1
|
Choudhery MS, Arif T, Mahmood R, Harris DT. Therapeutic Potential of Mesenchymal Stem Cells in Stroke Treatment. Biomolecules 2025; 15:558. [PMID: 40305341 PMCID: PMC12024902 DOI: 10.3390/biom15040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 05/02/2025] Open
Abstract
Stroke occurs when the blood flow to the brain is interrupted due to a rupture of blood vessels or blockage in the brain. It is the major cause of physical disabilities in adulthood. Despite advances in surgical and pharmacological therapy, functional recovery from stroke is limited, affecting quality of life. Stem cell therapy, which may treat neurological disorders associated with brain traumas, including stroke, is an important focus in stroke research and treatment. Stem cell therapy has primarily used a type of adult stem cells called mesenchymal stem cells (MSCs) due to their universality and ability to develop into multiple lineages to regenerate brain cells and repair brain tissues. A significant number of clinical studies provide evidence of the potential of MSCs to treat stroke. This review summarizes the therapeutic mechanism and applications of MSCs in stroke treatment. We also highlight the current challenges and future prospects of adult MSC therapy for stroke treatment.
Collapse
Affiliation(s)
- Mahmood S. Choudhery
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54000, Pakistan; (M.S.C.); (T.A.)
| | - Taqdees Arif
- Department of Human Genetics & Molecular Biology, University of Health Sciences, Lahore 54000, Pakistan; (M.S.C.); (T.A.)
| | - Ruhma Mahmood
- Allama Iqbal Medical College, Jinnah Hospital, Lahore 54000, Pakistan;
| | - David T. Harris
- Department of Immunobiology, University of Arizona Health Sciences Biorepository, College of Medicine, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Fu X, Li J, Yang S, Jing J, Zheng Q, Zhang T, Xu Z. Blood-brain barrier repair: potential and challenges of stem cells and exosomes in stroke treatment. Front Cell Neurosci 2025; 19:1536028. [PMID: 40260076 PMCID: PMC12009835 DOI: 10.3389/fncel.2025.1536028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 04/23/2025] Open
Abstract
Stroke is characterized with high morbidity, mortality and disability all over the world, and one of its core pathologies is blood-brain barrier (BBB) dysfunction. BBB plays a crucial physiological role in protecting brain tissues and maintaining homeostasis in central nervous system (CNS). BBB dysfunction serves as a key factor in the development of cerebral edema, inflammation, and further neurological damage in stroke patients. Currently, stem cells and their derived exosomes have shown remarkable potential in repairing the damaged BBB and improving neurological function after stroke. Stem cells repair the integrity of BBB through anti-inflammatory, antioxidant, angiogenesis and regulation of intercellular signaling mechanisms, while stem cell-derived exosomes, as natural nanocarriers, further enhance the therapeutic effect by carrying active substances such as proteins, RNAs and miRNAs. This review will present the latest research advances in stem cells and their exosomes in stroke treatment, as well as the challenges of cell source, transplantation timing, dosage, and route of administration in clinical application, aiming to discuss their mechanisms of repairing BBB integrity and potential for clinical application, and proposes future research directions. Stem cells and exosomes are expected to provide new strategies for early diagnosis and precise treatment of stroke, and promote breakthroughs in the field of stroke.
Collapse
Affiliation(s)
- Xiaochen Fu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Jia Li
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Shoujun Yang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiapeng Jing
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Qinzhi Zheng
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Ting Zhang
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
- Rehabilitation Therapeutics, School of Nursing, Jilin University, Changchun, China
| | - Zhuo Xu
- Department of Rehabilitation, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Ding N, Luo R, Zhang Q, Li H, Zhang S, Chen H, Hu R. Current Status and Progress in Stem Cell Therapy for Intracerebral Hemorrhage. Transl Stroke Res 2025; 16:512-534. [PMID: 38001353 DOI: 10.1007/s12975-023-01216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Intracerebral hemorrhage is a highly prevalent and prognostically poor disease, imposing immeasurable harm on human life and health. However, the treatment options for intracerebral hemorrhage are severely limited, particularly in terms of improving the microenvironment of the lesion, promoting neuronal cell survival, and enhancing neural function. This review comprehensively discussed the application of stem cell therapy for intracerebral hemorrhage, providing a systematic summary of its developmental history, types of transplants, transplantation routes, and transplantation timing. Moreover, this review presented the latest research progress in enhancing the efficacy of stem cell transplantation, including pretransplantation preconditioning, genetic modification, combined therapy, and other diverse strategies. Furthermore, this review pioneeringly elaborated on the barriers to clinical translation for stem cell therapy. These discussions were of significant importance for promoting stem cell therapy for intracerebral hemorrhage, facilitating its clinical translation, and improving patient prognosis.
Collapse
Affiliation(s)
- Ning Ding
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ran Luo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanran Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Cao M, Li Y, Tang Y, Chen M, Mao J, Yang X, Li D, Zhang F, Shen J. Quantification of the Engraftment Status of Mesenchymal Stem Cells in Glioma Using Dual-Modality Magnetic Resonance Imaging and Bioluminescence Imaging. Acad Radiol 2025; 32:334-346. [PMID: 39054246 DOI: 10.1016/j.acra.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024]
Abstract
RATIONALE AND OBJECTIVES The tumor-tropic properties of mesenchymal stem cells (MSCs) enable them to serve as appealing cellular vehicles for delivering therapeutic agents to treat malignant glioma. However, the exact engraftment status of MSCs in glioma via different administration routes remains unclear due to the lack of quantitative analysis. This study aimed to quantify the engraftment of MSCs in glioma after administration via different routes using non-invasive dual-modality magnetic resonance imaging (MRI) and bioluminescence imaging (BLI). MATERIALS AND METHODS MSCs were transduced with a lentivirus overexpressing ferritin heavy chain (FTH) and firefly luciferase (FLUC) reporter genes to yield FTH- and FLUC-overexpressed MSCs (FTH-FLUC-MSCs). Wistar rats bearing intracranial C6 glioma received peritumoral, intratumoral, intra-arterial, and intravenous injection of FTH-FLUC-MSCs, respectively. MRI and BLI were performed to monitor FTH-FLUC-MSCs in vivo. RESULTS FTH-FLUC-MSCs administered via peritumoral, intratumoral and intra-arterial routes migrated specially toward the intracranial glioma in vivo, as detected by MRI and BLI. As quantified by the BLI signal intensity, the percentages of FTH-FLUC-MSCs in the glioma were significantly higher with peritumoral injection (61%) and intratumoral injection (71%) compared to intra-arterial injection (30%) and intravenous injection (0%). Peritumorally injected FTH-FLUC-MSCs showed a gradual decline, with approximately 6% of FTH-FLUC-MSCs still retained within the tumor up to 11 days after injection. Meanwhile, the number of FTH-FLUC-MSCs injected via other routes dropped quickly, and none were detectable by day 11 post-injection. CONCLUSION Peritumoral delivery of FTH-FLUC-MSCs offers robust engraftment and could be used as the optimal delivery route for treating malignant glioma.
Collapse
Affiliation(s)
- Minghui Cao
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Yunhua Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Yingmei Tang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Meiwei Chen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Jiaji Mao
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Xieqing Yang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Dongye Li
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Fang Zhang
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China
| | - Jun Shen
- Department of Radiology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou 510120, China; Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, Sun Yat-Sen University, No. 135 Xingang Road West, Guangzhou 510275, China.
| |
Collapse
|
5
|
Sarmah D, Datta A, Rana N, Suthar P, Gupta V, Kaur H, Ghosh B, Levoux J, Rodriguez AM, Yavagal DR, Bhattacharya P. SIRT-1/RHOT-1/PGC-1α loop modulates mitochondrial biogenesis and transfer to offer resilience following endovascular stem cell therapy in ischemic stroke. Free Radic Biol Med 2024; 225:255-274. [PMID: 39306015 DOI: 10.1016/j.freeradbiomed.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/05/2024] [Accepted: 09/14/2024] [Indexed: 10/12/2024]
Abstract
Current clinical interventions for stroke majorly involve thrombolysis or thrombectomy, however, cessation of the progressive deleterious cellular cascades post-stroke and long-term neuroprotection are yet to be explored. Mitochondria are highly vulnerable organelles and their dysfunction is one of the detrimental consequences following stroke. Mitochondria dysregulation activate unfavourable cellular events over a period of time that leads to the collapse of neuronal machinery in the brain. Hence, strategies to protect and replenish mitochondria in injured neurons may be useful and needs to be explored. Stem cell therapy in ischemic stroke holds a great promise. Past studies have shown beneficial outcomes of endovascularly delivered stem cells in both pre-clinical and clinical settings. Intra-arterial (IA) administration can provide more cells to the stroke foci and affected brain regions than intravenous administration. Supplying new mitochondria to the stroke-compromised neurons either in the core or penumbra by infused stem cells can help increase their survival and longevity. Previously, our lab has demonstrated that IA 1∗105 mesenchymal stem cells (MSCs) in rats were safe, efficacious and rendered neuroprotection by regulating neuronal calcineurin, modulating sirtuin1(SIRT-1) mediated inflammasome signaling, ameliorating endoplasmic reticulum-stress, alleviation of post-stroke edema and reducing cellular apoptosis. To explore further, our present study aims to investigate the potential of IA MSCs in protecting and replenishing mitochondria in the injured neurons post-stroke and the involvement of SIRT-1/RHOT-1/PGC-1α loop towards mitochondria transfer, biogenesis, and neuroprotection. This study will open new avenues for using stem cells for ischemic stroke in clinics as one of the future adjunctive therapies.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Nikita Rana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Pramod Suthar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Vishal Gupta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India
| | - Jennyfer Levoux
- Universite' Paris-Est Cre'teil, INSERM, IMRB, 94010, Cre'teil, France
| | - Anne-Marie Rodriguez
- UMR CNRS 8256, INSERM U1164, Biological Adaptation and Ageing, Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, 7, Quai St Bernard (case 256), 75005, Paris, France
| | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
6
|
Choi YJ, Kim JH, Lee Y, Pyeon HJ, Yoo IK, Yoo JH. Anti-fibrogenic effect of umbilical cord-derived mesenchymal stem cell-conditioned media in human esophageal fibroblasts. Sci Rep 2024; 14:22233. [PMID: 39333200 PMCID: PMC11437107 DOI: 10.1038/s41598-024-73091-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Esophageal fibrosis can develop due to caustic or radiation injuries. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) are known to mitigate fibrosis in various organs. However, the potential effects of UC-MSCs on human esophageal fibrosis remain underexplored. This study investigated the anti-fibrogenic properties and mechanisms of UC-MSC-derived conditioned media (UC-MSC-CM) on human esophageal fibroblasts (HEFs). HEFs were treated with TGF-β1 and then cultured with UC-MSC-CM, and the expression levels of extracellular matrix (ECM) components, RhoA, myocardin related transcription factor A (MRTF-A), serum response factor (SRF), Yes-associated protein (YAP), and transcriptional coactivator with PDZ-binding motif (TAZ) were measured. UC-MSC-CM suppressed TGF-β1-induced fibrogenic activation in HEFs, as evidenced by the downregulation of ECM. UC-MSC-CM diminished the expression of RhoA, MRTF-A, and SRF triggered by TGF-β1. In TGF-β1-stimulated HEFs, UC-MSC-CM decreased the nuclear localization of MRTF-A and YAP. Additionally, UC-MSC-CM diminished the TGF-β1-induced nuclear expressions of YAP and TAZ, while concurrently enhancing the cytoplasmic presence of phosphorylated YAP. Furthermore, UC-MSC-CM reduced TGF-β1-induced phosphorylation of Smad2. These findings suggest that UC-MSC-CM may inhibit TGF-β1-induced fibrogenic activation in HEFs by targeting the Rho-mediated MRTF/SRF and YAP/TAZ pathways, as well as the Smad2 pathway. This indicates its potential as a stem cell therapy for esophageal fibrosis.
