1
|
Xiang Q, Wu Z, Zhao Y, Tian S, Lin J, Wang L, Jiang S, Sun Z, Li W. Cellular and molecular mechanisms underlying obesity in degenerative spine and joint diseases. Bone Res 2024; 12:71. [PMID: 39658574 PMCID: PMC11632072 DOI: 10.1038/s41413-024-00388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Degenerative spine and joint diseases, including intervertebral disc degeneration (IDD), ossification of the spinal ligaments (OSL), and osteoarthritis (OA), are common musculoskeletal diseases that cause pain or disability to the patients. However, the pathogenesis of these musculoskeletal disorders is complex and has not been elucidated clearly to date. As a matter of fact, the spine and joints are not independent of other organs and tissues. Recently, accumulating evidence demonstrates the association between obesity and degenerative musculoskeletal diseases. Obesity is a common metabolic disease characterized by excessive adipose tissue or abnormal adipose distribution in the body. Excessive mechanical stress is regarded as a critical risk factor for obesity-related pathology. Additionally, obesity-related factors, mainly including lipid metabolism disorder, dysregulated pro-inflammatory adipokines and cytokines, are reported as plausible links between obesity and various human diseases. Importantly, these obesity-related factors are deeply involved in the regulation of cell phenotypes and cell fates, extracellular matrix (ECM) metabolism, and inflammation in the pathophysiological processes of degenerative spine and joint diseases. In this study, we systematically discuss the potential cellular and molecular mechanisms underlying obesity in these degenerative musculoskeletal diseases, and hope to provide novel insights for developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhenquan Wu
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuo Tian
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Jialiang Lin
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Longjie Wang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Shuai Jiang
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Zhuoran Sun
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
| | - Weishi Li
- Department of Orthopaedics, Peking University Third Hospital, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
| |
Collapse
|
2
|
Zou X, Wang C, Wang L, Huang S, Deng D, Lin L, Wang X. Effects of soluble Klotho and Wnt/β-catenin signaling pathway in vascular calcification in chronic kidney disease model rats and the intervention of Shenyuan granules. Ren Fail 2024; 46:2394633. [PMID: 39230198 PMCID: PMC11376303 DOI: 10.1080/0886022x.2024.2394633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of the soluble Klotho (sKlotho)/Wnt/β-catenin signaling pathway on vascular calcification in rat models of chronic kidney disease (CKD) and the intervention effect of Shenyuan granules. METHODS Rats with 5/6 nephrectomy and high phosphorus feeding were used to establish the vascular calcification model. The rats were given gradient doses of Shenyuan granules aqueous solution and calcitriol solution by gavage for 8 weeks, which were divided into experimental group and positive control group. RESULTS The 5/6 nephrectomy combined with high phosphorus feeding induced thoracic aortic calcification in rats. Shenyuan granules intervention increased the serum sKlotho level, inhibited the mRNA and protein expression of Wnt1, β-catenin, and Runx2 in the thoracic aorta, and alleviated thoracic aortic media calcification in rats. CONCLUSION Shenyuan granules may partially regulate the Wnt/β-catenin signaling pathway via serum sKl to interfere with the expression of Runx2, thereby improving vascular calcification in CKD.
Collapse
Affiliation(s)
- Xinrong Zou
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Changjiang Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Lan Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Shenghua Huang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Danfang Deng
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Lamei Lin
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| | - Xiaoqin Wang
- Department of Nephrology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Hubei Key Laboratory of Theory and Application Research of Liver and Kidney in Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Hubei Institute of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
3
|
Ortega MA, Pekarek T, De Leon-Oliva D, Boaru DL, Fraile-Martinez O, García-Montero C, Bujan J, Pekarek L, Barrena-Blázquez S, Gragera R, Rodríguez-Benitez P, Hernández-Fernández M, López-González L, Díaz-Pedrero R, Asúnsolo Á, Álvarez-Mon M, García-Honduvilla N, Saez MA, De León-Luis JA, Bravo C. Placental Tissue Calcification and Its Molecular Pathways in Female Patients with Late-Onset Preeclampsia. Biomolecules 2024; 14:1237. [PMID: 39456171 PMCID: PMC11506500 DOI: 10.3390/biom14101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Preeclampsia (PE) is a complex multisystem disease characterized by hypertension of sudden onset (>20 weeks' gestation) coupled with the presence of at least one additional complication, such as proteinuria, maternal organ dysfunction, or uteroplacental dysfunction. Hypertensive states during pregnancy carry life-threatening risks for both mother and baby. The pathogenesis of PE develops due to a dysfunctional placenta with aberrant architecture that releases factors contributing to endothelial dysfunction, an antiangiogenic state, increased oxidative stress, and maternal inflammatory responses. Previous studies have shown a correlation between grade 3 placental calcifications and an elevated risk of developing PE at term. However, little is known about the molecular pathways leading to placental calcification. In this work, we studied the gene and protein expression of c-Jun N-terminal kinase (JNK), Runt-related transcription factor 2 (RUNX2), osteocalcin (OSC), osteopontin (OSP), pigment epithelium-derived factor (PEDF), MSX-2/HOX8, SOX-9, WNT-1, and β-catenin in placental tissue from women with late-onset PE (LO-PE). In addition, we employed von Kossa staining to detect mineral deposits in placental tissues. Our results show a significant increase of all these components in placentas from women with LO-PE. Therefore, our study suggests that LO-PE may be associated with the activation of molecular pathways of placental calcification. These results could be the starting point for future research to describe the molecular mechanisms that promote placental calcification in PE and the development of therapeutic strategies directed against it.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Julia Bujan
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Raquel Gragera
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
| | - Patrocinio Rodríguez-Benitez
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
- Department of Nephrology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
| | - Mauricio Hernández-Fernández
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (T.P.); (D.D.L.-O.); (D.L.B.); (O.F.-M.); (C.G.-M.); (J.B.); (L.P.); (R.G.); (M.Á.-M.); (N.G.-H.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.); (Á.A.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (P.R.-B.); (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
4
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
5
|
Rao C, Liu B, Qin H, Du Z. Enoyl coenzyme a hydratase 1 attenuates aortic valve calcification by suppressing Runx2 via Wnt5a/Ca 2+ pathway. J Cell Commun Signal 2024; 18:e12038. [PMID: 38946717 PMCID: PMC11208118 DOI: 10.1002/ccs3.12038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/01/2024] [Accepted: 05/17/2024] [Indexed: 07/02/2024] Open
Abstract
The morbidity and death rates of calcified aortic valves|calcific aortic valve (CAV) disease (CAVD) remain high for its limited therapeutic choices. Here, we investigated the function, therapeutic potential, and putative mechanisms of Enoyl coenzyme A hydratase 1 (ECH1) in CAVD by various in vitro and in vivo experiments. Single-cell sequencing revealed that ECH1 was predominantly expressed in valve interstitial cells and was significantly reduced in CAVs. Overexpression of ECH1 reduced aortic valve calcification in ApoE-/- mice treated with high cholesterol diet, while ECH1 silencing had the reverse effect. We also identified Wnt5a, a noncanonical Wnt ligand, was also altered when ECH1 expression was modulated. Mechanistically, we found that ECH1 exerted anti-calcific actions through suppressing Wnt signaling, since CHIR99021, a Wnt agonist, may significantly lessen the protective impact of ECH1 overexpression on the development of valve calcification. ChIP and luciferase assays all showed that ECH1 overexpression prevented Runx2 binding to its downstream gene promoters (osteopontin and osteocalcin), while CHIR99021 neutralized this protective effect. Collectively, our findings reveal a previously unrecognized mechanism of ECH1-Wnt5a/Ca2+ regulation in CAVD, implying that targeting ECH1 may be a potential therapeutic strategy to prevent CAVD development.
Collapse
Affiliation(s)
- Caijun Rao
- Department of GeriatricsTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Baoqing Liu
- Department of Cardiovascular SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haojie Qin
- Clinic Center of Human Gene ResearchUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of CardiologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Zhipeng Du
- Department of GastroenterologyInstitute of Liver and Gastrointestinal DiseasesTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
Mocci G, Sukhavasi K, Örd T, Bankier S, Singha P, Arasu UT, Agbabiaje OO, Mäkinen P, Ma L, Hodonsky CJ, Aherrahrou R, Muhl L, Liu J, Gustafsson S, Byandelger B, Wang Y, Koplev S, Lendahl U, Owens GK, Leeper NJ, Pasterkamp G, Vanlandewijck M, Michoel T, Ruusalepp A, Hao K, Ylä-Herttuala S, Väli M, Järve H, Mokry M, Civelek M, Miller CJ, Kovacic JC, Kaikkonen MU, Betsholtz C, Björkegren JL. Single-Cell Gene-Regulatory Networks of Advanced Symptomatic Atherosclerosis. Circ Res 2024; 134:1405-1423. [PMID: 38639096 PMCID: PMC11122742 DOI: 10.1161/circresaha.123.323184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND While our understanding of the single-cell gene expression patterns underlying the transformation of vascular cell types during the progression of atherosclerosis is rapidly improving, the clinical and pathophysiological relevance of these changes remains poorly understood. METHODS Single-cell RNA sequencing data generated with SmartSeq2 (≈8000 genes/cell) in 16 588 single cells isolated during atherosclerosis progression in Ldlr-/-Apob100/100 mice with human-like plasma lipoproteins and from humans with asymptomatic and symptomatic carotid plaques was clustered into multiple subtypes. For clinical and pathophysiological context, the advanced-stage and symptomatic subtype clusters were integrated with 135 tissue-specific (atherosclerotic aortic wall, mammary artery, liver, skeletal muscle, and visceral and subcutaneous, fat) gene-regulatory networks (GRNs) inferred from 600 coronary artery disease patients in the STARNET (Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task) study. RESULTS Advanced stages of atherosclerosis progression and symptomatic carotid plaques were largely characterized by 3 smooth muscle cells (SMCs), and 3 macrophage subtype clusters with extracellular matrix organization/osteogenic (SMC), and M1-type proinflammatory/Trem2-high lipid-associated (macrophage) phenotypes. Integrative analysis of these 6 clusters with STARNET revealed significant enrichments of 3 arterial wall GRNs: GRN33 (macrophage), GRN39 (SMC), and GRN122 (macrophage) with major contributions to coronary artery disease heritability and strong associations with clinical scores of coronary atherosclerosis severity. The presence and pathophysiological relevance of GRN39 were verified in 5 independent RNAseq data sets obtained from the human coronary and aortic artery, and primary SMCs and by targeting its top-key drivers, FRZB and ALCAM in cultured human coronary artery SMCs. CONCLUSIONS By identifying and integrating the most gene-rich single-cell subclusters of atherosclerosis to date with a coronary artery disease framework of GRNs, GRN39 was identified and independently validated as being critical for the transformation of contractile SMCs into an osteogenic phenotype promoting advanced, symptomatic atherosclerosis.
Collapse
MESH Headings
- Humans
- Single-Cell Analysis
- Animals
- Gene Regulatory Networks
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Mice
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Plaque, Atherosclerotic
- Disease Progression
- Female
- Macrophages/metabolism
- Macrophages/pathology
- Mice, Knockout
- Receptors, LDL/genetics
- Receptors, LDL/metabolism
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
Collapse
Affiliation(s)
- Giuseppe Mocci
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Tiit Örd
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Sean Bankier
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway (S.B., T.M.)
| | - Prosanta Singha
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Uma Thanigai Arasu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Olayinka Oluwasegun Agbabiaje
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Petri Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
| | - Chani J. Hodonsky
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
| | - Redouane Aherrahrou
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.A., M.C.), University of Virginia, Charlottesville
| | - Lars Muhl
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Jianping Liu
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Sonja Gustafsson
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Byambajav Byandelger
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Ying Wang
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., N.J.L.)
- Stanford Cardiovascular Institute, Stanford University, CA (Y.W., N.J.L.)
| | - Simon Koplev
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, United Kingdom (S.K.)
| | - Urban Lendahl
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Gary K. Owens
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
| | - Nicholas J. Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, CA (Y.W., N.J.L.)
- Stanford Cardiovascular Institute, Stanford University, CA (Y.W., N.J.L.)
| | - Gerard Pasterkamp
- Laboratory of Experimental Cardiology (G.P., M.M.), University Medical Center Utrecht, the Netherlands
- Central Diagnostics Laboratory (G.P., M.M.), University Medical Center Utrecht, the Netherlands
| | - Michael Vanlandewijck
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
| | - Tom Michoel
- Computational Biology Unit, Department of Informatics, University of Bergen, Norway (S.B., T.M.)
| | - Arno Ruusalepp
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Marika Väli
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.V., C.B.)
