1
|
Hornig C, Bowry SK, Kircelli F, Kendzia D, Apel C, Canaud B. Hemoincompatibility in Hemodialysis-Related Therapies and Their Health Economic Perspectives. J Clin Med 2024; 13:6165. [PMID: 39458115 PMCID: PMC11509023 DOI: 10.3390/jcm13206165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Hemobiologic reactions associated with the hemoincompatibility of extracorporeal circuit material are an undesirable and inevitable consequence of all blood-contacting medical devices, typically considered only from a clinical perspective. In hemodialysis (HD), the blood of patients undergoes repetitive (at least thrice weekly for 4 h and lifelong) exposure to different polymeric materials that activate plasmatic pathways and blood cells. There is a general agreement that hemoincompatibility reactions, although unavoidable during extracorporeal therapies, are unphysiological contributors to non-hemodynamic dialysis-induced systemic stress and need to be curtailed. Strategies to lessen the periodic and direct effects of blood interacting with artificial surfaces to stimulate numerous biological pathways have focused mainly on the development of 'more passive' materials to decrease intradialytic morbidity. The indirect implications of this phenomenon, such as its impact on the overall delivery of care, have not been considered in detail. In this article, we explore, for the first time, the potential clinical and economic consequences of hemoincompatibility from a value-based healthcare (VBHC) perspective. As the fundamental tenet of VBHC is achieving the best clinical outcomes at the lowest cost, we examine the equation from the individual perspectives of the three key stakeholders of the dialysis care delivery processes: the patient, the provider, and the payer. For the patient, sub-optimal therapy caused by hemoincompatibility results in poor quality of life and various dialysis-associated conditions involving cost-impacting adjustments to lifestyles. For the provider, the decrease in income is attributed to factors such as an increase in workload and use of resources, dissatisfaction of the patient from the services provided, loss of reimbursement and direct revenue, or an increase in doctor-nurse turnover due to the complexity of managing care (nephrology encounters a chronic workforce shortage). The payer and healthcare system incur additional costs, e.g., increased hospitalization rates, including intensive care unit admissions, and increased medications and diagnostics to counteract adverse events and complications. Thus, hemoincompatibility reactions may be relevant from a socioeconomic perspective and may need to be addressed beyond just its clinical relevance to streamline the delivery of HD in terms of payability, future sustainability, and societal repercussions. Strategies to mitigate the economic impact and address the cost-effectiveness of the hemoincompatibility of extracorporeal kidney replacement therapy are proposed to conclude this comprehensive approach.
Collapse
Affiliation(s)
- Carsten Hornig
- Fresenius Medical Care Deutschland GmbH, Global Market Access and Health Economics, Else-Kröner-Straße 1, 61352 Bad Homburg, Germany; (C.H.); (D.K.); (C.A.)
| | - Sudhir K. Bowry
- Dialysis-at-Crossroads (D@X) Advisory, Wilhelmstraße 9, 61231 Bad Nauheim, Germany;
| | - Fatih Kircelli
- Fresenius Medical Care Deutschland GmbH, Global Medical Office, Else-Kröner-Straße 1, 61352 Bad Homburg, Germany;
| | - Dana Kendzia
- Fresenius Medical Care Deutschland GmbH, Global Market Access and Health Economics, Else-Kröner-Straße 1, 61352 Bad Homburg, Germany; (C.H.); (D.K.); (C.A.)
| | - Christian Apel
- Fresenius Medical Care Deutschland GmbH, Global Market Access and Health Economics, Else-Kröner-Straße 1, 61352 Bad Homburg, Germany; (C.H.); (D.K.); (C.A.)
| | - Bernard Canaud
- School of Medicine, Montpellier University, 34090 Montpellier, France
- MTX Consulting, 34090 Montpellier, France
| |
Collapse
|
2
|
Kong Y, Wang N, Tong Z, Wang D, Wang P, Yang Q, Yan X, Song W, Jin Z, Zhang M. Role of complement factor D in cardiovascular and metabolic diseases. Front Immunol 2024; 15:1453030. [PMID: 39416783 PMCID: PMC11479899 DOI: 10.3389/fimmu.2024.1453030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
In the genesis and progression of cardiovascular and metabolic diseases (CVMDs), adipose tissue plays a pivotal and dual role. Complement factor D (CFD, also known as adipsin), which is mainly produced by adipocytes, is the rate-limiting enzyme of the alternative pathway. Abnormalities in CFD generation or function lead to aberrant immune responses and energy metabolism. A large number of studies have revealed that CFD is associated with CVMDs. Herein, we will review the current studies on the function and mechanism of CFD in CVMDs such as hypertension, coronary heart disease, ischemia/reperfusion injury, heart failure, arrhythmia, aortic aneurysm, obesity, insulin resistance, and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yingjin Kong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Naixin Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zhonghua Tong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Dongni Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Penghe Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Qiannan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xiangyu Yan
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Weijun Song
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Zexi Jin
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
3
|
Salman O, Zhao L, Cohen JB, Dib MJ, Azzo JD, Gan S, Richards AM, Pourmussa B, Doughty R, Javaheri A, Mann DL, Rietzschel E, Zhao M, Wang Z, Ebert C, van Empel V, Kammerhoff K, Maranville J, Gogain J, Dennis J, Schafer PH, Seiffert D, Gordon DA, Ramirez-Valle F, Cappola TP, Chirinos JA. Proteomic Correlates and Prognostic Significance of Kidney Injury in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2024; 13:e033660. [PMID: 39206761 DOI: 10.1161/jaha.123.033660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Kidney disease is common in heart failure with preserved ejection fraction (HFpEF). However, the biologic correlates and prognostic significance of kidney injury (KI), in HFpEF, beyond the estimated glomerular filtration rate (eGFR), are unclear. METHODS AND RESULTS Using baseline plasma samples from the TOPCAT (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist) trial, we measured the following KI biomarkers: cystatin-C, fatty acid-binding protein-3, Beta-2 microglobulin, neutrophil gelatinase-associated lipocalin, and kidney-injury molecule-1. Factor analysis was used to extract the common variability underlying these biomarkers. We assessed the relationship between the KI-factor score and the risk of death or HF-related hospital admission in models adjusted for the Meta-Analysis Global Group in Chronic Heart Failure risk score and eGFR. We also assessed the relationship between the KI factor score and ~5000 plasma proteins, followed by pathway analysis. We validated our findings among HFpEF participants in the Penn Heart Failure Study. KI was associated with the risk of death or HF-related hospital admission independent of the Meta-Analysis Global Group in Chronic Heart Failure risk score and eGFR. Both the risk score and eGFR were no longer associated with death or HF-related hospital admission after adjusting for the KI factor score. KI was predominantly associated with proteins and biologic pathways related to complement activation, inflammation, fibrosis, and cholesterol homeostasis. KI was associated with 140 proteins, which reproduced across cohorts. Findings regarding biologic associations and the prognostic significance of KI were also reproduced in the validation cohort. CONCLUSIONS KI is associated with adverse outcomes in HFpEF independent of baseline eGFR. Patients with HFpEF and KI exhibit a plasma proteomic signature indicative of complement activation, inflammation, fibrosis, and impaired cholesterol homeostasis.
Collapse
Affiliation(s)
- Oday Salman
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | - Lei Zhao
- Bristol Myers Squibb Company Princeton NJ USA
| | - Jordana B Cohen
- Hospital of the University of Pennsylvania Philadelphia PA USA
- University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Marie Joe Dib
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | - Joe David Azzo
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | - Sushrima Gan
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | - A Mark Richards
- Cardiovascular Research Institute National University of Singapore Singapore
- Christchurch Heart Institute University of Otago New Zealand
| | - Bianca Pourmussa
- University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | | | - Ali Javaheri
- Washington University School of Medicine St. Louis MO USA
| | - Douglas L Mann
- Washington University School of Medicine St. Louis MO USA
| | - Ernst Rietzschel
- Department of Cardiovascular Diseases Ghent University and Ghent University Hospital Ghent Belgium
| | - Manyun Zhao
- Hospital of the University of Pennsylvania Philadelphia PA USA
| | | | | | - Vanessa van Empel
- Department of Cardiology Maastricht University Medical Center Maastricht The Netherlands
| | | | | | | | | | | | | | | | | | - Thomas P Cappola
- Hospital of the University of Pennsylvania Philadelphia PA USA
- University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| | - Julio A Chirinos
- Hospital of the University of Pennsylvania Philadelphia PA USA
- University of Pennsylvania Perelman School of Medicine Philadelphia PA USA
| |
Collapse
|
4
|
Abughofah Y, Anderson WL, Kreutz RP. Renal Dysfunction and Outcomes in Patients With ST-Elevation Myocardial Infarction Treated With Percutaneous Coronary Intervention. Am J Cardiol 2024; 217:35-38. [PMID: 38408591 DOI: 10.1016/j.amjcard.2024.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 02/28/2024]
Affiliation(s)
- Yousaf Abughofah
- Indiana University School of Medicine, Division of Cardiovascular Medicine, Indianapolis, Indiana
| | - Wesley L Anderson
- Indiana University School of Medicine, Division of Cardiovascular Medicine, Indianapolis, Indiana
| | - Rolf P Kreutz
- Indiana University School of Medicine, Division of Cardiovascular Medicine, Indianapolis, Indiana.
| |
Collapse
|
5
|
Abstract
The complement cascade comprises soluble and cell surface proteins and is an important arm of the innate immune system. Once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammatory, vasoactive and metabolic responses. Although complement is crucial to host defence and homeostasis, its inappropriate or uncontrolled activation can also drive tissue injury. For example, the complement system has been known for more than 50 years to be activated by glomerular immune complexes and to contribute to autoimmune kidney disease. Notably, the latest research shows that complement is also activated in kidney diseases that are not traditionally thought of as immune-mediated, including haemolytic-uraemic syndrome, diabetic kidney disease and focal segmental glomerulosclerosis. Several complement-targeted drugs have been approved for the treatment of kidney disease, and additional anti-complement agents are being investigated in clinical trials. These drugs are categorically different from other immunosuppressive agents and target pathological processes that are not effectively inhibited by other classes of immunosuppressants. The development of these new drugs might therefore have considerable benefits in the treatment of kidney disease.
Collapse
Affiliation(s)
- Vojtech Petr
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Joshua M Thurman
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
6
|
Ștefan G, Jullien P, Masson I, Alamartine E, Mariat C, Maillard N. Circulating alternative pathway complement cleavage factor Bb is associated with vascular lesions and outcomes in IgA nephropathy. Nephrol Dial Transplant 2023; 38:ii11-ii18. [PMID: 37816675 DOI: 10.1093/ndt/gfad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Complement alternative pathway (AP) activation is linked to immunoglobulin A nephropathy (IgAN) prognosis severity, but Bb fragment's role is unclear. We examined the relationship between serum Bb fragment concentration at IgAN diagnosis and disease activity and outcomes. METHODS This retrospective study included 125 biopsy-proven IgAN patients [age 39.9 years, 75% male, estimated glomerular filtration rate (eGFR) 82 ml/min, proteinuria 0.5 g/day] enrolled from 1984 to 2010 and followed for a minimum of 18 months. Monitoring continued until the last follow-up, end-stage kidney disease (ESKD) or death. Serum Bb fragment was measured using an enzyme-linked immunosorbent assay at diagnosis. Oxford classification and global optical score (GOS) were utilized for pathology assessment. RESULTS Patients were followed for a median of 16 years; 42% developed chronic kidney disease stage ≥3, 19% reached ESKD and 9% died. Serum Bb fragment concentration negatively correlated with eGFR values at the last follow-up and positively with vascular and tubular histopathological indices. In univariate Cox regression analyses, higher Bb fragment concentration was associated with ESKD alongside older age, increased body mass index, arterial hypertension, lower eGFR, higher proteinuria, E1, S1, T1-2, GOS and corticotherapy. Patients with Bb levels ≥14.3 μg/ml had shorter mean kidney survival time (19.5 versus 22.7 years, P = .07); after adjusting for progression risk factors, the association persisted [hazard ratio 4.76 (95% confidence interval 1.56-14.43)]. CONCLUSIONS Serum Bb fragment concentration at diagnosis may predict long-term IgAN outcomes, potentially due to AP activation at the endothelial surface. Further research is needed to confirm these results and evaluate Bb fragment's role in IgAN management.