Collapse
Affiliation(s)
- Yoon Jeong Choi
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
- Institute of Basic Medical Sciences, CHA University School of Medicine, Seongnam, 13496, South Korea
| | - Jee Hyun Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
| | - Yeonju Lee
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
| | - Hee Jang Pyeon
- R&D Division, CHA Biotech Co., Ltd, Seongnam, 13488, South Korea
| | - In Kyung Yoo
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea.
| | - Jun Hwan Yoo
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea.
- Institute of Basic Medical Sciences, CHA University School of Medicine, Seongnam, 13496, South Korea.
| |
Collapse
|
7
|
Ming J, Liao Y, Song W, Wang Z, Cui J, He L, Chen G, Xu K. Role of intracranial bone marrow mesenchymal stem cells in stroke recovery: A focus on post-stroke inflammation and mitochondrial transfer. Brain Res 2024; 1837:148964. [PMID: 38677450 DOI: 10.1016/j.brainres.2024.148964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Stem cell therapy has become a hot research topic in the medical field in recent years, with enormous potential for treating a variety of diseases. In particular, bone marrow mesenchymal stem cells (BMSCs) have wide-ranging applications in the treatment of ischemic stroke, autoimmune diseases, tissue repair, and difficult-to-treat diseases. BMSCs can differentiate into multiple cell types and exhibit strong immunomodulatory properties. Although BMSCs can regulate the inflammatory response activated after stroke, the mechanism by which BMSCs regulate inflammation remains unclear and requires further study. Recently, stem cell therapy has emerged as a potentially effective approach for enhancing the recovery process following an ischemic stroke. For example, by regulating post-stroke inflammation and by transferring mitochondria to exert therapeutic effects. Therefore, this article reviews the therapeutic effects of intracranial BMSCs in regulating post-stroke inflammation and mitochondrial transfer in the treatment of stroke, providing a basis for further research.
Collapse
Affiliation(s)
- Jiang Ming
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Yidong Liao
- Department of Cardio-Thoracic Surgery, The First Hospital of Guiyang, Guiyang 550002, Guizhou, China
| | - Wenxue Song
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zili Wang
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Junshuan Cui
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Longcai He
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Guangtang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Kaya Xu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China; Department of Hyperbaric Oxygen, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, Guizhou, China.
| |
Collapse
|
8
|
Lan XY, Liang XS, Cao MX, Qin HM, Chu CY, Boltze J, Li S. NCAM mimetic peptide P2 synergizes with bone marrow mesenchymal stem cells in promoting functional recovery after stroke. J Cereb Blood Flow Metab 2024; 44:1128-1144. [PMID: 38230663 PMCID: PMC11179606 DOI: 10.1177/0271678x241226482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 11/07/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024]
Abstract
The neural cell adhesion molecule (NCAM) promotes neural development and regeneration. Whether NCAM mimetic peptides could synergize with bone marrow mesenchymal stem cells (BMSCs) in stroke treatment deserves investigation. We found that the NCAM mimetic peptide P2 promoted BMSC proliferation, migration, and neurotrophic factor expression, protected neurons from oxygen-glucose deprivation through ERK and PI3K/AKT activation and anti-apoptotic mechanisms in vitro. Following middle cerebral artery occlusion (MCAO) in rats, P2 alone or in combination with BMSCs inhibited neuronal apoptosis and induced the phosphorylation of ERK and AKT. P2 combined with BMSCs enhanced neurotrophic factor expression and BMSC proliferation in the ischemic boundary zone. Moreover, combined P2 and BMSC therapy induced translocation of nuclear factor erythroid 2-related factor, upregulated heme oxygenase-1 expression, reduced infarct volume, and increased functional recovery as compared to monotreatments. Treatment with LY294002 (PI3K inhibitor) and PD98059 (ERK inhibitor) decreased the neuroprotective effects of combined P2 and BMSC therapy in MCAO rats. Collectively, P2 is neuroprotective while P2 and BMSCs work synergistically to improve functional outcomes after ischemic stroke, which may be attributed to mechanisms involving enhanced BMSC proliferation and neurotrophic factor release, anti-apoptosis, and PI3K/AKT and ERK pathways activation.
Collapse
Affiliation(s)
- Xiao-Yan Lan
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Xue-Song Liang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Ming-Xuan Cao
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hua-Min Qin
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Cheng-Yan Chu
- Department of Neurology, Dalian Municipal Central Hospital, Dalian, China
| | - Johannes Boltze
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Shen Li
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Alzahrani FA, Riza YM, Eid TM, Almotairi R, Scherschinski L, Contreras J, Nadeem M, Perez SE, Raikwar SP, Jha RM, Preul MC, Ducruet AF, Lawton MT, Bhatia K, Akhter N, Ahmad S. Exosomes in Vascular/Neurological Disorders and the Road Ahead. Cells 2024; 13:670. [PMID: 38667285 PMCID: PMC11049650 DOI: 10.3390/cells13080670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), stroke, and aneurysms, are characterized by the abnormal accumulation and aggregation of disease-causing proteins in the brain and spinal cord. Recent research suggests that proteins linked to these conditions can be secreted and transferred among cells using exosomes. The transmission of abnormal protein buildup and the gradual degeneration in the brains of impacted individuals might be supported by these exosomes. Furthermore, it has been reported that neuroprotective functions can also be attributed to exosomes in neurodegenerative diseases. The potential neuroprotective functions may play a role in preventing the formation of aggregates and abnormal accumulation of proteins associated with the disease. The present review summarizes the roles of exosomes in neurodegenerative diseases as well as elucidating their therapeutic potential in AD, PD, ALS, HD, stroke, and aneurysms. By elucidating these two aspects of exosomes, valuable insights into potential therapeutic targets for treating neurodegenerative diseases may be provided.
Collapse
Affiliation(s)
- Faisal A. Alzahrani
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yasir M. Riza
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, King Fahad Center for Medical Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reema Almotairi
- Department of Medical Laboratory Technology, Prince Fahad bin Sultan Chair for Biomedical Research, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Lea Scherschinski
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Jessica Contreras
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Muhammed Nadeem
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sylvia E. Perez
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Sudhanshu P. Raikwar
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
| | - Ruchira M. Jha
- Department of Neurology, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Mark C. Preul
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Andrew F. Ducruet
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Michael T. Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
| | - Kanchan Bhatia
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Naseem Akhter
- Department of Biology, Arizona State University, Lake Havasu City, AZ 86403, USA
| | - Saif Ahmad
- Department of Translational Neuroscience, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA (J.C.)
- Department of Neurosurgery, Barrow Neurological Institute, St Joseph’s Hospital and Medical Center, Phoenix, AZ 85013, USA
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ 85012, USA
| |
Collapse
|
10
|
Saboori M, Riazi A, Taji M, Yadegarfar G. Traumatic brain injury and stem cell treatments: A review of recent 10 years clinical trials. Clin Neurol Neurosurg 2024; 239:108219. [PMID: 38471197 DOI: 10.1016/j.clineuro.2024.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Traumatic brain injury (TBI) is damage to the brain by an external physical force. It may result in cognitive and physical dysfunction. It is one of the main causes of disability and death all around the world. In 2016, the worldwide incidence of acute TBI was nearly 27 million cases. Therapeutic interventions currently in use provide poor outcomes. So recent research has focused on stem cells as a potential treatment. The major objective of this study was to conduct a systematic review of the recent clinical trials in the field of stem cell transplantation for patients with TBI. The Cochrane Library, Web of Science, SCOPUS, PubMed and also Google Scholar were searched for relevant terms such as "traumatic brain injury", " brain trauma", "brain injury", "head injury", "TBI", "stem cell", and "cell transplantation" and for publications from January 2013 to June 2023. Clinical trials and case series which utilized stem cells for TBI treatment were included. The data about case selection and sample size, mechanism of injury, time between primary injury and cell transplantation, type of stem cells transplanted, route of stem cell administration, number of cells transplanted, episodes of transplantation, follow-up time, outcome measures and results, and adverse events were extracted. Finally, 11 studies met the defined criteria and were included in the review. The total sample size of all studies was 402, consisting of 249 cases of stem cell transplantation and 153 control subjects. The most commonly used cells were BMMNCs, the preferred route of transplantation was intrathecal transplantation, and all studies reported improvement in clinical, radiologic, or biochemical markers after transplantation. No serious adverse events were reported. Stem cell therapy is safe and logistically feasible and leads to neurological improvement in patients with traumatic brain injury. However, further controlled, randomized, multicenter studies with large sample sizes are needed to determine the optimal cell and dose, timing of transplantation in acute or chronic phases of TBI, and the optimal route and number of transplants.
Collapse
Affiliation(s)
- Masih Saboori
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, the Islamic Republic of Iran
| | - Ali Riazi
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, the Islamic Republic of Iran
| | - Mohammadreza Taji
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, the Islamic Republic of Iran.
| | - Ghasem Yadegarfar
- Department of Epidemiology and Biostatistics, Health School, Isfahan University of Medical Sciences, Isfahan, the Islamic Republic of Iran
| |
Collapse
|
11
|
Choi YJ, Kim WR, Kim DH, Kim JH, Yoo JH. Human umbilical cord/placenta mesenchymal stem cell conditioned medium attenuates intestinal fibrosis in vivo and in vitro. Stem Cell Res Ther 2024; 15:69. [PMID: 38454492 PMCID: PMC10921617 DOI: 10.1186/s13287-024-03678-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND A significant unmet need in inflammatory bowel disease is the lack of anti-fibrotic agents targeting intestinal fibrosis. This study aimed to investigate the anti-fibrogenic properties and mechanisms of the conditioned medium (CM) from human umbilical cord/placenta-derived mesenchymal stem cells (UC/PL-MSC-CM) in a murine intestinal fibrosis model and human primary intestinal myofibroblasts (HIMFs). METHODS UC/PL-MSC-CM was concentrated 15-fold using a 3 kDa cut-off filter. C57BL/6 mice aged 7 weeks old were randomly assigned to one of four groups: (1) control, (2) dextran sulfate sodium (DSS), (3) DSS + CM (late-phase treatment), and (4) DSS + CM (early-phase treatment). Chronic DSS colitis and intestinal fibrosis was induced by three cycles of DSS administration. One DSS cycle consisted of 7 days of oral DSS administration (1.75%, 2%, and 2.5% DSS), followed by 14 days of drinking water. UC/PL-MSC-CM was intraperitoneally administered in the late phase (from day 50, 10 times) or early phase (from day 29, 10 times) of DSS cycles. HIMFs were treated with TGF-β1 and co-treated with UC/PL-MSC-CM (10% of culture media) in the cellular model. RESULTS In the animal study, UC/PL-MSC-CM reduced submucosa/muscularis propria thickness and collagen deposition, which improved intestinal fibrosis in chronic DSS colitis. The UC/PL-MSC-CM significantly reduced the expressions of procollagen1A1 and α-smooth muscle actin, which DSS significantly elevated. The anti-fibrogenic effect was more apparent in the UC-MSC-CM or early-phase treatment model. The UC/PL-MSC-CM reduced procollagen1A1, fibronectin, and α-smooth muscle actin expression in HIMFs in the cellular model. The UC/PL-MSC-CM downregulated fibrogenesis by suppressing RhoA, MRTF-A, and SRF expression. CONCLUSIONS Human UC/PL-MSC-CM inhibits TGF-β1-induced fibrogenic activation in HIMFs by blocking the Rho/MRTF/SRF pathway and chronic DSS colitis-induced intestinal fibrosis. Thus, it may be regarded as a novel candidate for stem cell-based therapy of intestinal fibrosis.
