1
|
Rossi E, Marenna S, Castoldi V, Comi G, Leocani L. Transcranial direct current stimulation as a potential remyelinating therapy: Visual evoked potentials recovery in cuprizone demyelination. Exp Neurol 2024; 382:114972. [PMID: 39326818 DOI: 10.1016/j.expneurol.2024.114972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
AIMS Non-invasive neuromodulation by transcranial direct current stimulation (tDCS), owing to its reported beneficial effects on neuronal plasticity, has been proposed as a treatment to promote functional recovery in several neurological conditions, including demyelinating diseases like multiple sclerosis. Less information is available on the effects of tDCS in major pathological mechanisms of multiple sclerosis, such as demyelination and inflammation. To learn more about the latter effects, we applied multi-session anodal tDCS in mice exposed to long-term cuprizone (CPZ) diet, known to induce chronic demyelination. METHODS Visual evoked potentials (VEP) and motor performance (beam test) were employed for longitudinal monitoring of visual and motor pathways in 28 mice undergoing CPZ diet, compared with 12 control (H) mice. After randomization, anodal tDCS was applied for 5 days in awake, freely-moving surviving animals: 12 CPZ-anodal, 10 CPZ-sham, 5H-anodal, 5 h-sham. At the end of the experiment, histological analysis was performed on the optic nerves and corpus callosum for myelin, axons and microglia/macrophages. KEY FINDINGS CPZ diet was associated with significantly delayed VEPs starting at 4 weeks compared with their baseline, significant compared with controls at 8 weeks. After 5-day tDCS, VEPs latency significantly recovered in the active group compared with the sham group. Similar findings were observed in the time to cross on the beam test Optic nerve histology revealed higher myelin content and lower microglia/macrophage counts in the CPZ-Anodal group compared with CPZ-Sham. SIGNIFICANCE Multiple sessions of anodal transcranial direct current stimulation (tDCS) in freely moving mice induced recovery of visual nervous conduction and significant beneficial effects in myelin content and inflammatory cells in the cuprizone model of demyelination. Altogether, these promising findings prompt further exploration of tDCS as a potential therapeutic approach for remyelination.
Collapse
Affiliation(s)
- Elena Rossi
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Silvia Marenna
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Valerio Castoldi
- IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy
| | - Giancarlo Comi
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; Casa di Cura Igea Department of Neurorehabilitation Sciences, Milan, Italy
| | - Letizia Leocani
- Università Vita-Salute San Raffaele, via Olgettina 58, 20132 Milan, Italy; IRCCS-San Raffaele Scientific Institute, Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), via Olgettina 60, 20132 Milan, Italy.; Casa di Cura Igea Department of Neurorehabilitation Sciences, Milan, Italy.
| |
Collapse
|
2
|
Huang J, Bao C, Yang C, Qu Y. Dual-tDCS Ameliorates Cerebral Injury and Promotes Motor Function Recovery via cGAS-STING Signaling Pathway in a Rat Model of Ischemic Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04574-x. [PMID: 39455539 DOI: 10.1007/s12035-024-04574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Dual transcranial direct current stimulation (dual-tDCS) is a promising intervention to treat ischemic stroke, but its efficacy and underlying mechanism remain to be verified. Cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway has recently emerged as a key mediator in cerebral injury. However, little is known about the effect of cGAS-STING on neuronal damage in ischemic stroke, and it remains to be studied whether the cGAS-STING pathway is involved in tDCS intervention for ischemic stroke. Therefore, we aimed to investigate whether dual-tDCS can alleviate ischemic brain injury in a rat model of ischemic stroke and if so, whether via cGAS-STING pathway. Middle cerebral artery occlusion (MCAO) was employed to induce a rat model of ischemic stroke. Male SD rats weighing 250-280 g were randomly assigned to the Sham, MCAO, Dual-tDCS, Dual-tDCS + RU.521, and Dual-tDCS + 2'3'-cGAMP groups, with 10 rats in each group completing the experiment. Behavioral, morphological, MRI, and molecular biological methods were performed. We found that the cGAS-STING pathway was activated and expressed in neurons after MCAO. Dual-tDCS improved motor function and infarct volume, inhibited neuronal apoptosis, promoted the expression of neurotrophins (BDNF and NGF), CD31, and VEGF, and suppressed inflammation reaction after MCAO via the cGAS-STING pathway. Taken together, dual-tDCS may improve MCAO-induced brain injury and promote the recovery of motor function, resulting from the inhibition of neuronal apoptosis and inflammation reaction, as well as promotion of the expression of nerve plasticity- and angiogenesis-related proteins, via cGAS-STING pathway.
Collapse
Affiliation(s)
- Jiapeng Huang
- Clinical Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuncha Bao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chunlan Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Tam PK, Oey NE, Tang N, Ramamurthy G, Chew E. Facilitating Corticomotor Excitability of the Contralesional Hemisphere Using Non-Invasive Brain Stimulation to Improve Upper Limb Motor Recovery from Stroke-A Scoping Review. J Clin Med 2024; 13:4420. [PMID: 39124687 PMCID: PMC11313572 DOI: 10.3390/jcm13154420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Upper limb weakness following stroke poses a significant global psychosocial and economic burden. Non-invasive brain stimulation (NIBS) is a potential adjunctive treatment in rehabilitation. However, traditional approaches to rebalance interhemispheric inhibition may not be effective for all patients. The supportive role of the contralesional hemisphere in recovery of upper limb motor function has been supported by animal and clinical studies, particularly for those with severe strokes. This review aims to provide an overview of the facilitation role of the contralesional hemisphere for post-stroke motor recovery. While more studies are required to predict responses and inform the choice of NIBS approach, contralesional facilitation may offer new hope for patients in whom traditional rehabilitation and NIBS approaches have failed.
Collapse
Affiliation(s)
- Pui Kit Tam
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Nicodemus Edrick Oey
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| | - Ning Tang
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
| | - Guhan Ramamurthy
- BG Institute of Neurosciences, BG Hospital, Tiruchendur, Tuticorin 628216, Tamil Nadu, India;
| | - Effie Chew
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, Singapore 119228, Singapore; (P.K.T.); (N.E.O.); (N.T.)
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore
| |
Collapse
|
4
|
Markowska A, Tarnacka B. Molecular Changes in the Ischemic Brain as Non-Invasive Brain Stimulation Targets-TMS and tDCS Mechanisms, Therapeutic Challenges, and Combination Therapies. Biomedicines 2024; 12:1560. [PMID: 39062133 PMCID: PMC11274560 DOI: 10.3390/biomedicines12071560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability. As the currently used neurorehabilitation methods present several limitations, the ongoing research focuses on the use of non-invasive brain stimulation (NIBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). NIBS methods were demonstrated to modulate neural excitability and improve motor and cognitive functioning in neurodegenerative diseases. However, their mechanisms of action are not fully elucidated, and the clinical outcomes are often unpredictable. This review explores the molecular processes underlying the effects of TMS and tDCS in stroke rehabilitation, including oxidative stress reduction, cell death, stimulation of neurogenesis, and neuroprotective phenotypes of glial cells. A highlight is put on the newly emerging therapeutic targets, such as ferroptotic and pyroptotic pathways. In addition, the issue of interindividual variability is discussed, and the role of neuroimaging techniques is investigated to get closer to personalized medicine. Furthermore, translational challenges of NIBS techniques are analyzed, and limitations of current clinical trials are investigated. The paper concludes with suggestions for further neurorehabilitation stroke treatment, putting the focus on combination and personalized therapies, as well as novel protocols of brain stimulation techniques.
Collapse
Affiliation(s)
- Aleksandra Markowska
- Department of Rehabilitation Medicine, Faculty of Medicine, Warsaw Medical University, Spartańska 1, 02-637 Warsaw, Poland;
| | | |
Collapse
|
5
|
Lee H, Lee J, Jung D, Oh H, Shin H, Choi B. Neuroprotection of Transcranial Cortical and Peripheral Somatosensory Electrical Stimulation by Modulating a Common Neuronal Death Pathway in Mice with Ischemic Stroke. Int J Mol Sci 2024; 25:7546. [PMID: 39062789 PMCID: PMC11277498 DOI: 10.3390/ijms25147546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Therapeutic electrical stimulation, such as transcranial cortical stimulation and peripheral somatosensory stimulation, is used to improve motor function in patients with stroke. We hypothesized that these stimulations exert neuroprotective effects during the subacute phase of ischemic stroke by regulating novel common signaling pathways. Male C57BL/6J mouse models of ischemic stroke were treated with high-definition (HD)-transcranial alternating current stimulation (tACS; 20 Hz, 89.1 A/mm2), HD-transcranial direct current stimulation (tDCS; intensity, 55 A/mm2; charge density, 66,000 C/m2), or electroacupuncture (EA, 2 Hz, 1 mA) in the early stages of stroke. The therapeutic effects were assessed using behavioral motor function tests. The underlying mechanisms were determined using transcriptomic and other biomedical analyses. All therapeutic electrical tools alleviated the motor dysfunction caused by ischemic stroke insults. We focused on electrically stimulating common genes involved in apoptosis and cell death using transcriptome analysis and chose 11 of the most potent targets (Trem2, S100a9, Lgals3, Tlr4, Myd88, NF-kB, STAT1, IL-6, IL-1β, TNF-α, and Iba1). Subsequent investigations revealed that electrical stimulation modulated inflammatory cytokines, including IL-1β and TNF-α, by regulating STAT1 and NF-kB activation, especially in amoeboid microglia; moreover, electrical stimulation enhanced neuronal survival by activating neurotrophic factors, including BDNF and FGF9. Therapeutic electrical stimulation applied to the transcranial cortical- or periphery-nerve level to promote functional recovery may improve neuroprotection by modulating a common neuronal death pathway and upregulating neurotrophic factors. Therefore, combining transcranial cortical and peripheral somatosensory stimulation may exert a synergistic neuroprotective effect, further enhancing the beneficial effects on motor deficits in patients with ischemic stroke.
Collapse
Affiliation(s)
- Hongju Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
| | - Juyeon Lee
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Dahee Jung
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Harim Oh
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hwakyoung Shin
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| | - Byungtae Choi
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (H.L.); (J.L.); (D.J.); (H.O.); (H.S.)
- Graduate Training Program of Korean Medical Therapeutics for Healthy Aging, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Takahashi MTC, Balardin JB, Bazán PR, Boasquevisque DDS, Amaro E, Conforto AB. Effect of transcranial direct current stimulation in the initial weeks post-stroke: a pilot randomized study. EINSTEIN-SAO PAULO 2024; 22:eAO0450. [PMID: 38922218 PMCID: PMC11196089 DOI: 10.31744/einstein_journal/2024ao0450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 09/18/2023] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVE This study aimed at assessing the alterations in upper limb motor impairment and connectivity between motor areas following the post-stroke delivery of cathodal transcranial direct current stimulation sessions. METHODS Modifications in the Fugl-Meyer Assessment scores, connectivity between the primary motor cortex of the unaffected and affected hemispheres, and between the primary motor and premotor cortices of the unaffected hemisphere were compared prior to and following six sessions of cathodal transcranial direct current stimulation application in 13 patients (active = 6; sham = 7); this modality targets the primary motor cortex of the unaffected hemisphere early after a stroke. RESULTS Clinically relevant distinctions in Fugl-Meyer Assessment scores (≥9 points) were observed more frequently in the Sham Group than in the Active Group. Between-group differences in the alterations in Fugl-Meyer Assessment scores were not statistically significant (Mann-Whitney test, p=0.133). ROI-to-ROI correlations between the primary motor cortices of the affected and unaffected hemispheres post-therapeutically increased in 5/6 and 2/7 participants in the Active and Sham Groups, respectively. Between-group differences in modifications in connectivity between the aforementioned areas were not statistically significant. Motor performance enhancements were more frequent in the Sham Group compared to the Active Group. CONCLUSION The results of this hypothesis-generating investigation suggest that heightened connectivity may not translate into early clinical benefits following a stroke and will be crucial in designing larger cohort studies to explore mechanisms underlying the impacts of this intervention. ClinicalTrials.gov Identifier: NCT02455427.
