1
|
Xi C, Zhang J, Liu H, Tao S, Xie Y, Liu J, Tong C, Tian D, Ye H, Zhang X. Can Omega-3 prevent the accidence of stroke: a mendelian randomization study. Hereditas 2024; 161:30. [PMID: 39232799 PMCID: PMC11375838 DOI: 10.1186/s41065-024-00329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The lipid-lowering effects of Omega-3 fatty acids have been widely reported, yet their impact on ischemic stroke remains controversial. Reports on the protective effects of unsaturated fatty acids, such as Omega-6 and Omega-7, as well as saturated fatty acids in cardiovascular diseases, including hypertension and ischemic stroke, are less frequent. OBJECTIVES This study aims to identify fatty acids associated with blood pressure and ischemic stroke through Mendelian randomization. Besides, it seeks to determine whether specific fatty acids can prevent ischemic stroke by managing blood pressure and revealing the specific mechanisms of this action. METHODS This research involved downloading relevant data from websites and extracting SNPs that met the standard criteria as instrumental variables. Simultaneously, the 'MR-PRESSO' package and 'Mendelian Randomization' package were used to eliminate confounding SNPs that could bias the study results. Then, inverse variance weighting and the weighted median were employed as primary analysis methods, accompanied by sensitivity analysis to assess the validity of the causal relationships. Initially, multivariable Mendelian randomization was used to identify fatty acids linked to blood pressure and the incidence of ischemic stroke. The causal link between certain fatty acids and the initiation of ischemic stroke was then investigated using bidirectional and mediator Mendelian randomization techniques. Stepwise Regression and the Product of Coefficients Method in mediator Mendelian randomization were utilized to ascertain whether specific fatty acids reduce ischemic stroke risk by lowering blood pressure. RESULTS Multivariable Mendelian randomization analysis indicated a potential inverse correlation between Omega-3 intake and both blood pressure and ischemic stroke. Consequently, Omega-3 was selected as the exposure, with blood pressure and ischemic stroke-related data as outcomes, for further bidirectional and mediation Mendelian Randomization analyses. Bidirectional Mendelian Randomization revealed that Omega-3 significantly influences DBP (P = 1.01e-04) and IS (P = 0.016). It also showed that DBP and SBP significantly affect LAS, SVS, CES, IS, and LS. Mediator Mendelian Randomization identified five established mediating pathways: Omega-3-Diastolic blood pressure-Small vessel stroke, Omega-3-Diastolic blood pressure-Cardioembolic stroke, Omega-3-Diastolic blood pressure-Lacunar stroke, Omega-3-Diastolic blood pressure-Large artery atherosclerosis stroke, and Omega-3-Diastolic blood pressure-Ischemic stroke. Of these, four pathways are complete mediation, and one pathway is partial mediation. CONCLUSIONS The findings suggest that Omega-3 may indirectly reduce the incidence of ischemic stroke by lowering blood pressure. Thus, blood pressure modulation might be one of the mechanisms through which Omega-3 prevents ischemic stroke. In summary, incorporating an increased intake of Omega-3 in the diet can serve as one of the dietary intervention strategies for patients with hypertension. Additionally, it can act as an adjunctive therapy for the prevention of ischemic strokes and their complications.
Collapse
Affiliation(s)
- Chongcheng Xi
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Zhang
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haihui Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sian Tao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Xie
- School of Acupuncture- Moxibustion and Tuina, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Jibin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Changqing Tong
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Dong Tian
- School of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Hua Ye
- School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaobo Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Shi Y, Du Q, Li Z, Xue L, Jia Q, Zheng T, Liu J, Ren R, Sun Z. Multiomics profiling of the therapeutic effect of Dan-deng-tong-nao capsule on cerebral ischemia-reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155335. [PMID: 38518648 DOI: 10.1016/j.phymed.2023.155335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Stroke is a complex physiological process associated with intestinal flora dysbiosis and metabolic disorders. Dan-deng-tong-nao capsule (DDTN) is a traditional Chinese medicine used clinically to treat cerebral ischemia-reperfusion injury (CIRI) for many years. However, little is known about the effects of DDTN in the treatment of CIRI from the perspective of gut microbiota and metabolites. PURPOSE This study aimed to investigate the regulatory roles of DDTN in endogenous metabolism and gut microbiota in CIRI rats, thus providing a basis for clinical rational drug use and discovering natural products with potential physiological activities in DDTN for the treatment of CIRI. METHODS The chemical composition of DDTN in vitro and in vivo was investigated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS), followed by target prediction using reverse molecular docking. Secondly, a biological evaluation of DDTN ameliorating neural damage in CIRI was performed at the whole animal level. Then, an integrated omics approach based on UHPLCHRMS and 16S rRNA sequencing was proposed to reveal the anti-CIRI effect and possible mechanism of DDTN. Finally, exploring the intrinsic link between changes in metabolite profiles, changes in the intestinal flora, and targets of components to reveal DDTN for the treatment of CIRI. RESULTS A total of 112 chemical components of DDTN were identified in vitro and 10 absorbed constituents in vivo. The efficacy of DDTN in the treatment of CIRI was confirmed by alleviating cerebral infarction and neurological deficits. After the DDTN intervention, 21 and 26 metabolites were significantly altered in plasma and fecal, respectively. Based on the fecal microbiome, a total of 36 genera were enriched among the different groups. Finally, the results of the network integration analysis showed that the 10 potential active ingredients of DDTN could mediate the differential expression of 24 metabolites and 6 gut microbes by targeting 25 target proteins. CONCLUSION This study was the first to outline the landscapes of metabolites as well as gut microbiota regulated by DDTN in CIRI rats using multi-omics data, and comprehensively revealed the systematic relationships among ingredients, targets, metabolites, and gut microbiota, thus providing new perspectives on the mechanism of DDTN in the treatment of CIRI.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Qiuzheng Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Zhuolun Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Lianping Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Qingquan Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Tianyuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Jiyun Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Province, 361102, PR China
| | - Ruobing Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
3
|
Okamura T, Tsukamoto K, Arai H, Fujioka Y, Ishigaki Y, Koba S, Ohmura H, Shoji T, Yokote K, Yoshida H, Yoshida M, Deguchi J, Dobashi K, Fujiyoshi A, Hamaguchi H, Hara M, Harada-Shiba M, Hirata T, Iida M, Ikeda Y, Ishibashi S, Kanda H, Kihara S, Kitagawa K, Kodama S, Koseki M, Maezawa Y, Masuda D, Miida T, Miyamoto Y, Nishimura R, Node K, Noguchi M, Ohishi M, Saito I, Sawada S, Sone H, Takemoto M, Wakatsuki A, Yanai H. Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2022. J Atheroscler Thromb 2024; 31:641-853. [PMID: 38123343 DOI: 10.5551/jat.gl2022] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Tomonori Okamura
- Preventive Medicine and Public Health, Keio University School of Medicine
| | | | | | - Yoshio Fujioka
- Faculty of Nutrition, Division of Clinical Nutrition, Kobe Gakuin University
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University
| | - Shinji Koba
- Division of Cardiology, Department of Medicine, Showa University School of Medicine
| | - Hirotoshi Ohmura
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Tetsuo Shoji
- Department of Vascular Medicine, Osaka Metropolitan University Graduate school of Medicine
| | - Koutaro Yokote
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | | | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Center, Saitama Medical University
| | - Kazushige Dobashi
- Department of Pediatrics, School of Medicine, University of Yamanashi
| | | | | | - Masumi Hara
- Department of Internal Medicine, Mizonokuchi Hospital, Teikyo University School of Medicine
| | - Mariko Harada-Shiba
- Cardiovascular Center, Osaka Medical and Pharmaceutical University
- Department of Molecular Pathogenesis, National Cerebral and Cardiovascular Center Research Institute
| | - Takumi Hirata
- Institute for Clinical and Translational Science, Nara Medical University
| | - Mami Iida
- Department of Internal Medicine and Cardiology, Gifu Prefectural General Medical Center
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Shun Ishibashi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, School of Medicine
- Current affiliation: Ishibashi Diabetes and Endocrine Clinic
| | - Hideyuki Kanda
- Department of Public Health, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Shinji Kihara
- Medical Laboratory Science and Technology, Division of Health Sciences, Osaka University graduate School of medicine
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Satoru Kodama
- Department of Prevention of Noncommunicable Diseases and Promotion of Health Checkup, Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Masahiro Koseki
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshiro Maezawa
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine
| | - Daisaku Masuda
- Department of Cardiology, Center for Innovative Medicine and Therapeutics, Dementia Care Center, Doctor's Support Center, Health Care Center, Rinku General Medical Center
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine
| | | | - Rimei Nishimura
- Department of Diabetes, Metabolism and Endocrinology, The Jikei University School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Midori Noguchi
- Division of Public Health, Department of Social Medicine, Graduate School of Medicine, Osaka University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Isao Saito
- Department of Public Health and Epidemiology, Faculty of Medicine, Oita University
| | - Shojiro Sawada
- Division of Metabolism and Diabetes, Faculty of Medicine, Tohoku Medical and Pharmaceutical University
| | - Hirohito Sone
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine
| | - Minoru Takemoto
- Department of Diabetes, Metabolism and Endocrinology, International University of Health and Welfare
| | | | - Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital
| |
Collapse
|
4
|
Ouagueni A, Al-Zoubi RM, Zarour A, Al-Ansari A, Bawadi H. Effects of Omega-3 Polyunsaturated Fatty Acids, Docosahexaenoic Acid and Eicosapentaenoic Acid, on Post-Surgical Complications in Surgical Trauma Patients: Mechanisms, Nutrition, and Challenges. Mar Drugs 2024; 22:207. [PMID: 38786598 PMCID: PMC11123418 DOI: 10.3390/md22050207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 05/25/2024] Open
Abstract
This paper aims to provide an in-depth review of the specific outcomes associated with omega-3 polyunsaturated fatty acids (PUFAs), focusing on their purported effects on post-surgical complications in trauma patients. A comprehensive investigation of omega-3 polyunsaturated fatty acids was conducted until February 2023 using the PubMed database. Surgical trauma is characterized by a disruption in immune response post surgery, known to induce systemic inflammation. Omega-3 PUFAs are believed to offer potential improvements in multiple post-surgical complications because of their anti-inflammatory and antioxidant properties. Inconsistent findings have emerged in the context of cardiac surgeries, with the route of administration playing a mediating role in these outcomes. The effects of omega-3 PUFAs on post-operative atrial fibrillation have exhibited variability across various studies. Omega-3 PUFAs have demonstrated positive effects in liver surgery outcomes and in patients with acute respiratory distress syndrome. Omega-3 is suggested to offer potential benefits, particularly in the perioperative care of patients undergoing traumatic procedures. Incorporating omega-3 in such cases is hypothesized to contribute to a reduction in certain surgical outcomes, such as hospitalization duration and length of stay in the intensive care unit. Therefore, comprehensive assessments of adverse effects can aid in identifying the presence of subtle or inconspicuous side effects associated with omega-3.
Collapse
Affiliation(s)
- Asma Ouagueni
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| | - Raed M. Al-Zoubi
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Chemistry, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
- Department of Biomedical Sciences, College of Health Science, Qatar University, Doha 2713, Qatar
| | - Ahmad Zarour
- Acute Care Surgery Division, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar;
| | - Abdulla Al-Ansari
- Surgical Research Section, Department of Surgery, Hamad Medical Corporation, Doha 576214, Qatar; (R.M.A.-Z.); (A.A.-A.)
- Department of Surgery, Division of Urology/Andrology, Hamad Medical Corporation, Doha 576214, Qatar
| | - Hiba Bawadi
- Department of Human Nutrition, College of Health Science, QU-Health, Qatar University, Doha 2713, Qatar;
| |
Collapse
|
5
|
Ament Z, Patki A, Bhave VM, Kijpaisalratana N, Jones AC, Couch CA, Stanton RJ, Rist PM, Cushman M, Judd SE, Long DL, Irvin MR, Kimberly WT. Omega-3 Fatty Acids and Risk of Ischemic Stroke in REGARDS. Transl Stroke Res 2024:10.1007/s12975-024-01256-7. [PMID: 38676880 DOI: 10.1007/s12975-024-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
We examined associations between lipidomic profiles and incident ischemic stroke in the REasons for Geographic and Racial Differences in Stroke (REGARDS) cohort. Plasma lipids (n = 195) were measured from baseline blood samples, and lipids were consolidated into underlying factors using exploratory factor analysis. Cox proportional hazards models were used to test associations between lipid factors and incident stroke, linear regressions to determine associations between dietary intake and lipid factors, and the inverse odds ratio weighting (IORW) approach to test mediation. The study followed participants over a median (IQR) of 7 (3.4-11) years, and the case-cohort substudy included 1075 incident ischemic stroke and 968 non-stroke participants. One lipid factor, enriched for docosahexaenoic acid (DHA, an omega-3 fatty acid), was inversely associated with stroke risk in a base model (HR = 0.84; 95%CI 0.79-0.90; P = 8.33 × 10-8) and fully adjusted model (HR = 0.88; 95%CI 0.83-0.94; P = 2.79 × 10-4). This factor was associated with a healthy diet pattern (β = 0.21; 95%CI 0.12-0.30; P = 2.06 × 10-6), specifically with fish intake (β = 1.96; 95%CI 0.95-2.96; P = 1.36 × 10-4). DHA was a mediator between fish intake and incident ischemic stroke (30% P = 5.78 × 10-3). Taken together, DHA-containing plasma lipids were inversely associated with incident ischemic stroke and mediated the relationship between fish intake and stroke risk.
