.60; p = 0.004) was associated with a lower risk of mortality. In conclusion, glucocorticoid exposure is associated with a lower risk of AKI caused by colistin therapy in critically-ill patients. Prospective studies are needed to confirm these findings and determine the optimal type, dose and duration of glucocorticoid therapy.
Collapse
Affiliation(s)
- Cihan Heybeli
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Kübra Canaslan
- Department of Internal Medicine, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Mehmet Ası Oktan
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Serkan Yıldız
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Hayri Üstün Arda
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Caner Çavdar
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Ali Çelik
- Department of Internal Medicine, Division of Nephrology, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Necati Gökmen
- Department of Anesthesiology and Reanimation, Dokuz Eylül University School of Medicine, Izmir, Turkey
| | - Bilgin Cömert
- Department of Internal Medicine, Division of Intensive Care Medicine, Dokuz Eylül University School of Medicine, Izmir, Turkey
| |
Collapse
|
28
|
Yang G, Yang Y, Li Y, Hu Z. Remote liver ischaemic preconditioning protects rat brain against cerebral ischaemia-reperfusion injury by activation of an AKT-dependent pathway. Exp Physiol 2020; 105:852-863. [PMID: 32134522 DOI: 10.1113/ep088394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/02/2020] [Indexed: 02/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? Can remote liver ischaemic preconditioning (RLIPC) protect rat brain against cerebral ischaemia-reperfusion injury? What is the main finding and its importance? Pretreatment with RLIPC reduced cerebral infarct volume, improved neurological outcomes and inhibited neuron apoptosis. RLIPC led to increased phosphorylation of AKT, while inhibition of AKT abolished the effects of RLIPC. Our data suggest that liver ischaemic preconditioning exerts a strong neuroprotective effect against cerebral ischaemia-reperfusion injury by activating an AKT-dependent pathway. ABSTRACT Remote limb ischaemic preconditioning has been shown to have beneficial effects in protecting brains against ischaemia-reperfusion (I/R) injury. However, little is known regarding the effect of remote liver ischaemic conditioning (RLIPC). We therefore investigated the effect of RLIPC on brain tissues suffering from I/R injury. Rats were randomly assigned to a sham group, a control group or a RLIPC group. Rats in all groups except for the sham group received middle cerebral artery occlusion (MCAO) for 1 h, followed by 48 h of reperfusion. For the RLIPC rats, four cycles of 5 min of liver ischaemia (portal vein, hepatic arterial and venous trunk occlusion) with 5 min intermittent reperfusion were carried out before cerebral ischaemia. Infarct volume was assessed after 48 h of reperfusion. Blood samples were taken for serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) tests. Morphological changes of cortical tissue and cellular apoptosis were determined. Right cortex tissues were taken for western blotting measurements. Our data demonstrate that RLIPC reduced cerebral I/R injury, decreased the volume of the MCAO-evoked infarct region, decreased serum levels of LDH and CK-MB, and reduced neurological deficits and apoptosis after I/R injury. Moreover, rats receiving RLIPC showed increased cortical AKT phosphorylation, but protein phosphorylation level was unchanged in the survivor activating factor enhancement (SAFE) signalling pathway. Accordingly, inhibition of AKT with wortmannin abolished the neuroprotective action of liver preconditioning. Our study showed for the first time that liver ischaemic preconditioning effectively protects brain against cerebral I/R injury by activating an AKT-dependent pathway.
Collapse
Affiliation(s)
- Guang Yang
- Department of Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Yang
- Lab for Aging Research, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanmei Li
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhaoyang Hu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
29
|
Remote Ischaemic Preconditioning Reduces Kidney Injury Biomarkers in Patients Undergoing Open Surgical Lower Limb Revascularisation: A Randomised Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7098505. [PMID: 32047578 PMCID: PMC7003258 DOI: 10.1155/2020/7098505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/30/2019] [Accepted: 01/07/2020] [Indexed: 12/02/2022]
Abstract
Background and Aims Perioperative kidney injury affects 12.7% of patients undergoing lower limb revascularisation surgery. Remote ischaemic preconditioning (RIPC) is a potentially protective procedure against organ damage and consists of short nonlethal episodes of ischaemia. The main objective of this substudy was to evaluate the effect of RIPC on kidney function, inflammation, and oxidative stress in patients undergoing open surgical lower limb revascularisation. Materials and Methods. This is a subgroup analysis of a randomised, sham-controlled, double-blinded, single-centre study. A RIPC or a sham procedure was performed noninvasively along with preparation for anaesthesia in patients undergoing open surgical lower limb revascularisation. The RIPC protocol consisted of 4 cycles of 5 minutes of ischaemia, with 5 minutes of reperfusion between every episode. Blood was collected for analysis preoperatively, 2, 8, and 24 hours after surgery, and urine was collected preoperatively and 24 hours after surgery. Results Data of 56 patients were included in the analysis. Serum creatinine, cystatin C, and beta-2 microglobulin increased, and eGFR decreased across all time points significantly more in the sham group than in the RIPC group (p = 0.021, p = 0.021, p = 0.021, p = 0.021, p = 0.021, Conclusions Our finding of reduced release of kidney injury biomarkers may indicate the renoprotective effect of RIPC in patients undergoing open surgical lower limb revascularisation. The trial is registered with ClinicalTrials.gov NCT02689414.
