1
|
Zhang J, Ryu JY, Tirado SR, Dickinson LD, Abosch A, Aziz-Sultan MA, Boulos AS, Barrow DL, Batjer HH, Binyamin TR, Blackburn SL, Chang EF, Chen PR, Colby GP, Cosgrove GR, David CA, Day AL, Folkerth RD, Frerichs KU, Howard BM, Jahromi BR, Niemela M, Ojemann SG, Patel NJ, Richardson RM, Shi X, Valle-Giler EP, Wang AC, Welch BG, Williams Z, Zusman EE, Weiss ST, Du R. A Transcriptomic Comparative Study of Cranial Vasculature. Transl Stroke Res 2024; 15:1108-1122. [PMID: 37612482 DOI: 10.1007/s12975-023-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
In genetic studies of cerebrovascular diseases, the optimal vessels to use as controls remain unclear. Our goal is to compare the transcriptomic profiles among 3 different types of control vessels: superficial temporal artery (STA), middle cerebral arteries (MCA), and arteries from the circle of Willis obtained from autopsies (AU). We examined the transcriptomic profiles of STA, MCA, and AU using RNAseq. We also investigated the effects of using these control groups on the results of the comparisons between aneurysms and the control arteries. Our study showed that when comparing pathological cerebral arteries to control groups, all control groups presented similar responses in the activation of immunological processes, the regulation of intracellular signaling pathways, and extracellular matrix productions, despite their intrinsic biological differences. When compared to STA, AU exhibited upregulation of stress and apoptosis genes, whereas MCA showed upregulation of genes associated with tRNA/rRNA processing. Moreover, our results suggest that the matched case-control study design, which involves control STA samples collected from the same subjects of matched aneurysm samples in our study, can improve the identification of non-inherited disease-associated genes. Given the challenges associated with obtaining fresh intracranial arteries from healthy individuals, our study suggests that using MCA, AU, or paired STA samples as controls are feasible strategies for future large-scale studies investigating cerebral vasculopathies. However, the intrinsic differences of each type of control should be taken into consideration when interpreting the results. With the limitations of each control type, it may be most optimal to use multiple tissues as controls.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jee-Yeon Ryu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Selena-Rae Tirado
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Ali Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Alan S Boulos
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - H Hunt Batjer
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA
| | | | - Spiros L Blackburn
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Edward F Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - P Roc Chen
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Geoffrey P Colby
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Carlos A David
- Department of Neurosurgery, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Arthur L Day
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Rebecca D Folkerth
- Department of Forensic Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Kai U Frerichs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Brian M Howard
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Behnam R Jahromi
- Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemela
- Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado, Denver, CO, USA
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Xiangen Shi
- Department of Neurosurgery, Affiliated Fuxing Hospital, Capital Medical University, Beijing, China
| | | | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Babu G Welch
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Toader C, Radoi MP, Brehar FM, Serban M, Glavan LA, Covache-Busuioc RA, Ciurea AV, Dobrin N. Mirror Aneurysms of the Pericallosal Artery Clipped During a Single Surgical Procedure: Case Report and Literature Review. J Clin Med 2024; 13:6719. [PMID: 39597863 PMCID: PMC11594335 DOI: 10.3390/jcm13226719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/22/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Pericallosal artery aneurysms are rare, accounting for 2-9% of all intracranial aneurysms, and mirror aneurysms in this location are exceptionally uncommon, presenting unique surgical challenges due to their deep location and proximity to critical neurovascular structures. The aim of this case report is to describe the surgical management and successful outcome of a patient with mirror pericallosal artery aneurysms and to contribute insights into the clinical and surgical considerations for this rare condition. We report the case of a 71-year-old female with multiple cardiovascular and metabolic conditions, including hypertension and smoking-well-established risk factors for intracranial aneurysm formation and rupture. She presented with a Hunt and Hess grade II subarachnoid hemorrhage resulting in communicating internal hydrocephalus. Preoperative angiography revealed mirror aneurysms of the pericallosal artery. The patient underwent a left basal paramedian frontal craniotomy, during which a ruptured aneurysm on the right A2 segment and an unruptured aneurysm on the left A2 segment were identified. Both aneurysms were successfully clipped using curved Yasargil clips. Postoperative recovery was favorable, with no neurological deficits and stable imaging findings at a three-month follow-up. This case underscores the necessity for precise microsurgical intervention and a thorough understanding of pericallosal artery anatomy to manage such rare and challenging conditions effectively. The role of hyperlipidemia and statin use in intracranial aneurysm development remains debated and warrants further investigation. Our successful management of mirror pericallosal artery aneurysms contributes to the limited literature on this rare condition and highlights the importance of meticulous surgical techniques for favorable outcomes.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery “Carol Davila”, University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (L.-A.G.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Mugurel Petrinel Radoi
- Department of Neurosurgery “Carol Davila”, University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (L.-A.G.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Felix-Mircea Brehar
- Department of Neurosurgery, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Matei Serban
- Department of Neurosurgery “Carol Davila”, University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (L.-A.G.); (R.-A.C.-B.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery “Carol Davila”, University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (L.-A.G.); (R.-A.C.-B.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery “Carol Davila”, University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (L.-A.G.); (R.-A.C.-B.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery “Carol Davila”, University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.T.); (M.S.); (L.-A.G.); (R.-A.C.-B.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| | | |
Collapse
|
3
|
Crusius CU, Cambruzzi E, Crusius MU, Aguiar PHPD, Tognon AP, Crusius PS, Stefani MA. CD68 in Cerebral Aneurysms of Smokers and Nonsmokers: An Immunohistochemical Analysis. J Neurol Surg A Cent Eur Neurosurg 2024; 85:555-560. [PMID: 37586409 DOI: 10.1055/a-2155-2166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
BACKGROUND There is some evidence indicating that inflammation of the aneurysmal wall is related to aneurysmal growth and rupture. The presence of CD68 may indicate greater inflammatory activity. The objective of this study is to evaluate CD68 immunoexpression in surgically resected brain aneurysms and its association with smoking. METHODS The resected brain aneurysmal walls after microsurgical clipping were envoyed to immunohistochemistry investigation. The objective was to evaluate the expression of CD68 and CD34 antibodies. The associations between inflammatory markers, smoking, and rupture were tested using Fischer's exact test. RESULTS CD68 immunoexpression in the tunica media was associated with larger aneurysms: 7.0 mm (7.0-9.0 mm) versus 5.0 mm (3.5-5 mm; p = 0.011). There was no statistically significant association between smoking and CD68 expression in the tunica media (p = 0.234) or in either the tunica media or the tunica intima (p = 0.628). There was also no statistically significant association between hemorrhagic presentation of the aneurysm and CD68 expression in the tunica media (p = 0.689) or in either the tunica media or the tunica intima (p = 0.348). Therefore, the presence of CD68-positive cells in the aneurysmal walls indicates an association with size, especially if the tunica media is exclusively compromised (p = 0.011). CONCLUSION Immunohistochemistry investigation for CD68 antibodies was used to determine histiocytic infiltration. Adequately powered studies are necessary to further investigate the association between CD68-positive cells and both smoking history and hemorrhagic presentation of aneurysms.
Collapse
Affiliation(s)
- Cassiano Ughini Crusius
- Institute of Neurology and Neurosurgery of Passo Fundo, Passo Fundo, RS, Brazil
- Associação Hospitalar São Vicente de Paulo (HSVP), Passo Fundo, RS, Brazil
| | - Eduardo Cambruzzi
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Pathology, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, RS, Brazil
| | - Marcelo Ughini Crusius
- Institute of Neurology and Neurosurgery of Passo Fundo, Passo Fundo, RS, Brazil
- Associação Hospitalar São Vicente de Paulo (HSVP), Passo Fundo, RS, Brazil
- School of Medicine, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Paulo Henrique Pires de Aguiar
- Researcher of School of Medicine of ABC, Santo André, São Paulo, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo, Brazil
| | | | - Paulo Sérgio Crusius
- Institute of Neurology and Neurosurgery of Passo Fundo, Passo Fundo, RS, Brazil
- Associação Hospitalar São Vicente de Paulo (HSVP), Passo Fundo, RS, Brazil
| | - Marco Antônio Stefani
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Department of Neurosurgery, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
El Masri J, Al Sabsabi R, Ghazi M, Chrabrie A, Hawi J, Ouaini N, Jurjus A. Evidence for a Role of Gut Microbiota and Probiotics in Aneurysmal Pathogenesis and Possible Therapeutics: A Systematic Review of the Literature. High Blood Press Cardiovasc Prev 2024; 31:577-612. [PMID: 39548047 DOI: 10.1007/s40292-024-00681-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/25/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Several studies investigated the implication of the gut microbiota (GM) in the formation and progression of aneurysms, suggesting a key role for GM metabolites in aneurysmal pathogenesis and prognosis. AIM This systematic review aims to collect key findings concerning the impact of gut bacterial compositions, GM-related metabolites, probiotics administration, and inflammatory markers in aneurysmal development and rupture. METHODS A PubMed, Medline, Embase, and Web of Science database search was conducted in accordance with PRISMA guidelines for systematic reviews, targeting all studies assessing the GM's role in aneurysms till 2023. RESULTS Data from 19 out of 292 non-duplicated studies were included. Based on the published literature, aneurysmal incidents in several locations were accompanied by an alteration in specific intestinal bacteria that may affect the prognosis of the aneurysm. The gut dysbiosis was also accompanied by modifications in the metabolic pathways. Hence, the administration of specific probiotics showed a significant implication in reversing the GM-related changes that were affecting the aneurysm, leading to a decrease in its severity, a better prognosis, and even serving as a prophylactic approach. CONCLUSIONS The outcomes of this review highlight the role of GM in the pathogenesis of aneurysms, assessing some involved mechanistic pathways such as gut dysbiosis, inflammation, and the alteration of gut-derived metabolites levels, which orient new research on developing therapeutic strategies.
Collapse
Affiliation(s)
- Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Rahaf Al Sabsabi
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Antoine Chrabrie
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nain Ouaini
- Department of Agricultural and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
5
|
Rilianto B, Kurniawan RG, Prasetyo BT, Windiani PR, Gotama KT, Kusdiansah M, Arham A. Risk factors of cerebral aneurysms rupture in an Indonesian population. Neurol Res 2024; 46:989-995. [PMID: 38971160 DOI: 10.1080/01616412.2024.2376308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND The demographic, clinical, and angiographic features of ruptured aneurysms compared to unruptured cerebral aneurysms in Indonesia are still limited. This study aims to determine risk factors for rupture according to clinical patterns and morphological features in the Indonesian population. METHOD We retrospectively reviewed all cerebral aneurysm registries at the largest comprehensive stroke center in Indonesia from January 2019 to January 2022. We compared demographic and vascular risk factors as well as angiographic features between patients with ruptured and unruptured aneurysms with univariate and multivariate analyses. RESULTS Of 275 patients, 231 (84%) had ruptured cerebral aneurysms. We found a significant difference between the ruptured and unruptured groups in variables such as age, hypertension, dyslipidemia, smoking, location, and type of aneurysm. It was found that only the anterior circulation site (OR 4.91, 95% CI 1.47-16.48; p < 0.01) and saccular type (OR 5.45, 95% CI 1.42-20.93; p = 0.01) were significantly linked to ruptured aneurysms. CONCLUSION Our findings revealed that anterior location and saccular type were substantially linked with ruptured aneurysms in the Indonesian population.
Collapse
Affiliation(s)
- Beny Rilianto
- Neurointervention Division, Mahar Mardjono National Brain Center Hospital, East Jakarta, Indonesia
| | - Ricky Gusanto Kurniawan
- Neurointervention Division, Mahar Mardjono National Brain Center Hospital, East Jakarta, Indonesia
| | - Bambang Tri Prasetyo
- Neurointervention Division, Mahar Mardjono National Brain Center Hospital, East Jakarta, Indonesia
| | - Pratiwi Raissa Windiani
- Neurointervention Division, Mahar Mardjono National Brain Center Hospital, East Jakarta, Indonesia
| | - Kelvin Theandro Gotama
- Neurointervention Division, Mahar Mardjono National Brain Center Hospital, East Jakarta, Indonesia
| | - Muhammad Kusdiansah
- Department of Neurosurgery, Mahar Mardjono National Brain Center Hospital, East Jakarta, Indonesia
| | - Abrar Arham
- Department of Neurosurgery, Mahar Mardjono National Brain Center Hospital, East Jakarta, Indonesia
| |
Collapse
|
6
|
Kumar M, Patel K, Chinnapparaj S, Sharma T, Aggarwal A, Singla N, Karthigeyan M, Singh A, Sahoo SK, Tripathi M, Takkar A, Gupta T, Pal A, Attri SV, Bansal YS, Ratho RK, Gupta SK, Khullar M, Vashishta RK, Mukherjee KK, Grover VK, Prasad R, Chatterjee A, Gowda H, Bhagat H. Dysregulated Genes and Signaling Pathways in the Formation and Rupture of Intracranial Aneurysm. Transl Stroke Res 2024; 15:865-879. [PMID: 37644376 DOI: 10.1007/s12975-023-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 08/31/2023]
Abstract
Intracranial aneurysm (IA) has the potential to rupture. Despite scientific advances, we are still not in a position to screen patients for IA and identify those at risk of rupture. It is critical to comprehend the molecular basis of disease to facilitate the development of novel diagnostic strategies. We used transcriptomics to identify the dysregulated genes and understand their role in the disease biology. In particular, RNA-Seq was performed in tissue samples of controls, unruptured IA, and ruptured IA. Dysregulated genes (DGs) were identified and analyzed to understand the functional aspects of molecules. Subsequently, candidate genes were validated at both transcript and protein level. There were 314 DGs in patients with unruptured IA when compared to control samples. Out of these, SPARC and OSM were validated as candidate molecules in unruptured IA. PI3K-AKT signaling pathway was found to be an important pathway for the formation of IA. Similarly, 301 DGs were identified in the samples of ruptured IA when compared with unruptured IAs. CTSL was found to be a key candidate molecule which along with Hippo signaling pathway may be involved in the rupture of IA. We conclude that activation of PI3K-AKT signaling pathway by OSM along with up-regulation of SPARC is important for the formation of IA. Further, regulation of Hippo pathway through PI3K-AKT signaling results in the down-regulation of YAP1 gene. This along with up-regulation of CTSL leads to further weakening of aneurysm wall and its subsequent rupture.