Collapse
Affiliation(s)
- Zsuzsanna Ament
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Amit Patki
- Department of Epidemiology, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Naruchorn Kijpaisalratana
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurology, Department of Medicine and Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alana C Jones
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Catharine A Couch
- Department of Epidemiology, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - Robert J Stanton
- Department of Neurology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Pamela M Rist
- Division of Preventive Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mary Cushman
- Department of Medicine, Larner College of Medicine at the University of Vermont, Burlington, VT, USA
| | - Suzanne E Judd
- Department of Biostatistics, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - D Leann Long
- Department of Biostatistics, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Ryan Irvin
- Department of Epidemiology, School of Public Health at the University of Alabama at Birmingham, Birmingham, AL, USA
| | - W Taylor Kimberly
- Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
6
|
Fujiyoshi A, Kohsaka S, Hata J, Hara M, Kai H, Masuda D, Miyamatsu N, Nishio Y, Ogura M, Sata M, Sekiguchi K, Takeya Y, Tamura K, Wakatsuki A, Yoshida H, Fujioka Y, Fukazawa R, Hamada O, Higashiyama A, Kabayama M, Kanaoka K, Kawaguchi K, Kosaka S, Kunimura A, Miyazaki A, Nii M, Sawano M, Terauchi M, Yagi S, Akasaka T, Minamino T, Miura K, Node K. JCS 2023 Guideline on the Primary Prevention of Coronary Artery Disease. Circ J 2024; 88:763-842. [PMID: 38479862 DOI: 10.1253/circj.cj-23-0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Affiliation(s)
| | - Shun Kohsaka
- Department of Cardiology, Keio University School of Medicine
| | - Jun Hata
- Department of Epidemiology and Public Health, Graduate School of Medical Sciences, Kyushu University
| | - Mitsuhiko Hara
- Department of Health and Nutrition, Wayo Women's University
| | - Hisashi Kai
- Department of Cardiology, Kurume Univeristy Medical Center
| | | | - Naomi Miyamatsu
- Department of Clinical Nursing, Shiga University of Medical Science
| | - Yoshihiko Nishio
- Department of Diabetes and Endocrine Medicine, Kagoshima University Graduate School of Medical and Dental Sciences
| | - Masatsune Ogura
- Department of General Medical Science, Chiba University School of Medicine
- Department of Metabolism and Endocrinology, Eastern Chiba Medical Center
| | - Masataka Sata
- Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences
| | | | - Yasushi Takeya
- Division of Helath Science, Osaka University Gradiate School of Medicine
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine
| | | | - Hiroshi Yoshida
- Department of Laboratory Medicine, The Jikei University Kashiwa Hospital
| | - Yoshio Fujioka
- Division of Clinical Nutrition, Faculty of Nutrition, Kobe Gakuin University
| | | | - Osamu Hamada
- Department of General Internal Medicine, Takatsuki General Hospital
| | | | - Mai Kabayama
- Division of Health Sciences, Osaka University Graduate School of Medicine
| | - Koshiro Kanaoka
- Department of Medical and Health Information Management, National Cerebral and Cardiovascular Center
| | - Kenjiro Kawaguchi
- Division of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University
| | | | | | | | - Masaki Nii
- Department of Cardiology, Shizuoka Children's Hospital
| | - Mitsuaki Sawano
- Department of Cardiology, Keio University School of Medicine
- Yale New Haven Hospital Center for Outcomes Research and Evaluation
| | | | - Shusuke Yagi
- Department of Cardiovascular Medicine, Tokushima University Hospital
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Nishinomiya Watanabe Cardiovascular Cerebral Center
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Meidicine
| | - Katsuyuki Miura
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| |
Collapse
|
7
|
Reiner MF, Bertschi DA, Werlen L, Wiencierz A, Aeschbacher S, Lee P, Rodondi N, Moutzouri E, Bonati L, Reichlin T, Moschovitis G, Rutishauser J, Kühne M, Osswald S, Conen D, Beer JH. Omega-3 Fatty Acids and Markers of Thrombosis in Patients with Atrial Fibrillation. Nutrients 2024; 16:178. [PMID: 38257071 PMCID: PMC10821080 DOI: 10.3390/nu16020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Omega-3 fatty acids (n-3 FAs) are associated with a lower risk of ischemic stroke in patients with atrial fibrillation (AF). Antithrombotic mechanisms may in part explain this observation. Therefore, we examined the association of n-3 FAs with D-dimer and beta-thromboglobulin (BTG), markers for activated coagulation and platelets, respectively. The n-3 FAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), docosapentaenoic acid (DPA) and alpha-linolenic acid (ALA) were determined via gas chromatography in the whole blood of 2373 patients with AF from the Swiss Atrial Fibrillation cohort study (ClinicalTrials.gov Identifier: NCT02105844). In a cross-sectional analysis, we examined the association of total n-3 FAs (EPA + DHA + DPA + ALA) and the association of individual fatty acids with D-dimer in patients with detectable D-dimer values (n = 1096) as well as with BTG (n = 2371) using multiple linear regression models adjusted for confounders. Median D-dimer and BTG levels were 0.340 ug/mL and 448 ng/mL, respectively. Higher total n-3 FAs correlated with lower D-dimer levels (coefficient 0.94, 95% confidence interval (Cl) 0.90-0.98, p = 0.004) and lower BTG levels (coefficient 0.97, Cl 0.95-0.99, p = 0.003). Likewise, the individual n-3 FAs EPA, DHA, DPA and ALA showed an inverse association with D-dimer. Higher levels of DHA, DPA and ALA correlated with lower BTG levels, whereas EPA showed a positive association with BTG. In patients with AF, higher levels of n-3 FAs were associated with lower levels of D-dimer and BTG, markers for activated coagulation and platelets, respectively. These findings suggest that n-3 FAs may exert antithrombotic properties in patients with AF.
Collapse
Affiliation(s)
- Martin F. Reiner
- Department of Cardiology, University Heart Center Zurich, 8091 Zurich, Switzerland;
| | - Daniela A. Bertschi
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland
| | - Laura Werlen
- Department of Clinical Research, University of Basel, University Hospital Basel, 3010 Basel, Switzerland
| | - Andrea Wiencierz
- Department of Clinical Research, University of Basel, University Hospital Basel, 3010 Basel, Switzerland
| | - Stefanie Aeschbacher
- Department of Cardiology, University Hospital Basel, 4056 Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, 4056 Basel, Switzerland
| | - Pratintip Lee
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, 8952 Zurich, Switzerland
| | - Nicolas Rodondi
- Department of General Internal Medicine, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Institute of Primary Health Care (BIHAM), University of Bern, 3010 Bern, Switzerland
| | - Elisavet Moutzouri
- Institute of Primary Health Care (BIHAM), University of Bern, 3010 Bern, Switzerland
| | - Leo Bonati
- Department of Neurology and Stroke Center, University Hospital Basel, 4031 Basel, Switzerland
| | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Giorgio Moschovitis
- Division of Cardiology, Ospedale Regionale di Lugano, 6900 Ticino, Switzerland
| | - Jonas Rutishauser
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, 8952 Zurich, Switzerland
| | - Michael Kühne
- Department of Cardiology, University Hospital Basel, 4056 Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, 4056 Basel, Switzerland
| | - Stefan Osswald
- Department of Cardiology, University Hospital Basel, 4056 Basel, Switzerland
- Cardiovascular Research Institute Basel, University Hospital Basel, 4056 Basel, Switzerland
| | - David Conen
- Population Health Research Institute, McMaster University, Hamilton, ON L8L 2X2, Canada
| | - Jürg H. Beer
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
8
|
Mao Y, Weng J, Xie Q, Wu L, Xuan Y, Zhang J, Han J. Association between dietary inflammatory index and Stroke in the US population: evidence from NHANES 1999-2018. BMC Public Health 2024; 24:50. [PMID: 38166986 PMCID: PMC10763382 DOI: 10.1186/s12889-023-17556-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND There is an increasing awareness that diet-related inflammation may have an impact on the stroke. Herein, our goal was to decipher the association of dietary inflammatory index (DII) with stroke in the US general population. METHODS We collected the cross-sectional data of 44,019 participants of the National Health and Nutrition Examination Survey (NHANES) 1999-2018. The association of DII with stroke was estimated using weighted multivariate logistic regression, with its nonlinearity being examined by restricted cubic spline (RCS) regression. The least absolute shrinkage and selection operator (LASSO) regression was applied for identifying key stroke-related dietary factors, which was then included in the establishment of a risk prediction nomogram model, with the receiver operating characteristic (ROC) curve being built to evaluate its discriminatory power for stroke. RESULTS After confounder adjustment, the adjusted odds ratios (ORs) with 95% confidence intervals (CIs) for stroke across higher DII quartiles were 1.19 (0.94-1.54), 1.46 (1.16-1.84), and 1.87 (1.53-2.29) compared to the lowest quartile, respectively. The RCS curve showed a nonlinear and positive association between DII and stroke. The nomogram model based on key dietary factors identified by LASSO regression displayed a considerable predicative value for stroke, with an area under the curve (AUC) of 79.8% (78.2-80.1%). CONCLUSIONS Our study determined a nonlinear and positive association between DII and stroke in the US general population. Given the intrinsic limitations of cross-sectional study design, it is necessary to conduct more research to ensure the causality of such association.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 215008, Suzhou, China
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Jiayi Weng
- Department of Cardiology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 215008, Suzhou, China
| | - Qiyang Xie
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, China
| | - Lida Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Yanling Xuan
- Nanjing University of Chinese Medicine, 210006, Nanjing, China
| | - Jun Zhang
- Department of Cardiology, Suzhou Municipal Hospital, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Nanjing Medical University, 215008, Suzhou, China.
| | - Jun Han
- Department of Infectious Diseases, Affiliated Wuxi Fifth Hospital of Jiangnan University, The Fifth People's Hospital of Wuxi, 214065, Wuxi, China.
| |
Collapse
|
9
|
Tang X, Lv X, Wang R, Li X, Xu W, Wang N, Ma S, Huang H, Niu Y, Kong X. Association of marine PUFAs intakes with cardiovascular disease, all-cause mortality, and cardiovascular mortality in American adult male patients with dyslipidemia: the U.S. National Health and Nutrition Examination Survey, 2001 to 2016. Nutr J 2023; 22:48. [PMID: 37798712 PMCID: PMC10557340 DOI: 10.1186/s12937-023-00873-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The relationship between marine polyunsaturated fatty acid (PUFA) intake and cardiovascular disease and mortality in dyslipidemic patients is unclear. Men with dyslipidemia have a higher risk of cardiovascular disease than women, and PUFA supplementation may be more beneficial in men. OBJECTIVE The purpose of this study was to assess the relationship between different types of marine polyunsaturated fatty acids intakes and cardiovascular disease, all-cause mortality, and cardiovascular mortality in adult U.S. males with dyslipidemia. METHODS The study ultimately included 11,848 adult men with dyslipidemia who were screened from the National Health and Nutrition Examination Survey (NHANES) between 2001 and 2016. This was linked to the 2019 National Death Index (NDI) records to establish a prospective cohort. In the study, a logistic regression model was established to assess the relationship between PUFA intake and prevalent CVD, and a Cox proportional hazards regression model was established to assess the relationship between PUFA intake and death. RESULTS In the fully adjusted models, compared with participants in the lowest tertile, participants with the highest DPA intake were associated with a lower risk of CVD (CVD: OR = 0.71, 95%CI: 0.55, 0.91; angina: OR = 0.54, 95%CI: 0.38, 0.79; stroke: OR = 0.62, 95%CI: 0.43, 0.89), but not with three subtypes of congestive heart failure, coronary heart disease, and myocardial infarction. And the highest tertile level of DPA intake can reduce all-cause mortality (HR = 0.77, 95%CI: 0.64, 0.91) and CVD mortality (HR = 0.68, 95%CI: 0.52, 0.90). CONCLUSIONS Cardiovascular disease risk, all-cause mortality, and CVD mortality were inversely associated with dietary DPA intake but not EPA and DHA intakes in U.S. male participants with dyslipidemia.
