1
|
Xia R, Chen X, Engel TA, Moore T. Common and distinct neural mechanisms of attention. Trends Cogn Sci 2024; 28:554-567. [PMID: 38388258 PMCID: PMC11153008 DOI: 10.1016/j.tics.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Despite a constant deluge of sensory stimulation, only a fraction of it is used to guide behavior. This selective processing is generally referred to as attention, and much research has focused on the neural mechanisms controlling it. Recently, research has broadened to include more ways by which different species selectively process sensory information, whether due to the sensory input itself or to different behavioral and brain states. This work has produced a complex and disjointed body of evidence across different species and forms of attention. However, it has also provided opportunities to better understand the breadth of attentional mechanisms. Here, we summarize the evidence that suggests that different forms of selective processing are supported by mechanisms both common and distinct.
Collapse
Affiliation(s)
- Ruobing Xia
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Xiaomo Chen
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Tatiana A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Massironi A, Lazzari G, La Rocca S, Ronconi L, Daini R, Lega C. Transcranial magnetic stimulation on the right dorsal attention network modulates the center-surround profile of the attentional focus. Cereb Cortex 2024; 34:bhae015. [PMID: 38300180 DOI: 10.1093/cercor/bhae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 02/02/2024] Open
Abstract
Psychophysical observations indicate that the spatial profile of visuospatial attention includes a central enhancement around the attentional focus, encircled by a narrow zone of reduced excitability in the immediate surround. This inhibitory ring optimally amplifies relevant target information, likely stemming from top-down frontoparietal recurrent activity modulating early visual cortex activations. However, the mechanisms through which neural suppression gives rise to the surrounding attenuation and any potential hemispheric specialization remain unclear. We used transcranial magnetic stimulation to evaluate the role of two regions of the dorsal attention network in the center-surround profile: the frontal eye field and the intraparietal sulcus. Participants performed a psychophysical task that mapped the entire spatial attentional profile, while transcranial magnetic stimulation was delivered either to intraparietal sulcus or frontal eye field on the right (Experiment 1) and left (Experiment 2) hemisphere. Results showed that stimulation of right frontal eye field and right intraparietal sulcus significantly changed the center-surround profile, by widening the inhibitory ring around the attentional focus. The stimulation on the left frontal eye field, but not left intraparietal sulcus, induced a general decrease in performance but did not alter the center-surround profile. Results point to a pivotal role of the right dorsal attention network in orchestrating inhibitory spatial mechanisms required to limit interference by surrounding distractors.
Collapse
Affiliation(s)
- Andrea Massironi
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Giorgio Lazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| | - Stefania La Rocca
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Luca Ronconi
- School of Psychology, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberta Daini
- Department of Psychology, University of Milano-Bicocca, Piazza dell'Ateneo Nuovo 1, 20126 Milan, Italy
| | - Carlotta Lega
- Department of Brain and Behavioral Sciences, University of Pavia, Piazza Botta 6, 27100 Pavia, Italy
| |
Collapse
|
3
|
Jing Y, Numssen O, Weise K, Kalloch B, Buchberger L, Haueisen J, Hartwigsen G, Knösche TR. Modeling the effects of transcranial magnetic stimulation on spatial attention. Phys Med Biol 2023; 68:214001. [PMID: 37783213 DOI: 10.1088/1361-6560/acff34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Objectives. Transcranial magnetic stimulation (TMS) has been widely used to modulate brain activity in healthy and diseased brains, but the underlying mechanisms are not fully understood. Previous research leveraged biophysical modeling of the induced electric field (E-field) to map causal structure-function relationships in the primary motor cortex. This study aims at transferring this localization approach to spatial attention, which helps to understand the TMS effects on cognitive functions, and may ultimately optimize stimulation schemes.Approach. Thirty right-handed healthy participants underwent a functional magnetic imaging (fMRI) experiment, and seventeen of them participated in a TMS experiment. The individual fMRI activation peak within the right inferior parietal lobule (rIPL) during a Posner-like attention task defined the center target for TMS. Thereafter, participants underwent 500 Posner task trials. During each trial, a 5-pulse burst of 10 Hz repetitive TMS (rTMS) was given over the rIPL to modulate attentional processing. The TMS-induced E-fields for every cortical target were correlated with the behavioral modulation to identify relevant cortical regions for attentional orientation and reorientation.Main results. We did not observe a robust correlation between E-field strength and behavioral outcomes, highlighting the challenges of transferring the localization method to cognitive functions with high neural response variability and complex network interactions. Nevertheless, TMS selectively inhibited attentional reorienting in five out of seventeen subjects, resulting in task-specific behavioral impairments. The BOLD-measured neuronal activity and TMS-evoked neuronal effects showed different patterns, which emphasizes the principal distinction between the neural activity being correlated with (or maybe even caused by) particular paradigms, and the activity of neural populations exerting a causal influence on the behavioral outcome.Significance. This study is the first to explore the mechanisms of TMS-induced attentional modulation through electrical field modeling. Our findings highlight the complexity of cognitive functions and provide a basis for optimizing attentional stimulation protocols.
Collapse
Affiliation(s)
- Ying Jing
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Ole Numssen
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Konstantin Weise
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Helmholtzplatz 2, D-98693, Ilmenau, Germany
| | - Benjamin Kalloch
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 2, D-98693, Ilmenau, Germany
| | - Lena Buchberger
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 2, D-98693, Ilmenau, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Neumarkt 9-19, D-04109, Leipzig, Germany
| | - Thomas R Knösche
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 2, D-98693, Ilmenau, Germany
| |
Collapse
|
4
|
Murty DVPS, Song S, Surampudi SG, Pessoa L. Threat and Reward Imminence Processing in the Human Brain. J Neurosci 2023; 43:2973-2987. [PMID: 36927571 PMCID: PMC10124955 DOI: 10.1523/jneurosci.1778-22.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. In addition, the extent to which aversive-related and appetitive-related processing engage distinct or overlapping circuits remains poorly understood. Here, we sought to investigate the dynamics of aversive and appetitive processing while male and female participants engaged in comparable trials involving threat avoidance or reward seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence. For example, in the aversive domain, we predicted that the bed nucleus of the stria terminalis (BST), but not the amygdala, would exhibit anticipatory responses given the role of the former in anxious apprehension. We also predicted that the periaqueductal gray (PAG) would exhibit threat-proximity responses based on its involvement in proximal-threat processes, and that the ventral striatum would exhibit threat-imminence responses given its role in threat escape in rodents. Overall, we uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the BST, PAG, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Whereas the ventral striatum generated anticipatory responses in the proximity of reward as expected, it also exhibited threat-related imminence responses. In fact, across multiple brain regions, we observed a main effect of arousal. In other words, we uncovered extensive temporally evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information regardless of valence, findings further supported by network analysis.SIGNIFICANCE STATEMENT In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. Here, we sought to investigate the dynamics of aversive/appetitive processing while participants engaged in trials involving threat avoidance or reward seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence. We uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the bed nucleus of the stria terminalis, periaqueductal gray, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Overall, we uncovered extensive temporally evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information regardless of valence.
Collapse
Affiliation(s)
| | - Songtao Song
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
5
|
Jung B, Yang C, Lee SH. Electroceutical and Bioelectric Therapy: Its Advantages and Limitations. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:19-31. [PMID: 36700309 PMCID: PMC9889897 DOI: 10.9758/cpn.2023.21.1.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 01/27/2023]
Abstract
Given the long history, the field of electroceutical and bioelectric therapy has grown impressively, recognized as the main modality of mental health treatments along with psychotherapy and pharmacotherapy. Electroceutical and bioelectric therapy comprises electroconvulsive therapy (ECT), vagus nerve stimulation (VNS), repetitive transcranial magnetic stimulation (rTMS), deep brain stimulation (DBS), transcranial electrical stimulation (tES), and other brain stimulation techniques. Much empirical research has been published regarding the application guidelines, mechanism of action, and efficacy of respective brain stimulation techniques, but no comparative study that delineates the advantages and limitations of each therapy exists for a comprehensive understanding of each technique. This review provides a comparison of existing electroceutical and bioelectric techniques, primarily focusing on the therapeutic advantages and limitations of each therapy in the current electroceutical and bioelectric field.
Collapse
Affiliation(s)
- Bori Jung
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea,Department of Psychology, Sogang University, Seoul, Korea
| | - Chaeyeon Yang
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea
| | - Seung-Hwan Lee
- Clinical Emotion and Cognition Research Laboratory, Inje University, Goyang, Korea,Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea,Address for correspondence: Seung-Hwan Lee Department of Psychiatry, Ilsan Paik Hospital, Inje University College of Medicine, Juhwa-ro 170, Ilsanseo-gu, Goyang 10380, Korea, E-mail: , ORCID: https://orcid.org/0000-0003-0305-3709
| |
Collapse
|
6
|
Murty DVPS, Song S, Surampudi SG, Pessoa L. Threat and reward imminence processing in the human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524987. [PMID: 36711746 PMCID: PMC9882302 DOI: 10.1101/2023.01.20.524987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. In addition, the extent to which aversive- and appetitive-related processing engage distinct or overlapping circuits remains poorly understood. Here, we sought to investigate the dynamics of aversive and appetitive processing while male and female participants engaged in comparable trials involving threat-avoidance or reward-seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence . For example, in the aversive domain, we predicted that the bed nucleus of the stria terminalis (BST), but not the amygdala, would exhibit anticipatory responses given the role of the former in anxious apprehension. We also predicted that the periaqueductal gray (PAG) would exhibit threat-proximity responses based on its involvement in proximal-threat processes, and that the ventral striatum would exhibit threat-imminence responses given its role in threat escape in rodents. Overall, we uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the BST, PAG, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Whereas the ventral striatum generated anticipatory responses in the proximity of reward as expected, it also exhibited threat-related imminence responses. In fact, across multiple brain regions, we observed a main effect of arousal. In other words, we uncovered extensive temporally-evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information irrespective of valence, findings further supported by network analysis. Significance Statement In the human brain, aversive and appetitive processing have been studied with controlled stimuli in rather static settings. Here, we sought to investigate the dynamics of aversive/appetitive processing while participants engaged in trials involving threat-avoidance or reward-seeking. A central goal was to characterize the temporal evolution of responses during periods of threat or reward imminence . We uncovered imminence-related temporally increasing ("ramping") responses in multiple brain regions, including the bed nucleus of the stria terminalis, periaqueductal gray, and ventral striatum, subcortically, and dorsal anterior insula and anterior midcingulate, cortically. Overall, we uncovered extensive temporally-evolving, imminence-related processing in both the aversive and appetitive domain, suggesting that distributed brain circuits are dynamically engaged during the processing of biologically relevant information irrespective of valence.