- Department of Pathological anatomy and Forensic medicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia (M.V.)
| | - Heli Järve
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital and Department of Cardiology, Institute of Clinical Medicine, Tartu University, Estonia (K.S., A.R., H.J.)
| | - Michal Mokry
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
- Laboratory of Experimental Cardiology (G.P., M.M.), University Medical Center Utrecht, the Netherlands
| | - Mete Civelek
- Center for Public Health Genomics (C.J.H., R.A., M.C.), University of Virginia, Charlottesville
- Department of Biomedical Engineering (R.A., M.C.), University of Virginia, Charlottesville
| | - Clint J. Miller
- Robert M. Berne Cardiovascular Research Center (C.J.H., G.K.O., C.J.M.), University of Virginia, Charlottesville
| | - Jason C. Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York (J.C.K.)
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia (J.C.K.)
- St. Vincent’s Clinical School, University of NSW, Sydney, Australia (J.C.K.)
| | - Minna U. Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (T.O., P.S., U.T.A., O.O.A., P.M., S.Y.-H., M.U.K.)
| | - Christer Betsholtz
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.V., C.B.)
| | - Johan L.M. Björkegren
- Department of Medicine (Huddinge), Karolinska Institutet, Sweden (G.M., L. Muhl, J.L., S.G., B.B., U.L., M.V., C.B., J.L.M.B.)
- Department of Genetics and Genomic Sciences, Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York (L. Ma, S.K., K.H., J.L.M.B.)
- Clinical Gene Networks AB, Stockholm, Sweden (J.L.M.B.)
| |
Collapse
|
7
|
Khan K, Yu B, Tardif JC, Rhéaume E, Al-Kindi H, Filimon S, Pop C, Genest J, Cecere R, Schwertani A. Significance of the Wnt signaling pathway in coronary artery atherosclerosis. Front Cardiovasc Med 2024; 11:1360380. [PMID: 38586172 PMCID: PMC10995361 DOI: 10.3389/fcvm.2024.1360380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction The progression of coronary atherosclerosis is an active and regulated process. The Wnt signaling pathway is thought to play an active role in the pathogenesis of several cardiovascular diseases; however, a better understanding of this system in atherosclerosis is yet to be unraveled. Methods In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting were used to quantify the expression of Wnt3a, Wnt5a, and Wnt5b in the human coronary plaque, and immunohistochemistry was used to identify sites of local expression. To determine the pathologic significance of increased Wnt, human vascular smooth muscle cells (vSMCs) were treated with Wnt3a, Wnt5a, and Wnt5b recombinant proteins and assessed for changes in cell differentiation and function. Results RT-PCR and Western blotting showed a significant increase in the expression of Wnt3a, Wnt5a, Wnt5b, and their receptors in diseased coronary arteries compared with that in non-diseased coronary arteries. Immunohistochemistry revealed an abundant expression of Wnt3a and Wnt5b in diseased coronary arteries, which contrasted with little or no signals in normal coronary arteries. Immunostaining of Wnt3a and Wnt5b was found largely in inflammatory cells and myointimal cells. The treatment of vSMCs with Wnt3a, Wnt5a, and Wnt5b resulted in increased vSMC differentiation, migration, calcification, oxidative stress, and impaired cholesterol handling. Conclusions This study demonstrates the upregulation of three important members of canonical and non-canonical Wnt signaling pathways and their receptors in coronary atherosclerosis and shows an important role for these molecules in plaque development through increased cellular remodeling and impaired cholesterol handling.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | | | - Eric Rhéaume
- Department of Medicine, Montreal Heart Institute, Montreal, QC, Canada
| | - Hamood Al-Kindi
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Sabin Filimon
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Cristina Pop
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Jacques Genest
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Renzo Cecere
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
8
|
Behrmann A, Zhong D, Li L, Xie S, Mead M, Sabaeifard P, Goodarzi M, Lemoff A, Kozlitina J, Towler DA. Wnt16 Promotes Vascular Smooth Muscle Contractile Phenotype and Function via Taz (Wwtr1) Activation in Male LDLR-/- Mice. Endocrinology 2023; 165:bqad192. [PMID: 38123514 PMCID: PMC10765280 DOI: 10.1210/endocr/bqad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Wnt16 is expressed in bone and arteries, and maintains bone mass in mice and humans, but its role in cardiovascular physiology is unknown. We show that Wnt16 protein accumulates in murine and human vascular smooth muscle (VSM). WNT16 genotypes that convey risk for bone frailty also convey risk for cardiovascular events in the Dallas Heart Study. Murine Wnt16 deficiency, which causes postnatal bone loss, also reduced systolic blood pressure. Electron microscopy demonstrated abnormal VSM mitochondrial morphology in Wnt16-null mice, with reductions in mitochondrial respiration. Following angiotensin-II (AngII) infusion, thoracic ascending aorta (TAA) dilatation was greater in Wnt16-/- vs Wnt16+/+ mice (LDLR-/- background). Acta2 (vascular smooth muscle alpha actin) deficiency has been shown to impair contractile phenotype and worsen TAA aneurysm with concomitant reductions in blood pressure. Wnt16 deficiency reduced expression of Acta2, SM22 (transgelin), and other contractile genes, and reduced VSM contraction induced by TGFβ. Acta2 and SM22 proteins were reduced in Wnt16-/- VSM as was Ankrd1, a prototypic contractile target of Yap1 and Taz activation via TEA domain (TEAD)-directed transcription. Wnt16-/- VSM exhibited reduced nuclear Taz and Yap1 protein accumulation. SiRNA targeting Wnt16 or Taz, but not Yap1, phenocopied Wnt16 deficiency, and Taz siRNA inhibited contractile gene upregulation by Wnt16. Wnt16 incubation stimulated mitochondrial respiration and contraction (reversed by verteporfin, a Yap/Taz inhibitor). SiRNA targeting Taz inhibitors Ccm2 and Lats1/2 mimicked Wnt16 treatment. Wnt16 stimulated Taz binding to Acta2 chromatin and H3K4me3 methylation. TEAD cognates in the Acta2 promoter conveyed transcriptional responses to Wnt16 and Taz. Wnt16 regulates cardiovascular physiology and VSM contractile phenotype, mediated via Taz signaling.
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dalian Zhong
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Li Li
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shangkui Xie
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Megan Mead
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Parastoo Sabaeifard
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia Kozlitina
- McDermott Center for Human Development, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dwight A Towler
- Internal Medicine—Endocrine Division and the Pak Center for Mineral Metabolism and Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Akhter MS, Goodwin JE. Endothelial Dysfunction in Cardiorenal Conditions: Implications of Endothelial Glucocorticoid Receptor-Wnt Signaling. Int J Mol Sci 2023; 24:14261. [PMID: 37762564 PMCID: PMC10531724 DOI: 10.3390/ijms241814261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The endothelium constitutes the innermost lining of the blood vessels and controls blood fluidity, vessel permeability, platelet aggregation, and vascular tone. Endothelial dysfunction plays a key role in initiating a vascular inflammatory cascade and is the pivotal cause of various devastating diseases in multiple organs including the heart, lung, kidney, and brain. Glucocorticoids have traditionally been used to combat vascular inflammation. Endothelial cells express glucocorticoid receptors (GRs), and recent studies have demonstrated that endothelial GR negatively regulates vascular inflammation in different pathological conditions such as sepsis, diabetes, and atherosclerosis. Mechanistically, the anti-inflammatory effects of GR are mediated, in part, through the suppression of Wnt signaling. Moreover, GR modulates the fatty acid oxidation (FAO) pathway in endothelial cells and hence can influence FAO-mediated fibrosis in several organs including the kidneys. This review summarizes the relationship between GR and Wnt signaling in endothelial cells and the effects of the Wnt pathway in different cardiac and renal diseases. Available data suggest that GR plays a significant role in restoring endothelial integrity, and research on endothelial GR-Wnt interactions could facilitate the development of novel therapies for many cardiorenal conditions.
Collapse
Affiliation(s)
- Mohammad Shohel Akhter
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Julie Elizabeth Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
10
|
Dolmaci OB, Klautz RJM, Poelmann RE, Lindeman JHN, Sprengers R, Kroft L, Grewal N. Thoracic aortic atherosclerosis in patients with a bicuspid aortic valve; a case-control study. BMC Cardiovasc Disord 2023; 23:363. [PMID: 37468858 DOI: 10.1186/s12872-023-03396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023] Open
Abstract
INTRODUCTION Bicuspid aortic valve (BAV) patients have an increased risk to develop thoracic aortic complications. Little is known about the prevalence and severity of atherosclerosis in the BAV ascending aortic wall. This study evaluates and compares the prevalence of thoracic aortic atherosclerosis in BAV and tricuspid aortic valve (TAV) patients. METHODS Atherosclerosis was objectified using three diagnostic modalities in two separate BAV patient cohorts (with and without an aortic dilatation). Within the first group, atherosclerosis was graded histopathologically according to the modified AHA classification scheme proposed by Virmani et al. In the second group, the calcific load of the ascending aorta and coronary arteries, coronary angiographies and cardiovascular risk factors were studied. Patients were selected from a surgical database (treated between 2006-2020), resulting in a total of 128 inclusions. RESULTS Histopathology showed atherosclerotic lesions to be more prevalent and severe in all TAV as compared to all BAV patients (OR 1.49 (95%CI 1.14 - 1.94); p = 0.003). Computed tomography showed no significant differences in ascending aortic wall calcification between all BAV and all TAV patients, although a tendency of lower calcific load in favor of BAV was seen. Coronary calcification was higher in all TAV as compared to all BAV (OR 1.30 (95%CI 1.06 - 1.61); p = 0.014). CONCLUSION Ascending aortic atherosclerotic plaques were histologically more pronounced in TAV as compared to the BAV patients, while CT scans revealed equal amounts of calcific depositions within the ascending aortic wall. This study confirms less atherosclerosis in the ascending aortic wall and coronary arteries of BAV patients as compared to TAV patients. These results were not affected by the presence of a thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Onur B Dolmaci
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Robert J M Klautz
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Robert E Poelmann
- Institute of Biology, Animal Sciences and Health, Leiden University, Leiden, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ralf Sprengers
- Department of Radiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Lucia Kroft
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nimrat Grewal
- Department of Cardiothoracic Surgery, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
- Department of Cardiothoracic Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands.
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
11
|
Grishanova AY, Klyushova LS, Perepechaeva ML. AhR and Wnt/β-Catenin Signaling Pathways and Their Interplay. Curr Issues Mol Biol 2023; 45:3848-3876. [PMID: 37232717 DOI: 10.3390/cimb45050248] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
As evolutionarily conserved signaling cascades, AhR and Wnt signaling pathways play a critical role in the control over numerous vital embryonic and somatic processes. AhR performs many endogenous functions by integrating its signaling pathway into organ homeostasis and into the maintenance of crucial cellular functions and biological processes. The Wnt signaling pathway regulates cell proliferation, differentiation, and many other phenomena, and this regulation is important for embryonic development and the dynamic balance of adult tissues. AhR and Wnt are the main signaling pathways participating in the control of cell fate and function. They occupy a central position in a variety of processes linked with development and various pathological conditions. Given the importance of these two signaling cascades, it would be interesting to elucidate the biological implications of their interaction. Functional connections between AhR and Wnt signals take place in cases of crosstalk or interplay, about which quite a lot of information has been accumulated in recent years. This review is focused on recent studies about the mutual interactions of key mediators of AhR and Wnt/β-catenin signaling pathways and on the assessment of the complexity of the crosstalk between the AhR signaling cascade and the canonical Wnt pathway.
Collapse
Affiliation(s)
- Alevtina Y Grishanova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Lyubov S Klyushova
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| | - Maria L Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, Novosibirsk 630117, Russia
| |
Collapse
|
12
|
Fujita N, Hatakeyama S, Momota M, Tobisawa Y, Yoneyama T, Okamoto T, Yamamoto H, Yoneyama T, Hashimoto Y, Yoshikawa K, Ohyama C. Association between Aortic Calcification Burden and the Severity of Erectile Dysfunction in Men Undergoing Dialysis: A Cross-Sectional Study. World J Mens Health 2023; 41:373-381. [PMID: 35791298 PMCID: PMC10042658 DOI: 10.5534/wjmh.210230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Accelerated atherosclerosis is a major complication in patients with end-stage renal disease and it plays an important role in the pathogenesis of erectile dysfunction (ED). However, the association between aortic calcification burden and the severity of ED remains unclear. The aim of the present study was to investigate this association in men undergoing dialysis. MATERIALS AND METHODS This cross-sectional study included 71 men undergoing peritoneal dialysis and/or hemodialysis between July 2016 and May 2018 at Mutsu General Hospital. ED was assessed with the Sexual Health Inventory for Men (SHIM). Patients were divided into the mild/moderate (SHIM score ≥8) and severe ED groups (SHIM score ≤7). Aortic calcification index (ACI) was examined as a clinical indicator of abdominal aortic calcification. Multivariable logistic regression analysis was performed to identify the significant factors associated with severe ED. RESULTS The median age of the study participants was 64 years; all had ED, with 64.8% having severe ED. In the multivariable analyses, a slight association was observed between ankle-brachial index and severe ED (odds ratio [OR], 0.058; p=0.072), whereas ACI was significantly associated with severe ED (OR, 1.022; p=0.022). CONCLUSIONS Aortic calcification burden was independently associated with severe ED.