Collapse
Affiliation(s)
- Xuanfeng Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinyi Lv
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Ruohua Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xiaoqing Li
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Wenyu Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Nan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Shuran Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - He Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, School of Public Health, Key Laboratory of Precision nutrition and health, Ministry of Education, Harbin Medical University, Harbin, China.
| | - Xiangju Kong
- Department of Gynaecology, First Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
10
|
Bassuk SS, Manson JE. Marine omega-3 fatty acid supplementation and prevention of cardiovascular disease: update on the randomized trial evidence. Cardiovasc Res 2023; 119:1297-1309. [PMID: 36378553 PMCID: PMC10262192 DOI: 10.1093/cvr/cvac172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
To date, the VITamin D and OmegA-3 TriaL (VITAL) is the only large-scale randomized trial of marine omega-3 fatty acid (n-3 FA) supplementation for cardiovascular disease (CVD) prevention in a general population unselected for elevated cardiovascular risk. We review the findings of VITAL, as well as results from recent secondary prevention trials and updated meta-analyses of n-3 FA trials in the primary and secondary prevention of CVD. In VITAL, a nationwide sample of 25 871 US adults aged 50 and older, including 5106 African Americans, were randomized in a 2 × 2 factorial design to n-3 FAs (1 g/day; 1.2:1 ratio of eicosapentaenoic to docosahexaenoic acid) and vitamin D3 (2000 IU/day) for a median of 5.3 years. Compared with an olive oil placebo, the n-3 FA intervention did not significantly reduce the primary endpoint of major CVD events [composite of myocardial infarction (MI), stroke, and CVD mortality; hazard ratio (HR) = 0.92 (95% confidence interval 0.80-1.06)] but did significantly reduce total MI [HR = 0.72 (0.59-0.90)], percutaneous coronary intervention [HR = 0.78 (0.63-0.95)], fatal MI [HR = 0.50 (0.26-0.97)], and recurrent (but not first) hospitalization for heart failure [HR = 0.86 (0.74-0.998)]. The intervention neither decreased nor increased risk of atrial fibrillation. African Americans derived the greatest treatment benefit for MI and for recurrent hospitalization for heart failure (P interaction < 0.05 for both outcomes). Meta-analyses that include VITAL and high-risk or secondary prevention n-3 FA trials show coronary, but generally not stroke, risk reduction. More research is needed to determine which individuals may be most likely to derive net benefit. (VITAL clinicaltrials.gov identifier: NCT01169259).
Collapse
Affiliation(s)
- Shari S Bassuk
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue, 3rd Floor, Boston, Massachusetts 02215, USA
| | - JoAnn E Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 900 Commonwealth Avenue, 3rd Floor, Boston, Massachusetts 02215, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
11
|
Klievik BJ, Tyrrell AD, Chen CT, Bazinet RP. Measuring brain docosahexaenoic acid turnover as a marker of metabolic consumption. Pharmacol Ther 2023:108437. [PMID: 37201738 DOI: 10.1016/j.pharmthera.2023.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) accretion in brain phospholipids is critical for maintaining the structural fluidity that permits proper assembly of protein complexes for signaling. Furthermore, membrane DHA can by released by phospholipase A2 and act as substrate for synthesis of bioactive metabolites that regulate synaptogenesis, neurogenesis, inflammation, and oxidative stress. Thus, brain DHA is consumed through multiple pathways including mitochondrial β-oxidation, autoxidation to neuroprostanes, as well as enzymatic synthesis of bioactive metabolites including oxylipins, synaptamide, fatty-acid amides, and epoxides. By using models developed by Rapoport and colleagues, brain DHA loss has been estimated to be 0.07-0.26 μmol DHA/g brain/d. Since β-oxidation of DHA in the brain is relatively low, a large portion of brain DHA loss may be attributed to synthesis of autoxidative and bioactive metabolites. In recent years, we have developed a novel application of compound specific isotope analysis to trace DHA metabolism. By the use of natural abundance in 13C-DHA in food supply, we are able to trace brain phospholipid DHA loss in free-living mice with estimates ranging from 0.11 to 0.38 μmol DHA/g brain/d, in reasonable agreement with previous methods. This novel fatty acid metabolic tracing methodology should improve our understanding of the factors that regulate brain DHA metabolism.
Collapse
Affiliation(s)
- Brinley J Klievik
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Aidan D Tyrrell
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Chuck T Chen
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
12
|
Gao Q, Liu H, Wang Z, Lan X, An J, Shen W, Wan F. Recent advances in feed and nutrition of beef cattle in China - A review. Anim Biosci 2023; 36:529-539. [PMID: 36108687 PMCID: PMC9996267 DOI: 10.5713/ab.22.0192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
The beef cattle industry in China has advanced remarkably since its reform and opening up; consequently, China has become the world's third-largest beef cattle producer. China is also one of the countries with the most substantial research input and output in the field of beef cattle feed and nutrition. The progress and innovation by China in the research field of beef cattle feed and nutrition have undoubtedly promoted the development of the domestic beef cattle industry. This review summarizes recent advances in feed resource development, nutrient requirements, and nutritional regulation of beef cattle in China. Limitations in current research and perspectives on future work are also discussed.
Collapse
Affiliation(s)
- Qian Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-Ecosystems; College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zuo Wang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xinyi Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Jishan An
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Weijun Shen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Fachun Wan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Olshansky B, Bhatt DL, Miller M, Steg PG, Brinton EA, Jacobson TA, Ketchum SB, Doyle RT, Juliano RA, Jiao L, Kowey PR, Reiffel JA, Tardif J, Ballantyne CM, Chung MK. Cardiovascular Benefits of Icosapent Ethyl in Patients With and Without Atrial Fibrillation in REDUCE-IT. J Am Heart Assoc 2023; 12:e026756. [PMID: 36802845 PMCID: PMC10111466 DOI: 10.1161/jaha.121.026756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Background In REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial), icosapent ethyl (IPE) versus placebo) reduced cardiovascular death, myocardial infarction, stroke, coronary revascularization, or unstable angina requiring hospitalization, but was associated with increased atrial fibrillation/atrial flutter (AF) hospitalization (3.1% IPE versus 2.1% placebo; P=0.004). Methods and Results We performed post hoc efficacy and safety analyses of patients with or without prior AF (before randomization) and with or without in-study time-varying AF hospitalization to assess relationships of IPE (versus placebo) and outcomes. In-study AF hospitalization event rates were higher in patients with prior AF (12.5% versus 6.3%, IPE versus placebo; P=0.007) versus without prior AF (2.2% versus 1.6%, IPE versus placebo; P=0.09). Serious bleeding rates trended higher in patients with (7.3% versus 6.0%, IPE versus placebo; P=0.59) versus without prior AF (2.3% versus 1.7%, IPE versus placebo; P=0.08). With IPE, serious bleeding trended higher regardless of prior AF (interaction P value [Pint]=0.61) or postrandomization AF hospitalization (Pint=0.66). Patients with prior AF (n=751, 9.2%) versus without prior AF (n=7428, 90.8%) had similar relative risk reductions of the primary composite and key secondary composite end points with IPE versus placebo (Pint=0.37 and Pint=0.55, respectively). Conclusions In REDUCE-IT, in-study AF hospitalization rates were higher in patients with prior AF especially in those randomized to IPE. Although serious bleeding trended higher in those randomized to IPE versus placebo over the course of the study, serious bleeding was not different regardless of prior AF or in-study AF hospitalization. Patients with prior AF or in-study AF hospitalization had consistent relative risk reductions across primary, key secondary, and stroke end points with IPE. Registration URL: https://clinicaltrials.gov/ct2/show/NCT01492361; Unique Identifier: NCT01492361.
Collapse
Affiliation(s)
| | - Deepak L. Bhatt
- Mount Sinai HeartIcahn School of Medicine at Mount Sinai Health SystemNew YorkNYUSA
| | - Michael Miller
- Department of MedicineCrescenz Veterans Affairs Medical Center and Hospital of the University of PennsylvaniaPhiladelphiaPAUSA
| | - Ph. Gabriel Steg
- French Alliance for Cardiovascular Trials, Hôpital BichatParisFrance
- Assistance Publique‐Hôpitaux de ParisUniversité Paris–Cité, INSERM UnitéParisFrance
| | | | - Terry A. Jacobson
- Lipid Clinic and Cardiovascular Risk Reduction Program, Department of MedicineEmory University School of MedicineAtlantaGAUSA
| | | | | | | | | | | | - James A. Reiffel
- Columbia University Vagelos College of Physicians & SurgeonsNew YorkNYUSA
| | | | | | | | | |
Collapse
|
14
|
Fatty Acid Levels and Their Inflammatory Metabolites Are Associated with the Nondipping Status and Risk of Obstructive Sleep Apnea Syndrome in Stroke Patients. Biomedicines 2022; 10:biomedicines10092200. [PMID: 36140306 PMCID: PMC9496373 DOI: 10.3390/biomedicines10092200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background: This paper discusses the role of inflammation in the pathogenesis of nondipping blood pressure and its role in the pathogenesis of obstructive sleep apnea syndrome. The aim of the study was to assess the impact of free fatty acids (FAs) and their inflammatory metabolites on the nondipping phenomenon and the risk of sleep apnea in stroke patients. Methods: Sixty-four ischemic stroke patients were included in the prospective study. Group I consisted of 33 patients with a preserved physiological dipping effect (DIP), while group II included 31 patients with the nondipping phenomenon (NDIP). All subjects had FA gas chromatography and inflammatory metabolite measurements performed with the use of liquid chromatography, their 24 h blood pressure was recorded, and they were assessed with the Epworth sleepiness scale (ESS). Results: In the nondipping group a higher level of C16:0 palmitic acid was observed, while lower levels were observed in regard to C20:0 arachidic acid, C22:0 behenic acid and C24:1 nervonic acid. A decreased leukotriene B4 level was recorded in the nondipping group. None of the FAs and derivatives correlated with the ESS scale in the group of patients after stroke. Correlations were observed after dividing into the DIP and NDIP groups. In the DIP group, a higher score of ESS was correlated with numerous FAs and derivatives. Inflammation of a lower degree and a higher level of anti-inflammatory mediators from EPA and DHA acids favored the occurrence of the DIP. A high level of C18: 3n6 gamma linoleic acid indicating advanced inflammation, intensified the NDIP effect. Conclusions: We demonstrated potential novel associations between the FA levels and eicosanoids in the pathogenesis of the nondipping phenomenon. There are common connections between fatty acids, their metabolites, inflammation, obstructive sleep apnea syndrome and nondipping in stroke patients.
Collapse
|
15
|
Sun L, Du H, Zong G, Guo Y, Chen Y, Chen Y, Yin H, Pei P, Yang L, Chu Q, Yu C, Li Y, Lv J, Zheng H, Zhou P, Chen J, Li L, Chen Z, Lin X. Associations of erythrocyte polyunsaturated fatty acids with incidence of stroke and stroke types in adult Chinese: a prospective study of over 8000 individuals. Eur J Nutr 2022; 61:3235-3246. [PMID: 35445833 PMCID: PMC9363313 DOI: 10.1007/s00394-022-02879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE There is limited and inconsistent evidence about the relationships of erythrocyte polyunsaturated fatty acids (PUFAs) with stroke and stroke types, particularly in China where the stroke rates are high. We aimed to investigate the associations of different erythrocyte PUFAs with incidence of total stroke, ischemic stroke (IS), and intracerebral hemorrhage (ICH) in Chinese adults. METHODS In the prospective China Kadoorie Biobank, erythrocyte PUFAs were measured using gas chromatography in 10,563 participants who attended 2013-14 resurvey. After a mean follow-up of 3.8 years, 412 incident stroke cases (342 IS, 53 ICH) were recorded among 8,159 participants without prior vascular diseases or diabetes. Cox regression yielded adjusted hazard ratios (HRs) for stroke associated with 13 PUFAs. RESULTS Overall, the mean body mass index was 24.0 (3.4) kg/m2 and the mean age was 58.1 (9.9) years. In multivariable analyses, 18:2n-6 was positively associated with ICH (HR = 2.33 [95% CIs 1.41, 3.82] for top versus bottom quintile, Ptrend = 0.007), but inversely associated with IS (0.69 [0.53,0.90], Ptrend = 0.027), while 20:3n-6 was positively associated with risk of IS (1.64 [1.32,2.04], Ptrend < 0.001), but not with ICH. Inverted-U shape curve associations were observed of 20:5n-3 with IS (Pnonlinear = 0.002) and total stroke (Pnonlinear = 0.008), with a threshold at 0.70%. After further adjustment for conventional CVD risk factors and dietary factors, these associations remained similar. CONCLUSION Among relatively lean Chinese adults, erythrocyte PUFAs 18:2n-6, 20:3n-6 and 20:5n-3 showed different associations with risks of IS and ICH. These results would improve the understanding of stroke etiology.
Collapse
Affiliation(s)
- Liang Sun
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd, Shanghai, 200031, China
| | - Huaidong Du
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, Big Data Institute Building, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Geng Zong
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd, Shanghai, 200031, China
| | - Yu Guo
- Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd, Shanghai, 200031, China
| | - Yiping Chen
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, Big Data Institute Building, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Huiyong Yin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd, Shanghai, 200031, China
| | - Pei Pei
- Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Yang
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, Big Data Institute Building, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | - Qianqian Chu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd, Shanghai, 200031, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - He Zheng
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd, Shanghai, 200031, China
| | - Puchen Zhou
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd, Shanghai, 200031, China
| | - Junshi Chen
- China National Centre for Food Safety Risk Assessment, Beijing, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, Big Data Institute Building, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK.
