1
|
Wang W, Tai S, Tao J, Yang L, Cheng X, Zhou J. Innovative hydrogel-based therapies for ischemia-reperfusion injury: bridging the gap between pathophysiology and treatment. Mater Today Bio 2024; 29:101295. [PMID: 39493810 PMCID: PMC11528235 DOI: 10.1016/j.mtbio.2024.101295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/21/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024] Open
Abstract
Ischemia-reperfusion injury (IRI) commonly occurs in clinical settings, particularly in medical practices such as organ transplantation, cardiopulmonary resuscitation, and recovery from acute trauma, posing substantial challenges in clinical therapies. Current systemic therapies for IRI are limited by poor drug targeting, short efficacy, and significant side effects. Owing to their exceptional biocompatibility, biodegradability, excellent mechanical properties, targeting capabilities, controlled release potential, and properties mimicking the extracellular matrix (ECM), hydrogels not only serve as superior platforms for therapeutic substance delivery and retention, but also facilitate bioenvironment cultivation and cell recruitment, demonstrating significant potential in IRI treatment. This review explores the pathological processes of IRI and discusses the roles and therapeutic outcomes of various hydrogel systems. By categorizing hydrogel systems into depots delivering therapeutic agents, scaffolds encapsulating mesenchymal stem cells (MSCs), and ECM-mimicking hydrogels, this article emphasizes the selection of polymers and therapeutic substances, and details special crosslinking mechanisms and physicochemical properties, as well as summarizes the application of hydrogel systems for IRI treatment. Furthermore, it evaluates the limitations of current hydrogel treatments and suggests directions for future clinical applications.
Collapse
Affiliation(s)
- Weibo Wang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Supeng Tai
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Junyue Tao
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Lexing Yang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Xi Cheng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Institute of Urology, Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Farahzadi R, Fathi E, Vandghanooni S, Valipour B. Hydrogel encapsulation of mesenchymal stem cells-derived extracellular vesicles as a novel therapeutic approach in cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189177. [PMID: 39218403 DOI: 10.1016/j.bbcan.2024.189177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Cell therapy has emerged as one of the most promising approaches to treating disease in recent decades. The application of stem cells in anti-tumor therapy is determined by their varying capacity for proliferation, migration, and differentiation. These capacities are derived from different sources. The use of stem cell carriers in cancer treatment is justified by the following three reasons: (I) shield therapeutic agents from swift biological deterioration; (II) reduce systemic side effects; and (III) increase local therapeutic levels since stem cells have an innate ability to target tumors. The quantity of stem cells confined to the tumor microenvironment determines this system's anti-tumor activity. Nevertheless, there are limitations to the use of different types of stem cells. When immune cells are used in cell therapy, it may lead to cytokine storms and improper reactions to self-antigens. Furthermore, the use of stem cells may result in cancer. Additionally, after an intravenous injection, cells could not migrate to the injury location. Exosomes derived from different cells were thus proposed as possible therapeutic options. Exosomes are becoming more and more well-liked because of their small size, biocompatibility, and simplicity in storage and separation. A number of investigations have shown that adding various medications and microRNAs to exosomes may enhance their therapeutic effectiveness. Thus, it is essential to evaluate studies looking into the therapeutic effectiveness of encapsulated exosomes. In this review, we looked at studies on encapsulated exosomes' use in regenerative medicine and the treatment of cancer. The results imply that the therapeutic potential increases when encapsulated exosomes are used rather than intact exosomes. Therefore, in order to optimize the effectiveness of the treatment, it is advised to implement this technique in accordance with the kind of therapy.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran.
| | - Somayeh Vandghanooni
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Valipour
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran.
| |
Collapse
|
3
|
Wikarska A, Roszak K, Roszek K. Mesenchymal Stem Cells and Purinergic Signaling in Autism Spectrum Disorder: Bridging the Gap between Cell-Based Strategies and Neuro-Immune Modulation. Biomedicines 2024; 12:1310. [PMID: 38927517 PMCID: PMC11201695 DOI: 10.3390/biomedicines12061310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism spectrum disorder (ASD) is still increasing, which means that this neurodevelopmental lifelong pathology requires special scientific attention and efforts focused on developing novel therapeutic approaches. It has become increasingly evident that neuroinflammation and dysregulation of neuro-immune cross-talk are specific hallmarks of ASD, offering the possibility to treat these disorders by factors modulating neuro-immunological interactions. Mesenchymal stem cell-based therapy has already been postulated as one of the therapeutic approaches for ASD; however, less is known about the molecular mechanisms of stem cell influence. One of the possibilities, although still underestimated, is the paracrine purinergic activity of MSCs, by which stem cells ameliorate inflammatory reactions. Modulation of adenosine signaling may help restore neurotransmitter balance, reduce neuroinflammation, and improve overall brain function in individuals with ASD. In our review article, we present a novel insight into purinergic signaling, including but not limited to the adenosinergic pathway and its role in neuroinflammation and neuro-immune cross-talk modulation. We anticipate that by achieving a greater understanding of the purinergic signaling contribution to ASD and related disorders, novel therapeutic strategies may be devised for patients with autism in the near future.
Collapse
Affiliation(s)
| | | | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Lwowska 1, 87-100 Torun, Poland; (A.W.); (K.R.)
| |
Collapse
|
4
|
Jiang Z, Yu J, Zhou H, Feng J, Xu Z, Wan M, Zhang W, He Y, Jia C, Shao S, Guo H, Liu B. Research hotspots and emerging trends of mesenchymal stem cells in cardiovascular diseases: a bibliometric-based visual analysis. Front Cardiovasc Med 2024; 11:1394453. [PMID: 38873270 PMCID: PMC11169657 DOI: 10.3389/fcvm.2024.1394453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) have important research value and broad application prospects in cardiovascular diseases (CVDs). However, few bibliometric analyses on MSCs in cardiovascular diseases are available. This study aims to provide a thorough review of the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in cardiovascular diseases, with the provision of discoveries in the latest progress, evolution paths, frontier research hotspots, and future research trends in the regarding field. Methods The articles related to MSCs in cardiovascular diseases were retrieved from the Web of Science. The bibliometric study was performed by CiteSpace and VOSviewer, and the knowledge map was generated based on data obtained from retrieved articles. Results In our study, a total of 4,852 publications launched before August 31, 2023 were accessed through the Web of Science Core Collection (WoSCC) database via our searching strategy. Significant fluctuations in global publications were observed in the field of MSCs in CVDs. China emerged as the nation with the largest number of publications, yet a shortage of high-quality articles was noted. The interplay among countries, institutions, journals and authors is visually represented in the enclosed figures. Importantly, current research trends and hotspots are elucidated. Cluster analysis on references has highlighted the considerable interest in exosomes, extracellular vesicles, and microvesicles. Besides, keywords analysis revealed a strong emphasis on myocardial infarction, therapy, and transplantation. Treatment methods-related keywords were prominent, while keywords associated with extracellular vesicles gathered significant attention from the long-term perspective. Conclusion MSCs in CVDs have become a topic of active research interest, showcasing its latent value and potential. By summarizing the latest progress, identifying the research hotspots, and discussing the future trends in the advancement of MSCs in CVDs, we aim to offer valuable insights for considering research prospects.
Collapse
Affiliation(s)
- Zhihang Jiang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajing Yu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Houle Zhou
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaming Feng
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zehui Xu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Melisandre Wan
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Zhang
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing He
- Department of Preventive Medicine, College of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Shuijin Shao
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haidong Guo
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baonian Liu
- Department of Anatomy, School of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Deppen JN, Ginn SC, Tang EO, Wang L, Brockman ML, Levit RD. Alginate-Encapsulated Mesenchymal Stromal Cells Improve Hind Limb Ischemia in a Translational Swine Model. J Am Heart Assoc 2024; 13:e029880. [PMID: 38639336 PMCID: PMC11179867 DOI: 10.1161/jaha.123.029880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Cellular therapies have been investigated to improve blood flow and prevent amputation in peripheral artery disease with limited efficacy in clinical trials. Alginate-encapsulated mesenchymal stromal cells (eMSCs) demonstrated improved retention and survival and promoted vascular generation in murine hind limb ischemia through their secretome, but large animal evaluation is necessary for human applicability. We sought to determine the efficacy of eMSCs for peripheral artery disease-induced limb ischemia through assessment in our durable swine hind limb ischemia model. METHODS AND RESULTS Autologous bone marrow eMSCs or empty alginate capsules were intramuscularly injected 2 weeks post-hind limb ischemia establishment (N=4/group). Improvements were quantified for 4 weeks through walkway gait analysis, contrast angiography, blood pressures, fluorescent microsphere perfusion, and muscle morphology and histology. Capsules remained intact with mesenchymal stromal cells retained for 4 weeks. Adenosine-induced perfusion deficits and muscle atrophy in ischemic limbs were significantly improved by eMSCs versus empty capsules (mean±SD, 1.07±0.19 versus 0.41±0.16, P=0.002 for perfusion ratios and 2.79±0.12 versus 1.90±0.62 g/kg, P=0.029 for ischemic muscle mass). Force- and temporal-associated walkway parameters normalized (ratio, 0.63±0.35 at week 3 versus 1.02±0.19 preligation; P=0.17), and compensatory footfall patterning was diminished in eMSC-administered swine (12.58±8.46% versus 34.85±15.26%; P=0.043). Delivery of eMSCs was associated with trending benefits in collateralization, local neovascularization, and muscle fibrosis. Hypoxia-cultured porcine mesenchymal stromal cells secreted vascular endothelial growth factor and tissue inhibitor of metalloproteinase 2. CONCLUSIONS This study demonstrates the promise of the mesenchymal stromal cell secretome at improving peripheral artery disease outcomes and the potential for this novel swine model to serve as a component of the preclinical pipeline for advanced therapies.
