1
|
Ashjaei S, Behroozmand R, Fozdar S, Farrar R, Arjmandi M. Vocal control and speech production in cochlear implant listeners: A review within auditory-motor processing framework. Hear Res 2024; 453:109132. [PMID: 39447319 DOI: 10.1016/j.heares.2024.109132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
A comprehensive literature review is conducted to summarize and discuss prior findings on how cochlear implants (CI) affect the users' abilities to produce and control vocal and articulatory movements within the auditory-motor integration framework of speech. Patterns of speech production pre- versus post-implantation, post-implantation adjustments, deviations from the typical ranges of speakers with normal hearing (NH), the effects of switching the CI on and off, as well as the impact of altered auditory feedback on vocal and articulatory speech control are discussed. Overall, findings indicate that CIs enhance the vocal and articulatory control aspects of speech production at both segmental and suprasegmental levels. While many CI users achieve speech quality comparable to NH individuals, some features still deviate in a group of CI users even years post-implantation. More specifically, contracted vowel space, increased vocal jitter and shimmer, longer phoneme and utterance durations, shorter voice onset time, decreased contrast in fricative production, limited prosodic patterns, and reduced intelligibility have been reported in subgroups of CI users compared to NH individuals. Significant individual variations among CI users have been observed in both the pace of speech production adjustments and long-term speech outcomes. Few controlled studies have explored how the implantation age and the duration of CI use influence speech features, leaving substantial gaps in our understanding about the effects of spectral resolution, auditory rehabilitation, and individual auditory-motor processing abilities on vocal and articulatory speech outcomes in CI users. Future studies under the auditory-motor integration framework are warranted to determine how suboptimal CI auditory feedback impacts auditory-motor processing and precise vocal and articulatory control in CI users.
Collapse
Affiliation(s)
- Samin Ashjaei
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Roozbeh Behroozmand
- Speech Neuroscience Lab, Department of Speech, Language, and Hearing, Callier Center for Communication Disorders, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 2811 North Floyd Road, Richardson, TX 75080, USA
| | - Shaivee Fozdar
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Reed Farrar
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA
| | - Meisam Arjmandi
- Translational Auditory Neuroscience Lab, Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, 1705 College Street, Columbia, SC 29208, USA; Institute for Mind and Brain, University of South Carolina, Barnwell Street, Columbia, SC 29208, USA.
| |
Collapse
|
2
|
Yang F, Zhu H, Cao X, Li H, Fang X, Yu L, Li S, Wu Z, Li C, Zhang C, Tian X. Impaired motor-to-sensory transformation mediates auditory hallucinations. PLoS Biol 2024; 22:e3002836. [PMID: 39361912 PMCID: PMC11449488 DOI: 10.1371/journal.pbio.3002836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/06/2024] [Indexed: 10/05/2024] Open
Abstract
Distinguishing reality from hallucinations requires efficient monitoring of agency. It has been hypothesized that a copy of motor signals, termed efference copy (EC) or corollary discharge (CD), suppresses sensory responses to yield a sense of agency; impairment of the inhibitory function leads to hallucinations. However, how can the sole absence of inhibition yield positive symptoms of hallucinations? We hypothesize that selective impairments in functionally distinct signals of CD and EC during motor-to-sensory transformation cause the positive symptoms of hallucinations. In an electroencephalography (EEG) experiment with a delayed articulation paradigm in schizophrenic patients with (AVHs) and without auditory verbal hallucinations (non-AVHs), we found that preparing to speak without knowing the contents (general preparation) did not suppress auditory responses in both patient groups, suggesting the absent of inhibitory function of CD. Whereas, preparing to speak a syllable (specific preparation) enhanced the auditory responses to the prepared syllable in non-AVHs, whereas AVHs showed enhancement in responses to unprepared syllables, opposite to the observations in the normal population, suggesting that the enhancement function of EC is not precise in AVHs. A computational model with a virtual lesion of an inhibitory inter-neuron and disproportional sensitization of auditory cortices fitted the empirical data and further quantified the distinct impairments in motor-to-sensory transformation in AVHs. These results suggest that "broken" CD plus "noisy" EC causes erroneous monitoring of the imprecise generation of internal auditory representation and yields auditory hallucinations. Specific impairments in functional granularity of motor-to-sensory transformation mediate positivity symptoms of agency abnormality in mental disorders.
Collapse
Affiliation(s)
- Fuyin Yang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Hao Zhu
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning; Division of Arts and Sciences, New York University Shanghai, Shanghai, China
| | - Xinyi Cao
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Fang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingfang Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siqi Li
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Zenan Wu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xing Tian
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning; Division of Arts and Sciences, New York University Shanghai, Shanghai, China
| |
Collapse
|
3
|
Chung LKH, Jack BN, Griffiths O, Pearson D, Luque D, Harris AWF, Spencer KM, Le Pelley ME, So SHW, Whitford TJ. Neurophysiological evidence of motor preparation in inner speech and the effect of content predictability. Cereb Cortex 2023; 33:11556-11569. [PMID: 37943760 PMCID: PMC10751289 DOI: 10.1093/cercor/bhad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 11/12/2023] Open
Abstract
Self-generated overt actions are preceded by a slow negativity as measured by electroencephalogram, which has been associated with motor preparation. Recent studies have shown that this neural activity is modulated by the predictability of action outcomes. It is unclear whether inner speech is also preceded by a motor-related negativity and influenced by the same factor. In three experiments, we compared the contingent negative variation elicited in a cue paradigm in an active vs. passive condition. In Experiment 1, participants produced an inner phoneme, at which an audible phoneme whose identity was unpredictable was concurrently presented. We found that while passive listening elicited a late contingent negative variation, inner speech production generated a more negative late contingent negative variation. In Experiment 2, the same pattern of results was found when participants were instead asked to overtly vocalize the phoneme. In Experiment 3, the identity of the audible phoneme was made predictable by establishing probabilistic expectations. We observed a smaller late contingent negative variation in the inner speech condition when the identity of the audible phoneme was predictable, but not in the passive condition. These findings suggest that inner speech is associated with motor preparatory activity that may also represent the predicted action-effects of covert actions.
Collapse
Affiliation(s)
- Lawrence K-h Chung
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
- Department of Psychology, The Chinese University of Hong Kong, 3/F Sino Building, Chung Chi Road, Shatin, New Territories, Hong Kong SAR, China
| | - Bradley N Jack
- Research School of Psychology, Australian National University, Building 39, Science Road, Canberra ACT 2601, Australia
| | - Oren Griffiths
- School of Psychological Sciences, University of Newcastle, Behavioural Sciences Building, University Drive, Callaghan NSW 2308, Australia
| | - Daniel Pearson
- School of Psychology, University of Sydney, Griffith Taylor Building, Manning Road, Camperdown NSW 2006, Australia
| | - David Luque
- Department of Basic Psychology and Speech Therapy, University of Malaga, Faculty of Psychology, Dr Ortiz Ramos Street, 29010 Malaga, Spain
| | - Anthony W F Harris
- Westmead Clinical School, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| | - Kevin M Spencer
- Research Service, Veterans Affairs Boston Healthcare System, and Department of Psychiatry, Harvard Medical School, 150 South Huntington Avenue, Boston MA 02130, United States
| | - Mike E Le Pelley
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
| | - Suzanne H-w So
- Department of Psychology, The Chinese University of Hong Kong, 3/F Sino Building, Chung Chi Road, Shatin, New Territories, Hong Kong SAR, China
| | - Thomas J Whitford
- School of Psychology, University of New South Wales (UNSW Sydney), Mathews Building, Library Walk, Kensington NSW 2052, Australia
- Brain Dynamics Centre, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead NSW 2145, Australia
| |
Collapse
|
4
|
Nalborczyk L, Longcamp M, Bonnard M, Serveau V, Spieser L, Alario FX. Distinct neural mechanisms support inner speaking and inner hearing. Cortex 2023; 169:161-173. [PMID: 37922641 DOI: 10.1016/j.cortex.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 11/07/2023]
Abstract
Humans have the ability to mentally examine speech. This covert form of speech production is often accompanied by sensory (e.g., auditory) percepts. However, the cognitive and neural mechanisms that generate these percepts are still debated. According to a prominent proposal, inner speech has at least two distinct phenomenological components: inner speaking and inner hearing. We used transcranial magnetic stimulation to test whether these two phenomenologically distinct processes are supported by distinct neural mechanisms. We hypothesised that inner speaking relies more strongly on an online motor-to-sensory simulation that constructs a multisensory experience, whereas inner hearing relies more strongly on a memory-retrieval process, where the multisensory experience is reconstructed from stored motor-to-sensory associations. Accordingly, we predicted that the speech motor system will be involved more strongly during inner speaking than inner hearing. This would be revealed by modulations of TMS evoked responses at muscle level following stimulation of the lip primary motor cortex. Overall, data collected from 31 participants corroborated this prediction, showing that inner speaking increases the excitability of the primary motor cortex more than inner hearing. Moreover, this effect was more pronounced during the inner production of a syllable that strongly recruits the lips (vs. a syllable that recruits the lips to a lesser extent). These results are compatible with models assuming that the primary motor cortex is involved during inner speech and contribute to clarify the neural implementation of the fundamental ability of silently speaking in one's mind.
Collapse
Affiliation(s)
- Ladislas Nalborczyk
- Aix Marseille Univ, CNRS, LPC, Marseille, France; Aix Marseille Univ, CNRS, LNC, Marseille, France.
| | | | | | | | | | | |
Collapse
|
5
|
Chu Q, Ma O, Hang Y, Tian X. Dual-stream cortical pathways mediate sensory prediction. Cereb Cortex 2023:7169133. [PMID: 37197767 DOI: 10.1093/cercor/bhad168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/19/2023] Open
Abstract
Predictions are constantly generated from diverse sources to optimize cognitive functions in the ever-changing environment. However, the neural origin and generation process of top-down induced prediction remain elusive. We hypothesized that motor-based and memory-based predictions are mediated by distinct descending networks from motor and memory systems to the sensory cortices. Using functional magnetic resonance imaging (fMRI) and a dual imagery paradigm, we found that motor and memory upstream systems activated the auditory cortex in a content-specific manner. Moreover, the inferior and posterior parts of the parietal lobe differentially relayed predictive signals in motor-to-sensory and memory-to-sensory networks. Dynamic causal modeling of directed connectivity revealed selective enabling and modulation of connections that mediate top-down sensory prediction and ground the distinctive neurocognitive basis of predictive processing.