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-yang Rd, Shanghai, 200031, China.
| | | |
Collapse
|
16
|
Jiang H, Wang L, Wang D, Yan N, Li C, Wu M, Wang F, Mi B, Chen F, Jia W, Liu X, Lv J, Liu Y, Lin J, Ma L. Omega-3 polyunsaturated fatty acid biomarkers and risk of type 2 diabetes, cardiovascular disease, cancer, and mortality. Clin Nutr 2022; 41:1798-1807. [PMID: 35830775 DOI: 10.1016/j.clnu.2022.06.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND & AIMS Considerable attention has focused on the role of omega-3 polyunsaturated fatty acids (PUFA) in the prevention of cardiometabolic diseases, which has led to dietary recommendations to increase omega-3 fatty acid intake. A meta-analysis was conducted to summarize evidence from prospective studies regarding associations between omega-3 PUFA biomarkers and risk of developing major chronic diseases. METHODS Four electronic databases were searched for articles from inception to March 1, 2022. Random-effects model was used to estimate the pooled relative risk (RR) and 95% confidence intervals (CIs) for the association of omega-3 PUFAs, including α-linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid (DHA), with risk of developing type 2 diabetes (T2D), cardiovascular disease (CVD), including coronary heart disease (CHD) and stroke, cancer, and mortality. The Grades of Recommendation, Assessment, Development and Evaluation assessment tool was used to rates the confidence in estimates. RESULTS A total of 67 prospective studies comprised of 310,955 participants were identified. Individual omega-3 PUFAs showed divergent associations with the study outcomes of interest. A significant inverse association with T2D risk was observed across categories of ALA (relative risk [RR]: 0.89, 95% confidence interval [CI]: 0.82-0.96), EPA (RR: 0.85, 95% CI: 0.72-0.99) and DPA (RR: 0.84, 95% CI: 0.73-0.96) biomarkers. The marine-origin omega-3 fatty acids biomarkers but not ALA was significantly associated with lower risks of total CVD, CHD, and overall mortality, with RRs ranging from 0.70 for DHA-CHD association to 0.85 for EPA-CHD association. A lower risk of colorectal cancer was observed at higher levels of DPA (RR: 0.76, 95% CI: 0.59-0.98) and DHA (RR: 0.80; 95% CI: 0.65-0.99), whereas no association was noted for other outcomes. In addition, a dose-response relationship was observed between an increasing level of EPA, DPA, or DHA biomarker and lower risk of CVD. CONCLUSIONS Higher concentrations of marine-derived omega-3 PUFA biomarkers were associated with a significantly reduced risk of total CVD, CHD, and total mortality. Levels of ALA were inversely associated with a lower risk of T2D but not CVD-related outcomes. These data support the dietary recommendations advocating the role of omega-3 PUFAs in maintaining an overall lower risk of developing cardiovascular disease and premature deaths.
Collapse
Affiliation(s)
- Hong Jiang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lina Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Duolao Wang
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Ni Yan
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chao Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Min Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fan Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Baibing Mi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Fangyao Chen
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wanru Jia
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xi Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiaxin Lv
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yan Liu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jing Lin
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China.
| | - Le Ma
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China.
| |
Collapse
|
17
|
Liang LJ, Casillas A, Longstreth WT, PhanVo L, Vassar SD, Brown AF. Fishing for health: Neighborhood variation in fish intake, fish quality and association with stroke risk among older adults in the Cardiovascular Health Study. Nutr Metab Cardiovasc Dis 2022; 32:1410-1417. [PMID: 35346546 PMCID: PMC9472873 DOI: 10.1016/j.numecd.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND AND AIMS Fish consumption has been associated with better health outcomes. Dietary patterns may vary substantially by neighborhood of residence. However, it is unclear if the benefits of a healthy diet are equivalent in different communities. This study examines associations of fish consumption with stroke incidence and stroke risk factors, and whether these differ by neighborhood socioeconomic status (NSES). METHODS AND RESULTS We studied 4007 participants in the Cardiovascular Health Study who were 65 years or older and recruited between 1989 and 1990 from 4 US communities. Outcomes included fish consumption type (bakes/broiled vs. fried) and frequency, stroke incidence, and stroke risk factors. Multilevel regressions models were used to estimate fish consumption associations with clinical outcomes. Lower NSES was associated with higher consumption of fried fish (aOR = 1.47, 95% CI: 1.10-1.98) and lower consumption of non-fried fish (0.64, 0.47-0.86). Frequent fried fish (11.9 vs. 9.2 person-years for at least once weekly vs. less than once a month, respectively) and less frequent non-fried fish (17.7 vs. 9.6 person-years for less than once a month vs. at least once weekly, respectively) were independently associated with an increased risk of stroke (p-values < 0.05). However, among those with similar levels of healthy fish consumption, residents with low NSES had less benefit on stroke risk reduction, compared with high NSES. CONCLUSION Fish consumption type and frequency both impact stroke risk. Benefits of healthy fish consumption differ by neighborhood socioeconomic status.
Collapse
Affiliation(s)
- Li-Jung Liang
- Division of General Internal Medicine and Health Services Research, University of California, 1100 Glendon Avenue, Suite 850, Los Angeles, CA 90024, USA.
| | - Alejandra Casillas
- Division of General Internal Medicine and Health Services Research, University of California, 1100 Glendon Avenue, Suite 850, Los Angeles, CA 90024, USA
| | - W T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, 908 Jefferson St, Seattle, WA 98104, USA
| | - Lynn PhanVo
- Division of General Internal Medicine and Health Services Research, University of California, 1100 Glendon Avenue, Suite 850, Los Angeles, CA 90024, USA
| | - Stefanie D Vassar
- Division of General Internal Medicine and Health Services Research, University of California, 1100 Glendon Avenue, Suite 850, Los Angeles, CA 90024, USA
| | - Arleen F Brown
- Division of General Internal Medicine and Health Services Research, University of California, 1100 Glendon Avenue, Suite 850, Los Angeles, CA 90024, USA
| |
Collapse
|
18
|
Sato T, Sakai K, Okumura M, Kitagawa T, Takatsu H, Tanabe M, Komatsu T, Sakuta K, Umehara T, Murakami H, Mitsumura H, Matsushima M, Iguchi Y. Low dihomo-γ-linolenic acid is associated with susceptibility vessel sign in cardioembolism. Thromb Res 2022; 213:84-90. [DOI: 10.1016/j.thromres.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/02/2022] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
|
19
|
Kondo K, Arima H, Fujiyoshi A, Sekikawa A, Kadota A, Hisamatsu T, Torii S, Shiino A, Morino K, Miyagawa N, Segawa H, Watanabe Y, Maegawa H, Nozaki K, Miura K, Ueshima H. Differential Association of Serum n-3 Polyunsaturated Fatty Acids with Various Cerebrovascular Lesions in Japanese Men. Cerebrovasc Dis 2022; 51:774-780. [PMID: 35477146 DOI: 10.1159/000524243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND An association between a high intake of marine-derived n-3 polyunsaturated fatty acids (n-3 PUFAs) with a lower risk of coronary heart disease was previously reported. However, the association between n-3 PUFAs and cerebrovascular lesions remains unclear. We evaluated this association in a general-population-based sample of Japanese men. METHODS Participants were community-dwelling men (40-79 years old) living in Kusatsu City, Shiga, Japan. Serum concentrations of n-3 PUFAs, defined as the sum of eicosapentaenoic and docosahexaenoic acids, were measured via gas-liquid chromatography between 2006 and 2008. Magnetic resonance imaging was used to assess cerebrovascular lesions (including intracerebral large-artery stenosis, lacunar infarction, and microbleeds) and white matter lesions between 2012 and 2015. Logistic regression adjusting for conventional cardiovascular risk factors was used to estimate the odds ratio of prevalent cerebrovascular lesions per 1 standard deviation higher serum concentration of n-3 PUFAs. RESULTS Of a total of 739 men, the numbers (crude prevalence in %) of prevalent cerebral large-artery stenoses, lacunar infarctions, microbleeds, and white matter lesions were 222 (30.0), 162 (21.9), 103 (13.9), and 164 (22.2), respectively. A 1 standard deviation higher concentration of n-3 PUFAs (30.5 μmol/L) was independently associated with lower odds of cerebral large-artery stenosis (multivariable-adjusted odds ratio, 0.80; 95% confidential interval, 0.67-0.97). There were no significant associations of n-3 PUFAs with the other types of lesions. CONCLUSIONS n-3 PUFAs may have protective effects against large-artery stenosis, but not small vessel lesions, in the brain.
Collapse
Affiliation(s)
- Keiko Kondo
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hisatomi Arima
- Department of Preventive Medicine and Public Health, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Akira Fujiyoshi
- Department of Hygiene, Wakayama Medical University, Wakayama, Japan
| | - Akira Sekikawa
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Aya Kadota
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Takashi Hisamatsu
- Department of Public Health, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Sayuki Torii
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Akihiko Shiino
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Miyagawa
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Hiroyoshi Segawa
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yoshiyuki Watanabe
- Department of Radiology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kazuhiko Nozaki
- Department of Neurosurgery, Shiga University of Medical Science, Otsu, Japan
| | - Katsuyuki Miura
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hirotsugu Ueshima
- Department of Preventive Medicine, NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | | |
Collapse
|
20
|
Wang C, Enssle J, Pietzner A, Schmöcker C, Weiland L, Ritter O, Jaensch M, Elbelt U, Pagonas N, Weylandt KH. Essential Polyunsaturated Fatty Acids in Blood from Patients with and without Catheter-Proven Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms23020766. [PMID: 35054948 PMCID: PMC8775772 DOI: 10.3390/ijms23020766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Statins reduce morbidity and mortality of CAD. Intake of n-3 polyunsaturated fatty acid (n-3 PUFAs), particularly eicosapentaenoic acid (EPA), is associated with reduced morbidity and mortality in patients with CAD. Previous data indicate that a higher conversion of precursor fatty acids (FAs) to arachidonic acid (AA) is associated with increased CAD prevalence. Our study explored the FA composition in blood to assess n-3 PUFA levels from patients with and without CAD. We analyzed blood samples from 273 patients undergoing cardiac catheterization. Patients were stratified according to clinically relevant CAD (n = 192) and those without (n = 81). FA analysis in full blood was performed by gas chromatography. Indicating increased formation of AA from precursors, the ratio of dihomo-gamma-linolenic acid (DGLA) to AA, the delta-5 desaturase index (D5D index) was higher in CAD patients. CAD patients had significantly lower levels of omega-6 polyunsaturated FAs (n-6 PUFA) and n-3 PUFA, particularly EPA, in the blood. Thus, our study supports a role of increased EPA levels for cardioprotection.
Collapse
Affiliation(s)
- Chaoxuan Wang
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Jörg Enssle
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, 14469 Potsdam, Germany
| | - Anne Pietzner
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
| | - Christoph Schmöcker
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
| | - Linda Weiland
- Division of Medicine, Department of Cardiology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, 14770 Brandenburg an der Havel, Germany; (L.W.); (O.R.); (M.J.); (N.P.)
| | - Oliver Ritter
- Division of Medicine, Department of Cardiology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, 14770 Brandenburg an der Havel, Germany; (L.W.); (O.R.); (M.J.); (N.P.)
| | - Monique Jaensch
- Division of Medicine, Department of Cardiology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, 14770 Brandenburg an der Havel, Germany; (L.W.); (O.R.); (M.J.); (N.P.)
| | - Ulf Elbelt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
- Medical Department, Division of Psychosomatic Medicine, Campus Benjamin Franklin, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Nikolaos Pagonas
- Division of Medicine, Department of Cardiology, University Hospital Brandenburg an der Havel, Brandenburg Medical School, 14770 Brandenburg an der Havel, Germany; (L.W.); (O.R.); (M.J.); (N.P.)
| | - Karsten H. Weylandt
- Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, 16816 Neuruppin, Germany; (C.W.); (J.E.); (A.P.); (C.S.); (U.E.)
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology, Brandenburg Medical School and University of Potsdam, 14469 Potsdam, Germany
- Correspondence: ; Tel.: +49-(0)3391-39-3210
| |
Collapse
|
21
|
Huang NK, Biggs ML, Matthan NR, Djoussé L, Longstreth WT, Mukamal KJ, Siscovick DS, Lichtenstein AH. Serum Nonesterified Fatty Acids and Incident Stroke: The CHS. J Am Heart Assoc 2021; 10:e022725. [PMID: 34755529 PMCID: PMC8751910 DOI: 10.1161/jaha.121.022725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Significant associations between total nonesterified fatty acid (NEFA) concentrations and incident stroke have been reported in some prospective cohort studies. We evaluated the associations between incident stroke and serum concentrations of nonesterified saturated, monounsaturated, polyunsaturated, and trans fatty acids. Methods and Results CHS (Cardiovascular Health Study) participants (N=2028) who were free of stroke at baseline (1996–1997) and had an archived fasting serum sample were included in this study. A total of 35 NEFAs were quantified using gas chromatography. Cox proportional hazards regression models were used to evaluate associations of 5 subclasses (nonesterified saturated, monounsaturated, omega (n)‐6 polyunsaturated, n‐3 polyunsaturated, and trans fatty acids) of NEFAs and individual NEFAs with incident stroke. Sensitivity analysis was conducted by excluding cases with hemorrhagic stroke (n=45). A total of 338 cases of incident stroke occurred during the median 10.5‐year follow‐up period. Total n‐3 (hazard ratio [HR], 0.77 [95% CI, 0.61–0.97]) and n‐6 (HR, 1.32 [95% CI, 1.01–1.73]) subclasses of NEFA were negatively and positively associated with incident stroke, respectively. Among individual NEFAs, dihomo‐γ‐linolenic acid (20:3n‐6) was associated with higher risk (HR, 1.29 [95% CI, 1.02–1.63]), whereas cis‐7‐hexadecenoic acid (16:1n‐9c) and arachidonic acid (20:4n‐6) were associated with a lower risk (HR, 0.67 [95% CI, 0.47–0.97]; HR, 0.81 [95% CI. 0.65–1.00], respectively) of incident stroke per standard deviation increment. After the exclusion of cases with hemorrhagic stroke, these associations did not remain significant. Conclusions A total of 2 NEFA subclasses and 3 individual NEFAs were associated with incident stroke. Of these, the NEFA n‐3 subclass and dihomo‐γ‐linolenic acid are diet derived and may be potential biomarkers for total stroke risk.