Collapse
|
7
|
Concurrent frontal and parietal network TMS for modulating attention. iScience 2022; 25:103962. [PMID: 35295814 PMCID: PMC8919227 DOI: 10.1016/j.isci.2022.103962] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/17/2021] [Accepted: 02/17/2022] [Indexed: 11/22/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been applied to frontal eye field (FEF) and intraparietal sulcus (IPS) in isolation, to study their role in attention. However, these nodes closely interact in a "dorsal attention network". Here, we compared effects of inhibitory TMS applied to individually fMRI-localized FEF or IPS (single-node TMS), to effects of simultaneously inhibiting both regions ("network TMS"), and sham. We assessed attention performance using the lateralized attention network test, which captures multiple facets of attention: spatial orienting, alerting, and executive control. TMS showed no effects on alerting and executive control. For spatial orienting, only network TMS showed a reduction of the orienting effect in the right hemifield compared to the left hemifield, irrespective of the order of TMS application (IPS→FEF or FEF→IPS). Network TMS might prevent compensatory mechanisms within a brain network, which is promising for both research and clinical applications to achieve superior neuromodulation effects.
Collapse
|
8
|
Ye LL, Xie HX, Cao L, Song WQ. Therapeutic Effects of Transcranial Magnetic Stimulation on Visuospatial Neglect Revealed With Event-Related Potentials. Front Neurol 2022; 12:799058. [PMID: 35140674 PMCID: PMC8818689 DOI: 10.3389/fneur.2021.799058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate changes in attention processing after low-frequency repetitive transcranial magnetic stimulation (rTMS) over the left posterior parietal cortex to better understand its role in visuospatial neglect (VSN) rehabilitation. The current study included 10 subacute stroke patients with VSN consecutively recruited from the inpatient stroke rehabilitation center at Xuanwu Hospital (the teaching hospital affiliated with Capital Medical University) between March and November 2019. All patients performed a battery of tasks (including line bisection, line cancellation, and star cancellation tests) two weeks before treatment and at the beginning and end of treatment; the attentive components of the test results were analyzed. In addition, low-frequency rTMS was used to stimulate the left posterior parietal cortex for 14 days and event-related potential data were collected before and after the stimulation. Participants were evaluated using a target-cue paradigm and pencil-paper tests. No significant differences were detected on the battery of tasks before rTMS. However, we found that rTMS treatment significantly improved the response times and accuracy rates of patients with VSN. After rTMS, the treatment side (left) amplitude of P300 following an event-related potential was higher than that before treatment (left target, p = 0.002; right target, p = 0.047). Thus, our findings suggest that rTMS may be an effective treatment for VSN. The observed increase in event-related potential amplitude supports the hypothesized compensational role of the contralesional hemisphere in terms of residual performance. Our results provide electrophysiological evidence that may help determine the mechanisms mediating the therapeutic effects of rTMS.
Collapse
|
9
|
Spadone S, Betti V, Sestieri C, Pizzella V, Corbetta M, Della Penna S. Spectral signature of attentional reorienting in the human brain. Neuroimage 2021; 244:118616. [PMID: 34582947 DOI: 10.1016/j.neuroimage.2021.118616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/20/2021] [Accepted: 09/22/2021] [Indexed: 12/30/2022] Open
Abstract
As we move in the environment, attention shifts to novel objects of interest based on either their sensory salience or behavioral value (reorienting). This study measures with magnetoencephalography (MEG) different properties (amplitude, onset-to-peak duration) of event-related desynchronization/synchronization (ERD/ERS) of oscillatory activity during a visuospatial attention task designed to separate activity related to reorienting vs. maintaining attention to the same location, controlling for target detection and response processes. The oscillatory activity was measured both in fMRI-defined regions of interest (ROIs) of the dorsal attention (DAN) and visual (VIS) networks, previously defined as task-relevant in the same subjects, or whole-brain in a pre-defined set of cortical ROIs encompassing the main brain networks. Reorienting attention (shift cues) as compared to maintaining attention (stay cues) produced a temporal sequence of ERD/ERS modulations at multiple frequencies in specific anatomical regions/networks. An early (∼330 ms), stronger, transient theta ERS occurred in task-relevant (DAN, VIS) and control networks (VAN, CON, FPN), possibly reflecting an alert/reset signal in response to the cue. A more sustained, behaviorally relevant, low-beta band ERD peaking ∼450 ms following shift cues (∼410 for stay cues) localized in frontal and parietal regions of the DAN. This modulation is consistent with a control signal re-routing information across visual hemifields. Contralateral vs. ipsilateral shift cues produced in occipital visual regions a stronger, sustained alpha ERD (peak ∼470 ms) and a longer, transient high beta/gamma ERS (peak ∼490 ms) related to preparatory visual modulations in advance of target occurrence. This is the first description of a cascade of oscillatory processes during attentional reorienting in specific anatomical regions and networks. Among these processes, a behaviorally relevant beta desynchronization in the FEF is likely associated with the control of attention shifts.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy.
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Italy; IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padua, Italy; Padova Neuroscience Center, University of Padua, Italy; Departments of Neurology, Radiology, Neuroscience, Washington University St. Louis, USA
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences - and ITAB, Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Italy
| |
Collapse
|
10
|
Kwon H, Kronemer SI, Christison-Lagay KL, Khalaf A, Li J, Ding JZ, Freedman NC, Blumenfeld H. Early cortical signals in visual stimulus detection. Neuroimage 2021; 244:118608. [PMID: 34560270 DOI: 10.1016/j.neuroimage.2021.118608] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022] Open
Abstract
During visual conscious perception, the earliest responses linked to signal detection are little known. The current study aims to reveal the cortical neural activity changes in the earliest stages of conscious perception using recordings from intracranial electrodes. Epilepsy patients (N=158) were recruited from a multi-center collaboration and completed a visual word recall task. Broadband gamma activity (40-115Hz) was extracted with a band-pass filter and gamma power was calculated across subjects on a common brain surface. Our results show early gamma power increases within 0-50ms after stimulus onset in bilateral visual processing cortex, right frontal cortex (frontal eye fields, ventral medial/frontopolar, orbital frontal) and bilateral medial temporal cortex regardless of whether the word was later recalled. At the same early times, decreases were seen in the left rostral middle frontal gyrus. At later times after stimulus onset, gamma power changes developed in multiple cortical regions. These included sustained changes in visual and other association cortical networks, and transient decreases in the default mode network most prominently at 300-650ms. In agreement with prior work in this verbal memory task, we also saw greater increases in visual and medial temporal regions as well as prominent later (> 300ms) increases in left hemisphere language areas for recalled versus not recalled stimuli. These results suggest an early signal detection network in the frontal, medial temporal, and visual cortex is engaged at the earliest stages of conscious visual perception.
Collapse
Affiliation(s)
- Hunki Kwon
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Sharif I Kronemer
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Interdepartmental Neuroscience Program, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Kate L Christison-Lagay
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Aya Khalaf
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Biomedical Engineering and Systems, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Jiajia Li
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; School of Information and Control Engineering, Xian University of Architecture and Technology, Xi'an 710055, China
| | - Julia Z Ding
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Noah C Freedman
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA
| | - Hal Blumenfeld
- Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8018, USA; Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, USA.
| |
Collapse
|
11
|
Plank T, Benkowitsch EMA, Beer AL, Brandl S, Malania M, Frank SM, Jägle H, Greenlee MW. Cortical Thickness Related to Compensatory Viewing Strategies in Patients With Macular Degeneration. Front Neurosci 2021; 15:718737. [PMID: 34658765 PMCID: PMC8517450 DOI: 10.3389/fnins.2021.718737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Retinal diseases like age-related macular degeneration (AMD) or hereditary juvenile macular dystrophies (JMD) lead to a loss of central vision. Many patients compensate for this loss with a pseudo fovea in the intact peripheral retina, the so-called "preferred retinal locus" (PRL). How extensive eccentric viewing associated with central vision loss (CVL) affects brain structures responsible for visual perception and visually guided eye movements remains unknown. CVL results in a reduction of cortical gray matter in the "lesion projection zone" (LPZ) in early visual cortex, but the thickness of primary visual cortex appears to be largely preserved for eccentric-field representations. Here we explore how eccentric viewing strategies are related to cortical thickness (CT) measures in early visual cortex and in brain areas involved in the control of eye movements (frontal eye fields, FEF, supplementary eye fields, SEF, and premotor eye fields, PEF). We determined the projection zones (regions of interest, ROIs) of the PRL and of an equally peripheral area in the opposite hemifield (OppPRL) in early visual cortex (V1 and V2) in 32 patients with MD and 32 age-matched controls (19-84 years) by functional magnetic resonance imaging. Subsequently, we calculated the CT in these ROIs and compared it between PRL and OppPRL as well as between groups. Additionally, we examined the CT of FEF, SEF, and PEF and correlated it with behavioral measures like reading speed and eccentric fixation stability at the PRL. We found a significant difference between PRL and OppPRL projection zones in V1 with increased CT at the PRL, that was more pronounced in the patients, but also visible in the controls. Although the mean CT of the eye fields did not differ significantly between patients and controls, we found a trend to a positive correlation between CT in the right FEF and SEF and fixation stability in the whole patient group and between CT in the right PEF and reading speed in the JMD subgroup. The results indicate a possible association between the compensatory strategies used by patients with CVL and structural brain properties in early visual cortex and cortical eye fields.
Collapse
Affiliation(s)
- Tina Plank
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | | | - Anton L. Beer
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Sabine Brandl
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Maka Malania
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
| | - Sebastian M. Frank
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
- Department of Cognitive, Linguistic & Psychological Sciences, Brown University, Providence, RI, United States
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
| | - Mark W. Greenlee
- Institute of Experimental Psychology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
Spadone S, Wyczesany M, Della Penna S, Corbetta M, Capotosto P. Directed Flow of Beta Band Communication During Reorienting of Attention Within the Dorsal Attention Network. Brain Connect 2021; 11:717-724. [PMID: 33926233 DOI: 10.1089/brain.2020.0885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: The endogenous allocation of spatial attention to selected environmental stimuli is controlled by prefrontal (frontal eye fields [FEFs]) and parietal (superior parietal lobe [SPL] and intraparietal sulcus [IPS]) regions belonging to the dorsal attention network (DAN) with a subdivision in subsystems devoted to reorienting (or shifting) of attention between locations (SPL) or maintaining attention at contralateral versus ipsilateral locations (ventral IPS [vIPS]). Although previous studies suggested a leading role of prefrontal regions over parietal sites in orienting attention, the spectral signature of communication flow within the DAN for different attention processes is still debated. Methods: We used the directed transfer function (DTF) on magnetoencephalography (MEG) data to examine the causal interaction between prefrontal and parietal regions of the DAN when subjects shifted versus maintained attention to a stream of cued visual stimuli. Results: In the beta band, we found that shift versus stay cues induced stronger connectivity (DTF values) from right FEF to right SPL, in the early phase of reorienting. Conversely, when considering stay versus shift cues, an increase of DTF values and stronger directionality was observed between bilateral vIPS and from right vIPS to FEF. Similar analyses carried out in theta, alpha, and gamma showed no significant frontoparietal increases of DTF for shift versus stay cues, whereas the stay-related increase of DTF observed in beta between ventral parietal areas was preserved in the alpha band. Conclusions: These findings suggest that control processes in DAN regions (in particular between FEF and SPL) can be associated to a beta frequency channel during shift of attention. Impact statement In the present study, we compared the reorienting response to novel stimuli with respect to maintaining response. Results provided new insights into understanding the neural mechanisms of control attention processes by identifying the frequency-specific causal interactions between frontal and parietal regions belonging to the dorsal attention network supporting spatial reorienting response.