Collapse
Affiliation(s)
- Juline N. Deppen
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Sydney C. Ginn
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaGA
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Erica O. Tang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | - Lanfang Wang
- Division of CardiologyEmory University School of MedicineAtlantaGA
| | | | - Rebecca D. Levit
- Division of CardiologyEmory University School of MedicineAtlantaGA
| |
Collapse
|
6
|
Xiang F, Sun L, Cao X, Li Y, Chen X, Zhang Z, Zou J, Teng J, Shen B, Ding X. CD73 as a T cell dysfunction marker predicting cardiovascular and infection events in patients undergoing hemodialysis. Clin Chim Acta 2024; 555:117791. [PMID: 38266969 DOI: 10.1016/j.cca.2024.117791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND T cell dysfunction observed in patients undergoing hemodialysis (HD) has been linked to an extremely high morbidity of cardiovascular events (CVEs) and infections. The cell-surface 5'-nucleotidase CD73 sets the balance between pro-inflammatory nucleotides and anti-inflammatory adenosine. METHODS A total of 395 patients who had been receiving HD for at least six months were evaluated for proportions of CD73+ cells in both the CD4+ T cell and CD8+ T cell compartment and followed for one year to document CVEs and infections. Differences in the proportions of CD73-expressingT cells between healthy controls and patients undergoing HD were compared. The relationship between CD73+ T cells and clinical outcomes was analyzed using the Kaplan-Meier curve and Cox regression. RESULTS HD was significantly related to a lower fraction of CD4+CD73+ T cells. In patients on HD, lower proportions of CD4+ CD73+T cells and CD8+ CD73+T cells were both associated with systemic inflammation and T cell terminal differentiation. More importantly, a lower CD4+CD73+T cell ratio independently predicted CVEs and infection in these patients. CONCLUSION We identified CD73 as a T cell dysfunction marker predicting cardiovascular and infection events in patients undergoing HD, which provides a potential target in future studies of uremia-related immune dysfunction.
Collapse
Affiliation(s)
- Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China
| | - Lin Sun
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Li
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Nephrology, Zhongshan Hospital, Fudan University(Xiamen Branch), Xiamen, Fujian, China; Nephrology Clinical Quality Control Center of Xiamen, Xiamen, Fujian, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Renal Disease and Blood Purification, Shanghai, China; Shanghai Medical Center of Kidney, Shanghai, China; Shanghai Institute of Kidney and Dialysis, Shanghai, China.
| |
Collapse
|
7
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Pizzuti V, Donadei C, Balducelli E, Conte D, Gessaroli E, Paris F, Bini C, Demetri M, Di Nunzio M, Corradetti V, Alviano F, La Manna G, Comai G. Urine-Derived Renal Epithelial Cells (URECs) from Transplanted Kidneys as a Promising Immunomodulatory Cell Population. Cells 2023; 12:1630. [PMID: 37371100 DOI: 10.3390/cells12121630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney transplantation is a lifesaving procedure for patients with end-stage kidney disease (ESKD). Organs derived from donation after cardiac death (DCD) are constantly increasing; however, DCD often leads to ischaemia-reperfusion (IR) and Acute Kidney Injury (AKI) events. These phenomena increase kidney cell turnover to replace damaged cells, which are voided in urine. Urine-derived renal epithelial cells (URECs) are rarely present in the urine of healthy subjects, and their loss has been associated with several kidney disorders. The present study aimed to characterize the phenotype and potential applications of URECs voided after transplant. The results indicate that URECs are highly proliferating cells, expressing several kidney markers, including markers of kidney epithelial progenitor cells. Since the regulation of the immune response is crucial in organ transplantation and new immunoregulatory strategies are needed, UREC immunomodulatory properties were investigated. Co-culture with peripheral blood mononuclear cells (PBMCs) revealed that URECs reduced PBMC apoptosis, inhibited lymphocyte proliferation, increased T regulatory (Treg) cells and reduced T helper 1 (Th1) cells. URECs from transplanted patients represent a promising cell source for the investigation of regenerative processes occurring in kidneys, and for cell-therapy applications based on the regulation of the immune response.
Collapse
Affiliation(s)
- Valeria Pizzuti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Chiara Donadei
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| | - Emma Balducelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Diletta Conte
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Elisa Gessaroli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Francesca Paris
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Claudia Bini
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| | - Marcello Demetri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Miriam Di Nunzio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Valeria Corradetti
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| | - Francesco Alviano
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy
| | - Gaetano La Manna
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40126 Bologna, Italy
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| | - Giorgia Comai
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40139 Bologna, Italy
| |
Collapse
|
9
|
Administration of stem cells against cardiovascular diseases with a focus on molecular mechanisms: Current knowledge and prospects. Tissue Cell 2023; 81:102030. [PMID: 36709696 DOI: 10.1016/j.tice.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are a serious global concern for public and human health. Despite the emergence of significant therapeutic advances, it is still the leading cause of death and disability worldwide. As a result, extensive efforts are underway to develop practical therapeutic approaches. Stem cell-based therapies could be considered a promising strategy for the treatment of CVDs. The efficacy of stem cell-based therapeutic approaches is demonstrated through recent laboratory and clinical studies due to their inherent regenerative properties, proliferative nature, and their capacity to differentiate into different cells such as cardiomyocytes. These properties could improve cardiovascular functioning leading to heart regeneration. The two most common types of stem cells with the potential to cure heart diseases are induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs). Several studies have demonstrated the use, efficacy, and safety of MSC and iPSCs-based therapies for the treatment of CVDs. In this study, we explain the application of stem cells, especially iPSCs and MSCs, in the treatment of CVDs with a focus on cellular and molecular mechanisms and then discuss the advantages, disadvantages, and perspectives of using this technology in the treatment of these diseases.
Collapse
|
10
|
Sayegh MN, Cooney KA, Han WM, Cicka M, Strobel F, Wang L, García AJ, Levit RD. Hydrogel delivery of purinergic enzymes improves cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 176:98-109. [PMID: 36764383 PMCID: PMC10006353 DOI: 10.1016/j.yjmcc.2023.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
RATIONALE The innate immune response contributes to cardiac injury in myocardial ischemia/reperfusion (MI/R). Neutrophils are an important early part of the innate immune response to MI/R. Adenosine, an endogenous purine, is a known innate immune modulator and inhibitor of neutrophil activation. However, its delivery to the heart is limited by its short half-life (<30 s) and off-target side effects. CD39 and CD73 are anti-inflammatory homeostatic enzymes that can generate adenosine from phosphorylated adenosine substrate such as ATP released from injured tissue. OBJECTIVE We hypothesize that hydrogel-delivered CD39 and CD73 target the local early innate immune response, reduce neutrophil activation, and preserve cardiac function in MI/R injury. METHODS AND RESULTS We engineered a poly(ethylene) glycol (PEG) hydrogel loaded with the adenosine-generating enzymes CD39 and CD73. We incubated the hydrogels with neutrophils in vitro and showed a reduction in hydrogen peroxide production using Amplex Red. We demonstrated availability of substrate for the enzymes in the myocardium in MI/R by LC/MS, and tested release kinetics from the hydrogel. On echocardiography, global longitudinal strain (GLS) was preserved in MI/R hearts treated with the loaded hydrogel. Delivery of purinergic enzymes via this synthetic hydrogel resulted in lower innate immune infiltration into the myocardium post-MI/R, decreased markers of macrophage and neutrophil activation (NETosis), and decreased leukocyte-platelet complexes in circulation. CONCLUSIONS In a rat model of MI/R injury, CD39 and CD73 delivered via a hydrogel preserve cardiac function by modulating the innate immune response.
Collapse
Affiliation(s)
- Michael N Sayegh
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biological Sciences, Tennessee State University, Nashville, TN, United States of America
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America; Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Markus Cicka
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Frederick Strobel
- Department of Chemistry, Emory University, Atlanta, GA, United States of America
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States of America; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America.
| |
Collapse
|
11
|
Mesenchymal Stem Cells and Their Exocytotic Vesicles. Int J Mol Sci 2023; 24:ijms24032085. [PMID: 36768406 PMCID: PMC9916886 DOI: 10.3390/ijms24032085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as a kind of pluripotent stem cells, have attracted much attention in orthopedic diseases, geriatric diseases, metabolic diseases, and sports functions due to their osteogenic potential, chondrogenic differentiation ability, and adipocyte differentiation. Anti-inflammation, anti-fibrosis, angiogenesis promotion, neurogenesis, immune regulation, and secreted growth factors, proteases, hormones, cytokines, and chemokines of MSCs have been widely studied in liver and kidney diseases, cardiovascular and cerebrovascular diseases. In recent years, many studies have shown that the extracellular vesicles of MSCs have similar functions to MSCs transplantation in all the above aspects. Here we review the research progress of MSCs and their exocrine vesicles in recent years.
Collapse
|
12
|
Ortona S, Barisione C, Ferrari PF, Palombo D, Pratesi G. PCSK9 and Other Metabolic Targets to Counteract Ischemia/Reperfusion Injury in Acute Myocardial Infarction and Visceral Vascular Surgery. J Clin Med 2022; 11:jcm11133638. [PMID: 35806921 PMCID: PMC9267902 DOI: 10.3390/jcm11133638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury complicates both unpredictable events (myocardial infarction and stroke) as well as surgically-induced ones when transient clampage of major vessels is needed. Although the main cause of damage is attributed to mitochondrial dysfunction and oxidative stress, the use of antioxidant compounds for protection gave poor results when challenged in clinics. More recently, there is an assumption that, in humans, profound metabolic changes may prevail in driving I/R injury. In the present work, we narrowed the field of search to I/R injury in the heart/brain/kidney axis in acute myocardial infarction, major vascular surgery, and to the current practice of protection in both settings; then, to help the definition of novel strategies to be translated clinically, the most promising metabolic targets with their modulatory compounds—when available—and new preclinical strategies against I/R injury are described. The consideration arisen from the broad range of studies we have reviewed will help to define novel therapeutic approaches to ensure mitochondrial protection, when I/R events are predictable, and to cope with I/R injury, when it occurs unexpectedly.