Collapse
Affiliation(s)
- Gabriel Ștefan
- Service de Néphrologie, Hôpital Nord CHU Saint Etienne, Saint Etienne, France
- University of Medicine and Pharmacy "Carol Davila", Nephrology Department, Bucharest, Romania
| | - Perrine Jullien
- Service de Néphrologie, Hôpital Nord CHU Saint Etienne, Saint Etienne, France
- Groupe Immunité muqueuse et agents pathogènes (GIMAP, team 15 CIRI INSERM U1111/UMR5108), Saint Etienne, France
| | - Ingrid Masson
- Service de Néphrologie, Hôpital Nord CHU Saint Etienne, Saint Etienne, France
- Groupe Immunité muqueuse et agents pathogènes (GIMAP, team 15 CIRI INSERM U1111/UMR5108), Saint Etienne, France
| | - Eric Alamartine
- Service de Néphrologie, Hôpital Nord CHU Saint Etienne, Saint Etienne, France
- Groupe Immunité muqueuse et agents pathogènes (GIMAP, team 15 CIRI INSERM U1111/UMR5108), Saint Etienne, France
| | - Christophe Mariat
- Service de Néphrologie, Hôpital Nord CHU Saint Etienne, Saint Etienne, France
- Groupe Immunité muqueuse et agents pathogènes (GIMAP, team 15 CIRI INSERM U1111/UMR5108), Saint Etienne, France
| | - Nicolas Maillard
- Service de Néphrologie, Hôpital Nord CHU Saint Etienne, Saint Etienne, France
- Groupe Immunité muqueuse et agents pathogènes (GIMAP, team 15 CIRI INSERM U1111/UMR5108), Saint Etienne, France
| |
Collapse
|
7
|
Wang Z, Zhang Z, Li Y, Zhang Y, Wei M, Li H, Yang S, Zhou Y, Zhou X, Xing G. Endothelial-derived complement factor D contributes to endothelial dysfunction in malignant nephrosclerosis via local complement activation. Hypertens Res 2023; 46:1759-1770. [PMID: 37188751 PMCID: PMC10184087 DOI: 10.1038/s41440-023-01300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/24/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Malignant nephrosclerosis is a thrombotic microangiopathy associated with abnormal local activation of the complement alternative pathway (AP). However, the mechanism underlying local AP activation is not fully understood. We hypothesized that complement factor D (CFD) secreted by endothelial cells triggers vascular dysfunction in malignant nephrosclerosis via local complement activation. We investigated the deposition of CFD in human kidney biopsy tissues and the function of endothelial-derived CFD in endothelial cell cultures. Immunofluorescence microscopy and laser microdissection-targeted mass spectrometry revealed significant deposition of CFD in the kidneys of patients with malignant nephrosclerosis. Conditionally immortalized human glomerular endothelial cells (CiGEnCs) continuously expressed and secreted CFD in vitro. CFD knockdown in CiGEnCs by small interfering RNA reduced local complement activation and attenuated the upregulation of intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), von Willebrand factor (VWF), and endothelin-1 (ET-1) induced by Ang II. The expression of CFD in CiGEnCs was significantly higher than that in other types of microvascular endothelial cells. Our findings suggest that (i) glomerular endothelial cells are an important source of local renal CFD, (ii) endothelial-derived CFD can activate the local complement system, and (iii) endothelial-derived CFD mediates endothelial dysfunction, which may play a role in the pathogenesis of malignant nephrosclerosis.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhe Zhang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuan Li
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Ying Zhang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Min Wei
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Hui Li
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Shanzhi Yang
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yali Zhou
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Xinjin Zhou
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
- Department of Pathology, Baylor University Medical Center at Dallas, Dallas, TX, USA.
| | - Guolan Xing
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
8
|
Stenson EK, Edelstein CL, You Z, Miyazaki-Anzai S, Thurman JM, Dixon BP, Zappitelli M, Goldstein SL, Akcan Arikan A, Kendrick J. Urine Complement Factor Ba Is Associated with AKI in Critically Ill Children. KIDNEY360 2023; 4:326-332. [PMID: 36758197 PMCID: PMC10103361 DOI: 10.34067/kid.0000000000000077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
Key Points Complement activation, specifically factor B, is implicated in AKI pathogenesis in animal models. Urine Ba (an activation fragment of factor B) was significantly higher in critically ill children with stage 3 AKI and sepsis-AKI. If larger studies show similar association between urine Ba and AKI severity, clinical trials of factor B inhibition are warranted. Background: Critically ill children with AKI have high morbidity and mortality rates and lack treatment options. Complement activation is implicated in AKI pathogenesis, which could be treated with complement-targeted therapeutics. We assessed for an association between urine Ba, an activation fragment of the alternative complement pathway, and AKI in a large cohort of critically ill children. Methods: A biorepository of children requiring mechanical ventilation was leveraged. AKI was based on pediatric version of the RIFLE criteria—stage 1: 25% decreased eGFR or urine output (UOP) <0.5ml/kg per hour for 8 hours; stage 2: 50% decreased eGFR or UOP <0.5 ml/kg per hour for 16 hours; stage 3: 75% decreased eGFR or UOP <0.3ml/kg per hour for 24 hours or anuric for 12 hours. ELISAs were performed to quantitate urine Ba values. Log Ba was used in ANOVA with pairwise comparison by the Tukey method. Logistic regression was performed to test the association between urine Ba and AKI diagnosis. Results: Seventy-three patients were included, of which 56 had AKI: 26 (46%) stage 1, 16 (29%) stage 2, and 14 (25%) stage 3. Ba was significantly higher in patients with stage 3 AKI compared with all other stages. Ba was higher in sepsis-associated AKI compared with non–sepsis-associated AKI. Multivariate analysis included urine Ba, urine IL-18, urine NGAL, sepsis, and Pediatric Risk of Mortality Scores-II (an estimate of illness severity) and showed a significant association between urine Ba and AKI (odds ratio 1.57, 95% confidence interval, 1.13 to 2.20; P 0.007). Conclusion: Urine Ba is significantly increased in patients with AKI compared with patients without AKI. In patients with similar illness severity, a doubling of urine Ba level was associated with a 57% increase in AKI diagnosis of any stage. Further studies are needed to study complement inhibition in treatment or prevention of AKI in critically ill children.
Collapse
Affiliation(s)
- Erin K. Stenson
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Charles L. Edelstein
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Zhiying You
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Shinobu Miyazaki-Anzai
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Joshua M. Thurman
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Bradley P. Dixon
- Renal Section, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael Zappitelli
- Division of Paediatric Nephrology, Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stuart L. Goldstein
- Center for Acute Care Nephrology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ayse Akcan Arikan
- Divisions of Pediatric Critical Care and Renal, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Jessica Kendrick
- Division of Renal Disease and Hypertension, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
9
|
Yamane R, Yasuda Y, Oshima A, Suzuki Y, Kojima H, Kim H, Fukui S, Maruyama S, Ito Y, Mizuno M. Serum and plasma levels of Ba, but not those of soluble C5b-9, might be affected by renal function in chronic kidney disease patients. BMC Nephrol 2023; 24:26. [PMID: 36732701 PMCID: PMC9893599 DOI: 10.1186/s12882-022-03022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND During the last few decades, pathogenic mechanisms associated with uncontrolled activation of the complement (C) system and development of anti-C agents have been closely investigated in the field of nephrology. The usefulness of some C products such as C5a and sC5b-9 for diagnostic and prognostic purposes remains controversial. On the other hand, decreased renal function is being observed in many patients with or without nephritis as a background factor in progressively aging societies. We therefore investigated whether renal function influenced the evaluation of various complement components and activation products. METHODS To investigate the influence of renal function on evaluations of C3, C4, CH50, Ba, C5a and sC5b-9, 40 patients were retrospectively chosen from among 844 patients without active glomerulonephritis from 2009 to 2016. We measured plasma and serum levels of C3, C4, CH50, Ba, C5a and sC5b-9 using enzyme-linked immunosorbent assays and compared the findings with inulin clearance (Cin) as a marker of preserved renal function. RESULTS Both plasma and serum levels of Ba correlated significantly with Cin, but other values did not. Compared with patients with Cin ≥ 60 or ≥ 30 mL/min/1.73 m2, plasma and serum levels of Ba were increased in patients with Cin decreased to < 60 or < 30 mL/min/1.73 m2, but levels of C5a and sC5b-9 were not. CONCLUSION The influence of renal function might need to be considered when evaluating Ba, but not C5a and sC5b-9, in plasma and serum samples from chronic kidney disease patients.
Collapse
Affiliation(s)
- Ryoko Yamane
- grid.27476.300000 0001 0943 978XNephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan
| | - Yoshinari Yasuda
- grid.27476.300000 0001 0943 978XNephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan
| | - Aki Oshima
- grid.27476.300000 0001 0943 978XDepartment of Renal Replacement Therapy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan
| | - Yasuhiro Suzuki
- grid.27476.300000 0001 0943 978XNephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Renal Replacement Therapy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan
| | - Hiroshi Kojima
- grid.27476.300000 0001 0943 978XNephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Renal Replacement Therapy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan
| | - Hangsoo Kim
- grid.27476.300000 0001 0943 978XNephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Renal Replacement Therapy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan
| | - Sosuke Fukui
- grid.27476.300000 0001 0943 978XNephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan ,grid.27476.300000 0001 0943 978XDepartment of Renal Replacement Therapy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan
| | - Shoichi Maruyama
- grid.27476.300000 0001 0943 978XNephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan
| | - Yasuhiko Ito
- grid.27476.300000 0001 0943 978XNephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan ,grid.411234.10000 0001 0727 1557Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute, Japan
| | - Masashi Mizuno
- Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan. .,Department of Renal Replacement Therapy, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, Japan.
| |
Collapse
|
10
|
Abstract
Uncontrolled alternative pathway activation is the primary driver of several diseases, and it contributes to the pathogenesis of many others. Consequently, diagnostic tests to monitor this arm of the complement system are increasingly important. Defects in alternative pathway regulation are strong risk factors for disease, and drugs that specifically block the alternative pathway are entering clinical use. A range of diagnostic tests have been developed to evaluate and monitor the alternative pathway, including assays to measure its function, expression of alternative pathway constituents, and activation fragments. Genetic studies have also revealed many disease-associated variants in alternative pathway genes that predict the risk of disease and prognosis. Newer imaging modalities offer the promise of non-invasively detecting and localizing pathologic complement activation. Together, these various tests help in the diagnosis of disease, provide important prognostic information, and can help guide therapy with complement inhibitory drugs.
Collapse
Affiliation(s)
- Joshua M. Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Veronique Fremeaux-Bacchi
- Assistance Publique-Hôpitaux de Paris, European Hospital Georges Pompidou, Department of Immunology Biology and INSERM UMRS1138, Centre de Recherche des Cordeliers, Team "Inflammation, Complement and Cancer", Paris, France
| |
Collapse
|
11
|
Xiang H, Zhang C, Xiong J. Emerging role of extracellular vesicles in kidney diseases. Front Pharmacol 2022; 13:985030. [PMID: 36172178 PMCID: PMC9510773 DOI: 10.3389/fphar.2022.985030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Many types of renal disease eventually progress to end-stage renal disease, which can only be maintained by renal replacement therapy. Therefore, kidney diseases now contribute significantly to the health care burden in many countries. Many new advances and strategies have been found in the research involving kidney diseases; however, there is still no efficient treatment. Extracellular vesicles (EVs) are cell-derived membrane structures, which contains proteins, lipids, and nucleic acids. After internalization by downstream cells, these components can still maintain functional activity and regulate the phenotype of downstream cells. EVs drive the information exchange between cells and tissues. Majority of the cells can produce EVs; however, its production, contents, and transportation may be affected by various factors. EVs have been proved to play an important role in the occurrence, development, and treatment of renal diseases. However, the mechanism and potential applications of EVs in kidney diseases remain unclear. This review summarizes the latest research of EVs in renal diseases, and provides new therapeutic targets and strategies for renal diseases.