Collapse
|
30
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
31
|
Jacob KA, Leaf DE. Prevention of Cardiac Surgery-Associated Acute Kidney Injury: A Review of Current Strategies. Anesthesiol Clin 2019; 37:729-749. [PMID: 31677688 PMCID: PMC7644277 DOI: 10.1016/j.anclin.2019.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute kidney injury is a common and often severe postoperative complication after cardiac surgery, and is associated with poor short-term and long-term outcomes. Numerous randomized controlled trials have been conducted to investigate various strategies for prevention of cardiac surgery-associated acute kidney injury. Unfortunately, most trials that have been conducted to date have been negative. However, encouraging results have been demonstrated with preoperative administration of corticosteroids, leukocyte filtration, and administration of inhaled nitric oxide intraoperatively, and implementation of a Kidney Disease: Improving Global Outcomes bundle of care approach postoperatively. These findings require validation in large, multicenter trials.
Collapse
Affiliation(s)
- Kirolos A Jacob
- Department of Cardiothoracic Surgery, University Medical Center Utrecht, Mail Stop E03.511, PO Box 85500, Utrecht 3508 GA, the Netherlands.
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, 75 Francis Street, Medial Research Building Room MR416B, Boston, MA 02115, USA
| |
Collapse
|
32
|
Abstract
Primary graft dysfunction (PGD) remains the leading cause of early mortality post-heart transplantation. Despite improvements in mechanical circulatory support and critical care measures, the rate of PGD remains significant. A recent consensus statement by the International Society of Heart and Lung Transplantation (ISHLT) has formulated a definition for PGD. Five years on, we look at current concepts and future directions of PGD in the current era of transplantation.
Collapse
Affiliation(s)
- Sanjeet Singh Avtaar Singh
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, Scotland.
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland.
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland.
| | - Jonathan R Dalzell
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland
| | - Colin Berry
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| | - Nawwar Al-Attar
- Department of Cardiothoracic Surgery, Golden Jubilee National Hospital, Glasgow, Scotland
- Scottish National Advanced Heart Failure Service, Golden Jubilee National Hospital, Glasgow, Scotland
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, Scotland
| |
Collapse
|
33
|
Deferrari G, Bonanni A, Bruschi M, Alicino C, Signori A. Remote ischaemic preconditioning for renal and cardiac protection in adult patients undergoing cardiac surgery with cardiopulmonary bypass: systematic review and meta-analysis of randomized controlled trials. Nephrol Dial Transplant 2019; 33:813-824. [PMID: 28992285 DOI: 10.1093/ndt/gfx210] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/28/2017] [Indexed: 12/20/2022] Open
Abstract
Background The main aim of this systematic review was to assess whether remote ischaemic preconditioning (RIPC) protects kidneys and the heart in cardiac surgery with cardiopulmonary bypass (CPB) and to investigate a possible role of anaesthetic agents. Methods Randomized clinical trials (RCTs) on the effects of RIPC through limb ischaemia in adult patients undergoing cardiac surgery with CPB were searched (1965-October 2016) in PubMed, Cochrane Library and article reference lists. A random effects model on standardized mean difference (SMD) for continuous outcomes and the Peto odds ratio (OR) for dichotomous outcomes were used to meta-analyse data. Subgroup analyses to evaluate the effects of different anaesthetic regimens were pre-planned. Results Thirty-three RCTs (5999 participants) were included. In the whole group, RIPC did not significantly reduce the incidence of acute kidney injury (AKI), acute myocardial infarction, atrial fibrillation, mortality or length of intensive care unit (ICU) and hospital stays. On the contrary, RIPC significantly reduced the area under the curve for myocardial injury biomarkers (MIBs) {SMD -0.37 [95% confidence interval (CI) -0.53 to - 0.21]} and the composite endpoint incidence [OR 0.85 (95% CI 0.74-0.97)]. In the volatile anaesthetic group, RIPC significantly reduced AKI incidence [OR 0.57 (95% CI 0.41-0.79)] and marginally reduced ICU stay. Conversely, except for MIBs, RIPC had fewer non-significant effects under propofol with or without volatile anaesthetics. Conclusions RIPC did not consistently reduce morbidity and mortality in adults undergoing cardiac surgery with CPB. In the subgroup on volatile anaesthetics only, RIPC markedly and significantly reduced the incidence of AKI and composite endpoint as well as myocardial injury.
