1
|
Nathaniel U, Eidelsztein S, Geskin KG, Yamasaki BL, Nir B, Dronjic V, Booth JR, Bitan T. Neural Mechanisms of Learning and Consolidation of Morphologically Derived Words in a Novel Language: Evidence From Hebrew Speakers. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:864-900. [PMID: 39301207 PMCID: PMC11410356 DOI: 10.1162/nol_a_00150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/07/2024] [Indexed: 09/22/2024]
Abstract
We examined neural mechanisms associated with the learning of novel morphologically derived words in native Hebrew speakers within the Complementary Learning Systems (CLS) framework. Across four sessions, 28 participants were trained on an artificial language, which included two types of morphologically complex words: linear (root + suffix) with a salient structure, and non-linear (root interleaved with template), with a prominent derivational structure in participants' first language (L1). A third simple monomorphemic condition, which served as baseline, was also included. On the first and fourth sessions, training was followed by testing in an fMRI scanner. Our behavioural results showed decomposition of both types of complex words, with the linear structure more easily learned than the non-linear structure. Our fMRI results showed involvement of frontal areas, associated with decomposition, only for the non-linear condition, after just the first session. We also observed training-related increases in activation in temporal areas specifically for the non-linear condition, which was correlated with participants' L1 morphological awareness. These results demonstrate that morphological decomposition of derived words occurs in the very early stages of word learning, is influenced by L1 experience, and can facilitate word learning. However, in contrast to the CLS framework, we found no support for a shift from reliance on hippocampus to reliance on cortical areas in any of our conditions. Instead, our findings align more closely with recent theories showing a positive correlation between changes in hippocampus and cortical areas, suggesting that these representations co-exist and continue to interact with one another beyond initial learning.
Collapse
Affiliation(s)
- Upasana Nathaniel
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
| | - Stav Eidelsztein
- Department of Communication Sciences and Disorder, University of Haifa, Haifa, Israel
| | - Kate Girsh Geskin
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
| | | | - Bracha Nir
- Department of Communication Sciences and Disorder, University of Haifa, Haifa, Israel
| | - Vedran Dronjic
- Department of English, Northern Arizona University, Flagstaff, AZ, USA
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| | - Tali Bitan
- Institute of Information Processing and Decision Making, University of Haifa, Haifa, Israel
- Department of Speech Pathology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Bains A, Barber A, Nell T, Ripollés P, Krishnan S. The role of intrinsic reward in adolescent word learning. Dev Sci 2024; 27:e13513. [PMID: 38685611 DOI: 10.1111/desc.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
Relatively little work has focused on why we are motivated to learn words. In adults, recent experiments have shown that intrinsic reward signals accompany successful word learning from context. In addition, the experience of reward facilitated long-term memory for words. In adolescence, developmental changes are seen in reward and motivation systems as well as in reading and language systems. Here, in the face of this developmental change, we ask whether adolescents experience reward from word learning, and how the reward and memory benefit seen in adults is modulated by age. We used a naturalistic reading paradigm, which involved extracting novel word meanings from sentence context without the need for explicit feedback. By exploring ratings of enjoyment during the learning phase, as well as recognition memory for words a day later, we assessed whether adolescents show the same reward and learning patterns as adults. We tested 345 children between the ages of 10-18 (N > 84 in each 2-year age-band) using this paradigm. We found evidence for our first prediction: children aged 10-18 report greater enjoyment for successful word learning. However, we did not find evidence for age-related change in this developmental period, or memory benefits. This work gives us greater insight into the process of language acquisition and sets the stage for further investigations of intrinsic reward in typical and atypical development. RESEARCH HIGHLIGHTS: We constantly learn words from context, even in the absence of explicit rewards or feedback. In adults, intrinsic reward experienced during word learning is linked to a dopaminergic circuit in the brain, which also fuels enhancements in memory for words. We find adolescents also report enhanced reward or enjoyment when they successfully learn words from sentence context. The relationship between reward and learning is maintained between the ages of 10 and 18. Unlike in adults, we did not observe ensuing memory benefits.
Collapse
Affiliation(s)
- Amrita Bains
- Department of Psychology, Royal Holloway, University of London, Egham Hill, UK
| | - Annaliese Barber
- Department of Psychology, Royal Holloway, University of London, Egham Hill, UK
| | - Tau Nell
- Department of Psychology, Royal Holloway, University of London, Egham Hill, UK
| | - Pablo Ripollés
- Department of Psychology, New York University, New York, New York, USA
- Music and Audio Research Lab (MARL), New York University, New York, New York, USA
- Center for Language, Music and Emotion (CLaME), New York University, Max-Planck Institute, New York, New York, USA
| | - Saloni Krishnan
- Department of Psychology, Royal Holloway, University of London, Egham Hill, UK
| |
Collapse
|
3
|
Franco J, Laganaro M. Are brain activity changes underlying rare word production after learning specific or do they extend to semantically related rare words? Cortex 2024; 178:174-189. [PMID: 39018954 DOI: 10.1016/j.cortex.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Learning words in the mother tongue is a fundamental lifelong skill that involves complex cognitive and neural changes. In adults, newly learned words affect the organization of the lexical-semantic network and, compared to words that have been in the lexicon for longer, they activate the same cortical areas, but more extensively and/or intensively. It is however still unclear (1) which brain and cognitive processes underlying word production change when infrequent/unknown words are compared before and after learning and (2) whether integrating newly learned words impacts word specific processes or has a broader impact on unlearned words. The present study aims to investigate the electrophysiological changes underlying the production of rare words induced by learning and the effect of learning on an unlearned list of rare words belonging to the same semantic categories. To this end, 24 neurotypical adults learned one of two matched lists of 40 concrete rare words from 4 semantic categories. EEG (electroencephalographic) recordings were acquired during a referential word production task (picture naming) of the learned and unlearned words before and after the learning phase. The results show that the production of rare word is associated with event-related (ERP) differences between before and after learning in the period from 300 to 800 msec following the presentation of the imaged concept (picture). These differences consisted in a larger involvement of left temporal and parietal regions after learning between 300 and 400 msec i.e., the time window likely corresponding to lexical and phonological encoding processes. Crucially, the ERP changes are not restricted to the production of the learned rare words, but are also observed when participants try to retrieve words of a list of semantically and lexically matched rare words that they have not learned. The ERP changes on unlearned rare words are weaker and suggest that learning new words induces boarder effects also on unlearned words.
Collapse
Affiliation(s)
- Julie Franco
- Faculty of Psychology and Educational Science, University of Geneva, Geneva, Switzerland.
| | - Marina Laganaro
- Faculty of Psychology and Educational Science, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Tao Y, Schubert T, Wiley R, Stark C, Rapp B. Cortical and Subcortical Mechanisms of Orthographic Word-form Learning. J Cogn Neurosci 2024; 36:1071-1098. [PMID: 38527084 DOI: 10.1162/jocn_a_02147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We examined the initial stages of orthographic learning in real time as literate adults learned spellings for spoken pseudowords during fMRI scanning. Participants were required to learn and store orthographic word forms because the pseudoword spellings were not uniquely predictable from sound to letter mappings. With eight learning trials per word form, we observed changes in the brain's response as learning was taking place. Accuracy was evaluated during learning, immediately after scanning, and 1 week later. We found evidence of two distinct learning systems-hippocampal and neocortical-operating during orthographic learning, consistent with the predictions of dual systems theories of learning/memory such as the complementary learning systems framework [McClelland, J. L., McNaughton, B. L., & O'Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419-457, 1995]. The bilateral hippocampus and the visual word form area (VWFA) showed significant BOLD response changes over learning, with the former exhibiting a rising pattern and the latter exhibiting a falling pattern. Moreover, greater BOLD signal increase in the hippocampus was associated with better postscan recall. In addition, we identified two distinct bilateral brain networks that mirrored the rising and falling patterns of the hippocampus and VWFA. Functional connectivity analysis revealed that regions within each network were internally synchronized. These novel findings highlight, for the first time, the relevance of multiple learning systems in orthographic learning and provide a paradigm that can be used to address critical gaps in our understanding of the neural bases of orthographic learning in general and orthographic word-form learning specifically.
Collapse
|
5
|
Gordon KR, Lowry SL. Fostering retention of word learning: The number of training sessions children retrieve words positively relates to post-training retention. JOURNAL OF CHILD LANGUAGE 2024; 51:710-719. [PMID: 38269415 PMCID: PMC11056717 DOI: 10.1017/s0305000923000752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
During vocabulary instruction, it is important to teach words until their representations are robust enough to be retained. For adults, the number of training sessions a target item is successfully retrieved during training predicts the likelihood of post-training retention. To assess this relationship in children, we reanalyzed data from Gordon et al. (2021b, 2022). Four- to six-year-old children completed six training days with word form-object pairs and were tested one month later. Results indicate that the number of training sessions that a word form was retrieved was positively related to post-training retention. We discuss implications for vocabulary instruction and interventions.
Collapse
|
6
|
Schimke EAE, Copland DA, Gomersall SR, Angwin AJ. To sleep or not to sleep? No effect of sleep on contextual word learning in younger adults. Q J Exp Psychol (Hove) 2024; 77:789-802. [PMID: 37212629 PMCID: PMC10960315 DOI: 10.1177/17470218231179459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
This study investigated the effect of sleep on novel word learning through reading context. Seventy-four healthy young adults attended two testing sessions, with either overnight sleep (sleep group) or daytime wakefulness (wake group) occurring between the sessions. At the initial learning session, participants identified the hidden meanings of novel words embedded within sentence contexts and were subsequently tested on their recognition of the novel word meanings. A recognition test was also conducted at the delayed session. The analyses revealed comparable recognition of novel word meanings for the sleep and wake group at both the initial and the delayed session, indicating that there was no benefit of sleep compared with wakefulness for novel word learning through context. Overall, this study highlights the critical influence of encoding method on sleep-dependent learning, where not all forms of word learning appear to benefit from sleep for consolidation.
Collapse
Affiliation(s)
- Emma AE Schimke
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Copland
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
- Queensland Aphasia Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Sjaan R Gomersall
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Anthony J Angwin
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Regev TI, Kim HS, Chen X, Affourtit J, Schipper AE, Bergen L, Mahowald K, Fedorenko E. High-level language brain regions process sublexical regularities. Cereb Cortex 2024; 34:bhae077. [PMID: 38494886 PMCID: PMC11486690 DOI: 10.1093/cercor/bhae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 03/19/2024] Open
Abstract
A network of left frontal and temporal brain regions supports language processing. This "core" language network stores our knowledge of words and constructions as well as constraints on how those combine to form sentences. However, our linguistic knowledge additionally includes information about phonemes and how they combine to form phonemic clusters, syllables, and words. Are phoneme combinatorics also represented in these language regions? Across five functional magnetic resonance imaging experiments, we investigated the sensitivity of high-level language processing brain regions to sublexical linguistic regularities by examining responses to diverse nonwords-sequences of phonemes that do not constitute real words (e.g. punes, silory, flope). We establish robust responses in the language network to visually (experiment 1a, n = 605) and auditorily (experiments 1b, n = 12, and 1c, n = 13) presented nonwords. In experiment 2 (n = 16), we find stronger responses to nonwords that are more well-formed, i.e. obey the phoneme-combinatorial constraints of English. Finally, in experiment 3 (n = 14), we provide suggestive evidence that the responses in experiments 1 and 2 are not due to the activation of real words that share some phonology with the nonwords. The results suggest that sublexical regularities are stored and processed within the same fronto-temporal network that supports lexical and syntactic processes.