Collapse
Affiliation(s)
- Qian Chu
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, Division of Arts and Sciences, New York University Shanghai, Shanghai 200126, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Max Planck-University of Toronto Centre for Neural Science and Technology, Toronto, ON M5S 2E4, Canada
| | - Ou Ma
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Yuqi Hang
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Department of Administration, Leadership, and Technology, Steinhardt School of Culture, Education, and Human Development, New York University, New York, NY 10003, United States
| | - Xing Tian
- Shanghai Frontiers Science Center of Artificial Intelligence and Deep Learning, Division of Arts and Sciences, New York University Shanghai, Shanghai 200126, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Zhang W, Yang F, Tian X. Functional connectivity between parietal and temporal lobes mediates internal forward models during speech production. BRAIN AND LANGUAGE 2023; 240:105266. [PMID: 37105004 DOI: 10.1016/j.bandl.2023.105266] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/07/2023]
Abstract
Internal forward models hypothesize functional links between motor and sensory systems for predicting the consequences of actions. Recently, the cascaded theory proposes that somatosensory estimation in the inferior parietal lobe (IPL) can be a relay computational structure, converting motor signals into predictions of auditory consequences in a serial processing manner during speech production. The study used fMRI with functional connectivity (FC) analyses to investigate the proposed cascaded processes using three speech tasks: overt articulation (OA), silent articulation (SA) and imagined articulation (IA). The FC results showed that connectivity between aIPL and STG was increased in OA compared with SA, suggesting that the relationship between somatosensory and auditory estimations can be modulated by speech tasks. Moreover, stronger connectivity between IFGoper and pIPL, and between pIPL and STG were observed in SA and IA compared with OA. These results are consistent with a cascaded process in the internal forward models.
Collapse
Affiliation(s)
- Wenjia Zhang
- Key Laboratory for Artificial Intelligence and Cognitive Neuroscience of Language, Xi'an International Studies University, Xi'an, China; NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China; Division of Arts and Sciences, New York University Shanghai, Shanghai, China.
| | - Fuyin Yang
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China; Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Xing Tian
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China; Division of Arts and Sciences, New York University Shanghai, Shanghai, China.
| |
Collapse
|
7
|
Ménard L, Beaudry L, Perrier P. Effects of somatosensory perturbation on the perception of French /u/. JASA EXPRESS LETTERS 2023; 3:2887654. [PMID: 37125874 DOI: 10.1121/10.0017933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
In a study of whether somatosensory feedback related to articulatory configuration is involved in speech perception, 30 French-speaking adults performed a speech discrimination task in which vowel pairs along the French /u/ (rounded vowel requiring a small lip area) to /œ/ (rounded vowel associated with larger lip area) continuum were used as stimuli. Listeners had to perform the test in two conditions: with a 2-cm-diameter lip-tube in place (mimicking /œ/) and without the lip-tube (neutral lip position). Results show that, in the lip-tube condition, listeners perceived more stimuli as /œ/, in line with the proposal that an auditory-somatosensory interaction exists.
Collapse
Affiliation(s)
- Lucie Ménard
- Laboratoire de Phonétique, Université du Québec à Montréal, Center for Research on Brain, Language, and Music, CP. 8888, succ. Centre-Ville, Montreal, Québec H3C 3P8, Canada
| | - Lambert Beaudry
- Laboratoire de Phonétique, Université du Québec à Montréal, Center for Research on Brain, Language, and Music, CP. 8888, succ. Centre-Ville, Montreal, Québec H3C 3P8, Canada
| | - Pascal Perrier
- Université Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble Institut National Polytechnique (INP), Institute of Engineering, and GIPSA-Lab, 38000 Grenoble, , ,
| |
Collapse
|
8
|
Soroush PZ, Herff C, Ries SK, Shih JJ, Schultz T, Krusienski DJ. The nested hierarchy of overt, mouthed, and imagined speech activity evident in intracranial recordings. Neuroimage 2023; 269:119913. [PMID: 36731812 DOI: 10.1016/j.neuroimage.2023.119913] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/05/2023] [Accepted: 01/29/2023] [Indexed: 02/01/2023] Open
Abstract
Recent studies have demonstrated that it is possible to decode and synthesize various aspects of acoustic speech directly from intracranial measurements of electrophysiological brain activity. In order to continue progressing toward the development of a practical speech neuroprosthesis for the individuals with speech impairments, better understanding and modeling of imagined speech processes are required. The present study uses intracranial brain recordings from participants that performed a speaking task with trials consisting of overt, mouthed, and imagined speech modes, representing various degrees of decreasing behavioral output. Speech activity detection models are constructed using spatial, spectral, and temporal brain activity features, and the features and model performances are characterized and compared across the three degrees of behavioral output. The results indicate the existence of a hierarchy in which the relevant channels for the lower behavioral output modes form nested subsets of the relevant channels from the higher behavioral output modes. This provides important insights for the elusive goal of developing more effective imagined speech decoding models with respect to the better-established overt speech decoding counterparts.
Collapse
|
9
|
Lu L, Han M, Zou G, Zheng L, Gao JH. Common and distinct neural representations of imagined and perceived speech. Cereb Cortex 2022; 33:6486-6493. [PMID: 36587299 DOI: 10.1093/cercor/bhac519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 01/02/2023] Open
Abstract
Humans excel at constructing mental representations of speech streams in the absence of external auditory input: the internal experience of speech imagery. Elucidating the neural processes underlying speech imagery is critical to understanding this higher-order brain function in humans. Here, using functional magnetic resonance imaging, we investigated the shared and distinct neural correlates of imagined and perceived speech by asking participants to listen to poems articulated by a male voice (perception condition) and to imagine hearing poems spoken by that same voice (imagery condition). We found that compared to baseline, speech imagery and perception activated overlapping brain regions, including the bilateral superior temporal gyri and supplementary motor areas. The left inferior frontal gyrus was more strongly activated by speech imagery than by speech perception, suggesting functional specialization for generating speech imagery. Although more research with a larger sample size and a direct behavioral indicator is needed to clarify the neural systems underlying the construction of complex speech imagery, this study provides valuable insights into the neural mechanisms of the closely associated but functionally distinct processes of speech imagery and perception.
Collapse
Affiliation(s)
- Lingxi Lu
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing 100083, China
| | - Meizhen Han
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Guangyuan Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Li Zheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.,Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.,National Biomedical Imaging Center, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Skipper JI. A voice without a mouth no more: The neurobiology of language and consciousness. Neurosci Biobehav Rev 2022; 140:104772. [PMID: 35835286 DOI: 10.1016/j.neubiorev.2022.104772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022]
Abstract
Most research on the neurobiology of language ignores consciousness and vice versa. Here, language, with an emphasis on inner speech, is hypothesised to generate and sustain self-awareness, i.e., higher-order consciousness. Converging evidence supporting this hypothesis is reviewed. To account for these findings, a 'HOLISTIC' model of neurobiology of language, inner speech, and consciousness is proposed. It involves a 'core' set of inner speech production regions that initiate the experience of feeling and hearing words. These take on affective qualities, deriving from activation of associated sensory, motor, and emotional representations, involving a largely unconscious dynamic 'periphery', distributed throughout the whole brain. Responding to those words forms the basis for sustained network activity, involving 'default mode' activation and prefrontal and thalamic/brainstem selection of contextually relevant responses. Evidence for the model is reviewed, supporting neuroimaging meta-analyses conducted, and comparisons with other theories of consciousness made. The HOLISTIC model constitutes a more parsimonious and complete account of the 'neural correlates of consciousness' that has implications for a mechanistic account of mental health and wellbeing.
Collapse
|
11
|
Liang Q, Li J, Zheng S, Liao J, Huang R. Dynamic Causal Modelling of Hierarchical Planning. Neuroimage 2022; 258:119384. [PMID: 35709949 DOI: 10.1016/j.neuroimage.2022.119384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
Hierarchical planning (HP) is a strategy that optimizes the planning by storing the steps towards the goal (lower-level planning) into subgoals (higher-level planning). In the framework of model-based reinforcement learning, HP requires the computation through the transition value between higher-level hierarchies. Previous study identified the dmPFC, PMC and SPL were involved in the computation process of HP respectively. However, it is still unclear about how these regions interaction with each other to support the computation in HP, which could deepen our understanding about the implementation of plan algorithm in hierarchical environment. To address this question, we conducted an fMRI experiment using a virtual subway navigation task. We identified the activity of the dmPFC, premotor cortex (PMC) and superior parietal lobe (SPL) with general linear model (GLM) in HP. Then, Dynamic Causal Modelling (DCM) was performed to quantify the influence of the higher- and lower-planning on the connectivity between the brain areas identified by the GLM. The strongest modulation effect of the higher-level planning was found on the dmPFC→right PMC connection. Furthermore, using Parametric Empirical Bayes (PEB), we found the modulation of higher-level planning on the dmPFC→right PMC and right PMC→SPL connections could explain the individual difference of the response time. We conclude that the dmPFC-related connectivity takes the response to the higher-level planning, while the PMC acts as the bridge between the higher-level planning to behavior outcome.
Collapse
Affiliation(s)
- Qunjun Liang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China
| | - Jinhui Li
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China
| | - Senning Zheng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China
| | - Jiajun Liao
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational Science, South China Normal University, Guangzhou, China..
| |
Collapse
|
12
|
Nalborczyk L, Debarnot U, Longcamp M, Guillot A, Alario FX. The Role of Motor Inhibition During Covert Speech Production. Front Hum Neurosci 2022; 16:804832. [PMID: 35355587 PMCID: PMC8959424 DOI: 10.3389/fnhum.2022.804832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Covert speech is accompanied by a subjective multisensory experience with auditory and kinaesthetic components. An influential hypothesis states that these sensory percepts result from a simulation of the corresponding motor action that relies on the same internal models recruited for the control of overt speech. This simulationist view raises the question of how it is possible to imagine speech without executing it. In this perspective, we discuss the possible role(s) played by motor inhibition during covert speech production. We suggest that considering covert speech as an inhibited form of overt speech maps naturally to the purported progressive internalization of overt speech during childhood. We further argue that the role of motor inhibition may differ widely across different forms of covert speech (e.g., condensed vs. expanded covert speech) and that considering this variety helps reconciling seemingly contradictory findings from the neuroimaging literature.
