1
|
Liu S, Li J, Wang W, Zhang Y, Li S, Li T, Jiang J, Zhao F. Prenatal exposure to dibutyl phthalate contributes to erectile dysfunction in offspring male rats by activating the RhoA/ROCK signalling pathway. Toxicology 2024; 508:153925. [PMID: 39151608 DOI: 10.1016/j.tox.2024.153925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Prenatal exposure to dibutyl phthalate (DBP) has been reported to cause erectile dysfunction (ED) in adult offspring rats. However, its underlying mechanisms are not fully understood. Previously, we found that DBP activates the RhoA/ROCK pathway in the male reproductive system. This study investigated how prenatal exposure to DBP activates the RhoA/ROCK signalling pathway, leading to ED in male rat offspring. Pregnant rats were stratified into DBP-exposed and NC groups, with the exposed group receiving 750 milligrams per kilogram per day (mg/kg/day) of DBP through gavage from days 14-18 of gestation. DBP exposure activated the RhoA/ROCK pathway in the penile corpus cavernosum (CC) of descendants, causing smooth muscle cell contraction, fibrosis, and apoptosis, all of which contribute to ED. In vitro experiments confirmed that DBP induces apoptosis and RhoA/ROCK pathway activation in CC smooth muscle cells. Treatment of DBP-exposed offspring with the ROCK inhibitor Y-27632 for 8 weeks significantly improved smooth muscle cell condition, erectile function, and reduced fibrosis. Thus, prenatal DBP exposure induces ED in offspring through RhoA/ROCK pathway activation, and the ROCK inhibitor Y-27632 shows potential as an effective treatment for DBP-induced ED.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Jianying Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Wenhao Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yijun Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Shufeng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Tiewen Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Juntao Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Fujun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China; Department of Andrology, Center for Men's Health, Urologic Medical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
2
|
Hwang S, Lee W, Ravi D, Devine W, Yong M, Diebold RB, Seung SA, Ng NW, Lee J, Gupta A, Koh JS. Novel Small-Molecule ROCK2 Inhibitor GNS-3595 Attenuates Pulmonary Fibrosis in Preclinical Studies. Am J Respir Cell Mol Biol 2024; 71:430-441. [PMID: 38861338 DOI: 10.1165/rcmb.2023-0401oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that leads to respiratory decline caused by scarring and thickening of lung tissues. Multiple pathways contribute to the fibrotic process in this disease, such as inflammation, epithelial-to-mesenchymal transition, and oxidative stress. The Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway is a key regulator of profibrotic signaling, as it affects the organization of actin-myosin and the remodeling of the extracellular matrix. ROCK1/2, a downstream effector of RhoA, is overexpressed in patients with IPF and is a promising target for IPF therapy. However, because of the hypotensive side effects of ROCK1/2 inhibitors, selective ROCK2 compounds are being explored. In this study, we report the discovery of GNS-3595, a potent and selective ROCK2 inhibitor that has ∼80-fold selectivity over ROCK1 at physiological concentrations of ATP. GNS-3595 effectively inhibited ROCK2-mediated phosphorylation of myosin light chain and reduced the expression of fibrosis-related proteins (e.g., collagen, fibronectin, and α-smooth muscle actin) in various in vitro cellular models. GNS-3595 also prevented transforming growth factor β-induced fibroblast-to-myofibroblast transition. In addition, in a bleomycin-induced mouse model of pulmonary fibrosis, therapeutic exposure to GNS-3595, suppressed lung fibrosis, stabilized body weight loss, and prevented fibrosis-induced lung weight gain. Transcriptome and protein expression analysis from lung tissues showed that GNS-3595 can revert the fibrosis-related gene expression induced by bleomycin. These results indicate that GNS-3595 is a highly potent, selective, and orally active ROCK2 inhibitor with promising therapeutic efficacy against pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Anu Gupta
- Genosco Inc., Billerica, Massachusetts
| | | |
Collapse
|
3
|
Zhang Y, Xing M, Meng F, Zhu L, Huang Q, Ma T, Fang H, Gu X, Huang S, Wu X, Lv G, Guo J, Wu L, Liu X, Chen Z. The mechanical mechanism of angiotensin II induced activation of hepatic stellate cells promoting portal hypertension. Eur J Cell Biol 2024; 103:151427. [PMID: 38820882 DOI: 10.1016/j.ejcb.2024.151427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
In the development of chronic liver disease, the hepatic stellate cell (HSC) plays a pivotal role in increasing intrahepatic vascular resistance (IHVR) and inducing portal hypertension (PH) in cirrhosis. Our research demonstrated that HSC contraction, prompted by angiotensin II (Ang II), significantly contributed to the elevation of type I collagen (COL1A1) expression. This increase was intimately associated with enhanced cell tension and YAP nuclear translocation, mediated through α-smooth muscle actin (α-SMA) expression, microfilaments (MF) polymerization, and stress fibers (SF) assembly. Further investigation revealed that the Rho/ROCK signaling pathway regulated MF polymerization and SF assembly by facilitating the phosphorylation of cofilin and MLC, while Ca2+ chiefly governed SF assembly via MLC. Inhibiting α-SMA-MF-SF assembly changed Ang II-induced cell contraction, YAP nuclear translocation, and COL1A1 expression, findings corroborated in cirrhotic mice models. Overall, our study offers insights into mitigating IHVR and PH through cell mechanics, heralding potential breakthroughs.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mulan Xing
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fansheng Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ling Zhu
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qingchuan Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huihua Fang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210004, China
| | - Xujing Gu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Suzhou Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyu Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Gaohong Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jun Guo
- State Key Laboratory Cultivation Base For TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Liu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Jiang R, Zhou Y, Gao Q, Han L, Hong Z. ZC3H4 governs epithelial cell migration through ROCK/p-PYK2/p-MLC2 pathway in silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104301. [PMID: 37866415 DOI: 10.1016/j.etap.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration. METHODS Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways. RESULTS 1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway. CONCLUSIONS ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
Collapse
Affiliation(s)
- Rong Jiang
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yichao Zhou
- Department of Occupation Disease Prevention and Cure, Changzhou Wujin District Center for Disease Control and Prevention, Changzhou, Jiangsu Province, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China; Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| | - Zhen Hong
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China.