Collapse
Affiliation(s)
- Tamar I Regev
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Hee So Kim
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Xuanyi Chen
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- Department of Cognitive Sciences, Rice University, Houston, TX 77005, United States
| | - Josef Affourtit
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
| | - Abigail E Schipper
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
| | - Leon Bergen
- Department of Linguistics, University of California San Diego, San Diego CA 92093, United States
| | - Kyle Mahowald
- Department of Linguistics, University of Texas at Austin, Austin, TX 78712, United States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, United States
- McGovern Institute for Brain Research, MIT, Cambridge, MA 02139, United States
- The Harvard Program in Speech and Hearing Bioscience and Technology, Boston, MA 02115, United States
| |
Collapse
|
8
|
Tallman CW, Luo Z, Smith CN. Human brain activity and functional connectivity associated with verbal long-term memory consolidation across 1 month. Front Hum Neurosci 2024; 18:1342552. [PMID: 38450223 PMCID: PMC10915245 DOI: 10.3389/fnhum.2024.1342552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Declarative memories are initially dependent on the hippocampus and become stabilized through the neural reorganization of connections between the medial temporal lobe and neocortex. The exact time-course of these neural changes is not well established, although time-dependent changes in retrieval-related brain function can be detected across relatively short time periods in humans (e.g., hours to months). Methods In a study involving older adults with normal cognition (N = 24), we investigated changes in brain activity and functional connectivity associated with the long-term memory consolidation of verbal material over one month. Participants studied fact-like, three-word sentences at 1-month, 1-week, 1-day, and 1-hour intervals before a recognition memory test inside an MRI scanner. Old/new recognition with confidence ratings and response times were recorded. We examined whole-brain changes in retrieval-related brain activity, as well as functional connectivity of the hippocampus and ventromedial prefrontal cortex (vmPFC), as memories aged from 1 hour to 1 month. Secondary analyses minimized the effect of confounding factors affected by memory age (i.e., changes in confidence and response time or re-encoding of targets). Results Memory accuracy, confidence ratings, and response times changed with memory age. A memory age network was identified where retrieval-related brain activity in cortical regions increased or decreased as a function of memory age. Hippocampal brain activity in an anatomical region of interest decreased with memory age. Importantly, these changes in retrieval-related activity were not confounded with changes in activity related to concomitant changes in behavior or encoding. Exploratory analyses of vmPFC functional connectivity as a function of memory age revealed increased connectivity with the posterior parietal cortex, as well as with the vmPFC itself. In contrast, hippocampal functional connectivity with the vmPFC and orbitofrontal cortex decreased with memory age. Discussion The observed changes in retrieval-related brain activity and functional connectivity align with the predictions of standard systems consolidation theory. These results suggest that processes consistent with long-term memory consolidation can be identified over short time periods using fMRI, particularly for verbal material.
Collapse
Affiliation(s)
- Catherine W. Tallman
- Department of Psychology, University of California, San Diego, San Diego, CA, United States
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
| | - Zhishang Luo
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
- Halıcıoğlu Data Science Institute, University of California, San Diego, San Diego, CA, United States
| | - Christine N. Smith
- Veterans Affairs San Diego Healthcare System, Department of Research Service, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
9
|
van Zelst AL, Earle FS. A Matter of Time: A Web-Based Investigation of Rest and Sleep Effects on Speech Motor Learning. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:59-71. [PMID: 38056482 PMCID: PMC11000790 DOI: 10.1044/2023_jslhr-22-00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/07/2022] [Accepted: 09/29/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Here, we examine the possibility that memory consolidation during a period of postpractice rest or nocturnal sleep can bolster speech motor learning in the absence of additional practice or effort. METHOD Using web-administered experiments, 74 typical, American English talkers trained in a nonnative vowel contrast then had a 12-hr delay with (SLEEP) or without nocturnal sleep (REST) or proceeded immediately (IMMEDIATE) to a posttraining production assessment. For ecological validity, 51 native Danish talkers perceptually identified the American English talkers' productions. RESULTS We observed that practice resulted in productions that were more acoustically similar to the Danish target. In addition, we found that rest in the absence of further practice reduced the token-to-token variability of the productions. Last, for vowels produced immediately following training, listeners more accurately identified vowels in the trained context, whereas in the untrained context, listener accuracy improved only for vowels produced by talkers who slept. CONCLUSIONS A single session of speech motor training promotes observable change to speech production behavior. Specifically, practice facilitates acoustic similarity to the target. Moreover, although a 12-hr postpractice period of rest appears to promote productions that are less variable, only the productions of those who slept are perceived as more accurate by listeners. This may point to sleep's role in contextualizing the acoustic goal of the production to the learner's own vocal tract and its role as a protective mechanism during learning. These results are unaccounted for under existing models and offer potential for future educational and clinical applications to maximize speech motor learning. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24707442.
Collapse
Affiliation(s)
- Anne L. van Zelst
- Department of Communication Sciences & Disorders, University of Delaware, Newark
| | - F. Sayako Earle
- Department of Communication Sciences & Disorders, University of Delaware, Newark
| |
Collapse
|
10
|
Kenanidis P, Dąbrowska E, Llompart M, Pili-Moss D. Can adults learn L2 grammar after prolonged exposure under incidental conditions? PLoS One 2023; 18:e0288989. [PMID: 37494310 PMCID: PMC10370733 DOI: 10.1371/journal.pone.0288989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
While late second language (L2) learning is assumed to be largely explicit, there is evidence that adults are able to acquire grammar under incidental exposure conditions, and that the acquisition of this knowledge may be implicit in nature. Here, we revisit the question of whether adults can learn grammar incidentally and investigate whether word order and morphology are susceptible to incidental learning to the same degree. In experiment 1, adult English monolinguals were exposed to an artificial language (Kepidalo) that had case marking and variable word order: a canonical Subject-Object-Verb order and a non-canonical Object-Subject-Verb. In a five-session online study, participants received vocabulary training while being incidentally exposed to grammar, and completed a series of picture-selection and grammaticality judgment tasks assessing grammatical knowledge. Despite extensive exposure to input, and although performance on vocabulary increased significantly across sessions, learners' grammatical comprehension showed little improvement over time, and this was limited to Subject-Object-Verb sentences only. Furthermore, participants were better at detecting word order than case marking violations in the grammaticality judgment tasks. Experiment 2 further increased the amount of incidental exposure whilst examining native speakers of German, which exhibits higher morphological richness. Testing was followed by a post-test metalinguistic awareness questionnaire. Although greater learning effects were observed, participants continued to have difficulties with case marking. The findings also demonstrated that language outcomes were modulated by learners' level of metalinguistic awareness. Taken together, the results of the two experiments underscore adult learners' difficulty with case marking and point towards the presence of a threshold in incidental L2 grammar learning, which appears to be tightly linked to prior first language experience. In addition, our findings continue to highlight the facilitative role of conscious awareness on L2 outcomes.
Collapse
Affiliation(s)
- Panagiotis Kenanidis
- Chair of Language and Cognition, Department of English and American Studies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ewa Dąbrowska
- Chair of Language and Cognition, Department of English and American Studies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of English Language and Linguistics, University of Birmingham, Birmingham, United Kingdom
| | - Miquel Llompart
- Chair of Language and Cognition, Department of English and American Studies, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Translation and Language Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Diana Pili-Moss
- Institute of English Studies, Faculty of Education, Leuphana Universität Lüneburg, Lüneburg, Germany
| |
Collapse
|
11
|
Shim H, Gibbs L, Rush K, Ham J, Kim S, Kim S, Choi I. Neural Mechanisms Related to the Enhanced Auditory Selective Attention Following Neurofeedback Training: Focusing on Cortical Oscillations. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:8499. [PMID: 39449731 PMCID: PMC11500732 DOI: 10.3390/app13148499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Selective attention can be a useful tactic for speech-in-noise (SiN) interpretation as it strengthens cortical responses to attended sensory inputs while suppressing others. This cortical process is referred to as attentional modulation. Our earlier study showed that a neurofeedback training paradigm was effective for improving the attentional modulation of cortical auditory evoked responses. However, it was unclear how such neurofeedback training improved attentional modulation. This paper attempts to unveil what neural mechanisms underlie strengthened auditory selective attention during the neurofeedback training paradigm. Our EEG time-frequency analysis found that, when spatial auditory attention was focused, a fronto-parietal brain network was activated. Additionally, the neurofeedback training increased beta oscillation, which may imply top-down processing was used to anticipate the sound to be attended selectively with prior information. When the subjects were attending to the sound from the right, they exhibited more alpha oscillation in the right parietal cortex during the final session compared to the first, indicating improved spatial inhibitory processing to suppress sounds from the left. After the four-week training period, the temporal cortex exhibited improved attentional modulation of beta oscillation. This suggests strengthened neural activity to predict the target. Moreover, there was an improvement in the strength of attentional modulation on cortical evoked responses to sounds. The Placebo Group, who experienced similar attention training with the exception that feedback was based simply on behavioral accuracy, did not experience these training effects. These findings demonstrate how neurofeedback training effectively improves the neural mechanisms underlying auditory selective attention.
Collapse
Affiliation(s)
- Hwan Shim
- Department of Electrical and Computer Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Leah Gibbs
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Karsyn Rush
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Jusung Ham
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
| | - Subong Kim
- Department of Communication Sciences and Disorders, Montclair State University, Montclair, NJ 07043, USA
| | - Sungyoung Kim
- Department of Electrical and Computer Engineering Technology, Rochester Institute of Technology, Rochester, NY 14623, USA
- Graduate School of Culture Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA 52242, USA
- Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Hulme RC, Rodd JM. The Role of Sleep in Learning New Meanings for Familiar Words through Stories. J Cogn 2023; 6:27. [PMID: 37334107 PMCID: PMC10275344 DOI: 10.5334/joc.282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Adults often learn new meanings for familiar words, and in doing so they must integrate information about the newly-acquired meanings with existing knowledge about the prior meanings of the words in their mental lexicon. Numerous studies have confirmed the importance of sleep for learning novel word forms (e.g., "cathedruke") either with or without associated meanings. By teaching participants new meanings for familiar word forms, this is the first study to focus exclusively on the specific role of sleep on learning word meanings. In two experiments participants were trained on new meanings for familiar words through a naturalistic story reading paradigm to minimize explicit learning strategies. Experiment 1 confirmed the benefit of sleep for recall and recognition of word meanings, with better retention after 12 hours including overnight sleep than 12 hours awake. Experiment 2, which was preregistered, further explored this sleep benefit. Recall performance was best in the condition in which participants slept immediately after exposure and were tested soon after they woke up, compared with three conditions which all included an extended period of wake during which they would encounter their normal language environment. The results are consistent with the view that, at least under these learning conditions, a benefit of sleep arises due to passive protection from linguistic interference while asleep, rather than being due to active consolidation.