Collapse
Affiliation(s)
- Munish Kumar
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Krishna Patel
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Shobia Chinnapparaj
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tanavi Sharma
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Aggarwal
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Singla
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhivanan Karthigeyan
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Apinderpreet Singh
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sushanta Kumar Sahoo
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aastha Takkar
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tulika Gupta
- Department of Anatomy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Arnab Pal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Savita Verma Attri
- Pediatric Biochemistry, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yogender Singh Bansal
- Department of Forensic Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Radha Kanta Ratho
- Department of Virology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunil K Gupta
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakesh Kumar Vashishta
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan Kumar Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vinod Kumar Grover
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajendra Prasad
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Harsha Gowda
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Hemant Bhagat
- Division of Neuro-anesthesia, Department of Anesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
7
|
Chlorogiannis DD, Aloizou AM, Chlorogiannis A, Kosta N, Sänger JA, Chatziioannou A, Papanagiotou P. Exploring the latest findings on endovascular treatments for giant aneurysms: a review. Rev Neurosci 2024; 35:451-461. [PMID: 38158880 DOI: 10.1515/revneuro-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Giant intracranial aneurysms represent a very challenging aspect of aneurysmal pathophysiology with very high mortality and morbidity if left untreated. Their variety in clinical presentation (subarachnoid hemorrhage, cranial nerve palsy, etc.) and pathological and imaging properties (location, anatomy, presence of collateral circulation) pose serious questions regarding the best treatment option. Admirable advances have been achieved in surgical techniques, while endovascular modalities with flow diversion techniques have become widely used. However, there is still lack of data regarding whether a single endovascular technique can be the universal treatment for such cases. In this review, we aim to summarize the current funds of knowledge concerning giant intracranial aneurysms and the role of endovascular management in their treatment.
Collapse
Affiliation(s)
| | - Athina-Maria Aloizou
- Department of Neurology, St. Josef-Hospital, Ruhr Universität Bochum, 44791Bochum, Germany
| | - Anargyros Chlorogiannis
- Department of Health Economics, Policy and Management, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nefeli Kosta
- Department of Biology, University of Patras, 265 04 Patras, Greece
| | | | - Achilles Chatziioannou
- First Department of Radiology, School of Medicine, National & Kapodistrian University of Athens, Areteion Hospital, 115 28 Athens, Greece
| | - Panagiotis Papanagiotou
- First Department of Radiology, School of Medicine, National & Kapodistrian University of Athens, Areteion Hospital, 115 28 Athens, Greece
- Department of Diagnostic and Interventional Neuroradiology, Hospital Bremen-Mitte/Bremen-Ost, 28205 Bremen, Germany
| |
Collapse
|
8
|
de Nys CM, Liang ES, Prior M, Woodruff MA, Novak JI, Murphy AR, Li Z, Winter CD, Allenby MC. Time-of-Flight MRA of Intracranial Aneurysms with Interval Surveillance, Clinical Segmentation and Annotations. Sci Data 2024; 11:555. [PMID: 38816429 PMCID: PMC11139857 DOI: 10.1038/s41597-024-03397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Intracranial aneurysms (IAs) are present in 2-6% of the global population and can be catastrophic upon rupture with a mortality rate of 30-50%. IAs are commonly detected through time-of-flight magnetic resonance angiography (TOF-MRA), however, this data is rarely available for research and training purposes. The provision of imaging resources such as TOF-MRA images is imperative to develop new strategies for IA detection, rupture prediction, and surgical training. To support efforts in addressing data availability bottlenecks, we provide an open-access TOF-MRA dataset comprising 63 patients, of which 24 underwent interval surveillance imaging by TOF-MRA. Patient scans were evaluated by a neuroradiologist, providing aneurysm and vessel segmentations, clinical annotations, 3D models, in addition to 3D Slicer software environments containing all this data for each patient. This dataset is the first to provide interval surveillance imaging for supporting the understanding of IA growth and stability. This dataset will support computational and experimental research into IA dynamics and assist surgical and radiology training in IA treatment.
Collapse
Affiliation(s)
- Chloe M de Nys
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
- Herston Biofabrication Institute, The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Ee Shern Liang
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Medical Imaging, The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Marita Prior
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Medical Imaging, The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Maria A Woodruff
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - James I Novak
- Herston Biofabrication Institute, The Royal Brisbane and Women's Hospital, Brisbane, Australia
- School of Architecture, Design and Planning, The University of Queensland, Brisbane, Australia
| | - Ashley R Murphy
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia
| | - Zhiyong Li
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
| | - Craig D Winter
- Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Australia
- Kenneth G Jaimieson Department of Neurosurgery, The Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Mark C Allenby
- School of Chemical Engineering, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Ushio Y, Kataoka H, Akagawa H, Sato M, Manabe S, Kawachi K, Makabe S, Akihisa T, Seki M, Teraoka A, Iwasa N, Yoshida R, Tsuchiya K, Nitta K, Hoshino J, Mochizuki T. Factors associated with early-onset intracranial aneurysms in patients with autosomal dominant polycystic kidney disease. J Nephrol 2024; 37:983-992. [PMID: 38315279 DOI: 10.1007/s40620-023-01866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/14/2023] [Indexed: 02/07/2024]
Abstract
BACKGROUND Recently, the importance of attribute-based medicine has been emphasized. The effects of early-onset intracranial aneurysms on patients can be significant and long-lasting. Herein, we compared the factors associated with intracranial aneurysms in patients with autosomal dominant polycystic kidney disease (ADPKD) according to age categories (≥ 50 years, < 50 years). METHODS We included 519 ADPKD patients, with a median age of 44 years, estimated glomerular filtration rate of 54.5 mL/min/1.73 m2, and total follow-up duration of 3104 patient-years. Logistic regression analyses were performed to determine factors associated with intracranial aneurysms. RESULTS Regarding the presence of intracranial aneurysm, significant interactions were identified between the age category (age ≥ 50 years), female sex (P = 0.0027 for the interaction) and hypertension (P = 0.0074 for the interaction). Female sex and hypertension were associated with intracranial aneurysm risk factors only in patients aged ≥ 50 years. The presence of intracranial aneurysm was significantly associated with chronic kidney disease (CKD) stages 4-5 (odds ratio [OR] = 3.87, P = 0.0007) and family history of intracranial aneurysm or subarachnoid hemorrhage (OR = 2.30, P = 0.0217) in patients aged < 50 years. For patients aged ≥ 50 years, in addition to the abovementioned factors [OR = 2.38, P = 0.0355 for CKD stages 4-5; OR = 3.49, P = 0.0094 for family history of intracranial aneurysm or subarachnoid hemorrhage], female sex (OR = 4.51, P = 0.0005), and hypertension (OR = 5.89, P = 0.0012) were also associated with intracranial aneurysm. CONCLUSION Kidney dysfunction and family history of intracranial aneurysm or subarachnoid hemorrhage are risk factors for early-onset intracranial aneurysm. Patients aged < 50 years with a family history of intracranial aneurysm or subarachnoid hemorrhage or with CKD stages 4-5 may be at an increased risk of early-onset intracranial aneurysm.
Collapse
Affiliation(s)
- Yusuke Ushio
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Hiroshi Kataoka
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo, Japan
| | - Masayo Sato
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shun Manabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Keiko Kawachi
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Taro Akihisa
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Momoko Seki
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Atsuko Teraoka
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Naomi Iwasa
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Rie Yoshida
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Junichi Hoshino
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| |
Collapse
|
10
|
Toader C, Eva L, Bratu BG, Covache-Busuioc RA, Costin HP, Dumitrascu DI, Glavan LA, Corlatescu AD, Ciurea AV. Intracranial Aneurysms and Genetics: An Extensive Overview of Genomic Variations, Underlying Molecular Dynamics, Inflammatory Indicators, and Forward-Looking Insights. Brain Sci 2023; 13:1454. [PMID: 37891822 PMCID: PMC10605587 DOI: 10.3390/brainsci13101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
This review initiates by outlining the clinical relevance of IA, underlining the pressing need to comprehend its foundational elements. We delve into the assorted risk factors tied to IA, spotlighting both environmental and genetic influences. Additionally, we illuminate distinct genetic syndromes linked to a pronounced prevalence of intracranial aneurysms, underscoring the pivotal nature of genetics in this ailment's susceptibility. A detailed scrutiny of genome-wide association studies allows us to identify key genomic changes and locations associated with IA risk. We further detail the molecular and physiopathological dynamics instrumental in IA's evolution and escalation, with a focus on inflammation's role in affecting the vascular landscape. Wrapping up, we offer a glimpse into upcoming research directions and the promising horizons of personalized therapeutic strategies in IA intervention, emphasizing the central role of genetic insights. This thorough review solidifies genetics' cardinal role in IA, positioning it as a cornerstone resource for professionals in the realms of neurology and genomics.
Collapse
Affiliation(s)
- Corneliu Toader
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Department of Vascular Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania
| | - Lucian Eva
- Department of Neurosurgery, Dunarea de Jos University, 800010 Galati, Romania
- Department of Neurosurgery, Clinical Emergency Hospital “Prof. Dr. Nicolae Oblu”, 700309 Iasi, Romania
| | - Bogdan-Gabriel Bratu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Razvan-Adrian Covache-Busuioc
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Horia Petre Costin
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - David-Ioan Dumitrascu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Luca-Andrei Glavan
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Antonio Daniel Corlatescu
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
| | - Alexandru Vlad Ciurea
- Department of Neurosurgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.T.); (R.-A.C.-B.); (H.P.C.); (D.-I.D.); (L.-A.G.); (A.D.C.); (A.V.C.)
- Neurosurgery Department, Sanador Clinical Hospital, 010991 Bucharest, Romania
| |
Collapse
|
11
|
Wang S, Kang Y, Qi F, Jin H. Genetics of hair graying with age. Ageing Res Rev 2023; 89:101977. [PMID: 37276979 DOI: 10.1016/j.arr.2023.101977] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Hair graying is an early and obvious phenotypic and physiological trait with age in humans. Several recent advances in molecular biology and genetics have increased our understanding of the mechanisms of hair graying, which elucidate genes related to the synthesis, transport, and distribution of melanin in hair follicles, as well as genes regulating these processes above. Therefore, we review these advances and examine the trends in the genetic aspects of hair graying from enrichment theory, Genome-Wide association studies, whole exome sequencing, gene expression studies, and animal models for hair graying with age, aiming to overview the changes in hair graying at the genetic level and establish the foundation for future research. Meanwhile, by summarizing the genetics, it's of great value to explore the possible mechanism, treatment, or even prevention of hair graying with age.
Collapse
Affiliation(s)
- Sifan Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China
| | - Yuanbo Kang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan1#, Dongcheng District, Beijing 100730, P.R.China
| | - Fei Qi
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China.
| |
Collapse
|
12
|
Shima Y, Sasagawa S, Ota N, Oyama R, Tanaka M, Kubota-Sakashita M, Kawakami H, Kobayashi M, Takubo N, Ozeki AN, Sun X, Kim YJ, Kamatani Y, Matsuda K, Maejima K, Fujita M, Noda K, Kamiyama H, Tanikawa R, Nagane M, Shibahara J, Tanaka T, Rikitake Y, Mataga N, Takahashi S, Kosaki K, Okano H, Furihata T, Nakaki R, Akimitsu N, Wada Y, Ohtsuka T, Kurihara H, Kamiguchi H, Okabe S, Nakafuku M, Kato T, Nakagawa H, Saito N, Nakatomi H. Increased PDGFRB and NF-κB signaling caused by highly prevalent somatic mutations in intracranial aneurysms. Sci Transl Med 2023; 15:eabq7721. [PMID: 37315111 DOI: 10.1126/scitranslmed.abq7721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/23/2023] [Indexed: 06/16/2023]
Abstract
Intracranial aneurysms (IAs) are a high-risk factor for life-threatening subarachnoid hemorrhage. Their etiology, however, remains mostly unknown at present. We conducted screening for sporadic somatic mutations in 65 IA tissues (54 saccular and 11 fusiform aneurysms) and paired blood samples by whole-exome and targeted deep sequencing. We identified sporadic mutations in multiple signaling genes and examined their impact on downstream signaling pathways and gene expression in vitro and an arterial dilatation model in mice in vivo. We identified 16 genes that were mutated in at least one IA case and found that these mutations were highly prevalent (92%: 60 of 65 IAs) among all IA cases examined. In particular, mutations in six genes (PDGFRB, AHNAK, OBSCN, RBM10, CACNA1E, and OR5P3), many of which are linked to NF-κB signaling, were found in both fusiform and saccular IAs at a high prevalence (43% of all IA cases examined). We found that mutant PDGFRBs constitutively activated ERK and NF-κB signaling, enhanced cell motility, and induced inflammation-related gene expression in vitro. Spatial transcriptomics also detected similar changes in vessels from patients with IA. Furthermore, virus-mediated overexpression of a mutant PDGFRB induced a fusiform-like dilatation of the basilar artery in mice, which was blocked by systemic administration of the tyrosine kinase inhibitor sunitinib. Collectively, this study reveals a high prevalence of somatic mutations in NF-κB signaling pathway-related genes in both fusiform and saccular IAs and opens a new avenue of research for developing pharmacological interventions.
