1
|
Jun S, Malone SM, Alderson TH, Harper J, Hunt RH, Thomas KM, Wilson S, Iacono WG, Sadaghiani S. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. Netw Neurosci 2024; 8:1089-1104. [PMID: 39735509 PMCID: PMC11674572 DOI: 10.1162/netn_a_00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (>1 Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting state (N = 926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of subsecond connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that rapid connectome state transitions shape individuals' cognitive abilities and traits. Such subsecond connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
2
|
Jun S, Alderson TH, Malone SM, Harper J, Hunt RH, Thomas KM, Iacono WG, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. Netw Neurosci 2024; 8:1065-1088. [PMID: 39735507 PMCID: PMC11674403 DOI: 10.1162/netn_a_00391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 12/31/2024] Open
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Thomas H. Alderson
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jeremy Harper
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Ruskin H. Hunt
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kathleen M. Thomas
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
3
|
Blanco R, Preti MG, Koba C, Ville DVD, Crimi A. Comparing structure-function relationships in brain networks using EEG and fNIRS. Sci Rep 2024; 14:28976. [PMID: 39578593 PMCID: PMC11584861 DOI: 10.1038/s41598-024-79817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Identifying relationships between structural and functional networks is crucial for understanding the large-scale organization of the human brain. The potential contribution of emerging techniques like functional near-infrared spectroscopy to investigate the structure-functional relationship has yet to be explored. In our study, using simultaneous Electroencephalography (EEG) and Functional near-infrared spectroscopy (fNIRS) recordings from 18 subjects, we characterize global and local structure-function coupling using source-reconstructed EEG and fNIRS signals in both resting state and motor imagery tasks, as this relationship during task periods remains underexplored. Employing the mathematical framework of graph signal processing, we investigate how this relationship varies across electrical and hemodynamic networks and different brain states. Results show that fNIRS structure-function coupling resembles slower-frequency EEG coupling at rest, with variations across brain states and oscillations. Locally, the relationship is heterogeneous, with greater coupling in the sensory cortex and increased decoupling in the association cortex, following the unimodal to transmodal gradient. Discrepancies between EEG and fNIRS are noted, particularly in the frontoparietal network. Cross-band representations of neural activity revealed lower correspondence between electrical and hemodynamic activity in the transmodal cortex, irrespective of brain state while showing specificity for the somatomotor network during a motor imagery task. Overall, these findings initiate a multimodal comprehension of structure-function relationship and brain organization when using affordable functional brain imaging.
Collapse
Affiliation(s)
- Rosmary Blanco
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland.
| | - Maria Giulia Preti
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cemal Koba
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland
| | - Dimitri Van De Ville
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandro Crimi
- Computer Science faculty, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
4
|
Adamovich T, Ismatullina V, Chipeeva N, Zakharov I, Feklicheva I, Malykh S. Task-specific topology of brain networks supporting working memory and inhibition. Hum Brain Mapp 2024; 45:e70024. [PMID: 39258339 PMCID: PMC11387957 DOI: 10.1002/hbm.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Network neuroscience explores the brain's connectome, demonstrating that dynamic neural networks support cognitive functions. This study investigates how distinct cognitive abilities-working memory and cognitive inhibitory control-are supported by unique brain network configurations constructed by estimating whole-brain networks using mutual information. The study involved 195 participants who completed the Sternberg Item Recognition task and Flanker tasks while undergoing electroencephalography recording. A mixed-effects linear model analyzed the influence of network metrics on cognitive performance, considering individual differences and task-specific dynamics. The findings indicate that working memory and cognitive inhibitory control are associated with different network attributes, with working memory relying on distributed networks and cognitive inhibitory control on more segregated ones. Our analysis suggests that both strong and weak connections contribute to cognitive processes, with weak connections potentially leading to a more stable and support networks of memory and cognitive inhibitory control. The findings indirectly support the network neuroscience theory of intelligence, suggesting different functional topology of networks inherent to various cognitive functions. Nevertheless, we propose that understanding individual variations in cognitive abilities requires recognizing both shared and unique processes within the brain's network dynamics.
Collapse
Affiliation(s)
- Timofey Adamovich
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Victoria Ismatullina
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | - Nadezhda Chipeeva
- Federal State Institution “National Medical Research Center for Children's Health” of the Ministry of Health of the Russian FederationMoscowRussia
| | - Ilya Zakharov
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| | | | - Sergey Malykh
- Federal Scientific Center of Psychological and Multidisciplinary ResearchesMoscowRussia
| |
Collapse
|
5
|
Zhu H, Michalak AJ, Merricks EM, Agopyan-Miu AHCW, Jacobs J, Hamberger MJ, Sheth SA, McKhann GM, Feldstein N, Schevon CA, Hillman EMC. Spectral-switching analysis reveals real-time neuronal network representations of concurrent spontaneous naturalistic behaviors in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.600416. [PMID: 39026706 PMCID: PMC11257469 DOI: 10.1101/2024.07.08.600416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Despite abundant evidence of functional networks in the human brain, their neuronal underpinnings, and relationships to real-time behavior have been challenging to resolve. Analyzing brain-wide intracranial-EEG recordings with video monitoring, acquired in awake subjects during clinical epilepsy evaluation, we discovered the tendency of each brain region to switch back and forth between 2 distinct power spectral densities (PSDs 2-55Hz). We further recognized that this 'spectral switching' occurs synchronously between distant sites, even between regions with differing baseline PSDs, revealing long-range functional networks that would be obscured in analysis of individual frequency bands. Moreover, the real-time PSD-switching dynamics of specific networks exhibited striking alignment with activities such as conversation and hand movements, revealing a multi-threaded functional network representation of concurrent naturalistic behaviors. Network structures and their relationships to behaviors were stable across days, but were altered during N3 sleep. Our results provide a new framework for understanding real-time, brain-wide neural-network dynamics.
Collapse
Affiliation(s)
- Hongkun Zhu
- Department of Biomedical Engineering, Columbia University
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Andrew J Michalak
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Edward M Merricks
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | | | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Marla J Hamberger
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Neil Feldstein
- Department of Neurological Surgery, Columbia University Medical Center, New York, 10032, New York, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Elizabeth M C Hillman
- Department of Biomedical Engineering, Columbia University
- Department of Radiology, Columbia University Medical Center, New York, 10032, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| |
Collapse
|
6
|
Han Y, Du L, Huang Q, Cui D, Li Y. Enhancing specialization of attention-related EEG power and phase synchronism brain patterns by meditation. Cereb Cortex 2024; 34:bhae288. [PMID: 39024158 DOI: 10.1093/cercor/bhae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/21/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Meditation, mental training that aims to improve one's ability to regulate their cognition, has been widely applied in clinical medicine. However, the mechanism by which meditation affects brain activity is still unclear. To explore this question, electroencephalogram data were recorded in 20 long-term meditators and 20 nonmeditators during 2 high-level cognitive tasks (meditation and mental calculation) and a relaxed resting state (control). Then, the power spectral density and phase synchronization of the electroencephalogram were extracted and compared between these 2 groups. In addition, machine learning was used to discriminate the states within each group. We found that the meditation group showed significantly higher classification accuracy and calculation efficiency than the control group. Then, during the calculation task, both the power and global phase synchronism of the gamma response decreased in meditators compared to their relaxation state; yet, no such change was observed in the control group. A potential explanation for our observations is that meditation improved the flexibility of the brain through neural plastic mechanism. In conclusion, we provided robust evidence that long-term meditation experience could produce detectable neurophysiological changes in brain activity, which possibly enhance the functional segregation and/or specialization in the brain.