| |
Collapse
|
5
|
May J, Mitchell JA, Jenkins RG. Beyond epithelial damage: vascular and endothelial contributions to idiopathic pulmonary fibrosis. J Clin Invest 2023; 133:e172058. [PMID: 37712420 PMCID: PMC10503802 DOI: 10.1172/jci172058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive scarring disease of the lung with poor survival. The incidence and mortality of IPF are rising, but treatment remains limited. Currently, two drugs can slow the scarring process but often at the expense of intolerable side effects, and without substantially changing overall survival. A better understanding of mechanisms underlying IPF is likely to lead to improved therapies. The current paradigm proposes that repetitive alveolar epithelial injury from noxious stimuli in a genetically primed individual is followed by abnormal wound healing, including aberrant activity of extracellular matrix-secreting cells, with resultant tissue fibrosis and parenchymal damage. However, this may underplay the importance of the vascular contribution to fibrogenesis. The lungs receive 100% of the cardiac output, and vascular abnormalities in IPF include (a) heterogeneous vessel formation throughout fibrotic lung, including the development of abnormal dilated vessels and anastomoses; (b) abnormal spatially distributed populations of endothelial cells (ECs); (c) dysregulation of endothelial protective pathways such as prostacyclin signaling; and (d) an increased frequency of common vascular and metabolic comorbidities. Here, we propose that vascular and EC abnormalities are both causal and consequential in the pathobiology of IPF and that fuller evaluation of dysregulated pathways may lead to effective therapies and a cure for this devastating disease.
Collapse
|
6
|
Ko JA, Komatsu K, Minamoto A, Kondo S, Okumichi H, Hirooka K, Kiuchi Y. Effects of Ripasudil, a Rho-Kinase Inhibitor, on Scar Formation in a Mouse Model of Filtration Surgery. Curr Eye Res 2023; 48:826-835. [PMID: 37216470 DOI: 10.1080/02713683.2023.2217367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
PURPOSE Glaucoma is a leading cause of blindness worldwide. Characteristic changes occur in the optic nerve and visual field of patients with glaucoma; optic nerve damage can be mitigated by lowering intraocular pressure. Treatment modalities include drugs and lasers; filtration surgery is necessary for patients with insufficient intraocular pressure reduction. Scar formation often contributes to glaucoma filtration surgery failure by increasing fibroblast proliferation and activation. Here, we examined the effects of ripasudil, a Rho-associated protein kinase (ROCK) inhibitor, on postoperative scar formation in human Tenon's fibroblasts. METHODS Collagen gel contraction assays were used to compare contractility activity among ripasudil and other anti-glaucoma drugs. The effect of Ripasudil in combination with other anti-glaucoma drugs and transforming growth factor-β (TGF-β), latanoprost and timolol-induce contractions were also tested in this study. Immunofluorescence and Western blotting were used to study the expression of factors relating scarring formation. RESULTS Ripasudil inhibited contraction in collagen gel assay and reduced α-smooth muscle actin (SMA) and vimentin (scar formation-related factors) expression, which was inversely promoted by latanoprost, timolol or TGF-β. Ripasudil also inhibited contraction on TGF-β, latanoprost and timolol-induced contraction. Furthermore, we investigated the effects of ripasudil on postoperative scarring in a mouse model; ripasudil suppressed postoperative scar formation by altering the expression of α-SMA and vimentin. CONCLUSIONS These results suggest that ripasudil, ROCK inhibitor may inhibit excessive fibrosis after glaucoma filtering surgery vis inhibition the transdifferentiation of tenon fibroblast into myofibroblast and may have a potential effect as anti-scarring for glaucoma filtration surgery.