Collapse
Affiliation(s)
- Ladislas Nalborczyk
- Aix Marseille Univ, CNRS, LPC, Marseille, France
- Aix Marseille Univ, CNRS, LNC, Marseille, France
| | - Ursula Debarnot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | | | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University of Lyon, University Claude Bernard Lyon 1, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | | |
Collapse
|
13
|
Proix T, Delgado Saa J, Christen A, Martin S, Pasley BN, Knight RT, Tian X, Poeppel D, Doyle WK, Devinsky O, Arnal LH, Mégevand P, Giraud AL. Imagined speech can be decoded from low- and cross-frequency intracranial EEG features. Nat Commun 2022; 13:48. [PMID: 35013268 PMCID: PMC8748882 DOI: 10.1038/s41467-021-27725-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/03/2021] [Indexed: 01/19/2023] Open
Abstract
Reconstructing intended speech from neural activity using brain-computer interfaces holds great promises for people with severe speech production deficits. While decoding overt speech has progressed, decoding imagined speech has met limited success, mainly because the associated neural signals are weak and variable compared to overt speech, hence difficult to decode by learning algorithms. We obtained three electrocorticography datasets from 13 patients, with electrodes implanted for epilepsy evaluation, who performed overt and imagined speech production tasks. Based on recent theories of speech neural processing, we extracted consistent and specific neural features usable for future brain computer interfaces, and assessed their performance to discriminate speech items in articulatory, phonetic, and vocalic representation spaces. While high-frequency activity provided the best signal for overt speech, both low- and higher-frequency power and local cross-frequency contributed to imagined speech decoding, in particular in phonetic and vocalic, i.e. perceptual, spaces. These findings show that low-frequency power and cross-frequency dynamics contain key information for imagined speech decoding.
Collapse
Affiliation(s)
- Timothée Proix
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Jaime Delgado Saa
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andy Christen
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stephanie Martin
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Brian N Pasley
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, USA
- Department of Psychology, University of California, Berkeley, Berkeley, USA
| | - Xing Tian
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - David Poeppel
- Department of Psychology, New York University, New York, NY, USA
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Werner K Doyle
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Orrin Devinsky
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Luc H Arnal
- Institut de l'Audition, Institut Pasteur, INSERM, F-75012, Paris, France
| | - Pierre Mégevand
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Neurology, Geneva University Hospitals, Geneva, Switzerland
| | - Anne-Lise Giraud
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Yamamoto AK, Sanjuán A, Pope R, Parker Jones O, Hope TMH, Prejawa S, Oberhuber M, Mancini L, Ekert JO, Garjardo-Vidal A, Creasey M, Yousry TA, Green DW, Price CJ. The Effect of Right Temporal Lobe Gliomas on Left and Right Hemisphere Neural Processing During Speech Perception and Production Tasks. Front Hum Neurosci 2022; 16:803163. [PMID: 35652007 PMCID: PMC9148966 DOI: 10.3389/fnhum.2022.803163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
Using fMRI, we investigated how right temporal lobe gliomas affecting the posterior superior temporal sulcus alter neural processing observed during speech perception and production tasks. Behavioural language testing showed that three pre-operative neurosurgical patients with grade 2, grade 3 or grade 4 tumours had the same pattern of mild language impairment in the domains of object naming and written word comprehension. When matching heard words for semantic relatedness (a speech perception task), these patients showed under-activation in the tumour infiltrated right superior temporal lobe compared to 61 neurotypical participants and 16 patients with tumours that preserved the right postero-superior temporal lobe, with enhanced activation within the (tumour-free) contralateral left superior temporal lobe. In contrast, when correctly naming objects (a speech production task), the patients with right postero-superior temporal lobe tumours showed higher activation than both control groups in the same right postero-superior temporal lobe region that was under-activated during auditory semantic matching. The task dependent pattern of under-activation during the auditory speech task and over-activation during object naming was also observed in eight stroke patients with right hemisphere infarcts that affected the right postero-superior temporal lobe compared to eight stroke patients with right hemisphere infarcts that spared it. These task-specific and site-specific cross-pathology effects highlight the importance of the right temporal lobe for language processing and motivate further study of how right temporal lobe tumours affect language performance and neural reorganisation. These findings may have important implications for surgical management of these patients, as knowledge of the regions showing functional reorganisation may help to avoid their inadvertent damage during neurosurgery.
Collapse
Affiliation(s)
- Adam Kenji Yamamoto
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
- *Correspondence: Adam Kenji Yamamoto,
| | - Ana Sanjuán
- Neuropsychology and Functional Imaging Group, Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castellón de La Plana, Spain
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca Pope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Oiwi Parker Jones
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- FMRIB Centre and Jesus College, University of Oxford, Oxford, United Kingdom
| | - Thomas M. H. Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Susan Prejawa
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Faculty of Medicine, Collaborative Research Centre 1052 “Obesity Mechanisms”, University Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Laura Mancini
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Justyna O. Ekert
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Andrea Garjardo-Vidal
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Faculty of Health Sciences, Universidad del Desarrollo, Concepcion, Chile
| | - Megan Creasey
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Tarek A. Yousry
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - David W. Green
- Experimental Psychology, University College London, London, United Kingdom
| | - Cathy J. Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Panachakel JT, Sharma K, A S A, A G R. Can we identify the category of imagined phoneme from EEG? ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:459-462. [PMID: 34891332 DOI: 10.1109/embc46164.2021.9630604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phonemes are classified into different categories based on the place and manner of articulation. We investigate the differences between the neural correlates of imagined nasal and bilabial consonants (distinct phonological categories). Mean phase coherence is used as a metric for measuring the phase synchronisation between pairs of electrodes in six cortical regions (auditory, motor, prefrontal, sensorimotor, so-matosensory and premotor) during the imagery of nasal and bilabial consonants. Statistically significant difference at 95% confidence interval is observed in beta and lower-gamma bands in various cortical regions. Our observations are inline with the directions into velocities of articulators and dual stream prediction models and support the hypothesis that phonological categories not only exist in articulated speech but can also be distinguished from the EEG of imagined speech.
Collapse
|
16
|
Marion G, Di Liberto GM, Shamma SA. The Music of Silence: Part I: Responses to Musical Imagery Encode Melodic Expectations and Acoustics. J Neurosci 2021; 41:7435-7448. [PMID: 34341155 PMCID: PMC8412990 DOI: 10.1523/jneurosci.0183-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Musical imagery is the voluntary internal hearing of music in the mind without the need for physical action or external stimulation. Numerous studies have already revealed brain areas activated during imagery. However, it remains unclear to what extent imagined music responses preserve the detailed temporal dynamics of the acoustic stimulus envelope and, crucially, whether melodic expectations play any role in modulating responses to imagined music, as they prominently do during listening. These modulations are important as they reflect aspects of the human musical experience, such as its acquisition, engagement, and enjoyment. This study explored the nature of these modulations in imagined music based on EEG recordings from 21 professional musicians (6 females and 15 males). Regression analyses were conducted to demonstrate that imagined neural signals can be predicted accurately, similarly to the listening task, and were sufficiently robust to allow for accurate identification of the imagined musical piece from the EEG. In doing so, our results indicate that imagery and listening tasks elicited an overlapping but distinctive topography of neural responses to sound acoustics, which is in line with previous fMRI literature. Melodic expectation, however, evoked very similar frontal spatial activation in both conditions, suggesting that they are supported by the same underlying mechanisms. Finally, neural responses induced by imagery exhibited a specific transformation from the listening condition, which primarily included a relative delay and a polarity inversion of the response. This transformation demonstrates the top-down predictive nature of the expectation mechanisms arising during both listening and imagery.SIGNIFICANCE STATEMENT It is well known that the human brain is activated during musical imagery: the act of voluntarily hearing music in our mind without external stimulation. It is unclear, however, what the temporal dynamics of this activation are, as well as what musical features are precisely encoded in the neural signals. This study uses an experimental paradigm with high temporal precision to record and analyze the cortical activity during musical imagery. This study reveals that neural signals encode music acoustics and melodic expectations during both listening and imagery. Crucially, it is also found that a simple mapping based on a time-shift and a polarity inversion could robustly describe the relationship between listening and imagery signals.
Collapse
Affiliation(s)
- Guilhem Marion
- Laboratoire des Systèmes Perceptifs, Département d'Étude Cognitive, École Normale Supérieure, PSL, 75005, Paris, France
| | - Giovanni M Di Liberto
- Laboratoire des Systèmes Perceptifs, Département d'Étude Cognitive, École Normale Supérieure, PSL, 75005, Paris, France
- Trinity Centre for Biomedical Engineering, Trinity College Institute of Neuroscience, Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College, University of Dublin, D02 PN40, Dublin 2, Ireland
- School of Electrical and Electronic Engineering and UCD Centre for Biomedical Engineering, University College Dublin, D04 V1W8, Dublin 4, Ireland
| | - Shihab A Shamma
- Laboratoire des Systèmes Perceptifs, Département d'Étude Cognitive, École Normale Supérieure, PSL, 75005, Paris, France
- Institute for Systems Research, Electrical and Computer Engineering, University of Maryland, College Park, MD 20742
| |
Collapse
|
17
|
Yao B, Taylor JR, Banks B, Kotz SA. Reading direct speech quotes increases theta phase-locking: Evidence for cortical tracking of inner speech? Neuroimage 2021; 239:118313. [PMID: 34175425 DOI: 10.1016/j.neuroimage.2021.118313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/25/2022] Open
Abstract
Growing evidence shows that theta-band (4-7 Hz) activity in the auditory cortex phase-locks to rhythms of overt speech. Does theta activity also encode the rhythmic dynamics of inner speech? Previous research established that silent reading of direct speech quotes (e.g., Mary said: "This dress is lovely!") elicits more vivid inner speech than indirect speech quotes (e.g., Mary said that the dress was lovely). As we cannot directly track the phase alignment between theta activity and inner speech over time, we used EEG to measure the brain's phase-locked responses to the onset of speech quote reading. We found that direct (vs. indirect) quote reading was associated with increased theta phase synchrony over trials at 250-500 ms post-reading onset, with sources of the evoked activity estimated in the speech processing network. An eye-tracking control experiment confirmed that increased theta phase synchrony in direct quote reading was not driven by eye movement patterns, and more likely reflects synchronous phase resetting at the onset of inner speech. These findings suggest a functional role of theta phase modulation in reading-induced inner speech.
