1
|
Stanek E, Czamara K, Kaczor A. Increased obesogenic action of palmitic acid during early stage of adipogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159525. [PMID: 38876269 DOI: 10.1016/j.bbalip.2024.159525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The functional differences between preadipocytes and fully differentiated mature adipocytes derived from stromal vascular fraction stem cells, as well as primary adipocytes have been analysed by evaluating their response to the obesogenic factor (a saturated fatty acid) and TNF-triggered inflammation. The analysis of single adipocytes shows that the saturated fatty acid (palmitic acid) accumulation is accompanied by inflammation and considerably dependent on the stage of the adipogenesis. In particular, preadipocytes show the exceptional potential for palmitic acid uptake resulting in their hypertrophy and the elevated cellular expression of the inflammation marker (ICAM-1). Our research provides new information on the impact of obesogenic factors on preadipocytes that is important in the light of childhood obesity prevention.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, 11 Lojasiewicza Str., 30-348 Krakow, Poland; Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Agnieszka Kaczor
- Jagiellonian University, Faculty of Chemistry, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Kieronska-Rudek A, Kij A, Bar A, Kurpinska A, Mohaissen T, Grosicki M, Stojak M, Sternak M, Buczek E, Proniewski B, Kuś K, Suraj-Prazmowska J, Panek A, Pietrowska M, Zapotoczny S, Shanahan CM, Szabo C, Chlopicki S. Phylloquinone improves endothelial function, inhibits cellular senescence, and vascular inflammation. GeroScience 2024; 46:4909-4935. [PMID: 38980631 PMCID: PMC11336140 DOI: 10.1007/s11357-024-01225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/24/2024] [Indexed: 07/10/2024] Open
Abstract
Phylloquinon (PK) and menaquinones (MK) are both naturally occurring compounds belonging to vitamin K group. Present study aimed to comprehensively analyze the influence of PK in several models of vascular dysfunction to determine whether PK has vasoprotective properties, similar to those previously described for MK. Effects of PK and MK on endothelial dysfunction were studied in ApoE/LDLR-/- mice in vivo, in the isolated aorta incubated with TNF, and in vascular cells as regard inflammation and cell senescence (including replicative and stress-induced models of senescence). Moreover, the vascular conversion of exogenous vitamins to endogenous MK-4 was analyzed. PK, as well as MK, given for 8 weeks in diet (10 mg/kg) resulted in comparable improvement in endothelial function in the ApoE/LDLR-/- mice. Similarly, PK and MK prevented TNF-induced impairment of endothelium-dependent vasorelaxation in the isolated aorta. In in vitro studies in endothelial and vascular smooth muscle cells, we identified that both PK and MK displayed anti-senescence effects via decreasing DNA damage while in endothelial cells anti-inflammatory activity was ascribed to the modulation of NFκB activation. The activity of PK and MK was comparable in terms of their effect on senescence and inflammation. Presence of endogenous synthesis of MK-4 from PK in aorta and endothelial and smooth muscle cells suggests a possible involvement of MK in vascular effects of PK. In conclusion, PK and MK display comparable vasoprotective effects, which may be ascribed, at least in part, to the inhibition of cell senescence and inflammation. The vasoprotective effect of PK in the vessel wall can be related to the direct effects of PK, as well as to the action of MK formed from PK in the vascular wall.
Collapse
Affiliation(s)
- Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marek Grosicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Marta Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elżbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Kuś
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Monika Pietrowska
- Centre for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Szczepan Zapotoczny
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Catherine M Shanahan
- School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, London, UK
| | - Csaba Szabo
- Chair of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
3
|
Karaś A, Bar A, Pandian K, Jasztal A, Kuryłowicz Z, Kutryb-Zając B, Buczek E, Rocchetti S, Mohaissen T, Jędrzejewska A, Harms AC, Kaczara P, Chłopicki S. Functional deterioration of vascular mitochondrial and glycolytic capacity in the aortic rings of aged mice. GeroScience 2024; 46:3831-3844. [PMID: 38418756 PMCID: PMC11226416 DOI: 10.1007/s11357-024-01091-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
Vascular ageing is associated with increased arterial stiffness and cardiovascular mortality that might be linked to altered vascular energy metabolism. The aim of this study was to establish a Seahorse XFe96 Analyzer-based methodology for the reliable, functional assessment of mitochondrial respiration and glycolysis in single murine aortic rings and to validate this functional assay by characterising alterations in vascular energy metabolism in aged mice. Healthy young and old C57BL/6 mice were used for the analyses. An optimised setup consisting of the Seahorse XFe96 Analyzer and Seahorse Spheroid Microplates was applied for the mitochondrial stress test and the glycolysis stress test on the isolated murine aortic rings, supplemented with analysis of NAD content in the aorta. To confirm the age-dependent stiffness of the vasculature, pulse wave velocity was measured in vivo. In addition, the activity of vascular nitric oxide synthase and vascular wall morphology were analysed ex vivo. The vascular ageing phenotype in old mice was confirmed by increased aortic stiffness, vascular wall remodelling, and nitric oxide synthase activity impairment. The rings of the aorta taken from old mice showed changes in vascular energy metabolism, including impaired spare respiratory capacity, maximal respiration, glycolysis, and glycolytic capacity, as well as a fall in the NAD pool. In conclusion, optimised Seahorse XFe96-based analysis to study energy metabolism in single aortic rings of murine aorta revealed a robust impairment of functional vascular respiratory and glycolytic capacity in old mice linked to NAD deficiency that coincided with age-related aortic wall remodelling and stiffness.
Collapse
Affiliation(s)
- Agnieszka Karaś
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kanchana Pandian
- Leiden Academic Centre for Drug Research, Leiden University, Einstein Road 55, 2333 CC, Leiden, The Netherlands
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Zuzanna Kuryłowicz
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdansk, Debniki 1, 80-211, Gdansk, Poland
| | - Elżbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Stefano Rocchetti
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Tasnim Mohaissen
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Agata Jędrzejewska
- Department of Biochemistry, Medical University of Gdansk, Debniki 1, 80-211, Gdansk, Poland
| | - Amy C Harms
- Leiden Academic Centre for Drug Research, Leiden University, Einstein Road 55, 2333 CC, Leiden, The Netherlands
| | - Patrycja Kaczara
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland.
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland.
- Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
4
|
Pośpiech E, Bar A, Pisarek-Pacek A, Karaś A, Branicki W, Chlopicki S. Epigenetic clock in the aorta and age-related endothelial dysfunction in mice. GeroScience 2024; 46:3993-4002. [PMID: 38381284 PMCID: PMC11226569 DOI: 10.1007/s11357-024-01086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/20/2024] [Indexed: 02/22/2024] Open
Abstract
While epigenetic age (EA) of mouse blood can be determined using DNA methylation analysis at three CpG sites in the Prima1, Hsf4 and Kcns1 genes it is not known whether this approach is useful for predicting vascular biological age. In this study we validated the 3-CpG estimator for age prediction in mouse blood, developed a new predictive model for EA in mouse aorta, and assessed whether epigenetic age acceleration (EAA) measured with blood and aorta samples correlates with age-dependent endothelial dysfunction. Endothelial function was characterized in vivo by MRI in 8-96-week-old C57BL/6 mice. Arterial stiffness was measured by USG-doppler. EA-related changes within 41 CpG sites in Prima1, Kcns1 and Hsf4 loci, were analyzed in the aorta and blood using bisulfite amplicon high-throughput sequencing. Progressive age-dependent endothelial dysfunction and changes in arterial stiffness were observed in 36-96-week-old C57BL/6 mice. Methylation levels of the investigated loci correlated with chronological age in blood and the aorta. The new model for EA estimation in aorta included three cytosines located in the Kcns1 and Hsf4, explained R2 = 87.8% of the variation in age, and predicted age with an mean absolute error of 9.6 weeks in the independent test set. EAA in the aorta was associated with endothelial dysfunction in the abdominal aorta and femoral artery what was consistent with the EAA direction estimated in blood samples. The rate of vascular biological ageing in mice, reflected by the age-dependent systemic endothelial dysfunction, could be estimated using DNA methylation measurements at three loci in aorta and blood samples.