Collapse
Affiliation(s)
- Sara Spadone
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies (ITAB), G.D'Annunzio University, Chieti, Italy
| | | | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies (ITAB), G.D'Annunzio University, Chieti, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padova, Padova, Italy.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies (ITAB), G.D'Annunzio University, Chieti, Italy
| |
Collapse
|
13
|
Tremblay SA, Jäger AT, Huck J, Giacosa C, Beram S, Schneider U, Grahl S, Villringer A, Tardif CL, Bazin PL, Steele CJ, Gauthier CJ. White matter microstructural changes in short-term learning of a continuous visuomotor sequence. Brain Struct Funct 2021; 226:1677-1698. [PMID: 33885965 DOI: 10.1007/s00429-021-02267-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 03/26/2021] [Indexed: 11/29/2022]
Abstract
Efficient neural transmission is crucial for optimal brain function, yet the plastic potential of white matter (WM) has long been overlooked. Growing evidence now shows that modifications to axons and myelin occur not only as a result of long-term learning, but also after short training periods. Motor sequence learning (MSL), a common paradigm used to study neuroplasticity, occurs in overlapping learning stages and different neural circuits are involved in each stage. However, most studies investigating short-term WM plasticity have used a pre-post design, in which the temporal dynamics of changes across learning stages cannot be assessed. In this study, we used multiple magnetic resonance imaging (MRI) scans at 7 T to investigate changes in WM in a group learning a complex visuomotor sequence (LRN) and in a control group (SMP) performing a simple sequence, for five consecutive days. Consistent with behavioral results, where most improvements occurred between the two first days, structural changes in WM were observed only in the early phase of learning (d1-d2), and in overall learning (d1-d5). In LRNs, WM microstructure was altered in the tracts underlying the primary motor and sensorimotor cortices. Moreover, our structural findings in WM were related to changes in functional connectivity, assessed with resting-state functional MRI data in the same cohort, through analyses in regions of interest (ROIs). Significant changes in WM microstructure were found in a ROI underlying the right supplementary motor area. Together, our findings provide evidence for highly dynamic WM plasticity in the sensorimotor network during short-term MSL.
Collapse
Affiliation(s)
- Stéfanie A Tremblay
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada.,Montreal Heart Institute, Montreal, QC, Canada
| | - Anna-Thekla Jäger
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Charite Universitätsmedizin, Charite, Berlin, Germany
| | - Julia Huck
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Chiara Giacosa
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Stephanie Beram
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada
| | - Uta Schneider
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sophia Grahl
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, Leipzig, Germany.,Leipzig University Medical Centre, IFB Adiposity Diseases, Leipzig, Germany.,Collaborative Research Centre 1052-A5, University of Leipzig, Leipzig, Germany
| | - Christine L Tardif
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.,Montreal Neurological Institute, Montreal, QC, Canada
| | - Pierre-Louis Bazin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Social and Behavioral Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Claudine J Gauthier
- Department of Physics/PERFORM Center, Concordia University, Montreal, QC, Canada. .,Montreal Heart Institute, Montreal, QC, Canada.
| |
Collapse
|
14
|
The age-related trajectory of visual attention neural function is altered in adults living with HIV: A cross-sectional MEG study. EBioMedicine 2020; 61:103065. [PMID: 33099087 PMCID: PMC7585051 DOI: 10.1016/j.ebiom.2020.103065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Background Despite living a normal lifespan, at least 35% of persons with HIV (PWH) in resource-rich countries develop HIV-associated neurocognitive disorder (HAND). This high prevalence of cognitive decline may reflect accelerated ageing in PWH, but the evidence supporting an altered ageing phenotype in PWH has been mixed. Methods We examined the impact of ageing on the orienting of visual attention in PWH using dynamic functional mapping with magnetoencephalography (MEG) in 173 participants age 22–72 years-old (94 uninfected controls, 51 cognitively-unimpaired PWH, and 28 with HAND). All MEG data were imaged using a state-of-the-art beamforming approach and neural oscillatory responses during attentional orienting were examined for ageing, HIV, and cognitive status effects. Findings All participants responded slower during trials that required attentional reorienting. Our functional mapping results revealed HIV-by-age interactions in left prefrontal theta activity, alpha oscillations in the left parietal, right cuneus, and right frontal eye-fields, and left dorsolateral prefrontal beta activity (p<.005). Critically, within PWH, we observed a cognitive status-by-age interaction, which revealed that ageing impacted the oscillatory gamma activity serving attentional reorienting differently in cognitively-normal PWH relative to those with HAND in the left temporoparietal, inferior frontal gyrus, and right prefrontal cortices (p<.005). Interpretation This study provides key evidence supporting altered ageing trajectories across vital attention circuitry in PWH, and further suggests that those with HAND exhibit unique age-related changes in the oscillatory dynamics serving attention function. Additionally, our neural findings suggest that age-related changes in PWH may serve a compensatory function. Funding National Institutes of Health, USA.
Collapse
|
15
|
The neurocognitive underpinnings of the Simon effect: An integrative review of current research. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 20:1133-1172. [PMID: 33025513 DOI: 10.3758/s13415-020-00836-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
For as long as half a century the Simon task - in which participants respond to a nonspatial stimulus feature while ignoring its position - has represented a very popular tool to study a variety of cognitive functions, such as attention, cognitive control, and response preparation processes. In particular, the task generates two theoretically interesting effects: the Simon effect proper and the sequential modulations of this effect. In the present study, we review the main theoretical explanations of both kinds of effects and the available neuroscientific studies that investigated the neural underpinnings of the cognitive processes underlying the Simon effect proper and its sequential modulation using electroencephalogram (EEG) and event-related brain potentials (ERP), transcranial magnetic stimulation (TMS), and functional magnetic resonance imaging (fMRI). Then, we relate the neurophysiological findings to the main theoretical accounts and evaluate their validity and empirical plausibility, including general implications related to processing interference and cognitive control. Overall, neurophysiological research supports claims that stimulus location triggers the creation of a spatial code, which activates a spatially compatible response that, in incompatible conditions, interferes with the response based on the task instructions. Integration of stimulus-response features plays a major role in the occurrence of the Simon effect (which is manifested in the selection of the response) and its modulation by sequential congruency effects. Additional neural mechanisms are involved in supporting the correct and inhibiting the incorrect response.
Collapse
|
16
|
Pavlov YG, Kotchoubey B. The electrophysiological underpinnings of variation in verbal working memory capacity. Sci Rep 2020; 10:16090. [PMID: 32999329 PMCID: PMC7527344 DOI: 10.1038/s41598-020-72940-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022] Open
Abstract
Working memory (WM) consists of short-term storage and executive components. We studied cortical oscillatory correlates of these two components in a large sample of 156 participants to assess separately the contribution of them to individual differences in WM. The participants were presented with WM tasks of above-average complexity. Some of the tasks required only storage in WM, others required storage and mental manipulations. Our data indicate a close relationship between frontal midline theta, central beta activity and the executive components of WM. The oscillatory counterparts of the executive components were associated with individual differences in verbal WM performance. In contrast, alpha activity was not related to the individual differences. The results demonstrate that executive components of WM, rather than short-term storage capacity, play the decisive role in individual WM capacity limits.
Collapse
Affiliation(s)
- Yuri G Pavlov
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany.
- Department of Psychology, Ural Federal University, Ekaterinburg, Russian Federation, 620000.
| | - Boris Kotchoubey
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72076, Tübingen, Germany
| |
Collapse
|
17
|
Pouget P, Frey S, Ahnine H, Attali D, Claron J, Constans C, Aubry JF, Arcizet F. Neuronavigated Repetitive Transcranial Ultrasound Stimulation Induces Long-Lasting and Reversible Effects on Oculomotor Performance in Non-human Primates. Front Physiol 2020; 11:1042. [PMID: 32973560 PMCID: PMC7466663 DOI: 10.3389/fphys.2020.01042] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Since the late 2010s, Transcranial Ultrasound Stimulation (TUS) has been used experimentally to carryout safe, non-invasive stimulation of the brain with better spatial resolution than Transcranial Magnetic Stimulation (TMS). This innovative stimulation method has emerged as a novel and valuable device for studying brain function in humans and animals. In particular, single pulses of TUS directed to oculomotor regions have been shown to modulate visuomotor behavior of non-human primates during 100 ms ultrasound pulses. In the present study, a sustained effect was induced by applying 20-s trains of neuronavigated repetitive Transcranial Ultrasound Stimulation (rTUS) to oculomotor regions of the frontal cortex in three non-human primates performing an antisaccade task. With the help of MRI imaging and a frame-less stereotactic neuronavigation system (SNS), we were able to demonstrate that neuronavigated TUS (outside of the MRI scanner) is an efficient tool to carry out neuromodulation procedures in non-human primates. We found that, following neuronavigated rTUS, saccades were significantly modified, resulting in shorter latencies compared to no-rTUS trials. This behavioral modulation was maintained for up to 20 min. Oculomotor behavior returned to baseline after 18-31 min and could not be significantly distinguished from the no-rTUS condition. This study is the first to show that neuronavigated rTUS can have a persistent effect on monkey behavior with a quantified return-time to baseline. The specificity of the effects could not be explained by auditory confounds.