Collapse
Affiliation(s)
- Bo Yao
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Briony Banks
- Department of Psychology, Lancaster University, Lancaster LA1 4YF, United Kingdom
| | - Sonja A Kotz
- Department of Neuropsychology & Psychopharmacology, Maastricht University, Maastricht 6211 LK, Netherlands; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| |
Collapse
|
18
|
Zhang Z, Niki K, Luo J. Elucidating the nature of linguistic processing in insight. Psych J 2021; 10:534-549. [PMID: 34028206 DOI: 10.1002/pchj.456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 11/08/2022]
Abstract
The relationship between language and thinking has long been a matter of debate and a research focus in studies on thinking and problem solving, including creativity. Previous behavioral studies have found that verbalization of one's internal thoughts does not participate in or even interfere with the creative insight process, thus suggesting that insight may take place nonverbally. In contrast to this hypothesis, the present study proposes a new one. That is, given that the basic categories or fundamental functions of key concepts or objects are critically changed or expanded during insightful thinking, the linguistic processing accompanying insight can be reflected as category-related representation and recategorization processes, which can be critically mediated by the posterior middle temporal gyrus and the angular gyrus (pMTG/AG). Using constraint-relaxation insight riddles as materials in a guided-insight experimental design with external hints to trigger the insightful representational change, this preliminary neuroimaging study of 11 participants found the involvement of pMTG/AG during moments of induced insight, but did not find the activation of left ventral frontal areas which are typically involved in verbalizing of one's internal thoughts. Although this observation still cannot exclude the possibility of internal verbalization in insightful restructuring, it implies that linguistic processing in insight may take the more fundamental form of category-related processing.
Collapse
Affiliation(s)
- Ze Zhang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Kazuhisa Niki
- Graduate School of Human Relations, Keio University, Tokyo, Japan
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China.,Center for Brain, Mind and Education, Shaoxing University, Shaoxing, China
| |
Collapse
|
19
|
Panachakel JT, Ramakrishnan AG. Decoding Covert Speech From EEG-A Comprehensive Review. Front Neurosci 2021; 15:642251. [PMID: 33994922 PMCID: PMC8116487 DOI: 10.3389/fnins.2021.642251] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/18/2021] [Indexed: 11/13/2022] Open
Abstract
Over the past decade, many researchers have come up with different implementations of systems for decoding covert or imagined speech from EEG (electroencephalogram). They differ from each other in several aspects, from data acquisition to machine learning algorithms, due to which, a comparison between different implementations is often difficult. This review article puts together all the relevant works published in the last decade on decoding imagined speech from EEG into a single framework. Every important aspect of designing such a system, such as selection of words to be imagined, number of electrodes to be recorded, temporal and spatial filtering, feature extraction and classifier are reviewed. This helps a researcher to compare the relative merits and demerits of the different approaches and choose the one that is most optimal. Speech being the most natural form of communication which human beings acquire even without formal education, imagined speech is an ideal choice of prompt for evoking brain activity patterns for a BCI (brain-computer interface) system, although the research on developing real-time (online) speech imagery based BCI systems is still in its infancy. Covert speech based BCI can help people with disabilities to improve their quality of life. It can also be used for covert communication in environments that do not support vocal communication. This paper also discusses some future directions, which will aid the deployment of speech imagery based BCI for practical applications, rather than only for laboratory experiments.
Collapse
Affiliation(s)
- Jerrin Thomas Panachakel
- Medical Intelligence and Language Engineering Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
20
|
Lu L, Sheng J, Liu Z, Gao JH. Neural representations of imagined speech revealed by frequency-tagged magnetoencephalography responses. Neuroimage 2021; 229:117724. [PMID: 33421593 DOI: 10.1016/j.neuroimage.2021.117724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/25/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022] Open
Abstract
Speech mental imagery is a quasi-perceptual experience that occurs in the absence of real speech stimulation. How imagined speech with higher-order structures such as words, phrases and sentences is rapidly organized and internally constructed remains elusive. To address this issue, subjects were tasked with imagining and perceiving poems along with a sequence of reference sounds with a presentation rate of 4 Hz while magnetoencephalography (MEG) recording was conducted. Giving that a sentence in a traditional Chinese poem is five syllables, a sentential rhythm was generated at a distinctive frequency of 0.8 Hz. Using the frequency tagging we concurrently tracked the neural processing timescale to the top-down generation of rhythmic constructs embedded in speech mental imagery and the bottom-up sensory-driven activity that were precisely tagged at the sentence-level rate of 0.8 Hz and a stimulus-level rate of 4 Hz, respectively. We found similar neural responses induced by the internal construction of sentences from syllables with both imagined and perceived poems and further revealed shared and distinct cohorts of cortical areas corresponding to the sentence-level rhythm in imagery and perception. This study supports the view of a common mechanism between imagery and perception by illustrating the neural representations of higher-order rhythmic structures embedded in imagined and perceived speech.
Collapse
Affiliation(s)
- Lingxi Lu
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China; Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, 100083 China
| | - Jingwei Sheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China; Beijing Quanmag Healthcare, Beijing, 100195 China
| | - Zhaowei Liu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China; Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Science, Shanghai, 200031 China
| | - Jia-Hong Gao
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871 China; Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871 China; Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Assaneo MF, Rimmele JM, Sanz Perl Y, Poeppel D. Speaking rhythmically can shape hearing. Nat Hum Behav 2021; 5:71-82. [PMID: 33046860 DOI: 10.1038/s41562-020-00962-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/09/2020] [Indexed: 01/28/2023]
Abstract
Evidence suggests that temporal predictions arising from the motor system can enhance auditory perception. However, in speech perception, we lack evidence of perception being modulated by production. Here we show a behavioural protocol that captures the existence of such auditory-motor interactions. Participants performed a syllable discrimination task immediately after producing periodic syllable sequences. Two speech rates were explored: a 'natural' (individually preferred) and a fixed 'non-natural' (2 Hz) rate. Using a decoding approach, we show that perceptual performance is modulated by the stimulus phase determined by a participant's own motor rhythm. Remarkably, for 'natural' and 'non-natural' rates, this finding is restricted to a subgroup of the population with quantifiable auditory-motor coupling. The observed pattern is compatible with a neural model assuming a bidirectional interaction of auditory and speech motor cortices. Crucially, the model matches the experimental results only if it incorporates individual differences in the strength of the auditory-motor connection.
Collapse
Affiliation(s)
- M Florencia Assaneo
- Department of Psychology, New York University, New York, NY, USA. .,Instituto de Neurobiología, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico.
| | - Johanna M Rimmele
- Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany.
| | - Yonatan Sanz Perl
- Department of Physics, FCEyN, University of Buenos Aires, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,University of San Andrés, Buenos Aires, Argentina
| | - David Poeppel
- Department of Psychology, New York University, New York, NY, USA.,Department of Neuroscience, Max-Planck-Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| |
Collapse
|
22
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
23
|
Li Y, Luo H, Tian X. Mental operations in rhythm: Motor-to-sensory transformation mediates imagined singing. PLoS Biol 2020; 18:e3000504. [PMID: 33017389 PMCID: PMC7561264 DOI: 10.1371/journal.pbio.3000504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
What enables the mental activities of thinking verbally or humming in our mind? We hypothesized that the interaction between motor and sensory systems induces speech and melodic mental representations, and this motor-to-sensory transformation forms the neural basis that enables our verbal thinking and covert singing. Analogous with the neural entrainment to auditory stimuli, participants imagined singing lyrics of well-known songs rhythmically while their neural electromagnetic signals were recorded using magnetoencephalography (MEG). We found that when participants imagined singing the same song in similar durations across trials, the delta frequency band (1–3 Hz, similar to the rhythm of the songs) showed more consistent phase coherence across trials. This neural phase tracking of imagined singing was observed in a frontal-parietal-temporal network: the proposed motor-to-sensory transformation pathway, including the inferior frontal gyrus (IFG), insula (INS), premotor area, intra-parietal sulcus (IPS), temporal-parietal junction (TPJ), primary auditory cortex (Heschl’s gyrus [HG]), and superior temporal gyrus (STG) and sulcus (STS). These results suggest that neural responses can entrain the rhythm of mental activity. Moreover, the theta-band (4–8 Hz) phase coherence was localized in the auditory cortices. The mu (9–12 Hz) and beta (17–20 Hz) bands were observed in the right-lateralized sensorimotor systems that were consistent with the singing context. The gamma band was broadly manifested in the observed network. The coherent and frequency-specific activations in the motor-to-sensory transformation network mediate the internal construction of perceptual representations and form the foundation of neural computations for mental operations. What enables our mental activities for thinking verbally or humming in our mind? Using an imagined singing paradigm with magnetoencephalography recordings, this study shows that neural oscillations in the motor-to-sensory transformation network tracked inner speech and covert singing.
Collapse
Affiliation(s)
- Yanzhu Li
- New York University Shanghai, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Huan Luo
- Peking University, Beijing, China
| | - Xing Tian
- New York University Shanghai, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
- * E-mail:
| |
Collapse
|
24
|
Abstract
As all human activities, verbal communication is fraught with errors. It is estimated that humans produce around 16,000 words per day, but the word that is selected for production is not always correct and neither is the articulation always flawless. However, to facilitate communication, it is important to limit the number of errors. This is accomplished via the verbal monitoring mechanism. A body of research over the last century has uncovered a number of properties of the mechanisms at work during verbal monitoring. Over a dozen routes for verbal monitoring have been postulated. However, to date a complete account of verbal monitoring does not exist. In the current paper we first outline the properties of verbal monitoring that have been empirically demonstrated. This is followed by a discussion of current verbal monitoring models: the perceptual loop theory, conflict monitoring, the hierarchical state feedback control model, and the forward model theory. Each of these models is evaluated given empirical findings and theoretical considerations. We then outline lacunae of current theories, which we address with a proposal for a new model of verbal monitoring for production and perception, based on conflict monitoring models. Additionally, this novel model suggests a mechanism of how a detected error leads to a correction. The error resolution mechanism proposed in our new model is then tested in a computational model. Finally, we outline the advances and predictions of the model.
Collapse
|
25
|
Visual aperiodic temporal prediction increases perceptual sensitivity and reduces response latencies. Acta Psychol (Amst) 2020; 209:103129. [PMID: 32619784 DOI: 10.1016/j.actpsy.2020.103129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 11/23/2022] Open
Abstract
As a predictive organ, the brain can predict upcoming events to guide perception and action in the process of adaptive behavior. The classical models of oscillatory entrainment explain the facilitating effects that occur after periodic stimulation in behavior but cannot explain aperiodic facilitating effects. In the present study, by comparing the behavior performance of participants in periodic predictable (PP), aperiodic predictable (AP) and aperiodic unpredictable (AU) stimulus streams, we investigated the effect of an aperiodic predictable stream on the perceptual sensitivity and response latencies in the visual modality. The results showed that there was no difference between PP and AP conditions in sensitivity (d') and reaction times (RTs), both of which were significantly different from those in the AU condition. Moreover, a significant correlation between d' and RTs was observed when predictability existed. These results indicate that the aperiodic predictable stimulus streams increases perceptual sensitivity and reduces response latencies in a top-down manner. Individuals proactively and flexibly predict upcoming events based on the temporal structure of visual stimuli in the service of adaptive behavior.