Collapse
Affiliation(s)
- Ewelina Pośpiech
- Department of Forensic Genetics, Pomeranian Medical University in Szczecin, Al. Powstancow Wielkopolskich 72, 70-204, Szczecin, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Aleksandra Pisarek-Pacek
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | - Agnieszka Karaś
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Wojciech Branicki
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
- Institute of Forensic Research, Westerplatte 9, 31-033, Kraków, Poland.
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348, Krakow, Poland.
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
5
|
Stanek E, Czamara K. Imaging of perivascular adipose tissue in cardiometabolic diseases by Raman spectroscopy: Towards single-cell analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159484. [PMID: 38521491 DOI: 10.1016/j.bbalip.2024.159484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/01/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Perivascular adipose tissue (PVAT) has emerged as a dynamic organ influencing vascular function and cardiovascular health. In this brief review, an overview of the recent research in the investigation of PVAT is presented, ranging from in vivo studies to single-cell methodologies, in particular those based on Raman spectroscopy. The strengths and limitations of each, emphasizing their contributions to the current understanding of PVAT biology were discussed. Ultimately, the integration of these diverse methodologies promises to uncover new therapeutic targets and diagnostic biomarkers, including those emerging from simple Raman spectroscopy-based measurements of alterations in lipid unsaturation degree, invariably associated with PVAT dysfunction.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, 11 Lojasiewicza Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| |
Collapse
|
6
|
Kaczara P, Czyzynska-Cichon I, Kus E, Kurpinska A, Olkowicz M, Wojnar-Lason K, Pacia MZ, Lytvynenko O, Baes M, Chlopicki S. Liver sinusoidal endothelial cells rely on oxidative phosphorylation but avoid processing long-chain fatty acids in their mitochondria. Cell Mol Biol Lett 2024; 29:67. [PMID: 38724891 PMCID: PMC11084093 DOI: 10.1186/s11658-024-00584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND It is generally accepted that endothelial cells (ECs), primarily rely on glycolysis for ATP production, despite having functional mitochondria. However, it is also known that ECs are heterogeneous, and their phenotypic features depend on the vascular bed. Emerging evidence suggests that liver sinusoidal ECs (LSECs), located in the metabolically rich environment of the liver, show high metabolic plasticity. However, the substrate preference for energy metabolism in LSECs remains unclear. METHODS Investigations were conducted in primary murine LSECs in vitro using the Seahorse XF technique for functional bioenergetic assays, untargeted mass spectrometry-based proteomics to analyse the LSEC proteome involved in energy metabolism pathways, liquid chromatography-tandem mass spectrometry-based analysis of acyl-carnitine species and Raman spectroscopy imaging to track intracellular palmitic acid. RESULTS This study comprehensively characterized the energy metabolism of LSECs, which were found to depend on oxidative phosphorylation, efficiently fuelled by glucose-derived pyruvate, short- and medium-chain fatty acids and glutamine. Furthermore, despite its high availability, palmitic acid was not directly oxidized in LSEC mitochondria, as evidenced by the acylcarnitine profile and etomoxir's lack of effect on oxygen consumption. However, together with L-carnitine, palmitic acid supported mitochondrial respiration, which is compatible with the chain-shortening role of peroxisomal β-oxidation of long-chain fatty acids before further degradation and energy generation in mitochondria. CONCLUSIONS LSECs show a unique bioenergetic profile of highly metabolically plastic ECs adapted to the liver environment. The functional reliance of LSECs on oxidative phosphorylation, which is not a typical feature of ECs, remains to be determined.
Collapse
Affiliation(s)
- Patrycja Kaczara
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Edyta Kus
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Mariola Olkowicz
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| | - Marta Z Pacia
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Olena Lytvynenko
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
| | - Myriam Baes
- KU Leuven, Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Cell Metabolism, 3000, Leuven, Belgium
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland
- Jagiellonian University Medical College, Department of Pharmacology, Grzegorzecka 16, 31-531, Krakow, Poland
| |
Collapse
|
7
|
Kij A, Bar A, Czyzynska-Cichon I, Przyborowski K, Proniewski B, Mateuszuk L, Kurylowicz Z, Jasztal A, Buczek E, Kurpinska A, Suraj-Prazmowska J, Marczyk B, Matyjaszczyk-Gwarda K, Daiber A, Oelze M, Walczak M, Chlopicki S. Vascular protein disulfide isomerase A1 mediates endothelial dysfunction induced by angiotensin II in mice. Acta Physiol (Oxf) 2024; 240:e14116. [PMID: 38400621 DOI: 10.1111/apha.14116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
AIM Protein disulfide isomerases (PDIs) are involved in platelet aggregation and intravascular thrombosis, but their role in regulating endothelial function is unclear. Here, we characterized the involvement of vascular PDIA1 in angiotensin II (Ang II)-induced endothelial dysfunction in mice. METHODS Endothelial dysfunction was induced in C57BL/6JCmd male mice via Ang II subcutaneous infusion, and PDIA1 was inhibited with bepristat. Endothelial function was assessed in vivo with magnetic resonance imaging and ex vivo with a myography, while arterial stiffness was measured as pulse wave velocity. Nitric oxide (NO) bioavailability was measured in the aorta (spin-trapping electron paramagnetic resonance) and plasma (NO2 - and NO3 - levels). Oxidative stress, eNOS uncoupling (DHE-based aorta staining), and thrombin activity (thrombin-antithrombin complex; calibrated automated thrombography) were evaluated. RESULTS The inhibition of PDIA1 by bepristat in Ang II-treated mice prevented the impairment of NO-dependent vasodilation in the aorta as evidenced by the response to acetylcholine in vivo, increased systemic NO bioavailability and the aortic NO production, and decreased vascular stiffness. Bepristat's effect on NO-dependent function was recapitulated ex vivo in Ang II-induced endothelial dysfunction in isolated aorta. Furthermore, bepristat diminished the Ang II-induced eNOS uncoupling and overproduction of ROS without affecting thrombin activity. CONCLUSION In Ang II-treated mice, the inhibition of PDIA1 normalized the NO-ROS balance, prevented endothelial eNOS uncoupling, and, thereby, improved vascular function. These results indicate the importance of vascular PDIA1 in regulating endothelial function, but further studies are needed to elucidate the details of the mechanisms involved.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Zuzanna Kurylowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Elzbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kurpinska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prazmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | | | - Andreas Daiber
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Matthias Oelze
- Laboratory of Molecular Cardiology, Department of Cardiology 1, The Center for Cardiology, University Medical Center, Mainz, Germany
| | - Maria Walczak
- Department of Toxicology, Jagiellonian University Medical College, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
- Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
8
|