Collapse
|
12
|
C3 glomerulopathy associated with both hypertensive retinopathy and purtscher-like retinopathy. Am J Ophthalmol Case Rep 2022; 27:101683. [PMID: 36016724 PMCID: PMC9395975 DOI: 10.1016/j.ajoc.2022.101683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose This article reports the case of a 21-year-old woman with both hypertensive retinopathy and Purtscher-like retinopathy in association with C3 glomerulopathy. Observations The patient was referred for bilateral painless vision loss with posterior pole cotton wool spots, optic disc edema, and confluent retinal whitening suggesting a mixed picture of hypertensive retinopathy, with initial blood pressure 236/152, and Purtscher-like retinopathy. She was subsequently diagnosed with C3 glomerulopathy which likely caused her severe hypertension and which likely occurred alongside Purtscher-like retinopathy due to a shared pathogenesis of complement dysregulation. Follow up examination and imaging revealed gradual improvement in visual acuity, almost complete resolution of fundus exam abnormalities, improvement in macular nonperfusion, resolution of disc leakage and choroidal leakage, resolution of macular edema, and residual outer retinal hyperreflective foci in both eyes. Conclusion and importance This case represents the first report of both Purtscher-like retinopathy and hypertensive retinopathy occurring in association with C3 glomerulopathy. It supports investigation of anti-complement therapy as a potential treatment for Purtscher-like retinopathy.
Collapse
|
13
|
Franzin R, Stasi A, Sallustio F, Bruno S, Merlotti G, Quaglia M, Grandaliano G, Pontrelli P, Thurman JM, Camussi G, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Extracellular vesicles derived from patients with antibody-mediated rejection induce tubular senescence and endothelial to mesenchymal transition in renal cells. Am J Transplant 2022; 22:2139-2157. [PMID: 35583104 PMCID: PMC9546277 DOI: 10.1111/ajt.17097] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
Extracellular vesicles (EV) are emerging mediators in several diseases. However, their role in the pathophysiology of antibody-mediated allograft rejection (AMR) has been poorly investigated. Here, we investigated the role of EV isolated from AMR patients in inducing tubular senescence and endothelial to mesenchymal transition (EndMT) and analyzed their miRNA expression profile. By multiplex bead flow cytometry, we characterized the immunophenotype of plasma AMR-derived EV and found a prevalent platelet and endothelial cell origin. In vitro, AMR-derived EV induced tubular senescence by upregulating SA-β Gal and CDKN1A mRNA. Furthermore, AMR-derived EV induced EndMT. The occurrence of tubular senescence and EndMT was confirmed by analysis of renal biopsies from the same AMR patients. Moreover, AMR-derived EV induced C3 gene upregulation and CFH downregulation in tubular epithelial cells, with C4d deposition on endothelial cells. Interestingly, RNase-mediated digestion of EV cargo completely abrogated tubular senescence and EndMT. By microarray analysis, miR-604, miR-515-3p, miR-let-7d-5p, and miR-590-3p were significantly upregulated in EV from AMR group compared with transplant controls, whereas miR-24-3p and miR-29a-3p were downregulated. Therefore, EV-associated miRNA could act as active player in AMR pathogenesis, unraveling potential mechanisms of accelerated graft senescence, complement activation and early fibrosis that might lead to new therapeutic intervention.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Fabio Sallustio
- Interdisciplinary Department of Medicine (DIM)University of Bari "Aldo Moro"BariItaly
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTorinoItaly
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Giuseppe Grandaliano
- Department Translational Medicine and SurgeryUniversità Cattolica Sacro CuoreRomeItaly
| | - Paola Pontrelli
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Joshua M. Thurman
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTorinoItaly
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Advanced Research Center on Kidney Aging (A.R.K.A.), Department of Medical and Surgical SciencesUniversity of FoggiaFoggiaItaly
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine and Center for Autoimmune and Allergic Diseases (CAAD)University of Piemonte Orientale (UPO)NovaraItaly
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ TransplantationUniversity of Bari Aldo MoroBariItaly
| | - Giuseppe Castellano
- Unit of NephrologyDialysis and Renal Transplantation ‐ Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico di MilanoMilanItaly
| |
Collapse
|
14
|
Benincasa G, Coscioni E, Napoli C. Cardiovascular risk factors and molecular routes underlying endothelial dysfunction: Novel opportunities for primary prevention. Biochem Pharmacol 2022; 202:115108. [DOI: 10.1016/j.bcp.2022.115108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/23/2022]
|
15
|
Purtscher-like retinopathy: Ocular findings in a young woman with chronic kidney disease. Am J Ophthalmol Case Rep 2022; 25:101301. [PMID: 35146191 PMCID: PMC8801352 DOI: 10.1016/j.ajoc.2022.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/03/2021] [Accepted: 01/17/2022] [Indexed: 11/22/2022] Open
Abstract
Purpose To report a case of Purtscher-like retinopathy treated with systemic steroids in a young woman with chronic kidney disease. Observations An 18-year-old female with a stage 3b chronic kidney disease presented with bilateral, sudden vision loss during an influenza-like syndrome. Best corrected visual acuity (BCVA) was 20/32 bilaterally and fundoscopic examination revealed cotton-wool spots, Purtscher flecken and intraretinal haemorrhages. Flourescein angiography showed areas of retinal ischemia with vascular leakage and optical coherence tomography showed cystoid macular oedema. The patient completed a short-course treatment with high-dose oral steroids. After 1 week, BCVA was 20/20 bilaterally. After 1 month, fundoscopy and imaging evaluation revealed complete resolution of the retinal injury. This favorable outcome remained stable throughout the 1-year follow-up. Conclusions AND IMPORTANCE: Purtscher-like retinopathy is a rare, sight-threatening retinal disorder. We described a case of retinal injury presumably related to chronic kidney disease and possibly triggered by an influenza-like syndrome, with a favorable visual recovery. Purtscher-like retinopathy is a rare, sight-threatening retinal disorder. There is a possible association to chronic kidney disease. It frequently leads to sudden but reversible visual loss. Fundoscopy reveals posterior pole cotton-wool spots, haemorrhages and Purtscher flecken.
Collapse
|
16
|
Leatherdale A, Stukas S, Lei V, West HE, Campbell CJ, Hoiland RL, Cooper J, Wellington CL, Sekhon MS, Pryzdial ELG, Conway EM. Persistently elevated complement alternative pathway biomarkers in COVID-19 correlate with hypoxemia and predict in-hospital mortality. Med Microbiol Immunol 2022; 211:37-48. [PMID: 35034207 PMCID: PMC8761108 DOI: 10.1007/s00430-021-00725-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023]
Abstract
Mechanisms underlying the SARS-CoV-2-triggered hyperacute thrombo-inflammatory response that causes multi-organ damage in coronavirus disease 2019 (COVID-19) are poorly understood. Several lines of evidence implicate overactivation of complement. To delineate the involvement of complement in COVID-19, we prospectively studied 25 ICU-hospitalized patients for up to 21 days. Complement biomarkers in patient sera and healthy controls were quantified by enzyme-linked immunosorbent assays. Correlations with respiratory function and mortality were analyzed. Activation of complement via the classical/lectin pathways was variably increased. Strikingly, all patients had increased activation of the alternative pathway (AP) with elevated levels of activation fragments, Ba and Bb. This was associated with a reduction of the AP negative regulator, factor (F) H. Correspondingly, terminal pathway biomarkers of complement activation, C5a and sC5b-9, were significantly elevated in all COVID-19 patient sera. C5a and AP constituents Ba and Bb, were significantly associated with hypoxemia. Ba and FD at the time of ICU admission were strong independent predictors of mortality in the following 30 days. Levels of all complement activation markers were sustained throughout the patients' ICU stays, contrasting with the varying serum levels of IL-6, C-reactive protein, and ferritin. Severely ill COVID-19 patients have increased and persistent activation of complement, mediated strongly via the AP. Complement activation biomarkers may be valuable measures of severity of lung disease and the risk of mortality. Large-scale studies will reveal the relevance of these findings to thrombo-inflammation in acute and post-acute COVID-19.
Collapse
Affiliation(s)
- Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Victor Lei
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Henry E West
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Vancouver, BC, Canada
| | - Jennifer Cooper
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Centre for Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
17
|
Zietzer A, Steffen E, Niepmann S, Düsing P, Hosen MR, Liu W, Jamme P, Al-Kassou B, Goody PR, Zimmer S, Reiners KS, Pfeifer A, Böhm M, Werner N, Nickenig G, Jansen F. MicroRNA-mediated vascular intercellular communication is altered in chronic kidney disease. Cardiovasc Res 2022; 118:316-333. [PMID: 33135066 DOI: 10.1093/cvr/cvaa322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 10/23/2020] [Indexed: 02/27/2024] Open
Abstract
AIMS Chronic kidney disease (CKD) is an independent risk factor for the development of coronary artery disease (CAD). For both, CKD and CAD, the intercellular transfer of microRNAs (miRs) through extracellular vesicles (EVs) is an important factor of disease development. Whether the combination of CAD and CKD affects endothelial function through cellular crosstalk of EV-incorporated miRs is still unknown. METHODS AND RESULTS Out of 172 screened CAD patients, 31 patients with CAD + CKD were identified and matched with 31 CAD patients without CKD. Additionally, 13 controls without CAD and CKD were included. Large EVs from CAD + CKD patients contained significantly lower levels of the vasculo-protective miR-130a-3p and miR-126-3p compared to CAD patients and controls. Flow cytometric analysis of plasma-derived EVs revealed significantly higher numbers of endothelial cell-derived EVs in CAD and CAD + CKD patients compared to controls. EVs from CAD + CKD patients impaired target human coronary artery endothelial cell (HCAEC) proliferation upon incubation in vitro. Consistent with the clinical data, treatment with the uraemia toxin indoxyl sulfate (IS)-reduced miR-130a-3p levels in HCAEC-derived EVs. EVs from IS-treated donor HCAECs-reduced proliferation and re-endothelialization in EV-recipient cells and induced an anti-angiogenic gene expression profile. In a mouse-experiment, intravenous treatment with EVs from IS-treated endothelial cells significantly impaired endothelial regeneration. On the molecular level, we found that IS leads to an up-regulation of the heterogenous nuclear ribonucleoprotein U (hnRNPU), which retains miR-130a-3p in the cell leading to reduced vesicular miR-130a-3p export and impaired EV-recipient cell proliferation. CONCLUSION Our findings suggest that EV-miR-mediated vascular intercellular communication is altered in patients with CAD and CKD, promoting CKD-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Andreas Zietzer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Eva Steffen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sven Niepmann
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Philip Düsing
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Mohammed Rabiul Hosen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Weiyi Liu
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Paul Jamme
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Baravan Al-Kassou
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Philipp Roger Goody
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sebastian Zimmer
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Katrin S Reiners
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Michael Böhm
- Medical Department III, Faculty of Medicine, Saarland University Medical Center, Saarland University, Kirrberger Straße 100, 66421 Homburg, Germany
| | - Nikos Werner
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Medical Department II, Krankenhaus der Barmherzigen Brüder Trier, Nordallee 1, 54292 Trier, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Felix Jansen
- Department of Internal Medicine II, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
18
|
Thomas AM, Chaban V, Pischke SE, Orrem HL, Bosnes V, Sunde K, Seljeflot I, Lundqvist C, Nakstad ER, Andersen GØ, Schjalm C, Mollnes TE, Barratt-Due A. Complement ratios C3bc/C3 and sC5b-9/C5 do not increase the sensitivity of detecting acute complement activation systemically. Mol Immunol 2021; 141:273-279. [PMID: 34906905 DOI: 10.1016/j.molimm.2021.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/08/2021] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Complement activation plays an important pathogenic role in numerous diseases. The ratio between an activation product and its parent protein is suggested to be more sensitive to detect complement activation than the activation product itself. In the present study we explored whether the ratio between the activation product and the parent protein for C3 (C3bc/C3) and for C5 (sC5b-9/C5) increased the sensitivity to detect complement activation in acute clinical settings compared to the activation product alone. MATERIALS AND METHODS Samples from patients with acute heart failure following ST-elevated myocardial infarction (STEMI) and from patients with out-of-hospital cardiac arrest (OHCA) were used. C3, C3bc and C5, sC5b-9 were analysed in 629 and 672 patient samples, respectively. Healthy controls (n = 20) served to determine reference cut-off values for activation products and ratios, defined as two SD above the mean. RESULTS Increased C3bc/C3- and sC5b-9/C5 ratios were vastly dependent on C3bc and sC5b-9. Thus, 99.5 % and 98.1 % of the increased C3bc/C3- and sC5b-9/C5 ratios were solely dependent on increased C3bc and sC5b-9, respectively. Significantly decreased C3 and C5 caused increased ratios in only 3/600 (0.5 %) and 4/319 (1.3 %) samples, respectively. Strong correlations between C3bc and C3bc/C3-ratio and between sC5b-9 and sC5b-9/C5-ratio were found in the STEMI- (r = 0.926 and r = 0.786, respectively) and the OHCA-population (r = 0.908 and r = 0.843, respectively; p < 0.0001 for all). Importantly, sC5b-9 identified worse outcome groups better than sC5b-9/C5-ratio. CONCLUSION C3bc and sC5b-9 were sensitive markers of complement activation. The ratios of C3bc/C3 and sC5b-9/C5 did not improve detection of complement activation systemically.