Collapse
|
26
|
Yu X, Bao Y. The three second time window in poems and language processing in general: Complementarity of discrete timing and temporal continuity. Psych J 2020; 9:429-443. [PMID: 32851816 DOI: 10.1002/pchj.390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/28/2023]
Abstract
The existence of discrete time windows has triggered the search for permanence and continuity for artists (including poets) in multiple cultures throughout history. In this article, we argue that there exists a 3-s window in the temporal structure of poems as well as in the aesthetic appreciation of poetry by reviewing previous literature on the temporal aspects of poems. This 3-s window can also be considered to be a general temporal machinery underlying human behavior, including language production and perception in general. The reafference principle has provided us a unique frame for understanding cognitive processes. However, "time" was absent in the original two-stage reafference principle. Therefore, we propose a three-stage cycling model of language perception, taking into account time and time windows. We also inspect the possible neural implementations of the three stages: the generation, maintenance, and comparison of predictions (as well as the integration of predictions into the representational context). These three stages are embedded in a temporal window of ~3 s and are repeated in a cycling mode, resulting in the representational context being continuously updated. Thus, it is possible that "semantics" could be carried forward across different time windows, being a "glue" linking the discrete time windows and thus achieving the subjective feeling of temporal continuity. Candidates of such "semantic glue" could include semantic and syntactic structures as well as identity and emotion.
Collapse
Affiliation(s)
- Xinchi Yu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Department of Chinese Language and Literature, Peking University, Beijing, China
| | - Yan Bao
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Institute of Medical Psychology, Ludwig Maximillian University, Munich, Germany.,Human Science Center, Ludwig Maximillian University, Munich, Germany.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| |
Collapse
|
27
|
Abstract
Abstract
Hierarchical structure and compositionality imbue human language with unparalleled expressive power and set it apart from other perception–action systems. However, neither formal nor neurobiological models account for how these defining computational properties might arise in a physiological system. I attempt to reconcile hierarchy and compositionality with principles from cell assembly computation in neuroscience; the result is an emerging theory of how the brain could convert distributed perceptual representations into hierarchical structures across multiple timescales while representing interpretable incremental stages of (de)compositional meaning. The model's architecture—a multidimensional coordinate system based on neurophysiological models of sensory processing—proposes that a manifold of neural trajectories encodes sensory, motor, and abstract linguistic states. Gain modulation, including inhibition, tunes the path in the manifold in accordance with behavior and is how latent structure is inferred. As a consequence, predictive information about upcoming sensory input during production and comprehension is available without a separate operation. The proposed processing mechanism is synthesized from current models of neural entrainment to speech, concepts from systems neuroscience and category theory, and a symbolic-connectionist computational model that uses time and rhythm to structure information. I build on evidence from cognitive neuroscience and computational modeling that suggests a formal and mechanistic alignment between structure building and neural oscillations, and moves toward unifying basic insights from linguistics and psycholinguistics with the currency of neural computation.
Collapse
Affiliation(s)
- Andrea E. Martin
- Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Zhang W, Liu Y, Wang X, Tian X. The dynamic and task-dependent representational transformation between the motor and sensory systems during speech production. Cogn Neurosci 2020; 11:194-204. [PMID: 32720845 DOI: 10.1080/17588928.2020.1792868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The motor and sensory systems work collaboratively to fulfill cognitive tasks, such as speech. For example, it has been hypothesized that neural signals generated in the motor system can transfer directly to the sensory system along a neural pathway (termed as motor-to-sensory transformation). Previous studies have demonstrated that the motor-to-sensory transformation is crucial for speech production. However, it is still unclear how neural representation dynamically evolves among distinct neural systems and how such representational transformation depends on task demand and the degrees of motor involvement. Using three speech tasks - overt articulation, silent articulation, and imagined articulation, the present fMRI study systematically investigated the representational formats and their dynamics in the motor-to-sensory transformation. Frontal-parietal-temporal neural pathways were observed in all three speech tasks in univariate analyses. The extent of the motor-to-sensory transformation network differed when the degrees of motor engagement varied among tasks. The representational similarity analysis (RSA) revealed that articulatory and acoustic information was represented in motor and auditory regions, respectively, in all three tasks. Moreover, articulatory information was cross-represented in the somatosensory and auditory regions in overt and silent articulation tasks. These results provided evidence for the dynamics and task-dependent transformation between representational formats in the motor-to-sensory transformation.
Collapse
Affiliation(s)
- Wenjia Zhang
- Division of Arts and Sciences, New York University Shanghai , Shanghai, China.,Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University , Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai , Shanghai, China
| | - Yiling Liu
- Department of Educational Sciences, Tianjin Normal University , Tianjin, China
| | - Xuefei Wang
- Department of Computer Science, Fudan University , Shanghai, China
| | - Xing Tian
- Division of Arts and Sciences, New York University Shanghai , Shanghai, China.,Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University , Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai , Shanghai, China
| |
Collapse
|
29
|
Pinheiro AP, Schwartze M, Gutiérrez-Domínguez F, Kotz SA. Real and imagined sensory feedback have comparable effects on action anticipation. Cortex 2020; 130:290-301. [PMID: 32698087 DOI: 10.1016/j.cortex.2020.04.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023]
Abstract
The forward model monitors the success of sensory feedback to an action and links it to an efference copy originating in the motor system. The Readiness Potential (RP) of the electroencephalogram has been denoted as a neural signature of the efference copy. An open question is whether imagined sensory feedback works similarly to real sensory feedback. We investigated the RP to audible and imagined sounds in a button-press paradigm and assessed the role of sound complexity (vocal vs. non-vocal sound). Sensory feedback (both audible and imagined) in response to a voluntary action modulated the RP amplitude time-locked to the button press. The RP amplitude increase was larger for actions with expected sensory feedback (audible and imagined) than those without sensory feedback, and associated with N1 suppression for audible sounds. Further, the early RP phase was increased when actions elicited an imagined vocal (self-voice) compared to non-vocal sound. Our results support the notion that sensory feedback is anticipated before voluntary actions. This is the case for both audible and imagined sensory feedback and confirms a role of overt and covert feedback in the forward model.
Collapse
Affiliation(s)
- Ana P Pinheiro
- CICPSI, Faculdade de Psicologia, Universidade de Lisboa, Lisbon, Portugal; Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands.
| | - Michael Schwartze
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| | | | - Sonja A Kotz
- Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
30
|
Li S, Zhu H, Tian X. Corollary Discharge Versus Efference Copy: Distinct Neural Signals in Speech Preparation Differentially Modulate Auditory Responses. Cereb Cortex 2020; 30:5806-5820. [PMID: 32542347 DOI: 10.1093/cercor/bhaa154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 11/14/2022] Open
Abstract
Actions influence sensory processing in a complex way to shape behavior. For example, during actions, a copy of motor signals-termed "corollary discharge" (CD) or "efference copy" (EC)-can be transmitted to sensory regions and modulate perception. However, the sole inhibitory function of the motor copies is challenged by mixed empirical observations as well as multifaceted computational demands for behaviors. We hypothesized that the content in the motor signals available at distinct stages of actions determined the nature of signals (CD vs. EC) and constrained their modulatory functions on perceptual processing. We tested this hypothesis using speech in which we could precisely control and quantify the course of action. In three electroencephalography (EEG) experiments using a novel delayed articulation paradigm, we found that preparation without linguistic contents suppressed auditory responses to all speech sounds, whereas preparing to speak a syllable selectively enhanced the auditory responses to the prepared syllable. A computational model demonstrated that a bifurcation of motor signals could be a potential algorithm and neural implementation to achieve the distinct functions in the motor-to-sensory transformation. These results suggest that distinct motor signals are generated in the motor-to-sensory transformation and integrated with sensory input to modulate perception.
Collapse
Affiliation(s)
- Siqi Li
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China.,NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Hao Zhu
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China.,Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
| | - Xing Tian
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China.,Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
| |
Collapse
|
31
|
Yang 杨金骉 J, Cai 蔡清 Q, Tian 田兴 X. How Do We Segment Text? Two-Stage Chunking Operation in Reading. eNeuro 2020; 7:ENEURO.0425-19.2020. [PMID: 32393584 PMCID: PMC7294464 DOI: 10.1523/eneuro.0425-19.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 11/21/2022] Open
Abstract
Chunking in language comprehension is a process that segments continuous linguistic input into smaller chunks that are in the reader's mental lexicon. Effective chunking during reading facilitates disambiguation and enhances efficiency for comprehension. However, the chunking mechanisms remain elusive, especially in reading, given that information arrives simultaneously yet the written systems may not have explicit cues for labeling boundaries such as Chinese. What are the mechanisms of chunking that mediates the reading of the text that contains hierarchical information? We investigated this question by manipulating the lexical status of the chunks at distinct levels in four-character Chinese strings, including the two-character local chunk and four-character global chunk. Male and female human participants were asked to make lexical decisions on these strings in a behavioral experiment, followed by a passive reading task when their electroencephalography (EEG) was recorded. The behavioral results showed that the lexical decision time of lexicalized two-character local chunks was influenced by the lexical status of the four-character global chunk, but not vice versa, which indicated the processing of global chunks possessed priority over the local chunks. The EEG results revealed that familiar lexical chunks were detected simultaneously at both levels and further processed in a different temporal order, the onset of lexical access for the global chunks was earlier than that of local chunks. These consistent results suggest a two-stage operation for chunking in reading, the simultaneous detection of familiar lexical chunks at multiple levels around 100 ms followed by recognition of chunks with global precedence.