Collapse
Affiliation(s)
- Pierre Pouget
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | | | - Harry Ahnine
- Institute of Brain and Spinal Cord, UMRS 975 Inserm, CNRS 7225, UMPC, Paris, France
| | - David Attali
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris (IPNP), Inserm U1266, Team Pathophysiology of Psychiatric Disorders, Paris, France.,GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Service Hospitalo-Universitaire, Paris, France
| | - Julien Claron
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Charlotte Constans
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Jean-Francois Aubry
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France
| | - Fabrice Arcizet
- Institut de la Vision CNRS, Inserm, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Medaglia JD, Erickson B, Zimmerman J, Kelkar A. Personalizing neuromodulation. Int J Psychophysiol 2020; 154:101-110. [PMID: 30685229 PMCID: PMC6824943 DOI: 10.1016/j.ijpsycho.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/18/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
In the era of "big data", we are gaining rich person-specific information about neuroanatomy, neural function, and cognitive functions. However, the optimal ways to create precise approaches to optimize individuals' mental functions in health and disease are unclear. Multimodal analysis and modeling approaches can guide neuromodulation by combining anatomical networks, functional signal analysis, and cognitive neuroscience paradigms in single subjects. Our progress could be improved by progressing from statistical fits to mechanistic models. Using transcranial magnetic stimulation as an example, we discuss how integrating methods with a focus on mechanisms could improve our predictions TMS effects within individuals, refine our models of health and disease, and improve our treatments.
Collapse
Affiliation(s)
- John D Medaglia
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Drexel University, Philadelphia, PA, 19104, USA.
| | - Brian Erickson
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jared Zimmerman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Kelkar
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Kazemi R, Rostami R, Dehghan S, Nasiri Z, Lotfollahzadeh S, L Hadipour A, Khomami S, Ishii R, Ikeda S. Alpha frequency rTMS modulates theta lagged nonlinear connectivity in dorsal attention network. Brain Res Bull 2020; 162:271-281. [PMID: 32619694 DOI: 10.1016/j.brainresbull.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 06/26/2020] [Indexed: 11/24/2022]
Abstract
Dorsolateral prefrontal cortex (DLPFC) is a key structure in dorsal attention network (DAN) that facilitates sustained attention by modulating activity in task related and unrelated regions of the brain. Alpha and theta frequency bands enhance connectivity among different parts of the attention network and these connections are facilitated by long-range nonlinear connectivity in theta and alpha frequency bands. This study is an investigation of the behavioral and electrophysiological effects of alpha and theta frequency repetitive transcranial magnetic stimulation (rTMS) over RDLPFC. 20 healthy participants were randomly assigned to two groups of theta (n = 11, f = 6 Hz) and alpha (n = 9, f = 10 Hz) rTMS. Electroencephalogram (EEG) was recorded before and after each session while resting and performing tasks. Current source density (CSD) and functional connectivity (FC) in DAN and default mode network (DMN) and their correlations with rapid visual information processing task (RVIP) scores were calculated . Alpha frequency rTMS resulted in significant changes in RVIP scores. Active theta rTMS caused an increase in CSD in Postcentral gyrus and active alpha rTMS resulted in significant CSD changes in inferior parietal lobule (IPL). Theta lagged nonlinear connectivity was mudulated by alpha rTMSand FC changes were observed in DAN and DMN. Positive correlations were observed between DAN regions and RVIP scores in the alpha rTMS group. Increased activity in theta frequency band in left aPFC and left DLPFC correlated positively with higher total hits in RVIP. This study showed for the first time that theta and alpha frequency rTMS are able to modulate FC in DAN and DMN in a way that results in better performance in a sustained attention task.
Collapse
Affiliation(s)
- Reza Kazemi
- Cognitive Lab, Department of Psychology, University of Tehran, Tehran, Iran; Atieh Clinical Neuroscience Center, Tehran, Iran.
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | | | - Zahra Nasiri
- Atieh Clinical Neuroscience Center, Tehran, Iran
| | | | - Abed L Hadipour
- Atieh Clinical Neuroscience Center, Tehran, Iran; Department of Psychology, University of Tehran, Tehran, Iran
| | | | - Ryouhei Ishii
- Smart Rehabilitation Research Center, Osaka Prefecture University, Graduate School of Comprehensive Rehabilitation, Habikino, Japan; Department of Psychiatry, Osaka University, Graduate School of Medicine, Osaka, Japan
| | - Shunichiro Ikeda
- Department of Neuropsychiatry, Kansai Medical University, Osaka, Japan
| |
Collapse
|
20
|
Arif Y, Spooner RK, Wiesman AI, Embury CM, Proskovec AL, Wilson TW. Modulation of attention networks serving reorientation in healthy aging. Aging (Albany NY) 2020; 12:12582-12597. [PMID: 32584264 PMCID: PMC7377885 DOI: 10.18632/aging.103515] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022]
Abstract
Orienting attention to behaviorally relevant stimuli is essential for everyday functioning and mainly involves activity in the dorsal and ventral frontoparietal networks. Many studies have shown declines in the speed and accuracy of attentional reallocation with advancing age, but the underlying neural dynamics remain less understood. We investigated this age-related decline using magnetoencephalography (MEG) and a Posner task in 94 healthy adults (22-72 years old). MEG data were examined in the time-frequency domain, and significant oscillatory responses were imaged using a beamformer. We found that participants responded slower when attention reallocation was needed (i.e., the validity effect) and that this effect was positively correlated with age. We also found age-related validity effects on alpha activity in the left parietal and beta in the left frontal-eye fields from 350-950 ms. Overall, stronger alpha and beta responses were observed in younger participants during attention reallocation trials, but this pattern was reversed in the older participants. Interestingly, this alpha validity effect fully mediated the relationship between age and behavioral performance. In conclusion, older adults were slower in reorienting attention and exhibited age-related alterations in alpha and beta responses within parietal and frontal regions, which may reflect increased task demands depleting their compensatory resources.
Collapse
Affiliation(s)
- Yasra Arif
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rachel K Spooner
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alex I Wiesman
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Christine M Embury
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Psychology, University of Nebraska, Omaha, NE 68198, USA
| | - Amy L Proskovec
- Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Psychology, University of Nebraska, Omaha, NE 68198, USA
| | - Tony W Wilson
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Center for Magnetoencephalography, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Cognitive Neuroscience of Development and Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.,Department of Psychology, University of Nebraska, Omaha, NE 68198, USA
| |
Collapse
|
21
|
MacInnes WJ, Jóhannesson ÓI, Chetverikov A, Kristjánsson Á. No Advantage for Separating Overt and Covert Attention in Visual Search. Vision (Basel) 2020; 4:E28. [PMID: 32443506 PMCID: PMC7356832 DOI: 10.3390/vision4020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/02/2020] [Accepted: 05/10/2020] [Indexed: 11/22/2022] Open
Abstract
We move our eyes roughly three times every second while searching complex scenes, but covert attention helps to guide where we allocate those overt fixations. Covert attention may be allocated reflexively or voluntarily, and speeds the rate of information processing at the attended location. Reducing access to covert attention hinders performance, but it is not known to what degree the locus of covert attention is tied to the current gaze position. We compared visual search performance in a traditional gaze-contingent display, with a second task where a similarly sized contingent window is controlled with a mouse, allowing a covert aperture to be controlled independently by overt gaze. Larger apertures improved performance for both the mouse- and gaze-contingent trials, suggesting that covert attention was beneficial regardless of control type. We also found evidence that participants used the mouse-controlled aperture somewhat independently of gaze position, suggesting that participants attempted to untether their covert and overt attention when possible. This untethering manipulation, however, resulted in an overall cost to search performance, a result at odds with previous results in a change blindness paradigm. Untethering covert and overt attention may therefore have costs or benefits depending on the task demands in each case.
Collapse
Affiliation(s)
- W. Joseph MacInnes
- School of Psychology, National Research University Higher School of Economics, Moscow 101000, Russia;
- Vision Modelling Lab, Faculty of Social Sciences, National Research University Higher School of Economics, Moscow 101000, Russia
| | - Ómar I. Jóhannesson
- Icelandic Vision Laboratory, Department of Psychology, University of Iceland, 102 Reykjavik, Iceland;
| | - Andrey Chetverikov
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands;
| | - Árni Kristjánsson
- School of Psychology, National Research University Higher School of Economics, Moscow 101000, Russia;
- Icelandic Vision Laboratory, Department of Psychology, University of Iceland, 102 Reykjavik, Iceland;
| |
Collapse
|
22
|
Murd C, Moisa M, Grueschow M, Polania R, Ruff CC. Causal contributions of human frontal eye fields to distinct aspects of decision formation. Sci Rep 2020; 10:7317. [PMID: 32355294 PMCID: PMC7193618 DOI: 10.1038/s41598-020-64064-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
Several theories propose that perceptual decision making depends on the gradual accumulation of information that provides evidence in favour of one of the choice-options. The outcome of this temporally extended integration process is thought to be categorized into the 'winning' and 'losing' choice-options for action. Neural correlates of corresponding decision formation processes have been observed in various frontal and parietal brain areas, among them the frontal eye-fields (FEF). However, the specific functional role of the FEFs is debated. Recent studies in humans and rodents provide conflicting accounts, proposing that the FEF either accumulate the choice-relevant information or categorize the outcome of such evidence integration into discrete actions. Here, we used transcranial magnetic stimulation (TMS) on humans to interfere with either left or right FEF activity during different timepoints of perceptual decision-formation. Stimulation of either FEF affected performance only when delivered during information integration but not during subsequent categorical choice. However, the patterns of behavioural changes suggest that the left-FEF contributes to general evidence integration, whereas right-FEF may direct spatial attention to the contralateral hemifield. Taken together, our results indicate an FEF involvement in evidence accumulation but not categorization, and suggest hemispheric lateralization for this function in the human brain.
Collapse
Affiliation(s)
- Carolina Murd
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland. .,Department of Penal Law, School of Law, University of Tartu, Teatri väljak 3, Tallinn, 10143, Estonia.
| | - Marius Moisa
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| | - Marcus Grueschow
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| | - Rafael Polania
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland.,Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, Rämistrasse 101, Zurich, 8092, Switzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics, Department of Economics, University of Zurich, Rämistrasse 71, Zurich, 8006, Switzerland
| |
Collapse
|
23
|
Mao Y, Kanai R, Ding C, Bi T, Qiu J. Temporal variability of brain networks predicts individual differences in bistable perception. Neuropsychologia 2020; 142:107426. [PMID: 32147392 DOI: 10.1016/j.neuropsychologia.2020.107426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 11/30/2022]
Abstract
When ambiguous visual stimuli are presented to the eyes, conscious perception can spontaneously alternate across the competing interpretations - which was known as bistable perception. The spontaneous alternation of perception might indicate a connection between bistable perception and the dynamic interaction of brain networks. Here, we hypothesized that individual differences in perceptual dynamics may be reflected in dynamics of spontaneous neural activities. To test this idea, we investigated the relationship between the percept duration and the reconfiguration patterns of dynamic brain networks as measured by the functional connectivity (FC) during the resting state. Firstly, we found that individual difference of percept duration is associated with the temporal variability of the brain regions which were previously reported in studies of bistable perception, including anterior cingulate cortex (ACC), dorsal medial prefrontal cortex (DMPFC), dorsal lateral prefrontal cortex (DLPFC), superior parietal lobule (SPL), inferior parietal lobule (IPL), precuneus, insula, and V5. Secondly, there is a positive relationship between the temporal variability within the frontal-parietal network (FPN) and the percept duration. Thirdly, our results indicated that individual difference of bistable perception was related to the dynamic interaction between large-scale functional networks including default mode network (DMN), FPN, cingulo-opercular network (CON), dorsal attention network (DAN), salience network (SN), memory retrieval network (MRN). Altogether, our results demonstrated that inter-individual variability in bistable perception was associated with dynamic coupling of brain regions and networks involved in primary visual processing, spatial attention, and cognitive control.