Collapse
Affiliation(s)
- Marcela Tengler Carvalho Takahashi
- Hospital Municipal da Vila Santa Catarina Dr. Gilson Cássia Marques de CarvalhoHospital Israelita Albert EinsteinSão PauloSPBrazilHospital Municipal da Vila Santa Catarina Dr. Gilson Cássia Marques de Carvalho ; Hospital Israelita Albert Einstein,São Paulo, SP, Brazil.
| | - Joana Bisol Balardin
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Paulo Rodrigo Bazán
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Danielle de Sá Boasquevisque
- Division of NeurologyPopulation Health Research InstitutMcMaster UniversityHamiltonOntarioCanada Division of Neurology, Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| | - Edson Amaro
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| | - Adriana Bastos Conforto
- Hospital Israelita Albert EinsteinSão PauloSPBrazil Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
7
|
Pinho TS, Cibrão JR, Silva D, Barata-Antunes S, Campos J, Afonso JL, Sampaio-Marques B, Ribeiro C, Macedo AS, Martins P, Cunha CB, Lanceros-Mendez S, Salgado AJ. In vitro neuronal and glial response to magnetically stimulated piezoelectric poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV)/cobalt ferrite (CFO) microspheres. BIOMATERIALS ADVANCES 2024; 159:213798. [PMID: 38364446 DOI: 10.1016/j.bioadv.2024.213798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Polymer biomaterials are being considered for tissue regeneration due to the possibility of resembling different extracellular matrix characteristics. However, most current scaffolds cannot respond to physical-chemical modifications of the cell microenvironment. Stimuli-responsive materials, such as electroactive smart polymers, are increasingly gaining attention once they can produce electrical potentials without external power supplies. The presence of piezoelectricity in human tissues like cartilage and bone highlights the importance of electrical stimulation in physiological conditions. Although poly(vinylidene fluoride) (PVDF) is one of the piezoelectric polymers with the highest piezoelectric response, it is not biodegradable. Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a promising copolymer of poly(hydroxybutyrate) (PHB) for tissue engineering and regeneration applications. It offers biodegradability, piezoelectric properties, biocompatibility, and bioactivity, making it a superior option to PVDF for biomedical purposes requiring biodegradability. Magnetoelectric polymer composites can be made by combining magnetostrictive particles and piezoelectric polymers to further tune their properties for tissue regeneration. These composites convert magnetic stimuli into electrical stimuli, generating local electrical potentials for various applications. Cobalt ferrites (CFO) and piezoelectric polymers have been combined and processed into different morphologies, maintaining biocompatibility for tissue engineering. The present work studied how PHBV/CFO microspheres affected neural and glial response in spinal cord cultures. It is expected that the electrical signals generated by these microspheres due to their magnetoelectric nature could aid in tissue regeneration and repair. PHBV/CFO microspheres were not cytotoxic and were able to impact neurite outgrowth and promote neuronal differentiation. Furthermore, PHBV/CFO microspheres led to microglia activation and induced the release of several bioactive molecules. Importantly, magnetically stimulated microspheres ameliorated cell viability after an in vitro ROS-induced lesion of spinal cord cultures, which suggests a beneficial effect on tissue regeneration and repair.
Collapse
Affiliation(s)
- Tiffany S Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Jorge Ribeiro Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Deolinda Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal; Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - João L Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Belém Sampaio-Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - André S Macedo
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Pedro Martins
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal
| | - Cristiana B Cunha
- Stemmatters, Biotecnologia e Medicina Regenerativa SA, 4805-017 Guimarães, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-058 Braga, Portugal; LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal.
| |
Collapse
|
8
|
Hu W, Kong X, Cui Y, Wang H, Gao J, Wang X, Chen S, Li X, Li S, Che F, Wan Q. Surfeit Locus Protein 4 as a Novel Target for Therapeutic Intervention in Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2024; 61:2033-2048. [PMID: 37843800 DOI: 10.1007/s12035-023-03687-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/01/2023] [Indexed: 10/17/2023]
Abstract
Surfeit locus protein 4 (SURF4) functions as a cargo receptor that is capable of transporting newly formed proteins from the lumen of the endoplasmic reticulum into vesicles and Golgi bodies. However, the role of SURF4 in the central nervous system remains unclear. The aim of this study is to investigate the role of SURF4 and its underlying mechanisms in cerebral ischemia/reperfusion (I/R) injury in rats, and whether it can be used effectively for novel therapeutic intervention. We also examined whether transcranial direct-current stimulation (tDCS) can exert a neuroprotective effect via SURF4-dependent signalling. Following cerebral I/R injury in rats, a significant increase was observed in the expression of SURF4. In both I/R injury and oxygen-glucose deprivation (OGD) insult, suppressing the expression of SURF4 demonstrated a neuroprotective effect, while overexpression of SURF4 resulted in increased neuronal death. We further showed that the levels of nerve growth factor precursor (proNGF), p75 neurotrophin receptor (p75NTR), sortilin, and PTEN were increased following cerebral I/R injury, and that SURF4 acted through the PTEN/proNGF signal pathway to regulate neuronal viability. We demonstrated that tDCS treatment reduced SURF4 expression and decreased the infarct volume after cerebral I/R injury. Together, this study indicates that SURF4 plays a critical role in ischemic neuronal injury and may serve as a molecular target for the development of therapeutic strategies in acute ischemic stroke.
Collapse
Affiliation(s)
- Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
- Department of Biological Science, Jining Medical University, Rizhao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiyuran Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shujun Chen
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Shifang Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, 27 East Jiefang Road, Linyi, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, School of Basic Medicine, Qingdao University, 308 Ningxia Street, Qingdao, China.
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao High-tech Industrial Development District, 7 Fenglong Road, Qingdao, China.
| |
Collapse
|
9
|
Huang XL, Wu MY, Wu CC, Yan LC, He MH, Chen YC, Tsai ST. Neuromodulation techniques in poststroke motor impairment recovery: Efficacy, challenges, and future directions. Tzu Chi Med J 2024; 36:136-141. [PMID: 38645790 PMCID: PMC11025597 DOI: 10.4103/tcmj.tcmj_247_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/16/2023] [Accepted: 12/19/2023] [Indexed: 04/23/2024] Open
Abstract
Cerebrovascular accidents, also known as strokes, represent a major global public health challenge and contribute to substantial mortality, disability, and socioeconomic burden. Multidisciplinary approaches for poststroke therapies are crucial for recovering lost functions and adapting to new limitations. This review discusses the potential of neuromodulation techniques, repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation, spinal cord stimulation (SCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), as innovative strategies for facilitating poststroke recovery. Neuromodulation is an emerging adjunct to conventional therapies that target neural plasticity to restore lost function and compensate for damaged brain areas. The techniques discussed in this review have different efficacies in enhancing neural plasticity, optimizing motor recovery, and mitigating poststroke impairments. Specifically, rTMS has shown significant promise in enhancing motor function, whereas SCS has shown potential in improving limb movement and reducing disability. Similarly, VNS, typically used to treat epilepsy, has shown promise in enhancing poststroke motor recovery, while DBS may be used to improve poststroke motor recovery and symptom mitigation. Further studies with standardized protocols are warranted to elucidate the efficacy of these methods and integrate them into mainstream clinical practice to optimize poststroke care.
Collapse
Affiliation(s)
- Xiang-Ling Huang
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ming-Yung Wu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ciou-Chan Wu
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Lian-Cing Yan
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Mei-Huei He
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Chen Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Medical Informatics, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Tzung Tsai
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
10
|
Marino N, Bedeschi M, Vaccari ME, Cambiaghi M, Tesei A. Glitches in the brain: the dangerous relationship between radiotherapy and brain fog. Front Cell Neurosci 2024; 18:1328361. [PMID: 38515789 PMCID: PMC10956129 DOI: 10.3389/fncel.2024.1328361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Up to approximately 70% of cancer survivors report persistent deficits in memory, attention, speed of information processing, multi-tasking, and mental health functioning, a series of symptoms known as "brain fog." The severity and duration of such effects can vary depending on age, cancer type, and treatment regimens. In particular, every year, hundreds of thousands of patients worldwide undergo radiotherapy (RT) for primary brain tumors and brain metastases originating from extracranial tumors. Besides its potential benefits in the control of tumor progression, recent studies indicate that RT reprograms the brain tumor microenvironment inducing increased activation of microglia and astrocytes and a consequent general condition of neuroinflammation that in case it becomes chronic could lead to a cognitive decline. Furthermore, radiation can induce endothelium reticulum (ER) stress directly or indirectly by generating reactive oxygen species (ROS) activating compensatory survival signaling pathways in the RT-surviving fraction of healthy neuronal and glial cells. In particular, the anomalous accumulation of misfolding proteins in neuronal cells exposed to radiation as a consequence of excessive activation of unfolded protein response (UPR) could pave the way to neurodegenerative disorders. Moreover, exposure of cells to ionizing radiation was also shown to affect the normal proteasome activity, slowing the degradation rate of misfolded proteins, and further exacerbating ER-stress conditions. This compromises several neuronal functions, with neuronal accumulation of ubiquitinated proteins with a consequent switch from proteasome to immunoproteasome that increases neuroinflammation, a crucial risk factor for neurodegeneration. The etiology of brain fog remains elusive and can arise not only during treatment but can also persist for an extended period after the end of RT. In this review, we will focus on the molecular pathways triggered by radiation therapy affecting cognitive functions and potentially at the origin of so-called "brain fog" symptomatology, with the aim to define novel therapeutic strategies to preserve healthy brain tissue from cognitive decline.
Collapse
Affiliation(s)
- Noemi Marino
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Martina Bedeschi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Melania Elettra Vaccari
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Marco Cambiaghi
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Tesei
- Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| |
Collapse
|
11
|
Wang H, Ma W, Hu W, Li X, Shen N, Li Z, Kong X, Lin T, Gao J, Zhu T, Che F, Chen J, Wan Q. Cathodal bilateral transcranial direct-current stimulation regulates selenium to confer neuroprotection after rat cerebral ischaemia-reperfusion injury. J Physiol 2024; 602:1175-1197. [PMID: 38431908 DOI: 10.1113/jp285806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Non-invasive transcranial direct-current stimulation (tDCS) is a safe ischaemic stroke therapy. Cathodal bilateral tDCS (BtDCS) is a modified tDCS approach established by us recently. Because selenium (Se) plays a crucial role in cerebral ischaemic injury, we investigated whether cathodal BtDCS conferred neuroprotection via regulating Se-dependent signalling in rat cerebral ischaemia-reperfusion (I/R) injury. We first showed that the levels of Se and its transport protein selenoprotein P (SEPP1) were reduced in the rat cortical penumbra following I/R, whereas cathodal BtDCS prevented the reduction of Se and SEPP1. Interestingly, direct-current stimulation (DCS) increased SEPP1 level in cultured astrocytes subjected to oxygen-glucose deprivation reoxygenation (OGD/R) but had no effect on SEPP1 level in OGD/R-insulted neurons, indicating that DCS may increase Se in ischaemic neurons by enhancing the synthesis and secretion of SEPP1 in astrocytes. We then revealed that DCS reduced the number of injured mitochondria in OGD/R-insulted neurons cocultured with astrocytes. DCS and BtDCS prevented the reduction of the mitochondrial quality-control signalling, vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4), in OGD/R-insulted neurons cocultured with astrocytes and the ischaemic brain respectively. Under the same experimental conditions, downregulation of SEPP1 blocked DCS- and BtDCS-induced upregulation of VAMP2 and STX4. Finally, we demonstrated that cathodal BtDCS increased Se to reduce infract volume following I/R. Together, the present study uncovered a molecular mechanism by which cathodal BtDCS confers neuroprotection through increasing SEPP1 in astrocytes and subsequent upregulation of SEPP1/VAMP2/STX4 signalling in ischaemic neurons after rat cerebral I/R injury. KEY POINTS: Cathodal bilateral transcranial direct-current stimulation (BtDCS) prevents the reduction of selenium (Se) and selenoprotein P in the ischaemic penumbra. Se plays a crucial role in cerebral ischaemia injury. Direct-current stimulation reduces mitochondria injury and blocks the reduction of vesicle-associated membrane protein 2 (VAMP2) and syntaxin-4 (STX4) in oxygen-glucose deprivation reoxygenation-insulted neurons following coculturing with astrocytes. Cathodal BtDCS regulates Se/VAMP2/STX4 signalling to confer neuroprotection after ischaemia.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Na Shen
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Zhuo Li
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Tao Lin
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, Linyi, Shandong, China
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, School of Basic Medicine, Qingdao University, Qingdao, China
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao, China
| |
Collapse
|
12
|
Fritsch B, Mayer M, Reis J, Gellner AK. Safety of ipsilesional anodal transcranial direct current stimulation in acute photothrombotic stroke: implications for early neurorehabilitation. Sci Rep 2024; 14:2501. [PMID: 38291061 PMCID: PMC10827716 DOI: 10.1038/s41598-024-51839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
Early rehabilitation in the acute phase of stroke, that bears unique neuroplastic properties, is the current standard to reduce disability. Anodal transcranial direct current stimulation can augment neurorehabilitation in chronic stroke. Studies in the acute phase are sparse and held back by inconclusive preclinical data pointing towards potential negative interaction of the excitability increasing tDCS modality with stroke-induced glutamate toxicity. In this present study, we aimed to evaluate structural and behavioral safety of anodal tDCS applied in the acute phase of stroke. Photothrombotic stroke including the right primary motor cortex was induced in rats. 24 h after stroke anodal tDCS was applied for 20 min ipsilesionally at one of four different current densities in freely moving animals. Effects on the infarct volume and on stroke induced neuroinflammation were assessed. Behavioral consequences were monitored. Infarct volume and the modified Neurological Severity Score were not affected by anodal tDCS. Pasta handling, a more sensitive task for sensorimotor deficits, and microglia reactivity indicated potentially harmful effects at the highest tDCS current density tested (47.8 A/m2), which is more than 60 times higher than intensities commonly used in humans. Compared to published safety limits of anodal tDCS in healthy rats, recent stroke does not increase the sensitivity of the brain to anodal tDCS, as assessed by lesion size and neuroinflammatory response. Behavioral deficits only occurred at the highest intensity, which was associated with increased neuroinflammation. When safety limits of commonly used clinical tDCS are met, augmentation of early neurorehabilitation after stroke by anodal tDCS appears to be feasible.