Collapse
Affiliation(s)
- Jinbiao Yang 杨金骉
- Key Laboratory of Brain Functional Genomics- (Ministry of Education & Science and Technology Commission of Shanghai Municipality), Affiliated Mental Health Center, ECNU Shanghai Changning Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai 200062, China
- Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Centre for Language Studies, Radboud University, 6500 HD Nijmegen, The Netherlands
| | - Qing Cai 蔡清
- Key Laboratory of Brain Functional Genomics- (Ministry of Education & Science and Technology Commission of Shanghai Municipality), Affiliated Mental Health Center, ECNU Shanghai Changning Mental Health Center, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai 200062, China
| | - Xing Tian 田兴
- NYU-ECNU Institute of Brain and Cognitive Science at New York University Shanghai, Shanghai 200062, China
- Division of Arts and Sciences, New York University Shanghai, Shanghai 200122, China
| |
Collapse
|
32
|
Poeppel D, Assaneo MF. Speech rhythms and their neural foundations. Nat Rev Neurosci 2020; 21:322-334. [PMID: 32376899 DOI: 10.1038/s41583-020-0304-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
The recognition of spoken language has typically been studied by focusing on either words or their constituent elements (for example, low-level features or phonemes). More recently, the 'temporal mesoscale' of speech has been explored, specifically regularities in the envelope of the acoustic signal that correlate with syllabic information and that play a central role in production and perception processes. The temporal structure of speech at this scale is remarkably stable across languages, with a preferred range of rhythmicity of 2- 8 Hz. Importantly, this rhythmicity is required by the processes underlying the construction of intelligible speech. A lot of current work focuses on audio-motor interactions in speech, highlighting behavioural and neural evidence that demonstrates how properties of perceptual and motor systems, and their relation, can underlie the mesoscale speech rhythms. The data invite the hypothesis that the speech motor cortex is best modelled as a neural oscillator, a conjecture that aligns well with current proposals highlighting the fundamental role of neural oscillations in perception and cognition. The findings also show motor theories (of speech) in a different light, placing new mechanistic constraints on accounts of the action-perception interface.
Collapse
Affiliation(s)
- David Poeppel
- Department of Neuroscience, Max Planck Institute, Frankfurt, Germany. .,Department of Psychology, New York University, New York, NY, USA.
| | - M Florencia Assaneo
- Department of Psychology, New York University, New York, NY, USA.,Instituto de Neurobiologia, Universidad Nacional Autónoma de México Juriquilla, Querétaro, México
| |
Collapse
|
33
|
The N200 enhancement effect in reading Chinese is modulated by actual writing. Neuropsychologia 2020; 142:107462. [DOI: 10.1016/j.neuropsychologia.2020.107462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 03/01/2020] [Accepted: 04/01/2020] [Indexed: 01/23/2023]
|
34
|
Jin P, Lu Y, Ding N. Low-frequency neural activity reflects rule-based chunking during speech listening. eLife 2020; 9:55613. [PMID: 32310082 PMCID: PMC7213976 DOI: 10.7554/elife.55613] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/20/2020] [Indexed: 12/26/2022] Open
Abstract
Chunking is a key mechanism for sequence processing. Studies on speech sequences have suggested low-frequency cortical activity tracks spoken phrases, that is, chunks of words defined by tacit linguistic knowledge. Here, we investigate whether low-frequency cortical activity reflects a general mechanism for sequence chunking and can track chunks defined by temporarily learned artificial rules. The experiment records magnetoencephalographic (MEG) responses to a sequence of spoken words. To dissociate word properties from the chunk structures, two tasks separately require listeners to group pairs of semantically similar or semantically dissimilar words into chunks. In the MEG spectrum, a clear response is observed at the chunk rate. More importantly, the chunk-rate response is task-dependent. It is phase locked to chunk boundaries, instead of the semantic relatedness between words. The results strongly suggest that cortical activity can track chunks constructed based on task-related rules and potentially reflects a general mechanism for chunk-level representations. From digital personal assistants like Siri and Alexa to customer service chatbots, computers are slowly learning to talk to us. But as anyone who has interacted with them will appreciate, the results are often imperfect. Each time we speak or write, we use grammatical rules to combine words in a specific order. These rules enable us to produce new sentences that we have never seen or heard before, and to understand the sentences of others. But computer scientists adopt a different strategy when training computers to use language. Instead of grammar, they provide the computers with vast numbers of example sentences and phrases. The computers then use this input to calculate how likely for one word to follow another in a given context. "The sky is blue" is more common than "the sky is green", for example. But is it possible that the human brain also uses this approach? When we listen to speech, the brain shows patterns of activity that correspond to units such as sentences. But previous research has been unable to tell whether the brain is using grammatical rules to recognise sentences, or whether it relies on a probability-based approach like a computer. Using a simple artificial language, Jin et al. have now managed to tease apart these alternatives. Healthy volunteers listened to lists of words while lying inside a brain scanner. The volunteers had to group the words into pairs, otherwise known as chunks, by following various rules that simulated the grammatical rules present in natural languages. Crucially, the volunteers’ brain activity tracked the chunks – which differed depending on which rule had been applied – rather than the individual words. This suggests that the brain processes speech using abstract rules instead of word probabilities. While computers are now much better at processing language, they still perform worse than people. Understanding how the human brain solves this task could ultimately help to improve the performance of personal digital assistants.
Collapse
Affiliation(s)
- Peiqing Jin
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Yuhan Lu
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China
| | - Nai Ding
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Sciences, Zhejiang University, Hangzhou, China.,Research Center for Advanced Artificial Intelligence Theory, Zhejiang Lab, Hangzhou, China
| |
Collapse
|
35
|
Speakers are able to categorize vowels based on tongue somatosensation. Proc Natl Acad Sci U S A 2020; 117:6255-6263. [PMID: 32123070 DOI: 10.1073/pnas.1911142117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auditory speech perception enables listeners to access phonological categories from speech sounds. During speech production and speech motor learning, speakers' experience matched auditory and somatosensory input. Accordingly, access to phonetic units might also be provided by somatosensory information. The present study assessed whether humans can identify vowels using somatosensory feedback, without auditory feedback. A tongue-positioning task was used in which participants were required to achieve different tongue postures within the /e, ε, a/ articulatory range, in a procedure that was totally nonspeech like, involving distorted visual feedback of tongue shape. Tongue postures were measured using electromagnetic articulography. At the end of each tongue-positioning trial, subjects were required to whisper the corresponding vocal tract configuration with masked auditory feedback and to identify the vowel associated with the reached tongue posture. Masked auditory feedback ensured that vowel categorization was based on somatosensory feedback rather than auditory feedback. A separate group of subjects was required to auditorily classify the whispered sounds. In addition, we modeled the link between vowel categories and tongue postures in normal speech production with a Bayesian classifier based on the tongue postures recorded from the same speakers for several repetitions of the /e, ε, a/ vowels during a separate speech production task. Overall, our results indicate that vowel categorization is possible with somatosensory feedback alone, with an accuracy that is similar to the accuracy of the auditory perception of whispered sounds, and in congruence with normal speech articulation, as accounted for by the Bayesian classifier.
Collapse
|
36
|
Jenson D, Bowers AL, Hudock D, Saltuklaroglu T. The Application of EEG Mu Rhythm Measures to Neurophysiological Research in Stuttering. Front Hum Neurosci 2020; 13:458. [PMID: 31998103 PMCID: PMC6965028 DOI: 10.3389/fnhum.2019.00458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Deficits in basal ganglia-based inhibitory and timing circuits along with sensorimotor internal modeling mechanisms are thought to underlie stuttering. However, much remains to be learned regarding the precise manner how these deficits contribute to disrupting both speech and cognitive functions in those who stutter. Herein, we examine the suitability of electroencephalographic (EEG) mu rhythms for addressing these deficits. We review some previous findings of mu rhythm activity differentiating stuttering from non-stuttering individuals and present some new preliminary findings capturing stuttering-related deficits in working memory. Mu rhythms are characterized by spectral peaks in alpha (8-13 Hz) and beta (14-25 Hz) frequency bands (mu-alpha and mu-beta). They emanate from premotor/motor regions and are influenced by basal ganglia and sensorimotor function. More specifically, alpha peaks (mu-alpha) are sensitive to basal ganglia-based inhibitory signals and sensory-to-motor feedback. Beta peaks (mu-beta) are sensitive to changes in timing and capture motor-to-sensory (i.e., forward model) projections. Observing simultaneous changes in mu-alpha and mu-beta across the time-course of specific events provides a rich window for observing neurophysiological deficits associated with stuttering in both speech and cognitive tasks and can provide a better understanding of the functional relationship between these stuttering symptoms. We review how independent component analysis (ICA) can extract mu rhythms from raw EEG signals in speech production tasks, such that changes in alpha and beta power are mapped to myogenic activity from articulators. We review findings from speech production and auditory discrimination tasks demonstrating that mu-alpha and mu-beta are highly sensitive to capturing sensorimotor and basal ganglia deficits associated with stuttering with high temporal precision. Novel findings from a non-word repetition (working memory) task are also included. They show reduced mu-alpha suppression in a stuttering group compared to a typically fluent group. Finally, we review current limitations and directions for future research.
Collapse
Affiliation(s)
- David Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Andrew L. Bowers
- Epley Center for Health Professions, Communication Sciences and Disorders, University of Arkansas, Fayetteville, AR, United States
| | - Daniel Hudock
- Department of Communication Sciences and Disorders, Idaho State University, Pocatello, ID, United States
| | - Tim Saltuklaroglu
- College of Health Professions, Department of Audiology and Speech-Pathology, University of Tennessee Health Science Center, Knoxville, TN, United States
| |
Collapse
|
37
|
Silva DMR, Rothe-Neves R, Melges DB. Long-latency event-related responses to vowels: N1-P2 decomposition by two-step principal component analysis. Int J Psychophysiol 2019; 148:93-102. [PMID: 31863852 DOI: 10.1016/j.ijpsycho.2019.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/26/2022]
Abstract
The N1-P2 complex of the auditory event-related potential (ERP) has been used to examine neural activity associated with speech sound perception. Since it is thought to reflect multiple generator processes, its functional significance is difficult to infer. In the present study, a temporospatial principal component analysis (PCA) was used to decompose the N1-P2 response into latent factors underlying covariance patterns in ERP data recorded during passive listening to pairs of successive vowels. In each trial, one of six sounds drawn from an /i/-/e/ vowel continuum was followed either by an identical sound, a different token of the same vowel category, or a token from the other category. Responses were examined as to how they were modulated by within- and across-category vowel differences and by adaptation (repetition suppression) effects. Five PCA factors were identified as corresponding to three well-known N1 subcomponents and two P2 subcomponents. Results added evidence that the N1 peak reflects both generators that are sensitive to spectral information and generators that are not. For later latency ranges, different patterns of sensitivity to vowel quality were found, including category-related effects. Particularly, a subcomponent identified as the Tb wave showed release from adaptation in response to an /i/ followed by an /e/ sound. A P2 subcomponent varied linearly with spectral shape along the vowel continuum, while the other was stronger the closer the vowel was to the category boundary, suggesting separate processing of continuous and category-related information. Thus, the PCA-based decomposition of the N1-P2 complex was functionally meaningful, revealing distinct underlying processes at work during speech sound perception.