Collapse
Affiliation(s)
- Yoon Jeong Choi
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
- Institute of Basic Medical Sciences, CHA University School of Medicine, Seongnam, 13496, South Korea
| | - Woo Ram Kim
- Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, South Korea
| | - Duk Hwan Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea
| | - Jee Hyun Kim
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea.
| | - Jun Hwan Yoo
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University School of Medicine, 59 Yatap-ro, Bundang-gu, Seongnam, 13496, South Korea.
- Institute of Basic Medical Sciences, CHA University School of Medicine, Seongnam, 13496, South Korea.
| |
Collapse
|
12
|
He J, Wang Z, Ao C, Tu C, Zhang Y, Chang C, Xiao C, Xiang E, Rao W, Li C, Wu D. A highly sensitive and specific Homo1-based real-time qPCR method for quantification of human umbilical cord mesenchymal stem cells in rats. Biotechnol J 2024; 19:e2300484. [PMID: 38403446 DOI: 10.1002/biot.202300484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
BACKGROUND Owing to the characteristics of easier access in vitro, low immunogenicity, and high plasticity, human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are considered as a promising cell-based drugs for clinical application. No internationally recognized technology exists to evaluate the pharmacokinetics and distribution of cell-based drugs in vivo. METHODS We determined the human-specific gene sequence, Homo1, from differential fragments Homo sapiens mitochondrion and Rattus norvegicus mitochondrion. The expression of Homo1 was utilized to determine the distribution of UC-MSCs in the normal and diabetic nephropathy (DN) rats. RESULTS We observed a significant correlation between the number of UC-MSCs and the expression level of Homo1. Following intravenous transplantation, the blood levels of UC-MSCs peaked at 30 min. A large amount of intravenously injected MSCs were trapped in the lungs, but the number of them decreased rapidly after 24 h. Additionally, the distribution of UC-MSCs in the kidneys of DN rats was significantly higher than that of normal rats. CONCLUSIONS In this study, we establish a highly sensitive and specific Homo1-based real-time quantitative PCR method to quantify the distribution of human UC-MSCs in rats. The method provides guidelines for the safety research of cells in preclinical stages.
Collapse
Affiliation(s)
- Jing He
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Zhangfan Wang
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Chunchun Ao
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Chengshu Tu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yaqi Zhang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cheng Chang
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Cuihong Xiao
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - E Xiang
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Wei Rao
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
| | - Changyong Li
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- Xianning Medical College, Hubei University of Science & Technology, Xianning, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, China
- R&D Center, Wuhan Hamilton Biotechnology Co., Ltd, Wuhan, China
- R&D Center, Guangzhou Hamilton Biotechnology Co., Ltd, Guangzhou, China
| |
Collapse
|
13
|
Kolahi Azar H, Imanpour A, Rezaee H, Ezzatifar F, Zarei-Behjani Z, Rostami M, Azami M, Behestizadeh N, Rezaei N. Mesenchymal stromal cells and CAR-T cells in regenerative medicine: The homing procedure and their effective parameters. Eur J Haematol 2024; 112:153-173. [PMID: 37254607 DOI: 10.1111/ejh.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 06/01/2023]
Abstract
Mesenchymal stromal cells (MSCs) and chimeric antigen receptor (CAR)-T cells are two core elements in cell therapy procedures. MSCs have significant immunomodulatory effects that alleviate inflammation in the tissue regeneration process, while administration of specific chemokines and adhesive molecules would primarily facilitate CAR-T cell trafficking into solid tumors. Multiple parameters affect cell homing, including the recipient's age, the number of cell passages, proper cell culture, and the delivery method. In addition, several chemokines are involved in the tumor microenvironment, affecting the homing procedure. This review discusses parameters that improve the efficiency of cell homing and significant cell therapy challenges. Emerging comprehensive mechanistic strategies such as non-systemic and systemic homing that revealed a significant role in cell therapy remodeling were also reviewed. Finally, the primary implications for the development of combination therapies that incorporate both MSCs and CAR-T cells for cancer treatment were discussed.
Collapse
Affiliation(s)
- Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Aylar Imanpour
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Rezaee
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ezzatifar
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Molecular and Cell Biology Research Center, Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zeinab Zarei-Behjani
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, Advanced School of Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahmoud Azami
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Behestizadeh
- Regenerative Medicine group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
14
|
Farzaneh M, Khoshnam SE. Functional Roles of Mesenchymal Stem Cell-derived Exosomes in Ischemic Stroke Treatment. Curr Stem Cell Res Ther 2024; 19:2-14. [PMID: 36567297 DOI: 10.2174/1574888x18666221222123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/28/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a life-threatening disease and one of the leading causes of death and physical disability worldwide. Currently, no drugs on the market promote neural recovery after stroke insult, and spontaneous remodeling processes are limited to induce recovery in the ischemic regions. Therefore, promoting a cell-based therapy has been needed to elevate the endogenous recovery process. Mesenchymal stem cells (MSCs) have been regarded as candidate cell sources for therapeutic purposes of ischemic stroke, and their therapeutic effects are mediated by exosomes. The microRNA cargo in these extracellular vesicles is mostly responsible for the positive effects. When it comes to the therapeutic viewpoint, MSCsderived exosomes could be a promising therapeutic strategy against ischemic stroke. The aim of this review is to discuss the current knowledge around the potential of MSCs-derived exosomes in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
15
|
Shalaby N, Kelly JJ, Sehl OC, Gevaert JJ, Fox MS, Qi Q, Foster PJ, Thiessen JD, Hicks JW, Scholl TJ, Ronald JA. Complementary early-phase magnetic particle imaging and late-phase positron emission tomography reporter imaging of mesenchymal stem cells in vivo. NANOSCALE 2023; 15:3408-3418. [PMID: 36722918 DOI: 10.1039/d2nr03684c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stem cell-based therapies have demonstrated significant potential in clinical applications for many debilitating diseases. The ability to non-invasively and dynamically track the location and viability of stem cells post administration could provide important information on individual patient response and/or side effects. Multi-modal cell tracking provides complementary information that can offset the limitations of a single imaging modality to yield a more comprehensive picture of cell fate. In this study, mesenchymal stem cells (MSCs) were engineered to express human sodium iodide symporter (NIS), a clinically relevant positron emission tomography (PET) reporter gene, as well as labeled with superparamagnetic iron oxide nanoparticles (SPIOs) to allow for detection with magnetic particle imaging (MPI). MSCs were additionally engineered with a preclinical bioluminescence imaging (BLI) reporter gene for comparison of BLI cell viability data to both MPI and PET data over time. MSCs were implanted into the hind limbs of immunocompromised mice and imaging with MPI, BLI and PET was performed over a 30-day period. MPI showed sensitive detection that steadily declined over the 30-day period, while BLI showed initial decreases followed by later rapid increases in signal. The PET signal of MSCs was significantly higher than the background at later timepoints. Early-phase imaging (day 0-9 post MSC injections) showed correlation between MPI and BLI data (R2 = 0.671), while PET and BLI showed strong correlation for late-phase (day 10-30 post MSC injections) imaging timepoints (R2 = 0.9817). We report the first use of combined MPI and PET for cell tracking and show the complementary benefits of MPI for sensitive detection of MSCs early after implantation and PET for longer-term measurements of cell viability.
Collapse
Affiliation(s)
- Nourhan Shalaby
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - John J Kelly
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Olivia C Sehl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Julia J Gevaert
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
| | - Matthew S Fox
- Lawson Health Research Institute, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Qi Qi
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada
| | - Paula J Foster
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jonathan D Thiessen
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Saint Joseph's Health Care, London, ON, Canada
| | - Justin W Hicks
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - John A Ronald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
16
|
Stem Cell Therapies in Movement Disorders: Lessons from Clinical Trials. Biomedicines 2023; 11:biomedicines11020505. [PMID: 36831041 PMCID: PMC9953050 DOI: 10.3390/biomedicines11020505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/04/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Stem cell-based therapies (SCT) to treat neurodegenerative disorders have promise but clinical trials have only recently begun, and results are not expected for several years. While most SCTs largely lead to a symptomatic therapeutic effect by replacing lost cell types, there may also be disease-modifying therapeutic effects. In fact, SCT may complement a multi-drug, subtype-specific therapeutic approach, consistent with the idea of precision medicine, which matches molecular therapies to biological subtypes of disease. In this narrative review, we examine published and ongoing trials in SCT in Parkinson's Disease, atypical parkinsonian disorders, Huntington's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia in humans. We discuss the benefits and pitfalls of using this treatment approach within the spectrum of disease-modification efforts in neurodegenerative diseases. SCT may hold greater promise in the treatment of neurodegenerative disorders, but much research is required to determine the feasibility, safety, and efficacy of these complementary aims of therapeutic efforts.
Collapse
|
17
|
Porous composite hydrogels with improved MSC survival for robust epithelial sealing around implants and M2 macrophage polarization. Acta Biomater 2023; 157:108-123. [PMID: 36435441 DOI: 10.1016/j.actbio.2022.11.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The application of mesenchymal stem cell (MSC)-based therapy is expected to make a significant contribution to the improvement of epithelial sealing around implants. However, there is currently no optimal MSC delivery biomaterial for clinical application in peri-implant epithelium (PIE) integration. In this study, we show that injectable photo-cross-linkable porous gelatin methacryloyl (GelMA)/silk fibroin glycidyl methacrylate (SilMA) hydrogels encapsulating gingival tissue-derived MSCs (GMSCs) are a simple and practical approach for re-epithelization applications. The hydrogels played a prominent role in supporting the proliferation, survival, and spread of GMSCs. Moreover, it was found that GMSCs-laden Porous GelMA/SilMA hydrogels could significantly upregulate the hemidesmosomes (HDs)-related genes and proteins expression and promote M2 polarization while inhibiting M1 polarization in vitro. Based on a rat model of early implant placement, application of the MSC-loaded hydrogels could enhance the protein expression of LAMA3 and BP180 (COL17A1) at the implant-PIE interface and reduce horseradish peroxidase (HRP) penetration between the implants and PIE. Noticeably, hydrogel-based MSC therapy contributed to augmenting M2 macrophage infiltration at two time points in the gingival connective tissue around implants. These findings demonstrated that GMSCs-laden Porous GelMA/SilMA hydrogels could facilitate epithelial sealing around implants and M2-polarized macrophages and may be a novel and facile therapeutic strategy for implant-PIE integration. STATEMENT OF SIGNIFICANCE: In the case of poor integration between the implant and gingival epithelium, peri-implantitis can develop, which is one of the main causes of implant failure. While stem cell therapy has tremendous potential for addressing this issue, poor cell survival and engraftment compromise the effectiveness of the therapy. Due to the excellent modifiable and tunable properties of gelatin and silk fibroin, injectable photo-cross-linkable porous hydrogels were developed using gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SilMA) as delivery vehicles for gingiva-derived MSCs (GMSCs). Porous GelMA/SilMA not only enhanced the proliferation and viability of GMSCs but also promoted their immunomodulatory capability for favorable epithelial sealing around implants. Overall, GMSCs-seeded porous hydrogels could be promising strategies for re-epithelization treatment.