Collapse
Affiliation(s)
- Brita Fritsch
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Marleen Mayer
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Janine Reis
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany
| | - Anne-Kathrin Gellner
- Department of Neurology, University Hospital Freiburg, Breisacher Str. 64, 79106, Freiburg, Germany.
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
13
|
Rodríguez A, Amaya-Pascasio L, Gutiérrez-Fernández M, García-Pinteño J, Moreno M, Martínez-Sánchez P. Non-invasive brain stimulation for functional recovery in animal models of stroke: A systematic review. Neurosci Biobehav Rev 2024; 156:105485. [PMID: 38042359 DOI: 10.1016/j.neubiorev.2023.105485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Motor and cognitive dysfunction occur frequently after stroke, severely affecting a patient´s quality of life. Recently, non-invasive brain stimulation (NIBS) has emerged as a promising treatment option for improving stroke recovery. In this context, animal models are needed to improve the therapeutic use of NIBS after stroke. A systematic review was conducted based on the PRISMA statement. Data from 26 studies comprising rodent models of ischemic stroke treated with different NIBS techniques were included. The SYRCLE tool was used to assess study bias. The results suggest that both repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) improved overall neurological, motor, and cognitive functions and reduced infarct size both in the short- and long-term. For tDCS, it was observed that either ipsilesional inhibition or contralesional stimulation consistently led to functional recovery. Additionally, the application of early tDCS appeared to be more effective than late stimulation, and tDCS may be slightly superior to rTMS. The optimal stimulation protocol and the ideal time window for intervention remain unresolved. Future directions are discussed for improving study quality and increasing their translational potential.
Collapse
Affiliation(s)
- Antonio Rodríguez
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Laura Amaya-Pascasio
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - María Gutiérrez-Fernández
- Neurological Sciences and Cerebrovascular Research Laboratory, Department of Neurology and Stroke Center, Neurology and Cerebrovascular Disease Group, Neuroscience Area of Hospital La Paz Institute for Health Research - IdiPAZ (La Paz University Hospital, Universidad Autónoma de Madrid), Madrid, Spain
| | - José García-Pinteño
- Fundación para la Investigación Biosanitaria de Andalucía Oriental (FIBAO), Torrecárdenas University Hospital, Almería, Spain; Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain
| | - Margarita Moreno
- Department of Psychology, Faculty of Health Science, University of Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain.
| | - Patricia Martínez-Sánchez
- Stroke Unit, Department of Neurology, Torrecárdenas University Hospital, Almería, Spain; Health Research Center (CEINSA), University of Almería, Spain; Department of Nursing, Physiotherapy and Medicine, Faculty of Health Science, University of Almería, Spain.
| |
Collapse
|
14
|
Zhou J, Khateeb K, Yazdan-Shahmorad A. Early Intervention with Electrical Stimulation Reduces Neural Damage After Stroke in Non-human Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572235. [PMID: 38187669 PMCID: PMC10769281 DOI: 10.1101/2023.12.18.572235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ischemic stroke is a neurological condition that results in significant mortality and long-term disability for adults, creating huge health burdens worldwide. For stroke patients, acute intervention offers the most critical therapeutic opportunity as it can reduce irreversible tissue injury and improve functional outcomes. However, currently available treatments within the acute window are highly limited. Although emerging neuromodulation therapies have been tested for chronic stroke patients, acute stimulation is rarely studied due to the risk of causing adverse effects related to ischemia-induced electrical instability. To address this gap, we combined electrophysiology and histology tools to investigate the effects of acute electrical stimulation on ischemic neural damage in non-human primates. Specifically, we induced photothrombotic lesions in the monkey sensorimotor cortex while collecting electrocorticography (ECoG) signals through a customized neural interface. Gamma activity in ECoG was used as an electrophysiological marker to track the effects of stimulation on neural activation. Meanwhile, histological analysis including Nissl, cFos, and microglial staining was performed to evaluate the tissue response to ischemic injury. Comparing stimulated monkeys to controls, we found that theta-burst stimulation administered directly adjacent to the ischemic infarct at 1 hour post-stroke briefly inhibits peri-infarct neuronal activation as reflected by decreased ECoG gamma power and cFos expression. Meanwhile, lower microglial activation and smaller lesion volumes were observed in animals receiving post-stroke stimulation. Together, these results suggest that acute electrical stimulation can be used safely and effectively as an early stroke intervention to reduce excitotoxicity and inflammation, thus mitigating neural damage and enhancing stroke outcomes.
Collapse
Affiliation(s)
- Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
| | - Karam Khateeb
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, 98195
- Washington National Primate Research Center, Seattle, WA, 98195
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, 98195
| |
Collapse
|
15
|
Aurelian S, Ciobanu A, Cărare R, Stoica SI, Anghelescu A, Ciobanu V, Onose G, Munteanu C, Popescu C, Andone I, Spînu A, Firan C, Cazacu IS, Trandafir AI, Băilă M, Postoiu RL, Zamfirescu A. Topical Cellular/Tissue and Molecular Aspects Regarding Nonpharmacological Interventions in Alzheimer's Disease-A Systematic Review. Int J Mol Sci 2023; 24:16533. [PMID: 38003723 PMCID: PMC10671501 DOI: 10.3390/ijms242216533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most complex and challenging developments at the beginning of the third millennium is the alarming increase in demographic aging, mainly-but not exclusively-affecting developed countries. This reality results in one of the harsh medical, social, and economic consequences: the continuously increasing number of people with dementia, including Alzheimer's disease (AD), which accounts for up to 80% of all such types of pathology. Its large and progressive disabling potential, which eventually leads to death, therefore represents an important public health matter, especially because there is no known cure for this disease. Consequently, periodic reappraisals of different therapeutic possibilities are necessary. For this purpose, we conducted this systematic literature review investigating nonpharmacological interventions for AD, including their currently known cellular and molecular action bases. This endeavor was based on the PRISMA method, by which we selected 116 eligible articles published during the last year. Because of the unfortunate lack of effective treatments for AD, it is necessary to enhance efforts toward identifying and improving various therapeutic and rehabilitative approaches, as well as related prophylactic measures.
Collapse
Affiliation(s)
- Sorina Aurelian
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Gerontology and Geriatrics Clinic Division, St. Luca Hospital for Chronic Illnesses, 041915 Bucharest, Romania
| | - Adela Ciobanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania
| | - Roxana Cărare
- Faculty of Medicine, University of Southampton, Southampton SO16 7NS, UK;
| | - Simona-Isabelle Stoica
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Aurelian Anghelescu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Midwifery and Nursing, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Vlad Ciobanu
- Computer Science Department, Politehnica University of Bucharest, 060042 Bucharest, Romania;
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Constantin Munteanu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
- Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania
| | - Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Carmen Firan
- NeuroRehabilitation Compartment, The Physical and Rehabilitation Medicine & Balneology Clinic Division, Teaching Emergency Hospital of the Ilfov County, 022104 Bucharest, Romania;
| | - Ioana Simona Cazacu
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Andreea-Iulia Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- NeuroRehabilitation Clinic Division, Teaching Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (S.-I.S.); (A.A.); (I.S.C.)
| | - Andreea Zamfirescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (S.A.); (A.C.); (C.P.); (I.A.); (A.S.); (A.-I.T.); (M.B.); (R.-L.P.); (A.Z.)
- Gerontology and Geriatrics Clinic Division, St. Luca Hospital for Chronic Illnesses, 041915 Bucharest, Romania
| |
Collapse
|
16
|
Yamada Y, Sumiyoshi T. Preclinical Evidence for the Mechanisms of Transcranial Direct Current Stimulation in the Treatment of Psychiatric Disorders; A Systematic Review. Clin EEG Neurosci 2023; 54:601-610. [PMID: 34898301 PMCID: PMC10625720 DOI: 10.1177/15500594211066151] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/15/2022]
Abstract
Backgrounds. Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique for the treatment of several psychiatric disorders, eg, mood disorders and schizophrenia. Although tDCS provides a promising approach, its neurobiological mechanisms remain to be explored. Objectives. To provide a systematic review of animal studies, and consider how tDCS ameliorates psychiatric conditions. Methods. A literature search was conducted on English articles identified by PubMed. We defined the inclusion criteria as follows: (1) articles published from the original data; (2) experimental studies in animals; (3) studies delivering direct current transcranially, ie, positioning electrodes onto the skull. Results. 138 papers met the inclusion criteria. 62 papers deal with model animals without any dysfunctions, followed by 52 papers for neurological disorder models, and 12 for psychiatric disorder models. The most studied category of functional areas is neurocognition, followed by motor functions and pain. These studies overall suggest the role for the late long-term potentiation (LTP) via anodal stimulation in the therapeutic effects of tDCS. Conclusions. tDCS Anodal stimulation may provide a novel therapeutic strategy to particularly enhance neurocognition in psychiatric disorders. Its mechanisms are likely to involve facilitation of the late LTP.
Collapse
Affiliation(s)
- Yuji Yamada
- Department of Psychiatry, National Center Hospital, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tomiki Sumiyoshi
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
17
|
Kong X, Yao X, Ren J, Gao J, Cui Y, Sun J, Xu X, Hu W, Wang H, Li H, Glebov OO, Che F, Wan Q. tDCS Regulates ASBT-3-OxoLCA-PLOD2-PTEN Signaling Pathway to Confer Neuroprotection Following Rat Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2023; 60:6715-6730. [PMID: 37477767 DOI: 10.1007/s12035-023-03504-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Humans exhibit a rich intestinal microbiome that contain high levels of bacteria capable of producing 3-oxo-lithocholic acid (3-oxoLCA) and other secondary bile acids (BAs). The molecular mechanism mediating the role of 3-oxoLCA in cerebral ischemia-reperfusion (I/R) injury remains unclear. We investigated the role of 3-oxoLCA in a rat cerebral I/R injury model. We found that the concentrations of 3-oxoLCA within the cerebrospinal fluid were increased following I/R. In the in vitro oxygen-glucose deprivation (OGD) model, the levels of intraneuronal 3-oxoLCA was elevated following OGD insult. We showed that the increase of membrane ASBT (apical sodium-dependent bile acid transporter) contributed to OGD-induced elevation of intraneuronal 3-oxoLCA. Increasing intraneuronal 3-oxoLCA promoted ischemia-induced neuronal death, whereas reducing 3-oxoLCA levels were neuroprotective. Our results revealed that PLOD2 (procollagen-lysine, 2-oxoglutarate 5-dioxygenases 2) functioned upstream of PTEN (the phosphatase and tensin homolog deleted on chromosome 10) and downstream of 3-oxoLCA to promote OGD-induced neuronal injury. We further demonstrated that direct-current stimulation (DCS) decreased the levels of intraneuronal 3-oxoLCA and membrane ASBT in OGD-insulted neurons, while bilateral transcranial DCS (tDCS) reduced brain infarct volume following I/R by inhibiting ASBT. Together, these data suggest that increased expression of ASBT promotes neuronal death via 3-oxoLCA-PLOD2-PTEN signaling pathway. Importantly, bilateral tDCS suppresses ischemia-induced increase of ASBT, thereby conferring neuroprotection after cerebral I/R injury.