Collapse
Affiliation(s)
- Giacomo Deferrari
- Department of Cardionephrology, Istituto Clinico Di Alta Specialità (ICLAS), Rapallo (GE), Italy.,Department of Internal Medicine (Di.MI), University of Genoa, Genoa, Italy
| | - Alice Bonanni
- Department of Cardionephrology, Istituto Clinico Di Alta Specialità (ICLAS), Rapallo (GE), Italy.,Division of Nephrology, Dialysis and Transplantation and Laboratory on Pathophysiology of Uremia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Bruschi
- Division of Nephrology, Dialysis and Transplantation and Laboratory on Pathophysiology of Uremia, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Cristiano Alicino
- Department of Health Science (Di.S.Sal), University of Genoa, Genoa, Italy
| | - Alessio Signori
- Department of Health Science (Di.S.Sal), University of Genoa, Genoa, Italy
| |
Collapse
|
34
|
Remote ischaemic preconditioning does not modulate the systemic inflammatory response or renal tubular stress biomarkers after endotoxaemia in healthy human volunteers: a single-centre, mechanistic, randomised controlled trial. Br J Anaesth 2019; 123:177-185. [PMID: 31084985 DOI: 10.1016/j.bja.2019.03.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/15/2019] [Accepted: 03/02/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Remote ischaemic preconditioning (RIPC) consists of repeated cycles of limb ischaemia and reperfusion, which may reduce perioperative myocardial ischaemic damage and kidney injury. We hypothesised that RIPC may be beneficial by attenuating the systemic inflammatory response. We investigated whether RIPC affects the response in humans to bacterial endotoxin (lipopolysaccharide [LPS]) by measuring plasma cytokines and renal cell-cycle arrest mediators, which reflect renal tubular stress. METHODS Healthy male volunteers were randomised to receive either daily RIPC for 6 consecutive days (RIPCmultiple, n=10) plus RIPC during the 40 min preceding i.v. LPS (2 ng kg-1), RIPC only during the 40 min before LPS (RIPCsingle, n=10), or no RIPC preceding LPS (control, n=10). As a surrogate marker of renal tubular stress, the product of urinary concentrations of two cell-cycle arrest markers was calculated (tissue inhibitor of metalloproteinases-2 [TIMP2]*insulin-like growth factor binding protein-7 [IGFBP7]). Data are presented as median (inter-quartile range). RESULTS In both RIPC groups, RIPC alone increased [TIMP2]*[IGFBP7]. LPS administration resulted in fever, flu-like symptoms, and haemodynamic alterations. Plasma cytokine concentrations increased profoundly during endotoxaemia (control group: tumor necrosis factor alpha [TNF-α] from 14 [9-16] pg ml-1 at baseline to 480 [284-709] pg ml-1 at 1.5 h after LPS; interleukin-6 [IL-6] from 4 [4-4] pg ml-1 at baseline to 659 [505-1018] pg ml-1 at 2 h after LPS). LPS administration also increased urinary [TIMP2[*[IGFBP7]. RIPC had no effect on LPS-induced cytokine release or [TIMP2]*[IGFBP7]. CONCLUSIONS RIPC neither modulated systemic cytokine release nor attenuated inflammation-induced tubular stress after LPS. However, RIPC alone induced renal markers of cell-cycle arrest. CLINICAL TRIAL REGISTRATION NCT02602977.