Collapse
Affiliation(s)
- Silvia Ortona
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
| | - Chiara Barisione
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-010-555-7881
| | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Opera Pia, 15, 16145 Genoa, Italy;
| | - Domenico Palombo
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
- Research Center for Biologically Inspired Engineering in Vascular Medicine and Longevity, University of Genoa, Via Montallegro, 1, 16145 Genoa, Italy
| | - Giovanni Pratesi
- Vascular and Endovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132 Genoa, Italy; (S.O.); (D.P.); (G.P.)
- Department of Surgical and Integrated Diagnostic Sciences, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| |
Collapse
|
13
|
Monguió-Tortajada M, Prat-Vidal C, Martínez-Falguera D, Teis A, Soler-Botija C, Courageux Y, Munizaga-Larroudé M, Moron-Font M, Bayes-Genis A, Borràs FE, Roura S, Gálvez-Montón C. Acellular cardiac scaffolds enriched with MSC-derived extracellular vesicles limit ventricular remodelling and exert local and systemic immunomodulation in a myocardial infarction porcine model. Theranostics 2022; 12:4656-4670. [PMID: 35832072 PMCID: PMC9254233 DOI: 10.7150/thno.72289] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/13/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Extracellular vesicles (EVs) from mesenchymal stromal cell (MSC) are a potential therapy for cardiac healing after myocardial infarction (MI). Nevertheless, neither their efficient administration nor therapeutic mechanisms are fully elucidated. Here, we evaluate the preclinical efficacy of a tissue engineering approach to locally deliver porcine cardiac adipose tissue MSC-EV (cATMSC-EV) in an acute MI pig model. Methods: After MI by permanent ligation of the coronary artery, pigs (n = 24) were randomized to Untreated or treated groups with a decellularised pericardial scaffold filled with peptide hydrogel and cATMSC-EV purified by size exclusion chromatography (EV-Treated group) or buffer (Control group), placed over the post-infarcted myocardium. Results: After 30 days, cardiac MRI showed an improved cardiac function in EV-Treated animals, with significantly higher right ventricle ejection fraction (+20.8% in EV-Treated; p = 0.026), and less ventricle dilatation, indicating less myocardial remodelling. Scar size was reduced, with less fibrosis in the distal myocardium (-42.6% Col I in EV-Treated vs Untreated; p = 0.03), a 2-fold increase in vascular density (EV-Treated; p = 0.019) and less CCL2 transcription in the infarct core. EV-treated animals had less macrophage infiltration in the infarct core (-31.7% of CD163+ cells/field in EV-Treated; p = 0.026), but 5.8 times more expressing anti-inflammatory CD73 (p = 0.015). Systemically, locally delivered cATMSC-EV also triggered a systemic effect, doubling the circulating IL-1ra (p = 0.01), and reducing the PBMC rush 2d post-MI, the TNFα and GM-CSF levels at 30d post-MI, and modulating the CD73+ and CCR2+ monocyte populations, related to immunomodulation and fibrosis modulation. Conclusions: These results highlight the potential of cATMSC-EV in modulating hallmarks of ischemic injury for cardiac repair after MI.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Cell Therapy Service, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Daina Martínez-Falguera
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Faculty of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Albert Teis
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Carolina Soler-Botija
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Yvan Courageux
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Department of Biochemistry, Molecular Biology and Biomedicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Micaela Munizaga-Larroudé
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Miriam Moron-Font
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol and Nephrology Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, UAB, Barcelona, Spain
| | - Francesc E. Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol and Nephrology Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona 08500, Spain
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L´Hospitalet de Llobregat, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L´Hospitalet de Llobregat, Spain
| |
Collapse
|
14
|
Sok D, Raval S, McKinney J, Drissi H, Mason A, Mautner K, Kaiser JM, Willett NJ. NSAIDs Reduce Therapeutic Efficacy of Mesenchymal Stromal Cell Therapy in a Rodent Model of Posttraumatic Osteoarthritis. Am J Sports Med 2022; 50:1389-1398. [PMID: 35420503 DOI: 10.1177/03635465221083610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Intra-articular injections of human mesenchymal stromal cells (hMSCs) have shown promise in slowing cartilage degradation in posttraumatic osteoarthritis (PTOA). Clinical use of cell therapies for osteoarthritis has accelerated in recent years without sufficient scientific evidence defining best-use practices. Common recommendations advise patients to avoid nonsteroidal anti-inflammatory drug (NSAID) use before and after cell injection over concerns that NSAIDs may affect therapeutic efficacy. Recommendations to restrict NSAID use are challenging for patients, and it is unclear if patients are compliant. HYPOTHESIS NSAIDs will reduce the efficacy of hMSC therapy in treating a preclinical model of PTOA. STUDY DESIGN Controlled laboratory study. METHODS Lewis rats underwent medial meniscal transection (MMT) surgery to induce PTOA or a sham (sham group) surgery that did not progress to PTOA. Rats received naproxen solution orally daily before (Pre-NSAID group) or after (Post-NSAID group) hMSC treatment, throughout the course of the experiment (Full-NSAID group), or received hMSCs without NSAIDs (No NSAID). Cartilage morphology and composition were quantified using contrast-enhanced micro-computed tomography and histology. Pain (secondary allodynia) was measured using a von Frey filament. RESULTS Injection of hMSCs attenuated cartilage degeneration associated with MMT. hMSCs prevented proteoglycan loss, maintained smooth cartilage surfaces, reduced cartilage lesions, reduced mineralized osteophyte formation, and reduced pain by week 7. The Pre-NSAID group had decreased proteoglycan levels compared with the hMSC group, although there were no other significant differences. Thus, pretreatment with NSAIDs had minimal effects on the therapeutic benefits of hMSC injections. The Post-NSAID and Full-NSAID groups, however, exhibited significantly worse osteoarthritis than the hMSC-only group, with greater proteoglycan loss, surface roughness, osteophyte volume, and pain. CONCLUSION Use of NSAIDs before hMSC injection minimally reduced the therapeutic benefits for PTOA, which included preservation of cartilage surface integrity as well as a reduction in osteophytes. Use of NSAIDs after injections, however, substantially reduced the therapeutic efficacy of cellular treatment. CLINICAL RELEVANCE Our data support the clinical recommendation of avoiding NSAID use after hMSC injection but suggest that using NSAIDs before treatment may not substantially diminish the therapeutic efficacy of cell treatment.
Collapse
Affiliation(s)
- Daniel Sok
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sarvgna Raval
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Jay McKinney
- Emory University School of Medicine, Atlanta, Georgia, USA.,Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Hicham Drissi
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Amadeus Mason
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ken Mautner
- Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jarred M Kaiser
- Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Hospital, Atlanta, Georgia, USA
| | - Nick J Willett
- Emory University School of Medicine, Atlanta, Georgia, USA.,Georgia Institute of Technology, Atlanta, Georgia, USA.,Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| |
Collapse
|
15
|
Huang Y, Li X, Yang L. Hydrogel Encapsulation: Taking the Therapy of Mesenchymal Stem Cells and Their Derived Secretome to the Next Level. Front Bioeng Biotechnol 2022; 10:859927. [PMID: 35433656 PMCID: PMC9011103 DOI: 10.3389/fbioe.2022.859927] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/03/2022] [Indexed: 01/04/2023] Open
Abstract
Biomaterials have long been the focus of research and hydrogels are representatives thereof. Hydrogels have attracted much attention in the medical sciences, especially as a candidate drug-carrier. Mesenchymal stem cells (MSC) and MSC-derived secretome are a promising therapeutic method, owing to the intrinsic therapeutic properties thereof. The low cell retention and poor survival rate of MSCs make further research difficult, which is a problem that hydrogel encapsulation largely solved. In this review, safety and feasibility of hydrogel-encapsulated MSCs, the improvement of the survival, retention, and targeting, and the enhancement of their therapeutic effect by hydrogels were studied. The status of the hydrogel-encapsulated MSC secretome was also discussed.
Collapse
Affiliation(s)
- Yuling Huang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xin Li
- Departments of Infectious Disease, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin Li, ; Lina Yang,
| | - Lina Yang
- Departments of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Xin Li, ; Lina Yang,
| |
Collapse
|
16
|
Wang Y, Qi Z, Yan Z, Ji N, Yang X, Gao D, Hu L, Lv H, Zhang J, Li M. Mesenchymal Stem Cell Immunomodulation: A Novel Intervention Mechanism in Cardiovascular Disease. Front Cell Dev Biol 2022; 9:742088. [PMID: 35096808 PMCID: PMC8790228 DOI: 10.3389/fcell.2021.742088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are the member of multipotency stem cells, which possess the capacity for self-renewal and multi-directional differentiation, and have several characteristics, including multi-lineage differentiation potential and immune regulation, which make them a promising source for cell therapy in inflammation, immune diseases, and organ transplantation. In recent years, MSCs have been described as a novel therapeutic strategy for the treatment of cardiovascular diseases because they are potent modulators of immune system with the ability to modulating immune cell subsets, coordinating local and systemic innate and adaptive immune responses, thereby enabling the formation of a stable inflammatory microenvironment in damaged cardiac tissues. In this review, the immunoregulatory characteristics and potential mechanisms of MSCs are sorted out, the effect of these MSCs on immune cells is emphasized, and finally the application of this mechanism in the treatment of cardiovascular diseases is described to provide help for clinical application.