Collapse
Affiliation(s)
- Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jiangdong Sun
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Xiangyu Xu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Huanting Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Oleg O Glebov
- Department of Old Age Psychiatry, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, 27 East Jiefang Road, Linyi, Shandong, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
| |
Collapse
|
18
|
Yao X, Kong X, Ren J, Cui Y, Chen S, Cheng J, Gao J, Sun J, Xu X, Hu W, Li H, Che F, Wan Q. Transcranial direct-current stimulation confers neuroprotection by regulating isoleucine-dependent signalling after rat cerebral ischemia-reperfusion injury. Eur J Neurosci 2023; 58:3330-3346. [PMID: 37452630 DOI: 10.1111/ejn.16091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Isoleucine is a branched chain amino acid. The role of isoleucine in cerebral ischemia-reperfusion injury remains unclear. Here, we show that the concentration of isoleucine is decreased in cerebrospinal fluid in a rat model of cerebral ischemia-reperfusion injury, the rat middle cerebral artery occlusion (MCAO). To our surprise, the level of intraneuronal isoleucine is increased in an in vitro model of cerebral ischemia injury, the oxygen-glucose deprivation (OGD). We found that the increased activity of LAT1, an L-type amino acid transporter 1, leads to the elevation of intraneuronal isoleucine after OGD insult. Reducing the level of intraneuronal isoleucine promotes cell survival after cerebral ischemia-reperfusion injury, but supplementing isoleucine aggravates the neuronal damage. To understand how isoleucine promotes ischemia-induced neuronal death, we reveal that isoleucine acts upstream to reduce the expression of CBFB (core binding factor β, a transcript factor involved in cell development and growth) and that the phosphatase PTEN acts downstream of CBFB to mediate isoleucine-induced neuronal damage after OGD insult. Interestingly, we demonstrate that direct-current stimulation reduces the level of intraneuronal isoleucine in cortical cultures subjected to OGD and that transcranial direct-current stimulation (tDCS) decreases the cerebral infarct volume of MCAO rat through reducing LAT1-depencent increase of intraneuronal isoleucine. Together, these results lead us to conclude that LAT1 over activation-dependent isoleucine-CBFB-PTEN signal transduction pathway may mediate ischemic neuronal injury and that tDCS exerts its neuroprotective effect by suppressing LAT1 over activation-dependent signalling after cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Xujin Yao
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Xiangyi Kong
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Jinyang Ren
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Yu Cui
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Songfeng Chen
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jing Cheng
- Department of Physiology, School of Medicine, Wuhan University, Wuhan, China
| | - Jingchen Gao
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Jiangdong Sun
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Xiangyu Xu
- Department of Rehabilitation, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjie Hu
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Huanting Li
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, Linyi, Shandong, China
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, Qingdao University, Qingdao, China
- Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, Qingdao, China
| |
Collapse
|
19
|
Lei R, Wang S, Liu A, Cheng J, Zhang Z, Ren J, Yao X, Kong X, Ma W, Che F, Chen J, Wan Q. Bilateral transcranial direct-current stimulation promotes migration of subventricular zone-derived neuroblasts toward ischemic brain. FASEB Bioadv 2023; 5:277-286. [PMID: 37415929 PMCID: PMC10320846 DOI: 10.1096/fba.2023-00017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 07/08/2023] Open
Abstract
Ischemic insult stimulates proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) after stroke. However, only a fraction of NSC-derived neuroblasts from SVZ migrate toward poststroke brain region. We have previously reported that direct-current stimulation guides NSC migration toward the cathode in vitro. Accordingly, we set up a new method of transcranial direct-current stimulation (tDCS), in which the cathodal electrode is placed on the ischemic hemisphere and anodal electrode on the contralateral hemisphere of rats subjected to ischemia-reperfusion injury. We show that the application of this bilateral tDCS (BtDCS) promotes the migration of NSC-derived neuroblasts from SVZ toward the cathode direction into poststroke striatum. Reversing the position of the electrodes blocks the effect of BtDCS on the migration of neuroblasts from SVZ. BtDCS protects against neuronal death and improves the functional recovery of stroke animals. Thus, the migration of NSC-derived neuroblasts from SVZ toward poststroke brain region contributes to the effect of BtDCS against ischemia-induced neuronal death, supporting a potential development of noninvasive BtDCS as an endogenous neurogenesis-based stroke therapy.
Collapse
Affiliation(s)
- Ruixue Lei
- Department of Pathology, Anyang Tumour HospitalThe Affiliated Anyang Tumor Hospital of Henan University of Science and TechnologyAnyangHenanChina
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Shu Wang
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Anchun Liu
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Jing Cheng
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Zhifeng Zhang
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
| | - Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
| | - Wenlong Ma
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
| | - Fengyuan Che
- Central Laboratory, Department of NeurologyLinyi People's Hospital, Qingdao UniversityLinyiShandongChina
| | - Juan Chen
- Department of Neurology, the Central Hospital of Wuhantongji medical collof Huazhong University of Science & TechnologyWuhanChina
| | - Qi Wan
- Department of Physiology, School of MedicineWuhan UniversityWuhanChina
- Institute of Neuroregeneration & Neurorehabilitation, Department of NeurosurgeryQingdao UniversityQingdaoChina
- Qingdao Gui‐Hong Intelligent Medical Technology Co. LtdQingdaoChina
| |
Collapse
|
20
|
Duan Q, Liu W, Yang J, Huang B, Shen J. Effect of Cathodal Transcranial Direct Current Stimulation for Lower Limb Subacute Stroke Rehabilitation. Neural Plast 2023; 2023:1863686. [PMID: 37274448 PMCID: PMC10239296 DOI: 10.1155/2023/1863686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
Methods A pilot double-blind and randomized clinical trial. Ninety-one subjects with subacute stroke were treated with cathodal/sham stimulation tDCS based on CGR (physiotherapy 40 min/d and occupational therapy 20 min/d) once daily for 20 consecutive working days. Computer-based stratified randomization (1 : 1) was employed by considering age and sex, with concealed assignments in opaque envelopes to ensure no allocation errors after disclosure at the study's end. Patients were evaluated at T0 before treatment, T1 immediately after the posttreatment assessment, and T2 assessment one month after the end of the treatment. The primary outcome index was assessed: lower limb Fugl-Meyer motor score (FMA-LE); secondary endpoints were other gait assessment and relevant stroke scale assessment. Results Patients in the trial group performed significantly better than the control group in all primary outcome indicators assessed posttreatment T1 and at follow-up T2: FMA-LE outcome indicators between the two groups in T1 (P = 0.032; effect size 1.00, 95% CI: 0.00 to 2.00) and FMA-LE outcome indicators between the two groups in T2 (P = 0.010; effect size 2.00, 95% CI: 1.00 to 3.00). Conclusion In the current pilot study, ctDCS plus CGR was an effective treatment modality to improve lower limb motor function with subacute stroke. The effectiveness of cathodal tDCS in poststroke lower limb motor dysfunction is inconclusive. Therefore, a large randomized controlled trial is needed to verify its effectiveness.
Collapse
Affiliation(s)
- Qian Duan
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Wenying Liu
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Jinhui Yang
- Department of Rehabilitation, Shanxi Provincial People's Hospital, Taiyuan 030012, China
| | - Ben Huang
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| | - Jie Shen
- Department of Rehabilitation, The Eighth People's Hospital of Shanghai, Shanghai 200105, China
| |
Collapse
|
21
|
Szczerbowska-Boruchowska M, Piana K, Surowka AD, Czyzycki M, Wrobel P, Szymkowski M, Ziomber-Lisiak A. A combined X-ray fluorescence and infrared microspectroscopy study for new insights into elemental-biomolecular obesity-induced changes in rat brain structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122478. [PMID: 36801735 DOI: 10.1016/j.saa.2023.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/28/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The objective of our research was to determine the brain changes at the molecular and elemental levels typical of early-stage obesity. Therefore a combined approach using Fourier transform infrared micro-spectroscopy (FTIR-MS) and synchrotron radiation induced X-ray fluorescence (SRXRF) was introduced to evaluate some brain macromolecular and elemental parameters in high-calorie diet (HCD)- induced obese rats (OB, n = 6) and in their lean counterparts (L, n = 6). A HCD was found to alter the lipid- and protein- related structure and elemental composition of the certain brain areas important for energy homeostasis. The increased lipid unsaturation in the frontal cortex and ventral tegmental area, the increased fatty acyl chain length in the lateral hypothalamus and substantia nigra as well as the decreased both protein α helix to protein β- sheet ratio and the percentage fraction of β-turns and β-sheets in the nucleus accumbens were revealed in the OB group reflecting obesity-related brain biomolecular aberrations. In addition, the certain brain elements including P, K and Ca were found to differentiate the lean and obese groups at the best extent. We can conclude that HCD-induced obesity triggers lipid- and protein- related structural changes as well as elemental redistribution within various brain structures important for energy homeostasis. In addition, an approach applying combined X-ray and infrared spectroscopy was shown to be a reliable tool for identifying elemental-biomolecular rat brain changes for better understanding the interplay between the chemical and structural processes involved in appetite control.
Collapse
Affiliation(s)
| | - Kaja Piana
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Artur D Surowka
- Elettra-Sincrotrone Trieste SCpA, SS 14, km 163.5, Basovizza, TS 34149 Trieste, Italy
| | - Mateusz Czyzycki
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland; Karlsruhe Institute of Technology, Institute for Photon Science and Synchrotron Radiation, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; International Atomic Energy Agency, Nuclear Science and Instrumentation Laboratory, Friedensstrasse 1, 2444 Seibersdorf, Austria
| | - Pawel Wrobel
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. A. Mickiewicza 30, 30-059 Krakow, Poland
| | - Maciej Szymkowski
- Bialystok University of Technology, Faculty of Computer Science, ul. Wiejska 45A, 15-351 Białystok, Poland
| | - Agata Ziomber-Lisiak
- Chair of Pathophysiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Krakow, Poland
| |
Collapse
|
22
|
Zhou Q, Chen Y, Tang H, Zhang L, Ma Y, Bai D, Kong Y. Transcranial direct current stimulation alleviated ischemic stroke induced injury involving the BDNF-TrkB signaling axis in rats. Heliyon 2023; 9:e14946. [PMID: 37089354 PMCID: PMC10114158 DOI: 10.1016/j.heliyon.2023.e14946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Ischemic stroke causes a complicated sequence of apoptotic cascades leading to neuronal damage and functional impairments. Transcranial direct current stimulation (tDCS) is a non-invasive treatment technique that uses electrodes to deliver weak current to the head. It could influence brain activity and has a crucial role in neuronal survival and plasticity. The current study investigated the neuroprotective effects and potential mechanisms of tDCS by brain-derived neurotrophic factor (BDNF) and its related receptor tropomyosin-receptor kinase B (TrkB) against apoptosis following ischemic injury in vivo. The effect of consecutive treatment with tDCS for seven days on rats after Middle cerebral artery occlusion/reperfusion (MCAO/R) surgery was studied. Western blotting, immunofluorescent staining, TUNEL assay, and electron microscope were conducted seven days after tDCS treatment, and the motor function was assessed at 1, 3, and 7 days. Activities of BDNF-TrkB signaling axis and apoptosis-related proteins were determined in the cerebral cortex. At seven days after tDCS treatment, it increased BDNF levels and promoted the regeneration of axons compared with the MCAO/R group. There was also a reduction in neuronal apoptosis and improved functional deficits. Whereafter, a TrkB receptor inhibitor K252a was administrated to clarify whether the neuroprotection of tDCS is exerted via BDNF-TrkB signaling. The results depicted that K252a application significantly inhibited the neuroprotection impact of tDCS treatment. It was accompanied by a significant downregulation of phosphorylation of TrkB, PI3K, and Akt. Our study investigated the neuroprotective effects of tDCS against ischemic injury. The results indicate that upregulation of BDNF and its critical receptor TrkB, as well as its downstream PI3K/Akt pathway, were involved in the protective effects exerted by tDCS.
Collapse
|
23
|
Qiao C, Liu Z, Qie S. The Implications of Microglial Regulation in Neuroplasticity-Dependent Stroke Recovery. Biomolecules 2023; 13:biom13030571. [PMID: 36979506 PMCID: PMC10046452 DOI: 10.3390/biom13030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Stroke causes varying degrees of neurological deficits, leading to corresponding dysfunctions. There are different therapeutic principles for each stage of pathological development. Neuroprotection is the main treatment in the acute phase, and functional recovery becomes primary in the subacute and chronic phases. Neuroplasticity is considered the basis of functional restoration and neurological rehabilitation after stroke, including the remodeling of dendrites and dendritic spines, axonal sprouting, myelin regeneration, synapse shaping, and neurogenesis. Spatiotemporal development affects the spontaneous rewiring of neural circuits and brain networks. Microglia are resident immune cells in the brain that contribute to homeostasis under physiological conditions. Microglia are activated immediately after stroke, and phenotypic polarization changes and phagocytic function are crucial for regulating focal and global brain inflammation and neurological recovery. We have previously shown that the development of neuroplasticity is spatiotemporally consistent with microglial activation, suggesting that microglia may have a profound impact on neuroplasticity after stroke and may be a key therapeutic target for post-stroke rehabilitation. In this review, we explore the impact of neuroplasticity on post-stroke restoration as well as the functions and mechanisms of microglial activation, polarization, and phagocytosis. This is followed by a summary of microglia-targeted rehabilitative interventions that influence neuroplasticity and promote stroke recovery.