Collapse
Affiliation(s)
- Neil K Huang
- Cardiovascular Nutrition Laboratory Jean Mayer USDA Human Nutrition Research Center on AgingTufts University Boston MA
| | - Mary L Biggs
- Department of Biostatistics University of Washington Seattle WA
| | - Nirupa R Matthan
- Cardiovascular Nutrition Laboratory Jean Mayer USDA Human Nutrition Research Center on AgingTufts University Boston MA
| | - Luc Djoussé
- Division of Aging Brigham and Women's Hospital Harvard Medical School Boston MA
| | - W T Longstreth
- Departments of Neurology and Epidemiology University of Washington Seattle WA
| | - Kenneth J Mukamal
- Division of General Medicine Beth Israel Deaconess Medical Center Boston MA
| | | | - Alice H Lichtenstein
- Cardiovascular Nutrition Laboratory Jean Mayer USDA Human Nutrition Research Center on AgingTufts University Boston MA
| |
Collapse
|
22
|
Intake of marine n-3 polyunsaturated fatty acids and the risk of incident peripheral artery disease. Eur J Clin Nutr 2021; 75:1483-1490. [PMID: 33514866 DOI: 10.1038/s41430-021-00858-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/20/2020] [Accepted: 01/07/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND A high intake of marine n-3 polyunsaturated fatty acids (PUFAs) may lower the risk of coronary heart disease and ischemic stroke. The association between intake of marine n-3 PUFAs and development of peripheral artery disease (PAD), however, remains unexplored. We hypothesised that intake of marine n-3 PUFAs, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and the sum of EPA + DHA was associated with a lower risk of incident PAD. METHODS We used data from the Danish Diet, Cancer and Health cohort and investigated the associations between intake of EPA, DHA and EPA + DHA and development of PAD. Information on intake of n-3 PUFAs was obtained through a validated food frequency questionnaire. Potential PAD cases were identified through linkage to the Danish National Patient Register and subsequently, all cases were validated. RESULTS Data were available from 55,248 participants and during a median of 13.6 years of follow-up, 950 cases of PAD were identified. Multivariate Cox regression analyses with adjustments for established risk factors showed no statistically significant associations between intake of EPA (p = 0.255), DHA (p = 0.071) or EPA + DHA (p = 0.168) and the rate of incident PAD. CONCLUSIONS We did not confirm our hypothesis that intake of EPA, DHA or EPA + DHA was associated with a lower risk of incident PAD.
Collapse
|
23
|
The Role of Supplementation with Natural Compounds in Post-Stroke Patients. Int J Mol Sci 2021; 22:ijms22157893. [PMID: 34360658 PMCID: PMC8348438 DOI: 10.3390/ijms22157893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Malnutrition is a serious problem in post-stroke patients. Importantly, it intensifies with hospitalization, and is related to both somatic and psychological reasons, as well as is associated with the insufficient knowledge of people who accompany the patient. Malnutrition is a negative prognostic factor, leading to a reduction in the quality of life. Moreover, this condition significantly extends hospitalization time, increases the frequency of treatment in intensive care units, and negatively affects the effectiveness of rehabilitation. Obtaining growing data on the therapeutic effectiveness of new compounds of natural origin is possible through the use of pharmacodynamic and analytical methods to assess their therapeutic properties. The proper supply of nutrients, as well as compounds of natural origin, is an important element of post-stroke therapy, due to their strong antioxidant, anti-inflammatory, neuroprotective and neuroplasticity enhancing properties. Taking the above into account, in this review we present the current state of knowledge on the benefits of using selected substances of natural origin in patients after cerebral stroke.
Collapse
|
24
|
Chou CL, Chen JS, Kang YN, Chen YJ, Fang TC. Association of polyunsaturated fatty acids with improved heart rate variability and cardiovascular events in patients with end-stage renal disease receiving maintenance dialysis: a systematic review and meta-analysis of randomized controlled trials. Food Funct 2021; 12:8090-8099. [PMID: 34286806 DOI: 10.1039/d1fo00510c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Apart from dietary restriction and medical therapy, the benefits of cardiovascular protection offered by polyunsaturated fatty acid (PUFA) supplements in patients with ESRD receiving maintenance dialysis remain unclear. This systematic review and meta-analysis examined the effects of PUFAs on blood pressure, heart rate (HR), HR variability (HRV), and cardiovascular disease (CVD) prognosis. METHODS We identified randomized controlled trials (RCTs) from Embase, PubMed (including MEDLINE), and Web of Science. We included seven RCTs that involved 724 patients with ESRD receiving dialysis and PUFA supplements. RESULTS The data indicated that compared with the control group, the PUFA group demonstrated decreased cardiovascular events (Peto odds ratio = 0.52, 95% confidence interval [CI] = 0.32 to 0.85, P = 0.009) and HRV (changes in the mean HR [mean difference = -2.59, 95% CI = -4.91 to -0.26, P = 0.03, I2 = 0%]; mean RR interval [MD = 29.03, 95% CI = 5.43 to 52.63, P = 0.02, I2 = 0%]; mean of the standard deviation of all normal RR intervals for all 5 min segments [MD = 2.73, 95% CI = 0.48 to 4.99, P = 0.02, I2 = 0%], and square root of the mean of the sum of the squares of differences between adjacent intervals [MD = 2.03, 95% CI = 0.04 to 4.03, P = 0.05, I2 = 0%]). CONCLUSION PUFA supplements appeared to improve CVD prognosis in patients receiving dialysis. Additional RCTs with longer follow-up periods need to clarify the benefits of PUFA supplements in this patient population.
Collapse
Affiliation(s)
- Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
25
|
Reiner MF, Baumgartner P, Wiencierz A, Coslovsky M, Bonetti NR, Filipovic MG, Montrasio G, Aeschbacher S, Rodondi N, Baretella O, Kühne M, Moschovitis G, Meyre P, Bonati LH, Lüscher TF, Camici GG, Osswald S, Conen D, Beer JH. The Omega-3 Fatty Acid Eicosapentaenoic Acid (EPA) Correlates Inversely with Ischemic Brain Infarcts in Patients with Atrial Fibrillation. Nutrients 2021; 13:651. [PMID: 33671288 PMCID: PMC7922349 DOI: 10.3390/nu13020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 02/04/2023] Open
Abstract
The omega-3 fatty acid (n-3 FA) eicosapentaenoic acid (EPA) reduces stroke in patients with atherosclerotic cardiovascular disease. Whether EPA affects stroke or cerebral small vessel dis-ease in patients with atrial fibrillation (AF) remains uncertain. EPA, docosahexaenoic acid (DHA), docosapentaenoic acid (DPA), and alpha-linolenic acid (ALA) were determined by gas chromatography in 1657 AF patients from the Swiss Atrial Fibrillation study. All patients underwent brain MRI to detect ischemic brain infarcts, classified as large noncortical or cortical infarcts (LNCCIs); markers of small vessel disease, classified as small noncortical infarcts (SNCIs), number of microbleeds, and white matter lesion (WML) volumes. Individual and total n-3 FAs (EPA + DHA + DPA + ALA) were correlated with LNCCIs and SNCIs using logistic regression, with numbers of microbleeds using a hurdle model, and WML volumes using linear regression. LNCCIs were detected in 372 patients (22.5%). EPA correlated inversely with the prevalence of LNCCIs (odds ratio [OR] 0.51 per increase of 1 percentage point EPA, 95% confidence interval [CI] 0.29-0.90). DPA correlated with a higher LNCCI prevalence (OR 2.48, 95%CI 1.49-4.13). No associations with LNCCIs were found for DHA, ALA, and total n-3 FAs. Neither individual nor total n-3 FAs correlated with markers of small vessel disease. In conclusion, EPA correlates inversely with the prevalence of ischemic brain infarcts, but not with markers of small vessel disease in patients with AF.
Collapse
Affiliation(s)
- Martin F. Reiner
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland; (M.F.R.); (N.R.B.); (G.M.)
| | - Philipp Baumgartner
- Department of Neurology, University Hospital of Zurich, 8091 Zurich, Switzerland;
| | - Andrea Wiencierz
- Clinical Trial Unit University Hospital of Basel, 4031 Basel, Switzerland; (A.W.); (M.C.)
| | - Michael Coslovsky
- Clinical Trial Unit University Hospital of Basel, 4031 Basel, Switzerland; (A.W.); (M.C.)
| | - Nicole R. Bonetti
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland; (M.F.R.); (N.R.B.); (G.M.)
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, 8952 Schlieren, Switzerland; (T.F.L.); (G.G.C.)
| | - Mark G. Filipovic
- Institute of Anesthesiology, Cantonal Hospital Winterthur, 8400 Winterthur, Switzerland;
| | - Giulia Montrasio
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland; (M.F.R.); (N.R.B.); (G.M.)
| | - Stefanie Aeschbacher
- Department of Cardiology, University Hospital of Basel, 4031 Basel, Switzerland; (S.A.); (M.K.); (P.M.); (S.O.)
- Cardiovascular Research Institute Basel, University Hospital of Basel, 4031 Basel, Switzerland;
| | - Nicolas Rodondi
- Department of General Internal Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (N.R.); (O.B.)
- Institute of Primary Health Care (BIHAM), University of Bern, 3010 Bern, Switzerland
| | - Oliver Baretella
- Department of General Internal Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (N.R.); (O.B.)
- Institute of Primary Health Care (BIHAM), University of Bern, 3010 Bern, Switzerland
| | - Michael Kühne
- Department of Cardiology, University Hospital of Basel, 4031 Basel, Switzerland; (S.A.); (M.K.); (P.M.); (S.O.)
- Cardiovascular Research Institute Basel, University Hospital of Basel, 4031 Basel, Switzerland;
| | - Giorgio Moschovitis
- Division of Cardiology, Ospedale Regionale di Lugano, 6900 Ticino, Switzerland;
| | - Pascal Meyre
- Department of Cardiology, University Hospital of Basel, 4031 Basel, Switzerland; (S.A.); (M.K.); (P.M.); (S.O.)
- Cardiovascular Research Institute Basel, University Hospital of Basel, 4031 Basel, Switzerland;
| | - Leo H. Bonati
- Department of Neurology and Stroke Center, University Hospital Basel, University of Basel, 4031 Basel, Switzerland;
| | - Thomas F. Lüscher
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, 8952 Schlieren, Switzerland; (T.F.L.); (G.G.C.)
- Royal Brompton and Harefield Hospitals, London SW3 6NP, UK
- Imperial College, London SW7 2BU, UK
| | - Giovanni G. Camici
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, 8952 Schlieren, Switzerland; (T.F.L.); (G.G.C.)
| | - Stefan Osswald
- Department of Cardiology, University Hospital of Basel, 4031 Basel, Switzerland; (S.A.); (M.K.); (P.M.); (S.O.)
- Cardiovascular Research Institute Basel, University Hospital of Basel, 4031 Basel, Switzerland;
| | - David Conen
- Cardiovascular Research Institute Basel, University Hospital of Basel, 4031 Basel, Switzerland;
- Population Health Research Institute, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Jürg H. Beer
- Department of Internal Medicine, Cantonal Hospital of Baden, 5404 Baden, Switzerland; (M.F.R.); (N.R.B.); (G.M.)
- Center for Molecular Cardiology, Laboratory for Platelet Research, University of Zurich, 8952 Schlieren, Switzerland; (T.F.L.); (G.G.C.)
| |
Collapse
|
26
|
Lin PC, Chou CL, Ou SH, Fang TC, Chen JS. Systematic Review of Nutrition Supplements in Chronic Kidney Diseases: A GRADE Approach. Nutrients 2021; 13:469. [PMID: 33573242 PMCID: PMC7911108 DOI: 10.3390/nu13020469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is cumulative worldwide and an increasing public health issue. Aside from the widely known protein restriction and medical therapy, less evident is the renal protection of nutrition supplements in CKD patients. This systematic review (SR), using a Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach, aims to summarize and quantify evidence about the prevention effects of vitamin D and analogues, omega-3 polyunsaturated fatty acid (omega-3 PUFA), dietary fiber, coenzyme Q10 (CoQ10), and biotics on CKD progression. This study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to examine SRs and/or meta-analysis of clinical controlled trials identified from PubMed, Embase, and the Cochrane Library. Finally, seventeen SRs were included in the qualitative analysis. The beneficial effects of these nutrition supplements in CKD patients mostly seem to be at low to very low evidence on proteinuria, kidney function, and inflammations and did not appear to improve CKD prognosis. The recommendation of nutrition supplements in CKD patients needs to discuss with physicians and consider the benefits over the adverse effects. Longer follow-up of larger randomized trials is necessary to clarify the benefits of nutrition supplements in CKD patients.