Collapse
|
35
|
Bignami E, Bellini V. Anesthetics and cardiac surgery: beneath the surface. Minerva Anestesiol 2019; 85:580-582. [PMID: 31033269 DOI: 10.23736/s0375-9393.19.13768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elena Bignami
- Unit of Anesthesiology, Division of Critical Care and Pain Medicine, Department of Medicine and Surgery, University of Parma, Parma, Italy -
| | - Valentina Bellini
- Unit of Anesthesiology, Division of Critical Care and Pain Medicine, Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
36
|
Tuter DS, Komarov RN, Glasachev OS, Syrkin AL, Severova LP, Ivanova EV, Lomonosova AA, Kopylov FY. Remote Ischemic Preconditioning With the Use of Lower Limb Before Coronary Artery Bypass Surgery With Cardiopulmonary Bypass and Anesthesia With Propofol. KARDIOLOGIYA 2019; 59:38-44. [PMID: 30853020 DOI: 10.18087/cardio.2019.2.10216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 11/18/2022]
Abstract
OBJECTIVE to study potantial of remote ischemic preconditioning (RIP) as method of cardioprotection during coronary artery bypass surgery with cardiopulmonary bypass (CPB) and anesthesia with propofol. MATERIALS AND METHODS We included in this study 87 patients (7 were excluded) with ischemic heart disease, hospitalized in the clinic of aortic and cardiovascular surgery of the I. M. Sechenov First Moscow State Medical University clinical hospital № 1. All patients had indications for direct myocardial revascularization by coronary artery bypass surgery. One day before operation patients were randomly assigned to 2 groups depending on preparation scheme: main group of RIP and the control group. The frequency of complications during surgery and in the postoperative period was assessed. Troponin I level was measured before, and in 2 and 24 hours after surgery. The level of lactate in the venous blood was measured before and after surgery. RESULTS Numbers of intraoperative and early postoperative complications in the main and control groups were similar. There were no differences between groups in troponin I and lactate levels after surgery. CONCLUSIONS Remote ischemic preconditioning has no effect on the outcome of coronary artery bypass surgery with cardiopulmonary bypass and anesthesia with propofol.
Collapse
Affiliation(s)
- D S Tuter
- Sechenov First Moscow State Medical University (Sechenov University)..
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Geldi O, Kubat E, Ünal CS, Canbaz S. Acetaminophen Mitigates Myocardial Injury Induced by Lower Extremity Ischemia-Reperfusion in Rat Model. Braz J Cardiovasc Surg 2019; 33:258-264. [PMID: 30043918 PMCID: PMC6089134 DOI: 10.21470/1678-9741-2017-0218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The injury-reducing effect of acetaminophen, an effective analgesic and antipyretic on ischemia-reperfusion continues to attract great attention. This study analyzed the protective effect of acetaminophen on myocardial injury induced by ischemia-reperfusion in an experimental animal model from lower extremity ischemia-reperfusion. METHODS Twenty-four Sprague-Dawley female rats were randomized into three groups (n=8) as (i) control group (only laparotomy), (ii) aortic ischemia-reperfusion group (60 min of ischemia and 120 min of reperfusion) and (iii) ischemia-reperfusion + acetaminophen group (15 mg/kg/h intravenous acetaminophen infusion starting 15 minutes before the end of the ischemic period and lasting till the end of the reperfusion period). Sternotomy was performed in all groups at the end of the reperfusion period and the heart was removed for histopathological examination. The removed hearts were histopathologically investigated for myocytolysis, polymorphonuclear leukocyte (PMNL) infiltration, myofibrillar edema and focal hemorrhage. RESULTS The results of histopathological examination showed that acetaminophen was detected to particularly diminish focal hemorrhage and myofibrillar edema in the ischemia-reperfusion + acetaminophen group (P<0.001, P=0.011), while there were no effects on myocytolysis and PMNL infiltration between the groups (P=1.000, P=0.124). CONCLUSION Acetaminophen is considered to have cardioprotective effect in rats, by reducing myocardial injury induced by abdominal aortic ischemia-reperfusion.