Collapse
Affiliation(s)
- Yasuyuki Shima
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Neurodegenerative Disorders Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shota Sasagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nakao Ota
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Rieko Oyama
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Minoru Tanaka
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Innovative Cancer Therapy and Department of Surgical Neuro-Oncology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Mie Kubota-Sakashita
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hirochika Kawakami
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Mika Kobayashi
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Naoko Takubo
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | | | - Xiaoning Sun
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Yeon-Jeong Kim
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yoichiro Kamatani
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | - Kazuhiro Maejima
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Masashi Fujita
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kosumo Noda
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Hiroyasu Kamiyama
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Rokuya Tanikawa
- Department of Neurosurgery, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Motoo Nagane
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Junji Shibahara
- Department of Pathology, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
| | - Toru Tanaka
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Yoshiyuki Rikitake
- Laboratory of Medical Pharmaceutics, Kobe Pharmaceutical University, Kobe, Hyogo 658-8558, Japan
| | - Nobuko Mataga
- Support Unit for Bio-Material Analysis, Research Resources Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-0005, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University Faculty of Medicine, Tokyo 160-0016, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo 160-0016, Japan
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan
- International Center for Brain Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Tomomi Furihata
- Laboratory of Clinical Pharmacy and Experimental Therapeutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | - Youichiro Wada
- Isotope Science Center, University of Tokyo, Tokyo 113-0032, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hiroki Kurihara
- Department of Molecular Cell Biology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| | - Hiroyuki Kamiguchi
- Laboratory for Neural Cell Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Tokyo 113-8654, Japan
- Brain Medical Science Collaboration Division, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Masato Nakafuku
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo 113-0033, Japan
| | - Hidewaki Nakagawa
- Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| | - Hirofumi Nakatomi
- Biomedical Neural Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Department of Neurosurgery, Faculty of Medicine, Kyorin University, Mitaka, Tokyo 181-8611, Japan
- Department of Neurosurgery, Graduate School of Medicine, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
13
|
Yi H, Yang Z, Bramlage LC, Ludwig BR. Morphology and Hemodynamics of Cerebral Arteries and Aneurysms in a Rare Pair of Monozygotic Twins. Diagnostics (Basel) 2023; 13:2004. [PMID: 37370899 DOI: 10.3390/diagnostics13122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
In this preliminary study, the underlying pathophysiology mechanisms of cerebral aneurysms (CAs) in monozygotic twins (MTs) were investigated via a rare pair of MTs (twin A and twin B) involving four reconstructed arterial models using preclinical information. First, dimensions and configurated outlines of three-perspective geometries were compared. Adopting an in-vitro validated numerical CA model, hemodynamic characteristics were investigated in the MTs, respectively. Despite expected genetic similarities, morphological comparisons show that configurations of cerebral arteries exhibit significant differences between the twins. The ICA size of twin A is larger than that in twin B (2.23~25.86%), varying with specific locations, attributing to variations during embryological developments and environmental influences. Numerical modeling indicates the MTs have some hemodynamic similarities such as pressure distributions (~13,400 Pa) and their oscillatory shear index (OSI) (0~0.49), but present significant differences in local regions. Specifically, the difference in blood flow rate in the MTs is from 16% to 221%, varying with specifically compared arteries. The maximum time-averaged wall shear stress (53.6 Pa vs. 37.8 Pa) and different local OSI distributions were also observed between the MTs. The findings revealed that morphological variations in MTs could be generated by embryological and environmental factors, further influencing hemodynamic characteristics on CA pathophysiology.
Collapse
Affiliation(s)
- Hang Yi
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| | - Zifeng Yang
- Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
| | - Luke C Bramlage
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E Apple St., Dayton, OH 45409, USA
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| | - Bryan R Ludwig
- Division of NeuroInterventional Surgery, Department of Neurology, Wright State University/Premier Health-Clinical Neuroscience Institute, 30E Apple St., Dayton, OH 45409, USA
- Boonshoft School of Medicine, Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
14
|
Nowicki KW, Mittal AM, Abou-Al-Shaar H, Rochlin EK, Lang MJ, Gross BA, Friedlander RM. A Future Blood Test to Detect Cerebral Aneurysms. Cell Mol Neurobiol 2023:10.1007/s10571-023-01346-4. [PMID: 37046105 DOI: 10.1007/s10571-023-01346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023]
Abstract
Intracranial aneurysms are reported to affect 2-5% of the population. Despite advances in the surgical management of this disease, diagnostic technologies have marginally improved and still rely on expensive or invasive imaging procedures. Currently, there is no blood-based test to detect cerebral aneurysm formation or quantify the risk of rupture. The aim of this review is to summarize current literature on the mechanism of aneurysm formation, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future blood-based test. Efforts should be focused on clinical-translational approaches to create an assay to screen for cerebral aneurysm presence and risk-stratify patients to allow for superior treatment timing and management. Cerebral Aneurysm Blood Test Considerations: There are multiple caveats to development of a putative blood test to detect cerebral aneurysm presence.
Collapse
Affiliation(s)
- Kamil W Nowicki
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Aditya M Mittal
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Hussam Abou-Al-Shaar
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emma K Rochlin
- Loyola University Stritch School of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Michael J Lang
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Bradley A Gross
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Robert M Friedlander
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Snigdha M, Akter A, Amin MA, Islam MZ. Bioinformatics approach to analyse COVID-19 biomarkers accountable for generation of intracranial aneurysm in COVID-19 patients. INFORMATICS IN MEDICINE UNLOCKED 2023; 39:101247. [PMID: 37159621 PMCID: PMC10141791 DOI: 10.1016/j.imu.2023.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
COVID-19 became a health emergency on January 30, 2020. SARS-CoV-2 is the causative agent of the coronavirus disease known as COVID-19 and can develop cardiometabolic and neurological disorders. Intracranial aneurysm (IA) is considered the most significant reason for hemorrhagic stroke,and it accounts for approximately 85% of all subarachnoid hemorrhages (SAH). Retinoid signaling abnormalities may explain COVID-19's pathogenesis with inhibition of AEH2, from which COVID-19 infection may enhance aneurysm formation and rupture due to abrupt blood pressure changes, endothelial cell injury, and systemic inflammation. The objective of this study was to investigate the potential biomarkers, differentially expressed genes (DEGs), and metabolic pathways associated with both COVID-19 and intracranial aneurysm (IA) using simulation databases like DIsGeNET. The purpose was to confirm prior findings and gain a comprehensive understanding of the underlying mechanisms that contribute to the development of these conditions. We combined the regulated genes to describe intracranial aneurysm formation in COVID-19. To determine DEGs in COVID-19 and IA patient tissues, we compared gene expression transcriptomic datasets from healthy and diseased individuals. There were 41 differentially expressed genes (DEGs) shared by both the COVID-19 and IA datasets (27 up-regulated genes and 14 down-regulated genes). Using protein-protein interaction analysis, we were able to identify hub proteins (C3, NCR1, IL10RA, OXTR, RSAD2, CD38, IL10RB, MX1, IL10, GFAP, IFIT3, XAF1, USP18, OASL, IFI6, EPSTI1, CMPK2, and ISG15), which were not described as key proteins for both COVID-19 and IA before. We also used Gene Ontology analysis (6 significant ontologies were validated), Pathway analysis (the top 20 were validated), TF-Gene interaction analysis, Gene miRNA analysis, and Drug-Protein interaction analysis methods to comprehend the extensive connection between COVID-19 and IA. In Drug-Protein interaction analysis, we have gotten the following three drugs: LLL-3348, CRx139, and AV41 against IL10 which was both common for COVID-19 and IA disease. Our study with different cabalistic methods has showed the interaction between the proteins and pathways with drug analysis which may direct further treatment development for certain diseases.
Collapse
Affiliation(s)
- Mahajabin Snigdha
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | - Azifa Akter
- Department of Pharmacy, Islamic University, Kushtia, 7003, Bangladesh
| | - Md Al Amin
- Department of Computer Science & Engineering, Prime University, Dhaka, 1216, Bangladesh
| | - Md Zahidul Islam
- Department of Information & Communication Technology, Islamic University, Kushtia, 7003, Bangladesh
| |
Collapse
|
16
|
Hale AT, He J, Jones J. Integrative Genomics Analysis Implicates Decreased FGD6 Expression Underlying Risk of Intracranial Aneurysm Rupture. NEUROSURGERY OPEN 2022. [DOI: 10.1227/neuopn.0000000000000025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
17
|
Jin J, Duan J, Du L, Xing W, Peng X, Zhao Q. Inflammation and immune cell abnormalities in intracranial aneurysm subarachnoid hemorrhage (SAH): Relevant signaling pathways and therapeutic strategies. Front Immunol 2022; 13:1027756. [PMID: 36505409 PMCID: PMC9727248 DOI: 10.3389/fimmu.2022.1027756] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Intracranial aneurysm subarachnoid hemorrhage (SAH) is a cerebrovascular disorder associated with high overall mortality. Currently, the underlying mechanisms of pathological reaction after aneurysm rupture are still unclear, especially in the immune microenvironment, inflammation, and relevant signaling pathways. SAH-induced immune cell population alteration, immune inflammatory signaling pathway activation, and active substance generation are associated with pro-inflammatory cytokines, immunosuppression, and brain injury. Crosstalk between immune disorders and hyperactivation of inflammatory signals aggravated the devastating consequences of brain injury and cerebral vasospasm and increased the risk of infection. In this review, we discussed the role of inflammation and immune cell responses in the occurrence and development of aneurysm SAH, as well as the most relevant immune inflammatory signaling pathways [PI3K/Akt, extracellular signal-regulated kinase (ERK), hypoxia-inducible factor-1α (HIF-1α), STAT, SIRT, mammalian target of rapamycin (mTOR), NLRP3, TLR4/nuclear factor-κB (NF-κB), and Keap1/nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/ARE cascades] and biomarkers in aneurysm SAH. In addition, we also summarized potential therapeutic drugs targeting the aneurysm SAH immune inflammatory responses, such as nimodipine, dexmedetomidine (DEX), fingolimod, and genomic variation-related aneurysm prophylactic agent sunitinib. The intervention of immune inflammatory responses and immune microenvironment significantly reduces the secondary brain injury, thereby improving the prognosis of patients admitted to SAH. Future studies should focus on exploring potential immune inflammatory mechanisms and developing additional therapeutic strategies for precise aneurysm SAH immune inflammatory regulation and genomic variants associated with aneurysm formation.
Collapse
Affiliation(s)
- Jing Jin
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Duan
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Leiya Du
- 4Department of Oncology, The Second People Hospital of Yibin, Yibin, Sichuan, China
| | - Wenli Xing
- Department of Cerebrovascular Disease, Suining Central Hospital, Suining, Sichuan, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| | - Qijie Zhao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China,*Correspondence: Qijie Zhao, ; Xingchen Peng,
| |
Collapse
|
18
|
Hale AT, He J, Jones J. Multinational Genome-Wide Association Study and Functional Genomics Analysis Implicates Decreased SIRT3 Expression Underlying Intracranial Aneurysm Risk. Neurosurgery 2022; 91:625-632. [PMID: 35838494 DOI: 10.1227/neu.0000000000002082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The genetic mechanisms regulating intracranial aneurysm (IA) formation and rupture are largely unknown. To identify germline-genetic risk factors for IA, we perform a multinational genome-wide association study (GWAS) of individuals from the United Kingdom, Finland, and Japan. OBJECTIVE To identify a shared, multinational genetic basis of IA. METHODS Using GWAS summary statistics from UK Biobank, FinnGen, and Biobank Japan, we perform a meta-analysis of IA, containing ruptured and unruptured IA cases. Logistic regression was used to identify IA-associated single-nucleotide polymorphisms. Effect size was calculated using the coefficient r , estimating the contribution of the single-nucleotide polymorphism to the genetic variance of the trait. Genome-wide significance was set at 5.0 × 10 -8 . Expression quantitative trait loci mapping and functional genomics approaches were used to infer mechanistic consequences of implicated variants. RESULTS Our cohort contained 155 154 individuals (3132 IA cases and 152 022 controls). We identified 4 genetic loci reaching genome-wide: rs73392700 ( SIRT3 , effect size = 0.28, P = 4.3 × 10 -12 ), rs58721068 ( EDNRA , effect size = -0.20, P = 4.8 × 10 -12 ), rs4977574 ( AL359922.1 , effect size = 0.18, P = 7.9 × 10 -12 ), and rs11105337 ( ATP2B1 , effect size = -0.15, P = 3.4 × 10 -8 ). Expression quantitative trait loci mapping suggests that rs73392700 has a large effect size on SIRT3 gene expression in arterial and muscle, but not neurological, tissues. Functional genomics analysis suggests that rs73392700 causes decreased SIRT3 gene expression. CONCLUSION We perform a multinational GWAS of IA and identify 4 genetic risk loci, including 2 novel IA risk loci ( SIRT3 and AL359922.1 ). Identification of high-risk genetic loci across ancestries will enable population-genetic screening approaches to identify patients with IA.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jesse Jones
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Genome-wide linkage analysis combined with genome sequencing in large families with intracranial aneurysms. Eur J Hum Genet 2022; 30:833-840. [PMID: 35228681 PMCID: PMC9259640 DOI: 10.1038/s41431-022-01059-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rupture of an intracranial aneurysm (IA) leads to aneurysmal subarachnoid haemorrhage (ASAH), a severe type of stroke. Some rare variants that cause IA in families have been identified, but still, the majority of genetic causes, as well as the biological mechanisms of IA development and rupture, remain unknown. We aimed to identify rare, damaging variants for IA in three large Dutch families with multiple affected members with IA (N = 9, 11, and 6). By combining linkage analysis and genome sequencing (GS), we identified six rare and damaging variants for which all cases within one of the families were heterozygous. These variants were p.Tyr87Cys in SYCP1, p.Phe1077Leu in FMNL2, p.Thr754Lys in TBC1D2, p.Arg321His in ZNF782, p.Arg979Trp in CCDC180, and p.Val125Met in NCBP1. None of the variants showed association with IA status in a large cohort of 937 patients from the general IA patient population and 1046 controls. Gene expression in IA and cerebral artery tissue further prioritized FMNL2 and TBC1D2 as potential important players in IA pathophysiology. Further studies are needed to characterize the functional consequences of the identified variants and their role in the biological mechanisms of IA.