Sternak M, Stojak M, Banasik T, Kij A, Bar A, Pacia MZ, Wojnar-Lason K, Chorazy N, Mohaissen T, Marczyk B, Czyzynska-Cichon I, Berkimbayeva Z, Mika A, Chlopicki S. Vascular ATGL-dependent lipolysis and the activation of cPLA 2-PGI 2 pathway protect against postprandial endothelial dysfunction. Cell Mol Life Sci 2024; 81:125. [PMID: 38467757 PMCID: PMC10927860 DOI: 10.1007/s00018-024-05167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Adipose triglyceride lipase (ATGL) is involved in lipolysis and displays a detrimental pathophysiological role in cardio-metabolic diseases. However, the organo-protective effects of ATGL-induced lipolysis were also suggested. The aim of this work was to characterize the function of lipid droplets (LDs) and ATGL-induced lipolysis in the regulation of endothelial function. ATGL-dependent LDs hydrolysis and cytosolic phospholipase A2 (cPLA2)-derived eicosanoids production were studied in the aorta, endothelial and smooth muscle cells exposed to exogenous oleic acid (OA) or arachidonic acid (AA). Functional effects of ATGL-dependent lipolysis and subsequent activation of cPLA2/PGI2 pathway were also studied in vivo in relation to postprandial endothelial dysfunction.The formation of LDs was invariably associated with elevated production of endogenous AA-derived prostacyclin (PGI2). In the presence of the inhibitor of ATGL or the inhibitor of cytosolic phospholipase A2, the production of eicosanoids was reduced, with a concomitant increase in the number of LDs. OA administration impaired endothelial barrier integrity in vitro that was further impaired if OA was given together with ATGL inhibitor. Importantly, in vivo, olive oil induced postprandial endothelial dysfunction that was significantly deteriorated by ATGL inhibition, cPLA2 inhibition or by prostacyclin (IP) receptor blockade.In summary, vascular LDs formation induced by exogenous AA or OA was associated with ATGL- and cPLA2-dependent PGI2 production from endogenous AA. The inhibition of ATGL resulted in an impairment of endothelial barrier function in vitro. The inhibition of ATGL-cPLA2-PGI2 dependent pathway resulted in the deterioration of endothelial function upon exposure to olive oil in vivo. In conclusion, vascular ATGL-cPLA2-PGI2 dependent pathway activated by lipid overload and linked to LDs formation in endothelium and smooth muscle cells has a vasoprotective role by counterbalancing detrimental effects of lipid overload on endothelial function.
Collapse
Affiliation(s)
- M Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland.
| | - M Stojak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - T Banasik
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - A Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - A Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - M Z Pacia
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - K Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
- Medical College, Chair of Pharmacology, Jagiellonian University, Grzegorzecka 16, Krakow, Poland
| | - N Chorazy
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, Poland
| | - T Mohaissen
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - B Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - I Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - Z Berkimbayeva
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland
| | - A Mika
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Debinki 1, Gdansk, Poland
| | - S Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, Krakow, Poland.
- Medical College, Chair of Pharmacology, Jagiellonian University, Grzegorzecka 16, Krakow, Poland.
| |
Collapse
|
9
|
Mohaissen T, Kij A, Bar A, Marczyk B, Wojnar-Lason K, Buczek E, Karas A, Garcia-Redondo AB, Briones AM, Chlopicki S. Chymase-independent vascular Ang-(1-12)/Ang II pathway and TXA 2 generation are involved in endothelial dysfunction in the murine model of heart failure. Eur J Pharmacol 2024; 966:176296. [PMID: 38158114 DOI: 10.1016/j.ejphar.2023.176296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The angiotensin (Ang)-(1-12)/Ang II pathway contributes to cardiac pathology. However, its involvement in the development of peripheral endothelial dysfunction associated with heart failure (HF) remains unknown. Therefore, this study aimed to characterise the effect of exogenous Ang-(1-12) and its conversion to Ang II on endothelial function using the murine model of HF (Tgαq*44 mice), focusing on the role of chymase and vascular-derived thromboxane A2 (TXA2). Ex vivo myographic assessments of isolated aorta showed impaired endothelium-dependent vasodilation in late-stage HF in 12-month-old Tgαq*44 mice. However, endothelium-dependent vasodilation was fully preserved in the early stage of HF in 4-month-old Tgαq*44 mice and 4- and 12-month-old FVB control mice. Ang-(1-12) impaired endothelium-dependent vasodilation in 4- and 12-month-old Tgαq*44 mice, that was associated with increased Ang II production. The chymase inhibitor chymostatin did not inhibit this response. Interestingly, TXA2 production reflected by TXB2 measurement was upregulated in response to Ang-(1-12) and Ang II in aortic rings isolated from 12-month-old Tgαq*44 mice but not from 4-month-old Tgαq*44 mice or age-matched FVB mice. Furthermore, in vivo magnetic resonance imaging showed that Ang-(1-12) impaired endothelium-dependent vasodilation in the aorta of Tgαq*44 mice and FVB mice. However, this response was inhibited by angiotensin I converting enzyme (ACE) inhibitor; perindopril, angiotensin II receptor type 1 (AT1) antagonist; losartan and TXA2 receptor (TP) antagonist-picotamide in 12-month-old-Tgαq*44 mice only. In conclusion, the chymase-independent vascular Ang-(1-12)/Ang II pathway and subsequent TXA2 overactivity contribute to systemic endothelial dysfunction in the late stage of HF in Tgαq*44 mice. Therefore, the vascular TXA2 receptor represents a pharmacotherapeutic target to improve peripheral endothelial dysfunction in chronic HF.
Collapse
Affiliation(s)
- Tasnim Mohaissen
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Agnieszka Kij
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Anna Bar
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Brygida Marczyk
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland
| | - Elzbieta Buczek
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Agnieszka Karas
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland
| | - Ana B Garcia-Redondo
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain; CIBER Cardiovascular, Madrid, Spain
| | - Ana M Briones
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain; CIBER Cardiovascular, Madrid, Spain; Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Stefan Chlopicki
- Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, Krakow, Poland; Department of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland.
| |
Collapse
|
10
|
Mukherjee S, Chakraborty M, Msengi EN, Haubner J, Zhang J, Jellinek MJ, Carlson HL, Pyles K, Ulmasov B, Lutkewitte AJ, Carpenter D, McCommis KS, Ford DA, Finck BN, Neuschwander-Tetri BA, Chakraborty A. Ube4A maintains metabolic homeostasis and facilitates insulin signaling in vivo. Mol Metab 2023; 75:101767. [PMID: 37429524 PMCID: PMC10368927 DOI: 10.1016/j.molmet.2023.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
OBJECTIVE Defining the regulators of cell metabolism and signaling is essential to design new therapeutic strategies in obesity and NAFLD/NASH. E3 ubiquitin ligases control diverse cellular functions by ubiquitination-mediated regulation of protein targets, and thus their functional aberration is associated with many diseases. The E3 ligase Ube4A has been implicated in human obesity, inflammation, and cancer. However, its in vivo function is unknown, and no animal models are available to study this novel protein. METHODS A whole-body Ube4A knockout (UKO) mouse model was generated, and various metabolic parameters were compared in chow- and high fat diet (HFD)-fed WT and UKO mice, and in their liver, adipose tissue, and serum. Lipidomics and RNA-Seq studies were performed in the liver samples of HFD-fed WT and UKO mice. Proteomic studies were conducted to identify Ube4A's targets in metabolism. Furthermore, a mechanism by which Ube4A regulates metabolism was identified. RESULTS Although the body weight and composition of young, chow-fed WT and UKO mice are similar, the knockouts exhibit mild hyperinsulinemia and insulin resistance. HFD feeding substantially augments obesity, hyperinsulinemia, and insulin resistance in both sexes of UKO mice. HFD-fed white and brown adipose tissue depots of UKO mice have increased insulin resistance and inflammation and reduced energy metabolism. Moreover, Ube4A deletion exacerbates hepatic steatosis, inflammation, and liver injury in HFD-fed mice with increased lipid uptake and lipogenesis in hepatocytes. Acute insulin treatment resulted in impaired activation of the insulin effector protein kinase Akt in liver and adipose tissue of chow-fed UKO mice. We identified the Akt activator protein APPL1 as a Ube4A interactor. The K63-linked ubiquitination (K63-Ub) of Akt and APPL1, known to facilitate insulin-induced Akt activation, is impaired in UKO mice. Furthermore, Ube4A K63-ubiquitinates Akt in vitro. CONCLUSION Ube4A is a novel regulator of obesity, insulin resistance, adipose tissue dysfunction and NAFLD, and preventing its downregulation may ameliorate these diseases.