Collapse
Affiliation(s)
- Ji-Ae Ko
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Kaori Komatsu
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Akira Minamoto
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Satomi Kondo
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Hideaki Okumichi
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Kazuyuki Hirooka
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| | - Yoshiaki Kiuchi
- Department of Ophthalmology and Visual Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
7
|
Nakamura Y, Shimizu Y, Fujimaki-Shiraishi M, Uchida N, Takemasa A, Niho S. A Protective Effect of Pirfenidone in Lung Fibroblast-Endothelial Cell Network via Inhibition of Rho-Kinase Activity. Biomedicines 2023; 11:2259. [PMID: 37626755 PMCID: PMC10452915 DOI: 10.3390/biomedicines11082259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Pulmonary fibrosis is a life-threatening disease that has been attributed to several causes. Specifically, vascular injury is thought to be involved in the pathogenesis of fibrosis. The effects of the antifibrotic drug pirfenidone on angiogenesis have not been fully elucidated. This study aimed to investigate the effects of pirfenidone in human lung fibroblast-endothelial cell co-culture network formation and to analyze the underlying molecular mechanisms. Human lung fibroblasts were co-cultured with human umbilical vein endothelial cells to establish a co-culture network cell sheet. The influence of pirfenidone was evaluated for protective effect on the endothelial network in cell sheets stimulated with transforming growth factor β (TGF-β). Results indicated that TGF-β disrupted the network formation. Pirfenidone and Y27632 (Rho-associated coiled-coil containing protein kinase [Rho-kinase or ROCK] inhibitor) protected against the TGF-β-induced endothelial network disruption. TGF-β activated Rho-kinase signaling in cells composing the co-culture cell sheet, whereas pirfenidone and Y27632 inhibited these effects. In conclusion, TGF-β-induced Rho-kinase activation and disrupted endothelial network formation. Pirfenidone suppressed TGF-β-induced Rho-kinase activity in cell sheets, thereby enabling vascular endothelial cells networks to be preserved in the cell sheets. These findings suggest that pirfenidone has potential vascular network-preserving effect via inhibiting Rho-kinase activity in vascular injury, which is a precursor to pulmonary fibrosis.
Collapse
Affiliation(s)
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, School of Medicine, Dokkyo Medical University, 880 Kitakobayashi, Mibu 321-0293, Tochigi, Japan; (Y.N.); (M.F.-S.); (N.U.); (A.T.); (S.N.)
| | | | | | | | | |
Collapse
|
8
|
Caporarello N, Ligresti G. Vascular Contribution to Lung Repair and Fibrosis. Am J Respir Cell Mol Biol 2023; 69:135-146. [PMID: 37126595 PMCID: PMC10399144 DOI: 10.1165/rcmb.2022-0431tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/01/2023] [Indexed: 05/03/2023] Open
Abstract
Lungs are constantly exposed to environmental perturbations and therefore have remarkable capacity to regenerate in response to injury. Sustained lung injuries, aging, and increased genomic instability, however, make lungs particularly susceptible to disrepair and fibrosis. Pulmonary fibrosis constitutes a major cause of morbidity and is often relentlessly progressive, leading to death from respiratory failure. The pulmonary vasculature, which is critical for gas exchanges and plays a key role during lung development, repair, and regeneration, becomes aberrantly remodeled in patients with progressive pulmonary fibrosis. Although capillary rarefaction and increased vascular permeability are recognized as distinctive features of fibrotic lungs, the role of vasculature dysfunction in the pathogenesis of pulmonary fibrosis has only recently emerged as an important contributor to the progression of this disease. This review summarizes current findings related to lung vascular repair and regeneration and provides recent insights into the vascular abnormalities associated with the development of persistent lung fibrosis.
Collapse
Affiliation(s)
- Nunzia Caporarello
- Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois; and
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
9
|
Neighbors M, Li Q, Zhu SJ, Liu J, Wong WR, Jia G, Sandoval W, Tew GW. Bioactive lipid lysophosphatidic acid species are associated with disease progression in idiopathic pulmonary fibrosis. J Lipid Res 2023; 64:100375. [PMID: 37075981 PMCID: PMC10205439 DOI: 10.1016/j.jlr.2023.100375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality. Prognostic biomarkers to identify rapid progressors are urgently needed to improve patient management. Since the lysophosphatidic acid (LPA) pathway has been implicated in lung fibrosis in preclinical models and identified as a potential therapeutic target, we aimed to investigate if bioactive lipid LPA species could be prognostic biomarkers that predict IPF disease progression. LPAs and lipidomics were measured in baseline placebo plasma of a randomized IPF-controlled trial. The association of lipids with disease progression indices were assessed using statistical models. Compared to healthy, IPF patients had significantly higher levels of five LPAs (LPA16:0, 16:1, 18:1, 18:2, 20:4) and reduced levels of two triglycerides species (TAG48:4-FA12:0, -FA18:2) (false discovery rate < 0.05, fold change > 2). Patients with higher levels of LPAs had greater declines in diffusion capacity of carbon monoxide over 52 weeks (P < 0.01); additionally, LPA20:4-high (≥median) patients had earlier time to exacerbation compared to LPA20:4-low (
Collapse
Affiliation(s)
| | - Qingling Li
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Sha Joe Zhu
- PD Data Science, F Hoffmann-La Roche, Shanghai, China
| | - Jia Liu
- PD Data Science, F Hoffmann-La Roche, Shanghai, China
| | - Weng Ruh Wong
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech Inc., South San Francisco, USA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics & Lipidomics, Genentech Inc., South San Francisco, USA
| | - Gaik W Tew
- I2O Technology and Translational Research, Genentech Inc., South San Francisco, USA.