Collapse
Affiliation(s)
- Yupeng Han
- School of Automation Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Research Center for Brain-Computer Interfaces, Pazhou Laboratory, Qiaotou Street 248, Guangzhou 510665, China
| | - Lizhao Du
- Shanghai Med-X Engineering Research Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Huashan Road 1954, Shanghai, 200030, China
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Humin Road 3210, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Humin Road 3210, Shanghai 201108, China
| | - Qiyun Huang
- Research Center for Brain-Computer Interfaces, Pazhou Laboratory, Qiaotou Street 248, Guangzhou 510665, China
| | - Donghong Cui
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Humin Road 3210, Shanghai 201108, China
- Shanghai Key Laboratory of Psychotic Disorders, Humin Road 3210, Shanghai 201108, China
- Brain Science and Technology Research Center, Shanghai Jiao Tong University, Huanshan Road 1954, Shanghai 200030, China
| | - Yuanqing Li
- School of Automation Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
- Research Center for Brain-Computer Interfaces, Pazhou Laboratory, Qiaotou Street 248, Guangzhou 510665, China
| |
Collapse
|
7
|
Vinogradov A, Kapucu EF, Narkilahti S. Exploring Kainic Acid-Induced Alterations in Circular Tripartite Networks with Advanced Analysis Tools. eNeuro 2024; 11:ENEURO.0035-24.2024. [PMID: 39079743 PMCID: PMC11289587 DOI: 10.1523/eneuro.0035-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
Brain activity implies the orchestrated functioning of interconnected brain regions. Typical in vitro models aim to mimic the brain using single human pluripotent stem cell-derived neuronal networks. However, the field is constantly evolving to model brain functions more accurately through the use of new paradigms, e.g., brain-on-a-chip models with compartmentalized structures and integrated sensors. These methods create novel data requiring more complex analysis approaches. The previously introduced circular tripartite network concept models the connectivity between spatially diverse neuronal structures. The model consists of a microfluidic device allowing axonal connectivity between separated neuronal networks with an embedded microelectrode array to record both local and global electrophysiological activity patterns in the closed circuitry. The existing tools are suboptimal for the analysis of the data produced with this model. Here, we introduce advanced tools for synchronization and functional connectivity assessment. We used our custom-designed analysis to assess the interrelations between the kainic acid (KA)-exposed proximal compartment and its nonexposed distal neighbors before and after KA. Novel multilevel circuitry bursting patterns were detected and analyzed in parallel with the inter- and intracompartmental functional connectivity. The effect of KA on the proximal compartment was captured, and the spread of this effect to the nonexposed distal compartments was revealed. KA induced divergent changes in bursting behaviors, which may be explained by distinct baseline activity and varied intra- and intercompartmental connectivity strengths. The circular tripartite network concept combined with our developed analysis advances importantly both face and construct validity in modeling human epilepsy in vitro.
Collapse
Affiliation(s)
- Andrey Vinogradov
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Emre Fikret Kapucu
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| | - Susanna Narkilahti
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, Tampere 33520, Finland
| |
Collapse
|
8
|
Wirsich J, Iannotti GR, Ridley B, Shamshiri EA, Sheybani L, Grouiller F, Bartolomei F, Seeck M, Lazeyras F, Ranjeva JP, Guye M, Vulliemoz S. Altered correlation of concurrently recorded EEG-fMRI connectomes in temporal lobe epilepsy. Netw Neurosci 2024; 8:466-485. [PMID: 38952816 PMCID: PMC11142634 DOI: 10.1162/netn_a_00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/17/2024] [Indexed: 07/03/2024] Open
Abstract
Whole-brain functional connectivity networks (connectomes) have been characterized at different scales in humans using EEG and fMRI. Multimodal epileptic networks have also been investigated, but the relationship between EEG and fMRI defined networks on a whole-brain scale is unclear. A unified multimodal connectome description, mapping healthy and pathological networks would close this knowledge gap. Here, we characterize the spatial correlation between the EEG and fMRI connectomes in right and left temporal lobe epilepsy (rTLE/lTLE). From two centers, we acquired resting-state concurrent EEG-fMRI of 35 healthy controls and 34 TLE patients. EEG-fMRI data was projected into the Desikan brain atlas, and functional connectomes from both modalities were correlated. EEG and fMRI connectomes were moderately correlated. This correlation was increased in rTLE when compared to controls for EEG-delta/theta/alpha/beta. Conversely, multimodal correlation in lTLE was decreased in respect to controls for EEG-beta. While the alteration was global in rTLE, in lTLE it was locally linked to the default mode network. The increased multimodal correlation in rTLE and decreased correlation in lTLE suggests a modality-specific lateralized differential reorganization in TLE, which needs to be considered when comparing results from different modalities. Each modality provides distinct information, highlighting the benefit of multimodal assessment in epilepsy.
Collapse
Affiliation(s)
- Jonathan Wirsich
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Giannina Rita Iannotti
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elhum A. Shamshiri
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Laurent Sheybani
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Fabrice Bartolomei
- Aix-Marseille Univ, INS, INSERM, UMR 1106, Marseille, France
- AP-HM CHU Timone, Service d’épileptologie, Marseille, France
| | - Margitta Seeck
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM 7339, Marseille, France
- AP-HM CHU Timone, CEMEREM, Marseille, France
| | - Serge Vulliemoz
- EEG and Epilepsy Unit, Division of Neurology, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575736. [PMID: 38293067 PMCID: PMC10827041 DOI: 10.1101/2024.01.15.575736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, hold significant implications for cognition. However, connectome dynamics at fast (> 1Hz) timescales highly relevant to cognition are poorly understood due to the dominance of inherently slow fMRI in connectome studies. Here, we investigated the behavioral significance of rapid electrophysiological connectome dynamics using source-localized EEG connectomes during resting-state (N=926, 473 females). We focused on dynamic connectome features pertinent to individual differences, specifically those with established heritability: Fractional Occupancy (i.e., the overall duration spent in each recurrent connectome state) in beta and gamma bands, and Transition Probability (i.e., the frequency of state switches) in theta, alpha, beta, and gamma bands. Canonical correlation analysis found a significant relationship between the heritable phenotypes of sub-second connectome dynamics and cognition. Specifically, principal components of Transition Probabilities in alpha (followed by theta and gamma bands) and a cognitive factor representing visuospatial processing (followed by verbal and auditory working memory) most notably contributed to the relationship. We conclude that the specific order in which rapid connectome states are sequenced shapes individuals' cognitive abilities and traits. Such sub-second connectome dynamics may inform about behavioral function and dysfunction and serve as endophenotypes for cognitive abilities.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
10
|
Jun S, Malone SM, Iacono WG, Harper J, Wilson S, Sadaghiani S. Rapid dynamics of electrophysiological connectome states are heritable. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575731. [PMID: 38293031 PMCID: PMC10827044 DOI: 10.1101/2024.01.15.575731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infra-slow (<0.1Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting-state (N=928, 473 females), we quantified heritability of multivariate (multi-state) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ~60-500ms. Temporal features were heritable, particularly, Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for heritability of spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects strongly shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Collapse
Affiliation(s)
- Suhnyoung Jun
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Sylia Wilson
- Institute of Child Development, University of Minnesota, Twin Cities, USA
| | - Sepideh Sadaghiani
- Psychology Department, University of Illinois at Urbana-Champaign
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign
- Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
11
|
Uddin LQ, Betzel RF, Cohen JR, Damoiseaux JS, De Brigard F, Eickhoff SB, Fornito A, Gratton C, Gordon EM, Laird AR, Larson-Prior L, McIntosh AR, Nickerson LD, Pessoa L, Pinho AL, Poldrack RA, Razi A, Sadaghiani S, Shine JM, Yendiki A, Yeo BTT, Spreng RN. Controversies and progress on standardization of large-scale brain network nomenclature. Netw Neurosci 2023; 7:864-905. [PMID: 37781138 PMCID: PMC10473266 DOI: 10.1162/netn_a_00323] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica S. Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | | | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Linda Larson-Prior
- Deptartment of Psychiatry and Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A. Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Vancouver, BC, Canada
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Ana Luísa Pinho
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | | | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Anastasia Yendiki
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Liu ZQ, Shafiei G, Baillet S, Misic B. Spatially heterogeneous structure-function coupling in haemodynamic and electromagnetic brain networks. Neuroimage 2023; 278:120276. [PMID: 37451374 DOI: 10.1016/j.neuroimage.2023.120276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in connectomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing structural connectivity estimated using diffusion MRI with functional connectivity estimated using both neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-function coupling is heterogeneous across brain regions and frequency bands. The link between structural and functional connectivity is generally stronger in multiple MEG frequency bands compared to resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands compared to faster frequency bands. We also find that structure-function coupling systematically follows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation, peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-informed inter-regional communication metrics than using structural connectivity alone. Collectively, these results place neurophysiological and haemodynamic structure-function relationships in a common frame of reference and provide a starting point for a multi-modal understanding of structure-function coupling in the brain.