Collapse
Affiliation(s)
- Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dongjie Gao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Leilei Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
17
|
Mone P, Pansini A, Rizzo M, Minicucci F, Mauro C. St-Elevation Myocardial Infarction Patients with Hyperglycemia: Effects of Intravenous Adenosine. Am J Med Sci 2021; 363:122-129. [PMID: 34582805 DOI: 10.1016/j.amjms.2021.06.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Admission hyperglycemia is common in subjects with acute myocardial infarction (AMI). Reperfusion therapy with primary percutaneous coronary intervention (PPCI) represents the leading therapeutic choice, in particular in ST-segment elevation myocardial infarction (STEMI). Despite this, mortality, re-hospitalizations and complications remain a relevant problem. Adenosine, a purine nucleoside, may reduce no-reflow. Therefore, we studied the effects of intravenous infusion of adenosine in addition to primary percutaneous coronary intervention (PPCI) in hyperglycemic patients with STEMI. METHODS We evaluated 836 patients with STEMI and admission hyperglycemia (glycemia > 140 mg/dL). At the end, 399 patients were entered into the database. Patients were grouped on the basis of whether they received adenosine or not. RESULTS A total of 199 patients received intravenous adenosine infusion and PPCI and 200 patients did not. Kaplan-Meier analysis demonstrated significant differences in all death, cardiac death, re-hospitalization for heart failure and for acute coronary syndrome in the adenosine treated group. CONCLUSIONS The effects of intravenous infusion of adenosine and PPCI on clinical outcomes are significant but we need future larger studies with larger follow-up and statistical analysis to confirm our results.
Collapse
Affiliation(s)
- Pasquale Mone
- Department of Medicine, University of the Study of Campania "Luigi Vanvitelli", Italy; ASL Avellino.
| | - Antonella Pansini
- ASL Avellino; Department of Emergency, Cardarelli Hospital, Naples, Italy
| | | | | | - Ciro Mauro
- Department of Emergency, Cardarelli Hospital, Naples, Italy
| |
Collapse
|
18
|
Abstract
Despite the progress of cardiovascular medicine, ischemia-reperfusion injury can contribute to increased mortality and prolonged hospitalization after myocardial infarction. Ischemia-reperfusion injury pathophysiology encompasses many cells including cardiomyocytes, fibroblasts, mesenchymal stromal cells, vascular endothelial and smooth muscle cells, platelets, polymorphonuclear cells, macrophages, and T lymphocytes. However, specific mechanisms for all contributing cells and molecular pathways are still under investigation. What is definitely known is that endothelial dysfunction, immunity activation and inflammatory response are crucial events during ischemia-reperfusion injury while toll-like receptors, inflammasomes, reactive oxygen species, intracellular calcium overload and mitochondrial permeability transition pore opening consist of key molecular mediators. Indicatively, cardiac fibroblasts through inflammasome activation mediate the initial inflammatory response. Cardiac mesenchymal stromal cells can respond to myocardial injury by pro-inflammatory activation. Endothelial cell activation contributes to the impaired vasomotion, inflammation and thrombotic events and together with platelet activation leads to microcirculation dysfunction and polymorphonuclear cells recruitment promoting inflammation. Polymorphonuclear cells and monocytes/macrophages subsets are critically involved in the inflammation process by producing toxic proteolytic enzymes and reactive oxygen species. T cells subsets are also involved in several stages of ischemia-reperfusion injury. In this review, we summarize the specific contribution of each of the above cells and the related molecular pathways in the pathophysiology of ischemia-reperfusion injury.
Collapse
Affiliation(s)
| | | | - Dimitrios Stakos
- Cardiology Department, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
19
|
Guo Q, Zhao Y, Li J, Huang C, Wang H, Zhao X, Wang M, Zhu W. Galectin-3 Derived from HucMSC Exosomes Promoted Myocardial Fibroblast-to-Myofibroblast Differentiation Associated with β-catenin Upregulation. Int J Stem Cells 2021; 14:320-330. [PMID: 33906979 PMCID: PMC8429944 DOI: 10.15283/ijsc20186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
Background and Objectives Galectin-3 promotes fibroblast-to-myofibroblast differentiation and facilitates injury repair. Previous studies have shown that exosomes derived from human umbilical cord mesenchymal stem cells (hucMSC-ex) promote the differentiation of myocardial fibroblasts into myofibroblasts under inflammatory environment. Whether hucMSC-ex derived Galectin-3 (hucMSC-ex-Galectin-3) plays an important role in fibroblast-to-myofibroblast differentiation is the focus of this study. Methods and Results Galectin-3 was knocked-down by siRNA in hucMSCs, and then exosomes were extracted. Fibroblasts were treated with LPS, LPS+hucMSC-ex, LPS+negative control-siRNA-ex (NC-ex), or LPS+Galectin-3-siRNA-ex (si-ex) in vitro. The coronary artery of the left anterior descending (LAD) branch was permanently ligated, followed by intramyocardial injection with phosphate buffered saline(PBS), hucMSC-ex, hucMSC-NC-ex, or hucMSC-si-ex in vivo. Western blot, RT-PCR, and immunohistochemistry were used to detect the expression of markers related to fibroblast-to-myofibroblast differentiation and inflammatory factors. Migration and contraction functions of fibroblasts were evaluated using Transwell migration and collagen contraction assays, respectively. β-catenin expression was detected by western blot and immunofluorescence. The results showed that hucMSC-ex increased the protein expression of myofibroblast markers, anti-inflammatory factors, and β-catenin. HucMSC-ex also reduced the migration and promoted the contractility of fibroblasts. However, hucMSC-si-ex did not show these activities. Conclusions HucMSC-ex-Galectin-3 promoted the differentiation of cardiac fibroblasts into myofibroblasts in an inflammatory environment, which was associated with increased β-catenin levels.
Collapse
Affiliation(s)
- Qinyu Guo
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yuanyuan Zhao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiejie Li
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chao Huang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hua Wang
- Department of Obstetrics, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiangdong Zhao
- Department of Clinical Laboratory, Zhenjiang Provincial Blood Center, Zhenjiang, China
| | - Mei Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Sayegh MN, Cooney KA, Han WM, Wang L, Strobel F, Hansen LM, García AJ, Levit RD. A Hydrogel Strategy to Augment Tissue Adenosine to Improve Hindlimb Perfusion. Arterioscler Thromb Vasc Biol 2021; 41:e314-e324. [PMID: 33882686 PMCID: PMC8159890 DOI: 10.1161/atvbaha.120.315428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michael N. Sayegh
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA
| | - Kimberly A. Cooney
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Woojin M. Han
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | | | - Laura M. Hansen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Andrés J. García
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA
| | - Rebecca D. Levit
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
21
|
Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases. Acta Biomater 2021; 123:1-30. [PMID: 33484912 DOI: 10.1016/j.actbio.2021.01.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/05/2020] [Accepted: 01/15/2021] [Indexed: 02/06/2023]
Abstract
The degree of tissue injuries such as the level of scarring or organ dysfunction, and the immune response against them primarily determine the outcome and speed of healing process. The successful regeneration of functional tissues requires proper modulation of inflammation-producing immune cells and bioactive factors existing in the damaged microenvironment. In the tissue repair and regeneration processes, different types of biomaterials are implanted either alone or by combined with other bioactive factors, which will interact with the immune systems including immune cells, cytokines and chemokines etc. to achieve different results highly depending on this interplay. In this review article, the influences of different types of biomaterials such as nanoparticles, hydrogels and scaffolds on the immune cells and the modification of immune-responsive factors such as reactive oxygen species (ROS), cytokines, chemokines, enzymes, and metalloproteinases in tissue microenvironment are summarized. In addition, the recent advances of immune-responsive biomaterials in therapy of inflammation-associated diseases such as myocardial infarction, spinal cord injury, osteoarthritis, inflammatory bowel disease and diabetic ulcer are discussed.
Collapse
|
22
|
Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021; 41:2316-2349. [PMID: 33645857 DOI: 10.1002/med.21796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue homeostasis and damage repair through their ability to differentiate into cells of different tissues, trophic support, and immunomodulation. These properties made them attractive for clinical applications in regenerative medicine, immune disorders, and cell transplantation. However, despite multiple preclinical and clinical studies demonstrating beneficial effects of MSCs, their native identity and mechanisms of action remain inconclusive. Since its discovery, the CD73/ecto-5'-nucleotidase is known as a classic marker for MSCs, but its role goes far beyond a phenotypic characterization antigen. CD73 contributes to adenosine production, therefore, is an essential component of purinergic signaling, a pathway composed of different nucleotides and nucleosides, which concentrations are finely regulated by the ectoenzymes and receptors. Thus, purinergic signaling controls pathophysiological functions such as proliferation, migration, cell fate, and immune responses. Despite the remarkable progress already achieved in considering adenosinergic pathway as a therapeutic target in different pathologies, its role is not fully explored in the context of the therapeutic functions of MSCs. Therefore, in this review, we provide an overview of the role of CD73 and adenosine-mediated signaling in the functions ascribed to MSCs, such as homing and proliferation, cell differentiation, and immunomodulation. Additionally, we will discuss the pathophysiological role of MSCs, via CD73 and adenosine, in different diseases, as well as in tumor development and progression. A better understanding of the adenosinergic pathway in the regulation of MSCs functions will help to provide improved therapeutic strategies applicable in regenerative medicine.
Collapse
Affiliation(s)
- Bruna C Galgaro
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liziane R Beckenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Martha van den M Nunnenkamp
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória G Korb
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Liliana I S Naasani
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Katarzyna Roszek
- Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Márcia R Wink
- Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
23
|
Nayak TK, Tilley DG. Recent Advances in GPCR-Regulated Leukocyte Responses during Acute Cardiac Injury. CURRENT OPINION IN PHYSIOLOGY 2020; 19:55-61. [PMID: 33244505 DOI: 10.1016/j.cophys.2020.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Following acute cardiac injury such as myocardial infarction (MI), the controlled activation and recruitment of various leukocytes to the site of tissue damage significantly impacts chronic changes to cardiac structure and function, and ultimately host survival. While recent research has focused primarily on how leukocytes respond to injury, understanding how to effectively modulate their responsiveness to dampen maladaptive inflammation and promote repair processes is not yet fully understood. The complex spatio-temporal migration and activation of leukocytes are largely controlled by various chemokines and their cognate receptors, belonging to the G protein-coupled receptor (GPCR) family. Beyond chemokine receptors, leukocytes express a host of additional GPCRs that have recently been shown to regulate their responsiveness to cardiac injury. In this minireview, we will briefly discuss the impact of chemokine receptors on leukocyte behaviour, with subsequent focus on the most recent advancements in understanding the impact and therapeutic potential of other GPCR classes on leukocyte responses after acute cardiac injury.