Collapse
Affiliation(s)
- Anub Mathew Thomas
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Department of Neurology, Drammen Hospital, Vestre Viken Hospital Trust, Norway
| | - Viktoriia Chaban
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway
| | - Søren E Pischke
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway
| | - Hilde Lang Orrem
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway
| | - Vidar Bosnes
- Department of Immunology, Section of Medical Immunology, Oslo University Hospital, Oslo, Norway
| | - Kjetil Sunde
- Division of Emergencies and Critical Care, Oslo University Hospital, Norway; Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingebjørg Seljeflot
- Institute of Clinical Medicine, University of Oslo, Norway; Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital, Norway; Department of Cardiology, Oslo University Hospital, Norway
| | - Christofer Lundqvist
- Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Akershus University Hospital, Oslo, Norway; Health Services Research Unit, Akershus University Hospital, Oslo, Norway
| | - Espen Rostrup Nakstad
- Norwegian National Unit for CBRNE Medicine, Division of Medicine, Oslo University Hospital, Norway
| | | | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Research Laboratory, Nordland Hospital, Bodø, Norway; K.G. Jebsen TREC, University of Tromsø, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Andreas Barratt-Due
- Department of Immunology, Oslo University Hospital and University of Oslo, Norway; Division of Emergencies and Critical Care, Oslo University Hospital, Norway.
| |
Collapse
|
19
|
Stenson EK, You Z, Reeder R, Norris J, Scott HF, Dixon BP, Thurman JM, Frazer-Abel A, Mourani P, Kendrick J. Complement Activation Fragments Are Increased in Critically Ill Pediatric Patients with Severe AKI. KIDNEY360 2021; 2:1884-1891. [PMID: 35419539 PMCID: PMC8986038 DOI: 10.34067/kid.0004542021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/06/2021] [Indexed: 02/04/2023]
Abstract
Background Children who are critically ill with AKI suffer from high morbidity and mortality rates, and lack treatment options. Emerging evidence implicates the role of complement activation in AKI pathogenesis, which could potentially be treated with complement inhibitors. The purpose of this study is to evaluate the association between complement activation fragments and severity of AKI in children who are critically ill. Methods A biorepository of samples from children who are critically ill from a prior multisite study was leveraged to identify children with stage 3 AKI and matched to patients without AKI on the basis of PELOD-2 (illness severity) scores. Specimens were analyzed for plasma and urine complement activation fragments of factor B, C3a, C4a, and sC5b-9. The primary outcomes were MAKE30 and severe AKI rates. Results In total, 14 patients with stage 3 AKI (five requiring RRT) were matched to 14 patients without AKI. Urine factor Ba and plasma C4a levels increased stepwise as severity of AKI increased, from no AKI to stage 3 AKI, to stage 3 AKI with RRT need. Plasma C4a levels were independently associated with increased risk of MAKE30 outcomes (OR, 3.2; IQR, 1.1-8.9), and urine Ba (OR, 1.9; IQR, 1.1-3.1), plasma Bb (OR, 2.7; IQR, 1.1-6.8), C4a (OR, 13.0; IQR, 1.6-106.6), and C3a (OR, 3.3; IQR, 1.3-8.4) were independently associated with risk of severe stage 2-3 AKI on day 3 of admission. Conclusions Multiple complement fragments increase as magnitude of AKI severity increases. Very high levels of urine Ba or plasma C4a may identify patients at risk for severe AKI, hemodialysis, and MAKE30 outcomes. The fragments may be useful as a functional biomarker of complement activation and may identify those patients to study complement inhibition to treat or prevent AKI in children who are critically ill. These findings suggest the need for further specific investigations of the role of complement activation in children who are critically ill and at risk of AKI.
Collapse
Affiliation(s)
- Erin K. Stenson
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Pediatrics, Section of Pediatric Critical Care, University of Colorado School of Medicine, Aurora, Colorado
| | - Zhiying You
- Division of Renal Disease and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ron Reeder
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Jesse Norris
- Department of Pediatrics, University of Utah, Salt Lake City, Utah
| | - Halden F. Scott
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Pediatrics, Section of Pediatric Emergency Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Bradley P. Dixon
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado,Department of Pediatrics, Section of Pediatric Nephrology, University of Colorado School of Medicine, Aurora, Colorado
| | - Joshua M. Thurman
- Division of Renal Disease and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ashley Frazer-Abel
- Department of Pediatrics, Exsera BioLabs, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter Mourani
- Division of Critical Care Medicine, Arkansas Children’s Hospital, Little Rock, Arkansas
| | - Jessica Kendrick
- Division of Renal Disease and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
20
|
Trachtman H, Laskowski J, Lee C, Renner B, Feemster A, Parikh S, Panzer SE, Zhong W, Cravedi P, Cantarelli C, Kulik L, You Z, Satchell S, Rovin B, Liu F, Kalled SL, Holers VM, Jalal D, Thurman JM. Natural antibody and complement activation characterize patients with idiopathic nephrotic syndrome. Am J Physiol Renal Physiol 2021; 321:F505-F516. [PMID: 34459222 DOI: 10.1152/ajprenal.00041.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) and minimal change disease (MCD) are common forms of idiopathic nephrotic syndrome. The causes of these diseases are incompletely understood, but the response of patients to immunosuppressive therapies suggests that their pathogenesis is at least in part immune mediated. Preclinical and clinical research indicates that activation of the classical pathway of complement contributes to glomerular injury in FSGS. Glomerular IgM deposits are also prominent in some patients, raising the possibility that IgM is a trigger of classical pathway activation. In the present study, we examined the pattern of complement activation in the glomeruli and plasma of patients with nephrotic syndrome. We also tested whether patients with FSGS and MCD have elevated levels of natural IgM reactive with epitopes on glomerular endothelial cells and cardiolipin. We found evidence of classical pathway activation in patients with idiopathic nephrotic syndrome compared with healthy control subjects. We also detected higher levels of self-reactive IgM to both targets. Based on these results, IgM and classical pathway activation may contribute to disease pathogenesis in some patients with FSGS and MCD.NEW & NOTEWORTHY IgM is detected in biopsies from some patients with nephrotic syndrome, although this has been attributed to passive trapping of the protein. We found, however, that IgM colocalizes with complement activation fragments in some glomeruli. We also found that affected patients had higher levels of IgM reactive to glomerular endothelial cell epitopes. Thus, IgM activates the complement system in the glomeruli of some patients with nephrotic syndrome and may contribute to injury.
Collapse
Affiliation(s)
- Howard Trachtman
- Department of Pediatrics, Langone Medical Center, New York University School of Medicine, New York, New York
| | - Jennifer Laskowski
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Cameron Lee
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Brandon Renner
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Andrew Feemster
- Department of Pediatrics, Langone Medical Center, New York University School of Medicine, New York, New York
| | - Samir Parikh
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sarah E Panzer
- Department of Medicine, University of Wisconsin-Madison Hospital and Clinics, Madison, Wisconsin
| | - Weixiong Zhong
- Department of Medicine, University of Wisconsin-Madison Hospital and Clinics, Madison, Wisconsin
| | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chiara Cantarelli
- Dipartimento di Medicina e Chirurgia, Università di Parma, UO Nefrologia, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Liudmila Kulik
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Zhiying You
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Simon Satchell
- Bristol Renal, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Brad Rovin
- Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Fei Liu
- Q32 Bio, Incorporated, Cambridge, Massachusetts
| | | | - V Michael Holers
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| | - Diana Jalal
- Department of Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Joshua M Thurman
- Department of Medicine, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
21
|
Ji FP, Wen L, Zhang YP, Liu EP, Wen JG. Serum complement factor B is associated with disease activity and progression of idiopathic membranous nephropathy concomitant with IgA nephropathy. Int Urol Nephrol 2021; 54:1287-1294. [PMID: 34585312 DOI: 10.1007/s11255-021-02997-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Few studies have reported the roles of the complement system in concomitant idiopathic membranous nephropathy and IgA nephropathy (IMN-IgAN). Complement factor B (CFB) is a crucial factor that involved in the alternative complement pathway. We aimed to evaluate the association between disease activity (eGFR, anti-PLA2R antibody levels and 24 h urinary protein excretion), progression and serum CFB levels of IMN-IgAN patients. METHODS In total, 39 IMN-IgAN patients (median follow-up, 46.6 months), 99 IMN patients and 92 IgAN patients participated in this study. The disease progression event was defined as end-stage renal disease (ESRD) or a 30% decline in estimated glomerular filtration rate (eGFR). The serum CFB concentration was measured by enzyme-linked immunosorbent assay. RESULTS Serum CFB levels were lower in IMN-IgAN patients than in patients with IgAN only (P < .001). Serum CFB levels correlated positively with serum creatinine levels, anti-PLA2R antibody levels and 24 h urinary protein excretion (P < .05). Kaplan-Meier analysis revealed that IMN-IgAN patients with high serum CFB levels had a significantly lower cumulative renal survival rate than patients with low levels (log-rank test, P = .009). Multivariate Cox regression analysis showed that high baseline serum CFB levels were significantly associated with poor renal outcome in patients with IMN-IgAN (HR: 2.727, 95% CI 1.076-6.913, P = .034). CONCLUSION High serum CFB levels correlated with increased serum creatinine, anti-PLA2R antibody and urinary protein excretion as well as poor renal prognosis in patients with IMN-IgAN, indicating that serum CFB may be a marker of disease activity and progression.