Collapse
Affiliation(s)
- Pei-Chin Lin
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Department of Pharmacy, School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807017, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei 235041, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110301, Taiwan
| | - Shih-Hsiang Ou
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Te-Chao Fang
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei 110301, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Jin-Shuen Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- National Defense Medical Center, School of Medicine, Taipei 114201, Taiwan
| |
Collapse
|
27
|
Yamagata K. Prevention of Endothelial Dysfunction and Cardiovascular Disease by n-3 Fatty Acids-Inhibiting Action on Oxidative Stress and Inflammation. Curr Pharm Des 2021; 26:3652-3666. [PMID: 32242776 DOI: 10.2174/1381612826666200403121952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Prospective cohort studies and randomized controlled trials have shown the protective effect of n-3 fatty acids against cardiovascular disease (CVD). The effect of n-3 fatty acids on vascular endothelial cells indicates their possible role in CVD prevention. OBJECTIVE Here, we describe the effect of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) on endothelial dysfunction-caused by inflammation and oxidative stress-and their role in the development of CVD. METHODS We reviewed epidemiological studies done on n-3 fatty acids in CVD. The effect of DHA and EPA on vascular endothelial cells was examined with regard to changes in various markers, such as arteriosclerosis, inflammation, and oxidative stress, using cell and animal models. RESULTS Epidemiological studies revealed that dietary intake of EPA and DHA was associated with a reduced risk of various CVDs. EPA and DHA inhibited various events involved in arteriosclerosis development by preventing oxidative stress and inflammation associated with endothelial cell damage. In particular, EPA and DHA prevented endothelial cell dysfunction mediated by inflammatory responses and oxidative stress induced by events related to CVD. DHA and EPA also increased eNOS activity and induced nitric oxide production. CONCLUSION The effects of DHA and EPA on vascular endothelial cell damage and dysfunction may involve the induction of nitric oxide, in addition to antioxidant and anti-inflammatory effects. n-3 fatty acids inhibit endothelial dysfunction and prevent arteriosclerosis. Therefore, the intake of n-3 fatty acids may prevent CVDs, like myocardial infarction and stroke.
Collapse
Affiliation(s)
- Kazuo Yamagata
- College of Bioresource Science, Nihon University (UNBS), Kanagawa, Japan
| |
Collapse
|
28
|
Role of polyunsaturated fatty acids in ischemic stroke - A perspective of specialized pro-resolving mediators. Clin Nutr 2021; 40:2974-2987. [PMID: 33509668 DOI: 10.1016/j.clnu.2020.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/14/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have been proposed as beneficial for cardiovascular health. However, results from both epidemiological studies and clinical trials have been inconsistent, whereas most of the animal studies showed promising benefits of PUFAs in the prevention and treatment of ischemic stroke. In recent years, it has become clear that PUFAs are metabolized into various types of bioactive derivatives, including the specialized pro-resolving mediators (SPMs). SPMs exert multiple biofunctions, such as to limit excessive inflammatory responses, regulate lipid metabolism and immune cell functions, decrease production of pro-inflammatory factors, increase anti-inflammatory mediators, as well as to promote tissue repair and homeostasis. Inflammation has been recognised as a key contributor to the pathophysiology of acute ischemic stroke. Owing to their potent pro-resolving actions, SPMs are potential for development of novel anti-stroke therapy. In this review, we will summarize current knowledge of epidemiological studies, basic research and clinical trials concerning PUFAs in stroke prevention and treatment, with special attention to SPMs as the unsung heroes behind PUFAs.
Collapse
|
29
|
Izar MCDO, Lottenberg AM, Giraldez VZR, Santos Filho RDD, Machado RM, Bertolami A, Assad MHV, Saraiva JFK, Faludi AA, Moreira ASB, Geloneze B, Magnoni CD, Scherr C, Amaral CK, Araújo DBD, Cintra DEC, Nakandakare ER, Fonseca FAH, Mota ICP, Santos JED, Kato JT, Beda LMM, Vieira LP, Bertolami MC, Rogero MM, Lavrador MSF, Nakasato M, Damasceno NRT, Alves RJ, Lara RS, Costa RP, Machado VA. Position Statement on Fat Consumption and Cardiovascular Health - 2021. Arq Bras Cardiol 2021; 116:160-212. [PMID: 33566983 PMCID: PMC8159504 DOI: 10.36660/abc.20201340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Ana Maria Lottenberg
- Hospital Israelita Albert Einstein (HIAE) - Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), São Paulo, SP - Brasil
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Viviane Zorzanelli Rocha Giraldez
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Raul Dias Dos Santos Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | - Roberta Marcondes Machado
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | - Adriana Bertolami
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | | | - André Arpad Faludi
- Instituto Dante Pazzanese de Cardiologia, São Paulo, São Paulo, SP - Brasil
| | | | - Bruno Geloneze
- Universidade Estadual de Campinas (UNICAMP), Campinas, SP - Brasil
| | | | | | | | | | | | | | | | | | | | | | - Lis Mie Misuzawa Beda
- Faculdade de Medicina da Universidade de São Paulo, Laboratório de Lípides (LIM10),São Paulo, São Paulo, SP - Brasil
| | | | | | | | | | - Miyoko Nakasato
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (FMUSP),São Paulo, São Paulo, SP - Brasil
| | | | - Renato Jorge Alves
- Santa Casa de Misericórdia de São Paulo, São Paulo, São Paulo, SP - Brasil
| | - Roberta Soares Lara
- Núcleo de Alimentação e Nutrição da Sociedade Brasileira de Cardiologia, Rio de Janeiro, RJ - Brasil
| | | | | |
Collapse
|
30
|
Comhaire F, Decleer W. Can the biological mechanisms of ageing be corrected by food supplementation. The concept of health care over sick care. Aging Male 2020; 23:1146-1157. [PMID: 31973615 DOI: 10.1080/13685538.2020.1713080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
"From care for the sick to care for health" implies that age-related diseases and discomforts, which impair the quality of life, should be prevented rather than treated. Healthy lifestyle and nutrition, and hormone supplementation - when needed - are of crucial importance. Food supplementation with nutraceuticals composed of vitamins, oligo-minerals, plant extracts and essential amino- and fatty acids should reduce age-related oxidative and epigenetic damage to DNA, and inhibit inflammatory and metabolic impairment. This study of the potential beneficial effects of novel nutraceuticals on the biological mechanisms of physical and mental ageing suggests these supplements may be scientifically justified. In the absence of adverse side effects and the expected favourable effect on the quality-adjusted life years, the benefit over risk ratio of nutraceutical supplementation should be positive.
Collapse
Affiliation(s)
| | - Wim Decleer
- Department of Reproductive Medicine, AZ Palfijn, Ghent, Belgium
- Fertility Clinic, Aalter, Belgium
| |
Collapse
|
31
|
Yamagata K. Dietary docosahexaenoic acid inhibits neurodegeneration and prevents stroke. J Neurosci Res 2020; 99:561-572. [PMID: 32964457 DOI: 10.1002/jnr.24728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/11/2020] [Accepted: 08/30/2020] [Indexed: 01/07/2023]
Abstract
Stroke severely impairs quality of life and has a high mortality rate. On the other hand, dietary docosahexaenoic acid (DHA) prevents neuronal damage. In this review, we describe the effects of dietary DHA on ischemic stroke-associated neuronal damage and its role in stroke prevention. Recent epidemiological studies have been conducted to analyze stroke prevention through DHA intake. The effects of dietary intake and supply of DHA to neuronal cells, DHA-mediated inhibition of neuronal damage, and its mechanism, including the effects of the DHA metabolite, neuroprotectin D1 (NPD1), were investigated. These studies revealed that DHA intake was associated with a reduced risk of stroke. Moreover, studies have shown that DHA intake may reduce stroke mortality rates. DHA, which is abundant in fish oil, passes through the blood-brain barrier to accumulate as a constituent of phospholipids in the cell membranes of neuronal cells and astrocytes. Astrocytes supply DHA to neuronal cells, and neuronal DHA, in turn, activates Akt and Raf-1 to prevent neuronal death or damage. Therefore, DHA indirectly prevents neuronal damage. Furthermore, NDP1 blocks neuronal apoptosis. DHA, together with NPD1, may block neuronal damage and prevent stroke. The inhibitory effect on neuronal damage is achieved through the antioxidant (via inducing the Nrf2/HO-1 system) and anti-inflammatory effects (via promoting JNK/AP-1 signaling) of DHA.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Bioscience & Biotechnology, College of Bioresource Science, Nihon University (UNBS), Fujisawa, Japan
| |
Collapse
|
32
|
Zirpoli H, Chang CL, Carpentier YA, Michael-Titus AT, Ten VS, Deckelbaum RJ. Novel Approaches for Omega-3 Fatty Acid Therapeutics: Chronic Versus Acute Administration to Protect Heart, Brain, and Spinal Cord. Annu Rev Nutr 2020; 40:161-187. [PMID: 32966188 DOI: 10.1146/annurev-nutr-082018-124539] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article reviews novel approaches for omega-3 fatty acid (FA) therapeutics and the linked molecular mechanisms in cardiovascular and central nervous system (CNS) diseases. In vitro and in vivo research studies indicate that omega-3 FAs affect synergic mechanisms that include modulation of cell membrane fluidity, regulation of intracellular signaling pathways, and production of bioactive mediators. We compare how chronic and acute treatments with omega-3 FAs differentially trigger pathways of protection in heart, brain, and spinal cord injuries. We also summarize recent omega-3 FA randomized clinical trials and meta-analyses and discuss possible reasons for controversial results, with suggestions on improving the study design for future clinical trials. Acute treatment with omega-3 FAs offers a novel approach for preserving cardiac and neurological functions, and the combinations of acute treatment with chronic administration of omega-3 FAs might represent an additional therapeutic strategy for ameliorating adverse cardiovascular and CNS outcomes.
Collapse
Affiliation(s)
- Hylde Zirpoli
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Chuchun L Chang
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA;
| | - Yvon A Carpentier
- Clinical Nutrition Unit, Université Libre de Bruxelles, 1050 Brussels, Belgium.,Nutrition Lipid Developments, SPRL, 1050 Brussels, Belgium
| | - Adina T Michael-Titus
- Center for Neuroscience, Surgery, and Trauma, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Vadim S Ten
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Richard J Deckelbaum
- Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
33
|
Sun L, Zong G, Li H, Lin X. Fatty acids and cardiometabolic health: a review of studies in Chinese populations. Eur J Clin Nutr 2020; 75:253-266. [PMID: 32801302 DOI: 10.1038/s41430-020-00709-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/19/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022]
Abstract
Rapid nutrition transition from plant-based traditional diet to westernized diet has led to dramatically heightening burdens of cardiometabolic diseases in China in past decades. Recently, national surveys reported that poor dietary quality including low marine n-3 fatty acids and high intakes of red meat and processed meat was associated with considerably elevated cardiometabolic deaths. Previous studies mainly from Western population-based cohorts have indicated that not only fat quantity but also quality linked with different cardiometabolic outcomes. Compared with Western peoples, Asian peoples, including Chinese, are known to have different dietary patterns and lifestyle, as well as genetic heterogeneities, which may modify fatty acid metabolism and disease susceptibility in certain degree. To date, there were limited prospective studies investigating the relationships between fatty acids and cardiometabolic disease outcomes in Chinese, and most existing studies were cross-sectional nature and within one or two region(s). Notably, shifting dietary patterns could change not only amount, types, and ratio of fatty acids accounting for overall energy intake, but also their food sources and ratio to other macronutrients. Moreover, large geographic and urban-rural variations in prevalence of cardiometabolic diseases among Chinese may also reflect the effects of socioeconomic development and local diets on health status. Therefore, current review will summarize available literatures with more focus on the Chinese-based studies which may extend current knowledge about the roles of fatty acids in pathogenesis of cardiometabolic diseases for Asian populations and also provide useful information for trans-ethnic comparisons with other populations.
Collapse
Affiliation(s)
- Liang Sun
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huaixing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xu Lin
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, 310024, China. .,Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
34
|
The Effects of Dietary Nutrition on Sleep and Sleep Disorders. Mediators Inflamm 2020; 2020:3142874. [PMID: 32684833 PMCID: PMC7334763 DOI: 10.1155/2020/3142874] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Sleep disorder significantly affects the life quality of a large number of people but is still an underrecognized disease. Dietary nutrition is believed to play a significant impact on sleeping wellness. Many nutritional supplements have been used trying to benefit sleep wellness. However, the relationship between nutritional components and sleep is complicated. Nutritional factors vary dramatically with different diet patterns and depend significantly on the digestive and metabiotic functions of each individual. Moreover, nutrition can profoundly affect the hormones and inflammation status which directly or indirectly contribute to insomnia. In this review, we summarized the role of major nutritional factors, carbohydrates, lipids, amino acids, and vitamins on sleep and sleep disorders and discussed the potential mechanisms.