Collapse
Affiliation(s)
- Tapas K Nayak
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
24
|
Bauza G, Pasto A, Mcculloch P, Lintner D, Brozovich A, Niclot FB, Khan I, Francis LW, Tasciotti E, Taraballi F. Improving the immunosuppressive potential of articular chondroprogenitors in a three-dimensional culture setting. Sci Rep 2020; 10:16610. [PMID: 33024130 PMCID: PMC7538570 DOI: 10.1038/s41598-020-73188-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cartilage repair in osteoarthritic patients remains a challenge. Identifying resident or donor stem/progenitor cell populations is crucial for augmenting the low intrinsic repair potential of hyaline cartilage. Furthermore, mediating the interaction between these cells and the local immunogenic environment is thought to be critical for long term repair and regeneration. In this study we propose articular cartilage progenitor/stem cells (CPSC) as a valid alternative to bone marrow-derived mesenchymal stem cells (BMMSC) for cartilage repair strategies after trauma. Similar to BMMSC, CPSC isolated from osteoarthritic patients express stem cell markers and have chondrogenic, osteogenic, and adipogenic differentiation ability. In an in vitro 2D setting, CPSC show higher expression of SPP1 and LEP, markers of osteogenic and adipogenic differentiation, respectively. CPSC also display a higher commitment toward chondrogenesis as demonstrated by a higher expression of ACAN. BMMSC and CPSC were cultured in vitro using a previously established collagen-chondroitin sulfate 3D scaffold. The scaffold mimics the cartilage niche, allowing both cell populations to maintain their stem cell features and improve their immunosuppressive potential, demonstrated by the inhibition of activated PBMC proliferation in a co-culture setting. As a result, this study suggests articular cartilage derived-CPSC can be used as a novel tool for cellular and acellular regenerative medicine approaches for osteoarthritis (OA). In addition, the benefit of utilizing a biomimetic acellular scaffold as an advanced 3D culture system to more accurately mimic the physiological environment is demonstrated.
Collapse
Affiliation(s)
- Guillermo Bauza
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Anna Pasto
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Patrick Mcculloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - David Lintner
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Texas A&M College of Medicine, 8447 Highway 47, Bryan, TX, 77807, USA
| | - Federica Banche Niclot
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Department of Applied Science and Technology, Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Ilyas Khan
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
| | - Lewis W Francis
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
| | - Ennio Tasciotti
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
25
|
Electroacupuncture improves myocardial ischemia injury via activation of adenosine receptors. Purinergic Signal 2020; 16:337-345. [PMID: 32632520 PMCID: PMC7524961 DOI: 10.1007/s11302-020-09704-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/17/2020] [Indexed: 11/07/2022] Open
Abstract
Electroacupuncture (EA) can improve myocardial ischemia (MI) injury; nevertheless, the mechanism is not entirely clear. And there were disagreements about whether the effect of EA at acupoint in disease-affected meridian is better than EA at acupoint in non-affected meridian and sham acupoint. Here, we showed that the effect of EA at Neiguan (PC6) is better than EA at Hegu (LI4) and sham acupoint in affecting RPP and ECG, increasing ATP and ADO production, decreasing AMP production, and upregulating the mRNA expression levels of A1AR, A2aAR, and A2bAR; knockdown of A1AR or A2bAR reversed the effect of EA at PC6 in alleviating MI injury; knockdown of A2aAR had no influence on the cardiac protection of EA at PC6; thus, the cardioprotective effect of EA at PC6 needs A1AR and A2bAR, instead of A2aAR; considering that the cardio protection of adenosine receptor needs activation of other adenosine receptors, one of the reasons may be that after silence of A1AR or A2bAR, EA at PC6 could not impact the expression levels of the other two adenosine receptors, and after silence of A2aAR, EA at PC6 could impact the expression levels of A1AR and A2bAR. These results suggested that EA at PC6 may be a potential and effective treatment for MI by activation of A1AR and A2bAR.
Collapse
|
26
|
Wu X, Jia Y, Sun X, Wang J. Tissue engineering in female pelvic floor reconstruction. Eng Life Sci 2020; 20:275-286. [PMID: 32647506 PMCID: PMC7336160 DOI: 10.1002/elsc.202000003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/16/2022] Open
Abstract
Pelvic organ prolapse is a common and frequently occurring disease in middle-aged and elderly women. Mesh implantation is an ideal surgical treatment. The polypropylene mesh commonly used in clinical practice has good mechanical properties, but there are long-term complications. The application of tissue engineering technology in the treatment of pelvic organ prolapse disease can not only meet the mechanical requirements of pelvic floor support, but also be more biocompatible than traditional polypropylene mesh, and can promote tissue repair to a certain extent. In this paper, the progress of tissue engineering was summarized to understand the application of tissue engineering in the treatment of pelvic organ prolapse disease and will help in research.
Collapse
Affiliation(s)
- Xiaotong Wu
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - YuanYuan Jia
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Xiuli Sun
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| | - Jianliu Wang
- Department of Obstetrics and GynecologyPeking University People's HospitalBeijingP. R. China
- Beijing Key Laboratory of Female Pelvic Floor DisordersBeijingP. R. China
| |
Collapse
|
27
|
Burand AJ, Di L, Boland LK, Boyt DT, Schrodt MV, Santillan DA, Ankrum JA. Aggregation of Human Mesenchymal Stromal Cells Eliminates Their Ability to Suppress Human T Cells. Front Immunol 2020; 11:143. [PMID: 32158443 PMCID: PMC7052295 DOI: 10.3389/fimmu.2020.00143] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are administered locally to treat sites of inflammation. Local delivery is known to cause MSCs to aggregate into “spheroids,” which alters gene expression and phenotype. While adherent MSCs are highly efficient in their inhibition of T cells, whether or not this property is altered upon MSC aggregation has not been thoroughly determined. In this study, we discovered that aggregation of MSCs into spheroids causes them to lose their T cell-suppressive abilities. Interestingly, adding budesonide, a topical glucocorticoid steroid, alongside spheroids partially restored MSC suppression of T cell proliferation. Through a series of inhibition and add-back studies, we determined budesonide acts synergistically with spheroid MSC-produced PGE2 to suppress T cell proliferation through the PGE2 receptors EP2 and EP4. These findings highlight critical differences between adherent and spheroid MSC interactions with human immune cells that have significant translational consequences. In addition, we uncovered a mechanism through which spheroid MSC suppression of T cells can be partly restored. By understanding the phenotypic changes that occur upon MSC aggregation and the impact of MSC drug interactions, improved immunosuppressive MSC therapies for localized delivery can be designed.
Collapse
Affiliation(s)
- Anthony J Burand
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Lin Di
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Lauren K Boland
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Devlin T Boyt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Michael V Schrodt
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| | - Donna A Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Center for Immunology and Immune Based Diseases, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Center for Hypertension Research, University of Iowa, Iowa City, IA, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
28
|
Baldissera MD, Souza CF, da Silva HNP, Henn AS, Duarte FA, da Costa ST, Da Silva AS, Baldisserotto B. Diphenyl diselenide modulates splenic purinergic signaling in silver catfish fed diets contaminated with fumonisin B 1: An attempt to improve immune and hemostatic responses. Comp Biochem Physiol C Toxicol Pharmacol 2020; 227:108624. [PMID: 31521749 DOI: 10.1016/j.cbpc.2019.108624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
Abstract
The aim of this study was to determine whether purinergic signaling is a pathway associated with fumonisin B1 (FB1)-induced impairment of immune and hemostatic responses. We also determined whether dietary supplementation with diphenyl diselenide (Ph2Se2) prevents or reduces these effects. Splenic nucleoside triphosphate diphosphohydrolase (NTPDase) activity for adenosine triphosphate (ATP) and adenosine diphosphate (ADP) as substrates and total blood thrombocytes counts were significant lower in silver catfish fed with FB1-contaminated diets than in fish fed with a basal diet, while splenic adenosine deaminase (ADA) activity and metabolites of nitric oxide (NOx) levels were significant higher. Also, glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significant lower in silver catfish fed with FB1-contaminated diets than in fish fed with a basal diet. Dietary supplementation with 3 mg Ph2Se2/kg of feed effectively modulated splenic NTPDase (ATP as substrate), ADA, GPx and SOD activities, as well as NOx levels, and was partially effective in the modulation of spleen NTPDase activity (ADP as substrate) and total blood thrombocytes count. These data suggest that splenic purinergic signaling of silver catfish fed with FB1-contaminated diets generates a pro-inflammatory profile that contributes to impairment of immune and inflammatory responses, via reduction of splenic ATP hydrolysis followed possible ATP accumulation in the extracellular environment. Reduction of ADP hydrolysis associated with possible accumulation in the extracellular environment can be a pathophysiological response that restricts the hemorrhagic process elicited by FB1 intoxication. Supplementation with Ph2Se2 effectively modulated splenic enzymes associated with control of extracellular nucleotides (except ADP; that was partially modulated) and nucleosides, thereby limiting inflammatory and hemorrhagic processes.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Hugo Napoleão P da Silva
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandra S Henn
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Fábio A Duarte
- Department of Chemistry, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Silvio T da Costa
- Department of Morphology, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
29
|
Mineralocorticoid receptor antagonists lead to increased adenosine bioavailability and modulate contractile cardiac parameters. Heart Vessels 2019; 35:719-730. [PMID: 31820090 DOI: 10.1007/s00380-019-01542-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/29/2019] [Indexed: 10/25/2022]
Abstract
Activation of mineralocorticoid receptor antagonists (MRAs) is cardioprotective; however, this property is lost upon blockade or inactivation of adenosine (ADO) receptor A2b. In this study, we investigated whether the effects of MRAs are mediated by an interaction between cardioprotective ADO receptors A1 and A3. Spironolactone (SPI) or eplerenone (EPL) increased ADO levels in the plasma of treated animals compared to control animals. SPI or EPL increased the protein and activity levels of ecto-5'-nucleotidase (NT5E), an enzyme that synthesizes ADO, compared to control. The levels of ADO deaminase (ADA), which degrades ADO, were not affected by SPI or EPL; however, the activity of ADA was reduced in SPI-treated rats compared to control. Using an isolated cardiomyocyte model, we found inotropic and chronotropic effects, and increased calcium transient [Ca2+]i in cells treated with ADO receptor A1 or A3 antagonists compared to control groups. Upon co-treatment with MRAs, EPL and SPI fully and partially reverted the effects of receptor A1 or A3 antagonism, respectively. Collectively, MRAs in vivo lead to increased ADO bioavailability. In vitro, the rapid effects of SPI and EPL are mediated by an interaction between ADO receptors A1 and A3.