Collapse
Affiliation(s)
- Naoki Fujita
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Hatakeyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.
| | - Masaki Momota
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Teppei Okamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hayato Yamamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Takahiro Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhiro Hashimoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
13
|
Benfor B, Sinha K, Karmonik C, Lumsden AB, Roy TL. Human Cadaveric Model for Vessel Preparation Device Testing in Calcified Tibial Arteries. J Cardiovasc Transl Res 2023; 16:502-509. [PMID: 36103037 PMCID: PMC10151304 DOI: 10.1007/s12265-022-10319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
To describe an ex vivo model for vessel preparation device testing in tibial arteries. We performed orbital atherectomy (OA), intravascular lithotripsy (IVL), and plain balloon angioplasty (POBA) on human amputated limbs with evidence of concentric tibial artery calcification. The arterial segments were then harvested for ex vivo processing which included imaging with microCT, decalcification, and histology. The model was tested out in 15 limbs and was successful in 14 but had to be aborted in 1/15 case due to inability to achieve wire access. A total of 22 lesions were treated with OA on 3/22 lesions, IVL on 8/22, and POBA without vessel preparation on the remaining 11/22. Luminal gain was assessed with intravascular ultrasound and histology was able to demonstrate plaque disruption, dissections, and cracks within the calcified lesions. A human cadaveric model using amputated limbs is a feasible, high-fidelity option for evaluating the performance of vessel preparation devices in calcified tibial arteries.
Collapse
Affiliation(s)
- Bright Benfor
- Department of Vascular Surgery, Houston Methodist Debakey Heart & Vascular Center, 6565 Fannin St, Suite B5-022, Houston, TX, 77030, USA.
| | - Kavya Sinha
- Department of Vascular Surgery, Houston Methodist Debakey Heart & Vascular Center, 6565 Fannin St, Suite B5-022, Houston, TX, 77030, USA
| | - Christof Karmonik
- Translational Imaging Center, Houston Methodist Academic Institute, Houston, TX, USA
| | - Alan B Lumsden
- Department of Vascular Surgery, Houston Methodist Debakey Heart & Vascular Center, 6565 Fannin St, Suite B5-022, Houston, TX, 77030, USA
| | - Trisha L Roy
- Department of Vascular Surgery, Houston Methodist Debakey Heart & Vascular Center, 6565 Fannin St, Suite B5-022, Houston, TX, 77030, USA
| |
Collapse
|
14
|
Bianchi L, Damiani I, Castiglioni S, Carleo A, De Salvo R, Rossi C, Corsini A, Bellosta S. Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview. Int J Mol Sci 2023; 24:ijms24076431. [PMID: 37047404 PMCID: PMC10094728 DOI: 10.3390/ijms24076431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.
Collapse
|
15
|
Dinh P, Peng J, Tran T, Wu D, Tran C, Dinh T, Pan S. Identification of hsa_circ_0001445 of a novel circRNA-miRNA-mRNA regulatory network as potential biomarker for coronary heart disease. Front Cardiovasc Med 2023; 10:1104223. [PMID: 36998978 PMCID: PMC10043405 DOI: 10.3389/fcvm.2023.1104223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/22/2023] [Indexed: 03/17/2023] Open
Abstract
ObjectsTo evaluate the hsa_circ_0001445 level in peripheral blood leukocytes of patients with coronary heart disease (CHD) and its related clinical factors, and predict its circRNA-miRNA-mRNA regulatory network in CHD pathogenesis via bioinformatics analysis.MethodsPeripheral blood leukocytes were isolated from the whole blood samples of 94 CHD patients (aged 65.96 ± 9.78 years old) and 126 healthy controls (aged 60.75 ± 8.81 years old). qRT-PCR was used to quantify the expression level of circRNA and subsequently analyze its association with CHD clinical parameters. Via bioinformatics algorithm and GEO datasets, differential miRNA expression was evaluated using the Limma package. A miRNA-mRNA regulatory network was predicted by cyTargetLinker. ClusterProfiler was employed to perform functional enrichment analysis of the circRNA network to investigate its role in CHD pathogenesis.ResultsThe expression of hsa_circ_0001445 in peripheral blood leukocytes of CHD patients was downregulated compared with that of healthy controls. Positive correlations were evident between hsa_circ_0001445 expression level and the levels of hemoglobin, triglycerides, high- and low-density lipoprotein cholesterol. A significant negative correlation was also found between hsa_circ_0001445 expression level and age and the neutrophil level. Low expression of hsa_circ_0001445 exhibited a discriminatory ability between CHD patients and healthy controls with a sensitivity of 67.5% and a specificity of 76.6% (p < 0.05). By bioinformatics analysis, 405 gene ontology terms were identified. The Kyoto Encyclopedia of Genes and Genomes terms focused principally on the PI3K-Akt signaling pathway. hsa_circ_0001445 was associated with the expression of three miRNAs that may regulate 18 genes involved in KEGG processes: hsa-miR-507, hsa-miR-375–3p, and hsa-miR-942–5p.ConclusionThe hsa_circ_0001445 level in peripheral blood leukocytes may serve as a biomarker for CHD diagnosis. Our work on circRNA-miRNA-mRNA networks suggests a potential role for hsa_circ_0001445 in CHD development.
Collapse
Affiliation(s)
- PhongSon Dinh
- Departments of Pathophysiology, Guangxi Medical University, Nanning, China
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - JunHua Peng
- Departments of Pathophysiology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - ThanhLoan Tran
- Departments of Pathophysiology, Guangxi Medical University, Nanning, China
- Department of Immunology and Pathophysiology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - DongFeng Wu
- Department of the Geriatric Cardiology, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - ChauMyThanh Tran
- College of Medicine and Pharmacy, Duy Tan University, Danang, Vietnam
| | - ThiPhuongHoai Dinh
- Department of Neurosurgery, Hue University Hospital, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - ShangLing Pan
- Departments of Pathophysiology, Guangxi Medical University, Nanning, China
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, China
- Correspondence: ShangLing Pan
| |
Collapse
|
16
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
17
|
Sutton NR, Malhotra R, Hilaire C, Aikawa E, Blumenthal RS, Gackenbach G, Goyal P, Johnson A, Nigwekar SU, Shanahan CM, Towler DA, Wolford BN, Chen Y. Molecular Mechanisms of Vascular Health: Insights From Vascular Aging and Calcification. Arterioscler Thromb Vasc Biol 2023; 43:15-29. [PMID: 36412195 PMCID: PMC9793888 DOI: 10.1161/atvbaha.122.317332] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is the most common cause of death worldwide, especially beyond the age of 65 years, with the vast majority of morbidity and mortality due to myocardial infarction and stroke. Vascular pathology stems from a combination of genetic risk, environmental factors, and the biologic changes associated with aging. The pathogenesis underlying the development of vascular aging, and vascular calcification with aging, in particular, is still not fully understood. Accumulating data suggests that genetic risk, likely compounded by epigenetic modifications, environmental factors, including diabetes and chronic kidney disease, and the plasticity of vascular smooth muscle cells to acquire an osteogenic phenotype are major determinants of age-associated vascular calcification. Understanding the molecular mechanisms underlying genetic and modifiable risk factors in regulating age-associated vascular pathology may inspire strategies to promote healthy vascular aging. This article summarizes current knowledge of concepts and mechanisms of age-associated vascular disease, with an emphasis on vascular calcification.
Collapse
Affiliation(s)
- Nadia R. Sutton
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Rajeev Malhotra
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Cynthia Hilaire
- Division of Cardiology, Departments of Medicine and Bioengineering, Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, 1744 BSTWR, 200 Lothrop St, Pittsburgh, PA, 15260 USA
| | - Elena Aikawa
- Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Roger S. Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease; Baltimore, MD
| | - Grace Gackenbach
- Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Parag Goyal
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Adam Johnson
- Cardiology Division, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Sagar U. Nigwekar
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA
| | - Catherine M. Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, UK
| | - Dwight A. Towler
- Department of Medicine | Endocrine Division and Pak Center for Mineral Metabolism Research, UT Southwestern Medical Center, Dallas, TX USA
| | - Brooke N. Wolford
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham and Research Department, Veterans Affairs Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
18
|
Endo T, Takahata M, Fujita R, Koike Y, Suzuki R, Hasegawa Y, Murakami T, Ishii M, Yamada K, Sudo H, Iwasaki N. Strong relationship between dyslipidemia and the ectopic ossification of the spinal ligaments. Sci Rep 2022; 12:22617. [PMID: 36585473 PMCID: PMC9803662 DOI: 10.1038/s41598-022-27136-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Obesity and metabolic disturbances are prevalent in ossification of the posterior longitudinal ligament (OPLL) and ossification of the ligamentum flavum (OLF); however, the involvement of dyslipidemia (DL) in OPLL/OLF remains uncertain. We investigated the association between dyslipidemia and OPLL/OLF using a dataset of 458 individuals receiving health screening tests, including computed tomography. Subjects were grouped according to the presence or location of OPLL/OLF: controls (no OPLL/OLF, n = 230), OLF (n = 167), cervical OPLL (n = 28), and thoracic OPLL (n = 33). They were also grouped according to the presence of dyslipidemia (DL[+], n = 215; DL[-], n = 243). The proportion of dyslipidemia in the OLF and OPLL groups was 1.6-2.2 times higher than that in the control group. The proportion of OLF and OPLL in the DL(+) group was significantly higher than that in the DL(-) group (OLF, 43% vs. 29%; cervical OPLL, 14.4% vs. 3.2%; thoracic OPLL, 11.1% vs. 3.7%). Multivariate logistic regression analysis showed an association between all ossification types and dyslipidemia. This study demonstrated an association of dyslipidemia with OPLL/OLF; further investigation on the causal relationship between dyslipidemia and ectopic spinal ligament ossification is warranted to develop a therapeutic intervention for OPLL/OLF.
Collapse
Affiliation(s)
- Tsutomu Endo
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan ,grid.413530.00000 0004 0640 759XDepartment of Orthopedics, Hakodate Central General Hospital, 33-2 Hon-cho, Hakodate, Hokkaido 040-8585 Japan
| | - Masahiko Takahata
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Ryo Fujita
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Yoshinao Koike
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Ryota Suzuki
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Yuichi Hasegawa
- grid.413530.00000 0004 0640 759XDepartment of Orthopedics, Hakodate Central General Hospital, 33-2 Hon-cho, Hakodate, Hokkaido 040-8585 Japan
| | - Toshifumi Murakami
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Misaki Ishii
- grid.413530.00000 0004 0640 759XDepartment of Orthopedics, Hakodate Central General Hospital, 33-2 Hon-cho, Hakodate, Hokkaido 040-8585 Japan
| | - Katsuhisa Yamada
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Hideki Sudo
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| | - Norimasa Iwasaki
- grid.39158.360000 0001 2173 7691Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, Hokkaido 060-8638 Japan
| |
Collapse
|
19
|
Akoumianakis I, Polkinghorne M, Antoniades C. Non-canonical WNT signalling in cardiovascular disease: mechanisms and therapeutic implications. Nat Rev Cardiol 2022; 19:783-797. [PMID: 35697779 PMCID: PMC9191761 DOI: 10.1038/s41569-022-00718-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 12/15/2022]
Abstract
WNT signalling comprises a diverse spectrum of receptor-mediated pathways activated by a large family of WNT ligands and influencing fundamental biological processes. WNT signalling includes the β-catenin canonical pathway and the non-canonical pathways, namely the planar cell polarity and the calcium-dependent pathways. Advances over the past decade have linked non-canonical WNT signalling with key mechanisms of atherosclerosis, including oxidative stress, endothelial dysfunction, macrophage activation and vascular smooth muscle cell phenotype regulation. In addition, non-canonical WNT signalling is involved in crucial aspects of myocardial biology, from fibrosis to hypertrophy and oxidative stress. Importantly, non-canonical WNT signalling activation has complex effects in adipose tissue in the context of obesity, thereby potentially linking metabolic and vascular diseases. Tissue-specific targeting of non-canonical WNT signalling might be associated with substantial risks of off-target tumorigenesis, challenging its therapeutic potential. However, novel technologies, such as monoclonal antibodies, recombinant decoy receptors, tissue-specific gene silencing with small interfering RNAs and gene editing with CRISPR-Cas9, might enable more efficient therapeutic targeting of WNT signalling in the cardiovascular system. In this Review, we summarize the components of non-canonical WNT signalling, their links with the main mechanisms of atherosclerosis, heart failure and arrhythmias, and the rationale for targeting individual components of non-canonical WNT signalling for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Ioannis Akoumianakis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Murray Polkinghorne
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Savic I, Farver C, Milovanovic P. Pathogenesis of Pulmonary Calcification and Homologies with Biomineralization in Other Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1496-1505. [PMID: 36030837 DOI: 10.1016/j.ajpath.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lungs often present tissue calcifications and even ossifications, both in the context of high or normal serum calcium levels. Precise mechanisms governing lung calcifications have not been explored. Herein, we emphasize recent advances about calcification processes in other tissues (especially vascular and bone calcifications) and discuss potential sources of calcium precipitates in the lungs, involvement of mineralization promoters and crystallization inhibitors, as well as specific cytokine milieu and cellular phenotypes characteristic for lung diseases, which may be involved in pulmonary calcifications. Further studies are necessary to demonstrate the exact mechanisms underlying calcifications in the lungs, document homologies in biomineralization processes between various tissues in physiological and pathologic conditions, and unravel any locally specific characteristics of mineralization processes that may be targeted to reduce or prevent functionally relevant lung calcifications without negatively affecting the skeleton.
