1
|
Serpeloni JM, Silva IMD, van Helvoort Lengert A, de Souza MF, Dos Reis MB, Kuasne H, Fuganti PE, Cólus IMDS. Genetic polymorphisms, methylation, and expression levels in the GSTP1 and MGMT genes in urothelial bladder tumors. Gene 2024; 939:149158. [PMID: 39706230 DOI: 10.1016/j.gene.2024.149158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Alteration in DNA repair and metabolism genes can affect the maintenance of DNA integrity or xenobiotics metabolism, potentially leading to DNA damage accumulation. The present study investigated the association between polymorphisms in Glutathione S-Transferase Pi 1 (GSTP1, rs1695) and O-6-Methylguanine-DNA Methyltransferase (MGMT, rs2308321) genes with urothelial bladder cancer (UBC) susceptibility and prognosis. Furthermore, the methylation patterns of the promoter region of these genes were analyzed in tumor and non-tumor bladder tissues, besides MGMT gene expression in tumor samples. METHODS AND RESULTS Blood samples of 295 patients and 295 healthy controls were genotyped using TaqMan probe assays. The DNA of 39 bladder tumors and 4 adjacent non-tumor samples were used in the Methylation-Sensitive High-Resolution Melting (MS-HRM) assay. Neither polymorphism conferred UBC susceptibility/protection or affected tumor grade, muscle invasion, and recurrence). GSTP1 did not show methylation in the promoter region, while in the MGMT gene, all samples presented heterogeneous methylation with no significant differences between tumor and non-tumor tissues. High MGMT expression was associated with low-grade (p = 0.0153) and trends related to non-invasive tumors (p = 0.070). CONCLUSIONS In our cohort, MGMT expression seems helpful as a biomarker of good prognosis (low-grade and absence of muscle invasion). A heterogeneous methylation pattern in the MGMT gene requires additional investigation to elucidate its potential implications.
Collapse
Affiliation(s)
- Juliana Mara Serpeloni
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| | - Isabely Mayara da Silva
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| | - André van Helvoort Lengert
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| | - Marilesia Ferreira de Souza
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| | | | - Hellen Kuasne
- McGill University, Rosalind and Morris Goodman Cancer Institute, Montreal H3A1A3, QC, Canada.
| | | | - Ilce Mara de Syllos Cólus
- State University of Londrina (UEL), Department of General Biology, Center of Biological Sciences, Londrina, PR 86057-970, Brazil.
| |
Collapse
|
2
|
Fu SW, Tang C, Tan X, Srivastava S. Liquid biopsy for early cancer detection: technological revolutions and clinical dilemma. Expert Rev Mol Diagn 2024; 24:937-955. [PMID: 39360748 DOI: 10.1080/14737159.2024.2408744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Liquid biopsy is an innovative advancement in oncology, offering a noninvasive method for early cancer detection and monitoring by analyzing circulating tumor cells, DNA, RNA, and other biomarkers in bodily fluids. This technique has the potential to revolutionize precision oncology by providing real-time analysis of tumor dynamics, enabling early detection, monitoring treatment responses, and tailoring personalized therapies based on the molecular profiles of individual patients. AREAS COVERED In this review, the authors discuss current methodologies, technological challenges, and clinical applications of liquid biopsy. This includes advancements in detecting minimal residual disease, tracking tumor evolution, and combining liquid biopsy with other diagnostic modalities for precision oncology. Key areas explored are the sensitivity, specificity, and integration of multi-omics, AI, ML, and LLM technologies. EXPERT OPINION Liquid biopsy holds great potential to revolutionize cancer care through early detection and personalized treatment strategies. However, its success depends on overcoming technological and clinical hurdles, such as ensuring high sensitivity and specificity, interpreting results amidst tumor heterogeneity, and making tests accessible and affordable. Continued innovation and collaboration are crucial to fully realize the potential of liquid biopsy in improving early cancer detection, treatment, and monitoring.
Collapse
Affiliation(s)
- Sidney W Fu
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Cong Tang
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xiaohui Tan
- Division of LS Research, LSBioscience, LLC, Frederick, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
3
|
Subramaniyam K, Harihar S. An Overview on the Emerging Role of the Plasma Protease Inhibitor Protein ITIH5 as a Metastasis Suppressor. Cell Biochem Biophys 2024; 82:399-409. [PMID: 38355846 DOI: 10.1007/s12013-024-01227-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/02/2024] [Indexed: 02/16/2024]
Abstract
Most cancers are not detected until they have progressed to the point of becoming malignant and life-threatening. Chemotherapy and conventional medicines are often ineffective against cancer. Although we have made significant progress, new conceptual discoveries are still required to investigate new treatments. The role of metastasis suppressor genes as a therapeutic option for limiting tumor progression and metastasis has been on the anvil for some time. In this review, we discuss the role of ITIH5 as a metastasis suppressor gene and catalog its involvement in different cancers. We further shed light on the mode of action of ITIH5 based on the available data. The review will provide a new perspective on ITIH5 as an anti-metastatic protein and hopefully serve as an impetus for future studies towards the application of ITIH5 for clinical intervention in targeting metastatic cancers.
Collapse
Affiliation(s)
- Krishnaveni Subramaniyam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Sitaram Harihar
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, Andhra Pradesh, India.
| |
Collapse
|
4
|
Rivera-Peña B, Folawiyo O, Turaga N, Rodríguez-Benítez RJ, Felici ME, Aponte-Ortiz JA, Pirini F, Rodríguez-Torres S, Vázquez R, López R, Sidransky D, Guerrero-Preston R, Báez A. Promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions are associated with tumor differentiation, nodal involvement and survival. Oncol Lett 2024; 27:89. [PMID: 38268779 PMCID: PMC10804364 DOI: 10.3892/ol.2024.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 11/23/2023] [Indexed: 01/26/2024] Open
Abstract
Differentially methylated regions (DMRs) can be used as head and neck squamous cell carcinoma (HNSCC) diagnostic, prognostic and therapeutic targets in precision medicine workflows. DNA from 21 HNSCC and 10 healthy oral tissue samples was hybridized to a genome-wide tiling array to identify DMRs in a discovery cohort. Downstream analyses identified differences in promoter DNA methylation patterns in oral, laryngeal and oropharyngeal anatomical regions associated with tumor differentiation, nodal involvement and survival. Genome-wide DMR analysis showed 2,565 DMRs common to the three subsites. A total of 738 DMRs were unique to laryngeal cancer (n=7), 889 DMRs were unique to oral cavity cancer (n=10) and 363 DMRs were unique to pharyngeal cancer (n=6). Based on the genome-wide analysis and a Gene Ontology analysis, 10 candidate genes were selected to test for prognostic value and association with clinicopathological features. TIMP3 was associated with tumor differentiation in oral cavity cancer (P=0.039), DAPK1 was associated with nodal involvement in pharyngeal cancer (P=0.017) and PAX1 was associated with tumor differentiation in laryngeal cancer (P=0.040). A total of five candidate genes were selected, DAPK1, CDH1, PAX1, CALCA and TIMP3, for a prevalence study in a larger validation cohort: Oral cavity cancer samples (n=42), pharyngeal cancer tissues (n=25) and laryngeal cancer samples (n=52). PAX1 hypermethylation differed across HNSCC anatomic subsites (P=0.029), and was predominantly detected in laryngeal cancer. Kaplan-Meier survival analysis (P=0.043) and Cox regression analysis of overall survival (P=0.001) showed that DAPK1 methylation is associated with better prognosis in HNSCC. The findings of the present study showed that the HNSCC subsites oral cavity, pharynx and larynx display substantial differences in aberrant DNA methylation patterns, which may serve as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Bianca Rivera-Peña
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Oluwasina Folawiyo
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nitesh Turaga
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rosa J. Rodríguez-Benítez
- Department of General Social Sciences, Faculty of Social Sciences, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Marcos E. Felici
- Oral Health Division, Puerto Rico Department of Health, San Juan 00927, Puerto Rico
| | - Jaime A. Aponte-Ortiz
- Department of General Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| | - Francesca Pirini
- Biosciences Laboratory, IRCCS Instituto Romagnolo per lo Studio dei Tumori ‘Dino Amadori’, Meldola I-47014, Italy
| | | | - Roger Vázquez
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - Ricardo López
- Department of Biology, University of Puerto Rico, San Juan 00925, Puerto Rico
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Research and Development, LifeGene-Biomarks, San Juan 00909, Puerto Rico
| | - Adriana Báez
- Department of Pharmacology, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
- Department of Otolaryngology-Head and Neck Surgery, University of Puerto Rico School of Medicine, San Juan 00936, Puerto Rico
| |
Collapse
|
5
|
Zhang YL, Wang YW, He MJ, Chang JL. An updated meta-analysis investigating the association between DNMTs gene polymorphism andgastric cancer risk. PLoS One 2023; 18:e0293466. [PMID: 37878642 PMCID: PMC10599511 DOI: 10.1371/journal.pone.0293466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
Gastric cancer (GC) is a prominent global health issue, as it ranks as the fifth most prevalent type of cancer and the fourth most significant cause of cancer-related mortality worldwide. Although H. pylori is known to play a role in the development of GC, genetic factors also play a role in its onset and progression. Recent studies have shown that genetic polymorphisms are strongly associated with the development of GC and that certain single nucleotide polymorphisms (SNPs) can be used as biomarkers for early diagnosis and prevention. Epigenetic disturbances, such as DNA methylation, are involved in the development of GC, and mutations in the DNA methyltransferase (DNMT) gene have been found to increase the risk of GC. However, previous findings on the association between DNMTs SNPs and GC risk have been inconsistent. In this study, an updated meta-analysis of three well-studied and controversial DNMTs polymorphic loci, DNMT1 rs16999593, DNMT3A rs1550117 and DNMT3B rs1569686, was performed to provide more reliable results. It was found that DNMT1 rs16999593 was not associated with GC, DNMT3A rs1550117 may have a positive association with GC risk, and DNMT3B rs1569686 may be a protective factor for GC. These findings may provide valuable information for early diagnosis and prevention of GC, but further studies are needed to confirm these results.
Collapse
Affiliation(s)
- Yu-Long Zhang
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi, China
| | - Yu-Wei Wang
- Changzhi Medical College, Shanxi Province, Changzhi, China
| | - Ming-Jie He
- Changzhi Medical College, Shanxi Province, Changzhi, China
| | - Jian-Lan Chang
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Shanxi, Changzhi, China
| |
Collapse
|
6
|
Zhang J, Huang H, Yu F, Bian Y, Wang R, Liu H, Kang S, She B, Shi Z. A comprehensive diagnostic scheme of morphological combined molecular methylation under bronchoscopy. Front Oncol 2023; 13:1133675. [PMID: 37182143 PMCID: PMC10174301 DOI: 10.3389/fonc.2023.1133675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Methylated SHOX2 and RASSF1A genes are potential biomarkers for lung cancer diagnosis. Therefore, we explored the role of methylation detection combined with morphological bronchoscopic evaluation for lung cancer diagnosis. Bronchoscopy, methylation outcome, and pathological data were collected from 585 patients with lung cancer and 101 controls. The methylation status of the SHOX2 and RASSF1A genes were detected using real-time polymerase chain reaction quantification. Further, the sensitivity and area under the receiver operating characteristic curve of the three methods were analyzed. Among 686 patients, 57.1% had new lesions detected through bronchoscopy and 93.1% of these patients were diagnosed with malignant tumors. Besides, 42.9% of patients had no visible changes under bronchoscopy but there were still 74.8% of them diagnosed with malignant tumors. Bronchoscopy revealed that lung adenocarcinoma, lung squamous cell carcinoma, and small cell lung cancer mainly occurred in the upper and middle lobes. The sensitivity and specificity of methylation detection were 72.8% and 87.1% (vs. cytology 10.4% & 100%), respectively. Therefore, methylated SHOX2 and RASSF1A genes may be promising tumor markers in lung cancer diagnosis. Methylation detection can be an excellent supplementary tool for cytological diagnosis and, combined with bronchoscopy, could form a more effective diagnostic process.