Collapse
|
30
|
Chen Y, Zuo J, Chen W, Yang Z, Zhang Y, Hua F, Shao L, Li J, Chen Y, Yu Y, Shen Z. The enhanced effect and underlying mechanisms of mesenchymal stem cells with IL-33 overexpression on myocardial infarction. Stem Cell Res Ther 2019; 10:295. [PMID: 31547872 PMCID: PMC6757387 DOI: 10.1186/s13287-019-1392-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Interleukin 33 is known to have an important influence in the process of myocardial infarction, and the immunoregulatory function of MSCs could be influenced by cell factors. In this study, we evaluated the therapeutic efficacy of IL-33-overexpressing bone marrow mesenchymal stem cells (IL33-MSCs) on myocardial infarction (MI) and detected the inflammatory level and cardiac function in rats. METHODS AND RESULTS First, we evaluated the proliferation of T cells and polarization of macrophages that had been co-cultured with Vector-MSCs or IL33-MSCs. Co-culture experiments indicated that IL33-MSCs reduced T cell proliferation and enhanced CD206+ macrophage polarization. Second, we determined the inflammation level and cardiac function of PBS-, Vector-MSC-, and IL33-MSC-injected rats. Echocardiography indicated that left ventricular ejection fraction (LVEF) was enhanced in IL33-MSC-injected rats compared with Vector-MSC-injected rats. Postmortem analysis of rat heart tissue showed reduced fibrosis and less inflammation in IL33-MSC-injected rats. CONCLUSION These studies indicated that the IL33-MSC injection improved heart function and reduces inflammation in rats with MI compared with PBS or Vector-MSC injections. IL-33 overexpression enhances the immunomodulatory function and therapeutic effects of MSCs on acute MI via enhancing the polarization of macrophages toward M2, enhancing the differentiation of CD4+ T cells toward CD4+IL4+Th2 cells, and finally, reducing heart inflammation and enhancing heart function.
Collapse
Affiliation(s)
- Yueqiu Chen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jianfeng Zuo
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.,Nantong First People's Hospital, Nantong, China
| | - Weiqian Chen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Ziying Yang
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yanxia Zhang
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Fei Hua
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Lianbo Shao
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Jingjing Li
- Institute for Cardiovascular Science, Soochow University, Suzhou, China.,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China
| | - Yunsheng Yu
- Institute for Cardiovascular Science, Soochow University, Suzhou, China. .,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.
| | - Zhenya Shen
- Institute for Cardiovascular Science, Soochow University, Suzhou, China. .,Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, China.
| |
Collapse
|
31
|
Minor M, Alcedo KP, Battaglia RA, Snider NT. Cell type- and tissue-specific functions of ecto-5'-nucleotidase (CD73). Am J Physiol Cell Physiol 2019; 317:C1079-C1092. [PMID: 31461341 DOI: 10.1152/ajpcell.00285.2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-5'-nucleotidase [cluster of differentiation 73 (CD73)] is a ubiquitously expressed glycosylphosphatidylinositol-anchored glycoprotein that converts extracellular adenosine 5'-monophosphate to adenosine. Anti-CD73 inhibitory antibodies are currently undergoing clinical testing for cancer immunotherapy. However, many protective physiological functions of CD73 need to be taken into account for new targeted therapies. This review examines CD73 functions in multiple organ systems and cell types, with a particular focus on novel findings from the last 5 years. Missense loss-of-function mutations in the CD73-encoding gene NT5E cause the rare disease "arterial calcifications due to deficiency of CD73." Aside from direct human disease involvement, cellular and animal model studies have revealed key functions of CD73 in tissue homeostasis and pathology across multiple organ systems. In the context of the central nervous system, CD73 is antinociceptive and protects against inflammatory damage, while also contributing to age-dependent decline in cortical plasticity. CD73 preserves barrier function in multiple tissues, a role that is most evident in the respiratory system, where it inhibits endothelial permeability in an adenosine-dependent manner. CD73 has important cardioprotective functions during myocardial infarction and heart failure. Under ischemia-reperfusion injury conditions, rapid and sustained induction of CD73 confers protection in the liver and kidney. In some cases, the mechanism by which CD73 mediates tissue injury is less clear. For example, CD73 has a promoting role in liver fibrosis but is protective in lung fibrosis. Future studies that integrate CD73 regulation and function at the cellular level with physiological responses will improve its utility as a disease target.
Collapse
Affiliation(s)
- Marquet Minor
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Karel P Alcedo
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachel A Battaglia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Natasha T Snider
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Mukherjee S, Darzi S, Paul K, Werkmeister JA, Gargett CE. Mesenchymal stem cell-based bioengineered constructs: foreign body response, cross-talk with macrophages and impact of biomaterial design strategies for pelvic floor disorders. Interface Focus 2019; 9:20180089. [PMID: 31263531 PMCID: PMC6597526 DOI: 10.1098/rsfs.2018.0089] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
An excessive foreign body response (FBR) has contributed to the adverse events associated with polypropylene mesh usage for augmenting pelvic organ prolapse surgery. Consequently, current biomaterial research considers the critical role of the FBR and now focuses on developing better biocompatible biomaterials rather than using inert implants to improve the clinical outcomes of their use. Tissue engineering approaches using mesenchymal stem cells (MSCs) have improved outcomes over traditional implants in other biological systems through their interaction with macrophages, the main cellular player in the FBR. The unique angiogenic, immunomodulatory and regenerative properties of MSCs have a direct impact on the FBR following biomaterial implantation. In this review, we focus on key aspects of the FBR to tissue-engineered MSC-based implants for supporting pelvic organs and beyond. We also discuss the immunomodulatory effects of the recently discovered endometrial MSCs on the macrophage response to new biomaterials designed for use in pelvic floor reconstructive surgery. We conclude with a focus on considerations in biomaterial design that take into account the FBR and will likely influence the development of the next generation of biomaterials for gynaecological applications.
Collapse
Affiliation(s)
- Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia.,CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| | - Jerome A Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia.,CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | - Caroline E Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
33
|
Kong X, Zuo Y, Huang Y, Ge J. Adenosine A2a receptor agonist CGS21680 treatment attenuates cardiopulmonary bypass‑associated inflammatory lung injury in juvenile rats. Mol Med Rep 2019; 20:117-124. [PMID: 31115565 DOI: 10.3892/mmr.2019.10235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/16/2019] [Indexed: 11/06/2022] Open
Abstract
The adenosine A2a receptor agonist CGS21680 has been suggested to act as an anti‑inflammatory agent that protects against cardiopulmonary bypass (CPB)‑induced organ injury. However, the therapeutic effects of CGS21680 for CPB‑induced lung injury have not been comprehensively evaluated. Using a juvenile rat model, the present study was designed to evaluated whether CGS21680 attenuates CPB‑induced lung injury. Our juvenile rat CPB model was established by 60 min CPB with or without CGS21680 pretreatment (100 µg/kg, in the CPB priming solution). Rats in the Sham group only underwent cannulation and heparinization. Serum and pulmonary levels of inflammatory markers and histological features of pulmonary tissues were analyzed. All juvenile rats survived following CPB. Significantly elevated serum levels of tumor necrosis factor‑α (TNF‑α), myeloperoxidase (MPO) and interleukin‑1β (IL‑1β), and decreased glutathione peroxidase (GSH‑PX) levels were observed in the CPB group compared to the Sham group (all P<0.05). TNF‑α, MPO and IL‑1β were significantly decreased, while GSH‑PX was markedly increased in the CGS group when compared to the CPB group. Consistently, pulmonary tissues from rats in the CPB group showed considerable amounts of damaged pneumocytes, severe edema, and increased alveolar macrophages, and significantly higher lung injury scores compared to the controls. Collectively, these changes were all further attenuated by CGS21680. Pretreatment with CGS21680 before CPB attenuated pulmonary injury, which may be related to the anti‑inflammatory effects of CGS21680 downstream of A2a receptor activation.