Collapse
Affiliation(s)
- Onur Geldi
- Department of Cardiovascular Surgery, Zonguldak Atatürk State Hospital, Zonguldak, Turkey
| | - Emre Kubat
- Department of Cardiovascular Surgery, Karabük Training and Research Hospital, Karabük, Turkey
| | - Celal Selçuk Ünal
- Department of Cardiovascular Surgery, Karabük Training and Research Hospital, Karabük, Turkey
| | - Suat Canbaz
- Department of Cardiovascular Surgery, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
38
|
Circulating mediators of remote ischemic preconditioning: search for the missing link between non-lethal ischemia and cardioprotection. Oncotarget 2019; 10:216-244. [PMID: 30719216 PMCID: PMC6349428 DOI: 10.18632/oncotarget.26537] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of mortality and morbidity worldwide. There has been an extensive search for cardioprotective therapies to reduce myocardial ischemia-reperfusion (I/R) injury. Remote ischemic preconditioning (RIPC) is a phenomenon that relies on the body's endogenous protective modalities against I/R injury. In RIPC, non-lethal brief I/R of one organ or tissue confers protection against subsequent lethal I/R injury in an organ remote to the briefly ischemic organ or tissue. Initially it was believed to be limited to direct myocardial protection, however it soon became apparent that RIPC applied to other organs such as kidney, liver, intestine, skeletal muscle can reduce myocardial infarct size. Intriguing discoveries have been made in extending the concept of RIPC to other organs than the heart. Over the years, the underlying mechanisms of RIPC have been widely sought and discussed. The involvement of blood-borne factors as mediators of RIPC has been suggested by a number of research groups. The main purpose of this review article is to summarize the possible circulating mediators of RIPC, and recent studies to establish the clinical efficacy of these mediators in cardioprotection from lethal I/R injury.
Collapse
|
39
|
Tuter DS, Kopylov PY, Syrkin AL, Glazachev OS, Komarov RN, Katkov AI, Severova LP, Ivanova EV, Zhang Y, Saner H. Intermittent systemic hypoxic-hyperoxic training for myocardial protection in patients undergoing coronary artery bypass surgery: first results from a single-centre, randomised controlled trial. Open Heart 2018; 5:e000891. [PMID: 30487981 PMCID: PMC6241980 DOI: 10.1136/openhrt-2018-000891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/19/2018] [Accepted: 09/20/2018] [Indexed: 11/25/2022] Open
Abstract
Background Although remote ischaemic preconditioning (RIP) provides protection against myocardial ischaemia and reperfusion injury during cardiac surgery, it is not widely used. Systemic intermittent hypoxic–hyperoxic training (IHHT) may be a suitable alternative. Methods This is a prospective, single-centre, randomised controlled trial. 127 patients with ischaemic heart disease and indication for coronary artery bypass graft (CABG) surgery from the Cardiology Clinic IM Sechenov First Moscow State Medical University were randomly assigned to IHHT, IHHT-control or RIP. Primary endpoint was serum concentration of troponin I and lactate 2 and 24 hours after surgery. Results Median value for troponin I 24 hours after surgery was 1.068 (0.388–1.397) ng/mL in the IHHT group and was significantly lower compared with IHHT-controls with 1.980 (1.068–3.239) ng/mL (p=0.012) and to the RIP group with 1.762 (1.288–2.186) ng/mL (p=0.029), while there was no significant difference between RIP and the IHHT-control. Serum lactate after surgery was 1.74 (1.23–2.04) mmol/L in the IHHT group and was also significantly lower compared with IHHT-controls with 2.10 (1.80–2.29) mmol/L (p=0.045) and RIP with 2.12 (1.91–2.33) mmol/L (p=0.032). No significant complications or serious adverse events were observed during IHHT. Intraoperative and early postoperative complications did not differ significantly between groups. Conclusions The results of this first trial using IHHT for myocardial protection against perioperative ischaemic myocardial injury in patients undergoing CABG surgery are promising and further larger trials should be done with adequate power to detect clinical rather than surrogate marker benefits.