Collapse
Affiliation(s)
- Ivana Savic
- Institute of Pathology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Carol Farver
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, University of Belgrade Faculty of Medicine, Belgrade, Serbia; Center of Bone Biology, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
21
|
Kamato D, Ilyas I, Xu S, Little PJ. Non-Mouse Models of Atherosclerosis: Approaches to Exploring the Translational Potential of New Therapies. Int J Mol Sci 2022; 23:12964. [PMID: 36361754 PMCID: PMC9656683 DOI: 10.3390/ijms232112964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 09/26/2023] Open
Abstract
Cardiovascular disease is the largest single cause of disease-related mortality worldwide and the major underlying pathology is atherosclerosis. Atherosclerosis develops as a complex process of vascular lipid deposition and retention by modified proteoglycans, endothelial dysfunction and unresolved chronic inflammation. There are a multitude of current therapeutic agents, most based on lowering plasma lipid levels, but, overall, they have a lower than optimum level of efficacy and many deaths continue to arise from cardiovascular disease world-wide. To identify and evaluate potential novel cardiovascular drugs, suitable animal models that reproduce human atherosclerosis with a high degree of fidelity are required as essential pre-clinical research tools. Commonly used animal models of atherosclerosis include mice (ApoE-/-, LDLR-/- mice and others), rabbits (WHHL rabbits and others), rats, pigs, hamster, zebrafish and non-human primates. Models based on various wild-type and genetically modified mice have been extensively reviewed but mice may not always be appropriate. Thus, here, we provide an overview of the advantages and shortcomings of various non-mouse animal models of atherosclerotic plaque formation, and plaque rupture, as well as commonly used interventional strategies. Taken together, the combinatorial selection of suitable animal models readily facilitates reproducible and rigorous translational research in discovering and validating novel anti-atherosclerotic drugs.
Collapse
Affiliation(s)
- Danielle Kamato
- Discovery Biology, Griffith Institute for Drug Discovery, School of Environment and Science, Griffith University, Brisbane, QLD 4111, Australia
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Iqra Ilyas
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Suowen Xu
- Laboratory of Metabolics and Cardiovascular Diseases, University of Science and Technology of China, Hefei 230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD 4575, Australia
| |
Collapse
|
22
|
Kwon SR, Kim TH, Kim TJ, Park W, Shim SC. The Epidemiology and Treatment of Ankylosing Spondylitis in Korea. JOURNAL OF RHEUMATIC DISEASES 2022; 29:193-199. [PMID: 37476425 PMCID: PMC10351411 DOI: 10.4078/jrd.22.0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 07/22/2023]
Abstract
Ankylosing spondylitis is a chronic inflammatory disorder characterized by inflammation of the axial skeleton and sacroiliac joints and to a lesser extent by peripheral arthritis and the involvement of some extra-articular organs. It is paramount for the provision of effective health care delivery to be familiar with the epidemiologic studies on prevalence, mortality, and disability. Furthermore, there is no systematic arrangement of studies related to the treatment of ankylosing spondylitis in Korea. In this review, we addressed Korean ankylosing spondylitis epidemiological studies related to prevalence, genetic factor especially human leucocyte antigen-B27, extra-articular manifestations, infections, mortality, radiologic progression, child-birth, and quality of life. Furthermore, we reviewed Korean ankylosing spondylitis treatment researches about treatment trend, patients' registration program called The KOrean College of Rheumatology BIOlogics and targeted therapy (KOBIO) registry project, biologics and biosimiliars, complications especially infections, and issues about bony progression. There would be value to further studying the epidemiology and treatment of Korean ankylosing spondylitis.
Collapse
Affiliation(s)
- Seong-Ryul Kwon
- Rheumatism Center, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Tae-Hwan Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Tae-Jong Kim
- Department of Rheumatology, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Won Park
- Rheumatism Center, Department of Internal Medicine, Inha University College of Medicine, Incheon, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Regional Rheumatoid and Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
23
|
Greenberg HZE, Zhao G, Shah AM, Zhang M. Role of oxidative stress in calcific aortic valve disease and its therapeutic implications. Cardiovasc Res 2022; 118:1433-1451. [PMID: 33881501 PMCID: PMC9074995 DOI: 10.1093/cvr/cvab142] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is the end result of active cellular processes that lead to the progressive fibrosis and calcification of aortic valve leaflets. In western populations, CAVD is a significant cause of cardiovascular morbidity and mortality, and in the absence of effective drugs, it will likely represent an increasing disease burden as populations age. As there are currently no pharmacological therapies available for preventing, treating, or slowing the development of CAVD, understanding the mechanisms underlying the initiation and progression of the disease is important for identifying novel therapeutic targets. Recent evidence has emerged of an important causative role for reactive oxygen species (ROS)-mediated oxidative stress in the pathophysiology of CAVD, inducing the differentiation of valve interstitial cells into myofibroblasts and then osteoblasts. In this review, we focus on the roles and sources of ROS driving CAVD and consider their potential as novel therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Harry Z E Greenberg
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Guoan Zhao
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Min Zhang
- Department of Cardiology, Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
24
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 341] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
25
|
Cardiac Calcifications: Phenotypes, Mechanisms, Clinical and Prognostic Implications. BIOLOGY 2022; 11:biology11030414. [PMID: 35336788 PMCID: PMC8945469 DOI: 10.3390/biology11030414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
There is a growing interest in arterial and heart valve calcifications, as these contribute to cardiovascular outcome, and are leading predictors of cardiovascular and kidney diseases. Cardiovascular calcifications are often considered as one disease, but, in effect, they represent multifaced disorders, occurring in different milieus and biological phenotypes, following different pathways. Herein, we explore each different molecular process, its relative link with the specific clinical condition, and the current therapeutic approaches to counteract calcifications. Thus, first, we explore the peculiarities between vascular and valvular calcium deposition, as this occurs in different tissues, responds differently to shear stress, has specific etiology and time courses to calcification. Then, we differentiate the mechanisms and pathways leading to hyperphosphatemic calcification, typical of the media layer of the vessel and mainly related to chronic kidney diseases, to those of inflammation, typical of the intima vascular calcification, which predominantly occur in atherosclerotic vascular diseases. Finally, we examine calcifications secondary to rheumatic valve disease or other bacterial lesions and those occurring in autoimmune diseases. The underlying clinical conditions of each of the biological calcification phenotypes and the specific opportunities of therapeutic intervention are also considered and discussed.
Collapse
|
26
|
Single-Cell Analysis Uncovers Osteoblast Factor Growth Differentiation Factor 10 as Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation Associated with Plaque Rupture in Human Carotid Artery Disease. Int J Mol Sci 2022; 23:ijms23031796. [PMID: 35163719 PMCID: PMC8836240 DOI: 10.3390/ijms23031796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Vascular smooth muscle cells (VSMCs) undergo a complex phenotypic switch in response to atherosclerosis environmental triggers, contributing to atherosclerosis disease progression. However, the complex heterogeneity of VSMCs and how VSMC dedifferentiation affects human carotid artery disease (CAD) risk has not been clearly established. (2) Method: A single-cell RNA sequencing analysis of CD45− cells derived from the atherosclerotic aorta of Apolipoprotein E-deficient (Apoe−/−) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the site-specific predisposition to atherosclerosis was performed. Growth Differentiation Factor 10 (GDF10) role in VSMCs phenotypic switch was investigated via flow cytometry, immunofluorescence in human atherosclerotic plaques. (3) Results: scRNAseq analysis revealed the transcriptomic profile of seven clusters, five of which showed disease-relevant gene signature of VSMC macrophagic calcific phenotype, VSMC mesenchymal chondrogenic phenotype, VSMC inflammatory and fibro-phenotype and VSMC inflammatory phenotype. Osteoblast factor GDF10 involved in ossification and osteoblast differentiation emerged as a hallmark of VSMCs undergoing phenotypic switch. Under hypercholesteremia, GDF10 triggered VSMC osteogenic switch in vitro. The abundance of GDF10 expressing osteogenic-like VSMCs cells was linked to the occurrence of carotid artery disease (CAD) events. (4) Conclusions: Taken together, these results provide evidence about GDF10-mediated VSMC osteogenic switch, with a likely detrimental role in atherosclerotic plaque stability.
Collapse
|
27
|
Mishra P, Beura S, Ghosh R, Modak R. Nutritional Epigenetics: How Metabolism Epigenetically Controls Cellular Physiology, Gene Expression and Disease. Subcell Biochem 2022; 100:239-267. [PMID: 36301497 DOI: 10.1007/978-3-031-07634-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression is a dynamic process that is influenced by both internal and external factors. Alteration in the epigenetic profile is a key mechanism in the regulation process. Epigenetic regulators, such as enzymes and proteins involved in posttranslational modification (PTM), use different cofactors and substrates derived from dietary sources. For example, glucose metabolism provides acetyl CoA, S-adenosylmethionine (SAM), α- ketoglutarate, uridine diphosphate (UDP)-glucose, adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD+), and fatty acid desaturase (FAD), which are utilized by chromatin-modifying enzymes in many intermediary metabolic pathways. Any alteration in the metabolic status of the cell results in the alteration of these metabolites, which causes dysregulation in the activity of chromatin regulators, resulting in the alteration of the epigenetic profile. Such long-term or repeated alteration of epigenetic profile can lead to several diseases, like cancer, insulin resistance and diabetes, cognitive impairment, neurodegenerative disease, and metabolic syndromes. Here we discuss the functions of key nutrients that contribute to epigenetic regulation and their role in pathophysiological conditions.
Collapse
Affiliation(s)
- Pragyan Mishra
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Shibangini Beura
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Ritu Ghosh
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rahul Modak
- Infection and Epigenetics Group, School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India.
| |
Collapse
|
28
|
Zhang J, Rojas S, Singh S, Musich PR, Gutierrez M, Yao Z, Thewke D, Jiang Y. Wnt2 Contributes to the Development of Atherosclerosis. Front Cardiovasc Med 2021; 8:751720. [PMID: 34901211 PMCID: PMC8652052 DOI: 10.3389/fcvm.2021.751720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 01/08/2023] Open
Abstract
Atherosclerosis, is a chronic inflammatory disease, characterized by the narrowing of the arteries resulting from the formation of intimal plaques in the wall of arteries. Yet the molecular mechanisms responsible for maintaining the development and progression of atherosclerotic lesions have not been fully defined. In this study, we show that TGF-β activates the endothelial-to-mesenchymal transition (EndMT) in cultured human aortic endothelial cells (HAECs) and this transition is dependent on the key executor of the Wnt signaling pathway in vitro. This study presents the first evidence describing the mechanistic details of the TGF-β-induced EndMT signaling pathway in HAECs by documenting the cellular transition to the mesenchymal phenotype including the expression of mesenchymal markers α-SMA and PDGFRα, and the loss of endothelial markers including VE-cadherin and CD31. Furthermore, a short hairpin RNA (shRNA) screening revealed that Wnt2 signaling is required for TGF-β-mediated EndMT of HAECs. Also, we found that LDLR−/− mice fed on a high-fat western-type diet (21% fat, 0.2% cholesterol) expressed high levels of Wnt2 protein in atherosclerotic lesions, confirming that this signaling pathway is involved in atherosclerosis in vivo. These findings suggest that Wnt2 may contribute to atherosclerotic plaque development and this study will render Wnt2 as a potential target for therapeutic intervention aiming at controlling atherosclerosis.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States.,Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Samuel Rojas
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Sanjay Singh
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Phillip R Musich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Gutierrez
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Zhiqiang Yao
- Division of Infectious, Inflammatory and Immunologic Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Douglas Thewke
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Yong Jiang
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
29
|
Bakhshi H, Bagchi P, Meyghani Z, Tehrani B, Qian X, Garg PK, Ambale-Venkatesh B, Bhatia HS, Ohyama Y, Wu CO, Budoff M, Allison M, Criqui MH, Bluemke DA, Lima JAC, deFilippi CR. Association of coronary artery calcification and thoracic aortic calcification with incident peripheral arterial disease in the Multi-Ethnic Study of Atherosclerosis (MESA). EUROPEAN HEART JOURNAL OPEN 2021; 1:oeab042. [PMID: 35005719 PMCID: PMC8717048 DOI: 10.1093/ehjopen/oeab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/18/2021] [Indexed: 11/14/2022]
Abstract
Abstract
Aims
The association of subclinical atherosclerotic disease in the coronary arteries and thoracic aorta with incident peripheral arterial disease (PAD) is unknown. We investigated the association between coronary artery calcium score (CACs) and thoracic aortic calcium score (TACs) with incident clinical and subclinical PAD.