Collapse
Affiliation(s)
- Xiang Kong
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, P.R. China
| | - Yi Zuo
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, P.R. China
| | - Yu'ang Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, P.R. China
| | - Jianjun Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, Anhui 230001, P.R. China
| |
Collapse
|
34
|
Tan K, Zhu H, Zhang J, Ouyang W, Tang J, Zhang Y, Qiu L, Liu X, Ding Z, Deng X. CD73 Expression on Mesenchymal Stem Cells Dictates the Reparative Properties via Its Anti-Inflammatory Activity. Stem Cells Int 2019; 2019:8717694. [PMID: 31249602 PMCID: PMC6525959 DOI: 10.1155/2019/8717694] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 11/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) are not universal and may be subject to dynamic changes upon local milieus in vivo and after isolation and cultivation in vitro. Here, we demonstrate that MSC derived from murine pericardial adipose tissue (pMSC) constitute two cohorts of population distinguished by the level of CD73 expression (termed as CD73high and CD73low pMSC). Transplantation of two types of cells into mouse hearts after myocardial infarction (MI) revealed that the CD73high pMSC preferentially brought about structural and functional repair in comparison to the PBS control and CD73low pMSC. Furthermore, the CD73high pMSC displayed a pronounced anti-inflammatory activity by attenuating CCR2+ macrophage infiltration and upregulating several anti-inflammatory genes 5 days after in vivo transplantation and ex vivo cocultivation with peritoneal macrophages. The immunomodulatory effect was not seen in cocultivation experiments with pMSC derived from CD73 knockout mice (CD73-/-) but was partially blocked by pretreatment of the A2b receptor antagonist, PSB603. The results highlight a heterogeneity of the CD73 expression that may be related to its catalytic products on the modulation of the local immune response and thus provide a possible explanation to the inconsistency of the regenerative results when different sources of donor cells were used in stem cell-based therapy.
Collapse
Affiliation(s)
- Kezhe Tan
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd. 168, 200433 Shanghai, China
| | - Hongtao Zhu
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Jianfang Zhang
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Weili Ouyang
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Jianfeng Tang
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Youming Zhang
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Linlin Qiu
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Xueqing Liu
- Department of Cardiology, Danyang People's Hospital, West Xinmin Rd. 5, 212300 Danyang, China
| | - Zhaoping Ding
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd. 168, 200433 Shanghai, China
- Institute of Molecular Cardiology, Heinrich-Heine University of Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Xiaoming Deng
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Changhai Rd. 168, 200433 Shanghai, China
| |
Collapse
|
35
|
Li X, Xie X, Yu Z, Chen Y, Qu G, Yu H, Luo B, Lei Y, Li Y. Bone marrow mesenchymal stem cells-derived conditioned medium protects cardiomyocytes from hypoxia/reoxygenation-induced injury through Notch2/mTOR/autophagy signaling. J Cell Physiol 2019; 234:18906-18916. [PMID: 30953350 DOI: 10.1002/jcp.28530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/15/2019] [Accepted: 02/19/2019] [Indexed: 12/20/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSC) can ameliorate ischemic injury of various tissues. However, the molecular mechanisms involved remain to be clarified. In this study, we intend to investigate the effects of BMSC-derived conditioned medium (BMSC-CM) on hypoxia/reoxygenation (H/R)-induced injury of H9c2 myocardial cells, and the potential mechanisms. Cell injury was determined through level of cell viability, lactate dehydrogenase (LDH) release, total intracellular reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), and cell apoptosis. Autophagic activity of cells was detected through levels of the autophagy-associated proteins and autophagic flux. Results showed that BMSC-CM alleviated H/R-induced injury in H9c2 cells, as demonstrated by increased cell viability and Δψm, decreased ROS production, LDH release, and cell apoptosis. Furthermore, the H/R treatment induced a decrease in autophagic activity and an increase in Notch2 signaling activation in H9c2 cells. In the presence of BMSC-CM, the autophagic activity impaired by the H/R treatment was upregulated with decreased phosphorylation of mTOR, and the activation of Notch2 signaling was downregulated. These effects of BMSC-CM could be replicated by Notch signaling inhibitor. In contrast, inhibitors of cell autophagy including chloroquine (CQ) and 3-methyladenine, diminished the protective effects of BMSC-CM. Taken together results, our study showed that BMSC-CM could protect H9c2 cells from H/R-induced injury potentially through regulating Notch2/mTOR/autophagy signaling. These findings may provide a novel insight into the mechanisms of BMSC-CM in therapy of myocardial ischemia/reperfusion injury as well as other ischemic diseases.
Collapse
Affiliation(s)
- Xianyu Li
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.,Department of Pathophysiology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Xiaolin Xie
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Gaojing Qu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Han Yu
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Bin Luo
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yifeng Lei
- The Institute of Technological Sciences & School of Power and Mechanical Engineering, Wuhan University, Wuhan, China
| | - Yinping Li
- Department of Pathophysiology & Hubei Province Key Laboratory of Allergy and Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Baldissera MD, Souza CF, Descovi SN, Petrolli TG, da Silva AS, Baldisserotto B. Caffeine modulates brain purinergic signaling in Nile tilapia (Oreochromis niloticus) under hypoxia conditions: improvement of immune and inflammatory responses. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:551-560. [PMID: 30515653 DOI: 10.1007/s10695-018-0592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
Purinergic signaling is linked to neurodegenerative and proinflammatory damage during pathological conditions such as hypoxia, but involvement of this pathway in brain damage in fish exposed to environmental hypoxia remains unknown, and we propose dietary supplementation with caffeine in order to improve the immune response. Therefore, the aim of the study was to evaluate whether the enzymatic purinergic signaling pathway is associated with inflammatory brain damage in Nile tilapia (Oreochromis niloticus) exposed to environmental hypoxia and whether dietary supplementation with caffeine (5% and 8%) can prevent these changes in purinergic signaling. Animals were randomly divided into six groups (A-F, n = 6 per group, in triplicate), as follows: groups A-C were submitted to normoxia, while groups D-F were submitted to hypoxia. Groups A and D received the basal diet, while groups B and D and groups C and F received a diet containing 5% and 8% caffeine, respectively, and fed with their respective diets for 21 days. After 21 days, aeration was disconnected (groups D-F) and the dissolved oxygen levels were maintained as follows: group A (6.55 ± 0.23 mg/L), group B (6.51 ± 0.24 mg/L), group C (6.58 ± 0.22 mg/L), group D (1.23 ± 0.11 mg/L), group E (1.20 ± 0.15 mg/L), and group F (1.18 ± 0.13 mg/L). Cerebral triphosphate diphosphohydrolase (NTPDase) using adenosine triphosphate (ATP) as a substrate and 5'-nucleotidase activities decreased in fish exposed to 72 h of hypoxia compared with the normoxia group, while adenosine deaminase (ADA) activity and levels of nitric oxide (NOx) metabolites were higher. Dietary supplementation with 5% and 8% caffeine prevented all alterations elicited by hypoxia, with the exception of ADA activity in the case of 5% caffeine. Based on this evidence, our findings reveal that nucleotide/nucleoside hydrolysis is modified in the brains of fish exposed to 72 h of hypoxia, contributing to inflammatory damage, which apparently is mediated by excessive ATP content in the extracellular medium and by excessive NOx production. Also, the use of a diet containing 5% and 8% caffeine prevented these alterations (except 5% of dietary caffeine on ADA activity) and can be considered an interesting approach to preventing the impairment of immune and inflammatory responses elicited by hypoxia, principally the inclusion of 8% caffeine.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine N Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tiago G Petrolli
- Postgraduate Program in Veterinary Medicine, Universidade do Oeste de Santa Catarina, Xanxerê, SC, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
37
|
Xu K, Cooney KA, Shin EY, Wang L, Deppen JN, Ginn SC, Levit RD. Adenosine from a biologic source regulates neutrophil extracellular traps (NETs). J Leukoc Biol 2019; 105:1225-1234. [PMID: 30907983 DOI: 10.1002/jlb.3vma0918-374r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/01/2019] [Accepted: 02/25/2019] [Indexed: 01/27/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are implicated in autoimmune, thrombotic, malignant, and inflammatory diseases; however, little is known of their endogenous regulation under basal conditions. Inflammatory effects of neutrophils are modulated by extracellular purines such as adenosine (ADO) that is inhibitory or ATP that generally up-regulates effector functions. In order to evaluate the effects of ADO on NETs, human neutrophils were isolated from peripheral venous blood from healthy donors and stimulated to make NETs. Treatment with ADO inhibited NET production as quantified by 2 methods: SYTOX green fluorescence and human neutrophil elastase (HNE)-DNA ELISA assay. Specific ADO receptor agonist and antagonist were tested for their effects on NET production. The ADO 2A receptor (A2A R) agonist CSG21680 inhibited NETs to a similar degree as ADO, whereas the A2A R antagonist ZM241385 prevented ADO's NET-inhibitory effects. Additionally, CD73 is a membrane bound ectonucleotidase expressed on mesenchymal stromal cells (MSCs) that allows manipulation of extracellular purines in tissues such as bone marrow. The effects of MSCs on NET formation were evaluated in coculture. MSCs reduced NET formation in a CD73-dependent manner. These results imply that extracellular purine balance may locally regulate NETosis and may be actively modulated by stromal cells to maintain tissue homeostasis.
Collapse
Affiliation(s)
- Kai Xu
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Cardiovascular Medicine, Xiangya Hospital, Changsha, China
| | - Kimberly A Cooney
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Eric Y Shin
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lanfang Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Juline N Deppen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sydney C Ginn
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Rebecca D Levit
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
38
|
Jin YY, Bai R, Ai H, Nie SP. Effect of Ticagrelor on Coronary Blood Flow and Prognosis in Patients with Acute Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention in Real World. Chin Med J (Engl) 2019; 131:2634-2636. [PMID: 30381606 PMCID: PMC6213840 DOI: 10.4103/0366-6999.244106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yan-Yan Jin
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Rong Bai
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Hui Ai
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Shao-Pin Nie
- Emergency and Critical Care Center, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
39
|
Yun CW, Lee SH. Enhancement of Functionality and Therapeutic Efficacy of Cell-Based Therapy Using Mesenchymal Stem Cells for Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20040982. [PMID: 30813471 PMCID: PMC6412804 DOI: 10.3390/ijms20040982] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease usually triggers coronary heart disease, stroke, and ischemic diseases, thus promoting the development of functional failure. Mesenchymal stem cells (MSCs) are cells that can be isolated from various human tissues, with multipotent and immunomodulatory characteristics to help damaged tissue repair and avoidance of immune responses. Much research has proved the feasibility, safety, and efficiency of MSC-based therapy for cardiovascular disease. Despite the fact that the precise mechanism of MSCs remains unclear, their therapeutic capability to treat ischemic diseases has been tested in phase I/II clinical trials. MSCs have the potential to become an effective therapeutic strategy for the treatment of ischemic and non-ischemic cardiovascular disorders. The molecular mechanism underlying the efficacy of MSCs in promoting engraftment and accelerating the functional recovery of injury sites is still unclear. It is hypothesized that the mechanisms of paracrine effects for the cardiac repair, optimization of the niche for cell survival, and cardiac remodeling by inflammatory control are involved in the interaction between MSCs and the damaged myocardial environment. This review focuses on recent experimental and clinical findings related to cardiovascular disease. We focus on MSCs, highlighting their roles in cardiovascular disease repair, differentiation, and MSC niche, and discuss their therapeutic efficacy and the current status of MSC-based cardiovascular disease therapies.