Collapse
Affiliation(s)
- Jinze Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haoran Huang
- Department of Academic Development, Tellgen Corporation, Shanghai, China
| | - Fan Yu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Bian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Rui Wang
- The Cancer Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Saisai Kang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin She
- Department of Academic Development, Tellgen Corporation, Shanghai, China
| | - Zhihua Shi
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Lu D, Chen Y, Ke L, Wu W, Yuan L, Feng S, Huang Z, Lu Y, Wang J. Machine learning-assisted global DNA methylation fingerprint analysis for differentiating early-stage lung cancer from benign lung diseases. Biosens Bioelectron 2023; 235:115235. [PMID: 37178511 DOI: 10.1016/j.bios.2023.115235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
DNA methylation plays a critical role in the development of human tumors. However, routine characterization of DNA methylation can be time-consuming and labor-intensive. We herein describe a sensitive, simple surface-enhanced Raman spectroscopy (SERS) approach for identifying the DNA methylation pattern in early-stage lung cancer (LC) patients. By comparing SERS spectra of methylated DNA bases or sequences with their counterparts, we identified a reliable spectral marker of cytosine methylation. To move toward clinical applications, we applied our SERS strategy to detect the methylation patterns of genomic DNA (gDNA) extracted from cell line models as well as formalin-fixed paraffin-embedded tissues of early-stage LC and benign lung diseases (BLD) patients. In a clinical cohort of 106 individuals, our results showed distinct methylation patterns in gDNA between early-stage LC (n = 65) and BLD patients (n = 41), suggesting cancer-induced DNA methylation alterations. Combined with partial least square discriminant analysis, early-stage LC and BLD patients were differentiated with an area under the curve (AUC) value of 0.85. We believe that the SERS profiling of DNA methylation alterations, together with machine learning could potentially offer a promising new route toward the early detection of LC.
Collapse
|
8
|
DNA Methylation Analysis of the SHOX2 and RASSF1A Panel Using Cell-Free DNA in the Diagnosis of Malignant Pleural Effusion. JOURNAL OF ONCOLOGY 2023; 2023:5888844. [PMID: 36691467 PMCID: PMC9867579 DOI: 10.1155/2023/5888844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/16/2023]
Abstract
Objectives The differential diagnosis of pleural effusion (PE) is a common but major challenge in clinical practice. This study aimed to establish a strategy based on a PE-cell-free DNA (cfDNA) methylation detection system for the differential diagnosis of malignant pleural effusion (MPE) and benign pleural effusion (BPE). Methods A total of 104 patients with PE were enrolled in this study, among which 50 patients had MPE, 9 malignant tumor patients had PE of indefinite causes, and the other 45 patients were classified as benign controls. The methylation status of short stature homeobox 2 (SHOX2) and RAS association domain family 1, isoform A (RASSF1A) was detected using PE-cfDNA specimens by real-time fluorescence quantitative PCR. Total methylation (TM) was defined as the combination of the methylation levels of SHOX2 and RASSF1A. The electrochemiluminescence immunoassay was applied to evaluate the levels of multiple serum tumor markers. Results The PE-cfDNA methylation status of either SHOX2 or RASSF1A was much higher in MPE samples than in benign controls. The combination of SHOX2 and RASSF1A methylation in PE yielded a diagnostic sensitivity of 96% and a specificity of 100%, respectively. When compared with the corresponding serum tumor marker detection results, TM showed the highest diagnostic efficiency (AUC = 0.985). Furthermore, the combination of the SHOX2 and RASSF1A methylation panels using PE-cfDNA could apparently improve the differential diagnostic efficacy of BPE and MPE and could help compensate for the deficiency of cytology. Conclusions Our results indicated that SHOX2 and RASSF1A methylation panel detection could accurately classify BPE and MPE diseases and showed better diagnostic performance than traditional serum parameters. The SHOX2 and RASSF1A methylation detection of PE-cfDNA could be a potentially effective complementary tool for cytology in the process of differential diagnosis. In summary, PE-cfDNA could be used as a promising non-invasive analyte for the auxiliary diagnosis of MPE.
Collapse
|
9
|
Abbasian MH, Ardekani AM, Sobhani N, Roudi R. The Role of Genomics and Proteomics in Lung Cancer Early Detection and Treatment. Cancers (Basel) 2022; 14:5144. [PMID: 36291929 PMCID: PMC9600051 DOI: 10.3390/cancers14205144] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 08/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide, with non-small-cell lung cancer (NSCLC) being the primary type. Unfortunately, it is often diagnosed at advanced stages, when therapy leaves patients with a dismal prognosis. Despite the advances in genomics and proteomics in the past decade, leading to progress in developing tools for early diagnosis, targeted therapies have shown promising results; however, the 5-year survival of NSCLC patients is only about 15%. Low-dose computed tomography or chest X-ray are the main types of screening tools. Lung cancer patients without specific, actionable mutations are currently treated with conventional therapies, such as platinum-based chemotherapy; however, resistances and relapses often occur in these patients. More noninvasive, inexpensive, and safer diagnostic methods based on novel biomarkers for NSCLC are of paramount importance. In the current review, we summarize genomic and proteomic biomarkers utilized for the early detection and treatment of NSCLC. We further discuss future opportunities to improve biomarkers for early detection and the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Ali M. Ardekani
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 1497716316, Iran
| | - Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Polyphenols as Potent Epigenetics Agents for Cancer. Int J Mol Sci 2022; 23:ijms231911712. [PMID: 36233012 PMCID: PMC9570183 DOI: 10.3390/ijms231911712] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 02/06/2023] Open
Abstract
Human diseases such as cancer can be caused by aberrant epigenetic regulation. Polyphenols play a major role in mammalian epigenome regulation through mechanisms and proteins that remodel chromatin. In fruits, seeds, and vegetables, as well as food supplements, polyphenols are found. Compounds such as these ones are powerful anticancer agents and antioxidants. Gallic acid, kaempferol, curcumin, quercetin, and resveratrol, among others, have potent anti-tumor effects by helping reverse epigenetic changes associated with oncogene activation and tumor suppressor gene inactivation. The role dietary polyphenols plays in restoring epigenetic alterations in cancer cells with a particular focus on DNA methylation and histone modifications was summarized. We also discussed how these natural compounds modulate gene expression at the epigenetic level and described their molecular targets in cancer. It highlights the potential of polyphenols as an alternative therapeutic approach in cancer since they modulate epigenetic activity.
Collapse
|
11
|
Fatemi N, Tierling S, Es HA, Varkiani M, Nazemalhosseini Mojarad E, Asadzadeh Aghdaei H, Walter J, Totonchi M. DNA Methylation Biomarkers in Colorectal Cancer: Clinical Applications for Precision Medicine. Int J Cancer 2022; 151:2068-2081. [PMID: 35730647 DOI: 10.1002/ijc.34186] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 11/06/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death worldwide that is attributed to gradual long-term accumulation of both genetic and epigenetic changes. To reduce the mortality rate of CRC and to improve treatment efficacy, it will be important to develop accurate noninvasive diagnostic tests for screening, acute, and personalized diagnosis. Epigenetic changes such as DNA methylation play an important role in the development and progression of CRC. Over the last decade, a panel of DNA methylation markers has been reported showing a high accuracy and reproducibility in various semi-invasive or noninvasive biosamples. Research to obtain comprehensive panels of markers allowing a highly sensitive and differentiating diagnosis of CRC is ongoing. Moreover, the epigenetic alterations for cancer therapy, as a precision medicine strategy will increase their therapeutic potential over time. Here, we discuss the current state of DNA methylation-based biomarkers and their impact on CRC diagnosis. We emphasize the need to further identify and stratify methylation-biomarkers and to develop robust and effective detection methods that are applicable for a routine clinical setting of CRC diagnostics particularly at the early stage of the disease.
Collapse
Affiliation(s)
- Nayeralsadat Fatemi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sascha Tierling
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | | | - Maryam Varkiani
- Department of Molecular Genetics, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jörn Walter
- Department of Genetics/Epigenetics, Faculty NT, Life Sciences, Saarland University, Saarbrücken, Germany
| | - Mehdi Totonchi
- Basic & Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
12
|
A High Methylation Level of a Novel −284 bp CpG Island in the RAMP1 Gene Promoter Is Potentially Associated with Migraine in Women. Brain Sci 2022; 12:brainsci12050526. [PMID: 35624913 PMCID: PMC9139045 DOI: 10.3390/brainsci12050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Migraine is a complex neurovascular disorder affecting one billion people worldwide, mainly females. It is characterized by attacks of moderate to severe headache pain, with associated symptoms. Receptor activity modifying protein (RAMP1) is part of the Calcitonin Gene-Related Peptide (CGRP) receptor, a pharmacological target for migraine. Epigenetic processes, such as DNA methylation, play a role in clinical presentation of various diseases. DNA methylation occurs mostly in the gene promoter and can control gene expression. We investigated the methylation state of the RAMP1 promoter in 104 female blood DNA samples: 54 migraineurs and 50 controls. We treated DNA with sodium bisulfite and performed PCR, Sanger Sequencing, and Epigenetic Sequencing Methylation (ESME) software analysis. We identified 51 CpG dinucleotides, and 5 showed methylation variability. Migraineurs had a higher number of individuals with all five CpG methylated when compared to controls (26% vs. 16%), although non-significant (p = 0.216). We also found that CpG −284 bp, related to the transcription start site (TSS), showed higher methylation levels in cases (p = 0.011). This CpG may potentially play a role in migraine, affecting RAMP1 transcription or receptor malfunctioning and/or altered CGRP binding. We hope to confirm this finding in a larger cohort and establish an epigenetic biomarker to predict female migraine risk.
Collapse
|
13
|
Contreras-Romero C, Pérez-Yépez EA, Martinez-Gutierrez AD, Campos-Parra A, Zentella-Dehesa A, Jacobo-Herrera N, López-Camarillo C, Corredor-Alonso G, Martínez-Coronel J, Rodríguez-Dorantes M, de León DC, Pérez-Plasencia C. Gene Promoter-Methylation Signature as Biomarker to Predict Cisplatin-Radiotherapy Sensitivity in Locally Advanced Cervical Cancer. Front Oncol 2022; 12:773438. [PMID: 35359376 PMCID: PMC8963763 DOI: 10.3389/fonc.2022.773438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Despite efforts to promote health policies focused on screening and early detection, cervical cancer continues to be one of the leading causes of mortality in women; in 2020, estimated 30,000 deaths in Latin America were reported for this type of tumor. While the therapies used to treat cervical cancer have excellent results in tumors identified in early stages, those women who are diagnosed in locally advanced and advanced stages show survival rates at 5 years of <50%. Molecular patterns associated with clinical response have been studied in patients who present resistance to treatment; none of them have reached clinical practice. It is therefore necessary to continue analyzing molecular patterns that allow us to identify patients at risk of developing resistance to conventional therapy. In this study, we analyzed the global methylation profile of 22 patients diagnosed with locally advanced cervical cancer and validated the genomic results in an independent cohort of 70 patients. We showed that BRD9 promoter region methylation and CTU1 demethylation were associated with a higher overall survival (p = 0.06) and progression-free survival (p = 0.0001), whereas DOCK8 demethylation was associated with therapy-resistant patients and a lower overall survival and progression-free survival (p = 0.025 and p = 0.0001, respectively). Our results suggest that methylation of promoter regions in specific genes may provide molecular markers associated with response to treatment in cancer; further investigation is needed.
Collapse
Affiliation(s)
| | - Eloy-Andrés Pérez-Yépez
- Laboratorio de Genómica, Insituto Nacional de Cancerología, Ciudad de México, Mexico.,Cátedra CONACYT, Dirección de cátedras, Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico City, Mexico
| | | | - Alma Campos-Parra
- Laboratorio de Genómica, Insituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Alejandro Zentella-Dehesa
- Programa Institucional de Cáncer de Mama, Dpto Medicina Genómica y Toxicología Ambiental, IIB, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Nadia Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Ciudad de México, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | | | | | | | - David Cantu de León
- Laboratorio de Genómica, Insituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Carlos Pérez-Plasencia
- Laboratorio de Genómica, Insituto Nacional de Cancerología, Ciudad de México, Mexico.,Laboratorio de Genómica, Unidad de Biomedicina, FES-Iztacala, UNAM, Tlalnepantla, Mexico
| |
Collapse
|
14
|
Crouse MS, Caton JS, Claycombe-Larson KJ, Diniz WJS, Lindholm-Perry AK, Reynolds LP, Dahlen CR, Borowicz PP, Ward AK. Epigenetic Modifier Supplementation Improves Mitochondrial Respiration and Growth Rates and Alters DNA Methylation of Bovine Embryonic Fibroblast Cells Cultured in Divergent Energy Supply. Front Genet 2022; 13:812764. [PMID: 35281844 PMCID: PMC8907857 DOI: 10.3389/fgene.2022.812764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetic modifiers (EM; methionine, choline, folate, and vitamin B12) are important for early embryonic development due to their roles as methyl donors or cofactors in methylation reactions. Additionally, they are essential for the synthesis of nucleotides, polyamines, redox equivalents, and energy metabolites. Despite their importance, investigation into the supplementation of EM in ruminants has been limited to one or two epigenetic modifiers. Like all biochemical pathways, one-carbon metabolism needs to be stoichiometrically balanced. Thus, we investigated the effects of supplementing four EM encompassing the methionine–folate cycle on bovine embryonic fibroblast growth, mitochondrial function, and DNA methylation. We hypothesized that EM supplemented to embryonic fibroblasts cultured in divergent glucose media would increase mitochondrial respiration and cell growth rate and alter DNA methylation as reflected by changes in the gene expression of enzymes involved in methylation reactions, thereby improving the growth parameters beyond Control treated cells. Bovine embryonic fibroblast cells were cultured in Eagle’s minimum essential medium with 1 g/L glucose (Low) or 4.5 g/L glucose (High). The control medium contained no additional OCM, whereas the treated media contained supplemented EM at 2.5, 5, and 10 times (×2.5, ×5, and ×10, respectively) the control media, except for methionine (limited to ×2). Therefore, the experimental design was a 2 (levels of glucose) × 4 (levels of EM) factorial arrangement of treatments. Cells were passaged three times in their respective treatment media before analysis for growth rate, cell proliferation, mitochondrial respiration, transcript abundance of methionine–folate cycle enzymes, and DNA methylation by reduced-representation bisulfite sequencing. Total cell growth was greatest in High ×10 and mitochondrial maximal respiration, and reserve capacity was greatest (p < 0.01) for High ×2.5 and ×10 compared with all other treatments. In Low cells, the total growth rate, mitochondrial maximal respiration, and reserve capacity increased quadratically to 2.5 and ×5 and decreased to control levels at ×10. The biological processes identified due to differential methylation included the positive regulation of GTPase activity, molecular function, protein modification processes, phosphorylation, and metabolic processes. These data are interpreted to imply that EM increased the growth rate and mitochondrial function beyond Control treated cells in both Low and High cells, which may be due to changes in the methylation of genes involved with growth and energy metabolism.