Collapse
|
18
|
Lee SH, Choung JS, Kim JM, Kim H, Kim M. Distribution of Embryonic Stem Cell-Derived Mesenchymal Stem Cells after Intravenous Infusion in Hypoxic-Ischemic Encephalopathy. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010227. [PMID: 36676176 PMCID: PMC9861288 DOI: 10.3390/life13010227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Systemic administration of mesenchymal stem cells (MSCs) has been reported to improve neurological function in brain damage, including hypoxic-ischemic encephalopathy (HIE), though the action mechanisms have not been fully elucidated. In this study, the cells were tracked live using a Pearl Trilogy Small Animal fluorescence imaging system after human embryonic stem Cell-Derived MSCs (ES-MSCs) infusion for an HIE mouse model. ES-MSC-treated HIE mice showed neurobehavioral improvement. In vivo imaging showed similar sequential migration of ES-MSCs from lungs, liver, and spleen within 7 days in both HIE and normal mice with the exception of lungs, where there was higher entrapment in the HIE 1 h after infusion. In addition, ex vivo experiments confirmed time-dependent infiltration of ES-MSCs into the organs, with similar findings in vivo, although lungs and brain revealed small differences. ES-MSCs seemed to remain in the brain only in the case of HIE on day 14 after the cell infusion. The homing effect in the host brain was confirmed with immunofluorescence staining, which showed that grafted cells remained in the brain tissue at the lesion area with neurorestorative findings. Further research should be carried out to elucidate the role of each host organ's therapeutic effects when stem cells are systemically introduced.
Collapse
Affiliation(s)
- Su Hyun Lee
- School of Medicine, CHA University, Pocheon 13496, Republic of Korea
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
| | - Jin Seung Choung
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - Jong Moon Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - Hyunjin Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
| | - MinYoung Kim
- Rehabilitation and Regeneration Research Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Republic of Korea
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea
- Correspondence: ; Tel.: +82-31-780-1872
| |
Collapse
|
19
|
Tesiye MR, Gol M, Fadardi MR, Kani SNM, Costa AM, Ghasemi-Kasman M, Biagini G. Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Epilepsy and Their Interaction with Antiseizure Medications. Cells 2022; 11:cells11244129. [PMID: 36552892 PMCID: PMC9777461 DOI: 10.3390/cells11244129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Epilepsy is a life-threatening neurological disease that affects approximately 70 million people worldwide. Although the vast majority of patients may be successfully managed with currently used antiseizure medication (ASM), the search for alternative therapies is still necessary due to pharmacoresistance in about 30% of patients with epilepsy. Here, we review the effects of ASMs on stem cell treatment when they could be, as expected, co-administered. Indeed, it has been reported that ASMs produce significant effects on the differentiation and determination of stem cell fate. In addition, we discuss more recent findings on mesenchymal stem cells (MSCs) in pre-clinical and clinical investigations. In this regard, their ability to differentiate into various cell types, reach damaged tissues and produce and release biologically active molecules with immunomodulatory/anti-inflammatory and regenerative properties make them a high-potential therapeutic tool to address neuroinflammation in different neurological disorders, including epilepsy. Overall, the characteristics of MSCs to be genetically engineered, in order to replace dysfunctional elements with the aim of restoring normal tissue functioning, suggested that these cells could be good candidates for the treatment of epilepsy refractory to ASMs. Further research is required to understand the potential of stem cell treatment in epileptic patients and its interaction with ASMs.
Collapse
Affiliation(s)
- Maryam Rahimi Tesiye
- Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Gol
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | | | - Anna-Maria Costa
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Department of Physiology, School of Medical Sciences, Babol University of Medical Sciences, Babol 47176-47745, Iran
- Correspondence: (M.G.-K.); (G.B.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (M.G.-K.); (G.B.)
| |
Collapse
|
20
|
Achón Buil B, Tackenberg C, Rust R. Editing a gateway for cell therapy across the blood-brain barrier. Brain 2022; 146:823-841. [PMID: 36397727 PMCID: PMC9976985 DOI: 10.1093/brain/awac393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022] Open
Abstract
Stem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue. Systemic endovascular injections, meanwhile, are minimally invasive, but most injected cells do not cross CNS barriers and become mechanically trapped in peripheral organs. Although the blood-brain barrier and the blood-CSF barrier tightly limit the entrance of cells and molecules into the brain parenchyma, immune cells can cross these barriers especially under pathological conditions, such as stroke. Deciphering the cell surface signature and the molecular mechanisms underlying this pathophysiological process holds promise for improving the targeted delivery of systemic injected cells to the injured brain. In this review, we describe experimental approaches that have already been developed in which (i) cells are either engineered to express cell surface proteins mimicking infiltrating immune cells; or (ii) cell grafts are preconditioned with hypoxia or incubated with pharmacological agents or cytokines. Modified cell grafts can be complemented with strategies to temporarily increase the permeability of the blood-brain barrier. Although these approaches could significantly enhance homing of stem cells into the injured brain, cell entrapment in off-target organs remains a non-negligible risk. Recent developments in safety-switch systems, which enable the precise elimination of transplanted cells on the administration of a drug, represent a promising strategy for selectively removing stem cells stuck in untargeted organs. In sum, the techniques described in this review hold great potential to substantially improve efficacy and safety of future cell therapies in stroke and may be relevant to other brain diseases.
Collapse
Affiliation(s)
- Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, 8952 Schlieren, Switzerland,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Correspondence to: Ruslan Rust Institute for Regenerative Medicine Wagistrasse 12, 8952 Schlieren Zurich, Switzerland E-mail:
| |
Collapse
|
21
|
Guo Z, Zhang Y, Yan F. Potential of Mesenchymal Stem Cell-Based Therapies for Pulmonary Fibrosis. DNA Cell Biol 2022; 41:951-965. [DOI: 10.1089/dna.2022.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Zhihou Guo
- Stem Cell Lab, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yaping Zhang
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Furong Yan
- Center for Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
22
|
Ling L, Hou J, Wang Y, Shu H, Huang Y. Effects of Low-Intensity Pulsed Ultrasound on the Migration and Homing of Human Amnion-Derived Mesenchymal Stem Cells to Ovaries in Rats With Premature Ovarian Insufficiency. Cell Transplant 2022; 31:9636897221129171. [PMID: 36282038 PMCID: PMC9608022 DOI: 10.1177/09636897221129171] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Premature ovarian insufficiency (POI) can cause multiple sequelae and is currently incurable. Mesenchymal stem cell (MSC) transplantation might provide an effective treatment method for POI. However, the clinical application of systemic MSC transplantation is limited by the low efficiency of cell homing to target tissue in vivo, including systemic MSC transplantation for POI treatment. Thus, exploration of methods to promote MSC homing is necessary. This study was to investigate the effects of low-intensity pulsed ultrasound (LIPUS) on the migration and homing of transplanted human amnion–derived MSCs (hAD-MSCs) to ovaries in rats with chemotherapy-induced POI. For LIPUS treatment, hAD-MSCs were exposed to LIPUS or sham irradiation. Chemokine receptor expressions in hAD-MSCs were detected by polymerase chain reaction (PCR), Western blot, and immunofluorescence assays. hAD-MSC migration was detected by wound healing and transwell migration assays. Cyclophosphamide-induced POI rat models were established to evaluate the effects of LIPUS on the homing of systemically transplanted hAD-MSCs to chemotherapy-induced POI ovaries in vivo. We found that hAD-MSCs expressed chemokine receptors. The LIPUS promoted the expression of chemokine receptors, especially CXCR4, in hAD-MSCs. SDF-1 induced hAD-MSC migration. The LIPUS promoted hAD-MSC migration induced by SDF-1 through SDF-1/CXCR4 axis. SDF-1 levels significantly increased in ovaries induced by chemotherapy in POI rats. Pretreating hAD-MSCs with LIPUS increased the number of hAD-MSCs homing to ovaries in rats with chemotherapy-induced POI to some extent. However, the difference was not significant. Both hAD-MSC and LIPUS-pretreated hAD-MSC transplantation reduced ovarian injuries and improved ovarian function in rats with chemotherapy-induced POI. CXCR4 antagonist significantly reduced the number of hAD-MSCs- and LIPUS-pretreated hAD-MSCs homing to POI ovaries, and further reduced their efficacy in POI treatment. According to these findings, pretreating MSCs with LIPUS before transplantation might provide a novel, convenient, and safe technique to explore for improving the homing of systemically transplanted MSCs to target tissue.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China,Li Ling, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing 400010, China.
| | - Jiying Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Wang
- State Key Laboratory of Ultrasound Engineering in Medicine Co-founded by Chongqing and the Ministry of Science and Technology, Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| | - Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubin Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Tan YL, Eng SP, Hafez P, Abdul Karim N, Law JX, Ng MH. Mesenchymal Stromal Cell Mitochondrial Transfer as a Cell Rescue Strategy in Regenerative Medicine: A Review of Evidence in Preclinical Models. Stem Cells Transl Med 2022; 11:814-827. [PMID: 35851922 PMCID: PMC9397650 DOI: 10.1093/stcltm/szac044] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/14/2022] [Indexed: 12/02/2022] Open
Abstract
Mesenchymal stromal cells (MSC) have excellent clinical potential and numerous properties that ease its clinical translation. Mitochondria play a crucial role in energy metabolism, essential for cellular activities, such as proliferation, differentiation, and migration. However, mitochondrial dysfunction can occur due to diseases and pathological conditions. Research on mitochondrial transfer from MSCs to recipient cells has gained prominence. Numerous studies have demonstrated that mitochondrial transfer led to increased adenosine triphosphate (ATP) production, recovered mitochondrial bioenergetics, and rescued injured cells from apoptosis. However, the complex mechanisms that lead to mitochondrial transfer from healthy MSCs to damaged cells remain under investigation, and the factors contributing to mitochondrial bioenergetics recovery in recipient cells remain largely ambiguous. Therefore, this review demonstrates an overview of recent findings in preclinical studies reporting MSC mitochondrial transfer, comprised of information on cell sources, recipient cells, dosage, route of administration, mechanism of transfer, pathological conditions, and therapeutic effects. Further to the above, this research discusses the potential challenges of this therapy in its clinical settings and suggestions to overcome its challenges.
Collapse
Affiliation(s)
- Yu Ling Tan
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | | | - Pezhman Hafez
- Yakin Splendour Global Holdings Berhad , Kuala Lumpur , Malaysia
| | - Norwahidah Abdul Karim
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Jia Xian Law
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| | - Min Hwei Ng
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia , Kuala Lumpur , Malaysia
| |
Collapse
|
24
|
Intranasally applied human olfactory mucosa neural progenitor cells migrate to damaged brain regions. Future Sci OA 2022; 8:FSO806. [PMID: 35909995 PMCID: PMC9327642 DOI: 10.2144/fsoa-2022-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Aim: To determine if intranasally administered olfactory mucosa progenitor cells (OMPCs) migrate to damaged areas of brain. Materials & methods: Rowett Nude (RNU) adult rats were injured using the Marmarou model then 2 weeks later received intranasally-delivered human OMPC. After 3 weeks, rats were sacrificed and brain sectioned. The mean distances from the human OMPCs to markers for degenerative neuronal cell bodies (p-c-Jun+), axonal swellings on damaged axons (β-APP+) and random points in immunostained sections were quantified. One-way ANOVA was used to analyze data. Results: The human OMPCs were seen in specific areas of the brain near degenerating cell bodies and damaged axons. Conclusion: Intranasally delivered human OMPC selectively migrate to brain injury sites suggesting a possible noninvasive stem cell delivery for brain injury. As a first step toward helping those with brain or spinal cord injury, human stem cells from the nose were applied to the inside of the nose of brain injured rats. These stem cells migrated to specific areas of damage in the brain. Stem cells from the nose are special, in that these cells continuously divide and form nerve cells. This study may lead to an uncomplicated treatment where tissue is taken from one side of the nose and later the stem cells from the tissue are delivered to the other side of the nose.