Collapse
Affiliation(s)
- Chenye Qiao
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zongjian Liu
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Shuyan Qie
- Department of Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| |
Collapse
|
24
|
Dorrian RM, Berryman CF, Lauto A, Leonard AV. Electrical stimulation for the treatment of spinal cord injuries: A review of the cellular and molecular mechanisms that drive functional improvements. Front Cell Neurosci 2023; 17:1095259. [PMID: 36816852 PMCID: PMC9936196 DOI: 10.3389/fncel.2023.1095259] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating condition that causes severe loss of motor, sensory and autonomic functions. Additionally, many individuals experience chronic neuropathic pain that is often refractory to interventions. While treatment options to improve outcomes for individuals with SCI remain limited, significant research efforts in the field of electrical stimulation have made promising advancements. Epidural electrical stimulation, peripheral nerve stimulation, and functional electrical stimulation have shown promising improvements for individuals with SCI, ranging from complete weight-bearing locomotion to the recovery of sexual function. Despite this, there is a paucity of mechanistic understanding, limiting our ability to optimize stimulation devices and parameters, or utilize combinatorial treatments to maximize efficacy. This review provides a background into SCI pathophysiology and electrical stimulation methods, before exploring cellular and molecular mechanisms suggested in the literature. We highlight several key mechanisms that contribute to functional improvements from electrical stimulation, identify gaps in current knowledge and highlight potential research avenues for future studies.
Collapse
Affiliation(s)
- Ryan M. Dorrian
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia,*Correspondence: Ryan M. Dorrian,
| | | | - Antonio Lauto
- School of Science, Western Sydney University, Penrith, NSW, Australia
| | - Anna V. Leonard
- Spinal Cord Injury Research Group, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
25
|
From Molecule to Patient Rehabilitation: The Impact of Transcranial Direct Current Stimulation and Magnetic Stimulation on Stroke-A Narrative Review. Neural Plast 2023; 2023:5044065. [PMID: 36895285 PMCID: PMC9991485 DOI: 10.1155/2023/5044065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 03/04/2023] Open
Abstract
Stroke is a major health problem worldwide, with numerous health, social, and economic implications for survivors and their families. One simple answer to this problem would be to ensure the best rehabilitation with full social reintegration. As such, a plethora of rehabilitation programs was developed and used by healthcare professionals. Among them, modern techniques such as transcranial magnetic stimulation and transcranial direct current stimulation are being used and seem to bring improvements to poststroke rehabilitation. This success is attributed to their capacity to enhance cellular neuromodulation. This modulation includes the reduction of the inflammatory response, autophagy suppression, antiapoptotic effects, angiogenesis enhancement, alterations in the blood-brain barrier permeability, attenuation of oxidative stress, influence on neurotransmitter metabolism, neurogenesis, and enhanced structural neuroplasticity. The favorable effects have been demonstrated at the cellular level in animal models and are supported by clinical studies. Thus, these methods proved to reduce infarct volumes and to improve motor performance, deglutition, functional independence, and high-order cerebral functions (i.e., aphasia and heminegligence). However, as with every therapeutic method, these techniques can also have limitations. Their regimen of administration, the phase of the stroke at which they are applied, and the patients' characteristics (i.e., genotype and corticospinal integrity) seem to influence the outcome. Thus, no response or even worsening effects were obtained under certain circumstances both in animal stroke model studies and in clinical trials. Overall, weighing up risks and benefits, the new transcranial electrical and magnetic stimulation techniques can represent effective tools with which to improve the patients' recovery after stroke, with minimal to no adverse effects. Here, we discuss their effects and the molecular and cellular events underlying their effects as well as their clinical implications.
Collapse
|
26
|
Kong X, Hu W, Cui Y, Gao J, Yao X, Ren J, Lin T, Sun J, Gao Y, Li X, Wang H, Li H, Che F, Wan Q. Transcranial Direct-Current Stimulation Regulates MCT1-PPA-PTEN-LONP1 Signaling to Confer Neuroprotection After Rat Cerebral Ischemia-Reperfusion Injury. Mol Neurobiol 2022; 59:7423-7438. [PMID: 36190692 PMCID: PMC9616768 DOI: 10.1007/s12035-022-03051-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Propionic acid (PPA) is a critical metabolite involved in microbial fermentation, which functions to reduce fat production, inhibit inflammation, and reduce serum cholesterol levels. The role of PPA in the context of cerebral ischemia-reperfusion (I/R) injury has yet to be clarified. Increasing evidence indicate that transcranial direct-current stimulation (tDCS) is a safe approach that confers neuroprotection in cerebral ischemia injury. Here, we show that the levels of PPA were reduced in the ischemic brain following a rat cerebral I/R injury and in the cultured rat cortical neurons after oxygen-glucose deprivation (OGD), an in vitro model of ischemic injury. We found that the decreased levels of transporter protein monocarboxylate transporter-1 (MCT1) were responsible for the OGD-induced reduction of PPA. Supplementing PPA reduced ischemia-induced neuronal death after I/R. Moreover, our results revealed that the neuroprotective effect of PPA is mediated through downregulation of phosphatase PTEN and subsequent upregulation of Lon protease 1 (LONP1). We demonstrated that direct-current stimulation (DCS) increased MCT1 expression and PPA level in OGD-insulted neurons, while tDCS decreased the brain infarct volume in the MCAO rats via increasing the levels of MCT1 expression and PPA. This study supports a potential application of tDCS in ischemic stroke.
Collapse
Affiliation(s)
- Xiangyi Kong
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Wenjie Hu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
- Department of Biological Science, Jining Medical University, Rizhao, Shandong, China
| | - Yu Cui
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jingchen Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Xujin Yao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jinyang Ren
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Tao Lin
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Jiangdong Sun
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Yunyi Gao
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Xiaohua Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Hui Wang
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Huanting Li
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China
| | - Fengyuan Che
- Central Laboratory, Department of Neurology, Linyi People's Hospital, Qingdao University, 27 East Jiefang Road, Linyi, Shandong, China.
| | - Qi Wan
- Institute of Neuroregeneration & Neurorehabilitation, Department of Neurosurgery, Qingdao University, 308 Ningxia Street, Qingdao, 266071, China.
- Qingdao High-tech Industrial Development District, Qingdao Gui-Hong Intelligent Medical Technology Co. Ltd, 7 Fenglong Road, Qingdao, China.
| |
Collapse
|
27
|
Lee JW, Jeong WH, Kim EJ, Choi I, Song MK. Regulation of Genes Related to Cognition after tDCS in an Intermittent Hypoxic Brain Injury Rat Model. Genes (Basel) 2022; 13:genes13101824. [PMID: 36292709 PMCID: PMC9601999 DOI: 10.3390/genes13101824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/04/2022] Open
Abstract
Background: Hypoxic brain injury is a condition caused by restricted oxygen supply to the brain. Several studies have reported cognitive decline, particularly in spatial memory, after exposure to intermittent hypoxia (IH). However, the effect and mechanism of action of IH exposure on cognition have not been evaluated by analyzing gene expression after transcranial direct current stimulation (tDCS). Hence, the purpose of this study was to investigate the effects of tDCS on gene regulation and cognition in a rat model of IH-induced brain injury. Methods: Twenty-four 10-week-old male Sprague−Dawley rats were divided into two groups: IH exposed rats with no stimulation and IH-exposed rats that received tDCS. All rats were exposed to a hypoxic chamber containing 10% oxygen for twelve hours a day for five days. The stimulation group received tDCS at an intensity of 200 µA over the frontal bregma areas for 30 min each day for a week. As a behavior test, the escape latency on the Morris water maze (MWM) test was measured to assess spatial memory before and after stimulation. After seven days of stimulation, gene microarray analysis was conducted with a KEGG mapper tool. Results: Although there were no significant differences between the groups before and after stimulation, there was a significant effect of time and a significant time × group interaction on escape latency. In the microarray analysis, significant fold changes in 12 genes related to neurogenesis were found in the stimulation group after tDCS (p < 0.05, fold change > 2 times, the average of the normalized read count (RC) > 6 times). The highly upregulated genes in the stimulation group after tDCS were SOS, Raf, PI3K, Rac1, IRAK, and Bax. The highly downregulated genes in the stimulation group after tDCS were CHK, Crk, Rap1, p38, Ras, and NF-kB. Conclusion: In this study, we confirmed that SOS, Raf, PI3K, Rac1, IRAK, and Bax were upregulated and that CHK, Crk, Rap1, p38, Ras, and NF-kB were downregulated in a rat model of IH-induced brain injury after application of tDCS.
Collapse
Affiliation(s)
- Jin-Won Lee
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61479, Korea
| | - Won-Hyeong Jeong
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61479, Korea
| | - Eun-Jong Kim
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School, 160, Baekseo-Ro, Dong-Gu, Gwangju 61469, Korea
| | - Insung Choi
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61479, Korea
- Correspondence: (I.C.); (M.-K.S.); Tel.: +82-62-220-5198 (I.C.); +82-62-220-5186 (M.-K.S.); Fax: +82-62-228-5975 (I.C. & M.-K.S.)
| | - Min-Keun Song
- Department of Physical & Rehabilitation Medicine, Chonnam National University Hospital, 42 Jebong-ro, Dong-gu, Gwangju 61479, Korea
- Department of Physical & Rehabilitation Medicine, Chonnam National University Medical School, 160, Baekseo-Ro, Dong-Gu, Gwangju 61469, Korea
- Correspondence: (I.C.); (M.-K.S.); Tel.: +82-62-220-5198 (I.C.); +82-62-220-5186 (M.-K.S.); Fax: +82-62-228-5975 (I.C. & M.-K.S.)
| |
Collapse
|
28
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
29
|
Walter HL, Pikhovych A, Endepols H, Rotthues S, Bärmann J, Backes H, Hoehn M, Wiedermann D, Neumaier B, Fink GR, Rüger MA, Schroeter M. Transcranial-Direct-Current-Stimulation Accelerates Motor Recovery After Cortical Infarction in Mice: The Interplay of Structural Cellular Responses and Functional Recovery. Neurorehabil Neural Repair 2022; 36:701-714. [PMID: 36124996 DOI: 10.1177/15459683221124116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) promotes recovery after stroke in humans. The underlying mechanisms, however, remain to be elucidated. Animal models suggest tDCS effects on neuroinflammation, stem cell proliferation, neurogenesis, and neural plasticity. OBJECTIVE In a longitudinal study, we employed tDCS in the subacute and chronic phase after experimental focal cerebral ischemia in mice to explore the relationship between functional recovery and cellular processes. METHODS Mice received photothrombosis in the right motor cortex, verified by Magnetic Resonance Imaging. A composite neuroscore quantified subsequent functional deficits. Mice received tDCS daily: either 5 sessions from day 5 to 9, or 10 sessions with days 12 to 16 in addition. TDCS with anodal or cathodal polarity was compared to sham stimulation. Further imaging to assess proliferation and neuroinflammation was performed by immunohistochemistry at different time points and Positron Emission Tomography at the end of the observation time of 3 weeks. RESULTS Cathodal tDCS at 198 kC/m2 (220 A/m2) between days 5 and 9 accelerated functional recovery, increased neurogenesis, decreased microglial activation, and mitigated CD16/32-expression associated with M1-phenotype. Anodal tDCS exerted similar effects on neurogenesis and microglial polarization but not on recovery of function or microglial activation. TDCS on days 12 to 16 after stroke did not induce any further effects, suggesting that the therapeutic time window was closed by then. CONCLUSION Overall, data suggest that non-invasive neuromodulation by tDCS impacts neurogenesis and microglial activation as critical cellular processes influencing functional recovery during the early phase of regeneration from focal cerebral ischemia.
Collapse
Affiliation(s)
- Helene Luise Walter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anton Pikhovych
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heike Endepols
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Steffen Rotthues
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Johannes Bärmann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heiko Backes
- Multimodal Imaging Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Mathias Hoehn
- Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dirk Wiedermann
- Multimodal Imaging Group, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Nuclear Chemistry (INM-5), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gereon Rudolf Fink
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Maria Adele Rüger
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Schroeter
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Cognitive Neuroscience (INM-3), Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
30
|
Williams NP, Kushwah N, Dhawan V, Zheng XS, Cui XT. Effects of central nervous system electrical stimulation on non-neuronal cells. Front Neurosci 2022; 16:967491. [PMID: 36188481 PMCID: PMC9521315 DOI: 10.3389/fnins.2022.967491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Over the past few decades, much progress has been made in the clinical use of electrical stimulation of the central nervous system (CNS) to treat an ever-growing number of conditions from Parkinson's disease (PD) to epilepsy as well as for sensory restoration and many other applications. However, little is known about the effects of microstimulation at the cellular level. Most of the existing research focuses on the effects of electrical stimulation on neurons. Other cells of the CNS such as microglia, astrocytes, oligodendrocytes, and vascular endothelial cells have been understudied in terms of their response to stimulation. The varied and critical functions of these cell types are now beginning to be better understood, and their vital roles in brain function in both health and disease are becoming better appreciated. To shed light on the importance of the way electrical stimulation as distinct from device implantation impacts non-neuronal cell types, this review will first summarize common stimulation modalities from the perspective of device design and stimulation parameters and how these different parameters have an impact on the physiological response. Following this, what is known about the responses of different cell types to different stimulation modalities will be summarized, drawing on findings from both clinical studies as well as clinically relevant animal models and in vitro systems.