Methods and results
The Multi-Ethnic Study of Atherosclerosis (MESA) recruited 6814 men and women aged 45–84 from four ethnic groups who were free of clinical cardiovascular disease at enrolment. Coronary artery calcium score and thoracic aortic calcium score were measured from computed tomography scans. Participants with a baseline ankle-brachial index (ABI) ≤0.90 or >1.4 were excluded. Abnormal ABI was defined as ABI ≤0.9 or >1.4 at follow-up exam. Multivariable logistic regression and Cox proportional hazards models were used to test the associations between baseline CACs and TACs with incident abnormal ABI and clinical PAD, respectively. A total of 6409 participants (female: 52.8%) with a mean age of 61 years were analysed. Over a median follow-up of 16.7 years, 91 participants developed clinical PAD. In multivariable analysis, each unit increase in log (CACS + 1) and log (TACs + 1) were associated with 23% and 13% (P < 0.01for both) higher risk of incident clinical PAD, respectively. In 5725 (female: 52.6%) participants with an available follow-up ABI over median 9.2 years, each 1-unit increase in log (CACs + 1) and log (TACs + 1) were independently associated with 1.15-fold and 1.07-fold (P < 0.01for both) higher odds of incident abnormal ABI, respectively.
Conclusion
Higher baseline CACs and TACs predict abnormal ABI and clinical PAD independent of traditional cardiovascular risk factors and baseline ABI.
Collapse
Affiliation(s)
- Hooman Bakhshi
- Inova Heart and Vascular Institute , 3300 Gallows Road, 1st Floor Suite I—1225, Falls Church, VA 22042, USA
| | - Pramita Bagchi
- Department of Statistics, George Mason University , Fairfax, VA, USA
| | - Zahra Meyghani
- Department of Medicine, Inova Fairfax Medical Campus , Falls Church, VA, USA
| | - Behnam Tehrani
- Inova Heart and Vascular Institute , 3300 Gallows Road, 1st Floor Suite I—1225, Falls Church, VA 22042, USA
| | - Xiaoxiao Qian
- Inova Heart and Vascular Institute , 3300 Gallows Road, 1st Floor Suite I—1225, Falls Church, VA 22042, USA
| | - Parveen K Garg
- Division of Cardiology, University of Southern California Keck School of Medicine , Los Angeles, CA, USA
| | | | - Harpreet S Bhatia
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego , La Jolla, CA, USA
| | - Yoshiaki Ohyama
- Clinical Investigation and Research Unit, Gunma University Hospital , Maebashi, Japan
| | - Colin O Wu
- Office of Biostatistics Research, National Heart Lung and Blood Institute , Bethesda, MD, USA
| | - Matthew Budoff
- Lundquist Institute at Harbor UCLA Medical Center , Torrance, CA, USA
| | - Matthew Allison
- Department of Family Medicine and Public Health, University of California, San Diego , La Jolla, CA, USA
| | - Michael H Criqui
- Department of Family Medicine and Public Health, University of California, San Diego , La Jolla, CA, USA
| | - David A Bluemke
- Department of Radiology, University of Wisconsin School of Medicine and Public Health , Madison, WI, USA
| | - Joao A C Lima
- Division of Cardiology, Johns Hopkins University , Baltimore, MD, USA
| | - Christopher R deFilippi
- Inova Heart and Vascular Institute , 3300 Gallows Road, 1st Floor Suite I—1225, Falls Church, VA 22042, USA
| |
Collapse
|
30
|
He HQ, Qu YQ, Kwan Law BY, Qiu CL, Han Y, Ricardo de Seabra Rodrigues Dias I, Liu Y, Zhang J, Wu AG, Wu CW, Fai Mok SW, Cheng X, He YZ, Wai Wong VK. AGEs-Induced Calcification and Apoptosis in Human Vascular Smooth Muscle Cells Is Reversed by Inhibition of Autophagy. Front Pharmacol 2021; 12:692431. [PMID: 34744705 PMCID: PMC8564286 DOI: 10.3389/fphar.2021.692431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/29/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular calcification (VC) in macrovascular and peripheral blood vessels is one of the main factors leading to diabetes mellitus (DM) and death. Apart from the induction of vascular calcification, advanced glycation end products (AGEs) have also been reported to modulate autophagy and apoptosis in DM. Autophagy plays a role in maintaining the stabilization of the external and internal microenvironment. This process is vital for regulating arteriosclerosis. However, the internal mechanisms of this pathogenic process are still unclear. Besides, the relationship among autophagy, apoptosis, and calcification in HASMCs upon AGEs exposure has not been reported in detail. In this study, we established a calcification model of SMC through the intervention of AGEs. It was found that the calcification was upregulated in AGEs treated HASMCs when autophagy and apoptosis were activated. In the country, AGEs-activated calcification and apoptosis were suppressed in Atg7 knockout cells or pretreated with wortmannin (WM), an autophagy inhibitor. These results provide new insights to conduct further investigations on the potential clinical applications for autophagy inhibitors in the treatment of diabetes-related vascular calcification.
Collapse
Affiliation(s)
- Hu-Qiang He
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuan-Qing Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, China
| | - Cong-Ling Qiu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yu Han
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ivo Ricardo de Seabra Rodrigues Dias
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yong Liu
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Zhang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - An-Guo Wu
- Laboratory of Chinese Materia Medical, School of Pharmacy, Southwest Medical University, Luzhou, China.,Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Cheng-Wen Wu
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Simon Wing Fai Mok
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Xin Cheng
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Affiliated Hospital of Ya'an Polytechnic College, Ya'an, China
| | - Yan-Zheng He
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macau, China
| |
Collapse
|
31
|
Pellico J, Fernández-Barahona I, Ruiz-Cabello J, Gutiérrez L, Muñoz-Hernando M, Sánchez-Guisado MJ, Aiestaran-Zelaia I, Martínez-Parra L, Rodríguez I, Bentzon J, Herranz F. HAP-Multitag, a PET and Positive MRI Contrast Nanotracer for the Longitudinal Characterization of Vascular Calcifications in Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45279-45290. [PMID: 34529427 PMCID: PMC8485330 DOI: 10.1021/acsami.1c13417] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Vascular microcalcifications are associated with atherosclerosis plaque instability and, therefore, to increased mortality. Because of this key role, several imaging probes have been developed for their in vivo identification. Among them, [18F]FNa is the gold standard, showing a large uptake in the whole skeleton by positron emission tomography. Here, we push the field toward the combined anatomical and functional early characterization of atherosclerosis. For this, we have developed hydroxyapatite (HAP)-multitag, a bisphosphonate-functionalized 68Ga core-doped magnetic nanoparticle showing high affinity toward most common calcium salts present in microcalcifications, particularly HAP. We characterized this interaction in vitro and in vivo, showing a massive uptake in the atherosclerotic lesion identified by positron emission tomography (PET) and positive contrast magnetic resonance imaging (MRI). In addition, this accumulation was found to be dependent on the calcification progression, with a maximum uptake in the microcalcification stage. These results confirmed the ability of HAP-multitag to identify vascular calcifications by PET/(T1)MRI during the vulnerable stages of the plaque progression.
Collapse
Affiliation(s)
- Juan Pellico
- CIBER
de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St. Thomas’ Hospital, SE1 7EH London, U.K.
| | - Irene Fernández-Barahona
- Facultad
de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- NanoMedMol
Group, Instituto de Química Medica (IQM), Consejo Superior
de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Jesús Ruiz-Cabello
- CIBER
de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Facultad
de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia
San Sebastián, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Spain
| | - Lucía Gutiérrez
- Departamento
de Química Analítica, Instituto
de Nanociencia y Materiales de Aragón, Universidad de Zaragoza-CSIC
y CIBER-BBN, 50018 Zaragoza, Spain
| | - María Muñoz-Hernando
- Centro
Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
- NanoMedMol
Group, Instituto de Química Medica (IQM), Consejo Superior
de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - María J. Sánchez-Guisado
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia
San Sebastián, Spain
| | - Irati Aiestaran-Zelaia
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia
San Sebastián, Spain
| | - Lydia Martínez-Parra
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia
San Sebastián, Spain
| | - Ignacio Rodríguez
- CIBER
de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Facultad
de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jacob Bentzon
- Centro
Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Fernando Herranz
- CIBER
de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- NanoMedMol
Group, Instituto de Química Medica (IQM), Consejo Superior
de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| |
Collapse
|
32
|
Cosarca MC, Horváth E, Molnar C, Molnár GB, Russu E, Mureșan VA. Calcification patterns in femoral and carotid atheromatous plaques: A comparative morphometric study. Exp Ther Med 2021; 22:865. [PMID: 34178138 PMCID: PMC8220650 DOI: 10.3892/etm.2021.10297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/05/2021] [Indexed: 11/05/2022] Open
Abstract
This comparative study was designed to focus on the mineral patterns in human atherosclerotic plaques based on quantitative measurements of calcium deposits through the morphometric method. A total of 101 atherosclerotic plaques were harvested by conventional transluminal angioplasty from the carotid artery (CA) and different segments of the femoral-popliteal axis (FPA), fixed in formalin and sent for histological processing. The histological grade of the atherosclerotic plaque and the calcification pattern were evaluated, followed by a morphometric analysis of the mineral deposits. Regarding the localization, the advanced plaques (VII and VIII types) developed predominantly at the level of the superficial femoral artery (SFA) compared to the CA (P<0.001). This significant difference was maintained even if they were divided into low grade (IV and V) and high grade categories (VI, VII and VIII) (P<0.05). Compared with that in the carotid plaques, in the FPA plaques the mineralized surface increased in parallel with the narrowing of the vascular lumen diameter. The image analysis of the total pathological calcification score (pCS) showed a significant difference between the CA plaques and distal SFA (dSFA) plaques (P=0.038) and between the proximal SFA (pSFA) and dSFA plaques (P=0.013). In the case of the simple nodular pattern, calcification occupied significantly larger areas in the plaques developed in the dSFA and popliteal artery (PA) in comparison with the CA plaques (P=0.0007 and P=0.0009). pCSs calculated in plaques with extensive calcification pattern showed a lower value in the CA vs. the pSFA plaques (P=0.004). A less pronounced, but significant difference was observed between the pCS of pSFA and dSFA plaques (P=0.017). Femoral and carotid plaques exhibited different morphology and tendency for calcification. In parallel with the narrowing of the vascular lumen diameter, the mineralized surface increased at the level of different FPA segments. These results suggest that the mechanism is site-specific, and wall structure-dependent.