| |
Collapse
|
10
|
Fu S, Wen Y, Peng B, Tang M, Shi M, Liu J, Yang Y, Si W, Guo Y, Li X, Yan T, Kang J, Pei H, Chen L. Discovery of indoline-based derivatives as effective ROCK2 inhibitors for the potential new treatment of idiopathic pulmonary fibrosis. Bioorg Chem 2023; 137:106539. [PMID: 37163811 DOI: 10.1016/j.bioorg.2023.106539] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/06/2023] [Accepted: 04/09/2023] [Indexed: 05/12/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disease with a median survival of only 3-5 years. Due to the lack of effective therapy, IPF threatens human health. Recently, increasing reports have indicated that Rho-associated coiled-coil protein kinases (ROCKs) play important roles in the development of IPF and might represent a novel target for the treatment of IPF. Herein, a new series of selective ROCK2 inhibitors based on indoline were designed and synthesized. Structural modification resulted in optimized compound 9b with an IC50 value of 6 nM against ROCK2 and the inhibition of collagen gel contraction. Cellular assays demonstrated that 9b could significantly suppress the expression of collagen I and α-SMA, and inhibited ROCK signaling pathway. Oral administration of compound 9b (10 mg/kg) exerted more significant anti-pulmonary fibrosis effects than nintedanib (100 mg/kg) and KD025 (100 mg/kg) in a bleomycin-induced IPF rat model, suggesting that 9b could serve as a potential lead compound for the treatment of IPF.
Collapse
Affiliation(s)
- Suhong Fu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yi Wen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yingxue Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenting Si
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiandeng Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Yan
- Sichuan Good Doctor Panxi Pharmaceutical Co.,Ltd., Xichang 615000, China
| | - Jie Kang
- Sichuan Key Laboratory for Medicinal American Cockroach, Chengdu 610031, China
| | - Heying Pei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China..
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu 610000, China.
| |
Collapse
|
11
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
12
|
Xie Y, Yue L, Shi Y, Su X, Gan C, Liu H, Xue T, Ye T. Application and Study of ROCK Inhibitors in Pulmonary Fibrosis: Recent Developments and Future Perspectives. J Med Chem 2023; 66:4342-4360. [PMID: 36940432 DOI: 10.1021/acs.jmedchem.2c01753] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Rho-associated coiled-coil-containing kinases (ROCKs), serine/threonine protein kinases, were initially identified as downstream targets of the small GTP-binding protein Rho. Pulmonary fibrosis (PF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Interestingly, ROCK activation has been demonstrated in PF patients and in animal PF models, making it a promising target for PF treatment. Many ROCK inhibitors have been discovered, and four of these have been approved for clinical use; however, no ROCK inhibitors are approved for the treatment of PF patients. In this article, we describe ROCK signaling pathways and the structure-activity relationship, potency, selectivity, binding modes, pharmacokinetics (PKs), biological functions, and recently reported inhibitors of ROCKs in the context of PF. We will also focus our attention on the challenges to be addressed when targeting ROCKs and discuss the strategy of ROCK inhibitor use in the treatment of PF.
Collapse
Affiliation(s)
- Yuting Xie
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Yue
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaojie Shi
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingping Su
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taixiong Xue
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, Wei X. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med 2022; 12:e1036. [PMID: 36178087 PMCID: PMC9523675 DOI: 10.1002/ctm2.1036] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Emerging evidence provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), and rare anti-PF therapeutic method has promising effect in its treatment. Rho-associated coiled-coil kinases (ROCK) inhibition significantly ameliorates bleomycin-induced PF and decreases macrophage infiltration, but the mechanism remains unclear. We established bleomycin and radiation-induced PF to identify the activity of WXWH0265, a newly designed unselective ROCK inhibitor in regulating macrophages. METHODS Bleomycin-induced PF was induced by intratracheal instillation and radiation-induced PF was induced by bilateral thoracic irradiation. Histopathological techniques (haematoxylin and eosin, Masson's trichrome and immunohistochemistry) and hydroxyproline were used to evaluate PF severity. Western blot, quantitative real-time reverse transcription-polymerase chain reaction and flow cytometry were performed to explore the underlying mechanisms. Bone marrow-derived macrophages (BMDMs) were used to verify their therapeutic effect. Clodronate liposomes were applied to deplete macrophages and to identify the therapeutic effect of WXWH0265. RESULTS Therapeutic administration of ROCK inhibitor ameliorates bleomycin-induced PF by inhibiting M2 macrophages polarisation. ROCK inhibitor showed no significant anti-fibrotic effect in macrophages-depleted mice. Treatment with WXWH0265 demonstrated superior protection effect in bleomycin-induced PF compared with positive drugs. In radiation-induced PF, ROCK inhibitor effectively ameliorated PF. Fibroblasts co-cultured with supernatant from various M2 macrophages phenotypes revealed that M2 macrophages stimulated by interleukin-4 promoted extracellular matrix production. Polarisation of M2 macrophages was inhibited by ROCK inhibitor treatment in vitro. The p-signal transducer and activator of transcription 3 (STAT3) in lung tissue and BMDMs was significantly decreased in PF in vivo and vitro after treated with ROCK inhibitors. CONCLUSION Inhibiting ROCK could significantly attenuate bleomycin- and radiation-induced PF by regulating the macrophages polarisation via phosphorylation of STAT3. WXWH0265 is a kind of efficient unselective ROCK inhibitor in ameliorating PF. Furthermore, the results provide empirical evidence that ROCK inhibitor, WXWH0265 is a potential drug to prevent the development of PF.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| |