Collapse
Affiliation(s)
- Feng Ping Ji
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Department of Urology, First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450052, China
| | - Lu Wen
- Department of Nephrology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Ping Zhang
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Department of Urology, First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450052, China
| | - Er Peng Liu
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Department of Urology, First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450052, China
| | - Jian Guo Wen
- Pediatric Urodynamic Centre, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Urology, First Affiliated Hospital of Zhengzhou University, Jianshe East Road No.1, Zhengzhou, 450052, China.
| |
Collapse
|
22
|
Barratt J, Weitz I. Complement Factor D as a Strategic Target for Regulating the Alternative Complement Pathway. Front Immunol 2021; 12:712572. [PMID: 34566967 PMCID: PMC8458797 DOI: 10.3389/fimmu.2021.712572] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
The complement system is central to first-line defense against invading pathogens. However, excessive complement activation and/or the loss of complement regulation contributes to the development of autoimmune diseases, systemic inflammation, and thrombosis. One of the three pathways of the complement system, the alternative complement pathway, plays a vital role in amplifying complement activation and pathway signaling. Complement factor D, a serine protease of this pathway that is required for the formation of C3 convertase, is the rate-limiting enzyme. In this review, we discuss the function of factor D within the alternative pathway and its implication in both healthy physiology and disease. Because the alternative pathway has a role in many diseases that are characterized by excessive or poorly mediated complement activation, this pathway is an enticing target for effective therapeutic intervention. Nonetheless, although the underlying disease mechanisms of many of these complement-driven diseases are quite well understood, some of the diseases have limited treatment options or no approved treatments at all. Therefore, in this review we explore factor D as a strategic target for advancing therapeutic control of pathological complement activation.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- John Walls Renal Unit, University Hospitals of Leicester National Health Service (NHS) Trust, Leicester, United Kingdom
| | - Ilene Weitz
- Jane Anne Nohl Division of Hematology, University of Southern California Keck School of Medicine, Los Angeles, CA, United States
| |
Collapse
|
23
|
Theodorakopoulou MP, Dipla K, Zafeiridis A, Sarafidis P. Εndothelial and microvascular function in CKD: Evaluation methods and associations with outcomes. Eur J Clin Invest 2021; 51:e13557. [PMID: 33774823 DOI: 10.1111/eci.13557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/19/2021] [Accepted: 03/14/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cardiovascular disease is the major cause of morbidity and mortality in patients with chronic kidney disease (CKD). Endothelial dysfunction, the hallmark of atherosclerosis, is suggested to be involved pathogenetically in cardiovascular and renal disease progression in these patients. METHODS This is a narrative review presenting the techniques and markers used for assessment of microvascular and endothelial function in patients with CKD and discussing findings of the relevant studies on the associations of endothelial dysfunction with co-morbid conditions and outcomes in this population. RESULTS Venous Occlusion Plethysmography was the first method to evaluate microvascular function; subsequently, several relevant techniques have been developed and used in patients with CKD, including brachial Flow-Mediated Dilatation, and more recently, Near-Infrared Spectroscopy and Laser Speckle Contrast Analysis. Furthermore, several circulating biomarkers are commonly used in clinical research. Studies assessing endothelial function using the above techniques and biomarkers suggest that endothelial dysfunction occurs early in CKD and contributes to the target organ damage, cardiovascular events, death and progression towards end-stage kidney disease. CONCLUSIONS Older and newer functional methods and several biomarkers have assessed endothelial dysfunction in CKD; accumulated evidence supports an association of endothelial dysfunction with outcomes. Future research with new, non-invasive and easily applicable methods could further delineate the role of endothelial dysfunction on cardiovascular and renal disease progression in patients with CKD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantina Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Andreas Zafeiridis
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
24
|
Favretto G, da Cunha RS, Flores Santos A, Leitolis A, Schiefer EM, Gregório PC, Franco CRC, Massy Z, Dalboni MA, Stinghen AEM. Uremic endothelial-derived extracellular vesicles: Mechanisms of formation and their role in cell adhesion, cell migration, inflammation, and oxidative stress. Toxicol Lett 2021; 347:12-22. [PMID: 33945863 DOI: 10.1016/j.toxlet.2021.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 01/15/2023]
Abstract
p-Cresyl sulfate (PCS), indoxyl sulfate (IS), and inorganic phosphate (Pi) are uremic toxins found in chronic kidney disease (CKD) that are closely related to endothelial extracellular vesicles (EVs) formation. The present study aimed to understand the role of EVs and their role in cell adhesion and migration, inflammation, and oxidative stress. Human endothelial cells were treated with PCS, IS, and Pi in pre-established uremic and kinetic recommendations. EVs were characterized using scanning electron microscopy, flow cytometry, and NanoSight assays. The concentrations of EVs were established using Alamar Blue and MTT assays. Cell adhesion to extracellular matrix proteins was analyzed using an adhesion assay. Inflammation and oxidative stress were assessed by vascular cell adhesion molecule-1 expression/monocyte migration and reactive oxygen species production, respectively. The capacity of EVs to stimulate endothelial cell migration was evaluated using a wound-healing assay. Our data showed that endothelial cells stimulated with uremic toxins can induce the formation of EVs of different sizes, quantities, and concentrations, depending on the uremic toxin used. Cell adhesion was significantly (P < 0.01) stimulated in cells exposed to PCS-induced extracellular vesicles (PCSEVs) and inorganic phosphate-induced extracellular vesicles (PiEVs). Cell migration was significantly (P < 0.05) stimulated by PCSEVs. VCAM-1 expression was evident in cells treated with PCSEVs and IS-induced extracellular vesicles (ISEVs). EVs are not able to stimulate monocyte migration or oxidative stress. In conclusion, EVs may be a biomarker of endothelial injury and the inflammatory process, playing an important role in cell-to-cell communication and pathophysiological processes, although more studies are needed to better understand the mechanisms of EVs in uremia.
Collapse
Affiliation(s)
- Giane Favretto
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Regiane Stafim da Cunha
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Andressa Flores Santos
- Experimental Nephrology Laboratory, Clinical Analysis Department, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Amanda Leitolis
- Laboratory of Basic Biology of Stem Cells - Carlos Chagas Institute, Fiocruz-Paraná, Curitiba, PR, Brazil
| | - Elberth Manfron Schiefer
- Graduate Program in Electrical and Computer Engineering, Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brazil
| | - Paulo Cézar Gregório
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Célia Regina Cavichiolo Franco
- Biology of Cellular Processes, Biology Cellular Department, Universidade Federal do Paraná, 81.531-980, Curitiba, PR, Brazil
| | - Ziad Massy
- Inserm Unit 1018, Team 5, CESP, Paul Brousse University Hospital, Paris-Sud University (UPS) and Versailles Saint-Quentin-en-Yvelines University (Paris-Ile-de-France-Ouest University, UVSQ), Villejuif, and Ambroise Paré University Hospital, APHP, Department of Nephrology, Boulogne-Billancourt, Paris, France
| | | | - Andréa Emilia Marques Stinghen
- Experimental Nephrology Laboratory, Basic Pathology Department, Universidade Federal do Paraná, 81.531-980, Curitiba, PR, Brazil.
| |
Collapse
|
25
|
Detection of pro angiogenic and inflammatory biomarkers in patients with CKD. Sci Rep 2021; 11:8786. [PMID: 33888746 PMCID: PMC8062467 DOI: 10.1038/s41598-021-87710-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular disease (CVD) is the most common cause of death in patients with native and post-transplant chronic kidney disease (CKD). To identify new biomarkers of vascular injury and inflammation, we analyzed the proteome of plasma and circulating extracellular vesicles (EVs) in native and post-transplant CKD patients utilizing an aptamer-based assay. Proteins of angiogenesis were significantly higher in native and post-transplant CKD patients versus healthy controls. Ingenuity pathway analysis (IPA) indicated Ephrin receptor signaling, serine biosynthesis, and transforming growth factor-β as the top pathways activated in both CKD groups. Pro-inflammatory proteins were significantly higher only in the EVs of native CKD patients. IPA indicated acute phase response signaling, insulin-like growth factor-1, tumor necrosis factor-α, and interleukin-6 pathway activation. These data indicate that pathways of angiogenesis and inflammation are activated in CKD patients' plasma and EVs, respectively. The pathways common in both native and post-transplant CKD may signal similar mechanisms of CVD.
Collapse
|
26
|
Matsuyama T, Tomimatsu T, Mimura K, Yagi K, Kawanishi Y, Kakigano A, Nakamura H, Endo M, Kimura T. Complement activation by an angiogenic imbalance leads to systemic vascular endothelial dysfunction: A new proposal for the pathophysiology of preeclampsia. J Reprod Immunol 2021; 145:103322. [PMID: 33887508 DOI: 10.1016/j.jri.2021.103322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
The underlying mechanism of preeclampsia by which an angiogenic imbalance results in systemic vascular endothelial dysfunction remains unclear. Complement activation directly induces endothelial dysfunction and is known to be involved in preeclampsia; nevertheless, the association between complement activation and angiogenic imbalance has not been established. This study aimed to evaluate whether angiogenic imbalance affects the expression and secretion of inhibitory complement factor H (CFH) in endothelial cells, resulting in complement activation and systemic vascular endothelial dysfunction. Viability of human umbilical vein endothelial cells (HUVECs) was assessed upon CFH knockdown by targeted-siRNA, and were incubated with complement factors. HUVECs were also treated with placental growth factor (PlGF) and/or soluble fms-like tyrosine kinase 1 (sFlt1), and CFH expression and secretion were measured. These cells were evaluated by cell viability assay and cell surface complement activation was quantified by immunocytochemical assessment of C5b-9 deposition. HUVECs transfected with CFH-siRNA had significantly lower viability than that of control cells. Moreover, the expression and secretion of CFH were significantly increased upon PlGF treatment compared with PlGF + sFlt1 combo. HUVECs treated with PlGF had less C5b-9 deposition and higher viability than HUVECs treated with PlGF + sFlt1. In summary, CFH was found to be essential for endothelial cell survival by inhibiting complement activation. An angiogenic imbalance, including decreased PlGF and increased sFlt1, suppresses CFH expression and secretion, resulting in complement activation on the surface of endothelial cells and systemic vascular endothelial dysfunction.
Collapse
Affiliation(s)
- Tatsuya Matsuyama
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuji Tomimatsu
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Kazuya Mimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazunobu Yagi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoko Kawanishi
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Aiko Kakigano
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hitomi Nakamura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Masayuki Endo
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
27
|
Shi Y, Hu Y, Cui B, Zhuang S, Liu N. Vascular endothelial growth factor-mediated peritoneal neoangiogenesis in peritoneal dialysis. Perit Dial Int 2021; 42:25-38. [PMID: 33823711 DOI: 10.1177/08968608211004683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Peritoneal dialysis (PD) is an important renal replacement therapy for patients with end-stage renal diseases, which is limited by peritoneal neoangiogenesis leading to ultrafiltration failure (UFF). Vascular endothelial growth factor (VEGF) and its receptors are key angiogenic factors involved in almost every step of peritoneal neoangiogenesis. Impaired mesothelial cells are the major sources of VEGF in the peritoneum. The expression of VEGF will be up-regulated in specific pathological conditions in PD patients, such as with non-biocompatible peritoneal dialysate, uremia and inflammation, and so on. Other working cells (i.e. vascular endothelial cells, macrophages and adipocytes) can also stimulate the secretion of VEGF. Meanwhile, hypoxia and activation of complement system further aggravate peritoneal injury and contribute to neoangiogenesis. There are several signalling pathways participating in VEGF-mediated peritoneal neoangiogenesis including tumour growth factor-β, Wnt/β-catenin, Notch and interleukin-6/signal transducer and activator of transcription 3. Moreover, VEGF is highly expressed in dialysate effluent of long-term PD patients and is associated with peritoneal transport function, which supports its role in the alteration of peritoneal structure and function. In this review, we systematically summarize the angiogenic effect of VEGF and evaluate it as a potential target for the prevention of peritoneal neoangiogenesis and UFF. Preservation of the peritoneal membrane using targeted therapy of VEGF-mediated peritoneal neoangiogenesis may increase the longevity of the PD modality for those who require life-long dialysis.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Hu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Binbin Cui
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Potential role of extracellular vesicles in the pathophysiology of glomerular diseases. Clin Sci (Lond) 2021; 134:2741-2754. [PMID: 33111949 DOI: 10.1042/cs20200766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles released by most cells and are found in diverse biological fluids. The release of EVs provides a new mechanism for intercellular communication, allowing cells to transfer their functional cargoes to target cells. Glomerular diseases account for a large proportion of end-stage renal disease (ESRD) worldwide. In recent years, an increasing number of research groups have focused their effort on identifying the functional role of EVs in renal diseases. However, the involvement of EVs in the pathophysiology of glomerular diseases has not been comprehensively described and discussed. In this review, we first briefly introduce the characteristics of EVs. Then, we describe the involvement of EVs in the mechanisms underlying glomerular diseases, including immunological and fibrotic processes. We also discuss what functions EVs derived from different kidney cells have in glomerular diseases and how EVs exert their effects through different signaling pathways. Furthermore, we summarize recent advances in the knowledge of EV involvement in the pathogenesis of various glomerular diseases. Finally, we propose future research directions for identifying better management strategies for glomerular diseases.