Collapse
Affiliation(s)
- Mircea Catalin Cosarca
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540142 Târgu-Mureș, Romania
| | - Emőke Horváth
- Department of Pathology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540142 Târgu-Mureș, Romania
| | - Calin Molnar
- Department of General Surgery, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540142 Târgu-Mureș, Romania
| | - Gyopár-Beáta Molnár
- Pathological Anatomy Service, Târgu Mureș County Emergency Clinical Hospital (SCJU Târgu Mureș), 540136 Târgu Mureș, Romania
| | - Eliza Russu
- Department of Vascular Surgery, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
| | - Vasile Adrian Mureșan
- Department of Vascular Surgery, ‘George Emil Palade’ University of Medicine, Pharmacy, Science and Technology, 540142 Târgu Mureș, Romania
| |
Collapse
|
33
|
Cong J, Cheng B, Liu J, He P. RTEF-1 Inhibits Vascular Smooth Muscle Cell Calcification through Regulating Wnt/β-Catenin Signaling Pathway. Calcif Tissue Int 2021; 109:203-214. [PMID: 33713163 PMCID: PMC8273062 DOI: 10.1007/s00223-021-00833-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 02/25/2021] [Indexed: 12/24/2022]
Abstract
Vascular calcification (VC) is highly prevailing in cardiovascular disease, diabetes mellitus, and chronic kidney disease and, when present, is associated with cardiovascular events and mortality. The osteogenic differentiation of vascular smooth muscle cells (VSMCs) is regarded as the foundation for mediating VC. Related transcriptional enhancer factor (RTEF-1), also named as transcriptional enhanced associate domain (TEAD) 4 or transcriptional enhancer factor-3 (TEF-3), is a nuclear transcriptional factor with a potent effect on cardiovascular diseases, apart from its oncogenic role in the canonical Hippo pathway. However, the role and mechanism of RTEF-1 in VC, particularly in calcification of VSMCs, are poorly understood. Our results showed that RTEF-1 was reduced in calcified VSMCs. RTEF-1 significantly ameliorated β-glycerophosphate (β-GP)-induced VSMCs calcification, as detected by alizarin red staining and calcium content assay. Also, RTEF-1 reduced alkaline phosphatase (ALP) activity and decreased expressions of osteoblast markers such as Osteocalcin and Runt-related transcription factor-2 (Runx2), but increased expression of contractile protein, including SM α-actin (α-SMA). Additionally, RTEF-1 inhibited β-GP-activated Wnt/β-catenin pathway which plays a critical role in calcification and osteogenic differentiation of VSMCs. Specifically, RTEF-1 reduced the levels of Wnt3a, p-β-catenin (Ser675), glycogen synthase kinase-3β (GSK-3β), and p-GSK-3β (Ser9), but increased the levels of p-β-catenin (Ser33/37). Also, RTEF-1 increased the ratio of p-β-catenin (Ser33/37) to β-catenin proteins and decreased the ratio of p-GSK-3β (Ser9) to GSK-3β protein. LiCl, a Wnt/β-catenin signaling activator, was observed to reverse the protective effect of RTEF-1 overexpression on VSMCs calcification induced by β-GP. Accordingly, Dickkopf-1 (Dkk1), a Wnt antagonist, attenuated the role of RTEF-1 deficiency in β-GP-induced VSMCs calcification. Taken together, we concluded that RTEF-1 ameliorated β-GP-induced calcification and osteoblastic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jingjing Cong
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Bei Cheng
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China
| | - Jinyu Liu
- Department of Rehabilitative Medicine, Wuhan NO.1 Hospital, Wuhan, 430022, Hubei Province, China
| | - Ping He
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
34
|
Procyanidin B2 Reduces Vascular Calcification through Inactivation of ERK1/2-RUNX2 Pathway. Antioxidants (Basel) 2021; 10:antiox10060916. [PMID: 34198832 PMCID: PMC8228429 DOI: 10.3390/antiox10060916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 01/11/2023] Open
Abstract
Vascular calcification is strongly associated with atherosclerotic plaque burden and plaque instability. The activation of extracellular signal-regulated kinase 1/2 (ERK1/2) increases runt related transcription factor 2 (RUNX2) expression to promote vascular calcification. Procyanidin B2 (PB2), a potent antioxidant, can inhibit ERK1/2 activation in human aortic smooth muscle cells (HASMCs). However, the effects and involved mechanisms of PB2 on atherosclerotic calcification remain unknown. In current study, we fed apoE-deficient (apoE−/−) mice a high-fat diet (HFD) while treating the animals with PB2 for 18 weeks. At the end of the study, we collected blood and aorta samples to determine atherosclerosis and vascular calcification. We found PB2 treatment decreased lesions in en face aorta, thoracic, and abdominal aortas by 21.4, 24.6, and 33.5%, respectively, and reduced sinus lesions in the aortic root by 17.1%. PB2 also increased α-smooth muscle actin expression and collagen content in lesion areas. In the aortic root, PB2 reduced atherosclerotic calcification areas by 75.8%. In vitro, PB2 inhibited inorganic phosphate-induced osteogenesis in HASMCs and aortic rings. Mechanistically, the expression of bone morphogenetic protein 2 and RUNX2 were markedly downregulated by PB2 treatment. Additionally, PB2 inhibited ERK1/2 phosphorylation in the aortic root plaques of apoE−/− mice and calcified HASMCs. Reciprocally, the activation of ERK1/2 phosphorylation by C2-MEK1-mut or epidermal growth factor can partially restore the PB2-inhibited RUNX2 expression or HASMC calcification. In conclusion, our study demonstrates that PB2 inhibits vascular calcification through the inactivation of the ERK1/2-RUNX2 pathway. Our study also suggests that PB2 can be a potential option for vascular calcification treatment.
Collapse
|
35
|
Lee J, Cho WS, Yoo RE, Yoo DH, Cho YD, Kang HS, Kim JE. The Fate of Partially Thrombosed Intracranial Aneurysms Treated with Endovascular Intervention. J Korean Neurosurg Soc 2021; 64:427-436. [PMID: 33631913 PMCID: PMC8128530 DOI: 10.3340/jkns.2020.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/19/2020] [Indexed: 11/27/2022] Open
Abstract
Objective The fate of partially thrombosed intracranial aneurysms (PTIAs) is not well known after endovascular treatment. The authors aimed to analyze the treatment outcomes of PTIAs.
Methods We retrospectively reviewed the medical records of 27 PTIAs treated with endovascular intervention between January 1999 and March 2018. Twenty-one aneurysms were treated with intraluminal embolization (ILE), and six were treated with parent artery occlusion (PAO) with or without bypass surgery. Radiological results, clinical outcomes and risk factors for major recurrence were assessed.
Results The initial clinical status was similar in both groups; however, the last status was better in the ILE group than in the PAO group (p=0.049). Neurological deterioration resulted from mass effect in one case and rupture in one after ILE, and mass effect in two and perforator infarction in one after PAO. Twenty cases (94.2%) in the ILE group initially achieved complete occlusion or residual neck status. However, 13 cases (61.9%) showed major recurrence, the major causes of which included coil migration or compaction. Seven cases (33.3%) ultimately achieved residual sac status after repeat treatment. In the PAO group, all initially showed complete occlusion or a residual neck, and just one case ultimately had a residual sac. Two cases showed major recurrence, the cause of which was incomplete PAO. Aneurysm wall calcification was the only significantly protective factor against major recurrence (odds ratio, 36.12; 95% confidence interval, 1.85 to 705.18; p=0.018).
Conclusion Complete PAO of PTIAs is the best option if treatment-related complications can be minimized. Simple fluoroscopy is a useful imaging modality because of the recurrence pattern.
Collapse
Affiliation(s)
- Jeongjun Lee
- Department of Neurosurgery, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Won-Sang Cho
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Roh Eul Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Dong Hyun Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Young Dae Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Seung Kang
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | - Jeong Eun Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
36
|
Kaul A, Dhalla PS, Bapatla A, Khalid R, Garcia J, Armenta-Quiroga AS, Khan S. Current Treatment Modalities for Calcified Coronary Artery Disease: A Review Article Comparing Novel Intravascular Lithotripsy and Traditional Rotational Atherectomy. Cureus 2020; 12:e10922. [PMID: 33194488 PMCID: PMC7657441 DOI: 10.7759/cureus.10922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The coronary artery calcium score is considered the most useful marker for predicting coronary events. The high score reflects heavy calcification in the vessel, which is more challenging to treat with the percutaneous intervention (PCI). To prepare this type of heavily calcified lesion intravascular lithotripsy (IVL) technology can be used prior to PCI, which is based on the concept of converting electrical energy into mechanical energy. It harmlessly and selectively disrupts both the shallow and deep deposits of calcium. The balloon-based catheters of this system emit sonic waves that transfer to the adjacent tissue resulting in improvement in vessel compliance with the slightest soft tissue loss. Therefore, making the treatment of calcified lesions more feasible, effective, and also simplify complex lesions. The lesions considered for lithotripsy-enhanced balloon dilation include calcified coronary lesions and peripheral vasculature lesions. This article reviews the use of IVL in calcified coronary artery disease, its advantages, and disadvantages while comparing it with other techniques like high-pressure balloons and rotational atherectomy devices. A thorough search of databases like PubMed and Google Scholar was performed, which uncovered 35 peer review articles. Keywords utilized in the data search were calcified coronary artery disease, coronary lithotripsy, calcification, and calcified atherosclerotic plaque. According to rotational atherectomy and intravascular lithotripsy trials, the latter was safer, mainly by decreasing atheromatous embolization risk. Deciphering these studies, it seems like IVL is better at parameters like procedural and clinical success rate, acute lumen gain, and less residual stenosis except in-hospital major adverse cardiovascular events (MACE), which was better in rotational atherectomy (RA). However, when lesion crossings are present, the atherectomy technique is still considered as first-line therapy. In clinical practice, despite these encouraging data for treating calcified lesions, IVL is grossly underutilized because of substantial costs and perceived significant procedural risk effects on the cardiac rhythm like causing 'shock topics' and asynchronous cardiac pacing. More longer-term clinical data and extensive researches are required to validate its safety and efficiency.
Collapse
Affiliation(s)
- Arunima Kaul
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Anusha Bapatla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Raheela Khalid
- Internal Medicine: Critical Care, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jian Garcia
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ana S Armenta-Quiroga
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
37
|
Khan K, Yu B, Kiwan C, Shalal Y, Filimon S, Cipro M, Shum-Tim D, Cecere R, Schwertani A. The Role of Wnt/β-Catenin Pathway Mediators in Aortic Valve Stenosis. Front Cell Dev Biol 2020; 8:862. [PMID: 33015048 PMCID: PMC7513845 DOI: 10.3389/fcell.2020.00862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Aortic valve stenosis (AVS) is a prevailing and life-threatening cardiovascular disease in adults over 75 years of age. However, the molecular mechanisms governing the pathogenesis of AVS are yet to be fully unraveled. With accumulating evidence that Wnt signaling plays a key role in the development of AVS, the involvement of Wnt molecules has become an integral study target in AVS pathogenesis. Thus, we hypothesized that the Wnt/β-catenin pathway mediators, SFRP2, DVL2, GSK3β and β-catenin are dysregulated in patients with AVS. Using immunohistochemistry, Real-Time qPCR and Western blotting, we investigated the presence of SFRP2, GSK-3β, DVL2, and β-catenin in normal and stenotic human aortic valves. Markedly higher mRNA and protein expression of GSK-3β, DVL2, β-catenin and SFRP2 were found in stenotic aortic valves. This was further corroborated by observation of their abundant immunostaining, which displayed strong immunoreactivity in diseased aortic valves. Proteomic analyses of selective GSK3b inhibition in calcifying human aortic valve interstitial cells (HAVICs) revealed enrichment of proteins involved organophosphate metabolism, while reducing the activation of pathogenic biomolecular processes. Lastly, use of the potent calcification inhibitor, Fetuin A, in calcifying HAVICs significantly reduced the expression of Wnt signaling genes Wnt3a, Wnt5a, Wnt5b, and Wnt11. The current findings of altered expression of canonical Wnt signaling in AVS suggest a possible role for regulatory Wnts in AVS. Hence, future studies focused on targeting these molecules are warranted to underline their role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Kashif Khan
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Bin Yu
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Chrystina Kiwan
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Yousif Shalal
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Sabin Filimon
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Megan Cipro
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Dominique Shum-Tim
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Renzo Cecere
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| | - Adel Schwertani
- Division of Cardiology and Cardiac Surgery, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
38
|
Saito Y, Nakamura K, Ito H. Effects of Eicosapentaenoic Acid on Arterial Calcification. Int J Mol Sci 2020; 21:ijms21155455. [PMID: 32751754 PMCID: PMC7432365 DOI: 10.3390/ijms21155455] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022] Open
Abstract
Arterial calcification is a hallmark of advanced atherosclerosis and predicts cardiovascular events. However, there is no clinically accepted therapy that prevents progression of arterial calcification. HMG-CoA reductase inhibitors, statins, lower low-density lipoprotein-cholesterol and reduce cardiovascular events, but coronary artery calcification is actually promoted by statins. The addition of eicosapentaenoic acid (EPA) to statins further reduced cardiovascular events in clinical trials, JELIS and REDUCE-IT. Additionally, we found that EPA significantly suppressed arterial calcification in vitro and in vivo via suppression of inflammatory responses, oxidative stress and Wnt signaling. However, so far there is a lack of evidence showing the effect of EPA on arterial calcification in a clinical situation. We reviewed the molecular mechanisms of the inhibitory effect of EPA on arterial calcification and the results of some clinical trials.
Collapse
|
39
|
Sun Z, Li L, Zhang L, Yan J, Shao C, Bao Z, Liu J, Li Y, Zhou M, Hou L, Jing L, Pang Q, Geng Y, Mao X, Gu W, Wang Z. Macrophage galectin-3 enhances intimal translocation of vascular calcification in diabetes mellitus. Am J Physiol Heart Circ Physiol 2020; 318:H1068-H1079. [PMID: 32216615 DOI: 10.1152/ajpheart.00690.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical risks and prognosis of diabetic vascular intimal calcification (VIC) and medial calcification (VMC) are different. This study aims to investigate the mechanism of VIC/VMC translocation. Anterior tibial arteries were collected from patients with diabetic foot amputation. The patients were then divided into VIC and VMC groups. There were plaques in all anterior tibial arteries, while the enrichment of galectin-3 in arterial plaques in the VIC group was significantly higher than that in the VMC group. Furthermore, a macrophage/vascular smooth muscle cell (VSMC) coculture system was constructed. VSMC-derived extracellular vesicles (EVs) was labeled with fluorescent probe. After macrophages were pretreated with recombinant galectin-3 protein, the migration of VSMC-derived EVs and VSMC-derived calcification was more pronounced. And anti-galectin-3 antibody can inhibit this process of EVs and calcification translocation. Then, lentivirus (LV)-treated bone marrow cells (BMCs) were transplanted into apolipoprotein E-deficient (ApoE-/-) mice, and a diabetic atherosclerosis mouse model was constructed. After 15 wk of high-fat diet, ApoE-/- mice transplanted with LV-shgalectin-3 BMCs exhibited medial calcification and a concentrated distribution of EVs in the media. In conclusion, upregulation of galectin-3 in macrophages promotes the migration of VSMC-derived EVs to the intima and induces diabetic vascular intimal calcification.NEW & NOTEWORTHY The clinical risk and prognosis of vascular intimal and medial calcification are different. Macrophage galectin-3 regulates the migration of vascular smooth muscle cell-derived extracellular vesicles and mediates diabetic vascular intimal/medial calcification translocation. This study may provide insights into the early intervention in diabetic vascular calcification.