Collapse
Affiliation(s)
- Matthew S. Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE, United States
- *Correspondence: Matthew S. Crouse,
| | - Joel S. Caton
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | | | | | | | - Lawrence P. Reynolds
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | - Pawel P. Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| | - Alison K. Ward
- Department of Animal Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
15
|
Adampourezare M, Saadati A, Hasanzadeh M, Dehghan G, Feizi MAH. Reliable recognition of DNA methylation using bioanalysis of hybridization on the surface of Ag/GQD nanocomposite stabilized on poly (β-cyclodextrin): A new platform for DNA damage studies using genosensor technology. J Mol Recognit 2021; 35:e2945. [PMID: 34904757 DOI: 10.1002/jmr.2945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/27/2022]
Abstract
Due to the role of DNA methylation in causing cancer in the present study, an innovative and inexpensive method was designed for the sensitive detection of DNA methylation. The silver-graphene quantum dots (Ag/GQDs) nano ink with high electrical conductivity was used as a substrate for genosensor fabrication toward identification of DNA hybridization. Also, poly (β-cyclodextrin) (p[β-CD]) has been used as a biointerface for the stabilization of Ag/GQD nano ink. The thiolated pDNA strand (5'-SH-TCCGCTTCCCGACCCGCACTCCGC-3') (as bioreceptor element) was fixed on the substrate and hybridized with methylated (5'-GC(M)GGAGTGC(M)GGGTC(M)GGGAAGC(M)GGA-3') and unmethylated (5'-GCGGAGTGCGGGTCGGGAAGCGGA-3') cDNAs, as target sequences were studied using electroanalysis methods. Under optimal conditions and using electrochemical techniques, the linear range was 1 am to 1 pm with LLOQ of 1aM. Finally, the designed DNA genosensor was used for detection of DNA methylation in human plasma samples and can be used to detect methylation in patient samples. It is expected that the designed DNA-based biodevice will be used to early stage diagnosis of cancer using monitoring of DNA methylation. Also, this type of genosensor can be used for epigenetic studies in the near future.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
16
|
Xu J, Song J, Wang T, Zhu W, Zuo L, Wu J, Guo J, Yang X. A combination of methylation and protein markers is capable of detecting gastric cancer detection by combined markers. Epigenomics 2021; 13:1557-1570. [PMID: 34632818 DOI: 10.2217/epi-2021-0080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This study aimed to validate a combination of mSEPT9, mRNF180 and CA724 for gastric cancer (GC) detection. Patients & methods: The performance of mSEPT9, mRNF180 and CA724 was examined in a prospective cohort study with 518 participants (151 with GC, 56 with atrophic gastritis, 87 with other gastrointestinal diseases and 224 with no evidence of disease). Results: mSEPT9, mRNF180 or CA724 alone detected 48.3, 37.1 and 43.1% of GC, respectively. The combination of mSEPT9 and mRNF180 detected 60.3% of GC, and the combination of all three markers detected 68.6% of GC. The detection sensitivity of mSEPT9 and mRNF180 was significantly higher for gastric body and in elder subjects. mSEPT9 was correlated with poorer GC survival. Conclusion: The combination of mSEPT9, mRNF180 and CA724 was adequately sensitive for GC detection. The blood mSEPT9 was predictive for GC prognosis.
Collapse
Affiliation(s)
- Jianbiao Xu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Jianlin Song
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Tongmin Wang
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Wenchuan Zhu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Liangyu Zuo
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Jinzhi Wu
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Jianhui Guo
- Department of General Surgery II, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| | - Xiaochun Yang
- Department of Ophthalmology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, PR China
| |
Collapse
|
17
|
Teuber-Hanselmann S, Worm K, Macha N, Junker A. MGMT-Methylation in Non-Neoplastic Diseases of the Central Nervous System. Int J Mol Sci 2021; 22:ijms22083845. [PMID: 33917711 PMCID: PMC8068191 DOI: 10.3390/ijms22083845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Quantifying O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation plays an essential role in assessing the potential efficacy of alkylating agents in the chemotherapy of malignant gliomas. MGMT promoter methylation is considered to be a characteristic of subgroups of certain malignancies but has also been described in various peripheral inflammatory diseases. However, MGMT promoter methylation levels have not yet been investigated in non-neoplastic brain diseases. This study demonstrates for the first time that one can indeed detect slightly enhanced MGMT promoter methylation in individual cases of inflammatory demyelinating CNS diseases such as multiple sclerosis and progressive multifocal leucencephalopathy (PML), as well as in other demyelinating diseases such as central pontine and exptrapontine myelinolysis, and diseases with myelin damage such as Wallerian degeneration. In this context, we identified a reduction in the expression of the demethylase TET1 as a possible cause for the enhanced MGMT promoter methylation. Hence, we show for the first time that MGMT hypermethylation occurs in chronic diseases that are not strictly associated to distinct pathogens, oncogenic viruses or neoplasms but that lead to damage of the myelin sheath in various ways. While this gives new insights into epigenetic and pathophysiological processes involved in de- and remyelination, which might offer new therapeutic opportunities for demyelinating diseases in the future, it also reduces the specificity of MGMT hypermethylation as a tumor biomarker.
Collapse
Affiliation(s)
- Sarah Teuber-Hanselmann
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Karl Worm
- Institute of Pathology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nicole Macha
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
| | - Andreas Junker
- Institute of Neuropathology, University Hospital Essen, D-45147 Essen, Germany; (S.T.-H.); (N.M.)
- Correspondence: ; Tel.: +49-201-723-3315
| |
Collapse
|
18
|
Domingo-Relloso A, Huan T, Haack K, Riffo-Campos AL, Levy D, Fallin MD, Terry MB, Zhang Y, Rhoades DA, Herreros-Martinez M, Garcia-Esquinas E, Cole SA, Tellez-Plaza M, Navas-Acien A. DNA methylation and cancer incidence: lymphatic-hematopoietic versus solid cancers in the Strong Heart Study. Clin Epigenetics 2021; 13:43. [PMID: 33632303 PMCID: PMC7908806 DOI: 10.1186/s13148-021-01030-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/14/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epigenetic alterations may contribute to early detection of cancer. We evaluated the association of blood DNA methylation with lymphatic-hematopoietic cancers and, for comparison, with solid cancers. We also evaluated the predictive ability of DNA methylation for lymphatic-hematopoietic cancers. METHODS Blood DNA methylation was measured using the Illumina Infinium methylationEPIC array in 2324 Strong Heart Study participants (41.4% men, mean age 56 years). 788,368 CpG sites were available for differential DNA methylation analysis for lymphatic-hematopoietic, solid and overall cancers using elastic-net and Cox regression models. We conducted replication in an independent population: the Framingham Heart Study. We also analyzed differential variability and conducted bioinformatic analyses to assess for potential biological mechanisms. RESULTS Over a follow-up of up to 28 years (mean 15), we identified 41 lymphatic-hematopoietic and 394 solid cancer cases. A total of 126 CpGs for lymphatic-hematopoietic cancers, 396 for solid cancers, and 414 for overall cancers were selected as predictors by the elastic-net model. For lymphatic-hematopoietic cancers, the predictive ability (C index) increased from 0.58 to 0.87 when adding these 126 CpGs to the risk factor model in the discovery set. The association was replicated with hazard ratios in the same direction in 28 CpGs in the Framingham Heart Study. When considering the association of variability, rather than mean differences, we found 432 differentially variable regions for lymphatic-hematopoietic cancers. CONCLUSIONS This study suggests that differential methylation and differential variability in blood DNA methylation are associated with lymphatic-hematopoietic cancer risk. DNA methylation data may contribute to early detection of lymphatic-hematopoietic cancers.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Melchor Fernandez Almagro Street, 5, Madrid, Spain.
- Department of Statistics and Operations Research, University of Valencia, Valencia, Spain.
| | - Tianxiao Huan
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Daniel Levy
- The Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - M Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Terry
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, Oklahoma, USA
| | - Dorothy A Rhoades
- Department of Medicine, Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | | | - Esther Garcia-Esquinas
- Universidad Autonoma de Madrid, Madrid, Spain
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain
| | - Shelley A Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Melchor Fernandez Almagro Street, 5, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
19
|
Gupta V, Agarwal P, Deshpande P. Impact of RASSF1A gene methylation on clinico-pathological features of tumor and non-tumor tissue of breast cancer. Ann Diagn Pathol 2021; 52:151722. [PMID: 33621744 DOI: 10.1016/j.anndiagpath.2021.151722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/31/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Breast cancer is the most common malignancy in women caused by genetic and epigenetic changes. Promoter DNA methylation in tumor suppressor gene plays a major role in breast cancer. The study determined the association of promoter DNA methylation of RASSF1A gene with clinicopathological features in tumor and non-tumor tissue. MATERIALS AND METHODS A cross sectional study was conducted in the Department of Pathology, Government Institute of Medical Sciences, Greater Noida and Molecular Pathology Laboratory, Department of Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences. Two sections, one from tumor and the other from non-tumor tissue, were obtained and processed for DNA extraction and bisulphite conversion. Methylation specific PCR was done and results of RASSF1A promoter methylation were statistically correlated with clinicopathological features. RESULTS Of the 27 breast cancer tissue, 22 showed invasive ductal carcinoma, one showed invasive lobular carcinoma, another showed ductal carcinoma in situ and three cases showed malignant phyllodes tumor of breast. DNA promoter methylation was found in all the cases. 93% of tumor tissue samples and 67% of the non-tumor tissue samples were found to be aberrantly methylated. Tumor size and histological grade were found to be significantly (p-val <0.05) associated with the RASSF1A gene promoter methylation. CONCLUSION A significant association of higher tumor size and tumor histological grade with promoter methylation of RASSF1A gene exists suggestive of its being an important determinant of prognostic staging. This critical event in tumorigenesis may be of clinical utility in assessing breast cancer progression. MICRO ABSTRACT The study focuses on the RASSF1A gene promoter methylation and its impact on the clinicopathological features in Indian breast cancer patients highlighting the differences from other genetically different population. We found that RASFF1A gene methylation has significant impact on tumor size and tumor grade. The work carries high significance because it addresses the DNA methylation of tumor suppressor gene in relevance of breast cancer. It may also be the first such report on Indian patients with breast cancer.
Collapse
Affiliation(s)
- Vivek Gupta
- Department of Pathology & In-charge, Molecular Diagnostics and Research Laboratory, Government Institute of Medical Sciences, India.
| | - Prerna Agarwal
- Department of Physiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, India
| | | |
Collapse
|
20
|
Sedley L. Advances in Nutritional Epigenetics-A Fresh Perspective for an Old Idea. Lessons Learned, Limitations, and Future Directions. Epigenet Insights 2020; 13:2516865720981924. [PMID: 33415317 PMCID: PMC7750768 DOI: 10.1177/2516865720981924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nutritional epigenetics is a rapidly expanding field of research, and the natural modulation of the genome is a non-invasive, sustainable, and personalized alternative to gene-editing for chronic disease management. Genetic differences and epigenetic inflexibility resulting in abnormal gene expression, differential or aberrant methylation patterns account for the vast majority of diseases. The expanding understanding of biological evolution and the environmental influence on epigenetics and natural selection requires relearning of once thought to be well-understood concepts. This research explores the potential for natural modulation by the less understood epigenetic modifications such as ubiquitination, nitrosylation, glycosylation, phosphorylation, and serotonylation concluding that the under-appreciated acetylation and mitochondrial dependant downstream epigenetic post-translational modifications may be the pinnacle of the epigenomic hierarchy, essential for optimal health, including sustainable cellular energy production. With an emphasis on lessons learned, this conceptional exploration provides a fresh perspective on methylation, demonstrating how increases in environmental methane drive an evolutionary down regulation of endogenous methyl groups synthesis and demonstrates how epigenetic mechanisms are cell-specific, making supplementation with methyl cofactors throughout differentiation unpredictable. Interference with the epigenomic hierarchy may result in epigenetic inflexibility, symptom relief and disease concomitantly and may be responsible for the increased incidence of neurological disease such as autism spectrum disorder.