Collapse
Affiliation(s)
- Nathaniel P. Williams
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Neetu Kushwah
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
| | - Xin Sally Zheng
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Marenna S, Huang SC, Rossi E, Castoldi V, Comi G, Leocani L. Transcranial direct current stimulation as a preventive treatment in multiple sclerosis? Preclinical evidence. Exp Neurol 2022; 357:114201. [PMID: 35963325 DOI: 10.1016/j.expneurol.2022.114201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 08/08/2022] [Indexed: 11/26/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system, presenting with optic neuritis in about 20-30% of cases. Optic nerve demyelination, associated with delay of visual evoked potentials (VEPs), is also observed prior to motor signs in the preclinical MS model Experimental Autoimmune Encephalomyelitis (EAE). Transcranial direct current stimulation (tDCS), inducing polarity-dependent changes in neuronal excitability, is widely used to promote neuroplasticity in several neurological disorders. However, its potential effects on inflammation and demyelination are largely unknown. We tested the effectiveness of a preventive, 5-day tDCS treatment started 3 days post-immunization, in reducing the severity of VEP delays observed in early EAE. In mice undergoing cathodal tDCS (n = 6/26 eyes) VEPs were significantly less delayed compared with eyes from EAE-Sham (n = 24/32 eyes) and EAE-Anodal (n = 22/32 eyes). Optic nerve immunohistochemistry revealed a significantly lower cell density of microglia/macrophages, and less axonal loss in EAE-Cathodal vs EAE-Sham and EAE-Anodal, while the percent demyelination with Luxol-fast blue staining was comparable among EAE groups. Considering the latter result, immunofluorescence paranodal staining was performed, revealing a significantly higher number of complete paranode domains in EAE-Cathodal, closer to healthy mice, compared with EAE-Sham and EAE-Anodal groups. These results were reflected by the negative correlation between the number of complete paranode domains and VEP latency increase with respect to pre-immunization. Finally, cathodal tDCS was associated with a lower number, closer to healthy, of single paranodes in contrast to EAE-Sham. The effects of cathodal stimulation in preventing VEPs delays and optic nerve myelin damage were already observed in the pre-motor onset EAE stage, and were associated with a lower density of inflammatory cells. These findings suggest that tDCS may exert an anti-inflammatory effect with potential therapeutic application to be further explored in autoimmune demyelinating diseases.
Collapse
Affiliation(s)
- Silvia Marenna
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Su-Chun Huang
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Elena Rossi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Valerio Castoldi
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| | - Giancarlo Comi
- Università Vita-Salute, San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy; Casa di Cura del Policlinico, Milan, Italy.
| | - Letizia Leocani
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE) - IRCCS-San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy; Università Vita-Salute, San Raffaele Hospital, via Olgettina 60, 20132 Milan, Italy.
| |
Collapse
|
32
|
Non-invasive brain stimulation as therapeutic approach for ischemic stroke: Insights into the (sub)cellular mechanisms. Pharmacol Ther 2022; 235:108160. [PMID: 35183592 DOI: 10.1016/j.pharmthera.2022.108160] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/12/2023]
Abstract
Although spontaneous recovery can occur following ischemic stroke due to endogenous neuronal reorganization and neuroplastic events, the degree of functional improvement is highly variable, causing many patients to remain permanently impaired. In the last decades, non-invasive brain stimulation (NIBS) techniques have emerged as potential add-on interventions to the standard neurorehabilitation programs to improve post-stroke recovery. Due to their ability to modulate cortical excitability and to induce neuroreparative processes in the brain, multiple studies have assessed the safety, efficacy and (sub)cellular mechanisms of NIBS following ischemic stroke. In this review, an overview will be provided of the different NIBS techniques that are currently being investigated in (pre)clinical stroke studies. The NIBS therapies that will be discussed include transcranial magnetic stimulation, transcranial direct current stimulation and extremely low frequency electromagnetic stimulation. First, an overview will be given of the cellular mechanisms induced by NIBS that are associated with enhanced stroke outcome in preclinical models. Furthermore, the current knowledge on safety and efficacy of these NIBS techniques in stroke patients will be reviewed.
Collapse
|
33
|
Shen Y, Cai Z, Liu F, Zhang Z, Ni G. Repetitive Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation as Treatment of Poststroke Depression: A Systematic Review and Meta-Analysis. Neurologist 2022; 27:177-182. [PMID: 35184118 DOI: 10.1097/nrl.0000000000000416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Previous studies showed that the application of repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) during stroke rehabilitation improve the depression symptoms in poststroke depression (PSD). However, some studies showed inconsistent results. The study was designed to make a meta-analysis to evaluate the effect of noninvasive brain stimulation (tDCS and rTMS) on PSD. METHODS Articles published before July 2021 were searched in databases: PubMed, Web of Science, and Google Scholar. STATA 12.0 software was utilized to make meta-analysis. We extracted or calculated mean values and SD of reduction or increase rate of depression-related scales. Standardized mean difference (SMD) and 95% confidence intervals (CIs) were calculated as effect size. RESULTS The study showed increased immediate and long-term improvement in depression in rTMS group compared with sham rTMS group after treatment with random-effects models (immediate: SMD=4.92, 95% CI=2.69-7.15, I2 =95.2%, P -value for Q test <0.001; long term: SMD=7.21, 95% CI=3.50-10.92, I2 =93.9%, P -value for Q test <0.001). Meta-analysis showed increased substantially immediate improvement in depression in tDCS group compared with sham tDCS group with a random effect model (SMD=5.30, 95% CI=1.30-9.30, I2 =97.3%, P- value for Q test <0.001). CONCLUSIONS rTMS and tDCS were demonstrated to be effective and safe treatment techniques for PSD. More large-scale studies were essential to explore the effect of rTMS with different frequencies and tDCS on PSD.
Collapse
Affiliation(s)
- Yiting Shen
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
34
|
Luo L, Liu M, Fan Y, Zhang J, Liu L, Li Y, Zhang Q, Xie H, Jiang C, Wu J, Xiao X, Wu Y. Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. J Neuroinflammation 2022; 19:141. [PMID: 35690810 PMCID: PMC9188077 DOI: 10.1186/s12974-022-02501-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/01/2022] [Indexed: 01/18/2023] Open
Abstract
Background Neuronal pyroptosis and neuroinflammation with excess microglial activation are widely involved in the early pathological process of ischemic stroke. Repetitive transcranial magnetic stimulation (rTMS), as a non-invasive neuromodulatory technique, has recently been reported to be anti-inflammatory and regulate microglial function. However, few studies have elucidated the role and mechanism of rTMS underlying regulating neuronal pyroptosis and microglial polarization. Methods We evaluated the motor function in middle cerebral artery occlusion/reperfusion (MCAO/r) injury mice after 1-week intermittent theta-burst rTMS (iTBS) treatment in the early phase with or without depletion of microglia by colony-stimulating factor 1 receptor (CSF1R) inhibitor treatment, respectively. We further explored the morphological and molecular biological alterations associated with neuronal pyroptosis and microglial polarization via Nissl, EdU, TTC, TUNEL staining, electron microscopy, multiplex cytokine bioassays, western blot assays, immunofluorescence staining and RNA sequencing. Results ITBS significantly protected against cerebral ischemia/reperfusion (I/R) injury-induced locomotor deficits and neuronal damage, which probably relied on the regulation of innate immune and inflammatory responses, as evidenced by RNA sequencing analysis. The peak of pyroptosis was confirmed to be later than that of apoptosis during the early phase of stroke, and pyroptosis was mainly located and more severe in the peri-infarcted area compared with apoptosis. Multiplex cytokine bioassays showed that iTBS significantly ameliorated the high levels of IL-1β, IL-17A, TNF-α, IFN-γ in MCAO/r group and elevated the level of IL-10. ITBS inhibited the expression of neuronal pyroptosis-associated proteins (i.e., Caspase1, IL-1β, IL-18, ASC, GSDMD, NLRP1) in the peri-infarcted area rather than at the border of infarcted core. KEGG enrichment analysis and further studies demonstrated that iTBS significantly shifted the microglial M1/M2 phenotype balance by curbing proinflammatory M1 activation (Iba1+/CD86+) and enhancing the anti-inflammatory M2 activation (Iba1+/CD206+) in peri-infarcted area via inhibiting TLR4/NFκB/NLRP3 signaling pathway. Depletion of microglia using CSF1R inhibitor (PLX3397) eliminated the motor functional improvements after iTBS treatment. Conclusions rTMS could alleviate cerebral I/R injury induced locomotor deficits and neuronal pyroptosis by modulating the microglial polarization. It is expected that these data will provide novel insights into the mechanisms of rTMS protecting against cerebral I/R injury and potential targets underlying neuronal pyroptosis in the early phase of stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02501-2. rTMS significantly ameliorated cerebral ischemia/reperfusion injury-induced locomotor deficits and neuronal damage in the early phase probably through the anti-inflammatory mechanism. The peak of pyroptosis was later than that of apoptosis during the early phase of stroke, and pyroptosis was mainly located and more severe in the peri-infarcted area compared with apoptosis. rTMS inhibited neuronal pyroptosis in the peri-infarcted area rather than at the border of infarcted core. rTMS modulated microglial polarization in the peri-infarcted area via inhibiting TLR4/NFκB/NLRP3 signaling pathway. Depletion of microglia eliminated the motor functional improvements after rTMS treatment.
Collapse
Affiliation(s)
- Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Meixi Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Yunhui Fan
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Jingjun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Li Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Yun Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Qiqi Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Congyu Jiang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China.,National Center for Neurological Disorders, Shanghai, 200040, China
| | - Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Behavioral and Cognitive Neuroscience Center, Institute of Science and Technology for Brain-Inspired Intelligence, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. .,National Center for Neurological Disorders, Shanghai, 200040, China.
| |
Collapse
|
35
|
Kaviannejad R, Karimian SM, Riahi E, Ashabi G. Using dual polarities of transcranial direct current stimulation in global cerebral ischemia and its following reperfusion period attenuates neuronal injury. Metab Brain Dis 2022; 37:1503-1516. [PMID: 35499797 DOI: 10.1007/s11011-022-00985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
Multiple neuronal injury pathways are activated during cerebral ischemia and reperfusion (I/R). This study was designed to decrease potential neuronal injuries by using both transcranial direct current stimulation (tDCS) polarities in cerebral ischemia and its following reperfusion period. Ninety rats were randomly divided into six groups. In the sham group, rats were intact. In the I/R group, global cerebral I/R was only induced. In the I/R + c-tDCS and I/R + a-tDCS groups, cathodal and anodal currents were applied, respectively. In the I/R + c/a-tDCS, cathodal current was used in the cerebral ischemia and anodal in the reperfusion. In the I/R + a/c-tDCS group, cathodal and anodal currents were applied in the I/R, respectively. Hippocampal tissue was used to determine the levels of IL-1β, TNF-α, NOS, SOD, MDA, and NMDAR. Hot plate and open field tests evaluated sensory and locomotor performances. The cerebral edema was also measured. Histological assessment was assessed by H/E and Nissl staining of the hippocampal CA1 region. All tDCS modes significantly decreased IL-1β and TNF-α levels, especially in the c/a-tDCS. All tDCS caused a significant decrease in MDA and NOS levels while increasing SOD activity compared to the I/R group, especially in the c/a-tDCS mode. In the c-tDCS and a/c-tDCS groups, the NMDAR level was significantly decreased. The c/a-tDCS group improved sensory and locomotor performances more than other groups receiving tDCS. Furthermore, the least neuronal death was observed in the c/a-tDCS mode. Using two different polarities of tDCS could induce more neuroprotective versus pathophysiological pathways in cerebral I/R, especially in c/a-tDCS mode. HIGHLIGHTS: Multiple pathways of neuronal injury are activated in cerebral ischemia and reperfusion (I/R). Using tDCS could modulate neuroinflammation and oxidative stress pathways in global cerebral I/R. Using c/a-tDCS mode during cerebral I/R causes more neuroprotective effects against neuronal injuries of cerebral I/R.
Collapse
Affiliation(s)
- Rasoul Kaviannejad
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran.