Collapse
Affiliation(s)
- Yu Mao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Department of Psychology, Southwest University, Chongqing, 400715, China
| | - Ryota Kanai
- Araya, Inc., Tokyo, Japan; Sackler Centre for Consciousness Science, University of Sussex, Brighton, UK
| | - Cody Ding
- Department of Psychology, Southwest University, Chongqing, 400715, China; Education Science & Professional Programs, University of Missouri-St. Louis, United States
| | - Taiyong Bi
- School of Management, Zunyi Medical University, Zunyi, 563000, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Department of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
24
|
Mastropasqua A, Dowsett J, Dieterich M, Taylor PCJ. Right frontal eye field has perceptual and oculomotor functions during optokinetic stimulation and nystagmus. J Neurophysiol 2019; 123:571-586. [PMID: 31875488 DOI: 10.1152/jn.00468.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The right frontal eye field (rFEF) is associated with visual perception and eye movements. rFEF is activated during optokinetic nystagmus (OKN), a reflex that moves the eye in response to visual motion (optokinetic stimulation, OKS). It remains unclear whether rFEF plays causal perceptual and/or oculomotor roles during OKS and OKN. To test this, participants viewed a leftward-moving visual scene of vertical bars and judged whether a flashed dot was moving. Single pulses of transcranial magnetic stimulation (TMS) were applied to rFEF on half of trials. In half of blocks, to explore oculomotor control, participants performed an OKN in response to the OKS. rFEF TMS, during OKN, made participants more accurate on trials when the dot was still, and it slowed eye movements. In separate blocks, participants fixated during OKS. This not only controlled for eye movements but also allowed the use of EEG to explore the FEF's role in visual motion discrimination. In these blocks, by contrast, leftward dot motion discrimination was impaired, associated with a disruption of the frontal-posterior balance in alpha-band oscillations. None of these effects occurred in a control site (M1) experiment. These results demonstrate multiple related yet dissociable causal roles of the right FEF during optokinetic stimulation.NEW & NOTEWORTHY This study demonstrates causal roles of the right frontal eye field (FEF) in motion discrimination and eye movement control during visual scene motion: previous work had only examined other stimuli and eye movements such as saccades. Using combined transcranial magnetic stimulation and EEG and a novel optokinetic stimulation motion-discrimination task, we find evidence for multiple related yet dissociable causal roles within the FEF: perceptual processing during optokinetic stimulation, generation of the optokinetic nystagmus, and the maintenance of alpha oscillations.
Collapse
Affiliation(s)
- Angela Mastropasqua
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Germany
| | - James Dowsett
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany
| | - Marianne Dieterich
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Germany.,SyNergy - Munich Cluster for Systems Neurology, Munich, Germany
| | - Paul C J Taylor
- Department of Neurology, University Hospital, LMU Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital, LMU Munich, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Germany
| |
Collapse
|
25
|
Vernet M, Stengel C, Quentin R, Amengual JL, Valero-Cabré A. Entrainment of local synchrony reveals a causal role for high-beta right frontal oscillations in human visual consciousness. Sci Rep 2019; 9:14510. [PMID: 31601822 PMCID: PMC6787242 DOI: 10.1038/s41598-019-49673-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/09/2019] [Indexed: 11/09/2022] Open
Abstract
Prior evidence supports a critical role of oscillatory activity in visual cognition, but are cerebral oscillations simply correlated or causally linked to our ability to consciously acknowledge the presence of a target in our visual field? Here, EEG signals were recorded on humans performing a visual detection task, while they received brief patterns of rhythmic or random transcranial magnetic stimulation (TMS) delivered to the right Frontal Eye Field (FEF) prior to the onset of a lateralized target. TMS entrained oscillations, i.e., increased high-beta power and phase alignment (the latter to a higher extent for rhythmic high-beta patterns than random patterns) while also boosting visual detection sensitivity. Considering post-hoc only those participants in which rhythmic stimulation enhanced visual detection, the magnitude of high-beta entrainment correlated with left visual performance increases. Our study provides evidence in favor of a causal link between high-beta oscillatory activity in the Frontal Eye Field and visual detection. Furthermore, it supports future applications of brain stimulation to manipulate local synchrony and improve or restore impaired visual behaviors.
Collapse
Affiliation(s)
- Marine Vernet
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France.
| | - Chloé Stengel
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
| | - Romain Quentin
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France
| | - Julià L Amengual
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229 and Université Claude Bernard, Lyon, France
| | - Antoni Valero-Cabré
- Institut du Cerveau et de la Moelle Epinière (ICM), CNRS UMR 7225, INSERM U 1127 and Sorbonne Université, Paris, France. .,Laboratory for Cerebral Dynamics Plasticity and Rehabilitation, Boston University, School of Medicine, Boston, MA, USA. .,Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|
26
|
Banerjee S, Grover S, Sridharan D. Unraveling Causal Mechanisms of Top-Down and Bottom-Up Visuospatial Attention with Non-invasive Brain Stimulation. J Indian Inst Sci 2019; 97:451-475. [PMID: 31231154 PMCID: PMC6588534 DOI: 10.1007/s41745-017-0046-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Attention is a process of selection that allows us to intelligently navigate the abundance of information in our world. Attention can be either directed voluntarily based on internal goals-"top-down" or goal-directed attention-or captured automatically, by salient stimuli-"bottom-up" or stimulus-driven attention. Do these two modes of attention control arise from same or different brain circuits? Do they share similar or distinct neural mechanisms? In this review, we explore this dichotomy between the neural bases of top-down and bottom-up attention control, with a special emphasis on insights gained from non-invasive neurostimulation techniques, specifically, transcranial magnetic stimulation (TMS). TMS enables spatially focal and temporally precise manipulation of brain activity. We explore a significant literature devoted to investigating the role of fronto-parietal brain regions in top-down and bottom-up attention with TMS, and highlight key areas of convergence and debate. We also discuss recent advances in combinatorial paradigms that combine TMS with other imaging modalities, such as functional magnetic resonance imaging or electroencephalography. These paradigms are beginning to bridge essential gaps in our understanding of the neural pathways by which TMS affects behavior, and will prove invaluable for unraveling mechanisms of attention control, both in health and in disease.
Collapse
Affiliation(s)
- Sanjna Banerjee
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Shrey Grover
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| | - Devarajan Sridharan
- Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
27
|
Casteau S, Smith DT. Associations and Dissociations between Oculomotor Readiness and Covert Attention. Vision (Basel) 2019; 3:vision3020017. [PMID: 31735818 PMCID: PMC6802773 DOI: 10.3390/vision3020017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022] Open
Abstract
The idea that covert mental processes such as spatial attention are fundamentally dependent on systems that control overt movements of the eyes has had a profound influence on theoretical models of spatial attention. However, theories such as Klein’s Oculomotor Readiness Hypothesis (OMRH) and Rizzolatti’s Premotor Theory have not gone unchallenged. We previously argued that although OMRH/Premotor theory is inadequate to explain pre-saccadic attention and endogenous covert orienting, it may still be tenable as a theory of exogenous covert orienting. In this article we briefly reiterate the key lines of argument for and against OMRH/Premotor theory, then evaluate the Oculomotor Readiness account of Exogenous Orienting (OREO) with respect to more recent empirical data. These studies broadly confirm the importance of oculomotor preparation for covert, exogenous attention. We explain this relationship in terms of reciprocal links between parietal ‘priority maps’ and the midbrain oculomotor centres that translate priority-related activation into potential saccade endpoints. We conclude that the OMRH/Premotor theory hypothesis is false for covert, endogenous orienting but remains tenable as an explanation for covert, exogenous orienting.
Collapse
|
28
|
Harricharan S, McKinnon MC, Tursich M, Densmore M, Frewen P, Théberge J, van der Kolk B, Lanius RA. Overlapping frontoparietal networks in response to oculomotion and traumatic autobiographical memory retrieval: implications for eye movement desensitization and reprocessing. Eur J Psychotraumatol 2019; 10:1586265. [PMID: 30949304 PMCID: PMC6442104 DOI: 10.1080/20008198.2019.1586265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Background: Oculomotor movements have been shown to aid in the retrieval of episodic memories, serving as sensory cues that engage frontoparietal brain regions to reconstruct visuospatial details of a memory. Frontoparietal brain regions not only are involved in oculomotion, but also mediate, in part, the retrieval of autobiographical episodic memories and assist in emotion regulation. Objective: We sought to investigate how oculomotion influences retrieval of traumatic memories by examining patterns of frontoparietal brain activation during autobiographical memory retrieval in post-traumatic stress disorder (PTSD) and in healthy controls. Method: Thirty-nine participants (controls, n = 19; PTSD, n = 20) recollected both neutral and traumatic/stressful autobiographical memories while cued simultaneously by horizontal and vertical oculomotor stimuli. The frontal (FEF) and supplementary (SEF) eye fields were used as seed regions for psychophysiological interaction analyses in SPM12. Results: As compared to controls, upon retrieval of a traumatic/stressful memory while also performing simultaneous horizontal eye movements, PTSD showed: i) increased SEF and FEF connectivity with the right dorsolateral prefrontal cortex, ii) increased SEF connectivity with the right dorsomedial prefrontal cortex, and iii) increased SEF connectivity with the right anterior insula. By contrast, as compared to PTSD, upon retrieval of a traumatic/stressful memory while also performing simultaneous horizontal eye movements, controls showed: i) increased FEF connectivity with the right posterior insula and ii) increased SEF connectivity with the precuneus. Conclusions: These findings provide a neurobiological account for how oculomotion may influence the frontoparietal cortical representation of traumatic memories. Implications for eye movement desensitization and reprocessing are discussed.