Collapse
Affiliation(s)
- Denis S Tuter
- IE Sechenov First Moscow State Medical University, Moscow, Russia
| | | | - Abram L Syrkin
- IE Sechenov First Moscow State Medical University, Moscow, Russia
| | - Oleg S Glazachev
- IE Sechenov First Moscow State Medical University, Moscow, Russia
| | - Roman N Komarov
- IE Sechenov First Moscow State Medical University, Moscow, Russia
| | - Andrei I Katkov
- IE Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | - Hugo Saner
- IE Sechenov First Moscow State Medical University, Moscow, Russia.,University Clinic for Cardiology, University Hospital, Inselspital, Bern, Switzerland
| |
Collapse
|
40
|
Nadim MK, Forni LG, Bihorac A, Hobson C, Koyner JL, Shaw A, Arnaoutakis GJ, Ding X, Engelman DT, Gasparovic H, Gasparovic V, Herzog CA, Kashani K, Katz N, Liu KD, Mehta RL, Ostermann M, Pannu N, Pickkers P, Price S, Ricci Z, Rich JB, Sajja LR, Weaver FA, Zarbock A, Ronco C, Kellum JA. Cardiac and Vascular Surgery-Associated Acute Kidney Injury: The 20th International Consensus Conference of the ADQI (Acute Disease Quality Initiative) Group. J Am Heart Assoc 2018; 7:JAHA.118.008834. [PMID: 29858368 PMCID: PMC6015369 DOI: 10.1161/jaha.118.008834] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mitra K Nadim
- Division of Nephrology & Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Lui G Forni
- Department of Clinical & Experimental Medicine, University of Surrey, Guildford, United Kingdom.,Royal Surrey County Hospital NHS Foundation Trust, Guildford, United Kingdom
| | - Azra Bihorac
- Division of Nephrology, Hypertension & Renal Transplantation, Department of Medicine, University of Florida, Gainesville, FL
| | - Charles Hobson
- Division of Surgical Critical Care, Department of Surgery, Malcom Randall VA Medical Center, Gainesville, FL
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago, IL
| | - Andrew Shaw
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - George J Arnaoutakis
- Division of Thoracic & Cardiovascular Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, FL
| | - Xiaoqiang Ding
- Department of Nephrology, Shanghai Institute for Kidney Disease and Dialysis, Shanghai Medical Center for Kidney Disease, Zhongshan Hospital Fudan University, Shanghai, China
| | - Daniel T Engelman
- Division of Cardiac Surgery, Department of Surgery, Baystate Medical Center, University of Massachusetts Medical School, Springfield, MA
| | - Hrvoje Gasparovic
- Department of Cardiac Surgery, University Hospital Rebro, Zagreb, Croatia
| | | | - Charles A Herzog
- Division of Cardiology, Department of Medicine, Hennepin County Medical Center, University of Minnesota, Minneapolis, MN
| | - Kianoush Kashani
- Division of Nephrology & Hypertension, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Nevin Katz
- Division of Cardiac Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD
| | - Kathleen D Liu
- Divisions of Nephrology and Critical Care, Departments of Medicine and Anesthesia, University of California, San Francisco, CA
| | - Ravindra L Mehta
- Department of Medicine, UCSD Medical Center, University of California, San Diego, CA
| | - Marlies Ostermann
- King's College London, Guy's & St Thomas' Hospital, London, United Kingdom
| | - Neesh Pannu
- Division of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Peter Pickkers
- Department Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Susanna Price
- Adult Intensive Care Unit, Imperial College, Royal Brompton Hospital, London, United Kingdom
| | - Zaccaria Ricci
- Department of Pediatric Cardiac Surgery, Bambino Gesù Children's Hospital, Roma, Italy
| | - Jeffrey B Rich
- Heart and Vascular Institute, Cleveland Clinic, Cleveland, OH
| | - Lokeswara R Sajja
- Division of Cardiothoracic Surgery, STAR Hospitals, Hyderabad, India
| | - Fred A Weaver
- Division of Vascular Surgery, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Claudio Ronco
- Department of Nephrology, Dialysis and Transplantation, San Bortolo Hospital International Renal Research Institute of Vicenza, Italy
| | - John A Kellum
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, PA
| |
Collapse
|
41
|
|
42
|
Tan W, Zhang C, Liu J, Li X, Chen Y, Miao Q. Remote Ischemic Preconditioning has a Cardioprotective Effect in Children in the Early Postoperative Phase: A Meta-Analysis of Randomized Controlled Trials. Pediatr Cardiol 2018; 39:617-626. [PMID: 29302715 DOI: 10.1007/s00246-017-1802-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/22/2017] [Indexed: 12/17/2022]
Abstract
In this updated meta-analysis, we assessed the cardioprotective effect of remote ischemic preconditioning (RIPC) in pediatric patients undergoing congenital heart surgery. A total of 9 randomized controlled trials (RCTs) involving 793 pediatric patients under 18 years old were identified. RIPC obviously reduced the release of troponin I at 6 h after surgery [standard mean difference (SMD) -0.59, 95% confidence interval (CI) -1.14 to -0.04; p = 0.03], mitigated the inotropic scores within 4-6 h (SMD -0.43, 95% CI -0.72 to -0.14; p = 0.004) and within 12 h (SMD -0.26, 95% CI -0.50 to -0.02; p = 0.03) and shortened the ventilator support time (SMD -0.28, 95% CI -0.49 to -0.07; p = 0.01) as well as the duration of intensive care unit (ICU) stay (SMD -0.21, 95% CI -0.35 to -0.06; p = 0.004). Our meta-analysis determined that RIPC had cardioprotective effects in the early postoperative phase. Additional RCTs focused on the cardiac benefits from RIPC in pediatric patients are warranted.