Collapse
Affiliation(s)
- Lynda Sedley
- Bachelor of Health Science (Nutritional Medicine),
GC Biomedical Science (Genomics), The Research and Educational Institute of
Environmental and Nutritional Epigenetics, Queensland, Australia
| |
Collapse
|
21
|
Sanaei M, Kavoosi F. Effect of 5-aza-2'-deoxycytidine on Estrogen Receptor Alpha/Beta and DNA Methyltransferase 1 Genes Expression, Apoptosis Induction, and Cell Growth Prevention of the Colon Cancer HT 29 Cell Line. Int J Prev Med 2020; 11:147. [PMID: 33209217 PMCID: PMC7643574 DOI: 10.4103/ijpvm.ijpvm_140_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 07/27/2019] [Indexed: 11/15/2022] Open
Abstract
Background: Cellular activity such as gene expression is regulated by epigenetic mechanisms and modifications. In mammals, DNA methylation is an essential component of the epigenetic machinery of the cells. DNA hypermethylation of the several tumor suppressor genes (TSGs) is associated with transcriptional gene silencing resulting in colon tumorigenesis. Overexpression of DNA methyltransferase 1 (DNMT1) in colon cancer has been reported in several studies. The methylation of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) have been demonstrated in various cancers. Previously, we indicated that genistein can reactivate ERα in hepatocellular carcinoma (HCC). The present study was designed to investigate the effect of 5-aza-2′-deoxycytidine (5-aza-CdR) on ERα/ERβ and DNMT1 gene expression, apoptosis induction, and cell viability inhibition of the colon carcinoma HT 29 cell line. Methods: The effect of 5-Aza-CdR on the colon carcinoma HT 29 cell viability was measured by MTT assay. To determine the apoptotic cells, the cells were assessed using the Annexin V-FITC/PI detection kit. The expression of ERα, ERβ, and DNMT1 genes was determined using real-time quantitative RT-PCR. Results: The results indicated that 5-Aza-CdR can inhibit cell growth significantly versus control groups, induce significant apoptosis, down-regulate DNMT1, and up-regulate ERα and ERβ genes expression at different time periods. The percentage of apoptotic cells was 85.83% and 86.84% after 24 and 48 h, respectively (P < 0.01). The IC50 value for 5-Aza-CdR was obtained at 2.5 μM. Conclusions: 5-Aza-CdR can up-regulate ERα and ERβ genes expression through DNMT1 down-regulation resulting in apoptosis induction and cell growth prevention.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Fars Province, Iran
| |
Collapse
|
22
|
Shen G, Shen H, Zhang J, Yan Q, Liu H. DNA methylation in Hepatoblastoma-a literature review. Ital J Pediatr 2020; 46:113. [PMID: 32758256 PMCID: PMC7409486 DOI: 10.1186/s13052-020-00877-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children. Abnormal activation of the Wnt/β-catenin signaling pathway plays an important role in the formation and development of HB. Genes in HB show a global hypomethylation change, accompanied by hypermethylation of specific tumor suppressor genes (TSGs). This article reviews the hypermethylation changes in several TSGs, such as RASSF1A, SOCS1, APC, HHIP, and P16, and analyzes the pathways and mechanisms of TSGs regulating gene expression. The role of the methylation-regulating enzymes DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family members enzymes in the methylation changes of HB was analyzed, and it was speculated that the occurrence of HB is partly due to the obstruction of liver differentiation in the early stage of differentiation. The origin cells may be incompletely differentiated hepatocytes remaining in the liver of children after birth. Therefore, further studying the role of methylation regulating enzymes in methylation changes in HB is a promising future research direction.
Collapse
Affiliation(s)
- Gang Shen
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Hongyu Shen
- Ultrasound Department, Weifang Haifushan Hospital, Weifang, China
| | - Jing Zhang
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Qingtao Yan
- Pediatric Surgery Department, Weifang Peoples' Hospital, Weifang, China
| | - Huixian Liu
- Dermatology Department, Weifang Peoples' Hospital, No. 151, Guangwen Street, Kuiwen District, Weifang, 261041, China.
| |
Collapse
|
23
|
Bellanti JA. Epigenetic studies and pediatric research. Pediatr Res 2020; 87:378-384. [PMID: 31731288 DOI: 10.1038/s41390-019-0644-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/04/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
The 2020 Annual Review Issue, "Preventing Disease in the 21st Century" was selected by the Editors-in-Chief of Pediatric Research to include a variety of disease entities that confront health-care practitioners entrusted to the care of infants and children. In keeping with this mandate, this article reviews the subject of epigenetics, which impacts pediatric research from bench to bedside. Epigenetic mechanisms exert their effects through the interaction of environment, various susceptibility genes, and immunologic development and include: (1) DNA methylation; (2) posttranslational modifications of histone proteins through acetylation and methylation, and (3) RNA-mediated gene silencing by microRNA (miRNA) regulation. The effects of epigenetics during fetal life and early periods of development are first reviewed together with clinical applications of cardiovascular and metabolic disorders in later life. The relationships of epigenetics to the allergic and autoimmune diseases and cancer are next reviewed. A specific focus of the article is directed to the recent recognition that many of these disorders are driven by aberrant immune responses in which immunoregulatory events are often poorly functioning and where through interventive epigenetic measures prevention may be possible by alterations in programming of DNA during fetal and early periods as well as in later life.
Collapse
Affiliation(s)
- Joseph A Bellanti
- Departments of Pediatrics and Microbiology-Immunology, Georgetown University Medical Center, Washington, DC, USA. .,International Center for Interdisciplinary Studies of Immunology (ICISI), Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
24
|
Aberrant methylation of yes-associated protein (YAP1) as a potential biomarker in breast cancer. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2019. [DOI: 10.1186/s43042-019-0038-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Breast cancer (BC) represents the most prevalent malignancy among women, and it is characterized by high mortality especially in late stages. BC tumorigenesis was linked to epigenetic alterations namely methylation. Yes-associated protein (YAP1) is the leading downstream effector of the Hippo pathway. It may enhance or inhibit oncogenesis based on the tissue involved.
Aim
This case-control study aimed to analyze the methylation degree of promoter region of YAP1 gene in BC patients by applying methylation-specific polymerase chain reaction (MSP) analysis.
Methods
Genomic deoxyribonucleic acid (DNA) was isolated from 50 paired tumor and adjacent noncancerous breast tissue samples and subjected to bisulfite conversion. Methylation condition of YAP1 gene was studied by MSP and evaluated as a possible biomarker for diagnosing BC and its differentiation from corresponding normal tissues. We also correlated the aberrant methylation with clinicopathological criteria.
Results
Increased methylation of the YAP1 gene promoter region in BC tumor tissue was detected in 68% of the studied BC tissue samples. There was a significant change in the frequency of YAP1 methylated genotype between breast tumor tissues compared to that in adjacent non-cancerous tissue (p < 0.001). YAP1 can discriminate early from late-stage BC with a sensitivity of 96.88% and specificity of 83.33%.
Conclusions
Gene analysis of YAP1 using conventional MSP in tissue specimens can be considered a possible biomarker to distinguish BC from normal breast tissue as well as between early- and late-stage BC.
Collapse
|
25
|
Zhang L, Wang K, Deng Q, Li W, Zhang X, Liu X. Identification of Key Hydroxymethylated Genes and Transcription Factors Associated with Alpha-Fetoprotein-Negative Hepatocellular Carcinoma. DNA Cell Biol 2019; 38:1346-1356. [PMID: 31618054 DOI: 10.1089/dna.2019.4689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
DNA hydroxymethylation is one of the major epigenetic mechanisms mediating the development of several human cancers. This study aimed to identify key hydroxymethylated genes and transcription factors (TFs) associated with alpha-fetoprotein (AFP)-negative hepatocellular carcinoma (HCC) using whole-genome DNA hydroxymethylation profiling. A total of 615 differentially hydroxymethylated regions (DHMRs) were identified from AFP-negative HCC tissues compared to adjacent normal tissues. DHMR-associated genes were significantly enriched in gene ontology functions associated with actin binding, cell leading edge, and blood vessel morphogenesis and pathways such as MAPK signaling pathway, neuroactive ligand-receptor interaction, and axon guidance. Moreover, protein-protein interaction (PPI) network analysis showed that PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1) and SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily A, member 2 (SMARCA2) had higher degrees and were hub nodes. Furthermore, TF prediction analysis showed that TFs, such as nuclear factor I C (NFIC) and GATA binding protein 3 (GATA3), regulated many DHMR-associated genes. Our findings reveal that key hydroxymethylated genes such as PHLPP1 and SMARCA2, as well as TFs such as NFIC and GATA, may be involved in the development of AFP-negative HCC. These molecules may be potential biomarkers for AFP-negative HCC.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Hepatology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kesheng Wang
- Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Qing Deng
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Li
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaofeng Zhang
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Al-Eitan LN, Alghamdi MA, Tarkhan AH, Al-Qarqaz FA. Genome-Wide CpG Island Methylation Profiles of Cutaneous Skin with and without HPV Infection. Int J Mol Sci 2019; 20:E4822. [PMID: 31569353 PMCID: PMC6801420 DOI: 10.3390/ijms20194822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022] Open
Abstract
HPV infection is one of the most commonly transmitted diseases among the global population. While it can be asymptomatic, non-genital HPV infection often gives rise to cutaneous warts, which are benign growths arising from the epidermal layer of the skin. This study aimed to produce a global analysis of the ways in which cutaneous wart formation affected the CpG island methylome. The Infinium MethylationEPIC BeadChip microarray was utilized in order to quantitatively interrogate CpG island methylation in genomic DNA extracted from 24 paired wart and normal skin samples. Differential methylation analysis was carried out by means of assigning a combined rank score using RnBeads. The 1000 top-ranking CpG islands were then subject to Locus Overlap Analysis (LOLA) for enrichment of genomic ranges, while signaling pathway analysis was carried out on the top 100 differentially methylated CpG islands. Differential methylation analysis illustrated that the most differentially methylated CpG islands in warts lay within the ITGB5, DTNB, RBFOX3, SLC6A9, and C2orf27A genes. In addition, the most enriched genomic region sets in warts were Sheffield's tissue-clustered DNase hypersensitive sites, ENCODE's segmentation and transcription factor binding sites, codex sites, and the epigenome sites from cistrome. Lastly, signaling pathway analysis showed that the GRB2, GNB1, NTRK1, AXIN1, and SKI genes were the most common regulators of the genes associated with the top 100 most differentially methylated CpG islands in warts. Our study shows that HPV-induced cutaneous warts have a clear CpG island methylation profile that sets them apart from normal skin. Such a finding could account for the temporary nature of warts and the capacity for individuals to undergo clinical remission.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Mansour A Alghamdi
- Department of Human Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia.
| | - Amneh H Tarkhan
- Department of Applied Biological Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Firas A Al-Qarqaz
- Department of Internal Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
- Division of Dermatology, Department of Internal Medicine, King Abdullah University Hospital Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
27
|
Zheng S, Lin F, Zhang M, Fu J, Ge X, Mu N. AK001058 promotes the proliferation and migration of colorectal cancer cells by regulating methylation of ADAMTS12. Am J Transl Res 2019; 11:5869-5878. [PMID: 31632555 PMCID: PMC6789239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Long noncoding RNA (LncRNA) functions as multiple mechanisms, including DNA methylation in colorectal cancer (CRC). ADAMTS12 was applied as biomarkers in CRC via abnormally DNA methylation. Lnc-AK001058 gene, which was reported dysregulated in CRC, is located adjacent to the gene ADAMTS12. However, little is known about the role of AK001058 during the proliferation and migration of CRC. MATERIAL AND METHODS In present study, quantitative RT-PCR were used to measure AK001058 and ADAMTS12 expression levels, and western blotting assays were performed to measure ADAMTS12 expression in CRC cells. Methylation-specific PCR (MSP) was applied to measure the methylation of the CpG islands of the ADAMTS12 promoter. Cell proliferation, migration, invasion and cycle assays ware utilized to analyze the role of AK001058 in CRC. RESULTS The results indicated that the expression of AK001058 was significantly increased in CRC. Overexpression of AK001058 could suppress the expression of ADAMTS12. AK001058 also significantly promoted cell proliferation, migration and invasion, and prolonged S stage of CRC, while silencing the expression of AK001058 showed contrary effects. Moreover, compared with negative control and AK001058-NC groups, overexpression of AK001058 could increase the DNA methylation level of ADAMTS12 gene promoter in CRC, while si-AK001058 could reverse this effect. CONCLUSION In conclusion, AK001058 promotes the proliferation, invasion, migration, and prolonged S stage of CRC by regulating methylation of ADAMTS12. Our research will provide new insights for the biomarker of colorectal cancer diagnose and new clues for clinical treatment.