Collapse
|
14
|
Chen IT, Huang LT, Chen CC, Chen CM. Molecular mechanisms underlying hyperoxia-induced lung fibrosis. Pediatr Neonatol 2022; 63:109-116. [PMID: 35181258 DOI: 10.1016/j.pedneo.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Supplemental oxygen is often used to treat newborns with respiratory disorders. Exposure to high concentration of oxygen and long-term oxygen causes inflammation and acute lung injury. The acute inflammatory phase is followed by a fibroproliferative repair phase, leading to lung fibrosis. Many infants with lung fibrosis develop significant respiratory morbidities including reactive airways dysfunction and obstructive lung disease during childhood. Despite the absence of effective treatments and the incomplete understanding regarding mechanisms underlying fibrosis, extensive literature regarding lung fibrosis from in vitro and in vivo hyperoxia-exposed models is available. In this review, we discuss molecular mediators and signaling pathways responsible for increased fibroblast proliferation and collagen production, excessive extracellular matrix accumulation, and eventually, lung fibrosis. We discuss each of these mediators separately to facilitate clear understanding as well as significant interactions occurring among these molecular mediators and signaling pathways.
Collapse
Affiliation(s)
- I-Ting Chen
- Division of Neonatology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liang-Ti Huang
- Department of Pediatrics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Division of Neonatology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Yanagihara T, Scallan C, Ask K, Kolb MR. Emerging therapeutic targets for idiopathic pulmonary fibrosis: preclinical progress and therapeutic implications. Expert Opin Ther Targets 2021; 25:939-948. [PMID: 34784834 DOI: 10.1080/14728222.2021.2006186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high associated morbidity and mortality. The therapeutic landscape has significantly changed in the last 20 years with two drugs currently approved that have demonstrated the ability to slow disease progression. Despite these developments, survival in IPF is limited, so there is a major interest in therapeutic targets which could serve to open up new therapeutic avenues. AREAS COVERED We review the most recent information regarding drug targets and therapies currently being investigated in preclinical and early-stage clinical trials. EXPERT OPINION The complex pathogenesis of IPF and variability in disease course and response to therapy highlights the importance of a precision approach to therapy. Novel technologies including transcriptomics and the use of serum biomarkers, will become essential tools to guide future drug development and therapeutic decision making particularly as it pertains to combination therapy.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Respiratory Medicine, Hamanomachi Hospital, Fukuoka, Japan
| | - Ciaran Scallan
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Martin Rj Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Matera DL, Lee AT, Hiraki HL, Baker BM. The Role of Rho GTPases During Fibroblast Spreading, Migration, and Myofibroblast Differentiation in 3D Synthetic Fibrous Matrices. Cell Mol Bioeng 2021; 14:381-396. [PMID: 34777599 PMCID: PMC8548490 DOI: 10.1007/s12195-021-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022] Open
Abstract
INTRODUCTION Connective tissue repair and mechanosensing are tightly entwined in vivo and occur within a complex three-dimensional (3D), fibrous extracellular matrix (ECM). Typically driven by activated fibroblasts, wound repair involves well-defined steps of cell spreading, migration, proliferation, and fibrous ECM deposition. While the role of Rho GTPases in regulating these processes has been explored extensively in two-dimensional cell culture models, much less is known about their role in more physiologic, 3D environments. METHODS We employed a 3D, fibrous and protease-sensitive hydrogel model of interstitial ECM to study the interplay between Rho GTPases and fibrous matrix cues in fibroblasts during wound healing. RESULTS Modulating fiber density within protease-sensitive hydrogels, we confirmed previous findings that heightened fiber density promotes fibroblast spreading and proliferation. The presence of matrix fibers furthermore corresponded to increased cell migration speeds and macroscopic hydrogel contraction arising from fibroblast generated forces. During fibroblast spreading, Rac1 and RhoA GTPase activity proved crucial for fiber-mediated cell spreading and contact guidance along matrix fibers, while Cdc42 was dispensable. In contrast, interplay between RhoA, Rac1, and Cdc42 contributed to fiber-mediated myofibroblast differentiation and matrix contraction over longer time scales. CONCLUSION These observations may provide insights into tissue repair processes in vivo and motivate the incorporation of cell-adhesive fibers within synthetic hydrogels for material-guided wound repair strategies. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12195-021-00698-5.