Collapse
|
20
|
The Cerebral Arterial Wall in the Development and Growth of Intracranial Aneurysms. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A considerable number of people harbor intracranial aneurysms (IA), which is a focal or segmental disease of the arterial wall. The pathophysiologic mechanisms of IAs formation, growth, and rupture are complex. The mechanism also differs with respect to the type of aneurysm. In broad aspects, aneurysms may be considered a disease of the vessel wall. In addition to the classic risk factors and the genetic/environmental conditions, altered structural and pathologic events along with the interaction of the surrounding environment and luminal flow dynamics contribute to the aneurysm’s development and growth. In this review, we have tried to simplify the complex interaction of a multitude of events in relation to vessel wall in the formation and growth of IAs.
Collapse
|
21
|
Diagbouga MR, Morel S, Cayron AF, Haemmerli J, Georges M, Hierck BP, Allémann E, Lemeille S, Bijlenga P, Kwak BR. Primary cilia control endothelial permeability by regulating expression and location of junction proteins. Cardiovasc Res 2022; 118:1583-1596. [PMID: 33974072 PMCID: PMC9074981 DOI: 10.1093/cvr/cvab165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 05/09/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Wall shear stress (WSS) determines intracranial aneurysm (IA) development. Polycystic kidney disease (PKD) patients have a high IA incidence and risk of rupture. Dysfunction/absence of primary cilia in PKD endothelial cells (ECs) may impair mechano-transduction of WSS and favour vascular disorders. The molecular links between primary cilia dysfunction and IAs are unknown. METHODS AND RESULTS Wild-type and primary cilia-deficient Tg737orpk/orpk arterial ECs were submitted to physiological (30 dynes/cm2) or aneurysmal (2 dynes/cm2) WSS, and unbiased transcriptomics were performed. Tg737orpk/orpk ECs displayed a fivefold increase in the number of WSS-responsive genes compared to wild-type cells. Moreover, we observed a lower trans-endothelial resistance and a higher endothelial permeability, which correlated with disorganized intercellular junctions in Tg737orpk/orpk cells. We identified ZO-1 as a central regulator of primary cilia-dependent endothelial junction integrity. Finally, clinical and histological characteristics of IAs from non-PKD and PKD patients were analysed. IAs in PKD patients were more frequently located in the middle cerebral artery (MCA) territory than in non-PKD patients. IA domes from the MCA of PKD patients appeared thinner with less collagen and reduced endothelial ZO-1 compared with IA domes from non-PKD patients. CONCLUSION Primary cilia dampen the endothelial response to aneurysmal low WSS. In absence of primary cilia, ZO-1 expression levels are reduced, which disorganizes intercellular junctions resulting in increased endothelial permeability. This altered endothelial function may not only contribute to the severity of IA disease observed in PKD patients, but may also serve as a potential diagnostic tool to determine the vulnerability of IAs.
Collapse
Affiliation(s)
- Mannekomba R Diagbouga
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Neurosurgery Division, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Anne F Cayron
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Julien Haemmerli
- Neurosurgery Division, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Marc Georges
- Neurosurgery Division, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Beerend P Hierck
- Department of Anatomy and Embryology, Leiden University Medical Center, Eindhovenweg 20, 2333ZC Leiden, the Netherlands
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Geneva University Hospitals and University of Geneva, Rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| |
Collapse
|
22
|
Silva MA, Chen S, Starke RM. Unruptured cerebral aneurysm risk stratification: Background, current research, and future directions in aneurysm assessment. Surg Neurol Int 2022; 13:182. [PMID: 35509527 PMCID: PMC9062958 DOI: 10.25259/sni_1112_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Background: The optimal management of unruptured cerebral aneurysms is widely debated in the medical field. Rapid technology advances, evolving understanding of underlying pathophysiology, and shifting practice patterns have made the cerebrovascular field particularly dynamic in recent years. Despite progress, there remains a dearth of large randomized studies to help guide the management of these controversial patients. Methods: We review the existing literature on the natural history of unruptured cerebral aneurysms and highlight ongoing research aimed at improving our ability to stratify risk in these patients. Results: Landmark natural history studies demonstrated the significance of size, location, and other risk factors for aneurysm rupture, but prior studies have significant limitations. We have begun to understand the underlying pathophysiology behind aneurysm formation and rupture and are now applying new tools such as flow dynamics simulations and machine learning to individualize rupture risk stratification. Conclusion: Prior studies have identified several key risk factors for aneurysmal rupture, but have limitations. New technology and research methods have enabled us to better understanding individual rupture risk for patients with unruptured cerebral aneurysms.
Collapse
|
23
|
Sporns PB, Fullerton HJ, Lee S, Kim H, Lo WD, Mackay MT, Wildgruber M. Childhood stroke. Nat Rev Dis Primers 2022; 8:12. [PMID: 35210461 DOI: 10.1038/s41572-022-00337-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 01/09/2023]
Abstract
Stroke is an important cause of neurological morbidity in children; most survivors have permanent neurological deficits that affect the remainder of their life. Stroke in childhood, the focus of this Primer, is distinguished from perinatal stroke, defined as stroke before 29 days of age, because of its unique pathogenesis reflecting the maternal-fetal unit. Although approximately 15% of strokes in adults are haemorrhagic, half of incident strokes in children are haemorrhagic and half are ischaemic. The causes of childhood stroke are distinct from those in adults. Urgent brain imaging is essential to confirm the stroke diagnosis and guide decisions about hyperacute therapies. Secondary stroke prevention strongly depends on the underlying aetiology. While the past decade has seen substantial advances in paediatric stroke research, the quality of evidence for interventions, such as the rapid reperfusion therapies that have revolutionized arterial ischaemic stroke care in adults, remains low. Substantial time delays in diagnosis and treatment continue to challenge best possible care. Effective primary stroke prevention strategies in children with sickle cell disease represent a major success, yet barriers to implementation persist. The multidisciplinary members of the International Pediatric Stroke Organization are coordinating global efforts to tackle these challenges and improve the outcomes in children with cerebrovascular disease.
Collapse
Affiliation(s)
- Peter B Sporns
- Department of Neuroradiology, Clinic of Radiology & Nuclear Medicine, University Hospital Basel, Basel, Switzerland.,Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Heather J Fullerton
- Departments of Neurology and Pediatrics, Benioff Children's Hospital, University of California at San Francisco, San Francisco, CA, USA
| | - Sarah Lee
- Division of Child Neurology, Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Helen Kim
- Departments of Anesthesia and Perioperative Care, and Epidemiology and Biostatistics, Center for Cerebrovascular Research, University of California at San Francisco, San Francisco, CA, USA
| | - Warren D Lo
- Departments of Pediatrics and Neurology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH, USA
| | - Mark T Mackay
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Moritz Wildgruber
- Department of Radiology, University Hospital Munich, LMU Munich, Munich, Germany.
| |
Collapse
|
24
|
Fine-mapping of intracranial aneurysm susceptibility based on a genome-wide association study. Sci Rep 2022; 12:2717. [PMID: 35177760 PMCID: PMC8854430 DOI: 10.1038/s41598-022-06755-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/04/2022] [Indexed: 12/22/2022] Open
Abstract
In addition to conventional genome-wide association studies (GWAS), a fine-mapping analysis is increasingly used to identify the genetic function of variants associated with disease susceptibilities. Here, we used a fine-mapping approach to evaluate candidate variants based on a previous GWAS involving patients with intracranial aneurysm (IA). A fine-mapping analysis was conducted based on the chromosomal data provided by a GWAS of 250 patients diagnosed with IA and 296 controls using posterior inclusion probability (PIP) and log10 transformed Bayes factor (log10BF). The narrow sense of heritability (h2) explained by each candidate variant was estimated. Subsequent gene expression and functional network analyses of candidate genes were used to calculate transcripts per million (TPM) values. Twenty single-nucleotide polymorphisms (SNPs) surpassed a genome-wide significance threshold for creditable evidence (log10BF > 6.1). Among them, four SNPs, rs75822236 (GBA; log10BF = 15.06), rs112859779 (TCF24; log10BF = 12.12), rs79134766 (OLFML2A; log10BF = 14.92), and rs371331393 (ARHGAP32; log10BF = 20.88) showed a completed PIP value in each chromosomal region, suggesting a higher probability of functional candidate variants associated with IA. On the contrary, these associations were not shown clearly under different replication sets. Our fine-mapping analysis suggested that four functional candidate variants of GBA, TCF24, OLFML2A, and ARHGAP32 were linked to IA susceptibility and pathogenesis. However, this approach could not completely replace replication sets based on large-scale data. Thus, caution is required when interpreting results of fine-mapping analysis.
Collapse
|
25
|
Ćmiel-Smorzyk K, Kawlewska E, Wolański W, Hebda A, Ładziński P, Kaspera W. Morphometry of cerebral arterial bifurcations harbouring aneurysms: a case-control study. BMC Neurol 2022; 22:49. [PMID: 35144578 PMCID: PMC8830006 DOI: 10.1186/s12883-022-02559-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Background Conclusions from studies evaluating vessel dimensions and their deviations from values resulting from the principle of minimum work (PMW) on the formation of intracranial aneurysms (IAs) are still inconclusive. Our study aimed to perform a morphometric analysis of cerebral arterial bifurcations harbouring aneurysms. Methods The study comprised 147 patients with basilar artery (BA) and middle cerebral artery (MCA) aneurysms and 106 patients constituting the control group. The following morphometric parameters were evaluated: the radii of vessels forming the bifurcation, the junction exponent, the values of the bifurcation angles (Φ1 and Φ2 angles between the parent vessel trunk axis and the larger or smaller branches, respectively; α angle, the total bifurcation angle) and the difference between the predicted optimal and observed branch angles. Results The analysed parameters for internal carotid artery (ICA) bifurcations were not significantly different among the groups. The MCA and BA bifurcation angles and the radii of the parent MCA and BA vessels with aneurysms were significantly higher than those of the control group. The differences between the predicted optimal and observed branch angles were significantly higher for BA and MCA bifurcations with aneurysms compared to the control group. The mean junction exponent for bifurcations in the circle of Willis (i.e., ICA and BA bifurcations, respectively) and MCA bifurcations with aneurysms was significantly lower than the theoretical optimum and did not significantly differ among the groups. In a multilevel multivariate logistic regression analysis, the branch angles and the radius from the parent vessel were significant independent predictors of the presence of an IA. The ROC analysis indicated that the α angle was the best performer in discriminating between aneurysmal and nonaneurysmal bifurcations. Conclusions The dimensions of the arteries forming the circle of Willis do not follow the PMW. Deviation from the energetically optimum geometry for bifurcations beyond the circle of Willis (particularly, a larger radius of the parent artery and a wider total bifurcation angle) may lead to the formation of IAs. Further studies are warranted to investigate the significance of vessel dimensions and the bifurcation angle on the magnitude of shear stress in the walls of arterial bifurcations.