Collapse
Affiliation(s)
- Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhengyang Bao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jia Liu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengxue Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lina Hou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qiwen Pang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yue Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiang Mao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Gu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
40
|
Cavalcanti LRP, Sá MPBO, Perazzo ÁM, Escorel Neto AC, Gomes RAF, Weymann A, Zhigalov K, Ruhparwar A, Lima RC. Mitral Annular Calcification: Association with Atherosclerosis and Clinical Implications. Curr Atheroscler Rep 2020; 22:9. [PMID: 32034516 DOI: 10.1007/s11883-020-0825-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW This review summarizes the pathophysiology of mitral annular calcification (MAC) with recent findings and current strategies for diagnosis and treatment. RECENT FINDINGS Major factors in MAC development seem to be shear stress of the flow past the mitral valve, local inflammation, and dysregulation in regulators of mineral metabolism. MAC itself poses daunting technical challenges. Implanting a valve on top of the calcium bar might lead to paravalvular leak (PVL) that is less likely to heal. Annular decalcification allows for better valve seating and potentially better healing and less PVL. This, however, comes with the risk for catastrophic atrioventricular groove disruption. MAC can be sharply dissected with the scalpel; the annulus can be reconstructed with the autologous pericardium. Transcatheter mitral valve replacement is a promising approach in the treatment of patients who are deemed high-risk surgical candidates with severe MAC. MAC is a multifactorial disease that has some commonalities with atherosclerosis, mainly regarding lipid accumulation and calcium deposition. It is of great clinical importance, being a risk marker of cardiovascular events (including sudden death) and, with its progression, can have a negative impact on patients' lives.
Collapse
Affiliation(s)
- Luiz Rafael P Cavalcanti
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil. .,University of Pernambuco - UPE, Recife, Brazil. .,, Recife, Brazil.
| | - Michel Pompeu B O Sá
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil.,Nucleus of Postgraduate and Research in Health Sciences of Faculty of Medical Sciences and Biological Sciences Institute - FCM/ICB, Recife, Brazil
| | - Álvaro M Perazzo
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil
| | - Antonio C Escorel Neto
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil
| | - Rafael A F Gomes
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil.,Nucleus of Postgraduate and Research in Health Sciences of Faculty of Medical Sciences and Biological Sciences Institute - FCM/ICB, Recife, Brazil
| | - Alexander Weymann
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Konstantin Zhigalov
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Ricardo C Lima
- Division of Cardiovascular Surgery, Pronto Socorro Cardiológico de Pernambuco - PROCAPE, Recife, Brazil.,University of Pernambuco - UPE, Recife, Brazil
| |
Collapse
|
41
|
He HQ, Law BYK, Zhang N, Qiu CL, Qu YQ, Wu AG, Han Y, Song Q, Zheng WL, Liu Y, He YZ, Wong VKW. Bavachin Protects Human Aortic Smooth Muscle Cells Against β-Glycerophosphate-Mediated Vascular Calcification and Apoptosis via Activation of mTOR-Dependent Autophagy and Suppression of β-Catenin Signaling. Front Pharmacol 2019; 10:1427. [PMID: 31920640 PMCID: PMC6930901 DOI: 10.3389/fphar.2019.01427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification is a major complication of cardiovascular disease and chronic renal failure. Autophagy help to maintain a stable internal and external environment that is important for modulating arteriosclerosis, but its pathogenic mechanism is far from clear. Here, we aimed to identify the bioactive compounds from traditional Chinese medicines (TCM) that exhibit an anti-arteriosclerosis effect. In β-glycerophosphate (β-GP)-stimulated human aortic smooth muscle cells (HASMCs), the calcium level was increased and the expression of the calcification-related proteins OPG, OPN, Runx2, and BMP2 were all up-regulated, followed by autophagy induction and apoptosis. Meanwhile, we further revealed that β-GP induced apoptosis of human osteoblasts and promoted differentiation of osteoblasts through Wnt/β-catenin signaling. Bavachin, a natural compound from Psoralea corylifolia, dose-dependently reduced the level of intracellular calcium and the expression of calcification-related proteins OPG, OPN, Runx2 and BMP2, thus inhibiting cell apoptosis. In addition, bavachin increased LC3-II and beclin1 expression, along with intracellular LC3-II puncta formation, which autophagy induction is Atg7-dependent and is regulated by suppression of mTOR signaling. Furthermore, addition of autophagy inhibitor, wortmannin (WM) attenuated the inhibitory effect of bavachin on β-GP-induced calcification and apoptosis in HASMCs. Collectively, the present study revealed that bavachin protects HASMCs against apoptosis and calcification by activation of the Atg7/mTOR-autophagy pathway and suppression of the β-catenin signaling, our findings provide a potential clinical application for bavachin in the therapy of cardiovascular disease.
Collapse
Affiliation(s)
- Hu-Qiang He
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Betty Yuen Kwan Law
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Ni Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Cong-Ling Qiu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Yuan-Qing Qu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - An-Guo Wu
- Department of Thoracic and Cardial Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yu Han
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Qi Song
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wen-Lu Zheng
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,Laboratory of Chinese Materia Medical, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Ministry of Education of China, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Yong Liu
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan-Zheng He
- Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Vincent Kam Wai Wong
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
42
|
Liu H, Wang L, Pan Y, Wang X, Ding Y, Zhou C, Shah AM, Zhao G, Zhang M. Celastrol Alleviates Aortic Valve Calcification Via Inhibition of NADPH Oxidase 2 in Valvular Interstitial Cells. JACC Basic Transl Sci 2019; 5:35-49. [PMID: 32043019 PMCID: PMC7000868 DOI: 10.1016/j.jacbts.2019.10.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
The reactive oxygen species–generating enzyme Nox2 is up-regulated in the leaflets of both rabbit and human with CAVD. Nox2 is markedly induced in cultured porcine AVICs after osteogenic stimulation. Knockdown of endogenous Nox2 substantially suppressed AVIC calcification. Celastrol, a natural compound capable of inhibiting Nox2 activity, significantly decreased AVIC calcification in vitro, and mitigated the severity of aortic valve fibrosis, calcification, and stenosis in a rabbit model of CAVD in vivo. The protective effects of celastrol may, in part, involve the inhibition of Nox2-mediated glycogen synthase kinase 3 beta/β-catenin pathway.
This study sought to investigate whether reactive oxygen species (ROS)–generating reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2) contributes to calcific aortic valve disease (CAVD) or whether celastrol, a natural Nox2 inhibitor, may provide potential therapeutic target for CAVD. CAVD is an active and cellular-driven fibrocalcific process characterized by differentiation of aortic valvular interstitial cells (AVICs) toward an osteogenic-like phenotype. ROS levels increase in calcified aortic valves, while the sources of ROS and their roles in the pathogenesis of CAVD are elusive. The roles of Nox2 and the effects of celastrol were studied using cultured porcine AVICs in vitro and a rabbit CAVD model in vivo. Nox2 proteins were significantly upregulated in human aortic valves with CAVD. In vitro, Nox2 was markedly induced upon stimulation of AVICs with osteogenic medium, along with the increases in ROS production and calcium nodule formation. Celastrol significantly decreased calcium deposition of AVICs by 35%, with a reduction of ROS generation. Knockdown of endogenous Nox2 substantially suppressed AVIC calcification by 39%, the inhibitory effect being similar to celastrol treatment. Mechanistically, either celastrol treatment or knockdown of Nox2 significantly inhibited glycogen synthase kinase 3 beta/β-catenin signaling, leading to attenuation of fibrogenic and osteogenic responses of AVICs. In a rabbit CAVD model, administration of celastrol significantly reduced aortic valve ROS production, fibrosis, calcification, and severity of aortic stenosis, with less left ventricular dilatation and better preserved contractile function. Upregulation of Nox2 is critically involved in CAVD. Celastrol is effective to alleviate CAVD, likely through the inhibition of Nox2-mediated glycogen synthase kinase 3 beta/β-catenin pathway in AVICs.
Collapse
Key Words
- AV, aortic valve
- AVIC, aortic valvular interstitial cell
- CAVD, calcific aortic valve disease
- GSK3B, glycogen synthase kinase 3 beta
- HC, high cholesterol
- LV, left ventricular
- Nox2
- Nox2, reduced nicotinamide adenine dinucleotide phosphate oxidase 2
- OGM, osteogenic medium
- OPN, osteopontin
- ROS, reactive oxygen species
- Runx2, runt-related transcription factor 2
- fibrosis
- reactive oxygen species
- stenosis
- tripterine
- valve interstitial cells
- vitD2, vitamin D2
Collapse
Affiliation(s)
- Huibing Liu
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Libo Wang
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Yating Pan
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Xuehui Wang
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Yuan Ding
- Department of Ultrasonography, First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Chaoyuan Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Xinxiang Medical University, Henan, China
| | - Ajay M Shah
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| | - Guoan Zhao
- Department of Cardiology, First Affiliated Hospital of Xinxiang Medical University, Heart Center of Xinxiang Medical University, Henan, China
| | - Min Zhang
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, United Kingdom
| |
Collapse
|
43
|
Disthabanchong S, Srisuwarn P. Mechanisms of Vascular Calcification in Kidney Disease. Adv Chronic Kidney Dis 2019; 26:417-426. [PMID: 31831120 DOI: 10.1053/j.ackd.2019.08.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
The increase in prevalence and severity of vascular calcification in chronic kidney disease is a result of complex interactions between changes in the vascular bed, mineral metabolites, and other uremic factors. Vascular calcification can occur in the intima and the media of arterial wall. Under permissive conditions, vascular smooth muscle cells (VSMCs) can transform to osteoblast-like phenotype. The membrane-bound vesicles released from transformed VSMCs and the apoptotic bodies derived from dying VSMCs serve as nucleating structures for calcium crystal formation. Alterations in the quality and the quantity of endogenous calcification inhibitors also give rise to an environment that potentiates calcification.
Collapse
Affiliation(s)
- Sinee Disthabanchong
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| | - Praopilad Srisuwarn
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
44
|
Khan K, Albanese I, Yu B, Shalal Y, Al-Kindi H, Alaws H, Tardif JC, Gourgas O, Cerutti M, Schwertani A. Urotensin II, urotensin-related peptide, and their receptor in aortic valve stenosis. J Thorac Cardiovasc Surg 2019; 161:e1-e15. [PMID: 31679703 DOI: 10.1016/j.jtcvs.2019.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Aortic valve stenosis (AVS) is the most common cause of surgical valve replacement worldwide. The vasoactive peptide urotensin II (UII) is upregulated in atherosclerosis and several other cardiovascular diseases; however, its role in the pathogenesis of AVS remains to be determined. Here, we investigated the expression of UII, urotensin-related peptide (URP), and the urotensin receptor (UT) and the role this system plays in AVS. METHODS Immunohistochemistry and reverse-transcriptase polymerase chain reaction were used to examine the cellular localization and mRNA expression, of UII, URP, and UT in calcified and noncalcified aortic valves. Human aortic valve interstitial cells were isolated from normal valves and treated with UII or URP, and changes in cell proliferation, cholesterol efflux, calcium deposition, and β-catenin translocation were assessed. RESULTS The mRNA expression of UII, URP, and UT was significantly greater in patients with AVS. There was abundant presence of UII, URP, and UT immunostaining in diseased compared with nondiseased valves and correlated significantly with presence of calcification (P < .0001) and fibrosis (P < .0001). Treating human aortic valve interstitial cells with UII or URP significantly increased cell proliferation (P < .0001) and decreased cholesterol efflux (P = .0011 and P = .0002, respectively). UII also significantly reduced ABCA1 protein expression (P = .0457) and increased β-catenin nuclear translocation (P < .0001) and mineral deposition (P < .0001). CONCLUSIONS Together, these data suggest that the urotensin system plays a role in the pathogenesis of AVS and warrants further investigation.
Collapse
Affiliation(s)
- Kashif Khan
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Isabella Albanese
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Bin Yu
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Yousif Shalal
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Hamood Al-Kindi
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Hossney Alaws
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | | | - Ophélie Gourgas
- Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Marta Cerutti
- Department of Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Adel Schwertani
- Cardiology and Cardiac Surgery, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
45
|
Abstract
Clinical and preclinical studies over the past 3 decades have uncovered a multitude of signaling pathways involved in the initiation and progression of atherosclerosis. From these studies, signaling by proteins of the Wnt family has recently emerged as an important player in the development of atherosclerosis. Wnt signaling is characterized by a large number of ligands, receptors, and coreceptors and can be regulated at many different levels. Among Wnt modulators, the evolutionary conserved Dkk (Dickkopf) proteins, and especially Dkk-1, the founding member of the family, are the best characterized. The role of Dkks in the pathophysiology of the arterial wall is only partially understood, but their involvement in atherosclerosis is becoming increasingly evident. This review introduces recent key findings on Dkk proteins and their functions in atherosclerosis and discusses the potential importance of modulating Dkk signaling as part of a novel, improved strategy for preventing and treating atherosclerosis-related diseases.