Collapse
Affiliation(s)
- Daniel M R Silva
- Phonetics Lab, Faculty of Letters, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Rui Rothe-Neves
- Phonetics Lab, Faculty of Letters, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | - Danilo B Melges
- Graduate Program in Electrical Engineering, Department of Electrical Engineering, Federal University of Minas Gerais
| |
Collapse
|
38
|
Lu L, Wang Q, Sheng J, Liu Z, Qin L, Li L, Gao JH. Neural tracking of speech mental imagery during rhythmic inner counting. eLife 2019; 8:48971. [PMID: 31635693 PMCID: PMC6805153 DOI: 10.7554/elife.48971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 10/09/2019] [Indexed: 11/13/2022] Open
Abstract
The subjective inner experience of mental imagery is among the most ubiquitous human experiences in daily life. Elucidating the neural implementation underpinning the dynamic construction of mental imagery is critical to understanding high-order cognitive function in the human brain. Here, we applied a frequency-tagging method to isolate the top-down process of speech mental imagery from bottom-up sensory-driven activities and concurrently tracked the neural processing time scales corresponding to the two processes in human subjects. Notably, by estimating the source of the magnetoencephalography (MEG) signals, we identified isolated brain networks activated at the imagery-rate frequency. In contrast, more extensive brain regions in the auditory temporal cortex were activated at the stimulus-rate frequency. Furthermore, intracranial stereotactic electroencephalogram (sEEG) evidence confirmed the participation of the inferior frontal gyrus in generating speech mental imagery. Our results indicate that a disassociated neural network underlies the dynamic construction of speech mental imagery independent of auditory perception.
Collapse
Affiliation(s)
- Lingxi Lu
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Qian Wang
- Department of Clinical Neuropsychology, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Jingwei Sheng
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zhaowei Liu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Lang Qin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Department of Linguistics, The University of Hong Kong, Hong Kong, China
| | - Liang Li
- Speech and Hearing Research Center, School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Jia-Hong Gao
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| |
Collapse
|
39
|
Grandchamp R, Rapin L, Perrone-Bertolotti M, Pichat C, Haldin C, Cousin E, Lachaux JP, Dohen M, Perrier P, Garnier M, Baciu M, Lœvenbruck H. The ConDialInt Model: Condensation, Dialogality, and Intentionality Dimensions of Inner Speech Within a Hierarchical Predictive Control Framework. Front Psychol 2019; 10:2019. [PMID: 31620039 PMCID: PMC6759632 DOI: 10.3389/fpsyg.2019.02019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 08/19/2019] [Indexed: 11/19/2022] Open
Abstract
Inner speech has been shown to vary in form along several dimensions. Along condensation, condensed inner speech forms have been described, that are supposed to be deprived of acoustic, phonological and even syntactic qualities. Expanded forms, on the other extreme, display articulatory and auditory properties. Along dialogality, inner speech can be monologal, when we engage in internal soliloquy, or dialogal, when we recall past conversations or imagine future dialogs involving our own voice as well as that of others addressing us. Along intentionality, it can be intentional (when we deliberately rehearse material in short-term memory) or it can arise unintentionally (during mind wandering). We introduce the ConDialInt model, a neurocognitive predictive control model of inner speech that accounts for its varieties along these three dimensions. ConDialInt spells out the condensation dimension by including inhibitory control at the conceptualization, formulation or articulatory planning stage. It accounts for dialogality, by assuming internal model adaptations and by speculating on neural processes underlying perspective switching. It explains the differences between intentional and spontaneous varieties in terms of monitoring. We present an fMRI study in which we probed varieties of inner speech along dialogality and intentionality, to examine the validity of the neuroanatomical correlates posited in ConDialInt. Condensation was also informally tackled. Our data support the hypothesis that expanded inner speech recruits speech production processes down to articulatory planning, resulting in a predicted signal, the inner voice, with auditory qualities. Along dialogality, covertly using an avatar's voice resulted in the activation of right hemisphere homologs of the regions involved in internal own-voice soliloquy and in reduced cerebellar activation, consistent with internal model adaptation. Switching from first-person to third-person perspective resulted in activations in precuneus and parietal lobules. Along intentionality, compared with intentional inner speech, mind wandering with inner speech episodes was associated with greater bilateral inferior frontal activation and decreased activation in left temporal regions. This is consistent with the reported subjective evanescence and presumably reflects condensation processes. Our results provide neuroanatomical evidence compatible with predictive control and in favor of the assumptions made in the ConDialInt model.
Collapse
Affiliation(s)
- Romain Grandchamp
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Lucile Rapin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | | | - Cédric Pichat
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Célise Haldin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Emilie Cousin
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Jean-Philippe Lachaux
- INSERM U1028, CNRS UMR5292, Brain Dynamics and Cognition Team, Lyon Neurosciences Research Center, Bron, France
| | - Marion Dohen
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
| | - Pascal Perrier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
| | - Maëva Garnier
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, Grenoble, France
| | - Monica Baciu
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | - Hélène Lœvenbruck
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| |
Collapse
|
40
|
Yamamoto AK, Parker Jones O, Hope TMH, Prejawa S, Oberhuber M, Ludersdorfer P, Yousry TA, Green DW, Price CJ. A special role for the right posterior superior temporal sulcus during speech production. Neuroimage 2019; 203:116184. [PMID: 31520744 PMCID: PMC6876272 DOI: 10.1016/j.neuroimage.2019.116184] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/19/2019] [Accepted: 09/10/2019] [Indexed: 11/29/2022] Open
Abstract
This fMRI study of 24 healthy human participants investigated whether any part of the auditory cortex was more responsive to self-generated speech sounds compared to hearing another person speak. The results demonstrate a double dissociation in two different parts of the auditory cortex. In the right posterior superior temporal sulcus (RpSTS), activation was higher during speech production than listening to auditory stimuli, whereas in bilateral superior temporal gyri (STG), activation was higher for listening to auditory stimuli than during speech production. In the second part of the study, we investigated the function of the identified regions, by examining how activation changed across a range of listening and speech production tasks that systematically varied the demands on acoustic, semantic, phonological and orthographic processing. In RpSTS, activation during auditory conditions was higher in the absence of semantic cues, plausibly indicating increased attention to the spectral-temporal features of auditory inputs. In addition, RpSTS responded in the absence of any auditory inputs when participants were making one-back matching decisions on visually presented pseudowords. After analysing the influence of visual, phonological, semantic and orthographic processing, we propose that RpSTS (i) contributes to short term memory of speech sounds as well as (ii) spectral-temporal processing of auditory input and (iii) may play a role in integrating auditory expectations with auditory input. In contrast, activation in bilateral STG was sensitive to acoustic input and did not respond in the absence of auditory input. The special role of RpSTS during speech production therefore merits further investigation if we are to fully understand the neural mechanisms supporting speech production during speech acquisition, adult life, hearing loss and after brain injury. In right auditory cortex, a region is more sensitive to own than another’s speech. This region (RpSTS) responds to phonological input in the absence of auditory input. RpSTS may match auditory feedback with internal representations of speech sounds.
Collapse
Affiliation(s)
- Adam Kenji Yamamoto
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| | - Oiwi Parker Jones
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom; FMRIB Centre and Wolfson College, University of Oxford, Oxford, United Kingdom.
| | - Thomas M H Hope
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | - Susan Prejawa
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom; Collaborative Research Centre 1052 "Obesity Mechanisms", Faculty of Medicine, University of Leipzig, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Marion Oberhuber
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | - Philipp Ludersdorfer
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| | - Tarek A Yousry
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom.
| | - David W Green
- Experimental Psychology, University College London, London, United Kingdom.
| | - Cathy J Price
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, United Kingdom.
| |
Collapse
|
41
|
Distinct Mechanisms of Imagery Differentially Influence Speech Perception. eNeuro 2019; 6:ENEURO.0261-19.2019. [PMID: 31481396 PMCID: PMC6753248 DOI: 10.1523/eneuro.0261-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/03/2022] Open
Abstract
Neural representation can be induced without external stimulation, such as in mental imagery. Our previous study found that imagined speaking and imagined hearing modulated perceptual neural responses in opposite directions, suggesting motor-to-sensory transformation and memory retrieval as two separate routes that induce auditory representation (Tian and Poeppel, 2013). We hypothesized that the precision of representation induced from different types of speech imagery led to different modulation effects. Specifically, we predicted that the one-to-one mapping between motor and sensory domains established during speech production would evoke a more precise auditory representation in imagined speaking than retrieving the same sounds from memory in imagined hearing. To test this hypothesis, we built the function of representational precision as the modulation of connection strength in a neural network model. The model fitted the magnetoencephalography (MEG) imagery repetition effects, and the best-fitting parameters showed sharper tuning after imagined speaking than imagined hearing, consistent with the representational precision hypothesis. Moreover, this model predicted that different types of speech imagery would affect perception differently. In an imagery-adaptation experiment, the categorization of /ba/-/da/ continuum from male and female human participants showed more positive shifts towards the preceding imagined syllable after imagined speaking than imagined hearing. These consistent simulation and behavioral results support our hypothesis that distinct mechanisms of speech imagery construct auditory representation with varying degrees of precision and differentially influence auditory perception. This study provides a mechanistic connection between neural-level activity and psychophysics that reveals the neural computation of mental imagery.