Collapse
Affiliation(s)
- Sandip Mukherjee
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Molee Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eliwaza N Msengi
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jake Haubner
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Matthew J Jellinek
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Haley L Carlson
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kelly Pyles
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Barbara Ulmasov
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Andrew J Lutkewitte
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Danielle Carpenter
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Kyle S McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - David A Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Brian N Finck
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Brent A Neuschwander-Tetri
- Division of Gastroenterology and Hepatology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Anutosh Chakraborty
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
11
|
Smeda M, Jasztal A, Maleki EH, Bar A, Sternak M, Kwiatkowski G, Suraj-Prażmowska J, Proniewski B, Kieronska-Rudek A, Wojnar-Lason K, Skrzypek K, Majka M, Chrabaszcz K, Malek K, Chlopicki S. Endothelial-mesenchymal transition induced by metastatic 4T1 breast cancer cells in pulmonary endothelium in aged mice. Front Mol Biosci 2022; 9:1050112. [PMID: 36504711 PMCID: PMC9731229 DOI: 10.3389/fmolb.2022.1050112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Ageing is a major risk factor for cancer metastasis but the underlying mechanisms remain unclear. Here, we characterised ageing effects on cancer-induced endothelial-mesenchymal transition (EndMT) in the pulmonary circulation of female BALB/c mice in a metastatic 4T1 breast cancer model. The effect of intravenously injected 4T1 cells on pulmonary endothelium, pulmonary metastasis, lung tissue architecture, and systemic endothelium was compared between 40-week-old and 20-week-old mice. The 40-week-old mice showed features of ongoing EndMT in their lungs before 4T1 breast cancer cell injection. Moreover, they had preexisting endothelial dysfunction in the aorta detected by in vivo magnetic resonance imaging (MRI) compared to 20-week-old mice. The injection of 4T1 breast cancer cells into 40-week-old mice resulted in rapid EndMT progression in their lungs. In contrast, injection of 4T1 breast cancer cells into 20-week-old mice resulted in initiation and less pronounced EndMT progression. Although the number of metastases did not differ significantly between 20-week-old and 40-week-old mice, the lungs of older mice displayed altered lung tissue architecture and biochemical content, reflected in higher Amide II/Amide I ratio, higher fibronectin levels, and hypoxia-inducible factor 1 subunit alpha (HIF1α) levels as well as lower nitric oxide (NO) production. Our results indicate that age-dependent pre-existing endothelial dysfunction in the pulmonary endothelium of 40-week-old mice predisposed them to rapid EndMT progression in the presence of circulating 4T1 breast cancer cells what might contribute to a more severe metastatic breast cancer phenotype in these ageing mice compared to younger mice.
Collapse
Affiliation(s)
- Marta Smeda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,*Correspondence: Stefan Chlopicki, ; Marta Smeda,
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Ebrahim H Maleki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Magdalena Sternak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Skrzypek
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Chrabaszcz
- Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland,Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Kamilla Malek
- Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland,Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland,*Correspondence: Stefan Chlopicki, ; Marta Smeda,
| |
Collapse
|
12
|
Czamara K, Majka Z, Stanek E, Hachlica N, Kaczor A. Raman studies of the adipose tissue: Current state-of-art and future perspectives in diagnostics. Prog Lipid Res 2022; 87:101183. [PMID: 35961483 DOI: 10.1016/j.plipres.2022.101183] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 10/15/2022]
Abstract
The last decades revealed that the adipose tissue shows an unexplored therapeutic potential. In particular, targeting the perivascular adipose tissue (PVAT), that surrounds blood vessels, can prevent cardiovascular pathologies and browning of the adipose tissue can become an effective strategy against obesity. Therefore, new analytical tools are necessary to analyze this tissue. This review reports on the recent developments of various Raman-based techniques for the identification and quantification of the adipose tissue compared to conventional analytical methods. In particular, the emphasis is on analysis of PVAT, investigation of pathological changes of the adipose tissue in model systems and possibilities for its characterization in the clinical context. Overall, the review critically discusses the potential and limitations of Raman techniques in adipose tissue-targeted diagnostics and possible future anti-obesity therapies.
Collapse
Affiliation(s)
- Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland.
| | - Zuzanna Majka
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Natalia Hachlica
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
13
|
Stanek E, Pacia MZ, Kaczor A, Czamara K. The distinct phenotype of primary adipocytes and adipocytes derived from stem cells of white adipose tissue as assessed by Raman and fluorescence imaging. Cell Mol Life Sci 2022; 79:383. [PMID: 35752714 PMCID: PMC9233632 DOI: 10.1007/s00018-022-04391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Spectroscopy-based analysis of chemical composition of cells is a tool still scarcely used in biological sciences, although it provides unique information about the cell identity accessible in vivo and in situ. Through time-lapse spectroscopic monitoring of adipogenesis in brown and white adipose tissue-derived stem cells we have demonstrated that considerable chemical and functional changes occur along with cells differentiation and maturation, yet yielding mature adipocytes with a similar chemical composition, independent of the cellular origin (white or brown adipose tissue). However, in essence, these stem cell-derived adipocytes have a markedly different chemical composition compared to mature primary adipocytes. The consequences of this different chemical (and, hence, functional) identity have great importance in the context of selecting a suitable methodology for adipogenesis studies, particularly in obesity-related research.