Collapse
|
29
|
Pesce F, Stea ED, Divella C, Accetturo M, Laghetti P, Gallo P, Rossini M, Cianciotta F, Crispino L, Granata A, Battaglia M, Lucarelli G, de Cordoba SR, Stallone G, Gesualdo L, Castellano G. DelCFHR3-1 influences graft survival in transplant patients with IgA nephropathy via complement-mediated cellular senescence. Am J Transplant 2021; 21:838-845. [PMID: 33091234 DOI: 10.1111/ajt.16350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/25/2023]
Abstract
IgA nephropathy (IgAN) is a frequent cause of chronic kidney disease (CKD) and progressive renal impairment. A native renal biopsy diagnosis of IgAN is a predictor of graft loss, with a relative risk of 47% but it is difficult to predict graft survival and progressive allograft dysfunction in these patients. Deletion of complement factor H-related genes 1 and 3 (delCFHR3-1) has been associated with a decreased risk of developing IgAN on native kidneys, but the impact on the graft in IgAN-transplanted patients is unknown. We hypothesized that delCFHR3-1 is also associated with the processes that influence graft survival in transplant recipients with IgAN and tested whether cellular senescence is involved in mediating graft damage. We found that patients carrying two copies of CFHR1-3 had a worse outcome (P = .000321) and presented increased FHR1 deposits at glomerular and tubulointerstitial level associated with higher expression of the senescence marker p16INK4a (P = .001) and tubulointerstitial fibrosis (P = .005). Interestingly, FHR1 deposits were associated with increased complement activation as demonstrated by C5b-9 deposits. These data support both the role of FHR1 in mediating complement activation and tubular senescence, and suggest the possibility of genotyping delCFHR3-1 to predict graft survival in IgAN-transplanted patients.
Collapse
Affiliation(s)
- Francesco Pesce
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Emma D Stea
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Chiara Divella
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Matteo Accetturo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paola Laghetti
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Pasquale Gallo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Michele Rossini
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Francesca Cianciotta
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Lucia Crispino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Antonio Granata
- Azienda Ospedaliera per l'Emergenza Cannizzaro. Nephrology and Dialysis Unit - Catania, Catania, Italy
| | - Michele Battaglia
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Renal Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Santiago R de Cordoba
- Department of Molecular Biomedicine, Center for Biological Research and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
30
|
Yaker L, Kamel S, Ausseil J, Boullier A. Effects of Chronic Kidney Disease and Uremic Toxins on Extracellular Vesicle Biology. Toxins (Basel) 2020; 12:toxins12120811. [PMID: 33371311 PMCID: PMC7767379 DOI: 10.3390/toxins12120811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/28/2022] Open
Abstract
Vascular calcification (VC) is a cardiovascular complication associated with a high mortality rate, especially in patients with diabetes, atherosclerosis or chronic kidney disease (CKD). In CKD patients, VC is associated with the accumulation of uremic toxins, such as indoxyl sulphate or inorganic phosphate, which can have a major impact in vascular remodeling. During VC, vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and secrete extracellular vesicles (EVs) that are heterogeneous in terms of their origin and composition. Under physiological conditions, EVs are involved in cell-cell communication and the maintenance of cellular homeostasis. They contain high levels of calcification inhibitors, such as fetuin-A and matrix Gla protein. Under pathological conditions (and particularly in the presence of uremic toxins), the secreted EVs acquire a pro-calcifying profile and thereby act as nucleating foci for the crystallization of hydroxyapatite and the propagation of calcification. Here, we review the most recent findings on the EVs’ pathophysiological role in VC, the impact of uremic toxins on EV biogenesis and functions, the use of EVs as diagnostic biomarkers and the EVs’ therapeutic potential in CKD.
Collapse
Affiliation(s)
- Linda Yaker
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
| | - Saïd Kamel
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
- Laboratoire de Biochimie CHU Amiens-Picardie, Avenue de la Croix Jourdain, F-80054 Amiens, France
| | - Jérôme Ausseil
- INSERM UMR1043, CNRS UMR5282, University of Toulouse III, F-31024 Toulouse, France;
- CHU PURPAN—Institut Fédératif de Biologie, Laboratoire de Biochimie, Avenue de Grande Bretagne, F-31059 Toulouse, France
| | - Agnès Boullier
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
- Laboratoire de Biochimie CHU Amiens-Picardie, Avenue de la Croix Jourdain, F-80054 Amiens, France
- Correspondence: ; Tel.: +33-322087019
| |
Collapse
|
31
|
Theodorakopoulou MP, Schoina M, Sarafidis P. Assessment of Endothelial and Microvascular Function in CKD: Older and Newer Techniques, Associated Risk Factors, and Relations with Outcomes. Am J Nephrol 2020; 51:931-949. [PMID: 33311014 DOI: 10.1159/000512263] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Endothelium is the inner cellular lining of the vessels that modulates multiple biological processes including vasomotor tone, permeability, inflammatory responses, hemostasis, and angiogenesis. Endothelial dysfunction, the basis of atherosclerosis, is characterized by an imbalance between endothelium-derived relaxing factors and endothelium-derived contracting factors. SUMMARY Starting from the semi-invasive venous occlusion plethysmography, several functional techniques have been developed to evaluate microvascular function and subsequently used in patients with CKD. Flow-mediated dilatation of the forearm is considered to be the "gold standard," while in the last years, novel, noninvasive methods such as laser speckle contrast imaging and near-infrared spectroscopy are scarcely used. Moreover, several circulating biomarkers of endothelial function have been used in studies in CKD patients. This review summarizes available functional methods and biochemical markers for the assessment of endothelial and microvascular function in CKD and discusses existing evidence on their associations with comorbid conditions and outcomes in this population. Key Messages: Accumulated evidence suggests that endothelial dysfunction occurs early in CKD and is associated with target organ damage, progression of renal injury, cardiovascular events, and mortality. Novel methods evaluating microvascular function can offer a detailed, real-time assessment of underlying phenomena and should be increasingly used to shed more light on the role of endothelial dysfunction on cardiovascular and renal disease progression in CKD.
Collapse
Affiliation(s)
- Marieta P Theodorakopoulou
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Schoina
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece,
| |
Collapse
|
32
|
Zheng JM, Wang SS, Tian X, Che DJ. Sustained activation of C3aR in a human podocyte line impairs the morphological maturation of the cells. Mol Med Rep 2020; 22:5326-5338. [PMID: 33174024 PMCID: PMC7646996 DOI: 10.3892/mmr.2020.11626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/02/2020] [Indexed: 12/03/2022] Open
Abstract
The C3a receptor (C3aR) has been reported to be involved in various physiological and pathological processes, including the regulation of cellular structure development. Expression of C3aR has been reported in podocytes; however, data concerning the role of C3aR in podocyte morphology is scarce. The aim of the present study was to examine the effect of C3aR activation on the architectural development of podocytes. An immortal human podocyte line (HPC) was transfected with a C3a expression lentivirus vector or recombinant C3a. SB290157 was used to block the activation of C3aR. The expression of C3a in HPC cells was analyzed by reverse transcription-quantitative PCR (RT-qPCR) and ELISAs. Phase contrast and fluorescence microscopy were used to observe the morphology of the podocytes. The adhesive ability of HPC cells was analyzed using an attachment assay. RT-qPCR, cyto-immunofluorescence and western blotting were used to determine the expression levels of the adhesion-associated genes. The expression levels of carboxypeptidases in HPC cells was also detected by RT-qPCR. Compared with the untransfected and control virus-transfected HPC cells, the C3a-overexpressing cells (HPC-C3a) failed to expand their cell bodies and develop an arborized appearance in the process of maturation, which the control cells exhibited. In addition, HPC-C3a cells presented with decreased adhesive capacity, altered focal adhesion (FA) plaques and decreased expression of FA-associated genes. These effects were blocked by a C3aR antagonist; however, the addition of purified C3a could not completely mimic the effects of C3a overexpression. Furthermore, HPC cells expressed carboxypeptidases, which have been reported to be able to inactivate C3a. In summary, the results demonstrated that sustained C3aR activation impaired the morphological maturation of HPC cells, which may be associated with the altered expression of FA-associated genes and impaired FA. Since chronic complement activation has been reported in renal diseases, which indicate sustained C3aR activation in renal cells, including podocytes and podocyte progenitors, the possible role of C3aR in the dysregulation of podocyte architecture and podocyte regeneration requires further research.
Collapse
Affiliation(s)
- Jing-Min Zheng
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Sha-Sha Wang
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Xiong Tian
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - De-Jun Che
- Department of Nephrology, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
33
|
Fonseca F, Ballerini AP, Izar MC, Kato J, Ferreira CE, Fonzar W, do Amaral J, Rezende P, Machado-Santelli G, França C. Advanced chronic kidney disease is associated with higher serum concentration of monocyte microparticles. Life Sci 2020; 260:118295. [PMID: 32822720 DOI: 10.1016/j.lfs.2020.118295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/24/2022]
Abstract
Advanced chronic kidney disease is associated with high rates of cardiovascular disease. Considering the crucial role of capillaries in renal function, our study aimed to evaluate microparticles related to vascular physiology examining the link between stages of chronic kidney disease with circulating endothelial (EMP), platelet (PMP) and monocytic (MMP) microparticles. Cross-sectional study with blinded endpoints included subjects of both sexes, aged 40-75 years (n = 247), with established cardiovascular disease (coronary heart disease, ischemic stroke, or peripheral artery disease). They were stratified 1:1 by the presence or absence of decreased glomerular filtration rate (GFR < 60 mL/min/1.73 m2) estimated by the CKD-EPI criteria, and according to the stages of CKD. Microparticles were quantified by flow-cytometry using specific antibodies to identify endothelial, platelet, and monocytic derived microparticles. Higher percentages of circulating MMP (p = 0.036), but not for EMP or PMP, were observed in subjects with reduced GFR. Circulating MMP were also related to the stages of chronic kidney disease (trend analysis across renal stages, p = 0.038). Higher percentages of circulating MMP were found in subjects with reduced GFR, and their percentages were progressively higher according to the stage of chronic renal function.
Collapse
Affiliation(s)
| | | | | | - Juliana Kato
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Waléria Fonzar
- Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
34
|
Abbasian N, Goodall AH, Burton JO, Bursnall D, Bevington A, Brunskill NJ. Hyperphosphatemia Drives Procoagulant Microvesicle Generation in the Rat Partial Nephrectomy Model of CKD. J Clin Med 2020; 9:jcm9113534. [PMID: 33139598 PMCID: PMC7692968 DOI: 10.3390/jcm9113534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Hyperphosphatemia has been proposed as a cardiovascular risk factor, contributing to long-term vascular calcification in hyperphosphatemic Chronic Kidney Disease (CKD) patients. However, more recent studies have also demonstrated acute effects of inorganic phosphate (Pi) on endothelial cells in vitro, especially generation of pro-coagulant endothelial microvesicles (MV). Hitherto, such direct effects of hyperphosphatemia have not been reported in vivo. Thirty-six male Sprague-Dawley rats were randomly allocated to three experimental groups: (1) CKD induced by partial nephrectomy receiving high (1.2%) dietary phosphorus; (2) CKD receiving low (0.2%) dietary phosphorus; and (3) sham-operated controls receiving 1.2% phosphorus. After 14 days the animals were sacrificed and plasma MVs counted by nanoparticle tracking analysis. MVs isolated by centrifugation were assayed for pro-coagulant activity by calibrated automated thrombography, and relative content of endothelium-derived MVs was assessed by anti-CD144 immunoblotting. When compared with sham controls, high phosphorus CKD rats were shown to be hyperphosphatemic (4.11 ± 0.23 versus 2.41 ± 0.22 mM Pi, p < 0.0001) with elevated total plasma MVs (2.24 ± 0.37 versus 1.31 ± 0.24 × 108 per ml, p < 0.01), showing increased CD144 expression (145 ± 25% of control value, p < 0.0001), and enhanced procoagulant activity (18.06 ± 1.75 versus 4.99 ± 1.77 nM peak thrombin, p < 0.0001). These effects were abolished in the low phosphorus CKD group. In this rat model, hyperphosphatemia (or a Pi-dependent hormonal response derived from it) is sufficient to induce a marked increase in circulating pro-coagulant MVs, demonstrating an important link between hyperphosphatemia and thrombotic risk in CKD.
Collapse
Affiliation(s)
- Nima Abbasian
- Department of Cardiovascular Sciences, University of Leicester, and Leicester NIHR Cardiovascular Biomedical Research Unit, Leicester LE3 9QP, UK; (A.H.G.); (J.O.B.); (A.B.); (N.J.B.)