Collapse
Affiliation(s)
- Zhen-Qi Liu
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
13
|
Wang S, Chang C. Complex topology meets simple statistics. Nat Neurosci 2023; 26:732-734. [PMID: 37095400 DOI: 10.1038/s41593-023-01295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Affiliation(s)
- Shiyu Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Catie Chang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Yan Y, Fan G, Liao X, Zhao X. Research trends and hotspots on connectomes from 2005 to 2021: A bibliometric and latent Dirichlet allocation application study. Front Neurosci 2022; 16:1046562. [PMID: 36620450 PMCID: PMC9814013 DOI: 10.3389/fnins.2022.1046562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to conduct a bibliometric analysis of publications on connectomes and illustrate its trends and hotspots using a machine-learning-based text mining algorithm. Methods Documents were retrieved from the Web of Science Core Collection (WoSCC) and Scopus databases and analyzed in Rstudio 1.3.1. Through quantitative and qualitative methods, the most productive and impactful academic journals in the field of connectomes were compared in terms of the total number of publications and h-index over time. Meanwhile, the countries/regions and institutions involved in connectome research were compared, as well as their scientific collaboration. The study analyzed topics and research trends by R package "bibliometrix." The major topics of connectomes were classified by Latent Dirichlet allocation (LDA). Results A total of 14,140 publications were included in the study. NEUROIMAGE ranked first in terms of publication volume (1,427 articles) and impact factor (h-index:122) among all the relevant journals. The majority of articles were published by developed countries, with the United States having the most. Harvard Medical School and the University of Pennsylvania were the two most productive institutions. Neuroimaging analysis technology and brain functions and diseases were the two major topics of connectome research. The application of machine learning, deep learning, and graph theory analysis in connectome research has become the current trend, while an increasing number of studies were concentrating on dynamic functional connectivity. Meanwhile, researchers have begun investigating alcohol use disorders and migraine in terms of brain connectivity in the past 2 years. Conclusion This study illustrates a comprehensive overview of connectome research and provides researchers with critical information for understanding the recent trends and hotspots of connectomes.
Collapse
Affiliation(s)
- Yangye Yan
- Tongji University School of Medicine, Shanghai Eastern Hospital Affiliated to Tongji University, Shanghai, China
| | - Guoxin Fan
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,School of Biomedical Engineering, School of Medicine, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China,Department of Spine Surgery, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Liao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China,School of Biomedical Engineering, School of Medicine, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Shenzhen University, Shenzhen, China,*Correspondence: Xiang Liao,
| | - Xudong Zhao
- Clinical Research Center for Mental Disorders, Chinese-German Institute of Mental Health, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai, China,Xudong Zhao,
| |
Collapse
|
15
|
Wajnerman Paz A. The global neuronal workspace as a broadcasting network. Netw Neurosci 2022; 6:1186-1204. [PMID: 38800460 PMCID: PMC11117084 DOI: 10.1162/netn_a_00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/13/2022] [Indexed: 05/29/2024] Open
Abstract
A new strategy for moving forward in the characterization of the global neuronal workspace (GNW) is proposed. According to Dehaene, Changeux, and colleagues (Dehaene, 2014, pp. 304, 312; Dehaene & Changeux, 2004, 2005), broadcasting is the main function of the GNW. However, the dynamic network properties described by recent graph theoretic GNW models are consistent with many large-scale communication processes that are different from broadcasting. We propose to apply a different graph theoretic approach, originally developed for optimizing information dissemination in communication networks, which can be used to identify the pattern of frequency and phase-specific directed functional connections that the GNW would exhibit only if it were a broadcasting network.
Collapse
Affiliation(s)
- Abel Wajnerman Paz
- Department of Philosophy, Universidad Alberto Hurtado, Santiago, Chile
- Neuroethics Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
16
|
Conrad EC, Bernabei JM, Sinha N, Ghosn NJ, Stein JM, Shinohara RT, Litt B. Addressing spatial bias in intracranial EEG functional connectivity analyses for epilepsy surgical planning. J Neural Eng 2022; 19:056019. [PMID: 36084621 PMCID: PMC9590099 DOI: 10.1088/1741-2552/ac90ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
Objective.To determine the effect of epilepsy on intracranial electroencephalography (EEG) functional connectivity, and the ability of functional connectivity to localize the seizure onset zone (SOZ), controlling for spatial biases.Approach.We analyzed intracranial EEG data from patients with drug-resistant epilepsy admitted for pre-surgical planning. We calculated intracranial EEG functional networks and determined whether changes in functional connectivity lateralized the SOZ using a spatial subsampling method to control for spatial bias. We developed a 'spatial null model' to localize the SOZ electrode using only spatial sampling information, ignoring EEG data. We compared the performance of this spatial null model against models incorporating EEG functional connectivity and interictal spike rates.Main results.About 110 patients were included in the study, although the number of patients differed across analyses. Controlling for spatial sampling, the average connectivity was lower in the SOZ region relative to the same anatomic region in the contralateral hemisphere. A model using intra-hemispheric connectivity accurately lateralized the SOZ (average accuracy 75.5%). A spatial null model incorporating spatial sampling information alone achieved moderate accuracy in classifying SOZ electrodes (mean AUC = 0.70, 95% CI 0.63-0.77). A model incorporating intracranial EEG functional connectivity and spike rate data further outperformed this spatial null model (AUC 0.78,p= 0.002 compared to spatial null model). However, a model incorporating functional connectivity without spike rate data did not significantly outperform the null model (AUC 0.72,p= 0.38).Significance.Intracranial EEG functional connectivity is reduced in the SOZ region, and interictal data predict SOZ electrode localization and laterality, however a predictive model incorporating functional connectivity without interictal spike rates did not significantly outperform a spatial null model. We propose constructing a spatial null model to provide an estimate of the pre-implant hypothesis of the SOZ, and to serve as a benchmark for further machine learning algorithms in order to avoid overestimating model performance because of electrode sampling alone.