Collapse
Affiliation(s)
- K Ćmiel-Smorzyk
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, 41-200, Sosnowiec, Poland
| | - E Kawlewska
- Department of Biomechatronics, Silesian University of Technology, Zabrze, Poland
| | - W Wolański
- Department of Biomechatronics, Silesian University of Technology, Zabrze, Poland
| | - A Hebda
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - P Ładziński
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, 41-200, Sosnowiec, Poland
| | - W Kaspera
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, 41-200, Sosnowiec, Poland.
| |
Collapse
|
26
|
Lefèvre S, Audrézet MP, Halimi JM, Longuet H, Bridoux F, Ecotière L, Augusto JF, Duveau A, Renaudineau E, Vigneau C, Frouget T, Charasse C, Gueguen L, Perrichot R, Couvrat G, Seret G. Diagnosis and Risk Factors for Intracranial Aneurysms in Autosomal Polycystic Kidney Disease: A cross-sectional study from the Genkyst Cohort. Nephrol Dial Transplant 2022; 37:2223-2233. [PMID: 35108395 DOI: 10.1093/ndt/gfac027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is associated with an increased risk for developing intracranial aneurysms (IAs). We aimed to evaluate the frequency of diagnosis of IAs in the cross-sectional, population-based, Genkyst cohort, to describe ADPKD-associated IAs and to analyze the risk factors associated with the occurrence of IAs in ADPKD patients. METHODS Cross-sectional study performed in 26 nephrology centers from the Western part of France. All patients underwent genetic testing for PKD1/PKD2 and other cystogenes. RESULTS Among the 2449 Genkyst participants, 114 (4.65%) had a previous diagnosis of ruptured or unruptured IAs at inclusion, and ∼47% of them had a positive familial history for IAs. Most aneurysms were small and saccular and located in the anterior circulation; 26.3% of the patients had multiple IAs. The cumulative probabilities of a previous diagnosis of IAs were 3.9, 6.2 and 8.1% at 50, 60 and 70 y, respectively. While this risk appeared to be similar in male and female individuals <50 y, after that age, the risk continued to increase more markedly in female patients, reaching 10.8% vs 5.4% at 70 y. The diagnosis rate of IAs was more than twofold higher in PKD1 compared to PKD2 with no influence of PKD1 mutation type or location. In multivariate analysis, female sex, hypertension <35 y, smoking and PKD1 genotype were associated with an increased risk for diagnosis of IAs. CONCLUSIONS This study presents epidemiological data reflecting real-life clinical practice. The increased risk for IAs in postmenopausal women suggests a possible protective role of estrogen.
Collapse
Affiliation(s)
- Siriane Lefèvre
- Service de Néphrologie, Hémodialyse et Transplantation rénale, CHRU Brest, Brest 29609, France.,Univ Brest, Inserm, UMR 1078, GGB, Brest, France
| | - Marie-Pierre Audrézet
- Univ Brest, Inserm, UMR 1078, GGB, Brest, France.,Service de génétique moléculaire, CHRU Brest, Brest, France
| | - Jean-Michel Halimi
- Service de Néphrologie-HTA, dialyses, transplantation rénale, Centre Hospitalier Universitaire de Tours, Tours, France.,Université de Tours, Tours, France
| | - Hélène Longuet
- Service de Néphrologie-HTA, dialyses, transplantation rénale, Centre Hospitalier Universitaire de Tours, Tours, France
| | - Frank Bridoux
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Laure Ecotière
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Jean-François Augusto
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Angers, Angers, France
| | - Agnès Duveau
- Service de Néphrologie, Hémodialyse et Transplantation rénale Centre Hospitalier Universitaire de Angers, Angers, France
| | - Eric Renaudineau
- Service de Néphrologie, Centre hospitalier Broussais, Saint-Malo, France
| | - Cécile Vigneau
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | | - Christophe Charasse
- Service de Néphrologie, Centre Hospitalier Yves Le Foll, Saint Brieuc, France
| | - Lorraine Gueguen
- Service de Néphrologie, Centre Hospitalier de Cornouaille, Quimper, France
| | - Régine Perrichot
- Service de Néphrologie, Centre Hospitalier de Bretagne Atlantique, Vannes, France
| | - Grégoire Couvrat
- Service de Néphrologie, Centre Hospitalier Départemental Vendée, La Roche sur Yon, France
| | | | | |
Collapse
|
27
|
Acosta JM, Cayron AF, Dupuy N, Pelli G, Foglia B, Haemmerli J, Allémann E, Bijlenga P, Kwak BR, Morel S. Effect of Aneurysm and Patient Characteristics on Intracranial Aneurysm Wall Thickness. Front Cardiovasc Med 2021; 8:775307. [PMID: 34957259 PMCID: PMC8692777 DOI: 10.3389/fcvm.2021.775307] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/16/2021] [Indexed: 11/30/2022] Open
Abstract
Background: The circle of Willis is a network of arteries allowing blood supply to the brain. Bulging of these arteries leads to formation of intracranial aneurysm (IA). Subarachnoid hemorrhage (SAH) due to IA rupture is among the leading causes of disability in the western world. The formation and rupture of IAs is a complex pathological process not completely understood. In the present study, we have precisely measured aneurysmal wall thickness and its uniformity on histological sections and investigated for associations between IA wall thickness/uniformity and commonly admitted risk factors for IA rupture. Methods: Fifty-five aneurysm domes were obtained at the Geneva University Hospitals during microsurgery after clipping of the IA neck. Samples were embedded in paraffin, sectioned and stained with hematoxylin-eosin to measure IA wall thickness. The mean, minimum, and maximum wall thickness as well as thickness uniformity was measured for each IA. Clinical data related to IA characteristics (ruptured or unruptured, vascular location, maximum dome diameter, neck size, bottleneck factor, aspect and morphology), and patient characteristics [age, smoking, hypertension, sex, ethnicity, previous SAH, positive family history for IA/SAH, presence of multiple IAs and diagnosis of polycystic kidney disease (PKD)] were collected. Results: We found positive correlations between maximum dome diameter or neck size and IA wall thickness and thickness uniformity. PKD patients had thinner IA walls. No associations were found between smoking, hypertension, sex, IA multiplicity, rupture status or vascular location, and IA wall thickness. No correlation was found between patient age and IA wall thickness. The group of IAs with non-uniform wall thickness contained more ruptured IAs, women and patients harboring multiple IAs. Finally, PHASES and ELAPSS scores were positively correlated with higher IA wall heterogeneity. Conclusion: Among our patient and aneurysm characteristics of interest, maximum dome diameter, neck size and PKD were the three factors having the most significant impact on IA wall thickness and thickness uniformity. Moreover, wall thickness heterogeneity was more observed in ruptured IAs, in women and in patients with multiple IAs. Advanced medical imaging allowing in vivo measurement of IA wall thickness would certainly improve personalized management of the disease and patient care.
Collapse
Affiliation(s)
- Jason M. Acosta
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Anne F. Cayron
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Nicolas Dupuy
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Graziano Pelli
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Bernard Foglia
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julien Haemmerli
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Philippe Bijlenga
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Brenda R. Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- *Correspondence: Sandrine Morel
| |
Collapse
|
28
|
Kawabata S, Takagaki M, Nakamura H, Oki H, Motooka D, Nakamura S, Nishida T, Terada E, Izutsu N, Takenaka T, Matsui Y, Yamada S, Asai K, Tateishi A, Umehara T, Yano Y, Bamba Y, Matsumoto K, Kishikawa T, Okada Y, Iida T, Kishima H. Dysbiosis of Gut Microbiome Is Associated With Rupture of Cerebral Aneurysms. Stroke 2021; 53:895-903. [PMID: 34727738 DOI: 10.1161/strokeaha.121.034792] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Environmental factors are important with respect to the rupture of cerebral aneurysms. However, the relationship between the gut microbiome, an environmental factor, and aneurysm rupture is unclear. Therefore, we compared the gut microbiome in patients with unruptured intracranial aneurysms (UIAs) and ruptured aneurysms (RAs) to identify the specific bacteria causing the rupture of cerebral aneurysms. METHODS A multicenter, prospective case-control study was conducted over one year from 2019 to 2020. The fecal samples of patients with stable UIAs and RAs immediately after onset were collected. Their gut microbiomes were analyzed using 16S rRNA sequencing. Subsequently, a phylogenetic tree was constructed, and polymerase chain reaction was performed to identify the specific species. RESULTS A total of 28 RAs and 33 UIAs were included in this study. There was no difference in patient characteristics between RAs and UIAs: age, sex, hypertension, dyslipidemia, diabetes status, body mass index, and smoking. No difference was observed in alpha diversity; however, beta diversity was significantly different in the unweighted UniFrac distances. At the phylum level, the relative abundance of Campylobacter in the RA group was larger than that in the UIA group. Furthermore, the gut microbiome in the RA and UIA groups exhibited significantly different taxonomies. However, Campylobacter was focused on because it is widely known as pathogenic among these bacteria. Then, a phylogenetic tree of operational taxonomic units related to Campylobacter was constructed and 4 species were identified. Polymerase chain reaction for these species identified that the abundance of the genus Campylobacter and Campylobacter ureolyticus was significantly higher in the RA group. CONCLUSIONS The gut microbiome profile of patients with stable UIAs and RAs were significantly different. The genus Campylobacter and Campylobacter ureolyticus may be associated with the rupture of cerebral aneurysms.
Collapse
Affiliation(s)
- Shuhei Kawabata
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Masatoshi Takagaki
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Hajime Nakamura
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Hiroya Oki
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Japan. (H.O., D.M., S.N., T.I.)
| | - Daisuke Motooka
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Japan. (H.O., D.M., S.N., T.I.)
| | - Shota Nakamura
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Japan. (H.O., D.M., S.N., T.I.)
| | - Takeo Nishida
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Eisaku Terada
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Nobuyuki Izutsu
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Tomofumi Takenaka
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Yuichi Matsui
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Shuhei Yamada
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| | - Katsunori Asai
- Department of Neurosurgery, Osaka Neurological Institute, Toyonaka, Japan (K.A., A.T.)
| | - Akihiro Tateishi
- Department of Neurosurgery, Osaka Neurological Institute, Toyonaka, Japan (K.A., A.T.)
| | - Toru Umehara
- Department of Neurosurgery, Hanwa Memorial Hospital, Osaka, Japan (T.U., Y.Y.)
| | - Yoshihiro Yano
- Department of Neurosurgery, Hanwa Memorial Hospital, Osaka, Japan (T.U., Y.Y.)
| | - Yohei Bamba
- Department of Neurosurgery, Iseikai Hospital, Osaka, Japan (Y.B., K.M.)
| | - Katsumi Matsumoto
- Department of Neurosurgery, Iseikai Hospital, Osaka, Japan (Y.B., K.M.)
| | - Toshihiro Kishikawa
- Department of Otorhinolaryngology - Head and Neck Surgery, Osaka University Graduate School of Medicine, Japan. (T.K.).,Department of Statistical Genetics, Osaka University Graduate School of Medicine, Japan. (T.K., Y.O.)
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Japan. (T.K., Y.O.).,Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Japan. (Y.O.).,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan. (Y.O.)
| | - Tetsuya Iida
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases (RIMD), Osaka University, Japan. (H.O., D.M., S.N., T.I.)
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Japan. (S.K., M.T., H.N., T.N., E.T., N.I., T.T., Y.M., S.Y., H.K.)
| |
Collapse
|
29
|
Madhusankha KHD, Rathnayaka D, Samaranayake M, Dharmasiri M, Wickramasingha R. Fourteen-Year-Old Boy With Intracranial Internal Carotid Artery Aneurysm Presenting as Mood Disorder. Cureus 2021; 13:e18324. [PMID: 34722088 PMCID: PMC8549576 DOI: 10.7759/cureus.18324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 12/03/2022] Open
Abstract
Intracranial aneurysms (IA) are very uncommon to find in the pediatric population. If present, it is usually associated with other genetic illnesses. Most of the intracranial aneurysm has been presented due to mass effect of the aneurysm or as subarachnoid hemorrhage. We report this young Asian kid who has had a possible ictus of subarachnoid hemorrhage (SAH) with depressive symptoms, later presenting with classic features of SAH due to rupture of intracranial internal carotid artery aneurysm. The use of Sertraline to treat depressive episodes may aggregate the condition due to its antiplatelet effect. The patient showed significant improvement following microsurgical clipping of the aneurysm. This case is another example that young patients coming with the first episode of mood disorder should be carefully excluded for other intracranial pathology, including intracranial aneurysms, before coming to the final diagnosis.
Collapse
Affiliation(s)
| | - Dilruk Rathnayaka
- Department of Emergency Medicine, National Hospital Sri Lanka, Colombo, LKA
| | | | - Mahima Dharmasiri
- Department of Emergency Medicine, National Hospital Kandy, Kandy, LKA
| | | |
Collapse
|
30
|
Morel S, Schilling S, Diagbouga MR, Delucchi M, Bochaton-Piallat ML, Lemeille S, Hirsch S, Kwak BR. Effects of Low and High Aneurysmal Wall Shear Stress on Endothelial Cell Behavior: Differences and Similarities. Front Physiol 2021; 12:727338. [PMID: 34721060 PMCID: PMC8551710 DOI: 10.3389/fphys.2021.727338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Intracranial aneurysms (IAs) result from abnormal enlargement of the arterial lumen. IAs are mostly quiescent and asymptomatic, but their rupture leads to severe brain damage or death. As the evolution of IAs is hard to predict and intricates medical decision, it is essential to improve our understanding of their pathophysiology. Wall shear stress (WSS) is proposed to influence IA growth and rupture. In this study, we investigated the effects of low and supra-high aneurysmal WSS on endothelial cells (ECs). Methods: Porcine arterial ECs were exposed for 48 h to defined levels of shear stress (2, 30, or 80 dyne/cm2) using an Ibidi flow apparatus. Immunostaining for CD31 or γ-cytoplasmic actin was performed to outline cell borders or to determine cell architecture. Geometry measurements (cell orientation, area, circularity and aspect ratio) were performed on confocal microscopy images. mRNA was extracted for RNAseq analysis. Results: ECs exposed to low or supra-high aneurysmal WSS were more circular and had a lower aspect ratio than cells exposed to physiological flow. Furthermore, they lost the alignment in the direction of flow observed under physiological conditions. The effects of low WSS on differential gene expression were stronger than those of supra-high WSS. Gene set enrichment analysis highlighted that extracellular matrix proteins, cytoskeletal proteins and more particularly the actin protein family were among the protein classes the most affected by shear stress. Interestingly, most genes showed an opposite regulation under both types of aneurysmal WSS. Immunostainings for γ-cytoplasmic actin suggested a different organization of this cytoskeletal protein between ECs exposed to physiological and both types of aneurysmal WSS. Conclusion: Under both aneurysmal low and supra-high WSS the typical arterial EC morphology molds to a more spherical shape. Whereas low WSS down-regulates the expression of cytoskeletal-related proteins and up-regulates extracellular matrix proteins, supra-high WSS induces opposite changes in gene expression of these protein classes. The differential regulation in EC gene expression observed under various WSS translate into a different organization of the ECs’ architecture. This adaptation of ECs to different aneurysmal WSS conditions may affect vascular remodeling in IAs.