Collapse
|
35
|
Kloska A, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipids and Lipid Mediators Associated with the Risk and Pathology of Ischemic Stroke. Int J Mol Sci 2020; 21:ijms21103618. [PMID: 32443889 PMCID: PMC7279232 DOI: 10.3390/ijms21103618] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Stroke is a severe neurological disorder in humans that results from an interruption of the blood supply to the brain. Worldwide, stoke affects over 100 million people each year and is the second largest contributor to disability. Dyslipidemia is a modifiable risk factor for stroke that is associated with an increased risk of the disease. Traditional and non-traditional lipid measures are proposed as biomarkers for the better detection of subclinical disease. In the central nervous system, lipids and lipid mediators are essential to sustain the normal brain tissue structure and function. Pathways leading to post-stroke brain deterioration include the metabolism of polyunsaturated fatty acids. A variety of lipid mediators are generated from fatty acids and these molecules may have either neuroprotective or neurodegenerative effects on the post-stroke brain tissue; therefore, they largely contribute to the outcome and recovery from stroke. In this review, we provide an overview of serum lipids associated with the risk of ischemic stroke. We also discuss the role of lipid mediators, with particular emphasis on eicosanoids, in the pathology of ischemic stroke. Finally, we summarize the latest research on potential targets in lipid metabolic pathways for ischemic stroke treatment and on the development of new stroke risk biomarkers for use in clinical practice.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.M.)
- Correspondence: (M.G.-C.); (J.J.-B.); Tel.: +48-585-236-046 (M.G.-C.); +48-585-236-043 (J.J.-B.)
| |
Collapse
|
36
|
Bork CS, Mortensen LT, Hjelmgaard K, Schmidt EB. Marine n-3 fatty acids and CVD: new insights from recent follow-up studies and clinical supplementation trials. Proc Nutr Soc 2020; 79:1-7. [PMID: 32234084 DOI: 10.1017/s0029665120006886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Marine n-3 PUFA exert beneficial effects that might inhibit atherosclerosis and reduce vascular disease. Previous studies have, however, reported conflicting results and here we have summarised the early history and the most recent findings from follow-up studies and randomised clinical trials investigating marine n-3 PUFA in relation to the risk of atherosclerotic CVD. Most follow-up studies have suggested that the intake of marine n-3 PUFA may be associated with a lower risk of CVD. Recent studies have also shown that it is important to focus on substitution issues and dietary patterns. Further, the use of gold standard biomarkers of fatty acid exposure such as adipose tissue should be encouraged. Findings from clinical supplemental trials have shown conflicting results and findings from previous meta-analyses and guidelines have generally not supported the use of fish oil supplements for the prevention of CVD. However, a recent meta-analysis including three recent large clinical trials with fish oil supplements reported a moderate beneficial effect on cardiovascular endpoints. Interestingly, results from a large clinical trial (REDUCE-IT) have suggested that supplementation with a high dose of purified EPA ethyl ester for 4⋅9 years significantly and markedly reduced the risk of cardiovascular events in patients with CVD and mild hypertriglyceridaemia; findings that need to be confirmed. While it seems appropriate to recommend consumption of fish, particular fatty fish for prevention of CVD, an effect of fish oil supplements is probably at best marginal perhaps apart from patients with hypertriglyceridaemia.
Collapse
Affiliation(s)
- Christian S Bork
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Linda T Mortensen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Katrin Hjelmgaard
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Erik B Schmidt
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
37
|
Abstract
The effect of dietary fats on cardiometabolic diseases, including cardiovascular diseases and type 2 diabetes mellitus, has generated tremendous interest. Many earlier investigations focused on total fat and conventional fat classes (such as saturated and unsaturated fats) and their influence on a limited number of risk factors. However, dietary fats comprise heterogeneous molecules with diverse structures, and growing research in the past two decades supports correspondingly complex health effects of individual dietary fats. Moreover, health effects of dietary fats might be modified by additional factors, such as accompanying nutrients and food-processing methods, emphasizing the importance of the food sources. Accordingly, the rapidly increasing scientific findings on dietary fats and cardiometabolic diseases have generated debate among scientists, caused confusion for the general public and present challenges for translation into dietary advice and policies. This Review summarizes the evidence on the effects of different dietary fats and their food sources on cell function and on risk factors and clinical events of cardiometabolic diseases. The aim is not to provide an exhaustive review but rather to focus on the most important evidence from randomized controlled trials and prospective cohort studies and to highlight current areas of controversy and the most relevant future research directions for understanding how to improve the prevention and management of cardiometabolic diseases through optimization of dietary fat intake.
Collapse
|
38
|
Manson JE, Bassuk SS, Cook NR, Lee IM, Mora S, Albert CM, Buring JE. Vitamin D, Marine n-3 Fatty Acids, and Primary Prevention of Cardiovascular Disease Current Evidence. Circ Res 2020; 126:112-128. [PMID: 31895658 PMCID: PMC7001886 DOI: 10.1161/circresaha.119.314541] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Whether marine omega-3 fatty acid (n-3 FA) or vitamin D supplementation can prevent cardiovascular disease (CVD) in general populations at usual risk for this outcome is unknown. A major goal of VITAL (Vitamin D and Omega-3 Trial) was to fill this knowledge gap. In this article, we review the results of VITAL, discuss relevant mechanistic studies regarding n-3 FAs, vitamin D, and vascular disease, and summarize recent meta-analyses of the randomized trial evidence on these agents. VITAL was a nationwide, randomized, placebo-controlled, 2×2 factorial trial of marine n-3 FAs (1 g/d) and vitamin D3 (2000 IU/d) in the primary prevention of CVD and cancer among 25 871 US men aged ≥50 and women aged ≥55 years, including 5106 blacks. Median treatment duration was 5.3 years. Supplemental n-3 FAs did not significantly reduce the primary cardiovascular end point of major CVD events (composite of myocardial infarction, stroke, and CVD mortality; hazard ratio [HR], 0.92 [95% CI, 0.80-1.06]) but were associated with significant reductions in total myocardial infarction (HR, 0.72 [95% CI, 0.59-0.90]), percutaneous coronary intervention (HR, 0.78 [95% CI, 0.63-0.95]), and fatal myocardial infarction (HR, 0.50 [95% CI, 0.26-0.97]) but not stroke or other cardiovascular end points. For major CVD events, a treatment benefit was seen in those with dietary fish intake below the cohort median of 1.5 servings/wk (HR, 0.81 [95% CI, 0.67-0.98]) but not in those above (P interaction=0.045). For myocardial infarction, the greatest risk reductions were in blacks (HR, 0.23 [95% CI, 0.11-0.47]; P interaction by race, 0.001). Vitamin D supplementation did not reduce major CVD events (HR, 0.97 [95% CI, 0.85-1.12]) or other cardiovascular end points. Updated meta-analyses that include VITAL and other recent trials document coronary risk reduction from supplemental marine n-3 FAs but no clear CVD risk reduction from supplemental vitamin D. Additional research is needed to determine which individuals may be most likely to derive net benefit from supplementation. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01169259.
Collapse
Affiliation(s)
- JoAnn E Manson
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - Shari S Bassuk
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
| | - Nancy R Cook
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - I-Min Lee
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| | - Samia Mora
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
| | - Christine M Albert
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- the Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA (C.M.A.)
| | - Julie E Buring
- From the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M., S.S.B., N.R.C., I.-M.L., S.M., C.M.A., J.E.B.)
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA (J.E.M., N.R.C., I.-M.L., J.E.B.)
| |
Collapse
|
39
|
Ueno Y, Miyamoto N, Yamashiro K, Tanaka R, Hattori N. Omega-3 Polyunsaturated Fatty Acids and Stroke Burden. Int J Mol Sci 2019; 20:ijms20225549. [PMID: 31703271 PMCID: PMC6888676 DOI: 10.3390/ijms20225549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022] Open
Abstract
Stroke is a major leading cause of death and disability worldwide. N-3 polyunsaturated fatty acids (PUFAs) including eicosapentaenoic acid and docosahexaenoic acid have potent anti-inflammatory effects, reduce platelet aggregation, and regress atherosclerotic plaques. Since the discovery that the Greenland Eskimo population, whose diet is high in marine n-3 PUFAs, have a lower incidence of coronary heart disease than Western populations, numerous epidemiological studies to explore the associations of dietary intakes of fish and n-3 PUFAs with cardiovascular diseases, and large-scale clinical trials to identify the benefits of treatment with n-3 PUFAs have been conducted. In most of these studies the incidence and mortality of stroke were also evaluated mainly as secondary endpoints. Thus, a systematic literature review regarding the association of dietary intake of n-3 PUFAs with stroke in the epidemiological studies and the treatment effects of n-3 PUFAs in the clinical trials was conducted. Moreover, recent experimental studies were also reviewed to explore the molecular mechanisms of the neuroprotective effects of n-3 PUFAs after stroke.
Collapse
Affiliation(s)
- Yuji Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (N.M.); (K.Y.); (N.H.)
- Correspondence: ; Tel.: +81-3-3813-3111; Fax: +81-3-5800-0547
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (N.M.); (K.Y.); (N.H.)
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (N.M.); (K.Y.); (N.H.)
| | - Ryota Tanaka
- Stroke Center and Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan;
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan; (N.M.); (K.Y.); (N.H.)
| |
Collapse
|
40
|
Harris WS, Jackson KH, Brenna JT, Rodriguez JC, Tintle NL, Cornish L. Survey of the erythrocyte EPA+DHA levels in the heart attack/stroke belt. Prostaglandins Leukot Essent Fatty Acids 2019; 148:30-34. [PMID: 31492431 DOI: 10.1016/j.plefa.2019.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The Omega-3 Index (O3I; erythrocyte EPA+DHA as a percent of total fatty acids) is inversely related to risk for cardiovascular disease (CVD). The cardioprotective target O3I is 8%-12%. O3I levels in American regions with high CVD risk are poorly characterized. PURPOSE To determine the O3I in individuals participating in a Seafood Nutrition Partnership (SNP) survey in seven US cities in the CVD "belt." METHODS Fingerstick blood samples were analyzed for the O3I. RESULTS The SNP cohort (n = 2177) had a mean (SD) O3I of 4.42% (1.12%). Only 1.2% were in the desirable range, whereas 42% had an undesirable (<4%) O3I. The mean (SD) O3I in a subset of 772 SNP subjects who were matched for age and sex with the Framingham study was 4.6% (1.2%) compared 5.3% (1.6%) in the Framingham cohort (p < 0.0001). CONCLUSIONS Individuals in the CVD "belt" had relatively low O3I levels. Since in other settings, a low O3I is associated with increased risk for CVD, this may be one factor contributing to the higher risk for CVD in this region of the US.
Collapse
Affiliation(s)
- W S Harris
- OmegaQuant Analytics, LLC, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| | - K H Jackson
- OmegaQuant Analytics, LLC, Sioux Falls, SD, USA
| | - J T Brenna
- Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - J C Rodriguez
- Brooks College of Health, University of North Florida, Jacksonville, FL, USA
| | | | - L Cornish
- Seafood Nutrition Partnership, Washington, DC, USA
| |
Collapse
|
41
|
Polyunsaturated Fatty Acids and Risk of Ischemic Stroke. Nutrients 2019; 11:nu11071467. [PMID: 31252664 PMCID: PMC6682946 DOI: 10.3390/nu11071467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 11/29/2022] Open
Abstract
Ischemic stroke is a major cause of death and morbidity worldwide. It has been suggested that polyunsaturated fatty acids (PUFAs) may be associated with a lower risk ischemic stroke, but this has been far less studied than their role for coronary heart disease. In this paper, we summarize the main findings from previous follow-up studies investigating associations between intake or biomarkers of the major PUFAs including alpha-linolenic acid (ALA), marine n-3 PUFAs and linoleic acid (LA) and the development of ischemic stroke. Several follow-up studies have suggested that marine n-3 PUFAs may be associated with a lower risk of ischemic stroke although results have not been consistent and limited knowledge exist on the individual marine n-3 PUFAs and ischemic stroke and its subtypes. The role of ALA is less clear, but most studies have not supported that ALA is appreciably associated with ischemic stroke risk. Some studies have supported that LA might be associated with a lower risk of total ischemic stroke, while limited evidence exist on PUFAs and ischemic stroke subtypes. The associations may depend on the macronutrients that PUFAs replace and this substitution aspect together with focus on dietary patterns represent interesting areas for future research.
Collapse
|
42
|
Venø SK, Bork CS, Jakobsen MU, Lundbye-Christensen S, McLennan PL, Bach FW, Overvad K, Schmidt EB. Marine n-3 Polyunsaturated Fatty Acids and the Risk of Ischemic Stroke. Stroke 2019; 50:274-282. [DOI: 10.1161/strokeaha.118.023384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
We hypothesized that total marine n-3 polyunsaturated fatty acids (PUFA), in particular eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in the diet and in adipose tissue (biomarkers of long-term intake and endogenous exposure) were inversely associated with the risk of ischemic stroke and its subtypes.
Methods—
The Diet, Cancer and Health cohort consisted of 57 053 participants aged 50 to 65 years at enrolment. All participants filled in a food frequency questionnaire and had an adipose tissue biopsy taken at baseline. Information on ischemic stroke during follow-up was obtained from The Danish National Patient Register, and all cases were validated. Cases and a random sample of 3203 subjects from the whole cohort had their fatty acid composition of adipose tissue determined by gas chromatography.