Collapse
Affiliation(s)
- Sherain Harricharan
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph’s Healthcare, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
| | | | - Maria Densmore
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
| | - Paul Frewen
- Department of Psychiatry, Western University, London, ON, Canada
- Department of Psychology, Western University, London, ON, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, London, ON, Canada
- Imaging Division, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Imaging, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Diagnostic Imaging, St. Joseph’s Healthcare, London, ON, Canada
| | | | - Ruth A. Lanius
- Department of Neuroscience, Western University, London, ON, Canada
- Department of Psychiatry, Western University, London, ON, Canada
- Mood Disorders Program, St. Joseph’s Healthcare, Hamilton, ON, Canada
| |
Collapse
|
29
|
Frontal and parietal alpha oscillations reflect attentional modulation of cross-modal matching. Sci Rep 2019; 9:5030. [PMID: 30903012 PMCID: PMC6430816 DOI: 10.1038/s41598-019-41636-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/14/2019] [Indexed: 11/08/2022] Open
Abstract
Multisensory perception is shaped by both attentional selection of relevant sensory inputs and exploitation of stimulus-driven factors that promote cross-modal binding. Underlying mechanisms of both top-down and bottom-up modulations have been linked to changes in alpha/gamma dynamics in primary sensory cortices and temporoparietal cortex. Accordingly, it has been proposed that alpha oscillations provide pulsed inhibition for gamma activity and thereby dynamically route cortical information flow. In this study, we employed a recently introduced multisensory paradigm incorporating both bottom-up and top-down aspects of cross-modal attention in an EEG study. The same trimodal stimuli were presented in two distinct attentional conditions, focused on visual-tactile or audio-visual components, for which cross-modal congruence of amplitude changes had to be evaluated. Neither top-down nor bottom-up cross-modal attention modulated alpha or gamma power in primary sensory cortices. Instead, we found alpha band effects in bilateral frontal and right parietal cortex. We propose that frontal alpha oscillations reflect the origin of top-down control regulating perceptual gains and that modulations of parietal alpha oscillations relates to intersensory re-orienting. Taken together, we suggest that the idea of selective cortical routing via alpha oscillations can be extended from sensory cortices to the frontoparietal attention network.
Collapse
|
30
|
Casteau S, Smith DT. Covert attention beyond the range of eye-movements: Evidence for a dissociation between exogenous and endogenous orienting. Cortex 2018; 122:170-186. [PMID: 30528427 DOI: 10.1016/j.cortex.2018.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/21/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022]
Abstract
The relationship between covert shift of attention and the oculomotor system has been the subject of numerous studies. A widely held view, known as Premotor Theory, is that covert attention depends upon activation of the oculomotor system. However, recent work has argued that Premotor Theory is only true for covert, exogenous orienting of attention and that covert endogenous orienting is largely independent of the oculomotor system. To address this issue we examined how endogenous and exogenous covert orienting of attention was affected when stimuli were presented at a location outside the range of saccadic eye movements. Results from Experiment 1 showed that exogenous covert orienting was abolished when stimuli were presented beyond the range of saccadic eye movements, but preserved when stimuli were presented within this range. In contrast, in Experiment 2 endogenous covert orienting was preserved when stimuli appeared beyond the saccadic range. Finally, Experiment 3 confirmed the observations of Exp.1 and 2. Our results demonstrate that exogenous, covert orienting is limited to the range of overt saccadic eye movements, whereas covert endogenous orienting is not. These results are consistent with a weak, exogenous-only version of Premotor Theory.
Collapse
|
31
|
Ebbesen CL, Insanally MN, Kopec CD, Murakami M, Saiki A, Erlich JC. More than Just a "Motor": Recent Surprises from the Frontal Cortex. J Neurosci 2018; 38:9402-9413. [PMID: 30381432 PMCID: PMC6209835 DOI: 10.1523/jneurosci.1671-18.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022] Open
Abstract
Motor and premotor cortices are crucial for the control of movements. However, we still know little about how these areas contribute to higher-order motor control, such as deciding which movements to make and when to make them. Here we focus on rodent studies and review recent findings, which suggest that-in addition to motor control-neurons in motor cortices play a role in sensory integration, behavioral strategizing, working memory, and decision-making. We suggest that these seemingly disparate functions may subserve an evolutionarily conserved role in sensorimotor cognition and that further study of rodent motor cortices could make a major contribution to our understanding of the evolution and function of the mammalian frontal cortex.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016,
- Center for Neural Science, New York University, New York, New York 10003
| | - Michele N Insanally
- Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, New York 10016
- Center for Neural Science, New York University, New York, New York 10003
| | - Charles D Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Masayoshi Murakami
- Department of Neurophysiology, Division of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Akiko Saiki
- Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Jeffrey C Erlich
- New York University Shanghai, Shanghai, China 200122
- NYU-ECNU Institute for Brain and Cognitive Science at NYU Shanghai, Shanghai, China 200062, and
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), East China Normal University, Shanghai, China 200062
| |
Collapse
|
32
|
Tipper G, Low HL. An insight into sight. Br J Hosp Med (Lond) 2018; 79:472-473. [PMID: 30070940 DOI: 10.12968/hmed.2018.79.8.472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- G Tipper
- Specialist Registrar in Neurosurgery, Department of Neurosurgery, Queen's Hospital, Romford, Essex RM7 0AG
| | - H L Low
- Consultant Neurosurgeon, Department of Neurosurgery, Queen's Hospital, Romford, Essex
| |
Collapse
|
33
|
Seidel Malkinson T, Bartolomeo P. Fronto-parietal organization for response times in inhibition of return: The FORTIOR model. Cortex 2018; 102:176-192. [DOI: 10.1016/j.cortex.2017.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/10/2017] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
|
34
|
Paladini RE, Müri RM, Meichtry J, Nef T, Mast FW, Mosimann UP, Nyffeler T, Cazzoli D. The Influence of Alertness on the Spatial Deployment of Visual Attention is Mediated by the Excitability of the Posterior Parietal Cortices. Cereb Cortex 2018; 27:233-243. [PMID: 28013233 PMCID: PMC5939216 DOI: 10.1093/cercor/bhw390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
With a reduced level of alertness, healthy individuals typically show a rightward shift when deploying visual attention in space. The impact of alertness on the neural networks governing visuospatial attention is, however, poorly understood. By using a transcranial magnetic stimulation twin-coil approach, the present study aimed at investigating the effects of an alertness manipulation on the excitability of the left and the right posterior parietal cortices (PPCs), crucial nodes of the visuospatial attentional network. Participants’ visuospatial attentional deployment was assessed with a free visual exploration task and concurrent eye tracking. Their alertness level was manipulated through the time of the day, that is, by testing chronotypically defined evening types both during their circadian on- and off-peak times. The results revealed an increased excitability of the left compared with the right PPC during low alertness. On the horizontal dimension, these results were accompanied by a significant rightward shift in the center and a bilateral narrowing in the periphery of the visual exploration field, as well as a central upward shift on the vertical dimension. The findings show that the manipulation of non-spatial attentional aspects (i.e., alertness) can affect visuospatial attentional deployment and modulate the excitability of areas subtending spatial attentional control.
Collapse
Affiliation(s)
- Rebecca E Paladini
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland
| | - René M Müri
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland.,Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland.,Division of Cognitive and Restorative Neurology, Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland.,Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland
| | - Jurka Meichtry
- Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland.,Division of Cognitive and Restorative Neurology, Department of Neurology, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland
| | - Tobias Nef
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland.,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Fred W Mast
- Center for Cognition, Learning and Memory, University of Bern, Bern, Switzerland.,Department of Psychology, University of Bern, Bern, Switzerland
| | - Urs P Mosimann
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland.,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.,University Hospital of Old Age Psychiatry, University of Bern, Bern, Switzerland
| | - Thomas Nyffeler
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland.,Perception and Eye Movement Laboratory, Departments of Neurology and Clinical Research, Inselspital, University Hospital Bern, and University of Bern, Bern, Switzerland.,Center of Neurology and Neurorehabilitation, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Dario Cazzoli
- Gerontechnology and Rehabilitation Group, University of Bern, Bern, Switzerland.,ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Koivisto M, Grassini S, Hurme M, Salminen-Vaparanta N, Railo H, Vorobyev V, Tallus J, Paavilainen T, Revonsuo A. TMS-EEG reveals hemispheric asymmetries in top-down influences of posterior intraparietal cortex on behavior and visual event-related potentials. Neuropsychologia 2017; 107:94-101. [PMID: 29137988 DOI: 10.1016/j.neuropsychologia.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 12/25/2022]
Abstract
Clinical data and behavioral studies using transcranial magnetic stimulation (TMS) suggest right-hemisphere dominance for top-down modulation of visual processing in humans. We used concurrent TMS-EEG to directly test for hemispheric differences in causal influences of the right and left intraparietal cortex on visual event-related potentials (ERPs). We stimulated the left and right posterior part of intraparietal sulcus (IPS1) while the participants were viewing and rating the visibility of bilaterally presented Gabor patches. Subjective visibility ratings showed that TMS of right IPS shifted the visibility toward the right hemifield, while TMS of left IPS did not have any behavioral effect. TMS of right IPS, but not left one, reduced the amplitude of posterior N1 potential, 180-220ms after stimulus-onset. The attenuation of N1 occurred bilaterally over the posterior areas of both hemispheres. Consistent with previous TMS-fMRI studies, this finding suggests that the right IPS has top-down control on the neural processing in visual cortex. As N1 most probably reflects reactivation of early visual areas, the current findings support the view that the posterior parietal cortex in the right hemisphere amplifies recurrent interactions in ventral visual areas during the time-window that is critical for conscious perception.