Collapse
Affiliation(s)
- Ewa Stanek
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
| | - Marta Z Pacia
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387, Kraków, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre of Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348, Kraków, Poland.
| |
Collapse
|
14
|
Rapid shear stress-dependent ENaC membrane insertion is mediated by the endothelial glycocalyx and the mineralocorticoid receptor. Cell Mol Life Sci 2022; 79:235. [PMID: 35397686 PMCID: PMC8995297 DOI: 10.1007/s00018-022-04260-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023]
Abstract
The contribution of the shear stress-sensitive epithelial Na+ channel (ENaC) to the mechanical properties of the endothelial cell surface under (patho)physiological conditions is unclear. This issue was addressed in in vivo and in vitro models for endothelial dysfunction. Cultured human umbilical vein endothelial cells (HUVEC) were exposed to laminar (LSS) or non-laminar shear stress (NLSS). ENaC membrane insertion was quantified using Quantum-dot-based immunofluorescence staining and the mechanical properties of the cell surface were probed with the Atomic Force Microscope (AFM) in vitro and ex vivo in isolated aortae of C57BL/6 and ApoE/LDLR-/- mice. Flow- and acetylcholine-mediated vasodilation was measured in vivo using magnetic resonance imaging. Acute LSS led to a rapid mineralocorticoid receptor (MR)-dependent membrane insertion of ENaC and subsequent stiffening of the endothelial cortex caused by actin polymerization. Of note, NLSS stress further augmented the cortical stiffness of the cells. These effects strongly depend on the presence of the endothelial glycocalyx (eGC) and could be prevented by functional inhibition of ENaC and MR in vitro endothelial cells and ex vivo endothelial cells derived from C57BL/6, but not ApoE/LDLR-/- vessel. In vivo In C57BL/6 vessels, ENaC- and MR inhibition blunted flow- and acetylcholine-mediated vasodilation, while in the dysfunctional ApoE/LDLR-/- vessels, this effect was absent. In conclusion, under physiological conditions, endothelial ENaC, together with the glycocalyx, was identified as an important shear stress sensor and mediator of endothelium-dependent vasodilation. In contrast, in pathophysiological conditions, ENaC-mediated mechanotransduction and endothelium-dependent vasodilation were lost, contributing to sustained endothelial stiffening and dysfunction.
Collapse
|
15
|
Majka Z, Czamara K, Janus J, Kępczyński M, Kaczor A. Prominent hypertrophy of perivascular adipocytes due to short-term high fat diet. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166315. [PMID: 34875367 DOI: 10.1016/j.bbadis.2021.166315] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/10/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
Excessive lipid accumulation is a serious problem in obesity leading to adipose tissue (AT) overgrowth, chronic inflammation, endothelial dysfunction, and elevated risk of cardiovascular complications. In this work, Raman techniques coupled with fluorescence imaging were applied to characterize the effects of short-term (2 weeks) and extended (up to 8 weeks) high-fat diet (HFD) feeding on various depots of the adipose tissue of young and mature mice. Our results proved the synergistic effect of age and HFD-induced obesity manifested by changes in the morphology of adipocytes and the chemical composition of lipids. After 2 weeks of HFD feeding of young animals, substantial hypertrophy of adipocytes but only for the periaortic adipose tissue was detected with a significant decrease in lipid unsaturation degree solely in the epididymal white adipose tissue. The periaortic AT did not altered chemically due to short-term HFD feeding, however, it changed with age and with prolonged exposure to harmful factors. For older animals only brown AT remains resistant on HFD underlying its protective role and highlighting its potential as a target in obesity therapies.
Collapse
Affiliation(s)
- Zuzanna Majka
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland
| | - Joanna Janus
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Mariusz Kępczyński
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego Str., 30-348 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Krakow, Poland.
| |
Collapse
|
16
|
Ahn SJ, Le Master E, Lee JC, Phillips SA, Levitan I, Fancher IS. Differential effects of obesity on visceral versus subcutaneous adipose arteries: role of shear-activated Kir2.1 and alterations to the glycocalyx. Am J Physiol Heart Circ Physiol 2022; 322:H156-H166. [PMID: 34890278 PMCID: PMC8742723 DOI: 10.1152/ajpheart.00399.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Obesity imposes well-established deficits to endothelial function. We recently showed that obesity-induced endothelial dysfunction was mediated by disruption of the glycocalyx and a loss of Kir channel flow sensitivity. However, obesity-induced endothelial dysfunction is not observed in all vascular beds: visceral adipose arteries (VAAs), but not subcutaneous adipose arteries (SAAs), exhibit endothelial dysfunction. To determine whether differences in SAA versus VAA endothelial function observed in obesity are attributed to differential impairment of Kir channels and alterations to the glycocalyx, mice were fed a normal rodent diet, or a high-fat Western diet to induce obesity. Flow-induced vasodilation (FIV) was measured ex vivo. Functional downregulation of endothelial Kir2.1 was accomplished by transducing adipose arteries from mice and obese humans with adenovirus containing a dominant-negative Kir2.1 construct. Kir function was tested in freshly isolated endothelial cells seeded in a flow chamber for electrophysiological recordings under fluid shear. Atomic force microscopy was used to assess biophysical properties of the glycocalyx. Endothelial dysfunction was observed in VAAs of obese mice and humans. Downregulating Kir2.1 blunted FIV in SAAs, but had no effect on VAAs, from obese mice and humans. Obesity abolished Kir shear sensitivity in VAA endothelial cells and significantly altered the VAA glycocalyx. In contrast, Kir shear sensitivity was observed in SAA endothelial cells from obese mice and effects on SAA glycocalyx were less pronounced. We reveal distinct differences in Kir function and alterations to the glycocalyx that we propose contribute to the dichotomy in SAA versus VAA endothelial function with obesity.NEW & NOTEWORTHY We identified a role for endothelial Kir2.1 in the differences observed in VAA versus SAA endothelial function with obesity. The endothelial glycocalyx, a regulator of Kir activation by shear, is unequally perturbed in VAAs as compared with SAAs, which we propose results in a near complete loss of VAA endothelial Kir shear sensitivity and endothelial dysfunction. We propose that these differences underly the preserved endothelial function of SAA in obese mice and humans.
Collapse
Affiliation(s)
- Sang Joon Ahn
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Elizabeth Le Master
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - James C. Lee
- 2Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois
| | - Shane A. Phillips
- 3Department of Physical Therapy, College of Applied Health Sciences,
University of Illinois at Chicago, Chicago, Illinois
| | - Irena Levitan
- 1Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Ibra S. Fancher
- 4Department of Kinesiology and Applied Physiology, College of Health
Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
17
|
Cox FF, Misiou A, Vierkant A, Ale-Agha N, Grandoch M, Haendeler J, Altschmied J. Protective Effects of Curcumin in Cardiovascular Diseases—Impact on Oxidative Stress and Mitochondria. Cells 2022; 11:cells11030342. [PMID: 35159155 PMCID: PMC8833931 DOI: 10.3390/cells11030342] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) contribute to a large part of worldwide mortality. Similarly, two of the major risk factors for these diseases, aging and obesity, are also global problems. Aging, the gradual decline of body functions, is non-modifiable. Obesity, a modifiable risk factor for CVDs, also predisposes to type 2 diabetes mellitus (T2DM). Moreover, it affects not only the vasculature and the heart but also specific fat depots, which themselves have a major impact on the development and progression of CVDs. Common denominators of aging, obesity, and T2DM include oxidative stress, mitochondrial dysfunction, metabolic abnormalities such as altered lipid profiles and glucose metabolism, and inflammation. Several plant substances such as curcumin, the major active compound in turmeric root, have been used for a long time in traditional medicine and for the treatment of CVDs. Newer mechanistic, animal, and human studies provide evidence that curcumin has pleiotropic effects and attenuates numerous parameters which contribute to an increased risk for CVDs in aging as well as in obesity. Thus, curcumin as a nutraceutical could hold promise in the prevention of CVDs, but more standardized clinical trials are required to fully unravel its potential.
Collapse
Affiliation(s)
- Fiona Frederike Cox
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Angelina Misiou
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Annika Vierkant
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany;
| | - Judith Haendeler
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| | - Joachim Altschmied
- Environmentally-Induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Hospital and Heinrich-Heine-University, 40225 Düsseldorf, Germany; (F.F.C.); (A.M.); (A.V.); (N.A.-A.)
- IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
- Correspondence: (J.H.); (J.A.); Tel.: +49-211-3389-291 (J.H. & J.A.); Fax: +49-211-3389-331 (J.H. & J.A.)
| |
Collapse
|
18
|
Mohaissen T, Proniewski B, Targosz-Korecka M, Bar A, Kij A, Bulat K, Wajda A, Blat A, Matyjaszczyk-Gwarda K, Grosicki M, Tworzydlo A, Sternak M, Wojnar-Lason K, Rodrigues-Diez R, Kubisiak A, Briones A, Marzec KM, Chlopicki S. Temporal relationship between systemic endothelial dysfunction and alterations in erythrocyte function in a murine model of chronic heart failure. Cardiovasc Res 2021; 118:2610-2624. [PMID: 34617995 PMCID: PMC9491865 DOI: 10.1093/cvr/cvab306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 12/25/2022] Open
Abstract
Aims Endothelial dysfunction (ED) and red blood cell distribution width (RDW) are both
prognostic factors in heart failure (HF), but the relationship between them is not
clear. In this study, we used a unique mouse model of chronic HF driven by
cardiomyocyte-specific overexpression of activated Gαq protein (Tgαq*44 mice) to
characterize the relationship between the development of peripheral ED and the
occurrence of structural nanomechanical and biochemical changes in red blood cells
(RBCs). Methods and results Systemic ED was detected in vivo in 8-month-old Tgαq*44 mice, as
evidenced by impaired acetylcholine-induced vasodilation in the aorta and increased
endothelial permeability in the brachiocephalic artery. ED in the aorta was associated
with impaired nitric oxide (NO) production in the aorta and diminished systemic NO
bioavailability. ED in the aorta was also characterized by increased superoxide and
eicosanoid production. In 4- to 6-month-old Tgαq*44 mice, RBC size and membrane
composition displayed alterations that did not result in significant changes in their
nanomechanical and functional properties. However, 8-month-old Tgαq*44 mice presented
greatly accentuated structural and size changes and increased RBC stiffness. In
12-month-old Tgαq*44 mice, the erythropathy was featured by severely altered RBC shape
and elasticity, increased RDW, impaired RBC deformability, and increased oxidative
stress (gluthatione (GSH)/glutathione disulfide (GSSG) ratio). Moreover, RBCs taken from
12-month-old Tgαq*44 mice, but not from 12-month-old FVB mice, coincubated with aortic
rings from FVB mice, induced impaired endothelium-dependent vasodilation and this effect
was partially reversed by an arginase inhibitor [2(S)-amino-6-boronohexanoic acid]. Conclusion In the Tgαq*44 murine model of HF, systemic ED accelerates erythropathy and,
conversely, erythropathy may contribute to ED. These results suggest that erythropathy
may be regarded as a marker and a mediator of systemic ED in HF. RBC arginase and
possibly other RBC-mediated mechanisms may represent novel therapeutic targets for
systemic ED in HF.
Collapse
Affiliation(s)
- Tasnim Mohaissen
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow, 30-688 Poland
| | - Bartosz Proniewski
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Marta Targosz-Korecka
- Faculty of Physics, Institute of Astronomy and Applied Computer Science, Jagiellonian University Medical College, 11 Lojasiewicza St., Krakow, 30-348 Poland
| | - Anna Bar
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Agnieszka Kij
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Katarzyna Bulat
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Aleksandra Wajda
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Chemistry, Jagiellonian University, 2Gronostajowa St, Krakow, 30-387 Poland
| | - Aneta Blat
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Chemistry, Jagiellonian University, 2Gronostajowa St, Krakow, 30-387 Poland
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., Krakow, 30-688 Poland
| | - Marek Grosicki
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Anna Tworzydlo
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Magdalena Sternak
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Kamila Wojnar-Lason
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St, Krakow, 31-531 Poland
| | - Raquel Rodrigues-Diez
- Hospital La Paz Institute for Health Research IdiPAZ Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, CV, Spain,; Ciber
| | - Agata Kubisiak
- Faculty of Physics, Institute of Astronomy and Applied Computer Science, Jagiellonian University Medical College, 11 Lojasiewicza St., Krakow, 30-348 Poland
| | - Ana Briones
- Hospital La Paz Institute for Health Research IdiPAZ Department of Pharmacology, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, CV, Spain,; Ciber
| | - Katarzyna M Marzec
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland
| | - Stefan Chlopicki
- Jagiellonian Center for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St, Krakow, 30-348 Poland.,Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St, Krakow, 31-531 Poland
| |
Collapse
|
19
|
Kwiatkowski G, Bar A, Jasztal A, Chłopicki S. MRI-based in vivo detection of coronary microvascular dysfunction before alterations in cardiac function induced by short-term high-fat diet in mice. Sci Rep 2021; 11:18915. [PMID: 34556779 PMCID: PMC8460671 DOI: 10.1038/s41598-021-98401-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Endothelial dysfunction is one of the hallmarks of vascular abnormalities in metabolic diseases and has been repeatedly demonstrated in coronary and peripheral circulation in mice fed high-fat diet (HFD), particularly after long-term HFD. However, the temporal relationship between development of coronary microvascular endothelial dysfunction and deterioration in diastolic and systolic cardiac function after short-term feeding with HFD has not yet been studied. This study aimed to correlate the changes in coronary microvascular endothelial function and global cardiac performance indices in vivo after short-term feeding with HFD in mice. Short-term feeding with a HFD (60% fat + 1% cholesterol) resulted in severely impaired coronary microvascular function, as evidenced by the diminished effect of nitric oxide synthase inhibition (by L-NAME) assessed using T1 mapping via in vivo MRI. Deterioration of coronary microvascular function was detected as early as after 7 days of HFD and further declined after 8 weeks on a HFD. HFD-induced coronary microvascular dysfunction was not associated with impaired myocardial capillary density and was present before systemic insulin resistance assessed by a glucose tolerance test. Basal coronary flow and coronary reserve, as assessed using the A2A adenosine receptor agonist regadenoson, were also not altered in HFD-fed mice. Histological analysis did not reveal cardiomyocyte hypertrophy or fibrosis. Increased lipid accumulation in cardiomyocytes was detected as early as after 7 days of HFD and remained at a similar level at 8 weeks on a HFD. Multiparametric cardiac MRI revealed a reduction in systolic heart function, including decreased ejection rate, increased end-systolic volume and decreased myocardial strain in diastole with impaired ejection fraction, but not until 4 weeks of HFD. Short-term feeding with HFD resulted in early endothelial dysfunction in coronary microcirculation that preceded alteration in cardiac function and systemic insulin resistance.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, ul. Bobrzynskiego 14, 30-348, Kraków, Poland
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, ul. Bobrzynskiego 14, 30-348, Kraków, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, ul. Bobrzynskiego 14, 30-348, Kraków, Poland
| | - Stefan Chłopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, ul. Bobrzynskiego 14, 30-348, Kraków, Poland.