Collapse
Affiliation(s)
- Shuang Zheng
- Department of General Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital Taizhou 318020, Zhejiang Province, China
| | - Feng Lin
- Department of General Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital Taizhou 318020, Zhejiang Province, China
| | - Meng Zhang
- Department of General Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital Taizhou 318020, Zhejiang Province, China
| | - Junhui Fu
- Department of General Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital Taizhou 318020, Zhejiang Province, China
| | - Xiaogang Ge
- Department of General Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital Taizhou 318020, Zhejiang Province, China
| | - Ning Mu
- Department of General Surgery, Huangyan Hospital of Wenzhou Medical University, Taizhou First People's Hospital Taizhou 318020, Zhejiang Province, China
| |
Collapse
|
28
|
Gil J, Betancourt LH, Pla I, Sanchez A, Appelqvist R, Miliotis T, Kuras M, Oskolas H, Kim Y, Horvath Z, Eriksson J, Berge E, Burestedt E, Jönsson G, Baldetorp B, Ingvar C, Olsson H, Lundgren L, Horvatovich P, Murillo JR, Sugihara Y, Welinder C, Wieslander E, Lee B, Lindberg H, Pawłowski K, Kwon HJ, Doma V, Timar J, Karpati S, Szasz AM, Németh IB, Nishimura T, Corthals G, Rezeli M, Knudsen B, Malm J, Marko-Varga G. Clinical protein science in translational medicine targeting malignant melanoma. Cell Biol Toxicol 2019; 35:293-332. [PMID: 30900145 PMCID: PMC6757020 DOI: 10.1007/s10565-019-09468-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Melanoma of the skin is the sixth most common type of cancer in Europe and accounts for 3.4% of all diagnosed cancers. More alarming is the degree of recurrence that occurs with approximately 20% of patients lethally relapsing following treatment. Malignant melanoma is a highly aggressive skin cancer and metastases rapidly extend to the regional lymph nodes (stage 3) and to distal organs (stage 4). Targeted oncotherapy is one of the standard treatment for progressive stage 4 melanoma, and BRAF inhibitors (e.g. vemurafenib, dabrafenib) combined with MEK inhibitor (e.g. trametinib) can effectively counter BRAFV600E-mutated melanomas. Compared to conventional chemotherapy, targeted BRAFV600E inhibition achieves a significantly higher response rate. After a period of cancer control, however, most responsive patients develop resistance to the therapy and lethal progression. The many underlying factors potentially causing resistance to BRAF inhibitors have been extensively studied. Nevertheless, the remaining unsolved clinical questions necessitate alternative research approaches to address the molecular mechanisms underlying metastatic and treatment-resistant melanoma. In broader terms, proteomics can address clinical questions far beyond the reach of genomics, by measuring, i.e. the relative abundance of protein products, post-translational modifications (PTMs), protein localisation, turnover, protein interactions and protein function. More specifically, proteomic analysis of body fluids and tissues in a given medical and clinical setting can aid in the identification of cancer biomarkers and novel therapeutic targets. Achieving this goal requires the development of a robust and reproducible clinical proteomic platform that encompasses automated biobanking of patient samples, tissue sectioning and histological examination, efficient protein extraction, enzymatic digestion, mass spectrometry-based quantitative protein analysis by label-free or labelling technologies and/or enrichment of peptides with specific PTMs. By combining data from, e.g. phosphoproteomics and acetylomics, the protein expression profiles of different melanoma stages can provide a solid framework for understanding the biology and progression of the disease. When complemented by proteogenomics, customised protein sequence databases generated from patient-specific genomic and transcriptomic data aid in interpreting clinical proteomic biomarker data to provide a deeper and more comprehensive molecular characterisation of cellular functions underlying disease progression. In parallel to a streamlined, patient-centric, clinical proteomic pipeline, mass spectrometry-based imaging can aid in interrogating the spatial distribution of drugs and drug metabolites within tissues at single-cell resolution. These developments are an important advancement in studying drug action and efficacy in vivo and will aid in the development of more effective and safer strategies for the treatment of melanoma. A collaborative effort of gargantuan proportions between academia and healthcare professionals has led to the initiation, establishment and development of a cutting-edge cancer research centre with a specialisation in melanoma and lung cancer. The primary research focus of the European Cancer Moonshot Lund Center is to understand the impact that drugs have on cancer at an individualised and personalised level. Simultaneously, the centre increases awareness of the relentless battle against cancer and attracts global interest in the exceptional research performed at the centre.
Collapse
Affiliation(s)
- Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Lazaro Hiram Betancourt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - Roger Appelqvist
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Tasso Miliotis
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Translational Science, Cardiovascular Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magdalena Kuras
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henriette Oskolas
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yonghyo Kim
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Zsolt Horvath
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Jonatan Eriksson
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Ethan Berge
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Elisabeth Burestedt
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Bo Baldetorp
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Christian Ingvar
- Department of Surgery, Clinical Sciences, Lund University, SUS, Lund, Sweden
| | - Håkan Olsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Lotta Lundgren
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Jimmy Rodriguez Murillo
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Yutaka Sugihara
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Charlotte Welinder
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Elisabet Wieslander
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
| | - Boram Lee
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Henrik Lindberg
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Krzysztof Pawłowski
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ho Jeong Kwon
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Viktoria Doma
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Jozsef Timar
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Sarolta Karpati
- Department of Dermatology, Semmelweis University, Budapest, Hungary
| | - A Marcell Szasz
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 221 85, Lund, Sweden
- Cancer Center, Semmelweis University, Budapest, 1083, Hungary
- MTA-TTK Momentum Oncology Biomarker Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - István Balázs Németh
- Department of Dermatology and Allergology, University of Szeged, Szeged, H-6720, Hungary
| | - Toshihide Nishimura
- Clinical Translational Medicine Informatics, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| | - Garry Corthals
- Van't Hoff Institute of Molecular Sciences, 1090 GS, Amsterdam, The Netherlands
| | - Melinda Rezeli
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
| | - Beatrice Knudsen
- Biomedical Sciences and Pathology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Johan Malm
- Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02, Malmö, Sweden
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84, Lund, Sweden
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
- Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Tokyo, Japan
| |
Collapse
|
29
|
The impact of DNA methylation on the cancer proteome. PLoS Comput Biol 2019; 15:e1007245. [PMID: 31356589 PMCID: PMC6695193 DOI: 10.1371/journal.pcbi.1007245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/15/2019] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant DNA methylation disrupts normal gene expression in cancer and broadly contributes to oncogenesis. We previously developed MethylMix, a model-based algorithmic approach to identify epigenetically regulated driver genes. MethylMix identifies genes where methylation likely executes a functional role by using transcriptomic data to select only methylation events that can be linked to changes in gene expression. However, given that proteins more closely link genotype to phenotype recent high-throughput proteomic data provides an opportunity to more accurately identify functionally relevant abnormal methylation events. Here we present a MethylMix analysis that refines nominations for epigenetic driver genes by leveraging quantitative high-throughput proteomic data to select only genes where DNA methylation is predictive of protein abundance. Applying our algorithm across three cancer cohorts we find that using protein abundance data narrows candidate nominations, where the effect of DNA methylation is often buffered at the protein level. Next, we find that MethylMix genes predictive of protein abundance are enriched for biological processes involved in cancer including functions involved in epithelial and mesenchymal transition. Moreover, our results are also enriched for tumor markers which are predictive of clinical features like tumor stage and we find clustering using MethylMix genes predictive of protein abundance captures cancer subtypes. To elucidate the molecular basis of cancer we examine the variation and dynamics characterizing the flow of information from epigenome to the transcriptome and proteome. Conducting the first genome wide analysis of epigenome-proteome associations, we present a MethylMix analysis that leverages protein abundance data taking advantage of recent high-throughput proteomic data generated using mass-spectrometry technology to elucidate the role of DNA methylation in cancer. By integrating across molecular data types, we confirm the benefit of using protein abundance data to provide additional insights into pathways and processes involved in oncogenesis and how they manifest as clinical phenotypes. Applying our method across three large cancer cohorts including breast cancer, ovarian cancer and colorectal cancer, MethylMix identifies key genes and describes molecular features and subtypes in these cancers.
Collapse
|
30
|
Zhou C, Hu H, Zheng Z, Chen C, Li Y, Li B, Duan S. Association between GPX3 promoter methylation and malignant tumors: A meta-analysis. Pathol Res Pract 2019; 215:152443. [PMID: 31085009 DOI: 10.1016/j.prp.2019.152443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/20/2019] [Accepted: 05/05/2019] [Indexed: 12/24/2022]
Abstract
Glutathione peroxidase 3 (GPX3) has an important function of scavenging hydrogen peroxide and preventing cancer. The purpose of this meta-analysis was to analyze the relationship between GPX3 gene methylation and cancer and to further evaluate its diagnostic value for cancer. We screened eligible literatures from the PubMed, Embase, CNKI and Wanfang databases. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were used to measure the association of GPX3 methylation with cancer. Summary receiver operating characteristics (SROC) analysis was used to assess the diagnostic value of GPX3 methylation for cancer. A total of 17 eligible articles were included in the meta-analysis involving a total of 960 tumor samples and 445 non-tumor samples. The results showed that GPX3 hypermethylation was significantly associated with cancer (OR = 17.32, 95% CI = 8.22-36.51, P < 0.00001). Compared with cancer patients without lymph node metastasis, cancer patients with lymph node metastasis were more associated with GPX3 hypermethylation (OR = 2.97, 95% CI = 1.53-5.76, P = 0.001). SROC analysis showed for GPX3 methylation was a promising biomarker for cancer risk (AUC = 0.89, pooled sensitivity = 0.93, pooled specificity = 0.54, NLR = 0.15, PLR = 2.05, DOR = 17.32). TCGA database bioinformatics analysis of 696 pairs of tumor and non-tumor tissues further validate the association of GPX3 methylation with the risk of cancer [cg21504918: 0.10 (0.08, 0.15) vs. 0.09 (0.08, 0.11), P = 5.8E-28; cg26638444: 0.05 (0.04, 011) vs. 0.04 (0.03, 0.06), P = 8.7E-29]. In summary, our study indicates that GPX3 methylation is associated with cancer and has the potential to become a broad-spectrum tumor screening marker and has a value in predicting tumor lymph node metastasis.
Collapse
Affiliation(s)
- Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Zhonghua Zheng
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Chujia Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
31
|
Strzelczyk JK, Krakowczyk Ł, Owczarek AJ. Methylation status of SFRP1, SFRP2, RASSF1A, RARβ and DAPK1 genes in patients with oral squamous cell carcinoma. Arch Oral Biol 2018; 98:265-272. [PMID: 30576962 DOI: 10.1016/j.archoralbio.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/20/2018] [Accepted: 12/02/2018] [Indexed: 12/24/2022]
Abstract
Our study assessed the methylation status of the SFRP1, SFRP2, RASSF1A, RARβ and DAPK1 genes, which are associated with epigenetic silencing in cancers. In a group of 75 patients with oral squamous cell carcinoma, aberrant methylation was detected using methylation-specific PCR in tumours and matched margins. Our results showed significantly higher methylation frequency in tumours than in surgical margin of SFRP2 (26.6% vs 11.9%, p < 0.05) and DAPK1 (65.3% vs 41.3%, p < 0.01) genes. Moreover, methylation of the SFRP1 and DAPK1 genes was associated with older age. Advanced tumour stages were associated with lower rates of SFRP1 gene methylation. Decreased methylation levels of the SFRP2 and RASSF1A genes were associated with positive N stage. On the contrary, lymph node metastasis were associated with higher methylation rates of RARβ and DAPK1 genes. Patients with a familial history of cancer were associated with more frequently methylated SFRP1, SFRP2 and DAPK1 genes. Hypermethylation of DAPK1 was associated with decreased risk of death in patients. Our results are suggestive, although not conclusive, that some epigenetic changes, especially frequent hypermethylation of SFRP2 and DAPK1 genes, can be useful as potential diagnostic biomarkers of oral cavity cancer. Moreover, estimating the methylation status in surgical margins could become an additional strategy for more accurate treatment methods. Further efforts are needed to identify and validate this finding on a larger patient group and using new advanced methylation testing methods.