Collapse
Affiliation(s)
- Rachael C. Hulme
- Department of Experimental Psychology, University College London, London, UK
| | - Jennifer M. Rodd
- Department of Experimental Psychology, University College London, London, UK
| |
Collapse
|
13
|
Yacoby A, Reggev N, Maril A. Lack of source memory as a potential marker of early assimilation of novel items into current knowledge. Neuropsychologia 2023; 185:108569. [PMID: 37121268 DOI: 10.1016/j.neuropsychologia.2023.108569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
In daily life, humans process a plethora of new information that can be either consistent (familiar) or inconsistent (novel) with prior knowledge. Over time, both types of information can integrate into our accumulated knowledge base via distinct pathways. However, the mnemonic processes supporting the integration of information that is inconsistent with prior knowledge remain under-characterized. In the current study, we used functional magnetic resonance imaging (fMRI) to examine the initial assimilation of novel items into the semantic network. Participants saw three repetitions of adjective-noun word pairs that were either consistent or inconsistent with prior knowledge. Twenty-four hours later, they were presented with the same stimuli again while undergoing fMRI scans. Outside the scanner, participants completed a surprise recognition test. We found that when the episodic context associated with initially inconsistent items was irretrievable, the neural signature of these items was indistinguishable from that of consistent items. In contrast, initially inconsistent items with accessible episodic contexts showed neural signatures that differed from those associated with consistent items. We suggest that, at least one day post encoding, items inconsistent with prior knowledge can show early assimilation into the semantic network only when their episodic contexts become inaccessible during retrieval, thus evoking a sense of familiarity.
Collapse
Affiliation(s)
- Amnon Yacoby
- Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Niv Reggev
- Department of Psychology and the School of Brain Sciences and Cognition, Ben Gurion University, Beer Sheva, Israel
| | - Anat Maril
- Department of Cognitive Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel; Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Failure to consolidate statistical learning in developmental dyslexia. Psychon Bull Rev 2023; 30:160-173. [PMID: 36221045 DOI: 10.3758/s13423-022-02169-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2022] [Indexed: 11/08/2022]
Abstract
Statistical learning (SL), the ability to pick up patterns in sensory input, serves as one of the building blocks of language acquisition. Although SL has been studied extensively in developmental dyslexia (DD), much less is known about the way SL evolves over time. The handful of studies examining this question were all limited to the acquisition of motor sequential knowledge or highly learned segmented linguistic units. Here we examined memory consolidation of statistical regularities in adults with DD and typically developed (TD) readers by using auditory SL requiring the segmentation of units from continuous input, which represents one of the earliest learning challenges in language acquisition. DD and TD groups were exposed to tones in a probabilistically determined sequential structure varying in difficulty and subsequently tested for recognition of novel short sequences that adhered to this statistical pattern in immediate and delayed-recall sessions separated by a night of sleep. SL performance of the DD group at the easy and hard difficulty levels was poorer than that of the TD group in the immediate-recall session. Importantly, DD participants showed a significant overnight deterioration in SL performance at the medium difficulty level compared to TD, who instead showed overnight stabilization of the learned information. These findings imply that SL difficulties in DD may arise not only from impaired initial learning but also due to a failure to consolidate statistically structured information into long-term memory. We hypothesize that these deficits disrupt the typical course of language acquisition in those with DD.
Collapse
|
15
|
Is word learning capacity restored after a daytime nap? Cortex 2023; 159:142-166. [PMID: 36628812 DOI: 10.1016/j.cortex.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022]
Abstract
Sleep is thought to be involved in the consolidation of new memories encoded during the day, as proposed by complementary learning systems accounts of memory. Other theories suggest that sleep's role in memory is not restricted to consolidation. The synaptic homeostasis hypothesis proposes that new learning is implemented in the brain through strengthening synaptic connections, a biologically costly process that gradually saturates encoding capacity during wake. During slow-wave sleep, synaptic strength is renormalized, thus restoring memory encoding ability. While the role of sleep in memory consolidation has been extensively documented, few human studies have explored the impact of sleep in restoring encoding ability, and none have looked at learning beyond episodic memory. In this registered report we test the predictions made by the complementary learning systems accounts and the synaptic homeostasis hypothesis regarding adult participants' ability to learn new words, and to integrate these words with existing knowledge. Participants took a polysomnographically-monitored daytime nap or remained awake prior to learning a set of new spoken words. Shortly after learning, and again on the following day, we measured participants' episodic memory for new words. We also assessed the degree to which newly learned words engage in competition with existing words. We predicted that sleep before encoding would result in better episodic memory for the words, and facilitate the overnight integration of new words with existing words. Based on existing literature and theory we further predicted that this restorative function is associated with slow-wave and sleep spindle activity. Our pre-registered analyses did not find a significant benefit of napping prior to encoding on word learning or integration. Exploratory analyses using a more sensitive measure of recall accuracy demonstrated significantly better performance in the nap condition compared to the no-nap condition in the immediate test. At the delayed test there was no longer a significant benefit of the nap. Of note, we found no significant effect of slow-wave activity prior to encoding on episodic memory or integration of newly learned words into the mental lexicon. However, we found that greater levels of Stage 2 sleep spindles were significantly associated with greater improvements in lexical competition from the immediate to the delayed test. Therefore, our results demonstrate some support for theories that implicate sleep spindles in restoring encoding capacity.
Collapse
|
16
|
van Rijn E, Gouws A, Walker SA, Knowland VCP, Cairney SA, Gaskell MG, Henderson LM. Do naps benefit novel word learning? Developmental differences and white matter correlates. Cortex 2023; 158:37-60. [PMID: 36434978 DOI: 10.1016/j.cortex.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Memory representations of newly learned words undergo changes during nocturnal sleep, as evidenced by improvements in explicit recall and lexical integration (i.e., after sleep, novel words compete with existing words during online word recognition). Some studies have revealed larger sleep-benefits in children relative to adults. However, whether daytime naps play a similar facilitatory role is unclear. We investigated the effect of a daytime nap (relative to wake) on explicit memory (recall/recognition) and lexical integration (lexical competition) of newly learned novel words in young adults and children aged 10-12 years, also exploring white matter correlates of the pre- and post-nap effects of word learning in the child group with diffusion weighted MRI. In both age groups, a nap maintained explicit memory of novel words and wake led to forgetting. However, there was an age group interaction when comparing change in recall over the nap: children showed a slight improvement whereas adults showed a slight decline. There was no evidence of lexical integration at any point. Although children spent proportionally more time in slow-wave sleep (SWS) than adults, neither SWS nor spindle parameters correlated with over-nap changes in word learning. For children, increased fractional anisotropy (FA) in the uncinate fasciculus and arcuate fasciculus were associated with the recognition of novel words immediately after learning, and FA in the right arcuate fasciculus was further associated with changes in recall of novel words over a nap, supporting the importance of these tracts in the word learning and consolidation process. These findings point to a protective role of naps in word learning (at least under the present conditions), and emphasize the need to better understand both the active and passive roles that sleep plays in supporting vocabulary consolidation over development.
Collapse
Affiliation(s)
- E van Rijn
- Department of Psychology, University of York, York, United Kingdom.
| | - A Gouws
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Walker
- Department of Psychology, University of York, York, United Kingdom.
| | - V C P Knowland
- Department of Psychology, University of York, York, United Kingdom.
| | - S A Cairney
- Department of Psychology, University of York, York, United Kingdom.
| | - M G Gaskell
- Department of Psychology, University of York, York, United Kingdom.
| | - L M Henderson
- Department of Psychology, University of York, York, United Kingdom.
| |
Collapse
|
17
|
Billig AJ, Lad M, Sedley W, Griffiths TD. The hearing hippocampus. Prog Neurobiol 2022; 218:102326. [PMID: 35870677 PMCID: PMC10510040 DOI: 10.1016/j.pneurobio.2022.102326] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
The hippocampus has a well-established role in spatial and episodic memory but a broader function has been proposed including aspects of perception and relational processing. Neural bases of sound analysis have been described in the pathway to auditory cortex, but wider networks supporting auditory cognition are still being established. We review what is known about the role of the hippocampus in processing auditory information, and how the hippocampus itself is shaped by sound. In examining imaging, recording, and lesion studies in species from rodents to humans, we uncover a hierarchy of hippocampal responses to sound including during passive exposure, active listening, and the learning of associations between sounds and other stimuli. We describe how the hippocampus' connectivity and computational architecture allow it to track and manipulate auditory information - whether in the form of speech, music, or environmental, emotional, or phantom sounds. Functional and structural correlates of auditory experience are also identified. The extent of auditory-hippocampal interactions is consistent with the view that the hippocampus makes broad contributions to perception and cognition, beyond spatial and episodic memory. More deeply understanding these interactions may unlock applications including entraining hippocampal rhythms to support cognition, and intervening in links between hearing loss and dementia.
Collapse
Affiliation(s)
| | - Meher Lad
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - William Sedley
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, UK
| | - Timothy D Griffiths
- Biosciences Institute, Newcastle University Medical School, Newcastle upon Tyne, UK; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK; Human Brain Research Laboratory, Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, USA
| |
Collapse
|
18
|
Gore KR, Woollams AM, Bruehl S, Halai AD, Lambon Ralph MA. Direct Neural Evidence for the Contrastive Roles of the Complementary Learning Systems in Adult Acquisition of Native Vocabulary. Cereb Cortex 2022; 32:3392-3405. [PMID: 34875018 PMCID: PMC9376875 DOI: 10.1093/cercor/bhab422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/01/2023] Open
Abstract
The Complementary Learning Systems (CLS) theory provides a powerful framework for considering the acquisition, consolidation, and generalization of new knowledge. We tested this proposed neural division of labor in adults through an investigation of the consolidation and long-term retention of newly learned native vocabulary with post-learning functional neuroimaging. Newly learned items were compared with two conditions: 1) previously known items to highlight the similarities and differences with established vocabulary and 2) unknown/untrained items to provide a control for non-specific perceptual and motor speech output. Consistent with the CLS, retrieval of newly learned items was supported by a combination of regions associated with episodic memory (including left hippocampus) and the language-semantic areas that support established vocabulary (left inferior frontal gyrus and left anterior temporal lobe). Furthermore, there was a shifting division of labor across these two networks in line with the items' consolidation status; faster naming was associated with more activation of language-semantic areas and lesser activation of episodic memory regions. Hippocampal activity during naming predicted more than half the variation in naming retention 6 months later.