Collapse
Affiliation(s)
- Mika Koivisto
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland.
| | - Simone Grassini
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Mikko Hurme
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Niina Salminen-Vaparanta
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Henry Railo
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Victor Vorobyev
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| | - Jussi Tallus
- Department of Radiology, Turku University Hospital, 20014 Turun yliopisto, Finland
| | - Teemu Paavilainen
- Department of Radiology, Turku University Hospital, 20014 Turun yliopisto, Finland
| | - Antti Revonsuo
- Department of Psychology, University of Turku, 20014 Turun yliopisto, Finland; School of Bioscience, Department of Cognitive Neuroscience and Philosophy, University of Skövde, Sweden; Centre for Cognitive Neuroscience, University of Turku, 20014 Turun yliopisto, Finland
| |
Collapse
|
36
|
The Dorsal Frontoparietal Network: A Core System for Emulated Action. Trends Cogn Sci 2017; 21:589-599. [DOI: 10.1016/j.tics.2017.05.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/16/2017] [Accepted: 05/09/2017] [Indexed: 01/13/2023]
|
37
|
Esterman M, Thai M, Okabe H, DeGutis J, Saad E, Laganiere SE, Halko MA. Network-targeted cerebellar transcranial magnetic stimulation improves attentional control. Neuroimage 2017; 156:190-198. [PMID: 28495634 PMCID: PMC5973536 DOI: 10.1016/j.neuroimage.2017.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 11/22/2022] Open
Abstract
Developing non-invasive brain stimulation interventions to improve attentional control is extremely relevant to a variety of neurological and psychiatric populations, yet few studies have identified reliable biomarkers that can be readily modified to improve attentional control. One potential biomarker of attention is functional connectivity in the core cortical network supporting attention - the dorsal attention network (DAN). We used a network-targeted cerebellar transcranial magnetic stimulation (TMS) procedure, intended to enhance cortical functional connectivity in the DAN. Specifically, in healthy young adults we administered intermittent theta burst TMS (iTBS) to the midline cerebellar node of the DAN and, as a control, the right cerebellar node of the default mode network (DMN). These cerebellar targets were localized using individual resting-state fMRI scans. Participants completed assessments of both sustained (gradual onset continuous performance task, gradCPT) and transient attentional control (attentional blink) immediately before and after stimulation, in two sessions (cerebellar DAN and DMN). Following cerebellar DAN stimulation, participants had significantly fewer attentional lapses (lower commission error rates) on the gradCPT. In contrast, stimulation to the cerebellar DMN did not affect gradCPT performance. Further, in the DAN condition, individuals with worse baseline gradCPT performance showed the greatest enhancement in gradCPT performance. These results suggest that temporarily increasing functional connectivity in the DAN via network-targeted cerebellar stimulation can enhance sustained attention, particularly in those with poor baseline performance. With regard to transient attention, TMS stimulation improved attentional blink performance across both stimulation sites, suggesting increasing functional connectivity in both networks can enhance this aspect of attention. These findings have important implications for intervention applications of TMS and theoretical models of functional connectivity.
Collapse
Affiliation(s)
- Michael Esterman
- Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, United States; Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States; Geriatric Research Education and Clinical Center (GRECC), Boston Division VA Healthcare System, United States; Department of Psychiatry, Boston University School of Medicine, United States.
| | - Michelle Thai
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States
| | - Hidefusa Okabe
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States
| | - Joseph DeGutis
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States; Department of Psychiatry, Harvard Medical School, United States
| | - Elyana Saad
- Boston Attention and Learning Laboratory, VA Boston Healthcare System, United States; Department of Psychiatry, Harvard Medical School, United States
| | - Simon E Laganiere
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, United States
| | - Mark A Halko
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, United States
| |
Collapse
|
38
|
Electrophysiological and behavioral evidence reveals the effects of trait anxiety on contingent attentional capture. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2017; 17:973-983. [PMID: 28656503 DOI: 10.3758/s13415-017-0526-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Few studies have investigated the effects of anxiety on contingent attentional capture. The present study examined contingent attentional capture in trait anxiety by applying a rapid serial visual presentation (RSVP) paradigm during electroencephalographic recording. Overall, the behavioral and electrophysiological results showed a larger capture effect when a distractor was the same color as the target compared to when the distractor was not of the target color. Moreover, high-anxiety individuals showed a larger N2pc in the target colored distractor condition and nontarget colored distractor condition compared to the distractor-absent condition. In addition, the reaction time was slower when distractors were presented in the left visual field compared to when they were in the right visual field. This pattern was not seen in low-anxiety individuals. The findings may indicate that high-anxiety individuals allocate attention to the target less efficiently and have reduced suppression of distractors compared to low-anxiety individuals who could suppress attention to the distractors more efficiently. Future work could valuably investigate the consequences of such differences in terms of benefits and disruption associated with attentional capture differences in a range of anxious populations in different risk monitoring situations.
Collapse
|
39
|
Predictive position computations mediated by parietal areas: TMS evidence. Neuroimage 2017; 153:49-57. [PMID: 28341161 DOI: 10.1016/j.neuroimage.2017.03.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/24/2017] [Accepted: 03/20/2017] [Indexed: 11/24/2022] Open
Abstract
When objects move or the eyes move, the visual system can predict the consequence and generate a percept of the target at its new position. This predictive localization may depend on eye movement control in the frontal eye fields (FEF) and the intraparietal sulcus (IPS) and on motion analysis in the medial temporal area (MT). Across two experiments we examined whether repetitive transcranial magnetic stimulation (rTMS) over right FEF, right IPS, right MT, and a control site, peripheral V1/V2, diminished participants' perception of two cases of predictive position perception: trans-saccadic fusion, and the flash grab illusion, both presented in the contralateral visual field. In trans-saccadic fusion trials, participants saccade toward a stimulus that is replaced with another stimulus during the saccade. Frequently, predictive position mechanisms lead to a fused percept of pre- and post-saccade stimuli (Paeye et al., 2017). We found that rTMS to IPS significantly decreased the frequency of perceiving trans-saccadic fusion within the first 10min after stimulation. In the flash grab illusion, a target is flashed on a moving background leading to the percept that the target has shifted in the direction of the motion after the flash (Cavanagh and Anstis, 2013). In the first experiment, the reduction in the flash grab illusion after rTMS to IPS and FEF did not reach significance. In the second experiment, using a stronger version of the flash grab, the illusory shift did decrease significantly after rTMS to IPS although not after rTMS to FEF or to MT. These findings suggest that right IPS contributes to predictive position perception during saccades and motion processing in the contralateral visual field.
Collapse
|
40
|
Functional connectivity between prefrontal and parietal cortex drives visuo-spatial attention shifts. Neuropsychologia 2017; 99:81-91. [PMID: 28254653 PMCID: PMC5415819 DOI: 10.1016/j.neuropsychologia.2017.02.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 12/13/2016] [Accepted: 02/26/2017] [Indexed: 11/20/2022]
Abstract
It is well established that the frontal eye-fields (FEF) in the dorsal attention network (DAN) guide top-down selective attention. In addition, converging evidence implies a causal role for the FEF in attention shifting, which is also known to recruit the ventral attention network (VAN) and fronto-striatal regions. To investigate the causal influence of the FEF as (part of) a central hub between these networks, we applied thetaburst transcranial magnetic stimulation (TBS) off-line, combined with functional magnetic resonance (fMRI) during a cued visuo-spatial attention shifting paradigm. We found that TBS over the right FEF impaired performance on a visual discrimination task in both hemifields following attention shifts, while only left hemifield performance was affected when participants were cued to maintain the focus of attention. These effects recovered ca. 20 min post stimulation. Furthermore, particularly following attention shifts, TBS suppressed the neural signal in bilateral FEF, right inferior and superior parietal lobule (IPL/SPL) and bilateral supramarginal gyri (SMG). Immediately post stimulation, functional connectivity was impaired between right FEF and right SMG as well as right putamen. Importantly, the extent of decreased connectivity between right FEF and right SMG correlated with behavioural impairment following attention shifts. The main finding of this study demonstrates that influences from right FEF on SMG in the ventral attention network causally underly attention shifts, presumably by enabling disengagement from the current focus of attention. Thetaburst stimulation to the right FEF temporarily impairs bilateral attention shifts. Lateralised behavioural deficits in the contralateral hemifield are observed when cued to maintain attention. These effects recover ca. 20 min post stimulation. During shifts, neural activity is suppressed following right FEF TBS in the dorsal attention network and supramarginal gyri. Influences from right FEF to SMG causally underlie attention shifts, presumably by enabling disengagement from current focus.
Collapse
|
41
|
Platz T, Schüttauf J, Aschenbach J, Mengdehl C, Lotze M. Effects of inhibitory theta burst TMS to different brain sites involved in visuospatial attention - a combined neuronavigated cTBS and behavioural study. Restor Neurol Neurosci 2016; 34:271-85. [PMID: 26923615 DOI: 10.3233/rnn-150582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE AND METHODS The study sought to alter visual spatial attention in young healthy subjects by a neuronavigated inhibitory rTMS protocol (cTBS-600) to right brain areas thought to be involved in visual attentional processes, i.e. the temporoparietal junction (TPJ) and the posterior middle frontal gyrus (pMFG), and to test the reversibility of effects by an additional consecutive cTBS to the homologue left brain cortical areas. RESULTS Healthy subjects showed a leftward bias of the egocentric perspective for both visual-perceptive and visual-exploratory tasks specifically for items presented in the left hemifield. cTBS to the right TPJ, and less systematically to the right pMFG reduced this bias for visuo-spatial and exploratory visuo-motor behaviour. Further, a consecutive cTBS to the left TPJ changed the bias again towards the left for a visual-perceptive task. CONCLUSIONS The evidence supports the notion of an involvement of the right TPJ (and pMFG) in spatial visual attention. The observations further indicate that inhibitory non-invasive brain stimulation (cTBS) to the left TPJ has a potential for reversing a rightward bias of spatial attention when the right TPJ is dysfunctional. Accordingly, the findings could have implications for therapeutic rTMS development for right brain damaged patients with visual neglect.
Collapse
Affiliation(s)
- Thomas Platz
- BDH-Klinik Greifswald, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Johannes Schüttauf
- BDH-Klinik Greifswald, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Julia Aschenbach
- BDH-Klinik Greifswald, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Christine Mengdehl
- BDH-Klinik Greifswald, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| | - Martin Lotze
- Functional Imaging Unit, Ernst-Moritz-Arndt-Universität Greifswald, Germany
| |
Collapse
|
42
|
Killgore WDS, Kendall AP, Richards JM, McBride SA. Lack of Degradation in Visuospatial Perception of Line Orientation after One Night of Sleep Loss. Percept Mot Skills 2016; 105:276-86. [DOI: 10.2466/pms.105.1.276-286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sleep deprivation impairs a variety of cognitive abilities including vigilance, attention, and executive function. Although sleep loss has been shown to impair tasks requiring visual attention and spatial perception, it is not clear whether these deficits are exclusively a function of reduced attention and vigilance or if there are also alterations in visuospatial perception. Visuospatial perception and sustained vigilance performance were therefore examined in 54 healthy volunteers at rested baseline and again after one night of sleep deprivation using the Judgment of Line Orientation Test and a computerized test of psychomotor vigilance. Whereas psychomotor vigilance declined significantly from baseline to sleep-deprived testing, scores on the Judgment of Line Orientation did not change significantly. Results suggest that documented performance deficits associated with sleep loss are unlikely to be the result of dysfunction within systems of the brain responsible for simple visuospatial perception and processing of line angles.