Collapse
|
25
|
Taylor SD, Serpa PBS, Santos AP, Hart KA, Vaughn SA, Moore GE, Mukhopadhyay A, Page AE. Effects of intravenous administration of peripheral blood-derived mesenchymal stromal cells after infusion of lipopolysaccharide in horses. Vet Med (Auckl) 2022; 36:1491-1501. [PMID: 35698909 PMCID: PMC9308407 DOI: 10.1111/jvim.16447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND A systemic and dysregulated immune response to infection contributes to morbidity and mortality associated with sepsis. Peripheral blood-derived mesenchymal stromal cells (PB-MSC) mitigate inflammation in animal models of sepsis. Allogeneic PB-MSC administered IV to horses is well-tolerated but therapeutic benefits are unknown. HYPOTHESIS After IV lipopolysaccharide (LPS) infusion, horses treated with PB-MSC would have less severe clinical signs, clinicopathological abnormalities, inflammatory cytokine gene expression, and oxidative stress compared to controls administered a placebo. ANIMALS Sixteen horses were included in this study. METHODS A randomized placebo-controlled experimental trial was performed. Sixteen healthy horses were assigned to 1 of 2 treatment groups (1 × 109 PB-MSC or saline placebo). Treatments were administered 30 minutes after completion of LPS infusion of approximately 30 ng/kg. Clinical signs, clinicopathological variables, inflammatory cytokine gene expression, and oxidative stress markers were assessed at various time points over a 24-hour period. RESULTS A predictable response to IV LPS infusion was observed in all horses. At the dose administered, there was no significant effect of PB-MSC on clinical signs, clinicopathological variables, or inflammatory cytokine gene expression at any time point. Antioxidant potential was not different between treatment groups, but intracellular ROS increased over time in the placebo group. Other variables that changed over time were likely due to effects of IV LPS infusion. CONCLUSIONS AND CLINICAL IMPORTANCE Administration of allogeneic PB-MSC did not cause clinically detectable adverse effects in healthy horses. The dose of PB-MSC used here is unlikely to exert a beneficial effect in endotoxemic horses.
Collapse
Affiliation(s)
- Sandra D Taylor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Priscila B S Serpa
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Andrea P Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Kelsey A Hart
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Sarah A Vaughn
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - George E Moore
- Department of Veterinary Administration, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Abhijit Mukhopadhyay
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Allen E Page
- Gluck Equine Research Center, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
26
|
Immunotherapy by mesenchymal stromal cell delivery of oncolytic viruses for treating metastatic tumors. Mol Ther Oncolytics 2022; 25:78-97. [PMID: 35434272 PMCID: PMC8989711 DOI: 10.1016/j.omto.2022.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as a very promising anti-cancer therapeutic strategy in the past decades. However, despite their pre-clinical promise, many OV clinical evaluations for cancer therapy have highlighted the continued need for their improved delivery and targeting. Mesenchymal stromal cells (MSCs) have emerged as excellent candidate vehicles for the delivery of OVs due to their tumor-homing properties and low immunogenicity. MSCs can enhance OV delivery by protecting viruses from rapid clearance following administration and also by more efficiently targeting tumor sites, consequently augmenting the therapeutic potential of OVs. MSCs can function as “biological factories,” enabling OV amplification within these cells to promote tumor lysis following MSC-OV arrival at the tumor site. MSC-OVs can promote enhanced safety profiles and therapeutic effects relative to OVs alone. In this review we explore the general characteristics of MSCs as delivery tools for cancer therapeutic agents. Furthermore, we discuss the potential of OVs as immune therapeutics and highlight some of the promising applications stemming from combining MSCs to achieve enhanced delivery and anti-tumor effectiveness of OVs at different pre-clinical and clinical stages. We further provide potential pitfalls of the MSC-OV platform and the strategies under development for enhancing the efficacy of these emerging therapeutics.
Collapse
|
27
|
The assessment of mesenchymal stem cells therapy in acute on chronic liver failure and chronic liver disease: a systematic review and meta-analysis of randomized controlled clinical trials. Stem Cell Res Ther 2022; 13:204. [PMID: 35578365 PMCID: PMC9109309 DOI: 10.1186/s13287-022-02882-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) therapy is showing potential therapeutic effects on liver function improvement in patients with chronic liver disease; however, the consensus on efficacy and safety of MSCs has not been reached. Methods We performed this systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy and safety of MSCs therapy for patients with chronic liver disease. A detailed search of the Cochrane Library, MEDLINE, Web of Science, and EMBASE databases was conducted to find studies published prior to September 15, 2021. The outcome measures were survival rate, model of end-stage liver disease (MELD) score, albumin, total bilirubin, coagulation function, and aminotransferase. Results A literature search resulted in 892 citations. Of these, 12 studies met the inclusion criteria. It was found that compared with conventional treatment, MSCs therapy was associated with improved liver function including the MELD score, albumin levels, and coagulation function. However, it had no obvious beneficial effects on survival rate and aminotransferase levels. Subgroup analyses indicated that MSCs therapy had therapeutic effects on patients with both acute on chronic liver failure (ACLF) and cirrhosis. BM-MSCs and UC-MSCs treatment had similar efficacy to improve liver function. The effectiveness varied slightly between the peripheral intravenous injection and hepatic arterial injection. Five studies reported that the only adverse event of the MSCs therapy was fever, and no serious adverse events and side effects were reported. Analysis on clinical symptoms showed that encephalopathy and gastrointestinal hemorrhage events were reduced after MSCs therapy. Conclusions In conclusion, this study suggested that MSCs therapy could be a potential therapeutic alternative for patients with chronic liver disease in clinical practice. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02882-4.
Collapse
|
28
|
Miloradovic D, Miloradovic D, Ljujic B, Jankovic MG. Optimal Delivery Route of Mesenchymal Stem Cells for Cardiac Repair: The Path to Good Clinical Practice. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:83-100. [PMID: 35389200 DOI: 10.1007/5584_2022_709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Research has shown that mesenchymal stem cells (MSCs) could be a promising therapy for treating progressive heart disease. However, translation into clinics efficiently and successfully has proven to be much more complicated. Many questions remain for optimizing treatment. Application method influences destiny of MSCs and afterwards impacts results of procedure, yet there is no general agreement about most suitable method of MSC delivery in the clinical setting. Herein, we explain principle of most-frequent MSCs delivery techniques in cardiology. This chapter summarizes crucial translational obstacles of clinical employment of MSCs for cardiac repair when analysed trough a prism of latest research centred on different techniques of MSCs application.
Collapse
Affiliation(s)
- Dragica Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Miloradovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Biljana Ljujic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic Jankovic
- Faculty of Medical Sciences, Department of Genetics, University of Kragujevac, Kragujevac, Serbia.
| |
Collapse
|
29
|
Kim JT, Youn DH, Kim BJ, Rhim JK, Jeon JP. Recent Stem Cell Research on Hemorrhagic Stroke : An Update. J Korean Neurosurg Soc 2022; 65:161-172. [PMID: 35193326 PMCID: PMC8918254 DOI: 10.3340/jkns.2021.0126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
Although technological advances and clinical studies on stem cells have been increasingly reported in stroke, research targeting hemorrhagic stroke is still lacking compared to that targeting ischemic stroke. Studies on hemorrhagic stroke are also being conducted, mainly in the USA and China. However, little research has been conducted in Korea. In reality, stem cell research or treatment is unfamiliar to many domestic neurosurgeons. Nevertheless, given the increased interest in regenerative medicine and the increase of life expectancy, attention should be paid to this topic. In this paper, we summarized pre-clinical rodent studies and clinical trials using stem cells for hemorrhagic stroke. In addition, we discussed results of domestic investigations and future perspectives on stem cell research for a better understanding.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Bong Jun Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea
| | - Jong Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Korea
| | - Jin Pyeong Jeon
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.,Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
30
|
Ling L, Hou J, Liu D, Tang D, Zhang Y, Zeng Q, Pan H, Fan L. Important role of the SDF-1/CXCR4 axis in the homing of systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) to ovaries in rats with chemotherapy-induced premature ovarian insufficiency (POI). Stem Cell Res Ther 2022; 13:79. [PMID: 35197118 PMCID: PMC8867754 DOI: 10.1186/s13287-022-02759-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Chemotherapy can induce premature ovarian insufficiency (POI). POI causes multiple sequelae and is currently incurable. As shown in our previous studies, systemically transplanted human amnion-derived mesenchymal stem cells (hAD-MSCs) home to ovaries with chemotherapy-induced POI and subsequently reduce ovarian injury and improve ovarian function in rats with POI. However, the cellular mechanisms that direct the migration and homing of hAD-MSCs to ovaries with chemotherapy-induced POI are incompletely understood. This study investigated the role of the SDF-1/CXCR4 axis in the migration and homing of systemically transplanted hAD-MSCs to ovaries with chemotherapy-induced POI and its relevant downstream signalling pathways. Methods CXCR4 expression in hAD-MSCs was assessed using Western blotting and immunofluorescence staining. hAD-MSC migration was tested using Transwell migration assays. SDF-1 levels were detected using ELISA. Seventy-two female SD rats were randomly divided into the control, POI, hAD-MSCs and hAD-MSCs + AMD3100 groups. Cyclophosphamide was used to establish rat POI models. For inhibitor treatment, hAD-MSCs were pretreated with AMD3100 before transplantation. PKH26-labeled hAD-MSCs were injected into the tail vein of POI rats 24 h after chemotherapy. After hAD-MSC transplantation, the homing of hAD-MSCs to ovaries and ovarian function and pathological changes were examined. We further investigated the molecular mechanisms by detecting the PI3K/Akt and ERK1/2 signalling pathways. Results hAD-MSCs expressed CXCR4. SDF-1 induced hAD-MSC migration in vitro. SDF-1 levels in ovaries and serum were significantly increased in rats with chemotherapy-induced POI, and ovaries with POI induced the homing of hAD-MSCs expressing CXCR4. Blocking the SDF-1/CXCR4 axis with AMD3100 significantly reduced the number of hAD-MSCs homing to ovaries with POI and further reduced their efficacy in POI treatment. The binding of SDF-1 to CXCR4 activated the PI3K/Akt signalling pathway, and LY294002 significantly inhibited hAD-MSC migration induced by SDF-1 in vitro. Moreover, inhibition of the PI3K/Akt signalling pathway significantly reduced the number of systemically transplanted hAD-MSCs homing to chemotherapy-induced ovaries in rats with POI. Conclusions SDF-1/CXCR4 axis partially mediates the migration and homing of systemically transplanted hAD-MSCs to the ovaries of rats with chemotherapy-induced POI, and the PI3K/Akt signalling pathway might be involved in the migration and homing of hAD-MSCs mediated by the SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China.
| | - Jiying Hou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Dandan Liu
- Department of Otolaryngology, The Ninth People's Hospital of Chongqing, Chongqing, 400700, China
| | - Dongyuan Tang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Yanqin Zhang
- Department of Obstetrics and Gynecology, Wushan County People's Hospital of Chongqing, Chongqing, 404700, China
| | - Qianru Zeng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Heng Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| | - Ling Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, No. 74, Linjiang Road, Chongqing, 400010, China
| |
Collapse
|
31
|
Post-stroke Impairment of the Blood–Brain Barrier and Perifocal Vasogenic Edema Is Alleviated by Endovascular Mesenchymal Stem Cell Administration: Modulation of the PKCδ/MMP9/AQP4-Mediated Pathway. Mol Neurobiol 2022; 59:2758-2775. [DOI: 10.1007/s12035-022-02761-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 12/24/2022]
|
32
|
Salehi MS, Jurek B, Karimi-Haghighi S, Nezhad NJ, Mousavi SM, Hooshmandi E, Safari A, Dianatpour M, Haerteis S, Miyan JA, Pandamooz S, Borhani-Haghighi A. Intranasal application of stem cells and their derivatives as a new hope in the treatment of cerebral hypoxia/ischemia: a review. Rev Neurosci 2022; 33:583-606. [DOI: 10.1515/revneuro-2021-0163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 02/07/2023]
Abstract
Abstract
Intranasal delivery of stem cells and conditioned medium to target the brain has attracted major interest in the field of regenerative medicine. In pre-clinical investigations during the last ten years, several research groups focused on this strategy to treat cerebral hypoxia/ischemia in neonates as well as adults. In this review, we discuss the curative potential of stem cells, stem cell derivatives, and their delivery route via intranasal application to the hypoxic/ischemic brain. After intranasal application, stem cells migrate from the nasal cavity to the injured area and exert therapeutic effects by reducing brain tissue loss, enhancing endogenous neurogenesis, and modulating cerebral inflammation that leads to functional improvements. However, application of this administration route for delivering stem cells and/or therapeutic substances to the damaged sites requires further optimization to translate the findings of animal experiments to clinical trials.