Collapse
Affiliation(s)
- Katherine R Gore
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester M13 9GB, UK
| | - Anna M Woollams
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester M13 9GB, UK
| | - Stefanie Bruehl
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester M13 9GB, UK
- St Mauritius Rehabilitation Centre, Meerbusch & Heinrich-Heine University, 40225 Duesseldorf, Germany
- Clinical and Cognitive Neurosciences, Department of Neurology, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Ajay D Halai
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge CB2 7EF, UK
| | | |
Collapse
|
19
|
Menks WM, Ekerdt C, Janzen G, Kidd E, Lemhöfer K, Fernández G, McQueen JM. Study protocol: a comprehensive multi-method neuroimaging approach to disentangle developmental effects and individual differences in second language learning. BMC Psychol 2022; 10:169. [PMID: 35804430 PMCID: PMC9270835 DOI: 10.1186/s40359-022-00873-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND While it is well established that second language (L2) learning success changes with age and across individuals, the underlying neural mechanisms responsible for this developmental shift and these individual differences are largely unknown. We will study the behavioral and neural factors that subserve new grammar and word learning in a large cross-sectional developmental sample. This study falls under the NWO (Nederlandse Organisatie voor Wetenschappelijk Onderzoek [Dutch Research Council]) Language in Interaction consortium (website: https://www.languageininteraction.nl/ ). METHODS We will sample 360 healthy individuals across a broad age range between 8 and 25 years. In this paper, we describe the study design and protocol, which involves multiple study visits covering a comprehensive behavioral battery and extensive magnetic resonance imaging (MRI) protocols. On the basis of these measures, we will create behavioral and neural fingerprints that capture age-based and individual variability in new language learning. The behavioral fingerprint will be based on first and second language proficiency, memory systems, and executive functioning. We will map the neural fingerprint for each participant using the following MRI modalities: T1-weighted, diffusion-weighted, resting-state functional MRI, and multiple functional-MRI paradigms. With respect to the functional MRI measures, half of the sample will learn grammatical features and half will learn words of a new language. Combining all individual fingerprints allows us to explore the neural maturation effects on grammar and word learning. DISCUSSION This will be one of the largest neuroimaging studies to date that investigates the developmental shift in L2 learning covering preadolescence to adulthood. Our comprehensive approach of combining behavioral and neuroimaging data will contribute to the understanding of the mechanisms influencing this developmental shift and individual differences in new language learning. We aim to answer: (I) do these fingerprints differ according to age and can these explain the age-related differences observed in new language learning? And (II) which aspects of the behavioral and neural fingerprints explain individual differences (across and within ages) in grammar and word learning? The results of this study provide a unique opportunity to understand how the development of brain structure and function influence new language learning success.
Collapse
Affiliation(s)
- W M Menks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands.
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands.
| | - C Ekerdt
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - G Janzen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - E Kidd
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- ARC Centre of Excellence for the Dynamics of Language, Canberra, Australia
- Research School of Psychology, Australian National University, Canberra, Australia
| | - K Lemhöfer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - G Fernández
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
| | - J M McQueen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, and Radboud University Medical Centre, Nijmegen, the Netherlands
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Desmeules-Trudel F, Joanisse MF. Learning unfamiliar words and perceiving non-native vowels in a second language: Insights from eye tracking. Acta Psychol (Amst) 2022; 226:103590. [PMID: 35439617 DOI: 10.1016/j.actpsy.2022.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 11/30/2022] Open
Abstract
One of the challenges in second-language learning is learning unfamiliar word forms, especially when this involves novel phoneme contrasts. The present study examines how real-time processing of newly-learned words and phonemes in a second language is impacted by the structure of learning (discrimination training) and whether asking participants to complete the same task after a 16-21 h delay favours subsequent word recognition. Specifically, using a visual world eye tracking paradigm, we assessed how English listeners processed newly-learned words containing non-native French front-rounded [y] compared to native-sounding vowels, both immediately after training and the following day. Some learners were forced to discriminate between vowels that are perceptually similar for English listeners, [y]-[u], while others were not. We found significantly better word-level processing on a variety of indices after an overnight delay. We also found that training [y] words paired with [u] words (vs. [y]-Control pairs) led to a greater decrease in reaction times during the word recognition task over the two testing sessions. Discrimination training using perceptually similar sounds had facilitative effects on second language word learning with novel phonemic information, and real-time processing measures such as eyetracking provided valuable insights into how individuals learn words and phonemes in a second language.
Collapse
Affiliation(s)
- Félix Desmeules-Trudel
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, Canada.
| | - Marc F Joanisse
- Department of Psychology, Brain and Mind Institute, The University of Western Ontario, Canada
| |
Collapse
|
21
|
Tallman CW, Clark RE, Smith CN. Human brain activity and functional connectivity as memories age from one hour to one month. Cogn Neurosci 2022; 13:115-133. [DOI: 10.1080/17588928.2021.2021164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Catherine W. Tallman
- Department of Psychology, UCSD, San Diego, CA, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Robert E. Clark
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, UCI, San Diego, CA, USA
| | - Christine N. Smith
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Center for the Neurobiology of Learning and Memory, UCI, San Diego, CA, USA
| |
Collapse
|
22
|
Loo C, Lee ACH, Buchsbaum BR. Multivariate FMRI Signatures of Learning in a Hebb Repetition Paradigm With Tone Sequences. Front Neurol 2021; 12:674275. [PMID: 34912281 PMCID: PMC8666569 DOI: 10.3389/fneur.2021.674275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/08/2021] [Indexed: 11/24/2022] Open
Abstract
Important information from the environment often arrives to the brain in temporally extended sequences. Language, music, actions, and complex events generally unfold over time. When such informational sequences exceed the limited capacity of working memory, the human brain relies on its ability to accumulate information in long-term memory over several encounters with a complex stimulus. A longstanding question in psychology and neuroscience is whether the neural structures associated with working memory storage—often viewed as capacity limited and temporary—have any builtin ability to store information across longer temporal delays. According to the classic Hebbian dual memory theory, temporally local “activity traces” underlie immediate perception and working memory, whereas “structural traces” undergird long-term learning. Here we examine whether brain structures known to be involved in working maintenance of auditory sequences, such as area Spt, also show evidence of memory persistence across trials. We used representational similarity analysis (RSA) and the Hebb repetition paradigm with supracapacity tonal sequences to test whether repeated sequences have distinguishable multivoxel activity patterns in the auditory-motor networks of the brain. We found that, indeed, area Spt and other nodes of the auditory dorsal stream show multivoxel patterns for tone sequences that become gradually more distinct with repetition during working memory for supracapacity tone-sequences. The findings suggest that the structures are important for working memory are not “blank slates,” wiped clean from moment to moment, but rather encode information in a way can lead to cross-trial persistence.
Collapse
Affiliation(s)
- Corey Loo
- Rotman Research Institute, Baycrest, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Andy C H Lee
- Rotman Research Institute, Baycrest, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Bradley R Buchsbaum
- Rotman Research Institute, Baycrest, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Kueser JB, Leonard LB, Deevy P, Haebig E, Karpicke JD. Word-learning trajectories influence long-term recall in children with developmental language disorder and typical development. JOURNAL OF COMMUNICATION DISORDERS 2021; 94:106160. [PMID: 34768092 PMCID: PMC8715761 DOI: 10.1016/j.jcomdis.2021.106160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Children with developmental language disorder (DLD) have difficulties learning words. However, the severity of these difficulties can be reduced through word learning procedures that incorporate repeated spaced retrieval (RSR). Previous studies have shown positive outcomes with RSR but we still know very little about how learning unfolds with this procedure. In this study, we focus on the process of learning under RSR. METHODS We analyze the learning data from children with DLD and with typical development (TD) from three recent studies using RSR. We fit growth curves to the trial-by-trial learning data for immediate and spaced retrieval trials and use the characteristics of children's individual word-learning trajectories to predict their long-term recall. RESULTS We found that children in both groups demonstrated linear growth during learning, despite breaks within and across days. Success on early immediate retrieval trials promoted success on subsequent spaced retrieval trials. Children's trial-by-trial RSR learning trajectories were related to their long-term recall: both cumulative success and growth over time on the spaced retrieval trials positively predicted long-term recall. Consecutive success was also highly correlated with growth over time. CONCLUSIONS Repeated spaced retrieval supplemented with immediate retrieval trials during learning promotes long-term recall.
Collapse
Affiliation(s)
- Justin B Kueser
- Purdue University, West Lafayette, IN, United States of America.
| | | | - Patricia Deevy
- Purdue University, West Lafayette, IN, United States of America
| | - Eileen Haebig
- Louisiana State University, Baton Rouge, LA, United States of America
| | | |
Collapse
|
24
|
The effect of sleep on novel word learning in healthy adults: A systematic review and meta-analysis. Psychon Bull Rev 2021; 28:1811-1838. [PMID: 34549375 DOI: 10.3758/s13423-021-01980-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/14/2022]
Abstract
There is increasing evidence to indicate that sleep plays a role in language acquisition and consolidation; however, there has been substantial variability in methodological approaches used to examine this phenomenon. This systematic review and meta-analysis aimed to investigate the effect of sleep on novel word learning in adults, and explore whether these effects differed by retrieval domain (i.e., recall, recognition, and tests of lexical integration). Twenty-five unique studies met the inclusion criteria for the review, and 42 separate outcome measures were synthesized in the meta-analysis (k = 29 separate between-group comparisons, n = 1,396 participants). The results from the omnibus meta-analysis indicated that sleep was beneficial for novel word learning compared with wakefulness (g = 0.50). Effect sizes differed across the separate domain-specific meta-analyses, with moderate effects for recall (g = 0.57) and recognition memory (g = 0.52), and a small effect for tasks which measured lexical integration (g = 0.39). Overall, the results of this meta-analysis indicate that sleep generally benefits novel word acquisition and consolidation compared with wakefulness across differing retrieval domains. This systematic review highlights the potential for sleep to be used to improve second-language learning in healthy adults, and overall provides further insight into methods to facilitate language development.
Collapse
|
25
|
Pupillometry reveals cognitive demands of lexical competition during spoken word recognition in young and older adults. Psychon Bull Rev 2021; 29:268-280. [PMID: 34405386 DOI: 10.3758/s13423-021-01991-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 12/27/2022]
Abstract
In most contemporary activation-competition frameworks for spoken word recognition, candidate words compete against phonological "neighbors" with similar acoustic properties (e.g., "cap" vs. "cat"). Thus, recognizing words with more competitors should come at a greater cognitive cost relative to recognizing words with fewer competitors, due to increased demands for selecting the correct item and inhibiting incorrect candidates. Importantly, these processes should operate even in the absence of differences in accuracy. In the present study, we tested this proposal by examining differences in processing costs associated with neighborhood density for highly intelligible items presented in quiet. A second goal was to examine whether the cognitive demands associated with increased neighborhood density were greater for older adults compared with young adults. Using pupillometry as an index of cognitive processing load, we compared the cognitive demands associated with spoken word recognition for words with many or fewer neighbors, presented in quiet, for young (n = 67) and older (n = 69) adult listeners. Growth curve analysis of the pupil data indicated that older adults showed a greater evoked pupil response for spoken words than did young adults, consistent with increased cognitive load during spoken word recognition. Words from dense neighborhoods were marginally more demanding to process than words from sparse neighborhoods. There was also an interaction between age and neighborhood density, indicating larger effects of density in young adult listeners. These results highlight the importance of assessing both cognitive demands and accuracy when investigating the mechanisms underlying spoken word recognition.