Collapse
Affiliation(s)
| | - Athena P. Kendall
- Department of Behavioral Biology, Walter Reed Army Institute of Research
| | | | - Sharon A. McBride
- Department of Behavioral Biology, Walter Reed Army Institute of Research
| |
Collapse
|
43
|
Grosbras MH. Patterns of Activity in the Human Frontal and Parietal Cortex Differentiate Large and Small Saccades. Front Integr Neurosci 2016; 10:34. [PMID: 27833536 PMCID: PMC5081348 DOI: 10.3389/fnint.2016.00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/06/2016] [Indexed: 11/17/2022] Open
Abstract
A vast literature indicates that small and large saccades, respectively, subserve different perceptual and cognitive strategies and may rely on different programming modes. While it is well-established that in monkeys’ main oculomotor brain regions small and large eye movements are controlled by segregated neuronal populations, the representation of saccade amplitude in the human brain remains unclear. To address this question we used functional magnetic resonance imaging to scan participants while they performed saccades toward targets at either short (4°) or large (30°) eccentricity. A regional multivoxel pattern analysis reveals that patterns of activity in the frontal eye-field and parietal eye fields discriminate between the execution of large or small saccades. This was not the case in the supplementary eye-fields nor in the inferior precentral cortex. These findings provide the first evidence of a representation of saccadic eye movement size in the fronto-parietal occulomotor circuit. They shed light on the respective roles of the different cortical oculomotor regions with respect to space perception and exploration, as well as on the homology of eye movement control between human and non-human primates.
Collapse
Affiliation(s)
- Marie-Hélène Grosbras
- Laboratoire de Neuroscience Cognitive, Aix-Marseille UniversityMarseille, France; Institute of Neuroscience and Psychology, University of GlasgowGlasgow, UK
| |
Collapse
|
44
|
Veniero D, Strüber D, Thut G, Herrmann CS. Noninvasive Brain Stimulation Techniques Can Modulate Cognitive Processing. ORGANIZATIONAL RESEARCH METHODS 2016. [DOI: 10.1177/1094428116658960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recent methods that allow a noninvasive modulation of brain activity are able to modulate human cognitive behavior. Among these methods are transcranial electric stimulation and transcranial magnetic stimulation that both come in multiple variants. A property of both types of brain stimulation is that they modulate brain activity and in turn modulate cognitive behavior. Here, we describe the methods with their assumed neural mechanisms for readers from the economic and social sciences and little prior knowledge of these techniques. Our emphasis is on available protocols and experimental parameters to choose from when designing a study. We also review a selection of recent studies that have successfully applied them in the respective field. We provide short pointers to limitations that need to be considered and refer to the relevant papers where appropriate.
Collapse
Affiliation(s)
- Domenica Veniero
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Strüber
- Experimental Psychology Lab, Center for Excellence ‘Hearing4all’, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| | - Gregor Thut
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Center for Excellence ‘Hearing4all’, European Medical School, Carl von Ossietzky Universität, Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky Universität, Oldenburg, Germany
| |
Collapse
|
45
|
The Neural Correlates of Chronic Symptoms of Vertigo Proneness in Humans. PLoS One 2016; 11:e0152309. [PMID: 27089185 PMCID: PMC4835222 DOI: 10.1371/journal.pone.0152309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/11/2016] [Indexed: 11/19/2022] Open
Abstract
Vestibular signals are of significant importance for variable functions including gaze stabilization, spatial perception, navigation, cognition, and bodily self-consciousness. The vestibular network governs functions that might be impaired in patients affected with vestibular dysfunction. It is currently unclear how different brain regions/networks process vestibular information and integrate the information into a unified spatial percept related to somatosensory awareness and whether people with recurrent balance complaints have a neural signature as a trait affecting their development of chronic symptoms of vertigo. Pivotal evidence points to a vestibular-related brain network in humans that is widely distributed in nature. By using resting state source localized electroencephalography in non-vertiginous state, electrophysiological changes in activity and functional connectivity of 23 patients with balance complaints where chronic symptoms of vertigo and dizziness are among the most common reported complaints are analyzed and compared to healthy subjects. The analyses showed increased alpha2 activity within the posterior cingulate cortex and the precuneues/cuneus and reduced beta3 and gamma activity within the pregenual and subgenual anterior cingulate cortex for the subjects with balance complaints. These electrophysiological variations were correlated with reported chronic symptoms of vertigo intensity. A region of interest analysis found reduced functional connectivity for gamma activity within the vestibular cortex, precuneus, frontal eye field, intra-parietal sulcus, orbitofrontal cortex, and the dorsal anterior cingulate cortex. In addition, there was a positive correlation between chronic symptoms of vertigo intensity and increased alpha-gamma nesting in the left frontal eye field. When compared to healthy subjects, there is evidence of electrophysiological changes in the brain of patients with balance complaints even outside chronic symptoms of vertigo episodes. This suggests that these patients have a neural signature or trait that makes them prone to developing chronic balance problems.
Collapse
|
46
|
Repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex enhances working memory. Exp Brain Res 2016; 234:1807-1818. [DOI: 10.1007/s00221-016-4580-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/30/2016] [Indexed: 11/26/2022]
|
47
|
Eickhoff SB, Thirion B, Varoquaux G, Bzdok D. Connectivity-based parcellation: Critique and implications. Hum Brain Mapp 2015; 36:4771-92. [PMID: 26409749 DOI: 10.1002/hbm.22933] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/22/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022] Open
Abstract
Regional specialization and functional integration are often viewed as two fundamental principles of human brain organization. They are closely intertwined because each functionally specialized brain region is probably characterized by a distinct set of long-range connections. This notion has prompted the quickly developing family of connectivity-based parcellation (CBP) methods in neuroimaging research. CBP assumes that there is a latent structure of parcels in a region of interest (ROI). First, connectivity strengths are computed to other parts of the brain for each voxel/vertex within the ROI. These features are then used to identify functionally distinct groups of ROI voxels/vertices. CBP enjoys increasing popularity for the in-vivo mapping of regional specialization in the human brain. Due to the requirements of different applications and datasets, CBP has diverged into a heterogeneous family of methods. This broad overview critically discusses the current state as well as the commonalities and idiosyncrasies of the main CBP methods. We target frequent concerns faced by novices and veterans to provide a reference for the investigation and review of CBP studies.
Collapse
Affiliation(s)
- Simon B Eickhoff
- Institut Für Neurowissenschaften Und Medizin (INM-1), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,Institut Für Klinische Neurowissenschaften Und Medizinische Psychologie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, 40225, Germany
| | - Bertrand Thirion
- Parietal Team, INRIA, Neurospin, Bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Gaël Varoquaux
- Parietal Team, INRIA, Neurospin, Bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Danilo Bzdok
- Institut Für Neurowissenschaften Und Medizin (INM-1), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany.,Institut Für Klinische Neurowissenschaften Und Medizinische Psychologie, Heinrich-Heine Universität Düsseldorf, Düsseldorf, 40225, Germany.,Parietal Team, INRIA, Neurospin, Bat 145, CEA Saclay, 91191, Gif-sur-Yvette, France.,Department of Psychiatry, Psychotherapy and Psychosomatics, Uniklinik RWTH, 52074, Aachen, Germany
| |
Collapse
|
48
|
Abstract
Microsaccade rate during fixation is modulated by the presentation of a visual stimulus. When the stimulus is an endogenous attention cue, the ensuing microsaccades tend to be directed toward the cue. This finding has been taken as evidence that microsaccades index the locus of spatial attention. But the vast majority of microsaccades that subjects make are not triggered by visual stimuli. Under natural viewing conditions, spontaneous microsaccades occur frequently (2-3 Hz), even in the absence of a stimulus or a task. While spontaneous microsaccades may depend on low-level visual demands, such as retinal fatigue, image fading, or fixation shifts, it is unknown whether their occurrence corresponds to changes in the attentional state. We developed a protocol to measure whether spontaneous microsaccades reflect shifts in spatial attention. Human subjects fixated a cross while microsaccades were detected from streaming eye-position data. Detection of a microsaccade triggered the appearance of a peripheral ring of grating patches, which were followed by an arrow (a postcue) indicating one of them as the target. The target was either congruent or incongruent (opposite) with respect to the direction of the microsaccade (which preceded the stimulus). Subjects reported the tilt of the target (clockwise or counterclockwise relative to vertical). We found that accuracy was higher for congruent than for incongruent trials. We conclude that the direction of spontaneous microsaccades is inherently linked to shifts in spatial attention.
Collapse
|
49
|
The role of the right frontal eye field in overt visual attention deployment as assessed by free visual exploration. Neuropsychologia 2015; 74:37-41. [DOI: 10.1016/j.neuropsychologia.2015.01.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
|
50
|
Chanes L, Quentin R, Vernet M, Valero-Cabré A. Arrhythmic activity in the left frontal eye field facilitates conscious visual perception in humans. Cortex 2015; 71:240-7. [PMID: 26247410 DOI: 10.1016/j.cortex.2015.05.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/20/2015] [Accepted: 05/14/2015] [Indexed: 11/18/2022]
Abstract
The frontal eye field (FEF) is a brain region involved in several processes relevant for visual performance, including visuo-spatial attention, conscious access and decision-making. Prior research has causally demonstrated that high-beta FEF activity in the right hemisphere enhances conscious visual perception, an outcome that is in agreement with evidence of neural synchronization along a right dorsal fronto-parietal network during attentional orienting and a right-hemisphere dominance for visuospatial processing. Nonetheless, frontal regions in the left hemisphere have also been shown to modulate perceptual performance. To causally explore the neural basis of these modulations, we delivered high-beta frequency-specific bursts of transcranial magnetic stimulation (TMS) to the left FEF and report that, in this region, these patterns failed to modulate conscious perception. In contrast, non-frequency-specific TMS patterns yielded visual performance improvements similar to those formerly causally associated to the induction of high-beta activity on its right-hemisphere homotopic area. This noise-induced facilitation of conscious vision suggests a relevant role of the left frontal cortex in visual perception. Furthermore, taken together with prior causal right-FEF evidence, our study indicates that frontal regions of each hemisphere employ different coding strategies to modulate conscious perception.
Collapse
Affiliation(s)
- Lorena Chanes
- Université Pierre et Marie Curie, CNRS UMR 7225-INSERM UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), Paris, France
| | - Romain Quentin
- Université Pierre et Marie Curie, CNRS UMR 7225-INSERM UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), Paris, France
| | - Marine Vernet
- Université Pierre et Marie Curie, CNRS UMR 7225-INSERM UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), Paris, France
| | - Antoni Valero-Cabré
- Université Pierre et Marie Curie, CNRS UMR 7225-INSERM UMRS S975, Centre de Recherche de l'Institut du Cerveau et la Moelle (ICM), Paris, France; Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, USA; Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia (UOC), Barcelona, Spain.
| |
Collapse
|