Collapse
Affiliation(s)
- Mohammad Saied Salehi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Benjamin Jurek
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Saeideh Karimi-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Nahid Jashire Nezhad
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Seyedeh Maryam Mousavi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Anahid Safari
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Silke Haerteis
- Institute of Molecular and Cellular Anatomy , University of Regensburg , Regensburg 93053 , Germany
| | - Jaleel A. Miyan
- Faculty of Biology, Medicine & Health, Division of Neuroscience & Experimental Psychology , The University of Manchester , Manchester M13 9PL , UK
| | - Sareh Pandamooz
- Stem Cells Technology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| | - Afshin Borhani-Haghighi
- Clinical Neurology Research Center , Shiraz University of Medical Sciences , Shiraz 71936-35899 , Iran
| |
Collapse
|
33
|
Sarmah D, Datta A, Kaur H, Kalia K, Borah A, Rodriguez AM, Yavagal DR, Bhattacharya P. Sirtuin-1 - Mediated NF-κB Pathway Modulation to Mitigate Inflammasome Signaling and Cellular Apoptosis is One of the Neuroprotective Effects of Intra-arterial Mesenchymal Stem Cell Therapy Following Ischemic Stroke. Stem Cell Rev Rep 2022; 18:821-838. [PMID: 35112234 DOI: 10.1007/s12015-021-10315-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
AIM Stroke results in long term serious disability that affect millions across the globe. Several clinical and preclinical studies have reinforced the therapeutic use of stem cells in stroke patients to enhance their quality of life. Previous studies from our lab have demonstrated that 1*105 allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) when given intraarterially (IA) render neuroprotection by modulating the expression of inflammasomes. Sirtuins are a class of important deacylases having a significant role in cellular functioning. Sirtuin-1 (SIRT-1) is an important enzyme essential for regulating cellular metabolism, which is reduced following an ischemic episode. The present study aims to unviel the role of MSCs in regulating the brain SIRT-1 levels following stroke and the involvement of SIRT-1 in regulating inflammasome signaling to reduce cellular apoptosis towards rendering neuroprotection. MATERIALS AND METHODS 6 h post-reversible middle cerebral artery occlusion (MCAo), ovariectomized Sprague Dawley (SD) rats were infused intraarterially with 1*105 MSCs. 24 h after MCAo animals were examined for functional and behavioral outcomes. Brains were collected for assessing size of infarct and neuronal morphology. Molecular and immunofluroscence studies were also performed for assessing changes in gene and protein expressions. Extent of apoptosis was also determined in different groups. Inhibition study with SIRT-1 specific inhibitor EX-527 was also performed. RESULTS A reduction in infarct size and improvement in motor functional and behavioral outcomes following infusion of MSCs IA at 6 h post-stroke was observed. Increase in average neuronal density and neuronal length was also seen. Increased expression of SIRT-1, BDNF and concomitant reduction in the expression of different inflammatory and apoptotic markers in the brain cortical regions were observed following MSCs treatment. CONCLUSION Our study provides a preliminary evidence that post-stroke IA MSCs therapy regulates SIRT-1 to modulate NF-κB pathway to mitigate inflammasome signaling and cellular apoptosis. This study using IA approach for administering MSCs is highly relevant clinically. Our study is the first to report that neuroprotective effects of IA MSCs in rodent focal ischemia is mediated by SIRT-1 regulation of inflammasome signaling.
Collapse
Affiliation(s)
- Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | | | - Dileep R Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
34
|
Grayston A, Zhang Y, Garcia-Gabilondo M, Arrúe M, Martin A, Kopcansky P, Timko M, Kovac J, Strbak O, Castellote L, Belloli S, Moresco RM, Picchio M, Roig A, Rosell A. Endovascular administration of magnetized nanocarriers targeting brain delivery after stroke. J Cereb Blood Flow Metab 2022; 42:237-252. [PMID: 34229512 PMCID: PMC9122522 DOI: 10.1177/0271678x211028816] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The increasing use of mechanical thrombectomy in stroke management has opened the window to local intraarterial brain delivery of therapeutic agents. In this context, the use of nanomedicine could further improve the delivery of new treatments for specific brain targeting, tracking and guidance. In this study we take advantage of this new endovascular approach to deliver biocompatible poly(D-L-lactic-co-glycolic acid) (PLGA) nanocapsules functionalized with superparamagnetic iron oxide nanoparticles and Cy7.5 for magnetic targeting, magnetic resonance and fluorescent molecular imaging. A complete biodistribution study in naïve (n = 59) and ischemic (n = 51) mice receiving intravenous or intraarterial nanocapsules, with two different magnet devices and imaged from 30 min to 48 h, showed an extraordinary advantage of the intraarterial route for brain delivery with a specific improvement in cortical targeting when using a magnetic device in both control and ischemic conditions. Safety was evaluated in ischemic mice (n = 69) showing no signs of systemic toxicity nor increasing mortality, infarct lesions or hemorrhages. In conclusion, the challenging brain delivery of therapeutic nanomaterials could be efficiently and safely overcome with a controlled endovascular administration and magnetic targeting, which could be considered in the context of endovascular interventions for the delivery of multiple treatments for stroke.
Collapse
Affiliation(s)
- Alba Grayston
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Yajie Zhang
- Nanoparticles and Nanocomposites Group, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Mercedes Arrúe
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Abraham Martin
- Achucarro Basque Center for Neuroscience, Laboratory of Neuroimaging and Biomarkers of Inflammation, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Peter Kopcansky
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Milan Timko
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Jozef Kovac
- Department of Magnetism, Institute of Experimental Physics, SAS, Kosice, Slovakia
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Laura Castellote
- Department of Clinical Biochemistry, Clinical Laboratories, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Sara Belloli
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Segrate, Italy
| | - Rosa M Moresco
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department of Medicine and Surgery, University of Milano - Bicocca, Monza (MB), Italy
| | - Maria Picchio
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.,School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| | - Anna Roig
- Nanoparticles and Nanocomposites Group, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| |
Collapse
|
35
|
Satani N, Parsha K, Savitz SI. Enhancing Stroke Recovery With Cellular Therapies. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Cell Therapy of Stroke: Do the Intra-Arterially Transplanted Mesenchymal Stem Cells Cross the Blood-Brain Barrier? Cells 2021; 10:cells10112997. [PMID: 34831220 PMCID: PMC8616541 DOI: 10.3390/cells10112997] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.
Collapse
|
37
|
Baguma-Nibasheka M, Feridooni T, Zhang F, Pasumarthi KB. Regulation of Transplanted Cell Homing by FGF1 and PDGFB after Doxorubicin Myocardial Injury. Cells 2021; 10:2998. [PMID: 34831221 PMCID: PMC8616453 DOI: 10.3390/cells10112998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 12/23/2022] Open
Abstract
There is no effective treatment for the total recovery of myocardial injury caused by an anticancer drug, doxorubicin (Dox). In this study, using a Dox-induced cardiac injury model, we compared the cardioprotective effects of ventricular cells harvested from 11.5-day old embryonic mice (E11.5) with those from E14.5 embryos. Our results indicate that tail-vein-infused E11.5 ventricular cells are more efficient at homing into the injured adult myocardium, and are more angiogenic, than E14.5 ventricular cells. In addition, E11.5 cells were shown to mitigate the cardiomyopathic effects of Dox. In vitro, E11.5 ventricular cells were more migratory than E14.5 cells, and RT-qPCR analysis revealed that they express significantly higher levels of cytokine receptors Fgfr1, Fgfr2, Pdgfra, Pdgfrb and Kit. Remarkably, mRNA levels for Fgf1, Fgf2, Pdgfa and Pdgfb were also found to be elevated in the Dox-injured adult heart, as were the FGF1 and PDGFB protein levels. Addition of exogenous FGF1 or PDGFB was able to enhance E11.5 ventricular cell migration in vitro, and, whereas their neutralizing antibodies decreased cell migration. These results indicate that therapies raising the levels of FGF1 and PDGFB receptors in donor cells and or corresponding ligands in an injured heart could improve the efficacy of cell-based interventions for myocardial repair.
Collapse
Affiliation(s)
| | | | | | - Kishore B.S. Pasumarthi
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (M.B.-N.); (T.F.); (F.Z.)
| |
Collapse
|
38
|
Chung SJ, Lee TY, Lee YH, Baik K, Jung JH, Yoo HS, Shim CJ, Eom H, Hong JY, Kim DJ, Sohn YH, Lee PH. Phase I Trial of Intra-arterial Administration of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Patients with Multiple System Atrophy. Stem Cells Int 2021; 2021:9886877. [PMID: 34712335 PMCID: PMC8548132 DOI: 10.1155/2021/9886877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/05/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND This study is aimed at investigating the safety and tolerability of the intra-arterial administration of autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) in patients with multiple system atrophy- (MSA-) cerebellar type (MSA-C). METHODS This was a single-center, open-label phase I clinical trial in patients with MSA-C. A three-stage dose escalation scheme (low-dose, 3.0 × 105 cells/kg; medium-dose, 6.0 × 105 cells/kg; high-dose, 9.0 × 105 cells/kg) was applied to determine the maximum tolerated dose of intra-arterial administration of BM-MSCs based on the no-observed-adverse-effect level derived from the toxicity study. The occurrence of adverse events was evaluated 1 day before and 1, 14, and 28 days after BM-MSC therapy. Additionally, we assessed changes in the Unified MSA Rating Scale (UMSARS) score 3 months after BM-MSC treatment. RESULTS One serious adverse drug reaction (ADR) of leptomeningeal enhancement following the intra-arterial BM-MSC administration occurred in one patient in the low-dose group. The safety review of the Internal Monitoring Committee interpreted this as radiological evidence of the blood-brain barrier permeability for MSCs. No other ADRs were observed in the medium- or high-dose groups. In particular, no ischemic lesions on diffusion-weighted images were observed in any of the study participants. Additionally, the medium- and high-dose groups tended to show a slower increase in UMSARS scores than the low-dose group during the 3-month follow-up. CONCLUSION The present study confirmed that a single intra-arterial administration of autologous BM-MSCs is a safe and promising neuroprotective strategy in patients with MSA-C.