Collapse
Affiliation(s)
- Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Jordana 19 Str., 41-808 Zabrze, Medical University of Silesia in Katowice, Poland.
| | - Łukasz Krakowczyk
- Clinic of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Str., 44-101 Gliwice, Poland.
| | - Aleksander Jerzy Owczarek
- Department of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Ostrogórska 30 Str., 41-200 Sosnowiec, Medical University of Silesia in Katowice, Poland.
| |
Collapse
|
32
|
Syedmoradi L, Esmaeili F, Norton ML. Towards DNA methylation detection using biosensors. Analyst 2018; 141:5922-5943. [PMID: 27704092 DOI: 10.1039/c6an01649a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA methylation, a stable and heritable covalent modification which mostly occurs in the context of a CpG dinucleotide, has great potential as a biomarker to detect disease, provide prognoses and predict therapeutic responses. It can be detected in a quantitative manner by many different approaches both genome-wide and at specific gene loci, in various biological fluids such as urine, plasma, and serum, which can be obtained without invasive procedures. The current, classical methods are effective in studying DNA methylation patterns, however, for the most part; they have major drawbacks such as expensive instruments, complicated and time consuming protocols as well as relatively low sensitivity, and high false positive rates. To overcome these obstacles, great efforts have been made toward the development of reliable sensor devices to solve these limitations, providing sensitive, fast and cost-effective measurements. The use of biosensors for DNA methylation biomarkers has increased in recent years, because they are portable, simple, rapid, and inexpensive which offers a straightforward way to detect methylated biomarkers. In this review, we give an overview of the conventional techniques for the detection of DNA methylation and then will focus on recent advances in biosensor based methylation detection that eliminate bisulfite conversion and PCR amplification.
Collapse
Affiliation(s)
- Leila Syedmoradi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael L Norton
- Department of Chemistry, Marshall University, One John Marshall Drive, Huntington, WV 25755, USA.
| |
Collapse
|
33
|
Sun LL, Liu Y, Sun X, Pan L, Wu D, Wang YD. Limited Role of Promoter Methylation of MGMT and C13ORF18 in Triage of Low-Grade Squamous Intraepithelial Lesion. Chin Med J (Engl) 2018; 131:939-944. [PMID: 29664054 PMCID: PMC5912060 DOI: 10.4103/0366-6999.229896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Promoter methylation of MGMT and C13ORF18 has been confirmed as a potential biomarker for early diagnosis of cervical cancer. The aim of this study was to evaluate the performance of MGMT and C13ORF18 promoter methylation for triage of cytology screening samples and explore the potential mechanism. Methods Methylation-sensitive high-resolution melting was used to detect promoter methylation of MGMT and C13ORF18 in 124 cervical samples. High-risk human papillomavirus (HR-HPV) was detected by the Digene Hybrid Capture 2®. Gene methylation frequencies in relation to cervical intraepithelial neoplasia (CIN) were analyzed. Frequencies were compared by Chi-square tests. The expression of gene biomarkers and methylation regulators was analyzed by immunohistochemical staining, real-time fluorescence quantitative polymerase chain reaction, and Western blot. Results For triage of low-grade squamous intraepithelial lesion (LSIL), gene methylation increased specificity from 4.0% of HR-HPV detection to 30.8% of MGMT (χ2 = 9.873, P = 0.002) and to 50.0% of C13ORF18 (χ2 = 21.814, P = 0.001). For triage of atypical squamous cells of undetermined significance, HR-HPV detection had higher positive predictive value of 54.8%. Either MGMT or C13ORF18 methylation combined with HR-HPV increased the negative predictive value to 100.0% (χ2 = 9.757, P = 0.002). There was no relationship between MGMT and C13ORF18 expression and DNA methylation (χ2 = 0.776, P = 0.379 and χ2 = 1.411, P = 0.235, respectively). MBD2 protein level in cervical cancer was relatively lower than normal cervical tissue (t = 4.11, P = 0.006). Conclusions HR-HPV detection is the cornerstone for triage setting of CIN. Promoter methylation of MGMT and C13ORF18 plays a limited role in triage of LSIL. Promoter methylation of both genes may not be the causes of gene silence.
Collapse
Affiliation(s)
- Lu-Lu Sun
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Yuan Liu
- Department of Pathology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Xiao Sun
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Lei Pan
- Department of Pathology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Dan Wu
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| | - Yu-Dong Wang
- Department of Gynecological Oncology, International Peace Maternity and Child Health Hospital of China Welfare Institute, Shanghai 200030, China
| |
Collapse
|
34
|
Ahmadi K, Soleimani A, Irani S, Kiani A, Ghanadi K, Noormohamadi Z, Sakinejad F. DNMT3B -579 G>T Promoter Polymorphism and the Risk of Gastric Cancer in the West of Iran. J Gastrointest Cancer 2018; 49:167-171. [PMID: 28220295 DOI: 10.1007/s12029-017-9928-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Many studies have suggested that modulation of DNMT3B function caused by single nucleotide polymorphisms of the DNMT3B promoter region may underlie the susceptibility to various cancers such as tumors of the digestive system. The aim of this study was to investigate the effect of -579 G>T polymorphism in the promoter of the DNMT3B gene on risk of gastric cancer in a population from West Iran. PATIENTS AND METHODS We conducted a case-control study in 100 gastric cancer patients and 112 cancer-free controls to assess the correlation between DNMT3B -579 G>T (rs1569686) polymorphism and the risk of gastric cancer. Detection of genotypes of DNMT3B G39179T polymorphism was analyzed by PCR-RFLP. RESULTS There was no significant difference in the distribution of DNMT3B -579 G>T genotypes between the cases and controls. However, in the stratified analysis by clinicopathological characteristic types, we found that statistically, the risk susceptibility to gastric cancer was significantly associated with tumor grade II and GT/TT genotype of patients, compared to patients having GG genotype, (OR = 5.4737, 95% CI = 1.4746. 20.3184, P = 0.01). CONCLUSIONS Our study suggested that the -579 T allele may increase the relative risk for the progression of clinicopathological characteristic of tumor grade of gastric cancer patients.
Collapse
Affiliation(s)
- Kulsom Ahmadi
- Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Azam Soleimani
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Kourosh Ghanadi
- Razi Herbal Medicines Research Center and Department of Internal Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zahra Noormohamadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
35
|
Parashar S, Cheishvili D, Mahmood N, Arakelian A, Tanvir I, Khan HA, Kremer R, Mihalcioiu C, Szyf M, Rabbani SA. DNA methylation signatures of breast cancer in peripheral T-cells. BMC Cancer 2018; 18:574. [PMID: 29776342 PMCID: PMC5960123 DOI: 10.1186/s12885-018-4482-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/07/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Immune surveillance acts as a defense mechanism in cancer, and its disruption is involved in cancer progression. DNA methylation reflects the phenotypic identity of cells and recent data suggested that DNA methylation profiles of T cells and peripheral blood mononuclear cells (PBMC) are altered in cancer progression. METHODS We enrolled 19 females with stage 1 and 2, nine with stage 3 and 4 and 9 age matched healthy women. T cells were isolated from peripheral blood and extracted DNA was subjected to Illumina 450 K DNA methylation array analysis. Raw data was analyzed by BMIQ, ChAMP and ComBat followed by validation of identified genes by pyrosequencing. RESULTS Analysis of data revealed ~ 10,000 sites that correlated with breast cancer progression and established a list of 89 CG sites that were highly correlated (p < 0.01, r > 0.7, r < - 0.7) with breast cancer progression. The vast majority of these sites were hypomethylated and enriched in genes with functions in the immune system. CONCLUSIONS The study points to the possibility of using DNA methylation signatures as a noninvasive method for early detection of breast cancer and its progression which need to be tested in clinical studies.
Collapse
Affiliation(s)
- Surabhi Parashar
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - David Cheishvili
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada.,Present address: Montreal EpiTerapia Inc., Montreal, QC, Canada
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | | | | | - Richard Kremer
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Catalin Mihalcioiu
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Health Center, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, 1001 Décarie Blvd., Room EM1.3232, Montréal, QC, H4A3J1, Canada.
| |
Collapse
|
36
|
Strzelczyk JK, Krakowczyk Ł, Owczarek AJ. Aberrant DNA methylation of the p16, APC, MGMT, TIMP3 and CDH1 gene promoters in tumours and the surgical margins of patients with oral cavity cancer. J Cancer 2018; 9:1896-1904. [PMID: 29896273 PMCID: PMC5995944 DOI: 10.7150/jca.24477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/10/2018] [Indexed: 12/15/2022] Open
Abstract
Oral cavity cancer is a type of head and neck squamous cell carcinoma (HNSCC) and contributes to significant morbidity and mortality each year. An epigenetic pathway of transcriptional inactivation for many genes has been described in various cancers, including HNSCC. For our study, we selected genes for which silencing caused by hypermethylation can promote cancer development. In 75 primary HNSCC tumours and paired surgical margins, we investigated the methylation status of the p16, APC, MGMT, TIMP3 and CDH1 gene promoters by methylation-specific PCR after bisulphite treatment. The promoter methylation rates of p16, APC, MGMT, TIMP3 and CDH1 in tumours were 58.67%, 49.33%, 58.67%, 50.67%, and 57.33% and 50.67%, 41.33%, 37.33%, 42.67%, and 25.33% in the surgical margin, respectively. Our observations confirm the presence of epigenetic changes not only in the cancer cells, but also in the surrounding mucosa and represent a basis for further analysis to unravel these complicated issues. Appropriate cancer risk assessment based on epigenetic alterations in surgical margins may influence a patient's diagnosis and cure.
Collapse
Affiliation(s)
- Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Jordana 19 Str., 41-808 Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Łukasz Krakowczyk
- Clinic of Oncological and Reconstructive Surgery, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15 Str., 44-101 Gliwice, Poland
| | - Aleksander Jerzy Owczarek
- Department of Statistics, Department of Instrumental Analysis, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Ostrogórska 30 Str., 41-200 Sosnowiec, Medical University of Silesia in Katowice, Sosnowiec, Poland
| |
Collapse
|
37
|
Genome-wide methylation analysis of a large population sample shows neurological pathways involvement in chronic widespread musculoskeletal pain. Pain 2018; 158:1053-1062. [PMID: 28221285 PMCID: PMC5427989 DOI: 10.1097/j.pain.0000000000000880] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic widespread musculoskeletal pain (CWP), has a considerable heritable component, which remains to be explained. Epigenetic factors may contribute to and account for some of the heritability estimate. We analysed epigenome-wide methylation using MeDIPseq in whole blood DNA from 1708 monozygotic and dizygotic Caucasian twins having CWP prevalence of 19.9%. Longitudinally stable methylation bins (lsBINs), were established by testing repeated measurements conducted ≥3 years apart, n = 292. DNA methylation variation at lsBINs was tested for association with CWP in a discovery set of 50 monozygotic twin pairs discordant for CWP, and in an independent dataset (n = 1608 twins), and the results from the 2 samples were combined using Fisher method. Functional interpretation of the most associated signals was based on functional genomic annotations, gene ontology, and pathway analyses. Of 723,029 signals identified as lsBINs, 26,399 lsBINs demonstrated the same direction of association in both discovery and replication datasets at nominal significance (P ≤ 0.05). In the combined analysis across 1708 individuals, whereas no lsBINs showed genome-wide significance (P < 10-8), 24 signals reached p≤9E-5, and these included association signals mapping in or near to IL17A, ADIPOR2, and TNFRSF13B. Bioinformatics analyses of the associated methylation bins showed enrichment for neurological pathways in CWP. We estimate that the variance explained by epigenetic factors in CWP is 6%. This, the largest study to date of DNA methylation in CWP, points towards epigenetic modification of neurological pathways in CWP and provides proof of principle of this method in teasing apart the complex risk factors for CWP.
Collapse
|
38
|
De Summa S, Guida M, Tommasi S, Strippoli S, Pellegrini C, Fargnoli MC, Pilato B, Natalicchio I, Guida G, Pinto R. Genetic profiling of a rare condition: co-occurrence of albinism and multiple primary melanoma in a Caucasian family. Oncotarget 2018; 8:29751-29759. [PMID: 27776349 PMCID: PMC5444700 DOI: 10.18632/oncotarget.12777] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/04/2016] [Indexed: 01/07/2023] Open
Abstract
Multiple primary melanoma (MPM) is a rare condition, whose genetic basis has not yet been clarified. Only 8-12% of MPM are due to germline mutations of CDKN2A. However, other genes (POT1, BRCA1/2, MC1R, MGMT) have been demonstrated to be involved in predisposition to this pathology. To our knowledge, this is the first family study based on two siblings with the rare coexistence of MPM and oculocutaneous albinism (OCA), an autosomal recessive disease characterized by the absence or decrease in pigmentation in the skin, hair, and eyes. In this study, we evaluated genes involved in melanoma predisposition (CDKN2A, CDK4, MC1R, MITF, POT1, RB1, MGMT, BRCA1, BRCA2), pathogenesis (BRAF, NRAS, PIK3CA, KIT, PTEN), skin/hair pigmentation (MC1R, MITF) and in immune pathways (CTLA4) to individuate alterations able to explain the rare onset of MPM and OCA in indexes and the transmission in their pedigree. From the analysis of the pedigree, we were able to identify a “protective” haplotype with respect to MPM, including MGMT p.I174V alteration. The second generation offspring is under strict follow up as some of them have a higher risk of developing MPM according to our model.