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, PourSina St., 1417613151, Tehran, Iran
| |
Collapse
|
36
|
Stefano LHS, Favoretto DB, Nascimento DC, Santos LRA, Louzada F, Bikson M, Leite JP, Pontes-Neto OM, Edwards DJ, Edwards TGS. Middle cerebral artery blood flow stability in response to high-definition transcranial electrical stimulation: a randomized sham-controlled clinical trial. Clin Neurol Neurosurg 2022; 220:107345. [DOI: 10.1016/j.clineuro.2022.107345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/28/2022]
|
37
|
Kaviannejad R, Karimian SM, Riahi E, Ashabi G. The neuroprotective effects of transcranial direct current stimulation on global cerebral ischemia and reperfusion via modulating apoptotic pathways. Brain Res Bull 2022; 186:70-78. [PMID: 35654262 DOI: 10.1016/j.brainresbull.2022.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Cerebral ischemia-reperfusion, subsequent hyperthermia, and hyperglycemia lead to neural damage. This study aimed to investigate the effects of using cathodal and/or anodal transcranial direct current stimulation (tDCS) in different stages of ischemia-reperfusion on apoptosis and controlling hyperthermia and hyperglycemia. MATERIALS AND METHODS A total of 78 male Wistar rats were randomly assigned into six groups (n=13), including sham, ischemia/reperfusion (I/R), anodal-tDCS (a-tDCS), cathodal-tDCS (c-tDCS), anodal/cathodal-tDCS (a/c-tDCS), and cathodal/anodal-tDCS (c/a-tDCS) groups. Global cerebral I/R was induced in all of the groups except for sham group. In a-tDCS and c-tDCS groups, the rats received anodal and cathodal currents in both I/R stages, respectively. In a/c-tDCS group, the rats received anodal current during the ischemia and cathodal current during the reperfusion. The c/a-tDCS group received the currents in the reverse order. The current intensity of 400µA was applied in ischemia phase (15min) and reperfusion phase (30min, twice a day). Body temperature and plasma blood sugar were measured daily. Rats were also tested for novel object recognition and passive avoidance memory. The apoptosis of hippocampal tissue was evaluated by measuring Bax, Bcl-2, Caspase-3, and TUNEL staining. RESULTS All tDCS significantly reduced hyperthermia and hyperglycemia, as well as Bax and Caspase-3 levels, it also increased Bcl-2 expression. The preliminary results from c/a-tDCS mode could improve the expression of apoptotic markers, memory function, hyperthermia, and hyperglycemia control and reduce DNA fragmentation compared to other stimulatory therapies. CONCLUSION All tDCS modes could save neurons by suppressing apoptotic and enhancing anti-apoptotic pathways, especially in the c/a tDCS mode.
Collapse
Affiliation(s)
- Rasoul Kaviannejad
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anesthesiology, School of Allied Medical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Preliminary Study on Safety Assessment of 10 Hz Transcranial Alternating Current Stimulation in Rat Brain. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of the safety of transcranial electrical stimulation devices that contact the scalp and apply electrical stimulations to brain tissues is essential for the prevention of unexpected brain damage caused by electromagnetic fields. In particular, safety studies on transcranial alternating current stimulation (tACS) are needed for active applications to treat brain diseases and for the development of medical devices, because there is a lack of research on the safety of tACS, in contrast to transcranial direct current stimulation. In this study, the safety of tACS with selected parameters, i.e., a stimulation intensity of 1.0 to 2.0 mA, a frequency of 10 Hz, and a treatment time of 20 min, was examined at a preclinical stage using small animals (rats). The results of magnetic resonance imaging and histopathological imaging indicated that the conditions applied in this study provided safe tACS without damaging brain tissues or neuronal components in the acute phase. In addition, the temperature did not increase above 41 °C, which is a temperature limitation for contact-type medical devices, even after 20 min of tACS application.
Collapse
|
39
|
Lee JH, Jung BH, Yoo KY. Application time and persistence of transcranial direct current stimulation (tDCS) against neuronal death resulting from transient cerebral ischemia. Lab Anim Res 2022; 38:12. [PMID: 35527281 PMCID: PMC9082879 DOI: 10.1186/s42826-022-00121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) has been studied as a tool to stimulate the functional recovery of neurons after stroke. Although this device has recently begun to be utilized for providing neuroprotection in stroke, research on its application conditions is lacking. This study aimed to examine the effects of various tDCS application conditions on cerebral ischemia. Ischemia was induced for 5 min in a gerbil model. The application of tDCS comprised a 20 min stimulation-20 min rest-20 min stimulation protocol, which was implemented simultaneously with the induction of cerebral ischemia. Application time of the tDCS effect on ischemia was confirmed by sampling brain tissues after stimulation using 0.2 mA tDCS at 0, 5, 10 and 60 min after ischemia. RESULTS Persistence of the tDCS effect on ischemia was confirmed by sampling brain tissues 5, 7, and 10 days post stimulation, with 0.2 mA tDCS after ischemia. Furthermore, the tissues were stained with cresyl violet and Fluoro-Jade C so as to determine the reduction in neuronal death under all application conditions. CONCLUSIONS The application of tDCS can be used as a useful intervention for acute phase stroke due to its sustained neuroprotective effect.
Collapse
Affiliation(s)
- Jong-Hun Lee
- Department of Anatomy, College of Dentistry, Gangneung-Wonju National University, 7, Jukheon-gil, Gangneung, 25427, Korea
| | - Bo Hyun Jung
- Department of Anatomy, College of Dentistry, Gangneung-Wonju National University, 7, Jukheon-gil, Gangneung, 25427, Korea
| | - Ki-Yeon Yoo
- Department of Anatomy, College of Dentistry, Gangneung-Wonju National University, 7, Jukheon-gil, Gangneung, 25427, Korea.
| |
Collapse
|
40
|
Early Application of Ipsilateral Cathodal-tDCS in a Mouse Model of Brain Ischemia Results in Functional Improvement and Perilesional Microglia Modulation. Biomolecules 2022; 12:biom12040588. [PMID: 35454177 PMCID: PMC9027610 DOI: 10.3390/biom12040588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Early stroke therapeutic approaches rely on limited options, further characterized by a narrow therapeutic time window. In this context, the application of transcranial direct current stimulation (tDCS) in the acute phases after brain ischemia is emerging as a promising non-invasive tool. Despite the wide clinical application of tDCS, the cellular mechanisms underlying its positive effects are still poorly understood. Here, we explored the effects of cathodal tDCS (C-tDCS) 6 h after focal forelimb M1 ischemia in Cx3CR1GFP/+ mice. C-tDCS improved motor functionality of the affected forelimb, as assessed by the cylinder and foot-fault tests at 48 h, though not changing the ischemic volume. In parallel, histological analysis showed that motor recovery is associated with decreased microglial cell density in the area surrounding the ischemic core, while astrocytes were not affected. Deeper analysis of microglia morphology within the perilesional area revealed a shift toward a more ramified healthier state, with increased processes’ complexity and a less phagocytic anti-inflammatory activity. Taken together, our findings suggest a positive role for early C-tDCS after ischemia, which is able to modulate microglia phenotype and morphology in parallel to motor recovery.
Collapse
|
41
|
Rasheed W, Wodeyar A, Srinivasan R, Frostig RD. Sensory stimulation-based protection from impending stroke following MCA occlusion is correlated with desynchronization of widespread spontaneous local field potentials. Sci Rep 2022; 12:1744. [PMID: 35110588 PMCID: PMC8810838 DOI: 10.1038/s41598-022-05604-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/12/2022] [Indexed: 11/26/2022] Open
Abstract
In a rat model of ischemic stroke by permanent occlusion of the medial cerebral artery (pMCAo), we have demonstrated using continuous recordings by microelectrode array at the depth of the ischemic territory that there is an immediate wide-spread increase in spontaneous local field potential synchrony following pMCAo that was correlated with ischemic stroke damage, but such increase was not seen in control sham-surgery rats. We further found that the underpinning source of the synchrony increase is intermittent bursts of low multi-frequency oscillations. Here we show that such increase in spontaneous LFP synchrony after pMCAo can be reduced to pre-pMCAo baseline level by delivering early (immediately after pMCAo) protective sensory stimulation that reduced the underpinning bursts. However, the delivery of a late (3 h after pMCAo) destructive sensory stimulation had no influence on the elevated LFP synchrony and its underpinning bursts. Histology confirmed both protection for the early stimulation group and an infarct for the late stimulation group. These findings highlight the unexpected importance of spontaneous LFP and its synchrony as a predictive correlate of cerebral protection or stroke infarct during the hyperacute state following pMCAo and the potential clinical relevance of stimulation to reduce EEG synchrony in acute stroke.
Collapse
Affiliation(s)
- Waqas Rasheed
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Anirudh Wodeyar
- Department of Cognitive Science, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - Ramesh Srinivasan
- Department of Cognitive Science, University of California, Irvine, CA, USA
- Department of Statistics, University of California, Irvine, CA, USA
| | - Ron D Frostig
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
| |
Collapse
|
42
|
Motolese F, Capone F, Di Lazzaro V. New tools for shaping plasticity to enhance recovery after stroke. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:299-315. [PMID: 35034743 DOI: 10.1016/b978-0-12-819410-2.00016-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Stroke is the second most common cause of death worldwide and its prevalence is projected to increase in the coming years in parallel with the increase of life expectancy. Despite the great improvements in the management of the acute phase of stroke, some residual disability persists in most patients thus requiring rehabilitation. One third of patients do not reach the maximal recovery potential and different approaches have been explored with the aim to boost up recovery. In this regard, noninvasive brain stimulation techniques have been widely used to induce neuroplasticity phenomena. Different protocols of repetitive transcranial magnetic stimulation (rTMS) and transcranial electrical stimulation (tES) can induce short- and long-term changes of synaptic excitability and are promising tools for enhancing recovery in stroke patients. New options for neuromodulation are currently under investigation. They include: vagal nerve stimulation (VNS) that can be delivered invasively, with implanted stimulators and noninvasively with transcutaneous VNS (tVNS); and extremely low-frequency (1-300Hz) magnetic fields. This chapter will provide an overview on the new techniques that are used for neuroprotection and for enhancing recovery after stroke.
Collapse
Affiliation(s)
- Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
43
|
Powell K, White TG, Nash C, Rebeiz T, Woo HH, Narayan RK, Li C. The Potential Role of Neuromodulation in Subarachnoid Hemorrhage. Neuromodulation 2022; 25:1215-1226. [PMID: 35088724 DOI: 10.1016/j.neurom.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Aneurysmal subarachnoid hemorrhage (SAH) continues to be a difficult cerebrovascular disease with limited pharmacologic treatment options. Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are leading causes of morbidity and mortality after SAH. Despite the advances in the understanding of its pathophysiology and tremendous efforts to date, nimodipine is currently the sole Food and Drug Administration-approved treatment for patients with SAH, with benefits that are marginal at best. The neuromodulation therapies are promising, especially those that target CV and DCI to improve functional outcomes. The aim of this review is therefore to summarize the available evidence for each type of neuromodulation for CV and DCI, with a special focus on its pathophysiological mechanisms, in addition to their clinical utility and drawbacks, which we hope will lead to future translational therapy options after SAH. MATERIALS AND METHODS We conducted a comprehensive review of preclinical and clinical studies demonstrating the use of neuromodulation for SAH. The literature search was performed using PubMed, Embase, and ClinicalTrials.gov. A total of 21 articles published from 1992 to 2021 and eight clinical trials were chosen. RESULTS The studies reviewed provide a compelling demonstration that neuromodulation is a potentially useful strategy to target multiple mechanisms of DCI and thus to potentially improve functional outcomes from SAH. There are several types of neuromodulation that have been tested to treat CV and DCI, including the trigeminal/vagus/facial nerve stimulation, sphenopalatine ganglion and spinal cord stimulation, transcranial direct electrical stimulation, transcutaneous electrical neurostimulation, and electroacupuncture. Most of them are in the preclinical or early phases of clinical application; however, they show promising results. CONCLUSIONS DCI has a complex pathogenesis, making the unique anatomical distribution and pleiotropic capabilities of various types of neuromodulation a promising field of study. We may be at the cusp of a breakthrough in the use of these techniques for the treatment of this stubbornly difficult disease.
Collapse
Affiliation(s)
- Keren Powell
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Timothy G White
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Christine Nash
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Tania Rebeiz
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Henry H Woo
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Raj K Narayan
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Chunyan Li
- Translational Brain Research Laboratory, The Feinstein Institutes for Medical Research, Manhasset, NY, USA; Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| |
Collapse
|
44
|
Cambiaghi M, Cherchi L, Comai S. Photothrombotic Mouse Models for the Study of Melatonin as a Therapeutic Tool After Ischemic Stroke. Methods Mol Biol 2022; 2550:433-441. [PMID: 36180711 DOI: 10.1007/978-1-0716-2593-4_42] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Melatonin is a potent neuroprotective agent which has shown therapeutic effects in animal models of brain injury such as stroke. Currently, there are few effective treatments for the therapeutics of stroke, the second leading cause of death and a major cause of disability worldwide. As demonstrated by the high number of publications during the last two decades, there is growing interest in understanding how and if melatonin could be a possible drug for stroke in humans, given also its very low and limited toxicity. Here, we describe the detailed protocol for performing the photothrombotic model of stroke which involves the occlusion of small cerebral vessels caused by the photoactivation of the previously injected light-sensitive dye Rose Bengal. Importantly, this model allows for the study of cellular and molecular mechanisms underlying the pathophysiology of stroke and thus can be used for investigating the neuropharmacological role of melatonin and the melatonin system in stroke. In particular, future research is warranted to demonstrate how and if melatonin impacts neurodegeneration, neuroprotection, and neuro-regeneration occurring after the brain injury caused by the occlusion of cerebral vessels.