- Correspondence: ; Tel.: +44(0)122-384-0020
| | - Alison H. Goodall
- Department of Cardiovascular Sciences, University of Leicester, and Leicester NIHR Cardiovascular Biomedical Research Unit, Leicester LE3 9QP, UK; (A.H.G.); (J.O.B.); (A.B.); (N.J.B.)
| | - James O. Burton
- Department of Cardiovascular Sciences, University of Leicester, and Leicester NIHR Cardiovascular Biomedical Research Unit, Leicester LE3 9QP, UK; (A.H.G.); (J.O.B.); (A.B.); (N.J.B.)
- Department of Nephrology, Leicester General Hospital, Leicester LE5 4PW, UK
| | - Debbie Bursnall
- Division of Biomedical Services, University of Leicester, Leicester LE1 7RH, UK;
| | - Alan Bevington
- Department of Cardiovascular Sciences, University of Leicester, and Leicester NIHR Cardiovascular Biomedical Research Unit, Leicester LE3 9QP, UK; (A.H.G.); (J.O.B.); (A.B.); (N.J.B.)
| | - Nigel J. Brunskill
- Department of Cardiovascular Sciences, University of Leicester, and Leicester NIHR Cardiovascular Biomedical Research Unit, Leicester LE3 9QP, UK; (A.H.G.); (J.O.B.); (A.B.); (N.J.B.)
- Department of Nephrology, Leicester General Hospital, Leicester LE5 4PW, UK
| |
Collapse
|
35
|
Magro CM, Mulvey JJ, Laurence J, Seshan S, Crowson AN, Dannenberg AJ, Salvatore S, Harp J, Nuovo GJ. Docked severe acute respiratory syndrome coronavirus 2 proteins within the cutaneous and subcutaneous microvasculature and their role in the pathogenesis of severe coronavirus disease 2019. Hum Pathol 2020; 106:106-116. [PMID: 33058948 PMCID: PMC7550120 DOI: 10.1016/j.humpath.2020.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/30/2020] [Accepted: 10/03/2020] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to examine the deltoid skin biopsy in twenty-three patients with coronavirus disease 2019 (COVID-19), most severely ill, for vascular complement deposition and correlate this with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral RNA and protein localization and ACE2 expression. Deltoid skin microvascular complement screening has been applied to patients with various systemic complement-mediated microvascular syndromes, best exemplified by atypical hemolytic uremic syndrome. In 21 of 23 cases, substantial microvascular deposition of complement components was identified. The two patients without significant complement deposition included one patient with moderate disease and a severely ill patient who although on a ventilator for a day was discharged after 3 days. The dominant microvascular complement immunoreactant identified was the terminal membranolytic attack complex C5b-9. Microvascular complement deposition strongly colocalized in situ with the SARS-CoV-2 viral proteins including spike glycoproteins in the endothelial cells as well as the viral receptor ACE2 in lesional and nonlesional skin; viral RNA was not evident. Microvascular SARS-CoV-2 viral protein, complement, and ACE2 expression was most conspicuous in the subcutaneous fat. Although the samples from severely ill patients with COVID-19 were from grossly normal skin, light microscopically focal microvascular abnormalities were evident that included endothelial cell denudement, basement membrane zone reduplication, and small thrombi. It is concluded that complement activation is common in grossly normal skin, especially in the subcutaneous fat which may provide a link between severe disease and obesity, in people with severe COVID-19, and the strong colocalization with the ACE2 receptor and viral capsid proteins without viral RNA suggests that circulating viral proteins (ie, pseudovirions) may dock onto the endothelial of these microvessels and induce complement activation.
Collapse
Affiliation(s)
- Cynthia M Magro
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - J Justin Mulvey
- Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Jeffrey Laurence
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Surya Seshan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - A Neil Crowson
- Pathology Laboratory Associates and University of Oklahoma, Oklahoma City, OK 77069, USA
| | - Andrew J Dannenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Steven Salvatore
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Joanna Harp
- Department of Dermatology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gerard J Nuovo
- Ohio State University Comprehensive Cancer Center and Discovery Life Sciences, Columbus, OH 43065, USA.
| |
Collapse
|
36
|
How do Uremic Toxins Affect the Endothelium? Toxins (Basel) 2020; 12:toxins12060412. [PMID: 32575762 PMCID: PMC7354502 DOI: 10.3390/toxins12060412] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/11/2022] Open
Abstract
Uremic toxins can induce endothelial dysfunction in patients with chronic kidney disease (CKD). Indeed, the structure of the endothelial monolayer is damaged in CKD, and studies have shown that the uremic toxins contribute to the loss of cell–cell junctions, increasing permeability. Membrane proteins, such as transporters and receptors, can mediate the interaction between uremic toxins and endothelial cells. In these cells, uremic toxins induce oxidative stress and activation of signaling pathways, including the aryl hydrocarbon receptor (AhR), nuclear factor kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways. The activation of these pathways leads to overexpression of proinflammatory (e.g., monocyte chemoattractant protein-1, E-selectin) and prothrombotic (e.g., tissue factor) proteins. Uremic toxins also induce the formation of endothelial microparticles (EMPs), which can lead to the activation and dysfunction of other cells, and modulate the expression of microRNAs that have an important role in the regulation of cellular processes. The resulting endothelial dysfunction contributes to the pathogenesis of cardiovascular diseases, such as atherosclerosis and thrombotic events. Therefore, uremic toxins as well as the pathways they modulated may be potential targets for therapies in order to improve treatment for patients with CKD.
Collapse
|
37
|
Franzin R, Stasi A, Fiorentino M, Stallone G, Cantaluppi V, Gesualdo L, Castellano G. Inflammaging and Complement System: A Link Between Acute Kidney Injury and Chronic Graft Damage. Front Immunol 2020; 11:734. [PMID: 32457738 PMCID: PMC7221190 DOI: 10.3389/fimmu.2020.00734] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The aberrant activation of complement system in several kidney diseases suggests that this pillar of innate immunity has a critical role in the pathophysiology of renal damage of different etiologies. A growing body of experimental evidence indicates that complement activation contributes to the pathogenesis of acute kidney injury (AKI) such as delayed graft function (DGF) in transplant patients. AKI is characterized by the rapid loss of the kidney's excretory function and is a complex syndrome currently lacking a specific medical treatment to arrest or attenuate progression in chronic kidney disease (CKD). Recent evidence suggests that independently from the initial trigger (i.e., sepsis or ischemia/reperfusions injury), an episode of AKI is strongly associated with an increased risk of subsequent CKD. The AKI-to-CKD transition may involve a wide range of mechanisms including scar-forming myofibroblasts generated from different sources, microvascular rarefaction, mitochondrial dysfunction, or cell cycle arrest by the involvement of epigenetic, gene, and protein alterations leading to common final signaling pathways [i.e., transforming growth factor beta (TGF-β), p16 ink4a , Wnt/β-catenin pathway] involved in renal aging. Research in recent years has revealed that several stressors or complications such as rejection after renal transplantation can lead to accelerated renal aging with detrimental effects with the establishment of chronic proinflammatory cellular phenotypes within the kidney. Despite a greater understanding of these mechanisms, the role of complement system in the context of the AKI-to-CKD transition and renal inflammaging is still poorly explored. The purpose of this review is to summarize recent findings describing the role of complement in AKI-to-CKD transition. We will also address how and when complement inhibitors might be used to prevent AKI and CKD progression, therefore improving graft function.
Collapse
Affiliation(s)
- Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Marco Fiorentino
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giovanni Stallone
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vincenzo Cantaluppi
- Department Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
38
|
Espi M, Koppe L, Fouque D, Thaunat O. Chronic Kidney Disease-Associated Immune Dysfunctions: Impact of Protein-Bound Uremic Retention Solutes on Immune Cells. Toxins (Basel) 2020; 12:toxins12050300. [PMID: 32384617 PMCID: PMC7291164 DOI: 10.3390/toxins12050300] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Regardless of the primary disease responsible for kidney failure, patients suffering from chronic kidney disease (CKD) have in common multiple impairments of both the innate and adaptive immune systems, the pathophysiology of which has long remained enigmatic. CKD-associated immune dysfunction includes chronic low-grade activation of monocytes and neutrophils, which induces endothelial damage and increases cardiovascular risk. Although innate immune effectors are activated during CKD, their anti-bacterial capacity is impaired, leading to increased susceptibility to extracellular bacterial infections. Finally, CKD patients are also characterized by profound alterations of cellular and humoral adaptive immune responses, which account for an increased risk for malignancies and viral infections. This review summarizes the recent emerging data that link the pathophysiology of CKD-associated immune dysfunctions with the accumulation of microbiota-derived metabolites, including indoxyl sulfate and p-cresyl sulfate, the two best characterized protein-bound uremic retention solutes.
Collapse
Affiliation(s)
- Maxime Espi
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69000 Lyon, France;
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
| | - Laetitia Koppe
- Département de Néphrologie-Dialyse-Nutrition, Centre Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (L.K.); (D.F.)
- CarMeN, INSERM U1060, INRA 1397, 69310 Pierre-Bénite, France
- Lyon-Sud Medical Faculty, Université de Lyon, 69000 Lyon, France
| | - Denis Fouque
- Département de Néphrologie-Dialyse-Nutrition, Centre Hôpital Lyon Sud, Hospices Civils de Lyon, 69310 Pierre Bénite, France; (L.K.); (D.F.)
- CarMeN, INSERM U1060, INRA 1397, 69310 Pierre-Bénite, France
- Lyon-Sud Medical Faculty, Université de Lyon, 69000 Lyon, France
| | - Olivier Thaunat
- Service de Transplantation, Néphrologie et Immunologie Clinique, Hôpital Edouard Herriot, Hospices Civils de Lyon, 69000 Lyon, France;
- CIRI, INSERM U1111, Université Claude Bernard Lyon I, CNRS UMR5308, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
- Lyon-Est Medical Faculty, Université de Lyon, 69000 Lyon, France
- Correspondence:
| |
Collapse
|
39
|
Georgatzakou HT, Pavlou EG, Papageorgiou EG, Papassideri IS, Kriebardis AG, Antonelou MH. The Multi-Faced Extracellular Vesicles in the Plasma of Chronic Kidney Disease Patients. Front Cell Dev Biol 2020; 8:227. [PMID: 32351956 PMCID: PMC7174738 DOI: 10.3389/fcell.2020.00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/17/2020] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed nanoparticles released by most cells in body fluids and extracellular matrix. They function as signal transducers in intercellular communication, contributing to the maintenance of cell and tissue integrity. EVs biogenesis is deregulated in various pathologies, in structural and functional connection to the pathophysiology of donor cells. Consequently, EVs are considered diagnostic and monitoring factors in many diseases. Despite consensus as to their activity in promoting coagulation and inflammation, there is evidence suggesting protective roles for EVs in stress states. Chronic kidney disease (CKD) patients are at high risk of developing cardiovascular defects. The pathophysiology, comorbidities, and treatment of CKD may individually and in synergy affect extracellular vesiculation in the kidney, endothelium, and blood cells. Oxidative and mechanical stresses, chronic inflammation, and deregulation of calcium and phosphate homeostasis are established stressors of EV release. EVs may affect the clinical severity of CKD by transferring biological response modifiers between renal, vascular, blood, and inflammatory cells. In this Review, we focus on EVs circulating in the plasma of CKD patients. We highlight some recent advances in the understanding of their biogenesis, the effects of dialysis, and pharmacological treatments on them and their potential impact on thrombosis and vascular defects. The strong interest of the scientific community to this exciting field of research may reveal hidden pieces in the pathophysiology of CKD and thus, innovative ways to treat it. Overcoming gaps in EV biology and technical difficulties related to their size and heterogeneity will define the success of the project.