Collapse
|
26
|
Kim S, Emory C, Choi I. Neurofeedback Training of Auditory Selective Attention Enhances Speech-In-Noise Perception. Front Hum Neurosci 2021; 15:676992. [PMID: 34239430 PMCID: PMC8258151 DOI: 10.3389/fnhum.2021.676992] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Selective attention enhances cortical responses to attended sensory inputs while suppressing others, which can be an effective strategy for speech-in-noise (SiN) understanding. Emerging evidence exhibits a large variance in attentional control during SiN tasks, even among normal-hearing listeners. Yet whether training can enhance the efficacy of attentional control and, if so, whether the training effects can be transferred to performance on a SiN task has not been explicitly studied. Here, we introduce a neurofeedback training paradigm designed to reinforce the attentional modulation of auditory evoked responses. Young normal-hearing adults attended one of two competing speech streams consisting of five repeating words (“up”) in a straight rhythm spoken by a female speaker and four straight words (“down”) spoken by a male speaker. Our electroencephalography-based attention decoder classified every single trial using a template-matching method based on pre-defined patterns of cortical auditory responses elicited by either an “up” or “down” stream. The result of decoding was provided on the screen as online feedback. After four sessions of this neurofeedback training over 4 weeks, the subjects exhibited improved attentional modulation of evoked responses to the training stimuli as well as enhanced cortical responses to target speech and better performance during a post-training SiN task. Such training effects were not found in the Placebo Group that underwent similar attention training except that feedback was given only based on behavioral accuracy. These results indicate that the neurofeedback training may reinforce the strength of attentional modulation, which likely improves SiN understanding. Our finding suggests a potential rehabilitation strategy for SiN deficits.
Collapse
Affiliation(s)
- Subong Kim
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, United States
| | - Caroline Emory
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States
| | - Inyong Choi
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, United States.,Department of Otolaryngology - Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
27
|
Abstract
This review will explore the role of memory consolidation in speech-motor learning. Existing frameworks of speech-motor control account for the protracted time course of building the speech-motor representation. These perspectives converge on the speech-motor representation as a multimodal unit that is comprised of auditory, motor, and linguistic information. Less is known regarding the memory mechanisms that support the emergence of a generalized speech-motor unit from instances of speech production. Here, we consider the broader learning and memory consolidation literature and how it may apply to speech-motor learning. We discuss findings from relevant domains on the stabilization, enhancement, and generalization of learned information. Based on this literature, we provide our predictions for the division of labor between conscious and unconscious memory systems in speech-motor learning, and the subsequent effects of time and sleep to memory consolidation. We identify both the methodological challenges, as well as the practical importance, of advancing this work empirically. This discussion provides a foundation for building a memory-based framework for speech-motor learning.
Collapse
|
28
|
Leonard LB, Christ SL, Deevy P, Karpicke JD, Weber C, Haebig E, Kueser JB, Souto S, Krok W. A multi-study examination of the role of repeated spaced retrieval in the word learning of children with developmental language disorder. J Neurodev Disord 2021; 13:20. [PMID: 33992071 PMCID: PMC8126157 DOI: 10.1186/s11689-021-09368-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/07/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Many children with developmental language disorders (DLD) have well-documented weaknesses in vocabulary. In recent years, investigators have explored the nature of these weaknesses through the use of novel word learning paradigms. These studies have begun to uncover specific areas of difficulty and have provided hints about possible intervention strategies that might help these children learn words more accurately and efficiently. Among the studies of this type are those that incorporate repeated spaced retrieval activities in the learning procedures. METHODS In this study, we examined the data from four of these studies that employed the same types of participants (4- and 5-year-old children with DLD and same-age children with typical language development), research design, and outcome measures. The studies differed primarily in the type of learning condition that was being compared to a spaced retrieval condition. A mixed-effects modeling framework was used, enabling the data from the four studies and different outcome measures to be aggregated. RESULTS Across the studies, more words in the repeated spaced retrieval condition were recalled than those in the comparison conditions. This was true regardless of outcome measure. Children with typical language development recalled more words than the children with DLD. Both groups benefited from spaced retrieval, though effects were larger for the group with DLD. Children recalled words as accurately 1 week after learning as they did at the 5-min mark; the two groups were essentially identical in this respect. CONCLUSIONS Overall, the findings support the continued refinement of these types of repeated spaced retrieval procedures, as they may have potential to serve as effective approaches to intervention.
Collapse
Affiliation(s)
- Laurence B Leonard
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA.
| | - Sharon L Christ
- Department of Human Development and Family Studies and Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Patricia Deevy
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Jeffrey D Karpicke
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Christine Weber
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Eileen Haebig
- Department of Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Justin B Kueser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Sofía Souto
- Department of Communication Sciences and Disorders, Butler University, Indianapolis, IN, USA
| | - Windi Krok
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
29
|
Qu J, Hu L, Liu X, Dong J, Yang R, Mei L. The contributions of the left hippocampus and bilateral inferior parietal lobule to form-meaning associative learning. Psychophysiology 2021; 58:e13834. [PMID: 33949705 DOI: 10.1111/psyp.13834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Existing studies have identified crucial roles for the hippocampus and a distributed set of cortical regions (e.g., the inferior parietal cortex) in learning novel words. Nevertheless, researchers have not clearly determined how the hippocampus and cortical regions dynamically interact during novel word learning, especially during form-meaning associative learning. As a method to address this question, we used an online learning paradigm and representational similarity analysis to explore the contributions of the hippocampus and neocortex to form-meaning associative learning. Twenty-nine native Chinese college students were recruited to learn 30 form-meaning pairs, which were repeated 7 times during fMRI scan. Form-meaning associative learning elicited activations in a wide neural network including regions required for word processing (i.e., the bilateral inferior frontal gyrus and the occipitotemporal cortex), regions required for encoding (i.e., the bilateral parahippocampus and hippocampus), and regions required for cognitive control (i.e., the anterior cingulate cortex and dorsolateral prefrontal cortex). More importantly, our study revealed the differential roles of the left hippocampus and bilateral inferior parietal lobule (IPL) in form-meaning associative learning. Specifically, higher pattern similarity in the bilateral IPL in the early learning phase (repetitions 1 to 3) was related to better learning performance, while higher pattern similarity in the left hippocampus in the late learning phase (repetitions 5 to 7) was associated with better learning performance. These findings indicate that the hippocampus and cortical regions (e.g., the IPL) contribute to form-meaning learning in different stages.
Collapse
Affiliation(s)
- Jing Qu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Liyuan Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Xiaoyu Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jie Dong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Leilei Mei
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China.,Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.,Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| |
Collapse
|
30
|
Borodkin K, Livny A, Kushnir T, Tsarfaty G, Maliniak O, Faust M. Linking L2 proficiency and patterns of functional connectivity during L1 word retrieval. BRAIN AND LANGUAGE 2021; 216:104931. [PMID: 33677174 DOI: 10.1016/j.bandl.2021.104931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/29/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Second language (L2) learners differ greatly in language proficiency, which is partially explained by variability in native language (L1) skills. The present fMRI study explored the neural underpinnings of the L1-L2 link. Twenty L2 learners completed a tip-of-the-tongue (TOT) task that required retrieving words in L1. Low-proficiency L2 learners showed greater functional connectivity for correct and TOT responses between the left inferior frontal gyrus and right-sided homologues of the temporoparietal regions that support phonological processing (e.g., supramarginal gyrus), possibly reflecting difficulty with phonological retrieval. High-proficiency L2 learners showed greater connectivity for erroneous responses (TOT in particular) between the left inferior frontal gyrus and regions of left medial temporal lobe (e.g., hippocampus), associated with implicit learning processes. The difference between low- and high-proficiency L2 learners in functional connectivity, which is evident even during L1 processing, may affect L2 learning processes and outcomes.
Collapse
Affiliation(s)
- Katy Borodkin
- Department of Communication Disorders, Sackler Faculty of Medicine, Tel Aviv University, Israel.
| | - Abigail Livny
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Tammar Kushnir
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Omer Maliniak
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel
| | - Miriam Faust
- Department of Psychology, Bar-Ilan University, Ramat Gan, Israel; Gonda Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
31
|
Does signal reduction imply predictive coding in models of spoken word recognition? Psychon Bull Rev 2021; 28:1381-1389. [PMID: 33852158 PMCID: PMC8367925 DOI: 10.3758/s13423-021-01924-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 12/29/2022]
Abstract
Pervasive behavioral and neural evidence for predictive processing has led to claims that language processing depends upon predictive coding. Formally, predictive coding is a computational mechanism where only deviations from top-down expectations are passed between levels of representation. In many cognitive neuroscience studies, a reduction of signal for expected inputs is taken as being diagnostic of predictive coding. In the present work, we show that despite not explicitly implementing prediction, the TRACE model of speech perception exhibits this putative hallmark of predictive coding, with reductions in total lexical activation, total lexical feedback, and total phoneme activation when the input conforms to expectations. These findings may indicate that interactive activation is functionally equivalent or approximant to predictive coding or that caution is warranted in interpreting neural signal reduction as diagnostic of predictive coding.
Collapse
|
32
|
Briggs RG, Lin YH, Dadario NB, Kim SJ, Young IM, Bai MY, Dhanaraj V, Fonseka RD, Hormovas J, Tanglay O, Chakraborty AR, Milligan TM, Abraham CJ, Anderson CD, Palejwala AH, Conner AK, O'Donoghue DL, Sughrue ME. Anatomy and White Matter Connections of the Middle Frontal Gyrus. World Neurosurg 2021; 150:e520-e529. [PMID: 33744423 DOI: 10.1016/j.wneu.2021.03.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The middle frontal gyrus (MFG) is involved in attention, working memory, and language-related processing. A detailed understanding of the subcortical white matter tracts connected within the MFG can facilitate improved navigation of white matter lesions in and around this gyrus and explain the postoperative morbidity after surgery. We aimed to characterize the fiber tracts within the MFG according to their connection to neuroanatomic structures through the use of diffusion spectrum imaging-based fiber tractography and validate the findings by gross anatomic dissection for qualitative visual agreement. METHODS Tractography analysis was completed using diffusion imaging data from 10 healthy, adult subjects enrolled in the Human Connectome Project. We assessed the MFG as a whole component according to its fiber connectivity with other neural regions. Mapping was completed on all tracts within both hemispheres, with the resultant tract volumes used to calculate a lateralization index. A modified Klingler technique was used on 10 postmortem dissections to demonstrate the location and orientation of the major tracts. RESULTS Two major connections of the MFG were identified: the superior longitudinal fasciculus, which connects the MFG to parts of the inferior parietal lobule, posterior temporal lobe, and lateral occipital cortex; and the inferior fronto-occipital fasciculus, which connected the MFG to the lingual gyrus and cuneus. Intra- and intergyral short association, U-shaped fibers were also identified. CONCLUSIONS Subcortical white matter pathways integrated within the MFG include the superior longitudinal fasciculus and inferior fronto-occipital fasciculus. The MFG is implicated in a variety of tasks involving attention and memory, making it an important cortical region. The postoperative neurologic outcomes related to surgery in and around the MFG could be clarified in the context of the anatomy of the fiber bundles highlighted in the present study.