Collapse
Affiliation(s)
- Daniel L. Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
| | - Alexander T. Lee
- Department of Biology, University of Michigan, Ann Arbor, MI 48109 USA
| | - Harrison L. Hiraki
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| | - Brendon M. Baker
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109 USA
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI 48109 USA
| |
Collapse
|
17
|
Okamoto Y, Kitakaze K, Takenouchi Y, Yamamoto S, Ishimaru H, Tsuboi K. Sphingosine 1-phosphate receptor type 2 positively regulates interleukin (IL)-4/IL-13-induced STAT6 phosphorylation. Cell Signal 2021; 88:110156. [PMID: 34592416 DOI: 10.1016/j.cellsig.2021.110156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/31/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Previous reports have demonstrated that sphingosine 1-phosphate receptor type 2 (S1P2) is involved in the activation of signal transducer and activator of transcription (STAT) 6. Additionally, the major signaling pathway of S1P2 is the Rho-Rho kinase pathway. In this study, we examined the role of S1P2 in STAT6 activation in a macrophage (Mφ) model using THP-1 cells differentiated with phorbol 12-myristate 13-acetate (PMA). We established S1P2knockout THP-1 cells using the CRISPR-Cas9 gene editing system. The PMA-treated S1P2knockout THP-1 Mφs showed decreases in IL-4/IL-13-induced phosphorylation of Janus-activated kinase (JAK) 1, JAK2, and STAT6 as well as mRNA expression of the M2 marker ARG1 compared with wild-type THP-1 Mφs. Pretreatment of PMA-treated THP-1 Mφs with the S1P2 antagonist JTE-013, the Rho inhibitor Rhosin or the Rho kinase inhibitor Y27632 inhibited the IL-4/IL-13-induced increase in STAT6 phosphorylation. The expressions of suppressor of cytokine signaling 3 in the S1P2knockout THP-1 Mφs were higher than those in wild-type THP-1 Mφs. In addition, the protein tyrosine phosphatase inhibitor vanadate enhanced IL-4-induced STAT6 phosphorylation in the S1P2knockout THP-1 Mφs, suggesting that S1P2-Rho-Rho kinase inhibited the negative regulation of STAT6. These results suggest that the S1P2-Rho-Rho kinase pathway is necessary for full activation of STAT6 by IL-4/IL-13 in Mφs.
Collapse
Affiliation(s)
- Yasuo Okamoto
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Keisuke Kitakaze
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Yasuhiro Takenouchi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Shinya Yamamoto
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Hironobu Ishimaru
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| | - Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan
| |
Collapse
|
18
|
Marchioni A, Tonelli R, Cerri S, Castaniere I, Andrisani D, Gozzi F, Bruzzi G, Manicardi L, Moretti A, Demurtas J, Baroncini S, Andreani A, Cappiello GF, Busani S, Fantini R, Tabbì L, Samarelli AV, Clini E. Pulmonary Stretch and Lung Mechanotransduction: Implications for Progression in the Fibrotic Lung. Int J Mol Sci 2021; 22:ijms22126443. [PMID: 34208586 PMCID: PMC8234308 DOI: 10.3390/ijms22126443] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/18/2022] Open
Abstract
Lung fibrosis results from the synergic interplay between regenerative deficits of the alveolar epithelium and dysregulated mechanisms of repair in response to alveolar and vascular damage, which is followed by progressive fibroblast and myofibroblast proliferation and excessive deposition of the extracellular matrix. The increased parenchymal stiffness of fibrotic lungs significantly affects respiratory mechanics, making the lung more fragile and prone to non-physiological stress during spontaneous breathing and mechanical ventilation. Given their parenchymal inhomogeneity, fibrotic lungs may display an anisotropic response to mechanical stresses with different regional deformations (micro-strain). This behavior is not described by the standard stress–strain curve but follows the mechano-elastic models of “squishy balls”, where the elastic limit can be reached due to the excessive deformation of parenchymal areas with normal elasticity that are surrounded by inelastic fibrous tissue or collapsed induration areas, which tend to protrude outside the fibrous ring. Increasing evidence has shown that non-physiological mechanical forces applied to fibrotic lungs with associated abnormal mechanotransduction could favor the progression of pulmonary fibrosis. With this review, we aim to summarize the state of the art on the relation between mechanical forces acting on the lung and biological response in pulmonary fibrosis, with a focus on the progression of damage in the fibrotic lung during spontaneous breathing and assisted ventilatory support.
Collapse
Affiliation(s)
- Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
- Correspondence:
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, 41125 Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Jacopo Demurtas
- Primary Care Department USL Toscana Sud Est-Grosseto, 58100 Grosseto, Italy;
| | - Serena Baroncini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Alessandro Andreani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Gaia Francesca Cappiello
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Stefano Busani
- University Hospital of Modena, Anesthesiology Unit, University of Modena Reggio Emilia, 41124 Modena, Italy;
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, 41125 Modena, Italy; (A.M.); (S.C.); (I.C.); (D.A.); (F.G.); (G.B.); (L.M.); (A.M.); (A.V.S.); (E.C.)