- Chair of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Kraków, Poland.
| |
Collapse
|
20
|
Kij A, Bar A, Przyborowski K, Proniewski B, Mateuszuk L, Jasztal A, Kieronska-Rudek A, Marczyk B, Matyjaszczyk-Gwarda K, Tworzydlo A, Enggaard C, Hansen PBL, Jensen B, Walczak M, Chlopicki S. Thrombin Inhibition Prevents Endothelial Dysfunction and Reverses 20-HETE Overproduction without Affecting Blood Pressure in Angiotensin II-Induced Hypertension in Mice. Int J Mol Sci 2021; 22:ijms22168664. [PMID: 34445374 PMCID: PMC8395447 DOI: 10.3390/ijms22168664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (Ang II) induces hypertension and endothelial dysfunction, but the involvement of thrombin in these responses is not clear. Here, we assessed the effects of the inhibition of thrombin activity by dabigatran on Ang II-induced hypertension and endothelial dysfunction in mice with a particular focus on NO- and 20-HETE-dependent pathways. As expected, dabigatran administration significantly delayed thrombin generation (CAT assay) in Ang II-treated hypertensive mice, and interestingly, it prevented endothelial dysfunction development, but it did not affect elevated blood pressure nor excessive aortic wall thickening. Dabigatran’s effects on endothelial function in Ang II-treated mice were evidenced by improved NO-dependent relaxation in the aorta in response to acetylcholine in vivo (MRI measurements) and increased systemic NO bioavailability (NO2− quantification) with a concomitant increased ex vivo production of endothelium-derived NO (EPR analysis). Dabigatran treatment also contributed to the reduction in the endothelial expression of pro-inflammatory vWF and ICAM-1. Interestingly, the fall in systemic NO bioavailability in Ang II-treated mice was associated with increased 20-HETE concentration in plasma (UPLC-MS/MS analysis), which was normalised by dabigatran treatment. Taking together, the inhibition of thrombin activity in Ang II-induced hypertension in mice improves the NO-dependent function of vascular endothelium and normalises the 20-HETE-depedent pathway without affecting the blood pressure and vascular remodelling.
Collapse
Affiliation(s)
- Agnieszka Kij
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Kamil Przyborowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Lukasz Mateuszuk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Anna Tworzydlo
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
| | - Camilla Enggaard
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Pernille B. Lærkegaard Hansen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Boye Jensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, J.B. Winsløws Vej 21, 5000 Odense, Denmark; (C.E.); (P.B.L.H.); (B.J.)
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
- Chair and Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (A.K.); (A.B.); (K.P.); (B.P.); (L.M.); (A.J.); (A.K.-R.); (B.M.); (K.M.-G.); (A.T.); (M.W.)
- Chair of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
- Correspondence:
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW To consider the role of endocan as an inflammatory marker in cardiovascular diseases. RECENT FINDINGS Endocan, an endothelial inflammatory marker, is associated with cardiovascular disease. SUMMARY Vascular endothelial inflammation plays a key role in the pathogenesis of inflammatory and cardiovascular diseases by influencing thrombogenesis, tumour invasion and secretion of bioactive mediators. We discuss the role of endocan mainly in the context of cardiology.
Collapse
Affiliation(s)
- Sevket Balta
- Department of Cardiology, Hayat Hospital, Malatya
| | - Ilknur Balta
- Department of Dermatology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School London, University College London (UCL), London, UK
- Mohammed Bin Rashid University (MBRU) of Medicine and Health Sciences, Dubai
| |
Collapse
|
22
|
Proniewski B, Bar A, Kieronska-Rudek A, Suraj-Prażmowska J, Buczek E, Czamara K, Majka Z, Czyzynska-Cichon I, Kwiatkowski G, Matyjaszczyk-Gwarda K, Chlopicki S. Systemic Administration of Insulin Receptor Antagonist Results in Endothelial and Perivascular Adipose Tissue Dysfunction in Mice. Cells 2021; 10:cells10061448. [PMID: 34207844 PMCID: PMC8230211 DOI: 10.3390/cells10061448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023] Open
Abstract
Hyperglycemia linked to diabetes results in endothelial dysfunction. In the present work, we comprehensively characterized effects of short-term hyperglycemia induced by administration of an insulin receptor antagonist, the S961 peptide, on endothelium and perivascular adipose tissue (PVAT) in mice. Endothelial function of the thoracic and abdominal aorta in 12-week-old male C57Bl/6Jrj mice treated for two weeks with S961 infusion via osmotic pumps was assessed in vivo using magnetic resonance imaging and ex vivo by detection of nitric oxide (NO) production using electron paramagnetic resonance spectroscopy. Additional methods were used to analyze PVAT, aortic segments and endothelial-specific plasma biomarkers. Systemic disruption of insulin signaling resulted in severe impairment of NO-dependent endothelial function and a loss of vasoprotective function of PVAT affecting the thoracic as well as abdominal parts of the aorta, however a fall in adiponectin expression and decreased uncoupling protein 1-positive area were more pronounced in the thoracic aorta. Results suggest that dysfunctional PVAT contributes to vascular pathology induced by altered insulin signaling in diabetes, in the absence of fat overload and obesity.
Collapse
Affiliation(s)
- Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
- Faculty of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Elżbieta Buczek
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Zuzanna Majka
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Bobrzynskiego 14, 30-348 Krakow, Poland; (B.P.); (A.B.); (A.K.-R.); (J.S.-P.); (E.B.); (K.C.); (Z.M.); (I.C.-C.); (G.K.); (K.M.-G.)
- Faculty of Pharmacology, Jagiellonian University Medical College, Grzegorzecka 16, 31-531 Krakow, Poland
- Correspondence:
| |
Collapse
|
23
|
Wenceslau CF, McCarthy CG, Earley S, England SK, Filosa JA, Goulopoulou S, Gutterman DD, Isakson BE, Kanagy NL, Martinez-Lemus LA, Sonkusare SK, Thakore P, Trask AJ, Watts SW, Webb RC. Guidelines for the measurement of vascular function and structure in isolated arteries and veins. Am J Physiol Heart Circ Physiol 2021; 321:H77-H111. [PMID: 33989082 DOI: 10.1152/ajpheart.01021.2020] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The measurement of vascular function in isolated vessels has revealed important insights into the structural, functional, and biomechanical features of the normal and diseased cardiovascular system and has provided a molecular understanding of the cells that constitutes arteries and veins and their interaction. Further, this approach has allowed the discovery of vital pharmacological treatments for cardiovascular diseases. However, the expansion of the vascular physiology field has also brought new concerns over scientific rigor and reproducibility. Therefore, it is appropriate to set guidelines for the best practices of evaluating vascular function in isolated vessels. These guidelines are a comprehensive document detailing the best practices and pitfalls for the assessment of function in large and small arteries and veins. Herein, we bring together experts in the field of vascular physiology with the purpose of developing guidelines for evaluating ex vivo vascular function. By using this document, vascular physiologists will have consistency among methodological approaches, producing more reliable and reproducible results.