Collapse
Affiliation(s)
- Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin 16995, Republic of Korea
| | - Tae Yong Lee
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - KyoungWon Baik
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Ho Jung
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Neurology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chang Jae Shim
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Hyojin Eom
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Ji-Yeon Hong
- Bioengineering Institute, CORESTEM Inc., Seoul 04763, Republic of Korea
| | - Dong Joon Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young H. Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
39
|
Kaur H, Sarmah D, Veeresh P, Datta A, Kalia K, Borah A, Yavagal DR, Bhattacharya P. Endovascular Stem Cell Therapy Post Stroke Rescues Neurons from Endoplasmic Reticulum Stress-Induced Apoptosis by Modulating Brain-Derived Neurotrophic Factor/Tropomyosin Receptor Kinase B Signaling. ACS Chem Neurosci 2021; 12:3745-3759. [PMID: 34553602 DOI: 10.1021/acschemneuro.1c00506] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Ischemic stroke is devastating, with serious long-term disabilities affecting millions of people worldwide. Growing evidence has shown that mesenchymal stem cells (MSCs) administration after stroke provides neuroprotection and enhances the quality of life in stroke patients. Previous studies from our lab have shown that 1 × 105 MSCs administered intra-arterially (IA) at 6 h post stroke provide neuroprotection through the modulation of inflammasome and calcineurin signaling. Ischemic stroke induces endoplasmic reticulum (ER) stress, which exacerbates the pathology. The current study intends to understand the involvement of brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling in preventing apoptosis induced by ER stress post stroke following IA MSCs administration. Ischemic stroke was induced in ovariectomized female Sprague Dawley rats. The MSCs were administered IA, and animals were sacrificed at 24 h post stroke. Infarct area, neurological deficit score, motor coordination, and biochemical parameters were evaluated. The expression of various genes and proteins was assessed. An inhibition study was also carried out to confirm the involvement of BDNF/TrkB signaling in ER stress-induced apoptosis. IA-administered MSCs improved functional outcomes, reduced infarct area, increased neuronal survival, and normalized biochemical parameters. mRNA and protein expression of ER stress markers were reduced, while those of BDNF and TrkB were increased. Reduction in ER stress-mediated apoptosis was also observed. The present study shows that IA MSCs administration post stroke provides neuroprotection and can modulate ER stress-mediated apoptosis via the BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Harpreet Kaur
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Pabbala Veeresh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar 788011, Assam, India
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382007, India
| |
Collapse
|
40
|
Preconditioned Mesenchymal Stromal Cells to Improve Allotransplantation Outcome. Cells 2021; 10:cells10092325. [PMID: 34571974 PMCID: PMC8469056 DOI: 10.3390/cells10092325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are tissue-derived progenitor cells with immunomodulatory as well as multilineage differentiation capacities, and have been widely applied as cellular therapeutics in different disease systems in both preclinical models and clinical studies. Although many studies have applied MSCs in different types of allotransplantation, the efficacy varies. It has been demonstrated that preconditioning MSCs prior to in vivo administration may enhance their efficacy. In the field of organ/tissue allotransplantation, many recent studies have shown that preconditioning of MSCs with (1) pretreatment with bioactive factors or reagents such as cytokines, or (2) specific gene transfection, could prolong allotransplant survival and improve allotransplant function. Herein, we review these preconditioning strategies and discuss potential directions for further improvement.
Collapse
|
41
|
Helfer BM, Ponomarev V, Patrick PS, Blower PJ, Feitel A, Fruhwirth GO, Jackman S, Pereira Mouriès L, Park MVDZ, Srinivas M, Stuckey DJ, Thu MS, van den Hoorn T, Herberts CA, Shingleton WD. Options for imaging cellular therapeutics in vivo: a multi-stakeholder perspective. Cytotherapy 2021; 23:757-773. [PMID: 33832818 PMCID: PMC9344904 DOI: 10.1016/j.jcyt.2021.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/01/2021] [Accepted: 02/13/2021] [Indexed: 12/13/2022]
Abstract
Cell-based therapies have been making great advances toward clinical reality. Despite the increase in trial activity, few therapies have successfully navigated late-phase clinical trials and received market authorization. One possible explanation for this is that additional tools and technologies to enable their development have only recently become available. To support the safety evaluation of cell therapies, the Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee, a multisector collaborative committee, polled the attendees of the 2017 International Society for Cell & Gene Therapy conference in London, UK, to understand the gaps and needs that cell therapy developers have encountered regarding safety evaluations in vivo. The goal of the survey was to collect information to inform stakeholders of areas of interest that can help ensure the safe use of cellular therapeutics in the clinic. This review is a response to the cellular imaging interests of those respondents. The authors offer a brief overview of available technologies and then highlight the areas of interest from the survey by describing how imaging technologies can meet those needs. The areas of interest include imaging of cells over time, sensitivity of imaging modalities, ability to quantify cells, imaging cellular survival and differentiation and safety concerns around adding imaging agents to cellular therapy protocols. The Health and Environmental Sciences Institute Cell Therapy-Tracking, Circulation and Safety Committee believes that the ability to understand therapeutic cell fate is vital for determining and understanding cell therapy efficacy and safety and offers this review to aid in those needs. An aim of this article is to share the available imaging technologies with the cell therapy community to demonstrate how these technologies can accomplish unmet needs throughout the translational process and strengthen the understanding of cellular therapeutics.
Collapse
Affiliation(s)
| | - Vladimir Ponomarev
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - P Stephen Patrick
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alexandra Feitel
- Formerly, Health and Environmental Sciences Institute, US Environmental Protection Agency, Washington, DC, USA
| | - Gilbert O Fruhwirth
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Shawna Jackman
- Charles River Laboratories, Shrewsbury, Massachusetts, USA
| | | | - Margriet V D Z Park
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, the Netherlands; Cenya Imaging BV, Amsterdam, the Netherlands
| | - Daniel J Stuckey
- Department of Medicine, Centre for Advanced Biomedical Imaging, University College London, London, UK
| | - Mya S Thu
- Visicell Medical Inc, La Jolla, California, USA
| | | | | | | |
Collapse
|
42
|
Amanat M, Majmaa A, Zarrabi M, Nouri M, Akbari MG, Moaiedi AR, Ghaemi O, Zamani F, Najafi S, Badv RS, Vosough M, Hamidieh AA, Salehi M, Montazerlotfelahi H, Tavasoli AR, Heidari M, Mohebi H, Fatemi A, Garakani A, Ashrafi MR. Clinical and imaging outcomes after intrathecal injection of umbilical cord tissue mesenchymal stem cells in cerebral palsy: a randomized double-blind sham-controlled clinical trial. Stem Cell Res Ther 2021; 12:439. [PMID: 34362453 PMCID: PMC8343813 DOI: 10.1186/s13287-021-02513-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND This study assessed the safety and efficacy of intrathecal injection of umbilical cord tissue mesenchymal stem cells (UCT-MSC) in individuals with cerebral palsy (CP). The diffusion tensor imaging (DTI) was performed to evaluate the alterations in white-matter integrity. METHODS Participants (4-14 years old) with spastic CP were assigned in 1:1 ratio to receive either UCT-MSC or sham procedure. Single-dose (2 × 107) cells were administered in the experimental group. Small needle pricks to the lower back were performed in the sham-control arm. All individuals were sedated to prevent awareness. The primary endpoints were the mean changes in gross motor function measure (GMFM)-66 from baseline to 12 months after procedures. The mean changes in the modified Ashworth scale (MAS), pediatric evaluation of disability inventory (PEDI), and CP quality of life (CP-QoL) were also assessed. Secondary endpoints were the mean changes in fractional anisotropy (FA) and mean diffusivity (MD) of corticospinal tract (CST) and posterior thalamic radiation (PTR). RESULTS There were 36 participants in each group. The mean GMFM-66 scores after 12 months of intervention were significantly higher in the UCT-MSC group compared to baseline (10.65; 95%CI 5.39, 15.91) and control (β 8.07; 95%CI 1.62, 14.52; Cohen's d 0.92). The increase was also seen in total PEDI scores (vs baseline 8.53; 95%CI 4.98, 12.08; vs control: β 6.87; 95%CI 1.52, 12.21; Cohen's d 0.70). The mean change in MAS scores after 12 months of cell injection reduced compared to baseline (-1.0; 95%CI -1.31, -0.69) and control (β -0.72; 95%CI -1.18, -0.26; Cohen's d 0.76). Regarding CP-QoL, mean changes in domains including friends and family, participation in activities, and communication were higher than the control group with a large effect size. The DTI analysis in the experimental group showed that mean FA increased (CST 0.032; 95%CI 0.02, 0.03. PTR 0.024; 95%CI 0.020, 0.028) and MD decreased (CST -0.035 × 10-3; 95%CI -0.04 × 10-3, -0.02 × 10-3. PTR -0.045 × 10-3; 95%CI -0.05 × 10-3, -0.03 × 10-3); compared to baseline. The mean changes were significantly higher than the control group. CONCLUSIONS The UCT-MSC transplantation was safe and may improve the clinical and imaging outcomes. TRIAL REGISTRATION The study was registered with ClinicalTrials.gov ( NCT03795974 ).
Collapse
Affiliation(s)
- Man Amanat
- Department of Science and Research Branch, AJA University of Medical Sciences, Tehran, Iran
| | - Anahita Majmaa
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zarrabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masoumeh Nouri
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Masood Ghahvechi Akbari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Reza Moaiedi
- Department of Pediatric Neurology, Clinical Research Development Center of Children Hospital, Hormozgan University of Medical Sciences, Bandar Abass, Iran
| | - Omid Ghaemi
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zamani
- Pediatrics Center of Excellence, Department of Radiology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sharif Najafi
- Clinical Biomechanics and Ergonomics Research Center, Department of Physical Medicine and Rehabilitation, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Shervin Badv
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatrics Center of Excellence Pediatric Hematology, Oncology and Stem Cell Transplantation Department, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Salehi
- Psychiatry and Psychology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Montazerlotfelahi
- Department of Pediatrics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Reza Tavasoli
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Heidari
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mohebi
- Department of Pediatric Neurology, AJA University of Medical Sciences, Tehran, Iran
| | - Ali Fatemi
- Moser Center for Leukodystrophies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Department of Neurology and Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Amir Garakani
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahmoud Reza Ashrafi
- Pediatrics Center of Excellence, Department of Pediatric Neurology, Children's Medical Center, Growth and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Stem Cells: Innovative Therapeutic Options for Neurodegenerative Diseases? Cells 2021; 10:cells10081992. [PMID: 34440761 PMCID: PMC8391848 DOI: 10.3390/cells10081992] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure and/or function of both neurons and glial cells, leading to different degrees of pathology and loss of cognition. The hypothesis of circuit reconstruction in the damaged brain via direct cell replacement has been pursued extensively so far. In this context, stem cells represent a useful option since they provide tissue restoration through the substitution of damaged neuronal cells with exogenous stem cells and create a neuro-protective environment through the release of bioactive molecules for healthy neurons, as well. These peculiar properties of stem cells are opening to potential therapeutic strategies for the treatment of severe neurodegenerative disorders, for which the absence of effective treatment options leads to an increasingly socio-economic burden. Currently, the introduction of new technologies in the field of stem cells and the implementation of alternative cell tissues sources are pointing to exciting frontiers in this area of research. Here, we provide an update of the current knowledge about source and administration routes of stem cells, and review light and shadows of cells replacement therapy for the treatment of the three main neurodegenerative disorders (Amyotrophic lateral sclerosis, Parkinson’s, and Alzheimer’s disease).