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, 41125 Modena, Italy; (S.B.); (A.A.); (G.F.C.); (R.F.); (L.T.)
| |
Collapse
|
19
|
Kong M, Zhang Y, Song M, Cong W, Gao C, Zhang J, Han S, Tu Q, Ma X. Myocardin‑related transcription factor A nuclear translocation contributes to mechanical overload‑induced nucleus pulposus fibrosis in rats with intervertebral disc degeneration. Int J Mol Med 2021; 48:123. [PMID: 33982787 PMCID: PMC8121555 DOI: 10.3892/ijmm.2021.4956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/16/2021] [Indexed: 01/22/2023] Open
Abstract
Previous studies have reported that the Ras homolog family member A (RhoA)/myocardin‑related transcription factor A (MRTF‑A) nuclear translocation axis positively regulates fibrogenesis induced by mechanical forces in various organ systems. The aim of the present study was to determine whether this signaling pathway was involved in the pathogenesis of nucleus pulposus (NP) fibrosis induced by mechanical overload during the progression of intervertebral disc degeneration (IVDD) and to confirm the alleviating effect of an MRTF‑A inhibitor in the treatment of IVDD. NP cells (NPCs) were cultured on substrates of different stiffness (2.9 and 41.7 KPa), which mimicked normal and overloaded microenvironments, and were treated with an inhibitor of MRTF‑A nuclear import, CCG‑1423. In addition, bipedal rats were established by clipping the forelimbs of rats at 1 month and gradually elevating the feeding trough, and in order to establish a long‑term overload‑induced model of IVDD, and their intervertebral discs were injected with CCG‑1423 in situ. Cell viability was determined by Cell Counting Kit‑8 assay, and protein expression was determined by western blotting, immunofluorescence and immunohistochemical staining. The results demonstrated that the viability of NPCs was not affected by the application of force or the inhibitor. In NPCs cultured on stiff matrices, MRTF‑A was mostly localized in the nucleus, and the expression levels of fibrotic proteins, including type I collagen, connective tissue growth factor and α‑smooth muscle cell actin, were upregulated compared with those in NPCs cultured on soft matrices. The levels of these proteins were reduced by CCG‑1423 treatment. In rats, 6 months of upright posture activated MRTF‑A nuclear‑cytoplasmic trafficking and fibrogenesis in the NP and induced IVDD; these effects were alleviated by CCG‑1423 treatment. In conclusion, the results of the present study demonstrated that the RhoA/MRTF‑A translocation pathway may promote mechanical overload‑induced fibrogenic activity in NP tissue and partially elucidated the molecular mechanisms underlying the occurrence of IVDD.
Collapse
Affiliation(s)
- Meng Kong
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Yiran Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Mengxiong Song
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Wenbin Cong
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Changtong Gao
- Minimally Invasive Interventional Therapy Center, Qingdao Municipal Hospital, Qing'dao, Shandong 266000, P.R. China
| | - Jiajun Zhang
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Shuo Han
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Qihao Tu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| | - Xuexiao Ma
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qing'dao, Shandong 266000, P.R. China
| |
Collapse
|
20
|
Uchida N, Shimizu Y, Fujimaki M, Horibata Y, Nakamura Y, Horigane Y, Chibana K, Takemasa A, Sugimoto H, Niho S. Metabolic changes induced by TGF-β1 via reduced expression of phosphatidylserine decarboxylase during myofibroblast transition. J Clin Biochem Nutr 2021; 70:108-116. [PMID: 35400823 PMCID: PMC8921729 DOI: 10.3164/jcbn.21-121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Metabolic alteration is increasingly recognized as an important pathogenic process that underlies fibrosis across many organ types, and metabolically targeted therapies could become important strategies for reducing fibrosis. In present study, target enzymes that are involved in changes in phospholipid metabolism during fibroblast-to-myofibroblast transition induced by transforming growth factor beta 1 (TGF-β1) were examined. Different amounts of phospholipids were found in the 2 groups. In response to TGF-β1 stimulation, 17 lipids decreased and 17 increased. The latter included the phospholipids phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylethanolamine (PE). Furthermore, among the rate-limiting enzymes that regulate these phospholipids, phosphatidylserine decarboxylase (PISD), which controls conversion of PS to PE and is localized in mitochondria, decreased in response to TGF-β1. Knockdown of PISD alone without TGF-β1 stimulation increased expression of α-smooth muscle actin mRNA and production of total collagen. Taken together, these results indicate that PISD is involved in the mechanism of fibrogenesis by regulating phospholipid metabolism.