Collapse
Affiliation(s)
- Hara T Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Athens, Greece
| | - Efthimia G Pavlou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Athens, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica, Athens, Greece
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| |
Collapse
|
40
|
Medjeral-Thomas NR, O'Shaughnessy MM. Complement in IgA Nephropathy: The Role of Complement in the Pathogenesis, Diagnosis, and Future Management of IgA Nephropathy. Adv Chronic Kidney Dis 2020; 27:111-119. [PMID: 32553243 DOI: 10.1053/j.ackd.2019.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
Immunoglobulin A (IgA) nephropathy (IgAN) is an important cause of chronic and end-stage kidney disease. IgAN pathogenesis is incompletely understood. In particular, we cannot adequately explain the heterogeneity in clinical and histologic features and severities that characterizes IgAN. This limits patient stratification to appropriate and effective treatments and the development of disease-targeted therapies. Studies of the role of the alternative, lectin, and terminal complement pathways in IgAN have enhanced our understanding of disease pathogenesis and inform the development of novel diagnostic and therapeutic strategies. For example, recent genetic, serologic, and immunohistologic evidence suggests that imbalances between the main alternative complement pathway regulator protein (factor H) and competitor proteins that deregulate complement activity (factor H-related proteins 1 and 5, FHR1, and FHR5) associate with IgAN severity: a relative abundance of FHR1 and FHR5 amplifies complement-dependent inflammation and exacerbates kidney injury. Ongoing characterization of the mechanisms by which complement activity contributes to IgAN pathogenesis will facilitate the development of complement-based diagnostic techniques, biomarkers of disease activity and severity, and novel targeted therapies.
Collapse
|
41
|
Complement fragments are biomarkers of antibody-mediated endothelial injury. Mol Immunol 2019; 118:142-152. [PMID: 31884386 DOI: 10.1016/j.molimm.2019.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/18/2019] [Accepted: 12/16/2019] [Indexed: 11/23/2022]
Abstract
Antibody-mediated rejection (AbMR) adversely affects long-term graft survival in kidney transplantation. Currently, the diagnosis of AbMR requires a kidney biopsy, and detection of complement C4d deposition in the allograft is one of the diagnostic criteria. Complement activation also generates several soluble fragments which could potentially provide non-invasive biomarkers of the process. Furthermore, microvesicles released into the plasma from injured cells can serve as biomarkers of vascular injury. To explore whether soluble complement fragments or complement fragments bound to endothelial microvesicles can be used to non-invasively detect AbMR, we developed an in vitro model in which human endothelial cells were exposed to anti-HLA antibodies and complement sufficient serum. We found that complement fragments C4a and sC5b-9 were increased in the supernatants of cells exposed to complement-sufficient serum compared to cells treated complement-deficient serum. Furthermore, complement activation on the cell surface was associated with the release of microvesicles bearing C4 and C3 fragments. We next measured these analytes in plasma from kidney transplant recipients with biopsy-proven acute AbMR (n = 9) and compared the results with those from transplant recipients who also had impaired allograft function but who did not have AbMR (n = 30). Consistent with the in vitro results, complement fragments C4a and Ba were increased in plasma from patients with AbMR compared to control subjects (P < 0.001 and P < 0.01, respectively). Endothelial microvesicle counts were not increased in patients with AbMR, however, and the number of microvesicles with C4 and C3 bound to the surface was actually lower compared to control subjects (both P < 0.05). Our results suggest that plasma complement activation fragments may be useful as non-invasive biomarkers of antibody-mediated complement activation within the allograft. Complement-opsonized endothelial microvesicles are decreased in patients with AbMR, possibly due to enhanced clearance of microvesicles opsonized with C3 and C4 fragments.
Collapse
|
42
|
Caughey MC, Derebail VK, Key NS, Reiner AP, Gottesman RF, Kshirsagar AV, Heiss G. Thirty-year risk of ischemic stroke in individuals with sickle cell trait and modification by chronic kidney disease: The atherosclerosis risk in communities (ARIC) study. Am J Hematol 2019; 94:1306-1313. [PMID: 31429114 PMCID: PMC6858511 DOI: 10.1002/ajh.25615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022]
Abstract
Sickle cell trait (SCT) has been associated with hypercoagulability, chronic kidney disease (CKD), and ischemic stroke. Whether concomitant CKD modifies long-term ischemic stroke risk in individuals with SCT is uncertain. We analyzed data from 3602 genotyped black adults (female = 62%, mean baseline age = 54 years) who were followed for a median 26 years by the Atherosclerosis Risk in Communities Study. Ischemic stroke was verified by physician review. Associations between SCT and ischemic stroke were analyzed using repeat-events Cox regression, adjusted for potential confounders. SCT was identified in 236 (7%) participants, who more often had CKD at baseline than noncarriers (18% vs 13%, P = .02). Among those with CKD, elevated factor VII activity was more prevalent with SCT genotype (36% vs 22%; P = .05). From 1987-2017, 555 ischemic strokes occurred in 436 individuals. The overall hazard ratio of ischemic stroke associated with SCT was 1.31 (95% CI: 0.95-1.80) and was stronger in participants with concomitant CKD (HR = 2.18; 95% CI: 1.16-4.12) than those without CKD (HR = 1.09; 95% CI: 0.74-1.61); P for interaction = .04. The hazard ratio of composite ischemic stroke and/or death associated with SCT was 1.20 (95% CI: 1.01-1.42) overall, 1.44 (95% CI: 1.002-2.07) among those with CKD, and 1.15 (95% CI: 0.94-1.39) among those without CKD; P for interaction = .18. The long-term risk of ischemic stroke associated with SCT relative to noncarrier genotype appears to be modified by concomitant CKD.
Collapse
Affiliation(s)
- Melissa C. Caughey
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Vimal K. Derebail
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel S. Key
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Abhijit V. Kshirsagar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
43
|
Laskowski J, Philbrook HT, Parikh CR, Thurman JM. Urine complement activation fragments are increased in patients with kidney injury after cardiac surgery. Am J Physiol Renal Physiol 2019; 317:F650-F657. [PMID: 31313951 DOI: 10.1152/ajprenal.00130.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Experiments in mouse models have shown that the complement cascade is activated within the kidney after ischemia-reperfusion and that complement activation contributes to tubular injury in this setting. Less is known, however, about complement activation in human kidneys after ischemia or whether complement activation in the tubulointerstitium can be detected by measurement of complement fragments in the urine. We hypothesized that urine biomarkers of complement activation would rapidly increase in patients who develop ischemic acute kidney injury, signaling complement activation within the kidney. We confirmed that the alternative pathway of complement is activated in the kidneys of mice after ischemia-reperfusion, and we found that levels of factor B fragments (generated during alternative pathway activation) rapidly increase in the urine. We next performed a case-control study in which we measured complement fragments in human urine samples from patients undergoing cardiac surgery using ELISAs. The level of Ba increased after cardiac surgery and was significantly higher in patients who developed acute kidney injury. The increase in Ba also correlated with magnitude of the subsequent rise in serum creatinine and with the need for hemodialysis during the hospitalization. These findings demonstrate that the alternative pathway of complement is activated in patients who develop acute kidney injury after cardiac surgery and that increases in the level of urine Ba may be a predictive and functional biomarker of severe kidney injury.
Collapse
Affiliation(s)
- Jennifer Laskowski
- Division of Nephrology, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Chirag R Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Joshua M Thurman
- Division of Nephrology, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
44
|
Massunaga ND, França CN, Bianco HT, Ferreira CE, Kato JT, Póvoa RM, Figueiredo Neto AM, Izar MCO, Fonseca FAH. Circulating microparticles and central blood pressure according to antihypertensive strategy. Clinics (Sao Paulo) 2019; 74:e1234. [PMID: 31721907 PMCID: PMC6827330 DOI: 10.6061/clinics/2019/e1234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/18/2019] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES This prospective, randomized, open-label study aimed to compare the effects of antihypertensive treatment based on amlodipine or hydrochlorothiazide on the circulating microparticles and central blood pressure values of hypertensive patients. METHODS The effects of treatments on circulating microparticles were assessed during monotherapy and after the consecutive addition of valsartan and rosuvastatin followed by the withdrawal of rosuvastatin. Each treatment period lasted for 30 days. Central blood pressure and pulse wave velocity were measured at the end of each period. Endothelial, monocyte, and platelet circulating microparticles were determined by flow cytometry. Central blood pressure values and pulse wave velocity were recorded at the end of each treatment period. RESULTS No differences in brachial blood pressure were observed between the treatment groups throughout the study. Although similar central blood pressure values were observed during monotherapy, lower systolic and diastolic central blood pressure values and early and late blood pressure peaks were observed in the amlodipine arm after the addition of valsartan alone or combined with rosuvastatin. Hydrochlorothiazide-based therapy was associated with a lower number of endothelial microparticles throughout the study, whereas a higher number of platelet microparticles was observed after rosuvastatin withdrawal in the amlodipine arm. CONCLUSIONS Despite similar brachial blood pressure values between groups throughout the study, exposure to amlodipine was associated with lower central blood pressure values after combination with valsartan, indicating a beneficial interaction. Differences between circulating microparticles were modest and were mainly influenced by rosuvastatin withdrawal in the amlodipine arm.
Collapse
Affiliation(s)
- Nayara D. Massunaga
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Carolina N. França
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
- Universidade Santo Amaro (UNISA), Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Henrique T. Bianco
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Carlos E.S. Ferreira
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
- Hospital Israelita Albert Einstein, Sao Paulo, SP, BR
| | - Juliana T. Kato
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Rui M.S. Póvoa
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | - Antonio M. Figueiredo Neto
- Instituto Nacional de Ciencia e Tecnologia de Fluidos Complexos, Universidade Sao Paulo, Sao Paulo, SP, BR
| | - Maria Cristina O. Izar
- Departamento de Medicina, Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP, BR
| | | |
Collapse
|
45
|
Reis ES, Berger N, Wang X, Koutsogiannaki S, Doot RK, Gumas JT, Foukas PG, Resuello RRG, Tuplano JV, Kukis D, Tarantal AF, Young AJ, Kajikawa T, Soulika AM, Mastellos DC, Yancopoulou D, Biglarnia AR, Huber-Lang M, Hajishengallis G, Nilsson B, Lambris JD. Safety profile after prolonged C3 inhibition. Clin Immunol 2018; 197:96-106. [PMID: 30217791 DOI: 10.1016/j.clim.2018.09.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 09/09/2018] [Indexed: 01/21/2023]
Abstract
The central component of the complement cascade, C3, is involved in various biological functions, including opsonization of foreign bodies, clearance of waste material, activation of immune cells, and triggering of pathways controlling development. Given its broad role in immune responses, particularly in phagocytosis and the clearance of microbes, a deficiency in complement C3 in humans is often associated with multiple bacterial infections. Interestingly, an increased susceptibility to infections appears to occur mainly in the first two years of life and then wanes throughout adulthood. In view of the well-established connection between C3 deficiency and infections, therapeutic inhibition of complement at the level of C3 is often considered with caution or disregarded. We therefore set out to investigate the immune and biochemical profile of non-human primates under prolonged treatment with the C3 inhibitor compstatin (Cp40 analog). Cynomolgus monkeys were dosed subcutaneously with Cp40, resulting in systemic inhibition of C3, for 1 week, 2 weeks, or 3 months. Plasma concentrations of both C3 and Cp40 were measured periodically and complete saturation of plasma C3 was confirmed. No differences in hematological, biochemical, or immunological parameters were identified in the blood or tissues of animals treated with Cp40 when compared to those injected with vehicle alone. Further, skin wounds showed no signs of infection in those treated with Cp40. In fact, Cp40 treatment was associated with a trend toward accelerated wound healing when compared with the control group. In addition, a biodistribution study in a rhesus monkey indicated that the distribution of Cp40 in the body is associated with the presence of C3, concentrating in organs that accumulate blood and produce C3. Overall, our data suggest that systemic C3 inhibition in healthy adult non-human primates is not associated with a weakened immune system or susceptibility to infections.
Collapse
Affiliation(s)
- Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nadja Berger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xin Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sophia Koutsogiannaki
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert K Doot
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin T Gumas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Ranillo R G Resuello
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - Joel V Tuplano
- Simian Conservation Breeding and Research Center (SICONBREC), Makati City, Philippines
| | - David Kukis
- Center for Molecular and Genomic Imaging, University of California, Davis, CA 95616, USA
| | - Alice F Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, and California National Primate Research Center, University of California, Davis, CA 95616, USA
| | - Anthony J Young
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tetsuhiro Kajikawa
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Athena M Soulika
- Department of Dermatology, University of California, Davis, CA 95616, USA
| | | | | | - Ali-Reza Biglarnia
- Department of Transplantation, Skane University Hospital, Lund University, Lund, Sweden
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital Ulm, Ulm, Germany
| | - George Hajishengallis
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|