Collapse
Affiliation(s)
- Sandrine Morel
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Neurosurgery Division, Department of Clinical Neurosciences, Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sabine Schilling
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland.,Institute of Tourism and Mobility, Lucerne School of Business, Lucerne University of Applied Sciences and Arts, Lucerne, Switzerland
| | - Mannekomba R Diagbouga
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Matteo Delucchi
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sven Hirsch
- Institute of Applied Simulation, Zurich University of Applied Sciences, Wädenswil, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
31
|
Song Y, Lee JK, Lee JO, Kwon B, Seo EJ, Suh DC. Whole Exome Sequencing in Patients with Phenotypically Associated Familial Intracranial Aneurysm. Korean J Radiol 2021; 23:101-111. [PMID: 34668355 PMCID: PMC8743149 DOI: 10.3348/kjr.2021.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 08/03/2021] [Indexed: 11/24/2022] Open
Abstract
Objective Familial intracranial aneurysms (FIAs) are found in approximately 6%–20% of patients with intracranial aneurysms (IAs), suggesting that genetic predisposition likely plays a role in its pathogenesis. The aim of this study was to identify possible IA-associated variants using whole exome sequencing (WES) in selected Korean families with FIA. Materials and Methods Among the 26 families in our institutional database with two or more IA-affected first-degree relatives, three families that were genetically enriched (multiple, early onset, or common site involvement within the families) for IA were selected for WES. Filtering strategies, including a family-based approach and knowledge-based prioritization, were applied to derive possible IA-associated variants from the families. A chromosomal microarray was performed to detect relatively large chromosomal abnormalities. Results Thirteen individuals from the three families were sequenced, of whom seven had IAs. We noted three rare, potentially deleterious variants (PLOD3 c.1315G>A, NTM c.968C>T, and CHST14 c.58C>T), which are the most promising candidates among the 11 potential IA-associated variants considering gene-phenotype relationships, gene function, co-segregation, and variant pathogenicity. Microarray analysis did not reveal any significant copy number variants in the families. Conclusion Using WES, we found that rare, potentially deleterious variants in PLOD3, NTM, and CHST14 genes are likely responsible for the subsets of FIAs in a cohort of Korean families.
Collapse
Affiliation(s)
- Yunsun Song
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong-Keuk Lee
- Asan Institute of Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ok Lee
- Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Boseong Kwon
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboratory Medicine, Medical Genetics Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Dae Chul Suh
- Division of Neurointervention Clinic, Department of Radiology, Neurointervention Clinic, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
32
|
Abstract
Rupture of an intracranial aneurysm leads to aneurysmal subarachnoid hemorrhage, a severe type of stroke which is, in part, driven by genetic variation. In the past 10 years, genetic studies of IA have boosted the number of known genetic risk factors and improved our understanding of the disease. In this review, we provide an overview of the current status of the field and highlight the latest findings of family based, sequencing, and genome-wide association studies. We further describe opportunities of genetic analyses for understanding, prevention, and treatment of the disease.
Collapse
Affiliation(s)
- Mark K Bakker
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| | - Ynte M Ruigrok
- University Medical Center Utrecht Brain Center, Department of Neurology and Neurosurgery, University Medical Center Utrecht, the Netherlands
| |
Collapse
|
33
|
Zhong A, Ding N, Zhou Y, Yang G, Peng Z, Zhang H, Chai X. Identification of Hub Genes Associated with the Pathogenesis of Intracranial Aneurysm via Integrated Bioinformatics Analysis. Int J Gen Med 2021; 14:4039-4050. [PMID: 34354366 PMCID: PMC8331219 DOI: 10.2147/ijgm.s320396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND At present, the pathogenesis of intracranial aneurysms (IA) remains unclear, which significantly hinders the development of novel strategies for the clinical treatment. In this study, bioinformatics methods were used to identify the potential hub genes and pathways associated with the pathogenesis of IA. METHODS The gene expression datasets of patients with intracranial aneurysm were downloaded from the Gene Expression Database (GEO), and the different data sets were integrated by the robust rank aggregation (RRA) method to identify the differentially expressed genes between patients with intracranial aneurysm and the controls. The functional enrichment analyses of the significant differentially expressed genes (DEGs) were performed and the protein-protein interaction (PPI) network was constructed; thereafter, the hub genes were screened by cytoHubba plug-in of Cytoscape, and finally sequencing dataset GSE122897 was used to verify the hub genes. RESULTS The GSE15629, GSE75436, GSE26969, and GSE6551 expression profiles have been included in this study, including 34 intracranial aneurysm samples and 26 control samples. The four datasets obtained 136 significant DEGs (45 up-regulated, 91 down-regulated). Enrichment analysis showed that the extracellular matrix structural constituent and the ECM-receptor interaction were closely related to the occurrence of IA. It was finally determined that eight hub genes associated with the development of IA, including VCAN, COL1A1, COL11A1, COL5A1, COL5A2, POSTN, THBS2, and CDH2. CONCLUSION The discovery of potential hub genes and pathways could enhance the understanding of the molecular mechanisms associated with the development of IA. These hub genes may be potential therapeutic targets for the management and new biomarker for the diagnosis of IA.
Collapse
Affiliation(s)
- Aifang Zhong
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Ning Ding
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yang Zhou
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Zhenyu Peng
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Hongliang Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Trauma center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
34
|
Rustenhoven J, Tanumihardja C, Kipnis J. Cerebrovascular Anomalies: Perspectives From Immunology and Cerebrospinal Fluid Flow. Circ Res 2021; 129:174-194. [PMID: 34166075 DOI: 10.1161/circresaha.121.318173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Appropriate vascular function is essential for the maintenance of central nervous system homeostasis and is achieved through virtue of the blood-brain barrier; a specialized structure consisting of endothelial, mural, and astrocytic interactions. While appropriate blood-brain barrier function is typically achieved, the central nervous system vasculature is not infallible and cerebrovascular anomalies, a collective terminology for diverse vascular lesions, are present in meningeal and cerebral vasculature supplying and draining the brain. These conditions, including aneurysmal formation and rupture, arteriovenous malformations, dural arteriovenous fistulas, and cerebral cavernous malformations, and their associated neurological sequelae, are typically managed with neurosurgical or pharmacological approaches. However, increasing evidence implicates interacting roles for inflammatory responses and disrupted central nervous system fluid flow with respect to vascular perturbations. Here, we discuss cerebrovascular anomalies from an immunologic angle and fluid flow perspective. We describe immune contributions, both common and distinct, to the formation and progression of diverse cerebrovascular anomalies. Next, we summarize how cerebrovascular anomalies precipitate diverse neurological sequelae, including seizures, hydrocephalus, and cognitive effects and possible contributions through the recently identified lymphatic and glymphatic systems. Finally, we speculate on and provide testable hypotheses for novel nonsurgical therapeutic approaches for alleviating neurological impairments arising from cerebrovascular anomalies, with a particular emphasis on the normalization of fluid flow and alleviation of inflammation through manipulations of the lymphatic and glymphatic central nervous system clearance pathways.
Collapse
Affiliation(s)
- Justin Rustenhoven
- Center for Brain Immunology and Glia (J.R., J.K.), Washington University in St. Louis, St Louis, MO.,Department of Pathology and Immunology, School of Medicine (J.R., J.K.), Washington University in St. Louis, St Louis, MO
| | | | - Jonathan Kipnis
- Center for Brain Immunology and Glia (J.R., J.K.), Washington University in St. Louis, St Louis, MO.,Department of Pathology and Immunology, School of Medicine (J.R., J.K.), Washington University in St. Louis, St Louis, MO
| |
Collapse
|
35
|
Huguenard AL, Gupta VP, Braverman AC, Dacey RG. Genetic and heritable considerations in patients or families with both intracranial and extracranial aneurysms. J Neurosurg 2021; 134:1999-2006. [PMID: 33386011 DOI: 10.3171/2020.8.jns203234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna L Huguenard
- 1Department of Neurosurgery, Washington University in St. Louis; and
| | - Vivek P Gupta
- 1Department of Neurosurgery, Washington University in St. Louis; and
| | - Alan C Braverman
- 2Cardiovascular Division, Department of Medicine, Washington University in St. Louis, Missouri
| | - Ralph G Dacey
- 1Department of Neurosurgery, Washington University in St. Louis; and
| |
Collapse
|
36
|
Peptidomic profiling of cerebrospinal fluid from patients with intracranial saccular aneurysms. J Proteomics 2021; 240:104188. [PMID: 33781962 DOI: 10.1016/j.jprot.2021.104188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 01/05/2023]
Abstract
Intracranial saccular aneurysms (ISA) represent 90%-95% of all intracranial aneurysm cases, characterizing abnormal pockets at arterial branch points. Ruptures lead to subarachnoid hemorrhages (SAH) and poor prognoses. We applied mass spectrometry-based peptidomics to investigate the peptidome of twelve cerebrospinal fluid (CSF) samples collected from eleven patients diagnosed with ISA. For peptide profile analyses, participants were classified into: 1) ruptured intracranial saccular aneurysms (RIA), 2) unruptured intracranial saccular aneurysms (UIA), and late-ruptured intracranial saccular aneurysms (LRIA). Altogether, a total of 2199 peptides were detected by both Mascot and Peaks software, from which 484 (22.0%) were unique peptides. All unique peptides presented conserved chains, domains, regions of protein modulation and/or post-translational modification sites related to human diseases. Gene Ontology (GO) analyses of peptide precursor proteins showed that 42% are involved in binding, 56% in cellular anatomical entities, and 39% in intercellular signaling molecules. Unique peptides identified in patients diagnosed with RIA have a larger molecular weight and a distinctive developmental process compared to UIA and LRIA (P ≤ 0.05). Continued investigations will allow the characterization of the biological and clinical significance of the peptides identified in the present study, as well as identify prototypes for peptide-based pharmacological therapies to treat ISA. SIGNIFICANCE.
Collapse
|
37
|
Associations between Inflammatory Cytokine Gene Polymorphisms and Susceptibilities to Intracranial Aneurysm in Chinese Population. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8865601. [PMID: 33511216 PMCID: PMC7826207 DOI: 10.1155/2021/8865601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023]
Abstract
Intracranial aneurysm (IA) is a complex disease caused by genetic and environmental factors. Evidence indicates that inflammation plays an important role in IA occurrence. We aimed to explore the associations between inflammatory cytokine gene polymorphisms and IA in a Chinese population. This study enrolled 768 participants of Han ethnicity, including 384 patients with IA and 384 healthy individuals. Sixteen single nucleotide polymorphisms (SNPs) of IL1, IL6, IL12, and TNF-α genes were genotyped using the Sequenom MassARRAY platform. Univariate and multivariate logistic regression analyses were used to analyze the associations. We found IL12B rs3181216 was significantly associated with IA in the recessive and additive models (OR = 0.46, 95% CI = 0.23–0.89, P = 0.022; OR = 0.74, 95% CI = 0.56–0.98, P = 0.034, respectively). TNF-α rs1799964 was associated with IA in dominant and additive models (OR = 0.67, 95% CI = 0.46–0.98, P = 0.041; OR = 0.71, 95% CI = 0.51–0.98, P = 0.034, respectively). IL1A rs17561 was associated with single IA susceptibility (dominant model: OR = 0.52, 95% CI = 0.31–0.85, P = 0.040). The IL12B rs3181216 polymorphism was associated with single IA susceptibility in the recessive model (OR = 0.41, 95% CI = 0.18–0.93, P = 0.033). The IL12B rs2195940 polymorphism was associated with multiple IAs susceptibility (dominant model: OR = 0.28, 95% CI = 0.09–0.89, P = 0.031; additive model: OR = 0.28, 95% CI = 0.09–0.90, P = 0.032). TNF-α rs1799964 was associated with multiple IAs susceptibility in the dominant model (OR = 0.54, 95% CI = 0.30–0.97, P = 0.040). No associations were found between other polymorphisms and IA susceptibility. Therefore, IL1A, IL12B, and TNF-α gene polymorphisms are associated with IA susceptibility in a Chinese population.