Collapse
Affiliation(s)
- Robert G Briggs
- Department of Neurosurgery, University of Southern California, Los Angeles, California, USA
| | - Yueh-Hsin Lin
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Nicholas B Dadario
- Rutgers Robert Wood Johnson School of Medicine, Rutgers University, New Brunswick, New Jersey, USA
| | - Sihyong J Kim
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Isabella M Young
- Cingulum Research, Cingulum Health, Sydney, New South Wales, Australia
| | - Michael Y Bai
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Vukshitha Dhanaraj
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - R Dineth Fonseka
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Jorge Hormovas
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Onur Tanglay
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia
| | - Arpan R Chakraborty
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ty M Milligan
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Carol J Abraham
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Christopher D Anderson
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Ali H Palejwala
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Andrew K Conner
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Daniel L O'Donoghue
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma, USA
| | - Michael E Sughrue
- Centre for Minimally Invasive Neurosurgery, Prince of Wales Private Hospital, Sydney, New South Wales, Australia.
| |
Collapse
|
33
|
Garagnani M, Kirilina E, Pulvermüller F. Semantic Grounding of Novel Spoken Words in the Primary Visual Cortex. Front Hum Neurosci 2021; 15:581847. [PMID: 33732120 PMCID: PMC7959837 DOI: 10.3389/fnhum.2021.581847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/25/2021] [Indexed: 11/18/2022] Open
Abstract
Embodied theories of grounded semantics postulate that, when word meaning is first acquired, a link is established between symbol (word form) and corresponding semantic information present in modality-specific—including primary—sensorimotor cortices of the brain. Direct experimental evidence documenting the emergence of such a link (i.e., showing that presentation of a previously unknown, meaningless word sound induces, after learning, category-specific reactivation of relevant primary sensory or motor brain areas), however, is still missing. Here, we present new neuroimaging results that provide such evidence. We taught participants aspects of the referential meaning of previously unknown, senseless novel spoken words (such as “Shruba” or “Flipe”) by associating them with either a familiar action or a familiar object. After training, we used functional magnetic resonance imaging to analyze the participants’ brain responses to the new speech items. We found that hearing the newly learnt object-related word sounds selectively triggered activity in the primary visual cortex, as well as secondary and higher visual areas.These results for the first time directly document the formation of a link between the novel, previously meaningless spoken items and corresponding semantic information in primary sensory areas in a category-specific manner, providing experimental support for perceptual accounts of word-meaning acquisition in the brain.
Collapse
Affiliation(s)
- Max Garagnani
- Department of Computing, Goldsmiths, University of London, London, United Kingdom.,Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany
| | - Evgeniya Kirilina
- Neurocomputational Neuroimaging Unit, Freie Universität Berlin, Berlin, Germany.,Department of Neurophysics, Max-Plank Institute for Cognitive and Brain Sciences, Leipzig, Germany
| | - Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany.,Berlin School of Mind and Brain, Humboldt Universität Zu Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Cluster of Excellence "Matters of Activity", Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
34
|
Steber S, Rossi S. The challenge of learning a new language in adulthood: Evidence from a multi-methodological neuroscientific approach. PLoS One 2021; 16:e0246421. [PMID: 33606715 PMCID: PMC7894913 DOI: 10.1371/journal.pone.0246421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/19/2021] [Indexed: 11/18/2022] Open
Abstract
Being proficient in several foreign languages is an essential part of every-day life. In contrast to childhood, learning a new language can be highly challenging for adults. The present study aims at investigating neural mechanisms supporting very initial foreign language learning in adulthood. For this reason, subjects underwent an implicit semantic associative training in which they had to learn new pseudoword-picture pairings. Learning success was measured via a recognition experiment presenting learned versus new pseudoword-picture pairings. Neural correlates were assessed by an innovative multi-methodological approach simultaneously applying electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). Results indicate memory-related processes based on familiarity and mechanisms of cognitive control to be present during initial vocabulary learning. Findings underline the fascinating plasticity of the adult brain during foreign language learning, even after a short semantic training of only 18 minutes as well as the importance of comparing evidence from different neuroscientific methods and behavioral data.
Collapse
Affiliation(s)
- Sarah Steber
- ICONE—Innsbruck Cognitive Neuroscience, Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, Innsbruck, Austria
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Sonja Rossi
- ICONE—Innsbruck Cognitive Neuroscience, Department for Hearing, Speech, and Voice Disorders, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
35
|
Durrant SJ, Johnson JM. Sleep’s Role in Schema Learning and Creative Insights. CURRENT SLEEP MEDICINE REPORTS 2021. [DOI: 10.1007/s40675-021-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purpose of Review
A recent resurgence of interest in schema theory has influenced research on sleep-dependent memory consolidation and led to a new understanding of how schemata might be activated during sleep and play a role in the reorganisation of memories. This review is aimed at synthesising recent findings into a coherent narrative and draw overall conclusions.
Recent Findings
Rapid consolidation of schematic memories has been shown to benefit from an interval containing sleep. These memories have shown reduced reliance on the hippocampus following consolidation in both humans and rodents. Using a variety of methodologies, notably including the DRM paradigm, it has been shown that activation of a schema can increase the rate of false memory as a result of activation of semantic associates during slow wave sleep (SWS). Memories making use of a schema have shown increased activity in the medial prefrontal cortex, which may reflect both the schematic activation itself and a cognitive control component selecting an appropriate schema to use. SWS seems to be involved in assimilation of new memories within existing semantic frameworks and in making memories more explicit, while REM sleep may be more associated with creating entirely novel associations while keeping memories implicit.
Summary
Sleep plays an important role in schematic memory consolidation, with more rapid consolidation, reduced hippocampal involvement, and increased prefrontal involvement as the key characteristics. Both SWS and REM sleep may have a role to play.
Collapse
|
36
|
Jeong H, Li P, Suzuki W, Sugiura M, Kawashima R. Neural mechanisms of language learning from social contexts. BRAIN AND LANGUAGE 2021; 212:104874. [PMID: 33220647 DOI: 10.1016/j.bandl.2020.104874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/27/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Humans learn languages in real-life situations by integrating multiple signals, including linguistic forms, their meanings, and the actions and intentions of speakers. However, little is known about the neural bases underlying the social learning of a second language (L2) in adults. In this study, 36 adults were asked to learn two sets of L2 spoken words through translation versus simulated social interactive videos (social learning). Brain activation during word learning was measured using fMRI. Greater activation was observed in the bilateral superior temporal sulcus, posterior middle temporal gyri, and right inferior parietal lobule during social learning as compared with translation learning. Furthermore, higher activity in the right temporal parietal junction, right hippocampus, and motor areas was observed during the initial stage of social learning, with the more successful performance being at the time of overnight testing. We argue that social learning may strengthen the link from new L2 forms to rich L2 semantic representations wherein memory properties are embodied, multimodal, and richly contextualized.
Collapse
Affiliation(s)
- Hyeonjeong Jeong
- Graduate School of International Cultural Studies, Tohoku University, Sendai, Japan; Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.
| | - Ping Li
- Department of Chinese and Bilingual Studies, Faculty of Humanities, the Hong Kong Polytechnic University, Hong Kong, China
| | | | - Motoaki Sugiura
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan; International Research Institute for Disaster Science, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
37
|
Something old, something new: A review of the literature on sleep-related lexicalization of novel words in adults. Psychon Bull Rev 2020; 28:96-121. [PMID: 32939631 DOI: 10.3758/s13423-020-01809-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2020] [Indexed: 11/08/2022]
Abstract
Word learning is a crucial aspect of human development that depends on the formation and consolidation of novel memory traces. In this paper, we critically review the behavioural research on sleep-related lexicalization of novel words in healthy young adult speakers. We first describe human memory systems, the processes underlying memory consolidation, then we describe the complementary learning systems account of memory consolidation. We then review behavioural studies focusing on novel word learning and sleep-related lexicalization in monolingual samples, while highlighting their relevance to three main theoretical questions. Finally, we review the few studies that have investigated sleep-related lexicalization in L2 speakers. Overall, while several studies suggest that sleep promotes the gradual transformation of initially labile traces into more stable representations, a growing body of work suggests a rich variety of time courses for novel word lexicalization. Moreover, there is a need for more work on sleep-related lexicalization patterns in varied populations, such as L2 speakers and bilingual speakers, and more work on individual differences, to fully understand the boundary conditions of this phenomenon.
Collapse
|
38
|
Decker AL, Duncan K, Finn AS, Mabbott DJ. Children's family income is associated with cognitive function and volume of anterior not posterior hippocampus. Nat Commun 2020; 11:4040. [PMID: 32788583 PMCID: PMC7423938 DOI: 10.1038/s41467-020-17854-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
Children from lower income backgrounds tend to have poorer memory and language abilities than their wealthier peers. It has been proposed that these cognitive gaps reflect the effects of income-related stress on hippocampal structure, but the empirical evidence for this relationship has not been clear. Here, we examine how family income gaps in cognition relate to the anterior hippocampus, given its high sensitivity to stress, versus the posterior hippocampus. We find that anterior (but not posterior) hippocampal volumes positively correlate with family income up to an annual income of ~$75,000. Income-related differences in the anterior (but not posterior) hippocampus also predicted the strength of the gaps in memory and language. These findings add anatomical specificity to current theories by suggesting a stronger relationship between family income and anterior than posterior hippocampal volumes and offer a potential mechanism through which children from different income homes differ cognitively.
Collapse
Affiliation(s)
| | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Amy S Finn
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
39
|
Malins JG, Landi N, Ryherd K, Frijters JC, Magnuson JS, Rueckl JG, Pugh KR, Sevcik R, Morris R. Is that a pibu or a pibo? Children with reading and language deficits show difficulties in learning and overnight consolidation of phonologically similar pseudowords. Dev Sci 2020; 24:e13023. [PMID: 32691904 PMCID: PMC7988620 DOI: 10.1111/desc.13023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 07/04/2020] [Accepted: 07/11/2020] [Indexed: 01/24/2023]
Abstract
Word learning is critical for the development of reading and language comprehension skills. Although previous studies have indicated that word learning is compromised in children with reading disability (RD) or developmental language disorder (DLD), it is less clear how word learning difficulties manifest in children with comorbid RD and DLD. Furthermore, it is unclear whether word learning deficits in RD or DLD include difficulties with offline consolidation of newly learned words. In the current study, we employed an artificial lexicon learning paradigm with an overnight design to investigate how typically developing (TD) children (N = 25), children with only RD (N = 93), and children with both RD and DLD (N = 34) learned and remembered a set of phonologically similar pseudowords. Results showed that compared to TD children, children with RD exhibited: (i) slower growth in discrimination accuracy for cohort item pairs sharing an onset (e.g. pibu‐pibo), but not for rhyming item pairs (e.g. pibu‐dibu); and (ii) lower discrimination accuracy for both cohort and rhyme item pairs on Day 2, even when accounting for differences in Day 1 learning. Moreover, children with comorbid RD and DLD showed learning and retention deficits that extended to unrelated item pairs that were phonologically dissimilar (e.g. pibu‐tupa), suggestive of broader impairments compared to children with only RD. These findings provide insights into the specific learning deficits underlying RD and DLD and motivate future research concerning how children use phonological similarity to guide the organization of new word knowledge.