Collapse
Affiliation(s)
- Erin C Conrad
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - John M Bernabei
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nishant Sinha
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Nina J Ghosn
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel M Stein
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, United States of America
- Penn Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA, United States of America
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Brian Litt
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
17
|
Shafiei G, Baillet S, Misic B. Human electromagnetic and haemodynamic networks systematically converge in unimodal cortex and diverge in transmodal cortex. PLoS Biol 2022; 20:e3001735. [PMID: 35914002 PMCID: PMC9371256 DOI: 10.1371/journal.pbio.3001735] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/11/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Whole-brain neural communication is typically estimated from statistical associations among electromagnetic or haemodynamic time-series. The relationship between functional network architectures recovered from these 2 types of neural activity remains unknown. Here, we map electromagnetic networks (measured using magnetoencephalography (MEG)) to haemodynamic networks (measured using functional magnetic resonance imaging (fMRI)). We find that the relationship between the 2 modalities is regionally heterogeneous and systematically follows the cortical hierarchy, with close correspondence in unimodal cortex and poor correspondence in transmodal cortex. Comparison with the BigBrain histological atlas reveals that electromagnetic-haemodynamic coupling is driven by laminar differentiation and neuron density, suggesting that the mapping between the 2 modalities can be explained by cytoarchitectural variation. Importantly, haemodynamic connectivity cannot be explained by electromagnetic activity in a single frequency band, but rather arises from the mixing of multiple neurophysiological rhythms. Correspondence between the two is largely driven by MEG functional connectivity at the beta (15 to 29 Hz) frequency band. Collectively, these findings demonstrate highly organized but only partly overlapping patterns of connectivity in MEG and fMRI functional networks, opening fundamentally new avenues for studying the relationship between cortical microarchitecture and multimodal connectivity patterns.
Collapse
Affiliation(s)
- Golia Shafiei
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
18
|
Whi W, Huh Y, Ha S, Lee H, Kang H, Lee DS. Characteristic functional cores revealed by hyperbolic disc embedding and k-core percolation on resting-state fMRI. Sci Rep 2022; 12:4887. [PMID: 35318429 PMCID: PMC8941113 DOI: 10.1038/s41598-022-08975-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperbolic disc embedding and k-core percolation reveal the hierarchical structure of functional connectivity on resting-state fMRI (rsfMRI). Using 180 normal adults' rsfMRI data from the human connectome project database, we visualized inter-voxel relations by embedding voxels on the hyperbolic space using the [Formula: see text] model. We also conducted k-core percolation on 30 participants to investigate core voxels for each individual. It recursively peels the layer off, and this procedure leaves voxels embedded in the center of the hyperbolic disc. We used independent components to classify core voxels, and it revealed stereotypes of individuals such as visual network dominant, default mode network dominant, and distributed patterns. Characteristic core structures of resting-state brain connectivity of normal subjects disclosed the distributed or asymmetric contribution of voxels to the kmax-core, which suggests the hierarchical dominance of certain IC subnetworks characteristic of subgroups of individuals at rest.
Collapse
Affiliation(s)
- Wonseok Whi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Youngmin Huh
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyekyoung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hyejin Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea.
- Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea.
- Medical Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
19
|
Turk E, Vroomen J, Fonken Y, Levy J, van den Heuvel MI. In sync with your child: The potential of parent-child electroencephalography in developmental research. Dev Psychobiol 2022; 64:e22221. [PMID: 35312051 DOI: 10.1002/dev.22221] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/29/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022]
Abstract
Healthy interaction between parent and child is foundational for the child's socioemotional development. Recently, an innovative paradigm shift in electroencephalography (EEG) research has enabled the simultaneous measurement of neural activity in caregiver and child. This dual-EEG or hyperscanning approach, termed parent-child dual-EEG, combines the strength of both behavioral observations and EEG methods. In this review, we aim to inform on the potential of dual-EEG in parents and children (0-6 years) for developmental researchers. We first provide a general overview of the dual-EEG technique and continue by reviewing the first empirical work on the emerging field of parent-child dual-EEG, discussing the limited but fascinating findings on parent-child brain-to-behavior and brain-to-brain synchrony. We then continue by providing an overview of dual-EEG analysis techniques, including the technical challenges and solutions one may encounter. We finish by discussing the potential of parent-child dual-EEG for the future of developmental research. The analysis of multiple EEG data is technical and challenging, but when performed well, parent-child EEG may transform the way we understand how caregiver and child connect on a neurobiological level. Importantly, studying objective physiological measures of parent-child interactions could lead to the identification of novel brain-to-brain synchrony markers of interaction quality.
Collapse
Affiliation(s)
- Elise Turk
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jean Vroomen
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Yvonne Fonken
- Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Jonathan Levy
- Baruch Ivcher School of Psychology, Interdisciplinary Center Herzliya (IDC), Herzliya, Israel.,Department of Neuroscience and Biomedical Engineering, Aalto University, Aalto, Finland
| | | |
Collapse
|
20
|
Wolff A, Berberian N, Golesorkhi M, Gomez-Pilar J, Zilio F, Northoff G. Intrinsic neural timescales: temporal integration and segregation. Trends Cogn Sci 2022; 26:159-173. [PMID: 34991988 DOI: 10.1016/j.tics.2021.11.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/11/2022]
Abstract
We are continuously bombarded by external inputs of various timescales from the environment. How does the brain process this multitude of timescales? Recent resting state studies show a hierarchy of intrinsic neural timescales (INT) with a shorter duration in unimodal regions (e.g., visual cortex and auditory cortex) and a longer duration in transmodal regions (e.g., default mode network). This unimodal-transmodal hierarchy is present across acquisition modalities [electroencephalogram (EEG)/magnetoencephalogram (MEG) and fMRI] and can be found in different species and during a variety of different task states. Together, this suggests that the hierarchy of INT is central to the temporal integration (combining successive stimuli) and segregation (separating successive stimuli) of external inputs from the environment, leading to temporal segmentation and prediction in perception and cognition.