Collapse
Affiliation(s)
- Camilla F Wenceslau
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Cameron G McCarthy
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Scott Earley
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Sarah K England
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica A Filosa
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Styliani Goulopoulou
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas
| | - David D Gutterman
- Department of Medicine, Medical College of Wisconsin Cardiovascular Center, Milwaukee, Wisconsin
| | - Brant E Isakson
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Nancy L Kanagy
- Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, New Mexico
| | - Luis A Martinez-Lemus
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Swapnil K Sonkusare
- Department of Molecular Physiology and Biophysics, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pratish Thakore
- Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, Reno School of Medicine, University of Nevada, Reno, Nevada
| | - Aaron J Trask
- Center for Cardiovascular Research, The Heart Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - R Clinton Webb
- Cardiovascular Translational Research Center, Department of Cell Biology and Anatomy, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
24
|
Olkowicz M, Czyzynska-Cichon I, Szupryczynska N, Kostogrys RB, Kochan Z, Debski J, Dadlez M, Chlopicki S, Smolenski RT. Multi-omic signatures of atherogenic dyslipidaemia: pre-clinical target identification and validation in humans. J Transl Med 2021; 19:6. [PMID: 33407555 PMCID: PMC7789501 DOI: 10.1186/s12967-020-02663-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH). METHODS Liquid chromatography/mass spectrometry (LC/MS) and immunoassays were used to find out blood alterations at metabolite and protein levels in dyslipidaemic ApoE-/-/LDLR-/- mice and in FH patients to evaluate their human relevance. RESULTS We identified 15 metabolites (inhibitors and substrates of nitric oxide synthase (NOS), low-molecular-weight antioxidants (glutamine, taurine), homocysteine, methionine, 1-methylnicotinamide, alanine and hydroxyproline) and 9 proteins (C-reactive protein, proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III, soluble intercellular adhesion molecule-1, angiotensinogen, paraoxonase-1, fetuin-B, vitamin K-dependent protein S and biglycan) that differentiated FH patients from healthy controls. Most of these changes were consistently found in dyslipidaemic mice and were further amplified if mice were fed an atherogenic (Western or low-carbohydrate, high-protein) diet. CONCLUSIONS The alterations highlighted the involvement of an immune-inflammatory response system, oxidative stress, hyper-coagulation and impairment in the vascular function/regenerative capacity in response to dyslipidaemia that may also be directly engaged in development of atherosclerosis. Our study further identified potential biomarkers for an increased risk of atherosclerosis that may aid in clinical diagnosis or in the personalized treatment.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland. .,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland
| | - Natalia Szupryczynska
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211, Gdansk, Poland
| | - Renata B Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149, Krakow, Poland
| | - Zdzislaw Kochan
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211, Gdansk, Poland
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531, Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland.
| |
Collapse
|
25
|
Ye T, Zhang G, Liu H, Shi J, Qiu H, Liu Y, Han F, Hou N. Relationships Between Perivascular Adipose Tissue and Abdominal Aortic Aneurysms. Front Endocrinol (Lausanne) 2021; 12:704845. [PMID: 34194399 PMCID: PMC8236981 DOI: 10.3389/fendo.2021.704845] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are typically asymptomatic, and there is a high mortality rate associated with aneurysm rupture. AAA pathogenesis involves extracellular matrix degradation, vascular smooth muscle cell phenotype switching, inflammation, and oxidative stress. There is increasing evidence of excessive adipocyte accumulation in ruptured AAA walls. These excessive numbers of adipocytes in the vascular wall have been closely linked with AAA progression. Perivascular adipose tissue (PVAT), a unique type of adipose tissue, can be involved in adipocyte accumulation in the AAA wall. PVAT produces various chemokines and adipocytokines around vessels to maintain vascular homeostasis through paracrine and autocrine mechanisms in normal physiological conditions. Nevertheless, PVAT loses its normal function and promotes the progression of vascular diseases in pathological conditions. There is evidence of significantly reduced AAA diameter in vessel walls of removed PVAT. There is a need to highlight the critical roles of cytokines, cells, and microRNA derived from PVAT in the regulation of AAA development. PVAT may constitute an important therapeutic target for the prevention and treatment of AAAs. In this review, we discuss the relationship between PVAT and AAA development; we also highlight the potential for PVAT-derived factors to serve as a therapeutic target in the treatment of AAAs.
Collapse
Affiliation(s)
- Tongtong Ye
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Guangdong Zhang
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hangyu Liu
- Department of Ophthalmology, Weifang Eye Hospital, Weifang, China
| | - Junfeng Shi
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Hongyan Qiu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yongping Liu
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Ningning Hou, ; Fang Han,
| | - Ningning Hou
- Department of Endocrinology, Affiliated Hospital of Weifang Medical University, Weifang, China
- *Correspondence: Ningning Hou, ; Fang Han,
| |
Collapse
|
26
|
Bar A, Kieronska-Rudek A, Proniewski B, Suraj-Prażmowska J, Czamara K, Marczyk B, Matyjaszczyk-Gwarda K, Jasztal A, Kuś E, Majka Z, Kaczor A, Kurpińska A, Walczak M, Pieterman EJ, Princen HMG, Chlopicki S. In Vivo Magnetic Resonance Imaging-Based Detection of Heterogeneous Endothelial Response in Thoracic and Abdominal Aorta to Short-Term High-Fat Diet Ascribed to Differences in Perivascular Adipose Tissue in Mice. J Am Heart Assoc 2020; 9:e016929. [PMID: 33073641 PMCID: PMC7763398 DOI: 10.1161/jaha.120.016929] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background Long-term feeding with a high-fat diet (HFD) induces endothelial dysfunction in mice, but early HFD-induced effects on endothelium have not been well characterized. Methods and Results Using an magnetic resonance imaging-based methodology that allows characterization of endothelial function in vivo, we demonstrated that short-term (2 weeks) feeding with a HFD to C57BL/6 mice or to E3L.CETP mice resulted in the impairment of acetylcholine-induced response in the abdominal aorta (AA), whereas, in the thoracic aorta (TA), the acetylcholine-induced response was largely preserved. Similarly, HFD resulted in arterial stiffness in the AA, but not in the TA. The difference in HFD-induced response was ascribed to distinct characteristics of perivascular adipose tissue in the TA and AA, related to brown- and white-like adipose tissue, respectively, as assessed by histology, immunohistochemistry, and Raman spectroscopy. In contrast, short-term HFD-induced endothelial dysfunction could not be linked to systemic insulin resistance, changes in plasma concentration of nitrite, or concentration of biomarkers of glycocalyx disruption (syndecan-1 and endocan), endothelial inflammation (soluble form of vascular cell adhesion molecule 1, soluble form of intercellular adhesion molecule 1 and soluble form of E-selectin), endothelial permeability (soluble form of fms-like tyrosine kinase 1 and angiopoietin 2), and hemostasis (tissue plasminogen activator and plasminogen activator inhibitor 1). Conclusions Short-term feeding with a HFD induces endothelial dysfunction in the AA but not in the TA, which could be ascribed to a differential response of perivascular adipose tissue to a HFD in the AA versus TA. Importantly, early endothelial dysfunction in the AA is not linked to elevation of classical systemic biomarkers of endothelial dysfunction.
Collapse
Affiliation(s)
- Anna Bar
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Anna Kieronska-Rudek
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| | - Bartosz Proniewski
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Joanna Suraj-Prażmowska
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Krzysztof Czamara
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Brygida Marczyk
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| | - Karolina Matyjaszczyk-Gwarda
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Edyta Kuś
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Zuzanna Majka
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Faculty of Chemistry Jagiellonian University Krakow Poland
| | - Agnieszka Kaczor
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Faculty of Chemistry Jagiellonian University Krakow Poland
| | - Anna Kurpińska
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland
| | - Maria Walczak
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair and Department of Toxicology Faculty of Pharmacy Jagiellonian University Medical College Krakow Poland
| | - Elsbet J Pieterman
- Metabolic Health Research Gaubius Laboratory The Netherlands Organisation of Applied Scientific Research (TNO) Leiden The Netherlands
| | - Hans M G Princen
- Metabolic Health Research Gaubius Laboratory The Netherlands Organisation of Applied Scientific Research (TNO) Leiden The Netherlands
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET) Jagiellonian University Krakow Poland.,Chair of Pharmacology Faculty of Medicine Jagiellonian University Medical College Krakow Poland
| |
Collapse
|