Visual Overview—
An online visual overview is available for this article.
Collapse
Affiliation(s)
- Roberta Baetta
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Cristina Banfi
- From the Centro Cardiologico Monzino, IRCCS, Milano, Italy
| |
Collapse
|
46
|
Schanstra JP, Luong TT, Makridakis M, Van Linthout S, Lygirou V, Latosinska A, Alesutan I, Boehme B, Schelski N, Von Lewinski D, Mullen W, Nicklin S, Delles C, Feuillet G, Denis C, Lang F, Pieske B, Bascands JL, Mischak H, Saulnier-Blache JS, Voelkl J, Vlahou A, Klein J. Systems biology identifies cytosolic PLA2 as a target in vascular calcification treatment. JCI Insight 2019; 4:125638. [PMID: 31092728 DOI: 10.1172/jci.insight.125638] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/17/2019] [Indexed: 01/15/2023] Open
Abstract
Although cardiovascular disease (CVD) is the leading cause of morbimortality worldwide, promising new drug candidates are lacking. We compared the arterial high-resolution proteome of patients with advanced versus early-stage CVD to predict, from a library of small bioactive molecules, drug candidates able to reverse this disease signature. Of the approximately 4000 identified proteins, 100 proteins were upregulated and 52 were downregulated in advanced-stage CVD. Arachidonyl trifluoromethyl ketone (AACOCF3), a cytosolic phospholipase A2 (cPLA2) inhibitor was predicted as the top drug able to reverse the advanced-stage CVD signature. Vascular cPLA2 expression was increased in patients with advanced-stage CVD. Treatment with AACOCF3 significantly reduced vascular calcification in a cholecalciferol-overload mouse model and inhibited osteoinductive signaling in vivo and in vitro in human aortic smooth muscle cells. In conclusion, using a systems biology approach, we have identified a potentially new compound that prevented typical vascular calcification in CVD in vivo. Apart from the clear effect of this approach in CVD, such strategy should also be able to generate novel drug candidates in other complex diseases.
Collapse
Affiliation(s)
- Joost P Schanstra
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Trang Td Luong
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sophie Van Linthout
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Vasiliki Lygirou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Ioana Alesutan
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Beate Boehme
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Nadeshda Schelski
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | - William Mullen
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Guylène Feuillet
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Colette Denis
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Florian Lang
- Department of Physiology I, University of Tubingen, Tubingen, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Jean-Loup Bascands
- INSERM, U1188, Université de La Réunion, Sainte-Clotilde, La Réunion, France
| | | | - Jean-Sebastien Saulnier-Blache
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Jakob Voelkl
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany.,Institute for Physiology and Pathophysiology, Johannes Kepler University Linz, Linz, Austria
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Julie Klein
- Institute of Cardiovascular and Metabolic Disease, INSERM, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
47
|
Liao HW, Huang TH, Chang YH, Liou HH, Chou YH, Sue YM, Hung PH, Chang YT, Ho PC, Tsai KJ. Exercise Alleviates Osteoporosis in Rats with Mild Chronic Kidney Disease by Decreasing Sclerostin Production. Int J Mol Sci 2019; 20:ijms20082044. [PMID: 31027235 PMCID: PMC6514556 DOI: 10.3390/ijms20082044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/19/2019] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease–mineral bone disorder (CKD–MBD), comprising mineral, hormonal, and bone metabolic imbalance, is a major CKD-related issue; it causes osteoporosis prevalence in CKD patients. Osteocyte-derived sclerostin inhibits the osteogenic Wnt/β-catenin signaling pathway; its levels rise when kidney function declines. Exercise modulates the physiological functions of osteocytes, potentially altering sclerostin production. It may aid bone and mineral electrolyte homeostasis in CKD. Mild CKD was induced in rats by partial nephrectomy. They were divided into: sham (no CKD), CKD, and CKD + exercise (8 weeks of treadmill running) groups. Micro-CT scanning demonstrated that the CKD + exercise-group rats had a higher bone mineral density (BMD) of the spine and femoral metaphysis and higher femoral trabecular bone volume than the CKD-group rats. Bone formation rates were not significantly different. The CKD + exercise-group rats had lower serum sclerostin (157.1 ± 21.1 vs 309 ± 38.1 pg/mL, p < 0.05) and CTX-1 (bone resorption marker) levels. Immunohistochemistry revealed higher tibial β-catenin concentrations in the CKD + exercise-group rats. Serum FGF-23, intact parathyroid hormone (iPTH), alkaline phosphatase (ALP), calcium, and phosphate levels showed no significant differences between these groups. Thus, exercise improves BMD and bone microstructure in mild CKD by inhibiting sclerostin production, but does not alter serum minerals.
Collapse
Affiliation(s)
| | - Tsang-Hai Huang
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yi-Han Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Hung-Hsiang Liou
- Division of Nephrology, Department of Medicine, Hsin-Jen Hospital, New Taipei City 242, Taiwan.
| | - Yu-Hsien Chou
- Institute of Physical Education, Health and Leisure Studies, National Cheng Kung University, Tainan 704, Taiwan.
| | - Yuh-Mou Sue
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine and Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| | - Peir-Haur Hung
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-yi Christian Hospital, Chia-yi City 600; Taiwan.
- Division of Applied Life Science and Health, Chia-Nan University of Pharmacy and Science, Tainan 717, Taiwan.
| | - Yu-Tzu Chang
- Department of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
- Research center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan.
| |
Collapse
|
48
|
Fontalis A, Kenanidis E, Kotronias RA, Papachristou A, Anagnostis P, Potoupnis M, Tsiridis E. Current and emerging osteoporosis pharmacotherapy for women: state of the art therapies for preventing bone loss. Expert Opin Pharmacother 2019; 20:1123-1134. [PMID: 30958709 DOI: 10.1080/14656566.2019.1594772] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Pharmacological options to address the imbalance between bone resorption and accrual in osteoporosis include anti-resorptive and osteoanabolic agents. Unique biologic pathways such as the Wnt/β-catenin pathway have been targeted in the quest for new emerging therapeutic strategies. AREAS COVERED This review provides an overview of existing pharmacotherapy for osteoporosis in women and explore state-of-the-art and emerging therapies to prevent bone loss, with an emphasis on the mechanism of action, indications and side effects. EXPERT OPINION Bisphosphonates appear to be a reliable and cost-effective option, whereas denosumab has introduced a simpler dosing regimen and may achieve a linear increase in bone mineral density (BMD) with no plateau being observed, along with continuous anti-fracture efficacy. Abaloparatide, a parathyroid-hormone-related peptide (PTHrP)-analogue, approved by the FDA in April 2017, constitutes the first new anabolic osteoporosis drug in the US for nearly 15 years and has also proven its anti-fracture efficacy. Romosozumab, a sclerostin inhibitor, which induces bone formation and suppresses bone resorption, has also been developed and shown a significant reduction in fracture incidence; however, concerns have arisen with regard to increased cardiovascular risk.
Collapse
Affiliation(s)
- Andreas Fontalis
- a Department of Oncology and Metabolism , University of Sheffield Medical School , Sheffield , UK.,b Sheffield Teaching Hospitals NHS Foundation Trust , Northern General Hospital , Sheffield , UK
| | - Eustathios Kenanidis
- c Academic Orthopaedic Unit , Aristotle University Medical School, Papageorgiou General Hospital , Thessaloniki , Greece.,d Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI) , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Rafail Angelos Kotronias
- e Division of Cardiovascular Medicine, Oxford University Clinical Academic Graduate School , University of Oxford , Oxford , UK
| | - Afroditi Papachristou
- f Pharmacy Department , Oxford University Hospitals NHS Foundation Trust , Oxford , UK
| | - Panagiotis Anagnostis
- d Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI) , Aristotle University of Thessaloniki , Thessaloniki , Greece.,g Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynaecology , Aristotle University Medical School , Thessaloniki , Greece
| | - Michael Potoupnis
- c Academic Orthopaedic Unit , Aristotle University Medical School, Papageorgiou General Hospital , Thessaloniki , Greece.,d Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI) , Aristotle University of Thessaloniki , Thessaloniki , Greece
| | - Eleftherios Tsiridis
- c Academic Orthopaedic Unit , Aristotle University Medical School, Papageorgiou General Hospital , Thessaloniki , Greece.,d Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI) , Aristotle University of Thessaloniki , Thessaloniki , Greece
| |
Collapse
|
49
|
Bone marrow mesenchymal stem cell-derived exosomes alleviate high phosphorus-induced vascular smooth muscle cells calcification by modifying microRNA profiles. Funct Integr Genomics 2019; 19:633-643. [PMID: 30850904 DOI: 10.1007/s10142-019-00669-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/04/2019] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
Vascular calcification is a common complication in patients with chronic kidney disease (CKD). It is an important predictor of cardiovascular disease and all-cause mortality. Previous studies have confirmed that bone marrow mesenchymal stem cell (BMSC) therapy can reduce vascular calcification, but the specific mechanism is still controversial. In this study, we aimed to investigate the mechanisms of BMSC-derived exosomes (EXO) in improving vascular calcification. BMSCs were cultured and EXO were isolated using the Total Exosome Isolation Reagent. Human aortic vascular smooth muscle cells (HA-VSMCs) were cultured into three groups: control group, high phosphorus group, and high phosphorus plus EXO group. Then, indicators related to smooth muscle cell calcification and microRNA profiles were analyzed. BMSC-derived exosomes inhibited high phosphorus-induced calcification in HA-VSMCs. Besides, EXO treatment reduced calcium content and decreased the alkaline phosphatase (AKP) activity in high phosphorus co-incubated HA-VSMCs. MicroRNA (miRNA) and mRNA expression profiles analyses revealed that 63 miRNAs were significantly upregulated and 1424 genes were significantly downregulated in HA-VSMCs after EXO treatment. Functional miRNA-gene regulatory network revealed that mTOR, MAPK, and Wnt signaling pathway were involved in vascular calcification. BMSC-derived exosomes alleviated high phosphorus-induced calcification in HA-VSMC through modifying miRNA profiles.
Collapse
|
50
|
Martínez PJ, Baldán-Martín M, López JA, Martín-Lorenzo M, Santiago-Hernández A, Agudiez M, Cabrera M, Calvo E, Vázquez J, Ruiz-Hurtado G, Vivanco F, Ruilope LM, Barderas MG, Alvarez-Llamas G. Identification of six cardiovascular risk biomarkers in the young population: A promising tool for early prevention. Atherosclerosis 2019; 282:67-74. [PMID: 30690299 DOI: 10.1016/j.atherosclerosis.2019.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS The predictive value of traditional CV risk calculators is limited. Novel indicators of CVD progression are needed particularly in the young population. The main aim of this study was the identification of a molecular profile with added value to classical CV risk estimation. METHODS Eighty-one subjects (30-50 years) were classified in 3 groups according to their CV risk: healthy subjects; individuals with CV risk factors; and those who had suffered a previous CV event. The urine proteome was quantitatively analyzed and significantly altered proteins were identified between patients' groups, either related to CV risk or established organ damage. Target-MS and ELISA were used for confirmation in independent patients' cohorts. Systems Biology Analysis (SBA) was carried out to identify functional categories behind CVD. RESULTS 4309 proteins were identified, 75 of them differentially expressed. ADX, ECP, FETUB, GDF15, GUAD and NOTCH1 compose a fingerprint positively correlating with lifetime risk estimate (LTR QRISK). Best performance ROC curve was obtained when ECP, GDF15 and GUAD were combined (AUC = 0.96). SBA revealed oxidative stress response, dilated cardiomyopathy, signaling by Wnt and proteasome, as main functional processes related to CV risk. CONCLUSIONS A novel urinary protein signature is shown, which correlates with CV risk estimation in young individuals. Pending further confirmation, this six-protein-panel could help in CV risk assessment.
Collapse
Affiliation(s)
- Paula J Martínez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | - Juan A López
- Laboratory of Cardiovascular Proteomics CNIC, Madrid, Spain
| | - Marta Martín-Lorenzo
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Aránzazu Santiago-Hernández
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Marta Agudiez
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | | | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics CNIC, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación I+12, Hospital Universitario 12 de Octubre/CIBER-CV, Madrid, Spain
| | - Fernando Vivanco
- Department of Biochemistry and Molecular Biology, I Universidad Complutense, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Instituto de Investigación I+12, Hospital Universitario 12 de Octubre/CIBER-CV, Madrid, Spain; Hypertension Unit, Hospital Universitario 12 de Octubre, Madrid, Spain; School of Doctoral Studies and Research, Universidad Europea de Madrid, Madrid, Spain.
| | - María G Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Parapléjicos SESCAM, Toledo, Spain
| | - Gloria Alvarez-Llamas
- Immunoallergy and Proteomics Laboratory, Department of Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain; REDINREN, Madrid, Spain.
| |
Collapse
|