Collapse
Affiliation(s)
- Annemarie Wolff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Nareg Berberian
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mehrshad Golesorkhi
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- Biomedical Engineering Group, University of Valladolid, Paseo de Belén, 15, 47011 Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicia, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Padua, Italy
| | - Georg Northoff
- Mind, Brain Imaging, and Neuroethics Research Unit, Institute of Mental Health Research, The Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China; Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Lee SH, Broadwater MA, Ban W, Wang TWW, Kim HJ, Dumas JS, Vetreno RP, Herman MA, Morrow AL, Besheer J, Kash TL, Boettiger CA, Robinson DL, Crews FT, Shih YYI. An isotropic EPI database and analytical pipelines for rat brain resting-state fMRI. Neuroimage 2021; 243:118541. [PMID: 34478824 PMCID: PMC8561231 DOI: 10.1016/j.neuroimage.2021.118541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/08/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Resting-state functional magnetic resonance imaging (fMRI) has drastically expanded the scope of brain research by advancing our knowledge about the topologies, dynamics, and interspecies translatability of functional brain networks. Several databases have been developed and shared in accordance with recent key initiatives in the rodent fMRI community to enhance the transparency, reproducibility, and interpretability of data acquired at various sites. Despite these pioneering efforts, one notable challenge preventing efficient standardization in the field is the customary choice of anisotropic echo planar imaging (EPI) schemes with limited spatial coverage. Imaging with anisotropic resolution and/or reduced brain coverage has significant shortcomings including reduced registration accuracy and increased deviation in brain feature detection. Here we proposed a high-spatial-resolution (0.4 mm), isotropic, whole-brain EPI protocol for the rat brain using a horizontal slicing scheme that can maintain a functionally relevant repetition time (TR), avoid high gradient duty cycles, and offer unequivocal whole-brain coverage. Using this protocol, we acquired resting-state EPI fMRI data from 87 healthy rats under the widely used dexmedetomidine sedation supplemented with low-dose isoflurane on a 9.4 T MRI system. We developed an EPI template that closely approximates the Paxinos and Watson's rat brain coordinate system and demonstrated its ability to improve the accuracy of group-level approaches and streamline fMRI data pre-processing. Using this database, we employed a multi-scale dictionary-learning approach to identify reliable spatiotemporal features representing rat brain intrinsic activity. Subsequently, we performed k-means clustering on those features to obtain spatially discrete, functional regions of interest (ROIs). Using Euclidean-based hierarchical clustering and modularity-based partitioning, we identified the topological organizations of the rat brain. Additionally, the identified group-level FC network appeared robust across strains and sexes. The "triple-network" commonly adapted in human fMRI were resembled in the rat brain. Through this work, we disseminate raw and pre-processed isotropic EPI data, a rat brain EPI template, as well as identified functional ROIs and networks in standardized rat brain coordinates. We also make our analytical pipelines and scripts publicly available, with the hope of facilitating rat brain resting-state fMRI study standardization.
Collapse
Affiliation(s)
- Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Corresponding authors at: Center for Animal MRI, 125 Mason Farm Road, CB# 7513, University of North Carolina, Chapel Hill, NC 27599, USA. (S.-H. Lee), (Y.-Y.I. Shih)
| | - Margaret A. Broadwater
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA
| | - Woomi Ban
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Hyeon-Joong Kim
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Jaiden Seongmi Dumas
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Department of Quantitative Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan P. Vetreno
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Melissa A. Herman
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Charlotte A. Boettiger
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA,Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies University of North Carolina, Chapel Hill, NC, USA,Corresponding authors at: Center for Animal MRI, 125 Mason Farm Road, CB# 7513, University of North Carolina, Chapel Hill, NC 27599, USA. (S.-H. Lee), (Y.-Y.I. Shih)
| |
Collapse
|
22
|
Van De Ville D, Farouj Y, Preti MG, Liégeois R, Amico E. When makes you unique: Temporality of the human brain fingerprint. SCIENCE ADVANCES 2021; 7:eabj0751. [PMID: 34652937 PMCID: PMC8519575 DOI: 10.1126/sciadv.abj0751] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/20/2021] [Indexed: 05/30/2023]
Abstract
The extraction of “fingerprints” from human brain connectivity data has become a new frontier in neuroscience. However, the time scales of human brain identifiability are still largely unexplored. We here investigate the dynamics of brain fingerprints along two complementary axes: (i) What is the optimal time scale at which brain fingerprints integrate information and (ii) when best identification happens. Using dynamic identifiability, we show that the best identification emerges at longer time scales; however, short transient “bursts of identifiability,” associated with neuronal activity, persist even when looking at shorter functional interactions. Furthermore, we report evidence that different parts of connectome fingerprints relate to different time scales, i.e., more visual-somatomotor at short temporal windows and more frontoparietal-DMN driven at increasing temporal windows. Last, different cognitive functions appear to be meta-analytically implicated in dynamic fingerprints across time scales. We hope that this investigation will advance our understanding of what makes our brains unique.
Collapse
Affiliation(s)
- Dimitri Van De Ville
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
| | - Younes Farouj
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Maria Giulia Preti
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Vaud, Switzerland
| | - Raphaël Liégeois
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, EPFL, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
23
|
Büchel D, Sandbakk Ø, Baumeister J. Exploring intensity-dependent modulations in EEG resting-state network efficiency induced by exercise. Eur J Appl Physiol 2021; 121:2423-2435. [PMID: 34003363 PMCID: PMC8357751 DOI: 10.1007/s00421-021-04712-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Exhaustive cardiovascular load can affect neural processing and is associated with decreases in sensorimotor performance. The purpose of this study was to explore intensity-dependent modulations in brain network efficiency in response to treadmill running assessed from resting-state electroencephalography (EEG) measures. METHODS Sixteen trained participants were tested for individual peak oxygen uptake (VO2 peak) and performed an incremental treadmill exercise at 50% (10 min), 70% (10 min) and 90% speed VO2 peak (all-out) followed by cool-down running and active recovery. Before the experiment and after each stage, borg scale (BS), blood lactate concentration (BLa), resting heartrate (HRrest) and 64-channel EEG resting state were assessed. To analyze network efficiency, graph theory was applied to derive small world index (SWI) from EEG data in theta, alpha-1 and alpha-2 frequency bands. RESULTS Analysis of variance for repeated measures revealed significant main effects for intensity on BS, BLa, HRrest and SWI. While BS, BLa and HRrest indicated maxima after all-out, SWI showed a reduction in the theta network after all-out. CONCLUSION Our explorative approach suggests intensity-dependent modulations of resting-state brain networks, since exhaustive exercise temporarily reduces brain network efficiency. Resting-state network assessment may prospectively play a role in training monitoring by displaying the readiness and efficiency of the central nervous system in different training situations.
Collapse
Affiliation(s)
- Daniel Büchel
- Exercise Science and Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany.
| | - Øyvind Sandbakk
- Department of Neuromedicine and Movement Science, Centre for Elite Sports Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jochen Baumeister
- Exercise Science and Neuroscience Unit, Department of Exercise & Health, Faculty of Science, Paderborn University, Paderborn, Germany
| |
Collapse
|
24
|
Golesorkhi M, Gomez-Pilar J, Zilio F, Berberian N, Wolff A, Yagoub MCE, Northoff G. The brain and its time: intrinsic neural timescales are key for input processing. Commun Biol 2021; 4:970. [PMID: 34400800 PMCID: PMC8368044 DOI: 10.1038/s42003-021-02483-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
We process and integrate multiple timescales into one meaningful whole. Recent evidence suggests that the brain displays a complex multiscale temporal organization. Different regions exhibit different timescales as described by the concept of intrinsic neural timescales (INT); however, their function and neural mechanisms remains unclear. We review recent literature on INT and propose that they are key for input processing. Specifically, they are shared across different species, i.e., input sharing. This suggests a role of INT in encoding inputs through matching the inputs' stochastics with the ongoing temporal statistics of the brain's neural activity, i.e., input encoding. Following simulation and empirical data, we point out input integration versus segregation and input sampling as key temporal mechanisms of input processing. This deeply grounds the brain within its environmental and evolutionary context. It carries major implications in understanding mental features and psychiatric disorders, as well as going beyond the brain in integrating timescales into artificial intelligence.