Collapse
Affiliation(s)
- Simona De Summa
- IRCCS Istituto Tumori "Giovanni Paolo II", Molecular Genetics Laboratory, Bari, Italy
| | - Michele Guida
- IRCCS Istituto Tumori "Giovanni Paolo II", Oncology Unit, Bari, Italy
| | - Stefania Tommasi
- IRCCS Istituto Tumori "Giovanni Paolo II", Molecular Genetics Laboratory, Bari, Italy
| | - Sabino Strippoli
- IRCCS Istituto Tumori "Giovanni Paolo II", Oncology Unit, Bari, Italy
| | - Cristina Pellegrini
- University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy
| | - Maria Concetta Fargnoli
- University of L'Aquila, Department of Biotechnological and Applied Clinical Sciences, L'Aquila, Italy
| | - Brunella Pilato
- IRCCS Istituto Tumori "Giovanni Paolo II", Molecular Genetics Laboratory, Bari, Italy
| | | | - Gabriella Guida
- University of Bari, Department of Medical Biochemistry, Bari, Italy
| | - Rosamaria Pinto
- IRCCS Istituto Tumori "Giovanni Paolo II", Molecular Genetics Laboratory, Bari, Italy
| |
Collapse
|
39
|
Absmaier M, Napieralski R, Schuster T, Aubele M, Walch A, Magdolen V, Dorn J, Gross E, Harbeck N, Noske A, Kiechle M, Schmitt M. PITX2 DNA-methylation predicts response to anthracycline-based adjuvant chemotherapy in triple-negative breast cancer patients. Int J Oncol 2018; 52:755-767. [PMID: 29328369 PMCID: PMC5807037 DOI: 10.3892/ijo.2018.4241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) constitutes a heterogeneous breast cancer subgroup with poor prognosis; survival rates are likely to be lower with TNBC compared to other breast cancer subgroups. For this disease, systemic adjuvant chemotherapy regimens often yield suboptimal clinical results. To improve treatment regimens in TNBC, identification of molecular biomarkers may help to select patients for individualized adjuvant therapy. Evidence has accumulated that determination of the methylation status of the PITX2 gene provides a predictive value in various breast cancer subgroups, either treated with endocrine-based therapy or anthracycline-containing chemotherapy. To further explore the validity of this novel predictive candidate biomarker, in the present exploratory retrospective study, determination of the PITX2 DNA-methylation status was assessed for non-metastatic TNBC patients treated with adjuvant anthracycline-based chemotherapy by molecular analysis of breast cancer tissues. The PITX2 DNA-methylation status was determined in fresh-frozen tumor tissue specimens (n=56) by methylation-specific qRT-PCR (qMSP) and the data related to disease-free and overall survival, applying an optimized DNA-methylation score of 6.35%. For non-metastatic TNBC patients treated with adjuvant systemic anthracycline-based chemotherapy, a low PITX2 DNA-methylation status (<6.35) defines TNBC patients with poor disease-free and overall survival. Univariate and multivariate analyses demonstrate the statistically independent predictive value of PITX2 DNA-methylation. For non-metastatic TNBC patients, selective determination of the PITX2 DNA-methylation status may serve as a cancer biomarker for predicting response to anthracycline-based adjuvant chemotherapy. The assay based on methylation of the PIXT2 gene can be applied to frozen and routinely available formalin-fixed, paraffin-embedded (FFPE) breast cancer tumor tissues that will not only define those TNBC patients who may benefit from anthracycline-based chemotherapy but also those who should be spared the necessity of such potentially toxic treatment. Such patients should be allocated to alternative treatment options.
Collapse
Affiliation(s)
- Magdalena Absmaier
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Rudolf Napieralski
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Tibor Schuster
- Institute of Medical Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Michaela Aubele
- Institute of Pathology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Axel Walch
- Institute of Pathology, Helmholtz Zentrum Muenchen, Neuherberg, Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Julia Dorn
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Eva Gross
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Nadia Harbeck
- Breast Center, Klinikum der Ludwig Maximilians Universität München, Munich, Germany
| | - Aurelia Noske
- Department of Pathology and Pathological Anatomy, Technische Universität München, Munich, Germany
| | - Marion Kiechle
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| | - Manfred Schmitt
- Department of Obstetrics and Gynecology, Technische Universität München, Munich, Germany
| |
Collapse
|
40
|
Court F, Arnaud P. An annotated list of bivalent chromatin regions in human ES cells: a new tool for cancer epigenetic research. Oncotarget 2018; 8:4110-4124. [PMID: 27926531 PMCID: PMC5354816 DOI: 10.18632/oncotarget.13746] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
CpG islands (CGI) marked by bivalent chromatin in stem cells are believed to be more prone to aberrant DNA methylation in tumor cells. The robustness and genome-wide extent of this instructive program in different cancer types remain to be determined. To address this issue we developed a user-friendly approach to integrate the stem cell chromatin signature in customized DNA methylation analyses. We used publicly available ChIP-sequencing datasets of several human embryonic stem cell (hESC) lines to determine the extent of bivalent chromatin genome-wide. We then created annotated lists of high-confidence bivalent, H3K4me3-only and H3K27me3-only chromatin regions. The main features of bivalent regions included localization in CGI/promoters, depletion in retroelements and enrichment in specific histone modifications, including the poorly characterized H3K23me2 mark. Moreover, bivalent promoters could be classified in three clusters based on PRC2 and PolII complexes occupancy. Genes with bivalent promoters of the PRC2-defined cluster displayed the lowest expression upon differentiation. As proof-of-concept, we assessed the DNA methylation pattern of eight types of tumors and confirmed that aberrant cancer-associated DNA hypermethylation preferentially targets CGI characterized by bivalent chromatin in hESCs. We also found that such aberrant DNA hypermethylation affected particularly bivalent CGI/promoters associated with genes that tend to remain repressed upon differentiation. Strikingly, bivalent CGI were the most affected by aberrant DNA hypermethylation in both CpG Island Methylator Phenotype-positive (CIMP+) and CIMP-negative tumors, suggesting that, besides transcriptional silencing in the pre-tumorigenic cells, the bivalent chromatin signature in hESCs is a key determinant of the instructive program for aberrant DNA methylation.
Collapse
Affiliation(s)
- Franck Court
- CNRS-UMR 6293, Clermont-Ferrand, 63001, France.,INSERM-U1103, Clermont-Ferrand, 63001, France.,Université Clermont Auvergne, GReD Laboratory, Clermont-Ferrand, 63000, France
| | - Philippe Arnaud
- CNRS-UMR 6293, Clermont-Ferrand, 63001, France.,INSERM-U1103, Clermont-Ferrand, 63001, France.,Université Clermont Auvergne, GReD Laboratory, Clermont-Ferrand, 63000, France
| |
Collapse
|
41
|
Qi F, Yin Z, Wang G, Zeng S. Clinical and Prognostic Significance of O 6-Methylguanine-DNA Methyltransferase Promoter Methylation in Patients with Melanoma: A Systematic Meta-Analysis. Ann Dermatol 2018; 30:129-135. [PMID: 29606808 PMCID: PMC5839882 DOI: 10.5021/ad.2018.30.2.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/15/2017] [Accepted: 09/19/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor suppressor gene O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation has been reported in melanoma. However, the clinical and prognostic significance of MGMT promoter methylation in patients with melanoma remained to be determined. A systematic search was performed to identify eligible papers published. The overall odds ratios (ORs) or hazard ratios and their 95% confidence intervals were calculated. Final 12 eligible publications involving Caucasian population were performed in this study, including 1,071 metastatic melanoma patients, 154 primary melanoma patients, and 211 normal controls. MGMT promoter methylation was significantly higher in primary or metastatic melanoma than in normal controls (p<0.05). No difference of MGMT promoter methylation was found in primary and metastatic melanoma (p=0.432). When metastatic melanoma was compared to normal controls, subgroup analysis showed the correlation between MGMT promoter methylation and different sample materials (tissue: OR=7.01, p<0.001 and blood: OR=12.04, p=0.005). MGMT promoter methylation was not associated with response to drug therapy and the prognosis in overall survival and progression-free survival for multivariate analysis. Our results show that MGMT promoter methylation may be correlated with the increased risk of primary or metastatic melanoma. Based on blood samples, MGMT promoter methylation may become a noninvasive biomarker for the detection of metastatic melanoma. Further additional clinical studies are necessary.
Collapse
Affiliation(s)
- Fang Qi
- Department of Dermatology, Tianjin First Center Hospital, Tianjin, China
| | - Zhiqi Yin
- Department of Pathology, Tianjin First Center Hospital, Tianjin, China
| | - Guangping Wang
- Department of Dermatology, Tianjin First Center Hospital, Tianjin, China
| | - Sanwu Zeng
- Department of Dermatology, Tianjin First Center Hospital, Tianjin, China
| |
Collapse
|
42
|
Wang H, Cui M, Zhang S, He J, Song L, Chen Y. Relationship between RAS Association Domain Family Protein 1A Promoter Methylation and the Clinicopathological Characteristics in Patients with Ovarian Cancer: A Systematic Meta-Analysis. Gynecol Obstet Invest 2017; 83:349-357. [PMID: 29130987 DOI: 10.1159/000484245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/13/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND To investigate the relationship between RAS association domain family protein 1A (RASSF1A) promoter methylation and the clinical features, and the survival of ovarian cancer patients. METHODS A comprehensive literature search was conducted in the PubMed, Embase, EBSCO, and Cochrane Library databases. The overall ORs with their 95% CIs were calculated in this meta-analysis. RESULTS Finally 17 relevant publications with 1,108 ovarian cancer samples were available for the current meta-analysis. RASSF1A promoter methylation had a significantly higher level in ovarian cancer than in low malignant potential (LMP) tumors. No significant relationship was observed between RASSF1A promoter methylation and the clinicopathological characteristics in ovarian cancer. Two studies reported that RASSF1A promoter methylation was not correlated with the survival of patients with ovarian cancer. CONCLUSIONS Our findings suggest that the use of RASSF1A promoter methylation could distinguish ovarian cancer and LMP tumors. -RASSF1A promoter methylation may not be correlated with the clinical features and the survival of ovarian cancer patients. More studies with large sample sizes are essential in the future.
Collapse
Affiliation(s)
- Hong Wang
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Manhua Cui
- Department of Obstetrics and Gynaecology, The Second Hospital of Jilin University, Changchun, China
| | - Shuangli Zhang
- Department of Obstetrics and Gynaecology, 307 Hospital of the people's Liberation Army, Beijing, China
| | - Jie He
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Li Song
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Beihua University, Jilin, China
| | - Ying Chen
- Department of Obstetrics and Gynaecology, Affiliated Hospital of Beihua University, Jilin, China
| |
Collapse
|
43
|
Zhang C, Yu W, Wang L, Zhao M, Guo Q, Lv S, Hu X, Lou J. DNA Methylation Analysis of the SHOX2 and RASSF1A Panel in Bronchoalveolar Lavage Fluid for Lung Cancer Diagnosis. J Cancer 2017; 8:3585-3591. [PMID: 29151944 PMCID: PMC5687174 DOI: 10.7150/jca.21368] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/28/2017] [Indexed: 12/22/2022] Open
Abstract
Introduction: Currently the majority of lung cancer patients are diagnosed as advanced diseases for no sensitive and specific biomarkers exist, noninvasive biomarkers with high sensitivity and specificity are urgently needed in lung cancer diagnosis. Bronchoscopy is a standard procedure of the diagnostic work-up of patients with suspected lung cancer despite of the limited diagnostic accuracy. Besides, epigenetic changes through DNA methylation play an important role in tumorigenesis. Thus, we examined the aberrant methylation of the SHOX2 and RASSF1A in bronchoalveolar lavage fluid (BALF) in comparing with conventional cytology examination and serum CEA in order to evaluate the new diagnostic method. Patients and Methods: BALF and serum samples were collected from 322 patients at the time of diagnosis, 284 of them were pathologically confirmed lung cancer, 35 were benign lung diseases and 3 were malignancies in other systems. For all of the 322 patients, the methylation status of the SHOX2 and RASSF1A gene were detected by a new RT-PCR platform and then confirmed by sanger sequencing. Serum CEA were detected using electrochemiluminescence immunoassay. Results: Profiling data showed the consistency of RT-PCR and sanger sequencing in detecting the methylation of the SHOX2 and RASSF1A. Besides, the combination of SHOX2 and RASSF1A methylation in BALF yielded a diagnostic sensitivity of 81.0% and specificity of 97.4%. When compared with established cytology examination (sensitivity: 68.3%, specificity: 97.4%) and serum biomarker carcinoembryonic antigen (CEA) (sensitivity: 30.6%, specificity: 100.0%), the SHOX2 and RASSF1A methylation panel showed the highest diagnostic efficiency. Notably, the combination of cytology and the SHOX2 and RASSF1A methylation panel could significantly improve the diagnostic efficacy. Conclusion: The methylation analysis of the SHOX2 and RASSF1A panel in BALF with RT-PCR achieved a satisfactory sensitivity and specificity in lung cancer diagnosis, especially in an early stage. It could be used as a promising noninvasive biomarker for auxiliary diagnosis of lung cancer.