Collapse
Affiliation(s)
- Marco Cambiaghi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Laura Cherchi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Comai
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy.
- Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
45
|
A Single Immediate Use of the Cathodal Transcranial Direct Current Stimulation Induces Neuroprotection of Hippocampal Region Against Global Cerebral Ischemia. J Stroke Cerebrovasc Dis 2022; 31:106241. [PMID: 34983004 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVES Global cerebral ischemia (CI) causes severe neuronal injury, mainly in the hippocampal CA1 region. This study aimed to investigate an immediate using transcranial direct current stimulation (tDCS) in reducing neuronal injury induced by CI. MATERIALS AND METHODS The 32 Wistar male rats were randomly divided into four groups (n=8 per group). In the ischemia group (I), CI was induced via the 4-vessel occlusion model. In the sham group (Sh), rats did not receive any intervention. In the ischemia+cathodal group (I+c/tDCS), the cathodal current was applied during CI. In the ischemia+anodal group (I+a/tDCS), the anodal current was applied. The current intensity of 400 μA was applied for 15-min during the ischemia. Hippocampal tissue was used to assess levels of NMDAR, IL-1β, TNF-α, MDA, SOD, NOS, and apoptosis markers. Histological assessment and TUNEL staining were performed in CA1 hippocampal region. RESULTS The c/tDCS significantly decreased the levels of IL-1β and TNF-α than the I and a/tDCS groups. The c/tDCS significantly reduced MDA and NOS levels, while increasing the level of SOD than the I and a/tDCS. The c/tDCS caused a significant decrease in NMDAR level than the a/tDCS. Using c/tDCS significantly reduced the Bax and Caspase-3 expressions, while increasing the Bcl-2 expression than the I group. In the c/tDCS group, DNA fragmentation and neuronal death were significantly lower than the I and a/tDCS groups. CONCLUSION Using cathodal a direct current could attenuate primary pathophysiological pathways induced by CI, and it eventually reduced neurons death and apoptosis in the CA1 hippocampal region.
Collapse
|
46
|
Direct Current Stimulation in Cell Culture Systems and Brain Slices-New Approaches for Mechanistic Evaluation of Neuronal Plasticity and Neuromodulation: State of the Art. Cells 2021; 10:cells10123583. [PMID: 34944091 PMCID: PMC8700319 DOI: 10.3390/cells10123583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/09/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Non-invasive direct current stimulation (DCS) of the human brain induces neuronal plasticity and alters plasticity-related cognition and behavior. Numerous basic animal research studies focusing on molecular and cellular targets of DCS have been published. In vivo, ex vivo, and in vitro models enhanced knowledge about mechanistic foundations of DCS effects. Our review identified 451 papers using a PRISMA-based search strategy. Only a minority of these papers used cell culture or brain slice experiments with DCS paradigms comparable to those applied in humans. Most of the studies were performed in brain slices (9 papers), whereas cell culture experiments (2 papers) were only rarely conducted. These ex vivo and in vitro approaches underline the importance of cell and electric field orientation, cell morphology, cell location within populations, stimulation duration (acute, prolonged, chronic), and molecular changes, such as Ca2+-dependent intracellular signaling pathways, for the effects of DC stimulation. The reviewed studies help to clarify and confirm basic mechanisms of this intervention. However, the potential of in vitro studies has not been fully exploited and a more systematic combination of rodent models, ex vivo, and cellular approaches might provide a better insight into the neurophysiological changes caused by tDCS.
Collapse
|
47
|
Huang J, Zhao K, Zhao Z, Qu Y. Neuroprotection by Transcranial Direct Current Stimulation in Rodent Models of Focal Ischemic Stroke: A Meta-Analysis. Front Neurosci 2021; 15:761971. [PMID: 34887723 PMCID: PMC8649802 DOI: 10.3389/fnins.2021.761971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Infarct size is associated with stroke severity in clinical studies, so reducing it has become an important target and research hotspot in the treatment of ischemic stroke. Some preclinical studies have shown transcranial direct current stimulation (tDCS) reduced infarct size and improved neurological deficit, but others have not found beneficial effects. Besides, the optimal pattern of tDCS for ischemic stroke remains largely unknown. To shed light on the current circumstance and future research directions, the systematic review evaluated the effect of different tDCS paradigms in reducing infarct size and improving neurological deficit in rodent models of ischemic stroke and assessed the methodological quality of current literature. We searched the MEDLINE (via PubMed), EMBASE, Web of Science, and Scopus from their inception to August 18, 2021, to identify studies evaluating the effects of tDCS in rodent models of ischemic stroke. Eight studies were included, of which seven studies were included in the meta-analysis. The results showed cathodal tDCS, rather than anodal tDCS, reduced infarct size mainly measured by tetrazolium chloride and magnetic resonance imaging (standardized mean difference: -1.13; 95% CI: -1.72, -0.53; p = 0.0002) and improved neurological deficit assessed by a modified neurological severity score (standardized mean difference: -2.10; 95% CI: -3.78, -0.42; p = 0.01) in an early stage of focal ischemic stroke in rodent models. Subgroup analyses showed effects of cathodal tDCS on infarct size were not varied by ischemia duration (ischemia for 1, 1.5, and 2 h or permanent ischemia) and anesthesia (involving isoflurane and ketamine). The overall quality of studies included was low, thus the results must be interpreted cautiously. Published studies suggest that cathodal tDCS may be a promising avenue to explore for augmenting rehabilitation from focal ischemic stroke. Considering the methodological limitations, it is unreliable to blindly extrapolate the animal data to the clinical practice. Future research is needed to investigate the mechanism of tDCS in a randomized and blinded fashion in clinically relevant stroke models, such as elderly animals, female animals, and animals with comorbidities, to find an optimal treatment protocol.
Collapse
Affiliation(s)
- Jiapeng Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Kehong Zhao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqi Zhao
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Qu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Research Laboratory of Neurorehabilitation, Research Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Wang LC, Wei WY, Ho PC, Wu PY, Chu YP, Tsai KJ. Somatosensory Cortical Electrical Stimulation After Reperfusion Attenuates Ischemia/Reperfusion Injury of Rat Brain. Front Aging Neurosci 2021; 13:741168. [PMID: 34867274 PMCID: PMC8632773 DOI: 10.3389/fnagi.2021.741168] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Objective: Ischemic stroke is an important cause of death and disability worldwide. Early reperfusion by thrombolysis or thrombectomy has improved the outcome of acute ischemic stroke. However, the therapeutic window for reperfusion therapy is narrow, and adjuvant therapy for neuroprotection is demanded. Electrical stimulation (ES) has been reported to be neuroprotective in many neurological diseases. In this study, the neuroprotective effect of early somatosensory cortical ES in the acute stage of ischemia/reperfusion injury was evaluated. Methods: In this study, the rat model of transient middle cerebral artery occlusion was used to explore the neuroprotective effect and underlying mechanisms of direct primary somatosensory (S1) cortex ES with an electric current of 20 Hz, 2 ms biphasic pulse, 100 μA for 30 min, starting at 30 min after reperfusion. Results: These results showed that S1 cortical ES after reperfusion decreased infarction volume and improved functional outcome. The number of activated microglia, astrocytes, and cleaved caspase-3 positive neurons after ischemia/reperfusion injury were reduced, demonstrating that S1 cortical ES alleviates inflammation and apoptosis. Brain-derived neurotrophic factor (BDNF) and phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway were upregulated in the penumbra area, suggesting that BDNF/TrkB signals and their downstream PI3K/Akt signaling pathway play roles in ES-related neuroprotection. Conclusion: This study demonstrates that somatosensory cortical ES soon after reperfusion can attenuate ischemia/reperfusion injury and is a promising adjuvant therapy for thrombolytic treatment after acute ischemic stroke. Advanced techniques and devices for high-definition transcranial direct current stimulation still deserve further development in this regard.
Collapse
Affiliation(s)
- Liang-Chao Wang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Yen Wei
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Yi Wu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ping Chu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Center of Cell Therapy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
49
|
Ehsani F, Mortezanejad M, Yosephi MH, Daniali S, Jaberzadeh S. The effects of concurrent M1 anodal tDCS and physical therapy interventions on function of ankle muscles in patients with stroke: a randomized, double-blinded sham-controlled trial study. Neurol Sci 2021; 43:1893-1901. [PMID: 34476629 DOI: 10.1007/s10072-021-05503-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
One of the most common symptoms in stroke patients is spasticity. The aims were to investigate the effects of anodal trans-cranial direct current stimulation (a-tDCS) over the affected primary motor cortex (M1) on ankle plantar flexor spasticity and dorsiflexor muscle activity in stroke patients. The design of this study was a randomized sham-controlled clinical trial. Thirty-two participants with stroke were randomly assigned to three groups (experimental, sham, control groups). Participants in the experimental and sham groups received 10-session 20-min M1 a-tDCS concurrent with physical therapy (PT), while the control group only received 10-session PT. All groups were instructed to perform home stretching exercises and balance training. Berg Balance Scale (BBS), Modified Ashworth Scale (MAS) of plantar flexors, and EMG activity of lateral gastrocnemius (LG) and tibialis anterior (TA) were recorded during active and passive ankle dorsiflexion immediately and 1 month after interventions. A significant reduction was shown in MAS and EMG activity of LG during dorsiflexion, immediately and 1 month after intervention in the M1 a-tDCS group (p <0.001). BBS also significantly increased only in the M1 a-tDCS group (p <0.001). In addition, EMG activity of TA during active dorsiflexion increased immediately and 1 month after intervention in the M1 a-tDCS group (p <0.001). However, in the sham and control groups, EMG activity of TA increased immediately (p<0.001), while this was not maintained 1 month after intervention (p >0.05). PT concurrent with M1 a-tDCS can significantly prime lasting effects of decreasing LG spasticity, increasing TA muscle activity, and also balance in stroke patients.
Collapse
Affiliation(s)
- Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Centre, Semnan University of Medical Sciences, Semnan, Iran.
| | - Marzieh Mortezanejad
- Neuromuscular Rehabilitation Research Centre, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohaddeseh Hafez Yosephi
- Neuromuscular Rehabilitation Research Centre, Semnan University of Medical Sciences, Semnan, Iran
| | - Said Daniali
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Shapour Jaberzadeh
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
50
|
Malinova V, Bleuel K, Stadelmann C, Iliev B, Tsogkas I, Psychogios MN, Rohde V, Mielke D. The impact of transcranial direct current stimulation on cerebral vasospasm in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab 2021; 41:2000-2009. [PMID: 33504272 PMCID: PMC8323336 DOI: 10.1177/0271678x21990130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transcranial direct current stimulation (tDCS) has been shown to induce changes in cortical excitability and perfusion in a rat ischemic stroke model. Since perfusion disturbances are a common phenomenon, not only in ischemic but also in hemorrhagic stroke, tDCS might have a possible beneficial effect on cerebral perfusion in hemorrhagic stroke as well. We applied tDCS in a rat model of subarachnoid hemorrhage (SAH) and evaluated its impact on vasospasm. SAH was induced using the double-hemorrhage rat model. TDCS was applied on day 3 and 4. For vasospasm assessment magnetic resonance angiography was performed on day 1, day 2 and day 5. A total of 147 rats were operated, whereat 72 rats died before day 5 and 75 rats survived the whole experiment and could be analyzed. The cathodal group consisted of 26 rats, the anodal group included 24 rats. Thirteen rats served as controls without tDCS, and twelve rats underwent a sham operation. The cathodal group revealed the lowest incidence of new vasospasm on day 5 (p = 0.01), and the lowest mean number of vasospastic vessels per rat (p = 0.02). TDCS influences the vasospasm incidence in an SAH-model in rats, where cathodal-tDCS was associated with a lower vasospasm incidence and severity.
Collapse
Affiliation(s)
- Vesna Malinova
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Kim Bleuel
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Bogdan Iliev
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Ioannis Tsogkas
- Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Medicine Basel, Basel, Switzerland.,Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Marios N Psychogios
- Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Medicine Basel, Basel, Switzerland.,Department of Neuroradiology, University Medical Center Göttingen, Göttingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|