Collapse
Affiliation(s)
- Wen Tan
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chaoji Zhang
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jianzhou Liu
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaofeng Li
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuzhi Chen
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qi Miao
- Department of Cardiac Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
43
|
Schubert SA, Kron IL. Remote Ischemic Preconditioning: A Complex Question with an Even More Complex Answer. Semin Thorac Cardiovasc Surg 2018; 30:34-35. [PMID: 29454673 DOI: 10.1053/j.semtcvs.2018.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Sarah A Schubert
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Irving L Kron
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
44
|
Motayagheni N, Phan S, Eshraghi C, Nozari A, Atala A. A Review of Anesthetic Effects on Renal Function: Potential Organ Protection. Am J Nephrol 2017; 46:380-389. [PMID: 29131005 DOI: 10.1159/000482014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Renal protection is a critical concept for anesthesiologists, nephrologists, and urologists, since anesthesia and renal function are highly interconnected and can potentially interfere with one another. Therefore, a comprehensive understanding of anesthetic drugs and their effects on renal function remains fundamental to the success of renal surgeries, especially transplant procedures. Some experimental studies have shown that some anesthetics provide protection against renal ischemia/reperfusion (IR) injury, but there is limited clinical evidence. SUMMARY The effects of anesthetic drugs on renal failure are particularly important in the context of kidney transplantation, since the conditions of preservation following removal profoundly influence the recovery of organ function. Currently, preservation procedures are typically based on the usage of a cold-storage solution. Some anesthetic drugs induce anti-inflammatory, anti-necrotic, and anti-apoptotic effects. A more thorough understanding of anesthetic effects on renal function can present a novel approach for developing organ-protective strategies. The aim of this review is to discuss the effects of different anesthetic drugs on renal function, with particular focus on IR injury. Many studies have demonstrated the organ-protective effects of some anesthetic drugs, specifically propofol, which indicate the potential of some anesthetics to introduce novel organ protective targets. This is not surprising, since lipid emulsions are major components of propofol, which accumulating data show provide organ protective effects against IR injury. Key Messages: Thorough understanding of the interaction between anesthetic drugs and renal function remains fundamental to the delivery of safe perioperative care and to optimizing outcomes after renal surgeries, particularly transplant procedures. Anesthetics can be repurposed for organ protection with more information about their effects, especially during transplant procedures. Here, we review the effects of different anesthetic drugs - specifically those that contain lipids in their structure, with special reference to IR injury.
Collapse
Affiliation(s)
- Negar Motayagheni
- Institute for Regenerative Medicine (Wake Forest Institute of Regenerative Medicine), Wake Forest School of Medicine Medical Center Boulevard, Winston-Salem, North Carolina, USA
| | - Sheshanna Phan
- Department of Anesthesiology, Division of Molecular Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Crystal Eshraghi
- Department of Anesthesiology, Division of Molecular Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Ala Nozari
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anthony Atala
- Institute of Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
45
|
Siedek F, Persigehl T, Mueller RU, Burst V, Benzing T, Maintz D, Haneder S. Assessing renal changes after remote ischemic preconditioning (RIPC) of the upper extremity using BOLD imaging at 3T. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:367-374. [PMID: 29063424 DOI: 10.1007/s10334-017-0658-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Acute kidney injury (AKI) is an important risk factor for a number of adverse outcomes including end-stage renal disease and cardiovascular morbidity and mortality. Whilst many clinical situations that can induce AKI are known-e.g. drug toxicity, contrast agent exposure or ischemia during surgery-targeted preventive or therapeutic measures are still lacking. As to renoprotective strategies, remote ischemic preconditioning (RIPC) is one of the most promising novel approaches and has been examined by a number of clinical trials. The aim of this study was to use blood oxygenation level-dependent (BOLD) MRI as a surrogate parameter to assess the effect of RIPC in healthy volunteers. MATERIALS AND METHODS In this IRB-approved, prospective study, 40 healthy volunteers were stratified with 20 undergoing an RIPC procedure (i.e. RIPC group) with a transient ischemia of the right arm, and 20 undergoing a sham procedure. Before and after the procedure, both kidneys of all participants were scanned using a 12-echo mGRE sequence for functional BOLD imaging at 3T. For each volunteer, 180 ROIs were placed in the cortex and the medulla of the kidneys. Ultimately, R2* values, which have an inverse correlation with the oxygenation level of tissue, were averaged for the RIPC and control groups. RESULTS Following intervention, mean R2* values significantly decreased in the RIPC group in both the cortex (18.6 ± 2.3 vs. 17.5 ± 1.7 Hz; p = 0.0047) and medulla (34 ± 5.2 vs. 32.2 ± 4.2 Hz; p = 0.0001). However, no significant differences were observed in the control group. CONCLUSION RIPC can be non-invasively assessed in healthy volunteers using BOLD MRI at 3T, demonstrating a higher oxygen content in kidney tissue. This study presents a first-in-man trial establishing a quantifiable readout of RIPC and its effects on kidney physiology. BOLD measurements may advance clinical trials in further evaluating RIPC for future clinical care.