Collapse
|
44
|
Smith JA, Nicaise AM, Ionescu RB, Hamel R, Peruzzotti-Jametti L, Pluchino S. Stem Cell Therapies for Progressive Multiple Sclerosis. Front Cell Dev Biol 2021; 9:696434. [PMID: 34307372 PMCID: PMC8299560 DOI: 10.3389/fcell.2021.696434] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system characterized by demyelination and axonal degeneration. MS patients typically present with a relapsing-remitting (RR) disease course, manifesting as sporadic attacks of neurological symptoms including ataxia, fatigue, and sensory impairment. While there are several effective disease-modifying therapies able to address the inflammatory relapses associated with RRMS, most patients will inevitably advance to a progressive disease course marked by a gradual and irreversible accrual of disabilities. Therapeutic intervention in progressive MS (PMS) suffers from a lack of well-characterized biological targets and, hence, a dearth of successful drugs. The few medications approved for the treatment of PMS are typically limited in their efficacy to active forms of the disease, have little impact on slowing degeneration, and fail to promote repair. In looking to address these unmet needs, the multifactorial therapeutic benefits of stem cell therapies are particularly compelling. Ostensibly providing neurotrophic support, immunomodulation and cell replacement, stem cell transplantation holds substantial promise in combatting the complex pathology of chronic neuroinflammation. Herein, we explore the current state of preclinical and clinical evidence supporting the use of stem cells in treating PMS and we discuss prospective hurdles impeding their translation into revolutionary regenerative medicines.
Collapse
Affiliation(s)
- Jayden A. Smith
- Cambridge Innovation Technologies Consulting (CITC) Limited, Cambridge, United Kingdom
| | - Alexandra M. Nicaise
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Rosana-Bristena Ionescu
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Regan Hamel
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Luca Peruzzotti-Jametti
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Stefano Pluchino
- Department of Clinical Neurosciences and National Institute for Health Research (NIHR) Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
Sanchez-Diaz M, Quiñones-Vico MI, Sanabria de la Torre R, Montero-Vílchez T, Sierra-Sánchez A, Molina-Leyva A, Arias-Santiago S. Biodistribution of Mesenchymal Stromal Cells after Administration in Animal Models and Humans: A Systematic Review. J Clin Med 2021; 10:jcm10132925. [PMID: 34210026 PMCID: PMC8268414 DOI: 10.3390/jcm10132925] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal Stromal Cells (MSCs) are of great interest in cellular therapy. Different routes of administration of MSCs have been described both in pre-clinical and clinical reports. Knowledge about the fate of the administered cells is critical for developing MSC-based therapies. The aim of this review is to describe how MSCs are distributed after injection, using different administration routes in animal models and humans. A literature search was performed in order to consider how MSCs distribute after intravenous, intraarterial, intramuscular, intraarticular and intralesional injection into both animal models and humans. Studies addressing the biodistribution of MSCs in “in vivo” animal models and humans were included. After the search, 109 articles were included in the review. Intravenous administration of MSCs is widely used; it leads to an initial accumulation of cells in the lungs with later redistribution to the liver, spleen and kidneys. Intraarterial infusion bypasses the lungs, so MSCs distribute widely throughout the rest of the body. Intramuscular, intraarticular and intradermal administration lack systemic biodistribution. Injection into various specific organs is also described. Biodistribution of MSCs in animal models and humans appears to be similar and depends on the route of administration. More studies with standardized protocols of MSC administration could be useful in order to make results homogeneous and more comparable.
Collapse
Affiliation(s)
- Manuel Sanchez-Diaz
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Maria I. Quiñones-Vico
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- Correspondence:
| | - Raquel Sanabria de la Torre
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Trinidad Montero-Vílchez
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Alvaro Sierra-Sánchez
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
| | - Alejandro Molina-Leyva
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
| | - Salvador Arias-Santiago
- Dermatology Department, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (M.S.-D.); (T.M.-V.); (A.M.-L.); (S.A.-S.)
- Cellular Production Unit, Hospital Universitario Virgen de las Nieves, IBS Granada, 18014 Granada, Spain; (R.S.d.l.T.); (A.S.-S.)
- School of Medicine, University of Granada, 18014 Granada, Spain
| |
Collapse
|
46
|
Szydlak R. Biological, chemical and mechanical factors regulating migration and homing of mesenchymal stem cells. World J Stem Cells 2021; 13:619-631. [PMID: 34249231 PMCID: PMC8246245 DOI: 10.4252/wjsc.v13.i6.619] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/03/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.
Collapse
Affiliation(s)
- Renata Szydlak
- Department of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, Kraków 31-034, Poland
| |
Collapse
|
47
|
Cho JY, Matsukawa N. The unsolved mystery of hippocampal cholinergic neurostimulating peptide: A potent cholinergic regulator. Brain Circ 2021; 7:29-32. [PMID: 34084974 PMCID: PMC8057103 DOI: 10.4103/bc.bc_14_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/27/2022] Open
Abstract
Cholinergic efferent networks located from the medial septal nucleus to the hippocampus play a pivotal role in learning and memory outcomes by generating regular theta rhythms that enhance information retention. Hippocampal cholinergic neurostimulating peptide (HCNP), derived from the N-terminus of HCNP precursor protein (HCNP-pp), promotes the synthesis of acetylcholine in the medial septal nuclei. HCNP-pp deletion significantly reduced theta power in CA1 possibly due to lower levels of choline acetyltransferase-positive axons in CA1 stratum oriens, suggesting cholinergic disruptions in the septo-hippocampal system. This review also explores HCNP as a potent cholinergic regulator in the septo-hippocampal network while also examining the limitations of our understanding of the neurostimulating peptide.
Collapse
Affiliation(s)
- Justin Y Cho
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | |
Collapse
|
48
|
Kim DY, Choi SH, Lee JS, Kim HJ, Kim HN, Lee JE, Shin JY, Lee PH. Feasibility and Efficacy of Intra-Arterial Administration of Embryonic Stem Cell Derived-Mesenchymal Stem Cells in Animal Model of Alzheimer's Disease. J Alzheimers Dis 2021; 76:1281-1296. [PMID: 32597802 DOI: 10.3233/jad-200026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) promote functional recoveries in pathological experimental models of the central nervous system and are currently being tested in clinical trials for neurological disorders. However, no studies have examined the various roles of embryonic stem cell derived (ES)-MSCs in eliciting therapeutic effects for Alzheimer's disease (AD). In the present study, we investigated the neuroprotective effect of ES-MSCs in cellular and animal models of AD, as well as the safety of the intra-arterial administration of ES-MSCs in an AD animal model. ES-MSCs displayed higher cell viability than that of bone marrow (BM)-MSCs in amyloid-β (Aβ)-induced cellular models. Moreover, the efficacy of autophagy induction in ES-MSCs was comparable to that of BM-MSCs; however, intracellular Aβ levels were more significantly reduced in ES-MSCs than in BM-MSCs. In a rat model of AD, ES-MSCs significantly inhibited Aβ-induced cell death in the hippocampus and promoted autophagolysosomal clearance of Aβ, which was concomitantly followed by decreased levels of Aβ in the hippocampus. Furthermore, ES-MSC treatment in Aβ-treated rats featured a higher memory performance than that of rats injected solely with Aβ. Finally, intra-arterial administration of an appropriate cell density of ES-MSCs was safe and free from in situ occlusion or cerebral ischemia. These data support the therapeutic potential of ES-MSCs and clinical applications of the intra-arterial route of ES-MSC administration in AD.
Collapse
Affiliation(s)
- Dong Yeol Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Hyun Choi
- Cell Therapy Center, Daewoong Pharmaceuticals, Co., Ltd., Seoul, South Korea
| | - Jee Sun Lee
- Chonnam National University Medical School, Gwangju, South Korea
| | - Hyoung Jun Kim
- Cell Therapy Center, Daewoong Pharmaceuticals, Co., Ltd., Seoul, South Korea
| | - Ha Na Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Eun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
49
|
Law ZK, Tan HJ, Chin SP, Wong CY, Wan Yahya WNN, Muda AS, Zakaria R, Ariff MI, Ismail NA, Cheong SK, S Abdul Wahid SF, Mohamed Ibrahim N. The effects of intravenous infusion of autologous mesenchymal stromal cells in patients with subacute middle cerebral artery infarct: a phase 2 randomized controlled trial on safety, tolerability and efficacy. Cytotherapy 2021; 23:833-840. [PMID: 33992536 DOI: 10.1016/j.jcyt.2021.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are characterized by paracrine and immunomodulatory functions capable of changing the microenvironment of damaged brain tissue toward a more regenerative and less inflammatory milieu. The authors conducted a phase 2, single-center, assessor-blinded randomized controlled trial to investigate the safety and efficacy of intravenous autologous bone marrow-derived MSCs (BMMSCs) in patients with subacute middle cerebral artery (MCA) infarct. METHODS Patients aged 30-75 years who had severe ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score of 10-35) involving the MCA territory were recruited within 2 months of stroke onset. Using permuted block randomization, patients were assigned to receive 2 million BMMSCs per kilogram of body weight (treatment group) or standard medical care (control group). The primary outcomes were the NIHSS, modified Rankin Scale (mRS), Barthel Index (BI) and total infarct volume on brain magnetic resonance imaging (MRI) at 12 months. All outcome assessments were performed by blinded assessors. Per protocol, analyses were performed for between-group comparisons. RESULTS Seventeen patients were recruited. Nine were assigned to the treatment group, and eight were controls. All patients were severely disabled following their MCA infarct (median mRS = 4.0 [4.0-5.0], BI = 5.0 [5.0-25.0], NIHSS = 16.0 [11.5-21.0]). The baseline infarct volume on the MRI was larger in the treatment group (median, 71.7 [30.5-101.7] mL versus 26.7 [12.9-75.3] mL, P = 0.10). There were no between-group differences in median NIHSS score (7.0 versus 6.0, P = 0.96), mRS (2.0 versus 3.0, P = 0.38) or BI (95.0 versus 67.5, P = 0.33) at 12 months. At 12 months, there was significant improvement in absolute change in median infarct volume, but not in total infarct volume, from baseline in the treatment group (P = 0.027). No treatment-related adverse effects occurred in the BMMSC group. CONCLUSIONS Intravenous infusion of BMMSCs in patients with subacute MCA infarct was safe and well tolerated. Although there was no neurological recovery or functional outcome improvement at 12 months, there was improvement in absolute change in median infarct volume in the treatment group. Larger, well-designed studies are warranted to confirm this and the efficacy of BMMSCs in ischemic stroke.
Collapse
Affiliation(s)
- Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | | | - Wan Nur Nafisah Wan Yahya
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Sobri Muda
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia; Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rozman Zakaria
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Izhar Ariff
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nor Azimah Ismail
- Cell Therapy Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Selangor, Malaysia; Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - S Fadilah S Abdul Wahid
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia; Cell Therapy Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| |
Collapse
|
50
|
Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Rev Rep 2021; 17:1666-1694. [PMID: 33954876 DOI: 10.1007/s12015-021-10168-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are so far the most widely researched stem cells in clinics and used as an experimental cellular therapy module, particularly in cardiac regeneration and repair. Ever since the discovery of cardiomyogenesis induction in MSCs, a wide variety of differentiation protocols have been extensively used in preclinical models. However, pre differentiated MSC-derived cardiomyocytes have not been used in clinical trials; highlighting discrepancies and limitations in its use as a source of derived cardiomyocytes for transplantation to improve the damaged heart function. Therefore, this review article focuses on the strategies used to derive cardiomyocytes-like cells from MSCs isolated from three widely used tissue sources and their differentiation efficiencies. We have further discussed the role of MSCs in inducing angiogenesis as a cellular precursor to endothelial cells and its secretory aspects including exosomes. We have then discussed the strategies used for delivering cells in the damaged heart and how its retention plays a critical role in the overall outcome of the therapy. We have also conversed about the scope of the local and systemic modes of delivery of MSCs and the application of biomaterials to improve the overall delivery efficacy and function. We have finally discussed the advantages and limitations of cell delivery to the heart and the future scope of MSCs in cardiac regenerative therapy.
Collapse
|