Collapse
|
38
|
Chu C, Xu G, Li X, Duan Z, Tao L, Cai H, Yang M, Zhang X, Chen B, Zheng Y, Shi H, Li X. Sustained expression of MCP-1 induced low wall shear stress loading in conjunction with turbulent flow on endothelial cells of intracranial aneurysm. J Cell Mol Med 2020; 25:110-119. [PMID: 33332775 PMCID: PMC7810920 DOI: 10.1111/jcmm.15868] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Shear stress was reported to regulate the expression of AC007362, but its underlying mechanisms remain to be explored. In this study, to isolate endothelial cells of blood vessels, unruptured and ruptured intracranial aneurysm (IA) tissues were collected from IA patients. Subsequently, quantitative real‐time PCR (qRT‐PCR), Western blot and luciferase assay were performed to investigate the relationships between AC007362, miRNAs‐493 and monocyte chemoattractant protein‐1 (MCP‐1) in human umbilical vein endothelial cells (HUVECs) exposed to shear stress. Reduced representation bisulphite sequencing (RRBS) was performed to assess the level of DNA methylation in AC007362 promoter. Accordingly, AC007362 and MCP‐1 were significantly up‐regulated while miR‐493 was significantly down‐regulated in HUVECs exposed to shear stress. AC007362 could suppress the miR‐493 expression and elevate the MCP‐1 expression, and miR‐493 was shown to respectively target AC007362 and MCP‐1. Moreover, shear stress in HUVECs led to the down‐regulated DNA methyltransferase 1 (DNMT1), as well as the decreased DNA methylation level of AC007362 promoter. Similar results were also observed in ruptured IA tissues when compared with unruptured IA tissues. In conclusion, this study presented a deep insight into the operation of the regulatory network of AC007362, miR‐493 and MCP‐1 upon shear stress. Under shear stress, the expression of AC007362 was enhanced by the inhibited promoter DNA methylation, while the expression of MCP‐1 was enhanced by sponging the expression of miR‐493.
Collapse
Affiliation(s)
- Cheng Chu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Gang Xu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaocong Li
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zuowei Duan
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lihong Tao
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongxia Cai
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Ming Yang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xinjiang Zhang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Chen
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yanyu Zheng
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Hongcan Shi
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| |
Collapse
|
39
|
Yu T, Jiang H, Fan Y, Xu Y, Wang N. The association of CDKN2BAS gene polymorphisms and intracranial aneurysm: A meta-analysis. Medicine (Baltimore) 2020; 99:e23209. [PMID: 33285697 PMCID: PMC7717858 DOI: 10.1097/md.0000000000023209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracranial aneurysm (IA) is one of the main causes of subarachnoid hemorrhage (SAH) leading to a high percentage of disability and mortality worldwide. In addition to environmental factors, the risk of rupture or prognosis of intracranial aneurysm is also closely related to gene. Thus, a lot of genetic studies have been used to explore associated risk genes as well as variant loci of intracranial aneurysm and found several chromosome variates including 9p21.3 (CDKN2BAS) related to Intracranial aneurysm. However, due to differences in population and the existence of SNP, it is still not determined that whether these genetic changes can be identified as independent risk factors for intracranial aneurysm. Therefore, we performed a meta-analysis of CDKN2BAS SNPs to explore its association with intracranial aneurysms and the results show a significance relation between rs10757272, rs1333040, and rs6475606 with intracranial aneurysm. This will open a new perspective for future intracranial aneurysm gene research and therapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Neurosurgery, Tiantai People's Hospital, Taizhou
| | - Hailong Jiang
- Department of Neurosurgery, Tiantai People's Hospital, Taizhou
| | - Yunren Fan
- Department of Neurosurgery, Tiantai People's Hospital, Taizhou
| | - Yunfeng Xu
- Department of Neurosurgery, Tiantai People's Hospital, Taizhou
| | - Ning Wang
- Department of Neurosurgery, Zhuji People's Hospital, Zhuji City, Zhejiang Province, PR China
| |
Collapse
|
40
|
Lubicz B, Christiaens F. Endovascular treatment of intracranial vascular malformations in children. Dev Med Child Neurol 2020; 62:1124-1130. [PMID: 32533582 DOI: 10.1111/dmcn.14589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2020] [Indexed: 11/26/2022]
Abstract
Paediatric intracranial vascular malformations are rare and different from adult ones in vascular anatomy, pathophysiology, and symptoms. Their impact on the brain and their symptoms will differ in the antenatal period, in neonates, infants, and children. Clinical presentation includes seizures, focal neurological deficit, haemorrhage, congestive heart failure, hydrovenous disorder, and developmental delays. These malformations are thus associated with a poor prognosis if left untreated. Therefore, aggressive management is generally recommended and must be performed by a multidisciplinary team with extensive experience. Endovascular treatment is the first-choice treatment for most paediatric intracranial vascular malformations. Indication and timing for treatment should be decided on the basis of a careful assessment of neurological symptoms, growth and development, cardiac and other systemic manifestations, and imaging of the malformation and the brain tissue. WHAT THIS PAPER ADDS: Paediatric intracranial vascular malformations are rare, but their prognosis is poor if left untreated. Improved clinical, anatomical, and pathophysiological understanding of these complex lesions has improved prognosis.
Collapse
Affiliation(s)
- Boris Lubicz
- Department of Interventional Neuroradiology, Erasme University Hospital, Brussels, Belgium
| | - Florence Christiaens
- Department of Pediatric Neurology, Erasme University Hospital, Brussels, Belgium
| |
Collapse
|
41
|
Li M, Dong X, Chen S, Wang W, Yang C, Li B, Liang D, Yang W, Liu X, Yang X. Genetic polymorphisms and transcription profiles associated with intracranial aneurysm: a key role for NOTCH3. Aging (Albany NY) 2020; 11:5173-5191. [PMID: 31339861 PMCID: PMC6682524 DOI: 10.18632/aging.102111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Intracranial aneurysm (IA) incidence is about 1~2%. However, the specific mechanisms of IA onset and development need further study. Our objective was to discover novel IA-related genes to determine possible etiologies further. We performed next-generation sequencing on nineteen Chinese patients with familial IA and one patient with sporadic IA. We obtained mRNA expression data of 129 samples from Gene Expression Omnibus (GEO) and made statistical computing to discover differentially expressed genes (DEGs). The screened IA-related gene NOTCH3 was determined by bioinformatic data mining. We verified the IA-related indicators of NOTCH3. Association was found between IA and the NOTCH3 SNPs rs779314594, rs200504060 and rs2285981. Levels of NOTCH3 mRNA were lower in IA tissue than in control tissue, but higher in peripheral blood neutrophils from IA patients than in neutrophils from controls. Levels of NOTCH3 protein were lower in IA tissue than in cerebral artery tissue. NOTCH3 also decreased the expression of angiogenesis factors in human umbilical vein endothelial cells. Variation in NOTCH3 and alteration of its expression in cerebral artery or neutrophils may contribute to IA. Our findings also describe a bioinformatic-experimental approach that may prove useful for probing the pathophysiology of other complex diseases.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.,Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xinlong Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Shi Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China.,Department of Neurosurgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou 350007, China
| | - Weihan Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Chao Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Bochuan Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300052, China
| | - Degang Liang
- Department of Cardiovascular Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Weidong Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| | - Xiaozhi Liu
- Department of Neurosurgery, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Xinyu Yang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China.,Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin 300052, China
| |
Collapse
|
42
|
Pohjola A, Lindbohm JV, Oulasvirta E, Hafez A, Koroknay-Pál P, Laakso A, Niemelä M. Cigarette Smoking Is More Prevalent in Patients With Brain Arteriovenous Malformations Compared to General Population: A Cross-Sectional Population-Based Study. Neurosurgery 2020; 87:E657-E662. [PMID: 32687572 DOI: 10.1093/neuros/nyaa281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/26/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Research on the prevalence of smokers in patients with brain arteriovenous malformation (AVM) remains nonexistent, even though smoking is a well-known risk factor for intracranial aneurysms. OBJECTIVE To examine the prevalence and smoking habits of AVM patients. METHODS Data on smoking habits were collected with a quality-of-life questionnaire mailed in 2016 to all patients in our large AVM database. These smoking data were supplemented with registry data derived from medical records. The prevalence of smokers was compared to that of the general population, derived from statistics of National Institute for Health and Welfare. Logit transformation of proportions and Students t distribution were used to calculate the 95% CIs for prevalence estimates. RESULTS Of the 384 patients aged over 18 yr on admission, 277 (72.1%) returned the questionnaires in 2016. When compared to age, sex, and admission year matched general population, the proportion of smokers in AVM patients was 48% (CI = 41%-55%) and 19% (CI = 16%-21%) in the general population. The difference increased in older age groups; in those aged 65 to 77 yr, the percentage of smokers reached 73% (CI = 46%-90%), while the corresponding percentage in the general population was 7% (CI = 5%-9%). CONCLUSION We observed considerably higher rates of smoking among AVM patients when compared to age, sex, and admission year matched general population. Our results suggest that in the development of AVMs, the role played by nicotine and other substances in tobacco smoke should be examined. Cigarette smoking could potentially be a common cerebrovascular risk factor.
Collapse
Affiliation(s)
- Anni Pohjola
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Joni V Lindbohm
- Clinicum, Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Elias Oulasvirta
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ahmad Hafez
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Päivi Koroknay-Pál
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Aki Laakso
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemelä
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
43
|
Li H, Xu H, Li Y, Jiang Y, Hu Y, Liu T, Tian X, Zhao X, Zhu Y, Wang S, Zhang C, Ge J, Wang X, Wen H, Bai C, Sun Y, Song L, Zhang Y, Hui R, Cai J, Chen J. Alterations of gut microbiota contribute to the progression of unruptured intracranial aneurysms. Nat Commun 2020; 11:3218. [PMID: 32587239 PMCID: PMC7316982 DOI: 10.1038/s41467-020-16990-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Unruptured intracranial aneurysm (UIA) is a life-threatening cerebrovascular condition. Whether changes in gut microbial composition participate in the development of UIAs remains largely unknown. We perform a case-control metagenome-wide association study in two cohorts of Chinese UIA patients and control individuals and mice that receive fecal transplants from human donors. After fecal transplantation, the UIA microbiota is sufficient to induce UIAs in mice. We identify UIA-associated gut microbial species link to changes in circulating taurine. Specifically, the abundance of Hungatella hathewayi is markedly decreased and positively correlated with the circulating taurine concentration in both humans and mice. Consistently, gavage with H. hathewayi normalizes the taurine levels in serum and protects mice against the formation and rupture of intracranial aneurysms. Taurine supplementation also reverses the progression of intracranial aneurysms. Our findings provide insights into a potential role of H. hathewayi-associated taurine depletion as a key factor in the pathogenesis of UIAs. Unruptured intracranial aneurysm (UIA) is a life-threatening cerebrovascular condition. Here the authors report altered gut microbiota including low abundance of Hungatella hathewayi in patients with UIAs, and show that supplementation with Hungatella hathewayi or the metabolite taurine prevents UIAs in mice.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Youxiang Li
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuhua Jiang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Yamin Hu
- Department of Cardiology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Tingting Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xueqing Tian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xihai Zhao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yandong Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuxia Wang
- Chinese PLA General Hospital and Chinese PLA Medical College, Beijing, 100853, China
| | - Chunrui Zhang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jing Ge
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xuliang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yinhui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Rutai Hui
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jun Cai
- Hypertension Center, Fuwai Hospital, State Key Laboratory of Cardiovascular Disease of China, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
44
|
Liao B, Zhou MX, Zhou FK, Luo XM, Zhong SX, Zhou YF, Qin YS, Li PP, Qin C. Exosome-Derived MiRNAs as Biomarkers of the Development and Progression of Intracranial Aneurysms. J Atheroscler Thromb 2020; 27:545-610. [PMID: 31597886 PMCID: PMC7355105 DOI: 10.5551/jat.51102] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
AIM Exosome-derived microRNAs (miRNAs) are potential diagnostic biomarkers. However, little is known about their effectiveness as diagnostic biomarkers of intracranial aneurysms (IAs). This study aimed to explore miRNA levels in plasma exosomes of patients with IA to identify potential biomarkers that predict the development and progress of IA. METHODS A total of 69 patients with IA and 30 healthy controls (HC) were recruited, among whom 30 had unruptured IA (UA), and 39 had ruptured IA (RA). The miRNA expression profiles of plasma exosomes in 12 IA patients (4 UA and 8 RA) and 4 HC were determined using next-generation sequencing. In addition, significantly differentially expressed miRNAs were further analyzed by Quantitative Real-Time PCR (qRT-PCR) in a validation cohort of 99 subjects. RESULTS From the sequencing analysis, 181 miRNAs were identified to be differently (p<0.05) expressed. Of these, 9 miRNAs were up-regulated, and 20 were down-regulated in patients with UA compared with HC. Also, 21 were up-regulated, and 10 were down-regulated in patients with RA compared with HC. In addition, compared with UA, 92 miRNAs were up-regulated in RA, whereas 29 were down-regulated. Furthermore, qRT-PCR analysis confirmed that miR-145-5p and miR-29a-3p were up-regulated in IA samples. To distinguish IA patients from controls, the area under the receiver operating characteristic curve was 0.791 for miR-29a-3p, while that of miRNA-145-5p was 0.773 in terms of discriminating whether the aneurysm was ruptured. CONCLUSIONS Circulating exosomal miRNAs can serve as biomarkers of the development and progression of IA.