Collapse
Affiliation(s)
- Mehrshad Golesorkhi
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada ,grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Javier Gomez-Pilar
- grid.5239.d0000 0001 2286 5329Biomedical Engineering Group, University of Valladolid, Valladolid, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Madrid, Spain
| | - Federico Zilio
- grid.5608.b0000 0004 1757 3470Department of Philosophy, Sociology, Education and Applied Psychology, University of Padova, Padua, Italy
| | - Nareg Berberian
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Annemarie Wolff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada
| | - Mustapha C. E. Yagoub
- grid.28046.380000 0001 2182 2255School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
| | - Georg Northoff
- grid.28046.380000 0001 2182 2255Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health, Royal Ottawa Mental Health Centre and University of Ottawa, Ottawa, Canada ,grid.410595.c0000 0001 2230 9154Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China ,grid.13402.340000 0004 1759 700XMental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| |
Collapse
|
25
|
Egan MK, Larsen R, Wirsich J, Sutton BP, Sadaghiani S. Safety and data quality of EEG recorded simultaneously with multi-band fMRI. PLoS One 2021; 16:e0238485. [PMID: 34214093 PMCID: PMC8253410 DOI: 10.1371/journal.pone.0238485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/04/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Simultaneously recorded electroencephalography and functional magnetic resonance imaging (EEG-fMRI) is highly informative yet technically challenging. Until recently, there has been little information about EEG data quality and safety when used with newer multi-band (MB) fMRI sequences. Here, we measure the relative heating of a MB protocol compared with a standard single-band (SB) protocol considered to be safe. We also evaluated EEG quality recorded concurrently with the MB protocol on humans. MATERIALS AND METHODS We compared radiofrequency (RF)-related heating at multiple electrodes and magnetic field magnitude, B1+RMS, of a MB fMRI sequence with whole-brain coverage (TR = 440 ms, MB factor = 4) against a previously recommended, safe SB sequence using a phantom outfitted with a 64-channel EEG cap. Next, 9 human subjects underwent eyes-closed resting state EEG-fMRI using the MB sequence. Additionally, in three of the subjects resting state EEG was recorded also during the SB sequence and in an fMRI-free condition to directly compare EEG data quality across scanning conditions. EEG data quality was assessed by the ability to remove gradient and cardioballistic artifacts along with a clean spectrogram. RESULTS The heating induced by the MB sequence was lower than that of the SB sequence by a factor of 0.73 ± 0.38. This is consistent with an expected heating ratio of 0.64, calculated from the square of the ratio of B1+RMS values of the sequences. In the resting state EEG data, gradient and cardioballistic artifacts were successfully removed using traditional template subtraction. All subjects showed an individual alpha peak in the spectrogram with a posterior topography characteristic of eyes-closed EEG. The success of artifact rejection for the MB sequence was comparable to that in traditional SB sequences. CONCLUSIONS Our study shows that B1+RMS is a useful indication of the relative heating of fMRI protocols. This observation indicates that simultaneous EEG-fMRI recordings using this MB sequence can be safe in terms of RF-related heating, and that EEG data recorded using this sequence is of acceptable quality after traditional artifact removal techniques.
Collapse
Affiliation(s)
- Maximillian K. Egan
- Psychology Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Ryan Larsen
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Jonathan Wirsich
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- EEG and Epilepsy Unit, Univ. Hospitals and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Brad P. Sutton
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Bioengineering Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| | - Sepideh Sadaghiani
- Psychology Dept., Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
- Beckman Institute for Advanced Science and Technology, Univ. of Illinois At Urbana-Champaign, Urbana, IL, United States of America
| |
Collapse
|
26
|
Courtney SM, Hinault T. When the time is right: Temporal dynamics of brain activity in healthy aging and dementia. Prog Neurobiol 2021; 203:102076. [PMID: 34015374 DOI: 10.1016/j.pneurobio.2021.102076] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 10/21/2022]
Abstract
Brain activity and communications are complex phenomena that dynamically unfold over time. However, in contrast with the large number of studies reporting neuroanatomical differences in activation relative to young adults, changes of temporal dynamics of neural activity during normal and pathological aging have been grossly understudied and are still poorly known. Here, we synthesize the current state of knowledge from MEG and EEG studies that aimed at specifying the effects of healthy and pathological aging on local and network dynamics, and discuss the clinical and theoretical implications of these findings. We argue that considering the temporal dynamics of brain activations and networks could provide a better understanding of changes associated with healthy aging, and the progression of neurodegenerative disease. Recent research has also begun to shed light on the association of these dynamics with other imaging modalities and with individual differences in cognitive performance. These insights hold great potential for driving new theoretical frameworks and development of biomarkers to aid in identifying and treating age-related cognitive changes.
Collapse
Affiliation(s)
- S M Courtney
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; F.M. Kirby Research Center, Kennedy Krieger Institute, MD 21205, USA; Department of Neuroscience, Johns Hopkins University, MD 21205, USA
| | - T Hinault
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, 21218, USA; U1077 INSERM-EPHE-UNICAEN, Caen, France.
| |
Collapse
|
27
|
Differential classification of states of consciousness using envelope- and phase-based functional connectivity. Neuroimage 2021; 237:118171. [PMID: 34000405 DOI: 10.1016/j.neuroimage.2021.118171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 12/14/2022] Open
Abstract
The development of sophisticated computational tools to quantify changes in the brain's oscillatory dynamics across states of consciousness have included both envelope- and phase-based measures of functional connectivity (FC), but there are very few direct comparisons of these techniques using the same dataset. The goal of this study was to compare an envelope-based (i.e. Amplitude Envelope Correlation, AEC) and a phase-based (i.e. weighted Phase Lag Index, wPLI) measure of FC in their classification of states of consciousness. Nine healthy participants underwent a three-hour experimental anesthetic protocol with propofol induction and isoflurane maintenance, in which five minutes of 128-channel electroencephalography were recorded before, during, and after anesthetic-induced unconsciousness, at the following time points: Baseline; light sedation with propofol (Light Sedation); deep unconsciousness following three hours of surgical levels of anesthesia with isoflurane (Unconscious); five minutes prior to the recovery of consciousness (Pre-ROC); and three hours following the recovery of consciousness (Recovery). Support vector machine classification was applied to the source-localized EEG in the alpha (8-13 Hz) frequency band in order to investigate the ability of AEC and wPLI (separately and together) to discriminate i) the four states from Baseline; ii) Unconscious ("deep" unconsciousness) vs. Pre-ROC ("light" unconsciousness); and iii) responsiveness (Baseline, Light Sedation, Recovery) vs. unresponsiveness (Unconscious, Pre-ROC). AEC and wPLI yielded different patterns of global connectivity across states of consciousness, with AEC showing the strongest network connectivity during the Unconscious epoch, and wPLI showing the strongest connectivity during full consciousness (i.e., Baseline and Recovery). Both measures also demonstrated differential predictive contributions across participants and used different brain regions for classification. AEC showed higher classification accuracy overall, particularly for distinguishing anesthetic-induced unconsciousness from Baseline (83.7 ± 0.8%). AEC also showed stronger classification accuracy than wPLI when distinguishing Unconscious from Pre-ROC (i.e., "deep" from "light" unconsciousness) (AEC: 66.3 ± 1.2%; wPLI: 56.2 ± 1.3%), and when distinguishing between responsiveness and unresponsiveness (AEC: 76.0 ± 1.3%; wPLI: 63.6 ± 1.8%). Classification accuracy was not improved compared to AEC when both AEC and wPLI were combined. This analysis of source-localized EEG data demonstrates that envelope- and phase-based FC provide different information about states of consciousness but that, on a group level, AEC is better able to detect relative alterations in brain FC across levels of anesthetic-induced unconsciousness compared to wPLI.