Collapse
|
42
|
Jack BN, Le Pelley ME, Han N, Harris AW, Spencer KM, Whitford TJ. Inner speech is accompanied by a temporally-precise and content-specific corollary discharge. Neuroimage 2019; 198:170-180. [DOI: 10.1016/j.neuroimage.2019.04.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/11/2019] [Indexed: 11/29/2022] Open
|
43
|
Whitford TJ. Speaking-Induced Suppression of the Auditory Cortex in Humans and Its Relevance to Schizophrenia. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:791-804. [PMID: 31399393 DOI: 10.1016/j.bpsc.2019.05.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 01/13/2023]
Abstract
Speaking-induced suppression (SIS) is the phenomenon that the sounds one generates by overt speech elicit a smaller neurophysiological response in the auditory cortex than comparable sounds that are externally generated. SIS is a specific example of the more general phenomenon of self-suppression. SIS has been well established in nonhuman animals and is believed to involve the action of corollary discharges. This review summarizes, first, the evidence for SIS in heathy human participants, where it has been most commonly assessed with electroencephalography and/or magnetoencephalography using an experimental paradigm known as "Talk-Listen"; and second, the growing number of Talk-Listen studies that have reported subnormal levels of SIS in patients with schizophrenia. This result is theoretically significant, as it provides a plausible explanation for some of the most distinctive and characteristic symptoms of schizophrenia, namely the first-rank symptoms. In particular, while the failure to suppress the neural consequences of self-generated movements (such as those associated with overt speech) provides a prima facie explanation for delusions of control, the failure to suppress the neural consequences of self-generated inner speech provides a plausible explanation for certain classes of auditory-verbal hallucinations, such as audible thoughts. While the empirical evidence for a relationship between SIS and the first-rank symptoms is currently limited, I predict that future studies with more sensitive experimental designs will confirm its existence. Establishing the existence of a causal, mechanistic relationship would represent a major step forward in our understanding of schizophrenia, which is a necessary precursor to the development of novel treatments.
Collapse
Affiliation(s)
- Thomas J Whitford
- School of Psychology, The University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
44
|
Self-reported inner speech relates to phonological retrieval ability in people with aphasia. Conscious Cogn 2019; 71:18-29. [PMID: 30921682 DOI: 10.1016/j.concog.2019.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 11/22/2022]
Abstract
Many individuals with aphasia report the ability to say words in their heads despite spoken naming difficulty. Here, we examined individual differences in the experience of inner speech (IS) in participants with aphasia to test the hypotheses that self-reported IS reflects intact phonological retrieval and that articulatory output processing is not essential to IS. Participants (N = 53) reported their ability to name items correctly internally during a silent picture-naming task. We compared this measure of self-reported IS to spoken picture naming and a battery of tasks measuring the underlying processes required for naming (i.e., phonological retrieval and output processing). Results from three separate analyses of these measures indicate that self-reported IS relates to phonological retrieval and that speech output processes are not a necessary component of IS. We suggest that self-reported IS may be a clinically valuable measure that could assist in clinical decision-making regarding anomia diagnosis and treatment.
Collapse
|
45
|
Interaction of the effects associated with auditory-motor integration and attention-engaging listening tasks. Neuropsychologia 2019; 124:322-336. [PMID: 30444980 DOI: 10.1016/j.neuropsychologia.2018.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/20/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022]
Abstract
A number of previous studies have implicated regions in posterior auditory cortex (AC) in auditory-motor integration during speech production. Other studies, in turn, have shown that activation in AC and adjacent regions in the inferior parietal lobule (IPL) is strongly modulated during active listening and depends on task requirements. The present fMRI study investigated whether auditory-motor effects interact with those related to active listening tasks in AC and IPL. In separate task blocks, our subjects performed either auditory discrimination or 2-back memory tasks on phonemic or nonphonemic vowels. They responded to targets by either overtly repeating the last vowel of a target pair, overtly producing a given response vowel, or by pressing a response button. We hypothesized that the requirements for auditory-motor integration, and the associated activation, would be stronger during repetition than production responses and during repetition of nonphonemic than phonemic vowels. We also hypothesized that if auditory-motor effects are independent of task-dependent modulations, then the auditory-motor effects should not differ during discrimination and 2-back tasks. We found that activation in AC and IPL was significantly modulated by task (discrimination vs. 2-back), vocal-response type (repetition vs. production), and motor-response type (vocal vs. button). Motor-response and task effects interacted in IPL but not in AC. Overall, the results support the view that regions in posterior AC are important in auditory-motor integration. However, the present study shows that activation in wide AC and IPL regions is modulated by the motor requirements of active listening tasks in a more general manner. Further, the results suggest that activation modulations in AC associated with attention-engaging listening tasks and those associated with auditory-motor performance are mediated by independent mechanisms.
Collapse
|
46
|
Fama ME, Snider SF, Henderson MP, Hayward W, Friedman RB, Turkeltaub PE. The Subjective Experience of Inner Speech in Aphasia Is a Meaningful Reflection of Lexical Retrieval. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:106-122. [PMID: 30950758 PMCID: PMC6437698 DOI: 10.1044/2018_jslhr-l-18-0222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/26/2018] [Accepted: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Purpose Individuals with aphasia often report that they feel able to say words in their heads, regardless of speech output ability. Here, we examine whether these subjective reports of successful "inner speech" (IS) are meaningful and test the hypothesis that they reflect lexical retrieval. Method Participants were 53 individuals with chronic aphasia. During silent picture naming, participants reported whether or not they could say the name of each item inside their heads. Using the same items, they also completed 3 picture-based tasks that required phonological retrieval and 3 matched auditory tasks that did not. We compared participants' performance on these tasks for items they reported being able to say internally versus those they reported being unable to say internally. Then, we examined the relationship of psycholinguistic word features to self-reported IS and spoken naming accuracy. Results Twenty-six participants reported successful IS on nearly all items, so they could not be included in the item-level analyses. These individuals performed correspondingly better than the remaining participants on tasks requiring phonological retrieval, but not on most other language measures. In the remaining group ( n = 27), IS reports related item-wise to performance on tasks requiring phonological retrieval, but not to matched control tasks. Additionally, IS reports were related to 3 word characteristics associated with lexical retrieval, but not to articulatory complexity; spoken naming accuracy related to all 4 word characteristics. Six participants demonstrated evidence of unreliable IS reporting; compared with the group, they also detected fewer errors in their spoken responses and showed more severe language impairments overall. Conclusions Self-reported IS is meaningful in many individuals with aphasia and reflects lexical phonological retrieval. These findings have potential implications for treatment planning in aphasia and for our understanding of IS in the general population.
Collapse
Affiliation(s)
- Mackenzie E. Fama
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Department of Neurology, Georgetown University Medical Center, Washington, DC
| | - Sarah F. Snider
- Department of Neurology, Georgetown University Medical Center, Washington, DC
- Center for Aphasia Rehabilitation and Research, Georgetown University Medical Center, Washington, DC
| | - Mary P. Henderson
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
| | - William Hayward
- Department of Neurology, Georgetown University Medical Center, Washington, DC
| | - Rhonda B. Friedman
- Department of Neurology, Georgetown University Medical Center, Washington, DC
- Center for Aphasia Rehabilitation and Research, Georgetown University Medical Center, Washington, DC
| | - Peter E. Turkeltaub
- Center for Brain Plasticity and Recovery, Georgetown University Medical Center, Washington, DC
- Department of Neurology, Georgetown University Medical Center, Washington, DC
- Center for Aphasia Rehabilitation and Research, Georgetown University Medical Center, Washington, DC
- Research Division, MedStar National Rehabilitation Hospital, Washington, DC
| |
Collapse
|
47
|
Cooney C, Folli R, Coyle D. Neurolinguistics Research Advancing Development of a Direct-Speech Brain-Computer Interface. iScience 2018; 8:103-125. [PMID: 30296666 PMCID: PMC6174918 DOI: 10.1016/j.isci.2018.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 01/09/2023] Open
Abstract
A direct-speech brain-computer interface (DS-BCI) acquires neural signals corresponding to imagined speech, then processes and decodes these signals to produce a linguistic output in the form of phonemes, words, or sentences. Recent research has shown the potential of neurolinguistics to enhance decoding approaches to imagined speech with the inclusion of semantics and phonology in experimental procedures. As neurolinguistics research findings are beginning to be incorporated within the scope of DS-BCI research, it is our view that a thorough understanding of imagined speech, and its relationship with overt speech, must be considered an integral feature of research in this field. With a focus on imagined speech, we provide a review of the most important neurolinguistics research informing the field of DS-BCI and suggest how this research may be utilized to improve current experimental protocols and decoding techniques. Our review of the literature supports a cross-disciplinary approach to DS-BCI research, in which neurolinguistics concepts and methods are utilized to aid development of a naturalistic mode of communication.
Collapse
Affiliation(s)
- Ciaran Cooney
- Intelligent Systems Research Centre, Ulster University, Derry, UK.
| | - Raffaella Folli
- Institute for Research in Social Sciences, Ulster University, Jordanstown, UK
| | - Damien Coyle
- Intelligent Systems Research Centre, Ulster University, Derry, UK
| |
Collapse
|
48
|
Proactive Sensing of Periodic and Aperiodic Auditory Patterns. Trends Cogn Sci 2018; 22:870-882. [DOI: 10.1016/j.tics.2018.08.003] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 11/18/2022]
|
49
|
Liu X, Tian X. The functional relations among motor-based prediction, sensory goals and feedback in learning non-native speech sounds: Evidence from adult Mandarin Chinese speakers with an auditory feedback masking paradigm. Sci Rep 2018; 8:11910. [PMID: 30093692 PMCID: PMC6085325 DOI: 10.1038/s41598-018-30399-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 07/27/2018] [Indexed: 11/09/2022] Open
Abstract
Previous studies in speech production and acquisition have mainly focused on how feedback vs. goals and feedback vs. prediction regulate learning and speech control. The present study investigated the less studied mechanism-prediction vs. goals in the context of adult Mandarin speakers' acquisition of non-native sounds, using an auditory feedback masking paradigm. Participants were asked to learn two types of non-native vowels: /ø/ and /ɵ/-the former being less similar than the latter to Mandarin vowels, either in feedback available or feedback masked conditions. The results show that there was no significant improvement in learning the two targets when auditory feedback was masked. This suggests that motor-based prediction could not directly compare with sensory goals for adult second language acquisition. Furthermore, auditory feedback can help achieve learning only if the competition between prediction and goals is minimal, i.e., when target sounds are distinct from existing sounds in one's native speech. The results suggest motor-based prediction and sensory goals may share a similar neural representational format, which could result in a competing relation in neural recourses in speech learning. The feedback can conditionally overcome such interference between prediction and goals. Hence, the present study further probed the functional relations among key components (prediction, goals and feedback) of sensorimotor integration in speech learning.
Collapse
Affiliation(s)
- Xiaoluan Liu
- New York University Shanghai, Shanghai, China.,Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China
| | - Xing Tian
- New York University Shanghai, Shanghai, China. .,Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China. .,NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, China.
| |
Collapse
|
50
|
Tian X, Ding N, Teng X, Bai F, Poeppel D. Imagined speech influences perceived loudness of sound. Nat Hum Behav 2018. [DOI: 10.1038/s41562-018-0305-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|