Collapse
Affiliation(s)
- Bao Liao
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Meng-xiao Zhou
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Feng-kun Zhou
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Xiu-mei Luo
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Song-xin Zhong
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Yuan-fang Zhou
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Yan-sheng Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Ping-ping Li
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| | - Chao Qin
- Department of Neurology, the First Affiliated Hospital, Guangxi Medical University, Guangxi, China
| |
Collapse
|
45
|
Sauvigny T, Alawi M, Krause L, Renner S, Spohn M, Busch A, Kolbe V, Altmüller J, Löscher BS, Franke A, Brockmann C, Lieb W, Westphal M, Schmidt NO, Regelsberger J, Rosenberger G. Exome sequencing in 38 patients with intracranial aneurysms and subarachnoid hemorrhage. J Neurol 2020; 267:2533-2545. [PMID: 32367296 PMCID: PMC7419486 DOI: 10.1007/s00415-020-09865-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 01/14/2023]
Abstract
Objective Genetic risk factors for unruptured intracranial aneurysms (UIA) and aneurysmal subarachnoid hemorrhage (aSAH) are poorly understood. We aimed to verify recently reported risk genes and to identify novel sequence variants involved in the etiology of UIA/aSAH. Methods We performed exome sequencing (ES) in 35 unrelated individuals and 3 family members, each with a history of UIA and/or aSAH. We searched for sequence variants with minor allele frequency (MAF) ≤ 5% in the reported risk genes ADAMTS15, ANGPTL6, ARHGEF17, LOXL2, PCNT, RNF213, THSD1 and TMEM132B. To identify novel putative risk genes we looked for unknown (MAF = 0) variants shared by the three relatives. Results We identified 20 variants with MAF ≤ 5% in 18 individuals: 9 variants in PCNT (9 patients), 4 in RNF213 (3 patients), 3 in THSD1 (6 patients), 2 in ANGPTL6 (3 patients), 1 in ADAMTS15 (1 patient) and 1 in TMEM132B (1 patient). In the affected family, prioritization of shared sequence variants yielded five novel putative risk genes. Based on predicted pathogenicity of identified variants, population genetics data and a high functional relevance for vascular biology, EDIL3 was selected as top candidate and screened in additional 37 individuals with UIA and/or aSAH: a further very rare EDIL3 sequence variant in two unrelated sporadic patients was identified. Conclusions Our data support a role of sequence variants in PCNT, RNF213 and THSD1 as susceptibility factors for cerebrovascular disease. The documented function in vascular wall integrity, the crucial localization of affected amino acids and gene/variant association tests suggest EDIL3 as a further valid candidate disease gene for UIA/aSAH. Electronic supplementary material The online version of this article (10.1007/s00415-020-09865-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Sauvigny
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Linda Krause
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sina Renner
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Michael Spohn
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,Research Institute Children's Cancer Center Hamburg, Martinistraße 52, 20251, Hamburg, Germany.,Department of Oncology, Hematology and Bone Marrow Transplantation With Section Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Alice Busch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Verena Kolbe
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Weyertal 115b, 50931, Cologne, Germany
| | - Britt-Sabina Löscher
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Rosalind-Franklin-Straße 12, 24105, Kiel, Germany
| | - Christian Brockmann
- Institute of Transfusion Medicine, University Hospital of Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Christian-Albrechts-University Kiel, Niemannsweg 11, 24105, Kiel, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,Department of Neurosurgery, University Medical Center Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Jan Regelsberger
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
46
|
Hu L, Li B, Liao X, Yan J. Polymorphisms of Inflammatory Cytokine Genes and Risk for Intracranial Aneurysm: A Systematic Review and Meta-Analysis. Yonsei Med J 2020; 61:391-399. [PMID: 32390362 PMCID: PMC7214114 DOI: 10.3349/ymj.2020.61.5.391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/20/2020] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Inflammatory cytokines are thought to be involved in the pathogenesis of intracranial aneurysm (IA), although results among studies in the literature are inconsistent. This article sought to review studies on the associations among polymorphisms in inflammatory cytokine genes and IA risk and to provide recommendations for future research. MATERIALS AND METHODS A systematic search of PubMed, Embase, and Web of Science was conducted up to August 4, 2019. The associations between polymorphisms of inflammatory cytokine genes and IA risk were estimated by pooled odds ratios (ORs) and 95% confidence intervals (CIs). Subgroup analyses were performed according to race. Qualitative systematic review was conducted for variants that were studied in only one study. All analyses were performed using STATA 12.0. RESULTS 13 studies investigating the associations between polymorphisms in five inflammatory cytokine genes (TNF-α, IL-1α, IL-1β, IL6, and IL-12B) and IA were reviewed. Combined results showed that the A allele of TNF-α rs1800629 polymorphism has a protective effect against IA (dominant model: OR=0.65, 95% CI=0.47-0.89, p=0.007). No associations were identified between polymorphisms in IL-1α rs1800587, IL-1β rs16944, IL6 rs1800795 and rs1800796, or IL-12B rs3212227 and IA risk. CONCLUSION This review demonstrated an association between TNF-α rs1800629 polymorphism and IA in Caucasians, illustrating the potentially important role of genes involved in inflammation in IA.
Collapse
Affiliation(s)
- Liming Hu
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Bingyang Li
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China.
| |
Collapse
|
47
|
Morga R, Moskała M, Popiela T, Rajzer M, Wilk A, Kłosiński M, Muszyński T, Trystuła M. Recanalization of Embolized Endovascular Intracranial Aneurysms and Changes in the Blood Viscosity: A Pilot Study. Med Sci Monit 2020; 26:e919059. [PMID: 32231175 PMCID: PMC7146064 DOI: 10.12659/msm.919059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The purpose of our research was to evaluate the relationships between blood viscosity and recanalization of coiled intracranial aneurysms. Material/Methods The study included consecutives patients treated endovascularly by a team of experienced neurosurgeons and neuroradiologists due to brain aneurysm. A total of 50 patients (the average age was 57.48 years, SD=13.71) were assigned to 2 groups: group A with recanalization (4 male and 8 female patients) and group B without recanalization (10 male and 28 female patients) were examined. All patients underwent a 6-month follow-up of the whole-blood viscosity test with a Brookfield DV III+pro cone-plate viscometer using the Rheocalc program. Differences between groups were assessed using the Statistica 12 computer program (StatSoft Inc., Tulsa, OK, USA). Results Studies have shown no significant difference in the age range between group A and B (P=0.31). In group A, higher viscosity values were found for whole blood [median: 4.14 dyn×sec/cm2 (mPa×sec) quartile range 0.42], compared to group B [median: 3.92 dyn×sec/cm2 (mPa×sec); quartile range 0.40; (P=0.04)]. This difference was significant (P=0.04). Additionally, the level of hematocrit was positively related with recanalization, the higher the hematocrit, the more frequent recanalization. A very strong and statistically significant relationship occurred between the frequency of recanalization and smoking (P<0.001). Conclusions The occurrence of higher values of whole blood viscosity which increase turbulent flow through the vessels may be a risk for recanalization of the coiled intracranial aneurysm.
Collapse
Affiliation(s)
- Rafał Morga
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Cracow, Poland
| | - Marek Moskała
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Cracow, Poland
| | - Tadeusz Popiela
- Department of Radiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marek Rajzer
- 1st Department of Cardiology, Invasive Electrocardiology and Arterial Hypertension, Jagiellonian University Medical College, Cracow, Poland
| | - Aleksander Wilk
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Cracow, Poland
| | - Michał Kłosiński
- Department of Anatomy, Faculty of Medicine, Jagiellonian University Medical College, Cracow, Poland
| | - Tomasz Muszyński
- Department of Vascular Surgery and Endovascular Interventions, John Paul II Hospital, Cracow, Poland
| | - Mariusz Trystuła
- Department of Vascular Surgery and Endovascular Interventions, John Paul II Hospital, Cracow, Poland
| |
Collapse
|
48
|
Abstract
BACKGROUND The prevalence of unruptured intracranial aneurysms is approximately 3-5%. Subarachnoid hemorrhage caused by rupture of an aneurysm often affects middle-aged people and harbors high morbidity and mortality. The increasing availability of noninvasive imaging techniques over time is accompanied by an increase in the incidental detection of aneurysms. METHODS The etiology in aneurysm development is heterogeneous. Besides polygenic multifactorial diseases, often triggered by well-established vascular risk factors, monogenic diseases should also be considered. Advances in genetics has helped to identify genes that contribute to the risk of intracranial aneurysm development. CONCLUSION The genetic basis of intracranial aneurysms shows a broad heterogeneity and complexity. Currently, besides imaging there is no reliable diagnostic test to identify patients who are at higher risk for asymptomatic intracranial aneurysms.
Collapse
|
49
|
Kaspera W, Ćmiel-Smorzyk K, Wolański W, Kawlewska E, Hebda A, Gzik M, Ładziński P. Morphological and Hemodynamic Risk Factors for Middle Cerebral Artery Aneurysm: a Case-Control Study of 190 Patients. Sci Rep 2020; 10:2016. [PMID: 32029748 PMCID: PMC7005042 DOI: 10.1038/s41598-019-56061-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/30/2019] [Indexed: 12/31/2022] Open
Abstract
This study analyzed morphometric and hemodynamic parameters of aneurysmal and non-aneurysmal middle cerebral artery (MCA) bifurcations and their relationship with optimal values derived from the principle of minimum work (PMW). The study included 96 patients with MCA aneurysm and 94 controls. Aneurysm patients presented with significantly higher values of the radius and cross-sectional area of the MCA trunk, angle between the post-bifurcation branches (α angle) and volume flow rate (VFR) and had significantly lower values of junction exponent and pulsatility index than the controls. The Φ1 and Φ2 angles (angles between the MCA trunk axis and the larger and smaller branch, respectively) and α angle in all groups were significantly larger than the optimal PMW-derived angles. The most important independent predictors of MCA aneurysm were junction exponent (odds ratio, OR = 0.42), α angle (OR = 1.07) and VFR (OR = 2.36). Development of cerebral aneurysms might be an independent effect of abnormalities in hemodynamic and morphometric factors. The risk of aneurysm increased proportionally to the deviation of morphometric parameters of the bifurcation from their optimal PMW-derived values. The role of bifurcation angle in aneurysm development needs to be explained in future research as the values of this parameter in both aneurysm patients and non-aneurysmal controls in were scattered considerably around the PMW-derived optimum.
Collapse
Affiliation(s)
- Wojciech Kaspera
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Sosnowiec, Poland.
| | - Karolina Ćmiel-Smorzyk
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Sosnowiec, Poland
| | - Wojciech Wolański
- Department of Biomechatronics, Silesian University of Technology, Zabrze, Poland
| | - Edyta Kawlewska
- Department of Biomechatronics, Silesian University of Technology, Zabrze, Poland
| | - Anna Hebda
- Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice, Poland
| | - Marek Gzik
- Department of Biomechatronics, Silesian University of Technology, Zabrze, Poland
| | - Piotr Ładziński
- Department of Neurosurgery, Medical University of Silesia, Regional Hospital, Sosnowiec, Poland
| |
Collapse
|
50
|
Detmer FJ, Lückehe D, Mut F, Slawski M, Hirsch S, Bijlenga P, von Voigt G, Cebral JR. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment. Int J Comput Assist Radiol Surg 2019; 15:141-150. [PMID: 31485987 DOI: 10.1007/s11548-019-02065-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 08/29/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE Incidental aneurysms pose a challenge to physicians who need to decide whether or not to treat them. A statistical model could potentially support such treatment decisions. The aim of this study was to compare a previously developed aneurysm rupture logistic regression probability model (LRM) to other machine learning (ML) classifiers for discrimination of aneurysm rupture status. METHODS Hemodynamic, morphological, and patient-related information of 1631 cerebral aneurysms characterized by computational fluid dynamics simulations were used to train support vector machines (SVMs) with linear and RBF kernel (RBF-SVM), k-nearest neighbors (kNN), decision tree, random forest, and multilayer perceptron (MLP) neural network classifiers for predicting the aneurysm rupture status. The classifiers' accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were evaluated and compared to the LRM using 249 test cases obtained from two external cohorts. Additionally, important variables were determined based on the random forest and weights of the linear SVM. RESULTS The AUCs of the MLP, LRM, linear SVM, RBF-SVM, kNN, decision tree, and random forest were 0.83, 0.82, 0.80, 0.81, 0.76, 0.70, and 0.79, respectively. The accuracy ranged between 0.76 (decision tree,) and 0.79 (linear SVM, RBF-SVM, and MLP). Important variables for predicting the aneurysm rupture status included aneurysm location, the mean surface curvature, and maximum flow velocity. CONCLUSION The performance of the LRM was overall comparable to that of the other ML classifiers, confirming its potential for aneurysm rupture assessment. To further improve the predictions, additional information, e.g., related to the aneurysm wall, might be needed.
Collapse
Affiliation(s)
- Felicitas J Detmer
- Bioengineering Department, Volgenau School of Engineering, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA.
| | - Daniel Lückehe
- Computational Health Informatics, Leibniz University, Hannover, Germany
| | - Fernando Mut
- Bioengineering Department, Volgenau School of Engineering, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA
| | - Martin Slawski
- Statistics Department, George Mason University, Fairfax, VA, USA
| | - Sven Hirsch
- Institute of Applied Simulation, ZHAW University of Applied Sciences, Wädenswil, Switzerland
| | - Philippe Bijlenga
- Neurosurgery, Clinical Neurosciences Department, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Juan R Cebral
- Bioengineering Department, Volgenau School of Engineering, George Mason University, 4400 University Drive, Fairfax, VA, 22030, USA
| |
Collapse
|