Collapse
|
28
|
Chang C, Chen JE. Multimodal EEG-fMRI: advancing insight into large-scale human brain dynamics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18. [PMID: 34095643 DOI: 10.1016/j.cobme.2021.100279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advances in the acquisition and analysis of functional magnetic resonance imaging (fMRI) data are revealing increasingly rich spatiotemporal structure across the human brain. Nonetheless, uncertainty surrounding the origins of fMRI hemodynamic signals, and in the link between large-scale fMRI patterns and ongoing functional states, presently limits the neurobiological conclusions one can draw from fMRI alone. Electroencephalography (EEG) provides complementary information about neural electrical activity and state change, and simultaneously acquiring EEG together with fMRI presents unique opportunities for studying large-scale brain activity and gaining more information from fMRI itself. Here, we discuss recent progress in the use of concurrent EEG-fMRI to enrich the investigation of neural and physiological states and clarify the origins of fMRI hemodynamic signals. Throughout, we outline perspectives on future directions and open challenges.
Collapse
Affiliation(s)
- Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jingyuan E Chen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA.,Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Wirsich J, Jorge J, Iannotti GR, Shamshiri EA, Grouiller F, Abreu R, Lazeyras F, Giraud AL, Gruetter R, Sadaghiani S, Vulliémoz S. The relationship between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI studies from 1.5T to 7T. Neuroimage 2021; 231:117864. [PMID: 33592241 DOI: 10.1016/j.neuroimage.2021.117864] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/21/2021] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Both electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are non-invasive methods that show complementary aspects of human brain activity. Despite measuring different proxies of brain activity, both the measured blood-oxygenation (fMRI) and neurophysiological recordings (EEG) are indirectly coupled. The electrophysiological and BOLD signal can map the underlying functional connectivity structure at the whole brain scale at different timescales. Previous work demonstrated a moderate but significant correlation between resting-state functional connectivity of both modalities, however there is a wide range of technical setups to measure simultaneous EEG-fMRI and the reliability of those measures between different setups remains unknown. This is true notably with respect to different magnetic field strengths (low and high field) and different spatial sampling of EEG (medium to high-density electrode coverage). Here, we investigated the reproducibility of the bimodal EEG-fMRI functional connectome in the most comprehensive resting-state simultaneous EEG-fMRI dataset compiled to date including a total of 72 subjects from four different imaging centers. Data was acquired from 1.5T, 3T and 7T scanners with simultaneously recorded EEG using 64 or 256 electrodes. We demonstrate that the whole-brain monomodal connectivity reproducibly correlates across different datasets and that a moderate crossmodal correlation between EEG and fMRI connectivity of r ≈ 0.3 can be reproducibly extracted in low- and high-field scanners. The crossmodal correlation was strongest in the EEG-β frequency band but exists across all frequency bands. Both homotopic and within intrinsic connectivity network (ICN) connections contributed the most to the crossmodal relationship. This study confirms, using a considerably diverse range of recording setups, that simultaneous EEG-fMRI offers a consistent estimate of multimodal functional connectomes in healthy subjects that are dominantly linked through a functional core of ICNs across spanning across the different timescales measured by EEG and fMRI. This opens new avenues for estimating the dynamics of brain function and provides a better understanding of interactions between EEG and fMRI measures. This observed level of reproducibility also defines a baseline for the study of alterations of this coupling in pathological conditions and their role as potential clinical markers.
Collapse
Affiliation(s)
- Jonathan Wirsich
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland.
| | - João Jorge
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Systems Division, Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
| | - Giannina Rita Iannotti
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Elhum A Shamshiri
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Rodolfo Abreu
- ISR-Lisboa/LARSyS and Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Lisbon, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - François Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; Department of Radiology, University of Lausanne, Lausanne, Switzerland
| | - Sepideh Sadaghiani
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Psychology Department, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Serge Vulliémoz
- EEG and Epilepsy Unit, University Hospitals and Faculty of Medicine of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Bittencourt-Villalpando M, van der Horn HJ, Maurits NM, van der Naalt J. Disentangling the effects of age and mild traumatic brain injury on brain network connectivity: A resting state fMRI study. Neuroimage Clin 2020; 29:102534. [PMID: 33360020 PMCID: PMC7770973 DOI: 10.1016/j.nicl.2020.102534] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Cognitive complaints are common shortly after mild traumatic brain injury (mTBI) but may persist up to years. Age-related cognitive decline can worsen these symptoms. However, effects of age on mTBI sequelae have scarcely been investigated. METHODS Fifty-four mTBI patients (median age: 35 years, range 19-64 years, 67% male) and twenty age- and sex-matched healthy controls were studied using resting state functional magnetic resonance imaging in the sub-acute phase. Independent component analysis was used to identify intrinsic connectivity networks (ICNs). A multivariate approach was adopted to evaluate the effects of age and group on the ICNs in terms of (static) functional network connectivity (FNC), intensities of spatial maps (SMs) and time-course spectral power (TC). RESULTS We observed significant age-related changes for a) FNC: changes between 10 pairs of ICNs, mostly involving the default mode (DM) and/or the cognitive-control (CC) domains; b) SMs: intensity decrease in clusters across three domains and intensity increase in clusters across two domains, including the CC but not the DM and c) TC: spectral power decrease within the 0-0.15 Hz range and increase within the 0.20-0.25 Hz range for increasing age within networks located in frontal areas, including the anterior DM. Groups only differed for TC within the 0.065-0.10 Hz range in the cerebellar ICN and no age × group interaction effect was found. CONCLUSIONS We showed robust effects of age on connectivity between and within ICNs that are associated with cognitive functioning. Differences between mTBI patients and controls were only found for activity in the cerebellar network, increasingly recognized to participate in cognition. Our results suggest that to allow for capturing the true effects related to mTBI and its effects on cognitive functioning, age should be included as a covariate in mTBI studies, in addition to age-matching groups.
Collapse
Affiliation(s)
- M Bittencourt-Villalpando
- University of Groningen, University Medical Center Groningen, Department of Neurology AB51, 9700RB Groningen, The Netherlands.
| | - H J van der Horn
- University of Groningen, University Medical Center Groningen, Department of Neurology AB51, 9700RB Groningen, The Netherlands
| | - N M Maurits
- University of Groningen, University Medical Center Groningen, Department of Neurology AB51, 9700RB Groningen, The Netherlands
| | - J van der Naalt
- University of Groningen, University Medical Center Groningen, Department of Neurology AB51, 9700RB Groningen, The Netherlands
| |
Collapse
|
31
|
Oscillation-Based Connectivity Architecture Is Dominated by an Intrinsic Spatial Organization, Not Cognitive State or Frequency. J Neurosci 2020; 41:179-192. [PMID: 33203739 DOI: 10.1523/jneurosci.2155-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/10/2020] [Accepted: 11/03/2020] [Indexed: 11/21/2022] Open
Abstract
Functional connectivity of neural oscillations (oscillation-based FC) is thought to afford dynamic information exchange across task-relevant neural ensembles. Although oscillation-based FC is classically defined relative to a prestimulus baseline, giving rise to rapid, context-dependent changes in individual connections, studies of distributed spatial patterns show that oscillation-based FC is omnipresent, occurring even in the absence of explicit cognitive demands. Thus, the issue of whether oscillation-based FC is primarily shaped by cognitive state or is intrinsic in nature remains open. Accordingly, we sought to reconcile these observations by interrogating the ECoG recordings of 18 presurgical human patients (8 females) for state dependence of oscillation-based FC in five canonical frequency bands across an array of six task states. FC analysis of phase and amplitude coupling revealed a highly similar, largely state-invariant (i.e., intrinsic) spatial component across cognitive states. This spatial organization was shared across all frequency bands. Crucially, however, each band also exhibited temporally independent FC dynamics capable of supporting frequency-specific information exchange. In conclusion, the spatial organization of oscillation-based FC is largely stable over cognitive states (i.e., primarily intrinsic in nature) and shared across frequency bands. Together, our findings converge with previous observations of spatially invariant patterns of FC derived from extremely slow and aperiodic fluctuations in fMRI signals. Our observations indicate that "background" FC should be accounted for in conceptual frameworks of oscillation-based FC targeting task-related changes.SIGNIFICANCE STATEMENT A fundamental property of neural activity is that it is periodic, enabling functional connectivity (FC) between distant regions through coupling of their oscillations. According to task-based studies, such oscillation-based FC is rapid and malleable to meet cognitive task demands. Studying distributed FC patterns instead of FC in a few individual connections, we found that oscillation-based FC is largely stable across various cognitive states and shares a common layout across oscillation frequencies. This stable spatial organization of FC in fast oscillatory brain signals parallels the known stability of fMRI-based intrinsic FC architecture. Despite the observed spatial state and frequency invariance, FC of individual connections was temporally independent between frequency bands, suggesting a putative mechanism for malleable frequency-specific FC to support cognitive tasks.