Collapse
Affiliation(s)
- Jeffrey G Malins
- Department of Psychology, Georgia State University, Atlanta, GA, USA.,Haskins Laboratories, New Haven, CT, USA
| | - Nicole Landi
- Haskins Laboratories, New Haven, CT, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Kayleigh Ryherd
- Haskins Laboratories, New Haven, CT, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Jan C Frijters
- Faculty of Social Sciences, Department of Child and Youth Studies, Brock University, St. Catharines, ON, Canada
| | - James S Magnuson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Jay G Rueckl
- Haskins Laboratories, New Haven, CT, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA.,Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA.,Department of Linguistics, Yale University, New Haven, CT, USA.,Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, USA
| | - Rose Sevcik
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Robin Morris
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
40
|
Ylinen S, Nora A, Service E. Better Phonological Short-Term Memory Is Linked to Improved Cortical Memory Representations for Word Forms and Better Word Learning. Front Hum Neurosci 2020; 14:209. [PMID: 32581751 PMCID: PMC7291706 DOI: 10.3389/fnhum.2020.00209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Language learning relies on both short-term and long-term memory. Phonological short-term memory (pSTM) is thought to play an important role in the learning of novel word forms. However, language learners may differ in their ability to maintain word representations in pSTM during interfering auditory input. We used magnetoencephalography (MEG) to investigate how pSTM capacity in better and poorer pSTM groups is linked to language learning and the maintenance of pseudowords in pSTM. In particular, MEG was recorded while participants maintained pseudowords in pSTM by covert speech rehearsal, and while these brain representations were probed by presenting auditory pseudowords with first or third syllables matching or mismatching the rehearsed item. A control condition included identical stimuli but no rehearsal. Differences in response strength between matching and mismatching syllables were interpreted as the phonological mapping negativity (PMN). While PMN for the first syllable was found in both groups, it was observed for the third syllable only in the group with better pSTM. This suggests that individuals with better pSTM maintained representations of trisyllabic pseudowords more accurately during interference than individuals with poorer pSTM. Importantly, the group with better pSTM learned words faster in a paired-associate word learning task, linking the PMN findings to language learning.
Collapse
Affiliation(s)
- Sari Ylinen
- CICERO Learning, Faculty of Educational Sciences, University of Helsinki, Helsinki, Finland.,Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,BioMag Laboratory, Helsinki University Central Hospital, Helsinki, Finland
| | - Anni Nora
- Department on Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Elisabet Service
- ARiEAL Research Centre, Department of Linguistics and Languages, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
41
|
Xu W, Kolozsvari OB, Oostenveld R, Hämäläinen JA. Rapid changes in brain activity during learning of grapheme-phoneme associations in adults. Neuroimage 2020; 220:117058. [PMID: 32561476 DOI: 10.1016/j.neuroimage.2020.117058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
Learning to associate written letters with speech sounds is crucial for the initial phase of acquiring reading skills. However, little is known about the cortical reorganization for supporting letter-speech sound learning, particularly the brain dynamics during the learning of grapheme-phoneme associations. In the present study, we trained 30 Finnish participants (mean age: 24.33 years, SD: 3.50 years) to associate novel foreign letters with familiar Finnish speech sounds on two consecutive days (first day ~ 50 min; second day ~ 25 min), while neural activity was measured using magnetoencephalography (MEG). Two sets of audiovisual stimuli were used for the training in which the grapheme-phoneme association in one set (Learnable) could be learned based on the different learning cues provided, but not in the other set (Control). The learning progress was tracked at a trial-by-trial basis and used to segment different learning stages for the MEG source analysis. The learning-related changes were examined by comparing the brain responses to Learnable and Control uni/multi-sensory stimuli, as well as the brain responses to learning cues at different learning stages over the two days. We found dynamic changes in brain responses related to multi-sensory processing when grapheme-phoneme associations were learned. Further, changes were observed in the brain responses to the novel letters during the learning process. We also found that some of these learning effects were observed only after memory consolidation the following day. Overall, the learning process modulated the activity in a large network of brain regions, including the superior temporal cortex and the dorsal (parietal) pathway. Most interestingly, middle- and inferior-temporal regions were engaged during multi-sensory memory encoding after the cross-modal relationship was extracted from the learning cues. Our findings highlight the brain dynamics and plasticity related to the learning of letter-speech sound associations and provide a more refined model of grapheme-phoneme learning in reading acquisition.
Collapse
Affiliation(s)
- Weiyong Xu
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Orsolya Beatrix Kolozsvari
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands; NatMEG, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Jarmo Arvid Hämäläinen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland; Jyväskylä Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
42
|
Walker S, Gaskell MG, Knowland VCP, Fletcher FE, Cairney SA, Henderson LM. Growing up with interfering neighbours: the influence of time of learning and vocabulary knowledge on written word learning in children. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191597. [PMID: 32269794 PMCID: PMC7137956 DOI: 10.1098/rsos.191597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/27/2020] [Indexed: 06/11/2023]
Abstract
Evidence suggests that new vocabulary undergoes a period of strengthening and integration offline, particularly during sleep. Practical questions remain, however, including whether learning closer to bedtime can optimize consolidation, and whether such an effect varies with vocabulary ability. To examine this, children aged 8-12-years-old (n 59) were trained on written novel forms (e.g. BANARA) in either the morning (long delay) or the evening (short delay). Immediately after training and the next day, lexical competition (a marker of integration) was assessed via speeded semantic decisions to neighbouring existing words (e.g. BANANA); explicit memory was measured via recognition and recall tasks. There were no main effects indicating performance changes across sleep for any task, counter to studies of spoken word learning. However, a significant interaction was found, such that children with poorer vocabulary showed stronger lexical competition on the day after learning if there was a short delay between learning and sleep. Furthermore, while poorer vocabulary was associated with slower novel word recognition speed before and after sleep for the long delay group, this association was only present before sleep for the short delay group. Thus, weak vocabulary knowledge compromises novel word acquisition, and when there is a longer period of post-learning wake, this disadvantage remains after a consolidation opportunity. However, when sleep occurs soon after learning, consolidation processes can compensate for weaker encoding and permit lexical integration. These data provide preliminary suggestion that children with poorer vocabulary may benefit from learning new words closer to bedtime.
Collapse
Affiliation(s)
| | | | | | | | | | - L. M. Henderson
- Department of Psychology, University of York, York YO10 5DD, UK
| |
Collapse
|
43
|
Gosselke Berthelsen S, Horne M, Shtyrov Y, Roll M. Different neural mechanisms for rapid acquisition of words with grammatical tone in learners from tonal and non-tonal backgrounds: ERP evidence. Brain Res 2020; 1729:146614. [DOI: 10.1016/j.brainres.2019.146614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/16/2019] [Accepted: 12/15/2019] [Indexed: 11/17/2022]
|
44
|
Warren DE, Roembke TC, Covington NV, McMurray B, Duff MC. Cross-Situational Statistical Learning of New Words Despite Bilateral Hippocampal Damage and Severe Amnesia. Front Hum Neurosci 2020; 13:448. [PMID: 32009916 PMCID: PMC6971191 DOI: 10.3389/fnhum.2019.00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/05/2019] [Indexed: 11/18/2022] Open
Abstract
Word learning requires learners to bind together arbitrarily-related phonological, visual, and conceptual information. Prior work suggests that this binding can be robustly achieved via incidental cross-situational statistical exposure to words and referents. When cross-situational statistical learning (CSSL) is tested in the laboratory, there is no information on any given trial to identify the referent of a novel word. However, by tracking which objects co-occur with each word across trials, learners may acquire mappings through statistical association. While CSSL behavior is well-characterized, its brain correlates are not. The arbitrary nature of CSSL mappings suggests hippocampal involvement, but the incremental, statistical nature of the learning raises the possibility of neocortical or procedural learning systems. Prior studies have shown that neurological patients with hippocampal pathology have word-learning impairments, but this has not been tested in a statistical learning paradigm. Here, we used a neuropsychological approach to test whether patients with bilateral hippocampal pathology (N = 3) could learn new words in a CSSL paradigm. In the task, patients and healthy comparison participants completed a CSSL word-learning task in which they acquired eight word/object mappings. During each trial of the CSSL task, participants saw two objects on a computer display, heard one novel word, and selected the most likely referent. Across trials, words were 100% likely to co-occur with their referent, but only 14.3% likely with non-referents. Two of three amnesic patients learned the associations between objects and word forms, although performance was impaired relative to healthy comparison participants. Our findings show that the hippocampus is not strictly necessary for CSSL for words, although it may facilitate such learning. This is consistent with a hybrid account of CSSL supported by implicit and explicit memory systems, and may have translational applications for remediation of (word-) learning deficits in neurological populations with hippocampal pathology.
Collapse
Affiliation(s)
- David E Warren
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tanja C Roembke
- Institute of Psychology, RWTH Aachen University, Aachen, Germany
| | - Natalie V Covington
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States
| | - Bob McMurray
- Psychological and Brain Sciences, University of Iowa, Iowa, IA, United States
| | - Melissa C Duff
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
45
|
Qin Z, Zhang C. The effect of overnight consolidation in the perceptual learning of non-native tonal contrasts. PLoS One 2019; 14:e0221498. [PMID: 31830045 PMCID: PMC6907771 DOI: 10.1371/journal.pone.0221498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Sleep-mediated overnight consolidation has been found to facilitate perceptual learning by promoting learners’ generalization across talkers in their perception of novel segmental categories. Lexical tone is characterized by high variability across talkers, and displays dynamic change over time. For this reason, it remains unclear whether a similar effect of overnight consolidation would be found for perceptual learning of novel tonal contrasts. Thus, this study aims to examine whether overnight consolidation facilitates talker-independent learning of lexical tones in the identification and discrimination of novel Cantonese level tones by Mandarin listeners. Two groups of Mandarin listeners were perceptually trained either in the morning or in the evening. Listeners were trained in a tone identification (ID) task with feedback using stimuli produced by a trained talker. Their post-training changes and generalization to a novel talker were then tested in the ID and AX discrimination tasks using stimuli produced by trained and untrained talkers in three posttests following training: immediately after training, 12-hour delay, and 24-hour delay. While the evening group slept between the first and second posttests, the morning group did not. The accuracy rates in the ID task showed that the evening group showed an improved trend, predicted by their individual sleep time, in identifying the level tones produced by both the trained and untrained talkers; in contrast, the morning group showed a declining trend. The d-prime scores in the AX discrimination task did not show different patterns between the two groups. The finding of sleep-related identification changes over time suggests that overnight consolidation might have facilitated tone learning of stimuli produced by the novel talker and eventually facilitated the formation of a more talker-independent representation of novel tone categories in long-term memory. The results are discussed in light of the features of lexical tones to shed light on the mechanism of phonetic learning.