Collapse
Affiliation(s)
- Chul Won Yun
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Korea.
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 34538, Korea.
| |
Collapse
|
40
|
McKinney JM, Doan TN, Wang L, Deppen J, Reece DS, Pucha KA, Ginn S, Levit RD, Willett NJ. Therapeutic efficacy of intra-articular delivery of encapsulated human mesenchymal stem cells on early stage osteoarthritis. Eur Cell Mater 2019; 37:42-59. [PMID: 30693466 PMCID: PMC7549187 DOI: 10.22203/ecm.v037a04] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent a great therapeutic promise in pre-clinical models of osteoarthritis (OA), but many questions remain as to their therapeutic mechanism of action: engraftment versus paracrine action. Encapsulation of human MSCs (hMSCs) in sodium alginate microspheres allowed for the paracrine signaling properties of these cells to be isolated and studied independently of direct cellular engraftment. The objective of the present study was to quantitatively assess the efficacy of encapsulated hMSCs as a disease-modifying therapeutic for OA, using a medial meniscal tear (MMT) rat model. It was hypothesized that encapsulated hMSCs would have a therapeutic effect, through paracrine-mediated action, on early OA development. Lewis rats underwent MMT surgery to induce OA. 1 d post-surgery, rats received intra-articular injections of encapsulated hMSCs or controls (i.e., saline, empty capsules, non-encapsulated hMSCs). Microstructural changes in the knee joint were quantified using equilibrium partitioning of a ionic contrast agent based micro-computed tomography (EPIC-μCT) at 3 weeks post-surgery, an established time point for early OA. Encapsulated hMSCs significantly attenuated MMT-induced increases in articular cartilage swelling and surface roughness and augmented cartilaginous and mineralized osteophyte volumes. Cellular encapsulation allowed to isolate the hMSC paracrine signaling effects and demonstrated that hMSCs could exert a chondroprotective therapeutic role on early stage OA through paracrine signaling alone. In addition to this chondroprotective role, encapsulated hMSCs augmented the compensatory increases in osteophyte formation. The latter should be taken into strong consideration as many clinical trials using MSCs for OA are currently ongoing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - N J Willett
- Atlanta Veteran Affairs Medical Center, 1670 Clairmont Rd, Room 5A-115, Decatur, GA 30033,
| |
Collapse
|
41
|
Immunomodulatory Functions of Mesenchymal Stem Cells in Tissue Engineering. Stem Cells Int 2019; 2019:9671206. [PMID: 30766609 PMCID: PMC6350611 DOI: 10.1155/2019/9671206] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/26/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response to chronic injury affects tissue regeneration and has become an important factor influencing the prognosis of patients. In previous stem cell treatments, it was revealed that stem cells not only have the ability for direct differentiation or regeneration in chronic tissue damage but also have a regulatory effect on the immune microenvironment. Stem cells can regulate the immune microenvironment during tissue repair and provide a good "soil" for tissue regeneration. In the current study, the regulation of immune cells by mesenchymal stem cells (MSCs) in the local tissue microenvironment and the tissue damage repair mechanisms are revealed. The application of the concepts of "seed" and "soil" has opened up new research avenues for regenerative medicine. Tissue engineering (TE) technology has been used in multiple tissues and organs using its biomimetic and cellular cell abilities, and scaffolds are now seen as an important part of building seed cell microenvironments. The effect of tissue engineering techniques on stem cell immune regulation is related to the shape and structure of the scaffold, the preinflammatory microenvironment constructed by the implanted scaffold, and the material selection of the scaffold. In the application of scaffold, stem cell technology has important applications in cartilage, bone, heart, and liver and other research fields. In this review, we separately explore the mechanism of MSCs in different tissue and organs through immunoregulation for tissue regeneration and MSC combined with 3D scaffolds to promote MSC immunoregulation to repair damaged tissues.
Collapse
|
42
|
Zomer HD, Roballo KC, Lessa TB, Bressan FF, Gonçalves NN, Meirelles FV, Trentin AG, Ambrósio CE. Distinct features of rabbit and human adipose-derived mesenchymal stem cells: implications for biotechnology and translational research. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:43-54. [PMID: 30425533 PMCID: PMC6204872 DOI: 10.2147/sccaa.s175749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction Owing to their similarity with humans, rabbits are useful for multiple applications in biotechnology and translational research from basic to preclinical studies. In this sense, mesenchymal stem cells (MSCs) are known for their therapeutic potential and promising future in regenerative medicine. As many studies have been using rabbit adipose-derived MSCs (ASCs) as a model of human ASCs (hASCs), it is fundamental to compare their characteristics and understand how distinct features could affect the translation to human medicine. Objective The aim of this study was to comparatively characterize rabbit ASCs (rASCs) and hASCs to further uses in biotechnology and translational studies. Materials and methods rASCs and hASCs were isolated and characterized by their immunophenotype, differentiation potential, proliferative profile, and nuclear stability in vitro. Results and discussion Both ASCs presented differentiation potential to osteocytes, chondrocytes, and adipocytes and shared similar immunophenotype expression to CD105+, CD34−, and CD45−, but rabbit cells expressed significantly lower CD73 and CD90 than human cells. In addition, rASCs presented greater clonogenic potential and proliferation rate than hASCs but no difference in nuclear alterations. Conclusion The distinct features of rASCs and hASCs can positively or negatively affect their use for different applications in biotechnology (such as cell reprogramming) and translational studies (such as cell transplantation, tissue engineering, and pharmacokinetics). Nevertheless, the particularities between rabbit and human MSCs should not prevent rabbit use in preclinical models, but care should be taken to interpret results and properly translate animal findings to medicine.
Collapse
Affiliation(s)
- Helena Debiazi Zomer
- Department of Cell Biology, Embryology and Genetic, Faculty of Biological Sciences, Santa Catarina Federal University (UFSC), Florianópolis, Brazil.,Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Kelly Cs Roballo
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Thais Borges Lessa
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Fabiana Fernandes Bressan
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Natália Nardeli Gonçalves
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,
| | - Flávio Vieira Meirelles
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil, .,Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil,
| | - Andrea Gonçalves Trentin
- Department of Cell Biology, Embryology and Genetic, Faculty of Biological Sciences, Santa Catarina Federal University (UFSC), Florianópolis, Brazil
| | - Carlos Eduardo Ambrósio
- Department of Surgery, Sector Anatomy, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil, .,Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil,
| |
Collapse
|
43
|
Zhao C, Jiang J, Wang Y, Wu Y. Retracted
: Overexpression of microRNA‐590‐3p promotes the proliferation of and inhibits the apoptosis of myocardial cells through inhibition of the NF‐κB signaling pathway by binding to RIPK1. J Cell Biochem 2018; 120:3559-3573. [DOI: 10.1002/jcb.27633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/14/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Can Zhao
- Department of Cardiology Beijing Friendship Hospital Capital Medical University Beijing China
| | - Jing Jiang
- Department of Cardiology Chinese People's Liberation Army 401st Hospital Qingdao China
| | - Yong‐Liang Wang
- Department of Cardiology Beijing Friendship Hospital Capital Medical University Beijing China
| | - Yong‐Quan Wu
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University Beijing China
| |
Collapse
|
44
|
Baldissera MD, Souza CF, Zeppenfeld CC, Garzon LR, Descovi SN, Da Silva AS, Stefani LM, Baldisserotto B. Purinergic signalling displays a pro-inflammatory profile in spleen and splenic lymphocytes of Rhamdia quelen fed with a diet contaminated by fungal mycotoxin: Involvement on disease pathogenesis. Microb Pathog 2018; 123:449-453. [PMID: 30086344 DOI: 10.1016/j.micpath.2018.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/02/2018] [Accepted: 08/04/2018] [Indexed: 11/24/2022]
Abstract
The spleen is an important secondary lymphatic organ that plays a key role in the immune and inflammatory responses of teleost fish. The purinergic signalling has been associated to these types of responses under pathological conditions by the regulation of extracellular adenosine triphosphate (ATP) and its metabolite adenosine (Ado), where both exert potent pro-inflammatory and anti-inflammatory profiles, respectively. The exact pathway involved on the immunotoxic effects of aflatoxin B1 (AFB1) in fish fed with diets containing this mycotoxin remains poorly understood. Thus, the aim of this study was to evaluate whether purinergic signalling exerts anti or pro-inflammatory effects in spleen and splenic lymphocytes of Rhamdia quelen fed with a diet contaminated by AFB1. Ectonucleoside triphosphate diphosphohydrolase (NTPDase) activity (ATP as substrate) decreased in spleen and splenic lymphocytes of fish fed with an AFB1-contaminated diet on day 21 post-feeding compared to fish fed with a basal diet; while adenosine deaminase (ADA) activity increased. No differences were observed between groups or over time regarding NTPDase (adenosine diphosphate as substrate) and 5'-nucleotidase activities. In summary, the purinergic signalling can be a pathway involved in the impairment of the immune and inflammatory responses in fish fed with an AFB1-contaminated diet, contributing to the immunotoxic effects of AFB1 in spleens of fish.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Carla Cristina Zeppenfeld
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Litiérri R Garzon
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine N Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|