Collapse
Affiliation(s)
- Florian Siedek
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Thorsten Persigehl
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Roman-Ulrich Mueller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - David Maintz
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Stefan Haneder
- Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| |
Collapse
|
46
|
Joannidis M, Druml W, Forni LG, Groeneveld ABJ, Honore PM, Hoste E, Ostermann M, Oudemans-van Straaten HM, Schetz M. Prevention of acute kidney injury and protection of renal function in the intensive care unit: update 2017 : Expert opinion of the Working Group on Prevention, AKI section, European Society of Intensive Care Medicine. Intensive Care Med 2017; 43:730-749. [PMID: 28577069 PMCID: PMC5487598 DOI: 10.1007/s00134-017-4832-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) in the intensive care unit is associated with significant mortality and morbidity. OBJECTIVES To determine and update previous recommendations for the prevention of AKI, specifically the role of fluids, diuretics, inotropes, vasopressors/vasodilators, hormonal and nutritional interventions, sedatives, statins, remote ischaemic preconditioning and care bundles. METHOD A systematic search of the literature was performed for studies published between 1966 and March 2017 using these potential protective strategies in adult patients at risk of AKI. The following clinical conditions were considered: major surgery, critical illness, sepsis, shock, exposure to potentially nephrotoxic drugs and radiocontrast. Clinical endpoints included incidence or grade of AKI, the need for renal replacement therapy and mortality. Studies were graded according to the international GRADE system. RESULTS We formulated 12 recommendations, 13 suggestions and seven best practice statements. The few strong recommendations with high-level evidence are mostly against the intervention in question (starches, low-dose dopamine, statins in cardiac surgery). Strong recommendations with lower-level evidence include controlled fluid resuscitation with crystalloids, avoiding fluid overload, titration of norepinephrine to a target MAP of 65-70 mmHg (unless chronic hypertension) and not using diuretics or levosimendan for kidney protection solely. CONCLUSION The results of recent randomised controlled trials have allowed the formulation of new recommendations and/or increase the strength of previous recommendations. On the other hand, in many domains the available evidence remains insufficient, resulting from the limited quality of the clinical trials and the poor reporting of kidney outcomes.
Collapse
Affiliation(s)
- M Joannidis
- Division of Intensive Care and Emergency Medicine, Department of Internal Medicine, Medical University Innsbruck, Anichstasse 35, 6020, Innsbruck, Austria.
| | - W Druml
- Department of Internal Medicine III, University Hospital Vienna, Vienna, Austria
| | - L G Forni
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey and Surrey Perioperative Anaesthesia and Critical Care Collaborative Research Group (SPACeR), Intensive Care Unit, Royal Surrey County Hospital NHS Foundation Trust, Egerton Road, Guildford, GU2 7XX, United Kingdom
| | | | - P M Honore
- Department of Intensive Care, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - E Hoste
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000, Ghent, Belgium
| | - M Ostermann
- Department of Critical Care and Nephrology, Guy's and St Thomas' Hospital, London, United Kingdom
| | - H M Oudemans-van Straaten
- Department of Adult Intensive Care, VU University Medical Centre, De Boelelaan 1118, 1081 HZ, Amsterdam, The Netherlands
| | - M Schetz
- Clinical Department and Laboratory of Intensive Care Medicine, Division of Cellular and Molecular Medicine, KU Leuven University, Leuven, Belgium
| |
Collapse
|