Collapse
Affiliation(s)
- Zhen Qin
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Center for Language, Cognition, and Neuroscience, The Hong Kong Polytechnic University, Hong Kong SAR, China
- * E-mail: (CCZ); (ZQ)
| | - Caicai Zhang
- Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Center for Language, Cognition, and Neuroscience, The Hong Kong Polytechnic University, Hong Kong SAR, China
- * E-mail: (CCZ); (ZQ)
| |
Collapse
|
46
|
Bormann T, Seyboth M, Machleb F, Weiller C. Learning of novel compound nouns - A variant of lexical learning that requires intact verbal short-term memory. Cortex 2019; 124:23-32. [PMID: 31821906 DOI: 10.1016/j.cortex.2019.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/15/2019] [Accepted: 08/26/2019] [Indexed: 10/25/2022]
Abstract
Verbal short-term memory (vSTM) plays a crucial role in word learning, and patients with impaired vSTM have been demonstrated to fail on learning novel word forms. Word learning has exclusively been investigated with previously unknown or pseudowords. Several languages, however, make use of composition, i.e., combining morphemes into compounds. On the one hand, this is comparable to pseudoword learning because known elements are combined into novel representations, on the other hand compounds differ from pseudowords learning because they consist of previously known (lexical) elements. This may help to identify the role of vSTM in word learning. The present paper documents impaired word learning in a participant with impaired vSTM but also assessed, for the first time, the acquisition of novel noun-noun compounds. In two independent experiments, the participant was impaired in learning nonsense compounds ("ball door") and the names of previously unknown tools ("nail puller"; "drill bit"). Control experiments revealed her impairment of word learning and novel compound noun learning to be selective: IS could acquire information about the novel tools' function and purpose and was unimpaired in several experiments on paired associate learning including different stimuli. The results suggest that vSTM is involved in variants of lexical learning such as compound noun acquisition. Implications for the modeling of the relationship between vSTM and word learning are discussed.
Collapse
Affiliation(s)
- Tobias Bormann
- Klinik für Neurologie und Neurophysiologie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert- Ludwigs-Universität Freiburg, Germany.
| | - Margret Seyboth
- Psycholinguistik, Philosophische Fakultät, Universität Erfurt, Germany
| | - Franziska Machleb
- Psycholinguistik, Philosophische Fakultät, Universität Erfurt, Germany; Allgemeine Psychologie und Instruktionspsychologie, Erziehungswissenschaftliche Fakultät, Universität Erfurt, Germany
| | - Cornelius Weiller
- Klinik für Neurologie und Neurophysiologie, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert- Ludwigs-Universität Freiburg, Germany; Freiburg Brain Imaging, Universitätsklinikum Freiburg, Medizinische Fakultät, Albert Ludwigs-Universität Freiburg, Germany; "BrainLinks BrainTools" Cluster of Excellence, Albert- Ludwigs-Universität Freiburg, Germany
| |
Collapse
|
47
|
Fargier R, Laganaro M. Neural dynamics of the production of newly acquired words relative to well-known words. Brain Res 2019; 1727:146557. [PMID: 31738889 DOI: 10.1016/j.brainres.2019.146557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022]
Abstract
An adult continues acquiring new lexical entries in everyday life. Brain networks and processes at play when producing newly learnt words might be similar to well-known words, yet some processes are bound to be slower. Here, we compared the neural dynamics of producing newly acquired words with those of well-known frequent words, both qualitatively and quantitatively, using event-related potentials (ERPs) associated to high-density microstate analyses. ERPs revealed several temporal windows with differences in waveform amplitudes, which correspond to enhanced duration of similar microstates for newly acquired words compared to well-known words. The time-periods of these ERP modulations converged to suggest that both lexical processes and word form encoding are slowed down for words that have been learned recently, but that the same brain processes are implemented as for well-known words.
Collapse
Affiliation(s)
| | - Marina Laganaro
- Faculty of Psychology and Educational Sciences, University of Geneva, Switzerland
| |
Collapse
|
48
|
Storkel HL, Komesidou R, Pezold MJ, Pitt AR, Fleming KK, Romine RS. The Impact of Dose and Dose Frequency on Word Learning by Kindergarten Children With Developmental Language Disorder During Interactive Book Reading. Lang Speech Hear Serv Sch 2019; 50:518-539. [PMID: 31600474 PMCID: PMC7210430 DOI: 10.1044/2019_lshss-voia-18-0131] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose The goal was to determine whether interactive book reading outcomes for children with developmental language disorder (DLD) were affected by manipulation of dose (i.e., the number of exposures to the target word during a book reading session) and dose frequency (i.e., the number of repeated book reading sessions) and whether pretreatment factors predicted treatment response variation. Method Thirty-four kindergarten children with DLD (aged 5;0–6;2 [years;months]) were taught 1 set of words using the Dose 6 and Dose Frequency 6 format from a prior study (Storkel, Voelmle, et al., 2017) and taught a different set of words using an alternative format, either Dose 4 × Dose Frequency 9 or Dose 9 × Dose Frequency 4, determined through random assignment. Word learning was tracked for each treatment via a definition task prior to, during, and after treatment. Results Results showed that children with DLD learned a significant number of words during treatment regardless of the dose and dose frequency format but that significant forgetting of newly learned words occurred in all formats once treatment was withdrawn. Individual differences in word learning were related to Clinical Evaluation of Language Fundamentals Core Language and Understanding Spoken Paragraphs scores. Conclusion When administered at an adequate intensity, variation in the dose and dose frequency of interactive book reading does not appear to influence word learning by children with DLD. Although interactive book reading continues to show promise as an effective word learning intervention for children with DLD, further development is needed to enhance the effectiveness of this treatment approach. Supplemental Material https://doi.org/10.23641/asha.9745181
Collapse
Affiliation(s)
- Holly L Storkel
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence
| | - Rouzana Komesidou
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence
| | - Mollee J Pezold
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence
| | - Adrienne R Pitt
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence
| | | | | |
Collapse
|
49
|
Li Z, Li C, Liang Y, Wang K, Zhang W, Chen R, Wu Q, Zhang X. Altered Functional Connectivity and Brain Network Property in Pregnant Women With Cleft Fetuses. Front Psychol 2019; 10:2235. [PMID: 31649585 PMCID: PMC6795235 DOI: 10.3389/fpsyg.2019.02235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Non-syndromic clefts of the lip and/or palate (NSCLP) is the most common congenital anomaly in the craniofacial region. NSCLP is a highly gene-associated malformation. We speculate that pregnant women with NSCLP fetuses (pregnancies with NSCLP) may have specific brain changes during pregnancy. To explore characteristic brain function changes of pregnancies with NSCLP, we analyzed resting-state fMRI (rs-fMRI) data of 42 pregnant women (21 pregnancies with NSCLP and 21 pregnancies with normal fetuses) to compare intergroup differences of (fractional) amplitude of low frequency fluctuations (fALFF/ALFF), regional homogeneity (Reho), functional connectivity (FC) and network topological properties. Compared with the control group, increased ALFF in the left hippocampus, the right fusiform and the left anterior cingulate (ACG), increased Reho in left middle occipital gyrus (MOG) and right medial frontal gyrus (MFG) were found for pregnancies with NSCLP. Meanwhile, FC between the left supramarginal gyrus (SMG) and bilateral olfactory cortex (OLF), FC between left precentral gyrus (PreCG) and right MFG, FC between right inferior frontal gyrus (IFG) and left inferior temporal gyrus (ITG) were enhanced in pregnancies with NSCLP. Besides, FC between left PreCG and left amygdala, bilateral para-hippocampal gyrus, FC between left amygdala and left MFG, right IFG were decreased. Graph theory-based analysis explored increased degree centrality (DC), betweenness centrality (BC) and nodal efficiency (Ne) in the left ITG and left SMG for pregnancies with NSCLP. Pregnancies with NSCLP has widespread decreased FC within neural networks of speech and language, which indicated that they were more likely to be associated with defects in speech and language skills. At the same time, increased topological indices showed that speech and language related regions played dominant role in their brain networks. These findings may provide clues for early detection of NSCLP fetuses.
Collapse
Affiliation(s)
- Zhen Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuting Liang
- Department of Radiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Keyang Wang
- Department of Radiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Wenjing Zhang
- Department of Oral and Maxillofacial Plastic and Trauma Surgery, Center of Cleft Lip and Palate Treatment, Beijing Stomatological Hospital, Beijing, China
| | - Renji Chen
- Department of Oral and Maxillofacial Plastic and Trauma Surgery, Center of Cleft Lip and Palate Treatment, Beijing Stomatological Hospital, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Mkrtychian N, Blagovechtchenski E, Kurmakaeva D, Gnedykh D, Kostromina S, Shtyrov Y. Concrete vs. Abstract Semantics: From Mental Representations to Functional Brain Mapping. Front Hum Neurosci 2019; 13:267. [PMID: 31427938 PMCID: PMC6687846 DOI: 10.3389/fnhum.2019.00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
The nature of abstract and concrete semantics and differences between them have remained a debated issue in psycholinguistic and cognitive studies for decades. Most of the available behavioral and neuroimaging studies reveal distinctions between these two types of semantics, typically associated with a so-called “concreteness effect.” Many attempts have been made to explain these differences using various approaches, from purely theoretical linguistic and cognitive frameworks to neuroimaging experiments. In this brief overview, we will try to provide a snapshot of these diverse views and relationships between them and highlight the crucial issues preventing this problem from being solved. We will argue that one potentially beneficial way forward is to identify the neural mechanisms underpinning acquisition of the different types of semantics (e.g., by using neurostimulation techniques to establish causal relationships), which may help explain the distinctions found between the processing of concrete and abstract semantics.
Collapse
Affiliation(s)
- Nadezhda Mkrtychian
- Laboratory of Behavioral Neurodynamics, St. Petersburg State University, Saint Petersburg, Russia
| | - Evgeny Blagovechtchenski
- Laboratory of Behavioral Neurodynamics, St. Petersburg State University, Saint Petersburg, Russia
| | - Diana Kurmakaeva
- Laboratory of Behavioral Neurodynamics, St. Petersburg State University, Saint Petersburg, Russia
| | - Daria Gnedykh
- Laboratory of Behavioral Neurodynamics, St. Petersburg State University, Saint Petersburg, Russia
| | - Svetlana Kostromina
- Laboratory of Behavioral Neurodynamics, St. Petersburg State University, Saint Petersburg, Russia
| | - Yury Shtyrov
- Laboratory of Behavioral Neurodynamics, St. Petersburg State University, Saint Petersburg, Russia.,Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| |
Collapse
|