Collapse
Affiliation(s)
- Chenzi Zhang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenjun Yu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Lin Wang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mingna Zhao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiaomei Guo
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Shaogang Lv
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiaomeng Hu
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
44
|
Lv X, Ye G, Zhang X, Huang T. p16 Methylation was associated with the development, age, hepatic viruses infection of hepatocellular carcinoma, and p16 expression had a poor survival: A systematic meta-analysis (PRISMA). Medicine (Baltimore) 2017; 96:e8106. [PMID: 28930859 PMCID: PMC5617726 DOI: 10.1097/md.0000000000008106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Loss of tumor suppressor gene p16 expression via promoter methylation has been reported in hepatocellular carcinoma (HCC). This meta-analysis was conducted to evaluate the correlation between p16 methylation and HCC. Additionally, we also analyzed the potential prognostic role of p16 methylation, expression or alteration-associated HCC. METHODS Online databases based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guideline were performed to analyze the role of p16 gene in HCC. The combined odds ratios (ORs) or hazard ratios (HRs) and their 95% confidence intervals (95% CIs) were summarized. RESULTS Final 3105 HCCs and 808 non-tumor controls (chronic hepatitis and liver cirrhosis) were performed in this meta-analysis. p16 promoter methylation in HCC was significantly higher than in chronic hepatitis and chronic hepatitis in tissue and blood samples. In addition, p16 promoter methylation was notably higher in patients >50 years' old than in patients aged <50 years, and it was higher in hepatitis B virus (HBV) or hepatitis C virus (HCV)-positive HCC than in hepatic viruses-negative HCC. However, p16 promoter methylation was not correlated with sex, cirrhosis, tumor differentiation, clinical stage. No association was found between p16 methylation or alteration and the prognosis of patients with HCC in overall survival (OS) and disease-free survival (DFS). Although p16 expression was significantly correlated with a poor prognosis in OS and DFS (P < .05) CONCLUSIONS:: Our results indicate that p16 methylation was linked to the development, age, HBV, and HCV infection of HCC. p16 methylation or alteration was not associated with the prognosis, but p16 expression was linked to a poor survival.
Collapse
|
45
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
46
|
Zhong D, Cen H. Aberrant promoter methylation profiles and association with survival in patients with hepatocellular carcinoma. Onco Targets Ther 2017; 10:2501-2509. [PMID: 28507442 PMCID: PMC5428754 DOI: 10.2147/ott.s128058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The aim of this study was to investigate the prognostic and diagnostic value of genes with promoter methylation in hepatocellular carcinoma (HCC) patients. On the basis of The Cancer Genome Atlas data, we identified genes with differentially methylated promoters in HCC tissues and adjacent non-tumor tissues, using the linear models for microarray data approach. Cox proportional hazard regression analysis was applied to access the prognostic value of identified differentially methylated genes. The diagnostic value of the genes was evaluated through receiver operating characteristic. Pathway analyses were performed to illustrate biological functions of the identified genes. Compared to adjacent tissues, 77 genes with hypermethylated promoters and 2,412 genes with hypomethylated promoters were identified in HCC. The promoter hypomethylations of RNA5SP38, IL21, SDC4P, and MIR4439 were found to be associated with HCC patient survival (P=0.035, 0.040, 0.004, and 0.024, respectively). Hypomethylated SDC4P was associated with a better prognosis (hazard ratio, 0.482; 95% confidence interval [CI], −0.147–1.110; P=0.007). The combination of the promoter hypomethylations with RNA5SP38, IL21, and SDC4P showed an area under receiver operating characteristic curves of 0.975 (95% CI, 0.962–0.989; P=4.811E-25). Several pathways, including olfactory transduction, cytokine–cytokine receptor interaction, natural killer cell–mediated cytotoxicity, as well as inflammation mediated by chemokine and cytokine signaling pathway, were annotated with the hypomethylated promoter genes. SDC4P promoter hypomethylation may be a potential prognosis biomarker. A panel of promoter methylations in RNA5SP38, IL21, and SDC4P was proven a novel approach to diagnosis HCC. The pathway analysis defined the extensive functional role of DNA hypomethylation in cancer.
Collapse
Affiliation(s)
- Dani Zhong
- Department of Chemotherapy, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Hong Cen
- Department of Chemotherapy, Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| |
Collapse
|
47
|
Teng S, Wang Y, Li P, Liu J, Wei A, Wang H, Meng X, Pan D, Zhang X. Effects of R type and S type ginsenoside Rg3 on DNA methylation in human hepatocarcinoma cells. Mol Med Rep 2017; 15:2029-2038. [PMID: 28260016 PMCID: PMC5364960 DOI: 10.3892/mmr.2017.6255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/09/2017] [Indexed: 12/23/2022] Open
Abstract
Ginsenoside Rg3, a bioactive constituent isolated from Panax ginseng, exhibits antitumorigenic, antioxidative, antiangiogenic, neuroprotective and other biological activities are associated with the regulation of multiple genes. DNA methylation patterns, particularly those in the promoter region, affect gene expression, and DNA methylation is catalyzed by DNA methylases. However, whether ginsenoside Rg3 affects DNA methylation is unknown. High performance liquid chromatography assay, MspI/HpaII polymerase chain reaction (PCR) and reverse transcription‑quantitative PCR were performed to assess DNA methylation. It was demonstrated that 20(S)‑ginsenoside Rg3 treatment resulted in increased inhibition of cell growth, compared with treatment with 20(R)‑ginsenoside Rg3 in the human HepG2 hepatocarcinoma cell line. It was additionally revealed that treatment with 20(S)‑ginsenoside Rg3 reduced global genomic DNA methylation, altered cystosine methylation of the promoter regions of P53, B cell lymphoma 2 and vascular endothelial growth factor, and downregulated the expression of DNA methyltransferase (DNMT) 3a and DNMT3b more than treatment with 20(R)‑ginsenoside Rg3 in HepG2 cells. These results revealed that the modulation of DNA methylation may be important in the pharmaceutical activities of ginsenoside Rg3.
Collapse
Affiliation(s)
- Siying Teng
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yi Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jinhua Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, Jilin 130062, P.R. China
| | - Anhui Wei
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haotian Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiangkun Meng
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Di Pan
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinmin Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
48
|
Bhat S, Kabekkodu SP, Varghese VK, Chakrabarty S, Mallya SP, Rotti H, Pandey D, Kushtagi P, Satyamoorthy K. Aberrant gene-specific DNA methylation signature analysis in cervical cancer. Tumour Biol 2017; 39:1010428317694573. [PMID: 28351298 DOI: 10.1177/1010428317694573] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Multicomponent molecular modifications such as DNA methylation may offer sensitive and specific cervical intraepithelial neoplasia and cervical cancer biomarkers. In this study, we tested cervical tissues at various stages of tumor progression for 5-methylcytosine and 5-hydroxymethylcytosine levels and also DNA promoter methylation profile of a panel of genes for its diagnostic potential. In total, 5-methylcytosine, 5-hydroxymethylcytosine, and promoter methylation of 33 genes were evaluated by reversed-phase high-performance liquid chromatography, enzyme-linked immunosorbent assay based technique, and bisulfate-based next generation sequencing. The 5-methylcytosine and 5-hydroxymethylcytosine contents were significantly reduced in squamous cell carcinoma and receiver operating characteristic curve analysis showed a significant difference in (1) 5-methylcytosine between normal and squamous cell carcinoma tissues (area under the curve = 0.946) and (2) 5-hydroxymethylcytosine levels among normal, squamous intraepithelial lesions and squamous cell carcinoma. Analyses of our next generation sequencing results and data from five independent published studies consisting of 191 normal, 10 low-grade squamous intraepithelial lesions, 21 high-grade squamous intraepithelial lesions, and 335 malignant tissues identified a panel of nine genes ( ARHGAP6, DAPK1, HAND2, NKX2-2, NNAT, PCDH10, PROX1, PITX2, and RAB6C) which could effectively discriminate among the various groups with sensitivity and specificity of 80%-100% (p < 0.05). Furthermore, 12 gene promoters (ARHGAP6, HAND2, LHX9, HEY2, NKX2-2, PCDH10, PITX2, PROX1, TBX3, IKBKG, RAB6C, and DAPK1) were also methylated in one or more of the cervical cancer cell lines tested. The global and gene-specific methylation of the panel of genes identified in our study may serve as useful biomarkers for the early detection and clinical management of cervical cancer.
Collapse
Affiliation(s)
- Samatha Bhat
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Shama Prasada Kabekkodu
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Vinay Koshy Varghese
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sanjiban Chakrabarty
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Sandeep P Mallya
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Harish Rotti
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| | - Deeksha Pandey
- 2 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Manipal, India
| | - Pralhad Kushtagi
- 3 Department of Obstetrics & Gynaecology, Kasturba Medical College, Manipal University, Mangalore, India
| | - Kapaettu Satyamoorthy
- 1 Department of Cell and Molecular Biology, School of Life Sciences, Manipal University, Manipal, India
| |
Collapse
|
49
|
Wang L, Huang X, Chai Y, Zou L, Chedrawe M, Ding Y. Octreotide inhibits the proliferation of gastric cancer cells through P300-HAT activity and the interaction of ZAC and P300. Oncol Rep 2017; 37:2041-2048. [PMID: 28260048 DOI: 10.3892/or.2017.5451] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/28/2016] [Indexed: 11/06/2022] Open
Abstract
Somatostatin (SST) exhibits a wide range of physiological functions, including the regulation of tumor cell growth. Octreotide (OCT) is a synthetic analogue of SST that can be used to slow gastrointestinal bleeding, inhibit the release of growth hormone and impede gastrointestinal tumor growth. The aim of the present study was to investigate the molecular mechanism of OCT underlying the inhibition of gastric cancer cell proliferation. Proteins of interest were detected using western blotting, and the zinc finger protein (ZAC)-P300 complex was quantified using co-immunoprecipitation. P300-histone acetyltransferase (P300-HAT) activity was determined spectrophotometrically. The results showed that OCT decreased the phosphorylation of Akt which caused the level of ZAC to increase. In turn, the interaction between ZAC and P300 increased the activity of P300-HAT; ultimately, the phosphorylation of serine 10 in histone H3 (pS10-H3) was decreased and the acetylation of lysine 14 in histone H3 (acK14-H3) was increased. These results suggest that OCT attenuates SGC-7901 cell proliferation by enhancing P300-HAT activity through the interaction of ZAC and P300, causing a reduction in pS10-H3 and an increase in acK14-H3. These findings provide insight for future research on OCT and further demonstrate the potential of OCT to be used as a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Liping Wang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xin Huang
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yurong Chai
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liyang Zou
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Matthew Chedrawe
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yi Ding
- Department of Histology and Embryology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
50
|
Sarathy A, Qiu H, Leburton JP. Graphene Nanopores for Electronic Recognition of DNA Methylation. J Phys Chem B 2016; 121:3757-3763. [PMID: 28035832 DOI: 10.1021/acs.jpcb.6b11040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We investigate theoretically the ability of graphene nanopore membranes to detect methylated sites along a DNA molecule by electronic sheet current along the two-dimensional (2D) materials. Special emphasis is placed on the detection sensitivity changes due to pore size, shape, position, and the presence of defects around the nanopore in a membrane with constricted geometry. Enhanced sensitivity for detecting methylated CpG sites, labeled by methyl-CpG binding domain (MBD) proteins along a DNA molecule, is obtained for electronic transport through graphene midgap states caused by the constriction. A large square deviation from the graphene conductance with respect to the open nanopore is observed during the translocation of MBD proteins. This approach exhibits superior resolution in the detection of multiple methylated sites along the DNA compared to conventional ionic current blockade techniques.
Collapse
Affiliation(s)
- Aditya Sarathy
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| | - Hu Qiu
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| | - Jean-Pierre Leburton
- Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, and §Department of Physics, University of Illinois , Urbana, Illinois 61801, United States
| |
Collapse
|