Results—
During 13.5 years of follow-up 1879 participants developed an ischemic stroke. Adipose tissue content of EPA was inversely associated with total ischemic stroke (hazard ratio [HR], 0.74; 95% CI, 0.62–0.88) when comparing the highest with the lowest quartile. Also, lower rates of large artery atherosclerosis were seen with higher intakes of total marine n-3 PUFA (HR, 0.69; 95% CI, 0.50–0.95), EPA (HR, 0.66; 95% CI, 0.48–0.91) and DHA (HR, 0.72; 95% CI, 0.53–0.99), and higher adipose tissue content of EPA (HR, 0.52; 95% CI, 0.36–0.76). Higher rates of cardioembolism were seen with higher intakes of total marine n-3 PUFA (HR, 2.50; 95% CI, 1.38–4.53) and DHA (HR, 2.12; 95% CI, 1.21–3.69) as well as with higher adipose tissue content of total marine n-3 PUFA (HR, 2.63; 95% CI, 1.33–5.19) and DHA (HR, 2.00; 95% CI, 1.04–3.84). The EPA content in adipose tissue was inversely associated with small-vessel occlusion (HR, 0.69; 95% CI, 0.55–0.88).
Conclusions—
EPA was associated with lower risks of most types of ischemic stroke, apart from cardioembolism, while inconsistent findings were observed for total marine n-3 PUFA and DHA.
Collapse
Affiliation(s)
- Stine K. Venø
- From the Department of Cardiology (S.K.V., C.S.B., K.O., E.B.S.), Aalborg University Hospital, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark (S.K.V., E.B.S.)
| | - Christian S. Bork
- From the Department of Cardiology (S.K.V., C.S.B., K.O., E.B.S.), Aalborg University Hospital, Denmark
| | - Marianne U. Jakobsen
- Division for Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby (M.U.J.)
| | | | | | - Flemming W. Bach
- Department of Neurology, Aarhus University Hospital, Denmark (F.W.B.)
| | - Kim Overvad
- From the Department of Cardiology (S.K.V., C.S.B., K.O., E.B.S.), Aalborg University Hospital, Denmark
- Department of Public Health, Aarhus University, Denmark (K.O.)
| | - Erik B. Schmidt
- From the Department of Cardiology (S.K.V., C.S.B., K.O., E.B.S.), Aalborg University Hospital, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark (S.K.V., E.B.S.)
| |
Collapse
|
43
|
Ren Z, Chen L, Wang Y, Wei X, Zeng S, Zheng Y, Gao C, Liu H. Activation of the Omega-3 Fatty Acid Receptor GPR120 Protects against Focal Cerebral Ischemic Injury by Preventing Inflammation and Apoptosis in Mice. THE JOURNAL OF IMMUNOLOGY 2018; 202:747-759. [PMID: 30598514 DOI: 10.4049/jimmunol.1800637] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
Abstract
G protein-coupled receptor 120 (GPR120) has been shown to negatively regulate inflammation and apoptosis, but its role in cerebral ischemic injury remains unclear. Using an in vivo model of middle cerebral artery occlusion (MCAO) and an in vitro model of oxygen-glucose deprivation (OGD), we investigated the potential role and molecular mechanisms of GPR120 in focal cerebral ischemic injury. Increased GPR120 expression was observed in microglia and neurons following MCAO-induced ischemia in wild type C57BL/6 mice. Treatment with docosahexaenoic acid (DHA) inhibited OGD-induced inflammatory response in primary microglia and murine microglial BV2 cells, whereas silencing of GPR120 strongly exacerbated the inflammation induced by OGD and abolished the anti-inflammatory effects of DHA. Mechanistically, DHA inhibited OGD-induced inflammation through GPR120 interacting with β-arrestin2. In addition to its anti-inflammatory function, GPR120 also played a role in apoptosis as its knockdown impaired the antiapoptotic effect of DHA in OGD-induced rat pheochromocytoma (PC12) cells. Finally, using MCAO mouse model, we demonstrated that GPR120 activation protected against focal cerebral ischemic injury by preventing inflammation and apoptosis. Our study indicated that pharmacological targeting of GPR120 may provide a novel approach for the treatment of patients with ischemic stroke.
Collapse
Affiliation(s)
- Zhiping Ren
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Lin Chen
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yimeng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Xinbing Wei
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Shenglan Zeng
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yi Zheng
- State Key Laboratory of Microbial Technology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China.,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; and.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Chengjiang Gao
- State Key Laboratory of Microbial Technology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; .,Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China; and.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Huiqing Liu
- Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China;
| |
Collapse
|
44
|
Martín-Calvo N, Martínez-González MÁ. Controversy and debate: Memory-Based Dietary Assessment Methods Paper 2. J Clin Epidemiol 2018; 104:125-129. [DOI: 10.1016/j.jclinepi.2018.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
|
45
|
Qin ZZ, Xu JY, Chen GC, Ma YX, Qin LQ. Effects of fatty and lean fish intake on stroke risk: a meta-analysis of prospective cohort studies. Lipids Health Dis 2018; 17:264. [PMID: 30470232 PMCID: PMC6260659 DOI: 10.1186/s12944-018-0897-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fish intake has been postulated to reduce the risk of stroke. However, whether the beneficial effect of fish are mainly linked to fat content, as a source of omega-3 polyunsaturated fatty acids, remains unclear. We conducted a meta-analysis to compare the effect of fatty and lean fish intake on stroke risk. METHODS We performed a literature search on four database (PubMed, Embase, Scopus, and Cochrane Library) through February 1, 2018 to identify prospective studies of fatty and lean fish in relation to stroke risk. A random-effects model was used to calculate the summary estimates. RESULTS We identified five prospective studies, including 7 comparisons for fatty fish intake and 5 comparisons for lean fish intake. Compared with the highest category of intake with lowest category, the summary relative risk was 0.88 [95% confidence interval (CI), 0.74-1.04] for fatty fish intake and 0.81 (95% CI, 0.67-0.99) for lean fish intake. No heterogeneity across studies and publication bias were observed. CONCLUSION Our findings demonstrated that fatty and lean fish intake has beneficial effects on stroke risk, especially lean fish intake. Additional prospective studies are necessary to confirm these observations.
Collapse
Affiliation(s)
- Zhi-Zhen Qin
- School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017 Hebei Province China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu Province China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu Province China
| | - Yu-Xia Ma
- School of Public Health, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017 Hebei Province China
| | - Li-Qiang Qin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren’ai Road, Suzhou, 215123 Jiangsu Province China
| |
Collapse
|
46
|
Lasota AN, Grønholdt MLM, Bork CS, Lundbye-Christensen S, Overvad K, Schmidt EB. Marine n-3 Fatty Acids and the Risk of Peripheral Arterial Disease. J Am Coll Cardiol 2018; 72:1576-1584. [DOI: 10.1016/j.jacc.2018.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/23/2023]
|
47
|
Substitution of poultry and red meat with fish and the risk of peripheral arterial disease: a Danish cohort study. Eur J Nutr 2018; 58:2731-2739. [DOI: 10.1007/s00394-018-1822-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/12/2018] [Indexed: 12/31/2022]
|
48
|
The Role of n-3 Long Chain Polyunsaturated Fatty Acids in Cardiovascular Disease Prevention, and Interactions with Statins. Nutrients 2018; 10:nu10060775. [PMID: 29914111 PMCID: PMC6024670 DOI: 10.3390/nu10060775] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/09/2018] [Accepted: 06/13/2018] [Indexed: 01/08/2023] Open
Abstract
Decreases in global cardiovascular disease (CVD) mortality and morbidity in recent decades can be partly attributed to cholesterol reduction through statin use. n-3 long chain polyunsaturated fatty acids are recommended by some authorities for primary and secondary CVD prevention, and for triglyceride reduction. The residual risk of CVD that remains after statin therapy may potentially be reduced by n-3 long chain polyunsaturated fatty acids. However, the effects of concomitant use of statins and n-3 long chain polyunsaturated fatty acids are not well understood. Pleiotropic effects of statins and n-3 long chain polyunsaturated fatty acids overlap. For example, cytochrome P450 enzymes that metabolize statins may affect n-3 long chain polyunsaturated fatty acid metabolism and vice versa. Clinical and mechanistic study results show both synergistic and antagonistic effects of statins and n-3 long chain polyunsaturated fatty acids when used in combination.
Collapse
|
49
|
Zhang L, Terrando N, Xu ZZ, Bang S, Jordt SE, Maixner W, Serhan CN, Ji RR. Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice. Front Pharmacol 2018; 9:412. [PMID: 29765320 PMCID: PMC5938385 DOI: 10.3389/fphar.2018.00412] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022] Open
Abstract
Mechanisms of pain resolution are largely unclear. Increasing evidence suggests that specialized pro-resolving mediators (SPMs), derived from fish oil docosahexaenoic acid (DHA), promote the resolution of acute inflammation and potently inhibit inflammatory and neuropathic pain. In this study, we examined the analgesic impact of DHA and DHA-derived SPMs in a mouse model of post-operative pain induced by tibial bone fracture (fPOP). Intravenous perioperative treatment with DHA (500 μg), resolvin D1 (RvD1, 500 ng) and maresin 1 (MaR1, 500 ng), 10 min and 24 h after the surgery, delayed the development of fPOP (mechanical allodynia and cold allodynia). In contrast, post-operative intrathecal (IT) administration of DHA (500 μg) 2 weeks after the surgery had no effects on established mechanical and cold allodynia. However, by direct comparison, IT post-operative treatment (500 ng) with neuroprotectin D1 (NPD1), MaR1, and D-resolvins, RvD1 and RvD5, but not RvD3 and RvD4, effectively reduced mechanical and cold allodynia. ELISA analysis showed that perioperative DHA treatment increased RvD1 levels in serum and spinal cord samples after bone fracture. Interestingly, sham surgery resulted in transient allodynia and increased RvD1 levels, suggesting a correlation of enhanced SPM levels with acute pain resolution after sham surgery. Our findings suggest that (1) perioperative treatment with DHA is effective in preventing and delaying the development of fPOP and (2) post-treatment with some SPMs can attenuate established fPOP. Our data also indicate that orthopedic surgery impairs SPM production. Thus, DHA and DHA-derived SPMs should be differentially supplemented for treating fPOP and improving recovery.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Zhen-Zhong Xu
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States.,Department of Physiology, Center of Neuroscience, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Zhejiang University School of Medicine, Hangzhou, China
| | - Sangsu Bang
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Sven-Eric Jordt
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - William Maixner
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States
| | - Charles N Serhan
- Department of Anesthesiology, Center for Experimental Therapeutics and Reperfusion Injury, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, United States.,Department of Neurology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
50
|
Harris WS, Tintle NL, Etherton MR, Vasan RS. Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: The Framingham Heart Study. J Clin Lipidol 2018; 12:718-727.e6. [PMID: 29559306 PMCID: PMC6034629 DOI: 10.1016/j.jacl.2018.02.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/14/2018] [Accepted: 02/19/2018] [Indexed: 11/05/2022]
Abstract
BACKGROUND The extent to which omega-3 fatty acid status is related to risk for death from any cause and for incident cardiovascular disease (CVD) remains controversial. OBJECTIVE To examine these associations in the Framingham Heart Study. DESIGN Prospective and observational. SETTING Framingham Heart Study Offspring cohort. MEASUREMENTS The exposure marker was red blood cell levels of eicosapentaenoic and docosahexaenoic acids (the Omega-3 Index) measured at baseline. Outcomes included mortality (total, CVD, cancer, and other) and total CVD events in participants free of CVD at baseline. Follow-up was for a median of 7.3 years. Cox proportional hazards models were adjusted for 18 variables (demographic, clinical status, therapeutic, and CVD risk factors). RESULTS Among the 2500 participants (mean age 66 years, 54% women), there were 350 deaths (58 from CVD, 146 from cancer, 128 from other known causes, and 18 from unknown causes). There were 245 CVD events. In multivariable-adjusted analyses, a higher Omega-3 Index was associated with significantly lower risks (P-values for trends across quintiles) for total mortality (P = .02), for non-CVD and non-cancer mortality (P = .009), and for total CVD events (P = .008). Those in the highest (>6.8%) compared to those in the lowest Omega-3 Index quintiles (<4.2%) had a 34% lower risk for death from any cause and 39% lower risk for incident CVD. These associations were generally stronger for docosahexaenoic acid than for eicosapentaenoic acid. When total cholesterol was compared with the Omega-3 Index in the same models, the latter was significantly related with these outcomes, but the former was not. LIMITATIONS Relatively short follow-up time and one-time exposure assessment. CONCLUSIONS A higher Omega-3 Index was associated with reduced risk of both CVD and all-cause mortality.
Collapse
Affiliation(s)
- William S Harris
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota; and OmegaQuant Analytics, LLC, Sioux Falls, SD, USA.
| | - Nathan L Tintle
- Department of Mathematics & Statistics, Dordt College, Sioux Center, IA, USA
| | - Mark R Etherton
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramachandran S Vasan
- National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, MA, USA; Departments of Cardiology and Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|