Collapse
|
32
|
Resolving the Connectome, Spectrally-Specific Functional Connectivity Networks and Their Distinct Contributions to Behavior. eNeuro 2020; 7:ENEURO.0101-20.2020. [PMID: 32826259 PMCID: PMC7484267 DOI: 10.1523/eneuro.0101-20.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
The resting human brain exhibits spontaneous patterns of activity that reflect features of the underlying neural substrate. Examination of interareal coupling of resting-state oscillatory activity has revealed that the brain’s resting activity is composed of functional networks, whose topographies differ depending on oscillatory frequency, suggesting a role for carrier frequency as a means of creating multiplexed, or functionally segregated, communication channels between brain areas. Using canonical correlation analysis (CCA), we examined spectrally resolved resting-state connectivity patterns derived from magnetoencephalography (MEG) recordings to determine the relationship between connectivity intrinsic to different frequency channels and a battery of over a hundred behavioral and demographic indicators, in a group of 89 young healthy participants. We demonstrate that each of the classical frequency bands in the range 1–40 Hz (δ, θ, α, β, and γ) delineates a subnetwork that is behaviorally relevant, spatially distinct, and whose expression is either negatively or positively predictive of individual traits, with the strongest link in the α-band being negative and networks oscillating at different frequencies, such as θ, β, and γ carrying positive function.
Collapse
|
33
|
Wirsich J, Amico E, Giraud AL, Goñi J, Sadaghiani S. Multi-timescale hybrid components of the functional brain connectome: A bimodal EEG-fMRI decomposition. Netw Neurosci 2020; 4:658-677. [PMID: 32885120 PMCID: PMC7462430 DOI: 10.1162/netn_a_00135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/27/2020] [Indexed: 01/02/2023] Open
Abstract
Concurrent electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) bridge brain connectivity across timescales. During concurrent EEG-fMRI resting-state recordings, whole-brain functional connectivity (FC) strength is spatially correlated across modalities. However, cross-modal investigations have commonly remained correlational, and joint analysis of EEG-fMRI connectivity is largely unexplored. Here we investigated if there exist (spatially) independent FC networks linked between modalities. We applied the recently proposed hybrid connectivity independent component analysis (connICA) framework to two concurrent EEG-fMRI resting-state datasets (total 40 subjects). Two robust components were found across both datasets. The first component has a uniformly distributed EEG frequency fingerprint linked mainly to intrinsic connectivity networks (ICNs) in both modalities. Conversely, the second component is sensitive to different EEG frequencies and is primarily linked to intra-ICN connectivity in fMRI but to inter-ICN connectivity in EEG. The first hybrid component suggests that connectivity dynamics within well-known ICNs span timescales, from millisecond range in all canonical frequencies of FCEEG to second range of FCfMRI. Conversely, the second component additionally exposes linked but spatially divergent neuronal processing at the two timescales. This work reveals the existence of joint spatially independent components, suggesting that parts of resting-state connectivity are co-expressed in a linked manner across EEG and fMRI over individuals. Functional connectivity is governed by a whole-brain organization measurable over multiple timescales by functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). The relationship across the whole-brain organization captured at the different timescales of EEG and fMRI is largely unknown. Using concurrent EEG-fMRI, we identified spatially independent components consisting of brain connectivity patterns that co-occur in EEG and fMRI over subjects. We observed a component with similar connectivity organization across EEG and fMRI as well as a component with divergent connectivity. The former component governed all EEG frequencies while the latter was modulated by frequency. These findings show that part of functional connectivity organizes in a common spatial layout over several timescales, while a spatially independent part is modulated by frequency-specific information.
Collapse
Affiliation(s)
- Jonathan Wirsich
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Enrico Amico
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Anne-Lise Giraud
- Department of Neuroscience, University of Geneva, Geneva, Switzerland
| | - Joaquín Goñi
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Sepideh Sadaghiani
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
34
|
Wirsich J, Giraud AL, Sadaghiani S. Concurrent EEG- and fMRI-derived functional connectomes exhibit linked dynamics. Neuroimage 2020; 219:116998. [PMID: 32480035 DOI: 10.1016/j.neuroimage.2020.116998] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Accepted: 05/26/2020] [Indexed: 12/18/2022] Open
Abstract
Long-range connectivity has become the most studied feature of human functional Magnetic Resonance Imaging (fMRI), yet the spatial and temporal relationship between its whole-brain dynamics and electrophysiological connectivity remains largely unknown. FMRI-derived functional connectivity exhibits spatial reconfigurations or time-varying dynamics at infraslow (<0.1Hz) speeds. Conversely, electrophysiological connectivity is based on cross-region coupling of fast oscillations (~1-100Hz). It is unclear whether such fast oscillation-based coupling varies at infraslow speeds, temporally coinciding with infraslow dynamics across the fMRI-based connectome. If so, does the association of fMRI-derived and electrophysiological dynamics spatially vary over the connectome across the functionally distinct electrophysiological oscillation bands? In two concurrent electroencephalography (EEG)-fMRI resting-state datasets, oscillation-based coherence in all canonical bands (delta through gamma) indeed reconfigured at infraslow speeds in tandem with fMRI-derived connectivity changes in corresponding region-pairs. Interestingly, irrespective of EEG frequency-band the cross-modal tie of connectivity dynamics comprised a large proportion of connections distributed across the entire connectome. However, there were frequency-specific differences in the relative strength of the cross-modal association. This association was strongest in visual to somatomotor connections for slower EEG-bands, and in connections involving the Default Mode Network for faster EEG-bands. Methodologically, the findings imply that neural connectivity dynamics can be reliably measured by fMRI despite heavy susceptibility to noise, and by EEG despite shortcomings of source reconstruction. Biologically, the findings provide evidence that contrast with known territories of oscillation power, oscillation coupling in all bands slowly reconfigures in a highly distributed manner across the whole-brain connectome.
Collapse
Affiliation(s)
- Jonathan Wirsich
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Anne-Lise Giraud
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Sepideh Sadaghiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
35
|
Exploring the Correlation Between M/EEG Source–Space and fMRI Networks at Rest. Brain Topogr 2020; 33:151-160. [DOI: 10.1007/s10548-020-00753-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/23/2020] [Indexed: 11/26/2022]
|