Collapse
Affiliation(s)
- Nobuhiko Uchida
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Mio Fujimaki
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine
| | - Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Yukiko Horigane
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Kazuyuki Chibana
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Akihiro Takemasa
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine
| |
Collapse
|
21
|
Zhong Y, Hu Z, Wu J, Dai F, Lee F, Xu Y. STAU1 selectively regulates the expression of inflammatory and immune response genes and alternative splicing of the nerve growth factor receptor signaling pathway. Oncol Rep 2020; 44:1863-1874. [PMID: 33000283 PMCID: PMC7551455 DOI: 10.3892/or.2020.7769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/26/2020] [Indexed: 01/01/2023] Open
Abstract
Double‑stranded RNA‑binding protein Staufen homolog 1 (STAU1) is a highly conserved multifunctional double‑stranded RNA‑binding protein, and is a key factor in neuronal differentiation. RNA sequencing was used to analyze the overall transcriptional levels of the upregulated cells by STAU1 and control cells, and select alternative splicing (AS). It was determined that the high expression of STAU1 led to changes in the expression levels of a variety of inflammatory and immune response genes, including IFIT2, IFIT3, OASL, and CCL2. Furthermore, STAU1 was revealed to exert a significant regulatory effect on the AS of genes related to the 'nerve growth factor receptor signaling pathway'. This is of significant importance for neuronal survival, differentiation, growth, post‑damage repair, and regeneration. In conclusion, overexpression of STAU1 was associated with immune response and regulated AS of pathways related to neuronal growth and repair. In the present study, the whole transcriptome of STAU1 expression was first analyzed, which laid a foundation for further understanding the key functions of STAU1.
Collapse
Affiliation(s)
- Yi Zhong
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Zhengchao Hu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Jingcui Wu
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Fan Dai
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Feng Lee
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| | - Yangping Xu
- Department of Orthopedics, Hubei Provincial Hospital of TCM, Wuhan, Hubei 430074, P.R. China
| |
Collapse
|
22
|
Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126:105802. [PMID: 32668329 DOI: 10.1016/j.biocel.2020.105802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.
Collapse
Affiliation(s)
- Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital, Nedlands, WA, Australia; Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
23
|
Probst CK, Montesi SB, Medoff BD, Shea BS, Knipe RS. Vascular permeability in the fibrotic lung. Eur Respir J 2020; 56:13993003.00100-2019. [PMID: 32265308 PMCID: PMC9977144 DOI: 10.1183/13993003.00100-2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 03/26/2020] [Indexed: 12/26/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is thought to result from aberrant tissue repair processes in response to chronic or repetitive lung injury. The origin and nature of the injury, as well as its cellular and molecular targets, are likely heterogeneous, which complicates accurate pre-clinical modelling of the disease and makes therapeutic targeting a challenge. Efforts are underway to identify central pathways in fibrogenesis which may allow targeting of aberrant repair processes regardless of the initial injury stimulus. Dysregulated endothelial permeability and vascular leak have long been studied for their role in acute lung injury and repair. Evidence that these processes are of importance to the pathogenesis of fibrotic lung disease is growing. Endothelial permeability is increased in non-fibrosing lung diseases, but it resolves in a self-limited fashion in conditions such as bacterial pneumonia and acute respiratory distress syndrome. In progressive fibrosing diseases such as IPF, permeability appears to persist, however, and may also predict mortality. In this hypothesis-generating review, we summarise available data on the role of endothelial permeability in IPF and focus on the deleterious consequences of sustained endothelial hyperpermeability in response to and during pulmonary inflammation and fibrosis. We propose that persistent permeability and vascular leak in the lung have the potential to establish and amplify the pro-fibrotic environment. Therapeutic interventions aimed at recognising and "plugging" the leak may therefore be of significant benefit for preventing the transition from lung injury to fibrosis and should be areas for future research.
Collapse
Affiliation(s)
- Clemens K. Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sydney B. Montesi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Barry S. Shea
- Division of Pulmonary and Critical Care Medicine, Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Rachel S. Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
24
|
Lin JZ, Rabhi N, Farmer SR. Myocardin-Related Transcription Factor A Promotes Recruitment of ITGA5+ Profibrotic Progenitors during Obesity-Induced Adipose Tissue Fibrosis. Cell Rep 2019; 23:1977-1987. [PMID: 29768198 DOI: 10.1016/j.celrep.2018.04.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023] Open
Abstract
Adipose tissue fibrosis is associated with inflammation and insulin resistance in human obesity. In particular, visceral fat fibrosis is correlated with hyperlipidemia and ectopic fat accumulation. Myocardin-related transcription factor A (MRTFA) is an important coactivator that mediates the transcription of extracellular matrix and other fibrogenic genes. Here, we examine the role of MRTFA in the development of adipose tissue fibrosis and identify a signaling pathway that regulates the fate of vascular progenitors. We demonstrate that obesity induces the formation of Sca1-, Sma+, ITGA5+ fibrogenic progenitor cells (FPCs) in adipose tissue. MRTFA deficiency in mice shifts the fate of perivascular progenitors from FPCs to adipocyte precursor cells and protects against chronic obesity-induced fibrosis and accompanying metabolic dysfunction, without a shift in energy expenditure. Our findings highlight the ITGA5-MRTFA pathway as a potential target to ameliorate obesity-associated metabolic disease.
Collapse
Affiliation(s)
- Jean Z Lin
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Nabil Rabhi
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
25
|
Seow BKL, McDougall ARA, Short KL, Wallace MJ, Hooper SB, Cole TJ. Identification of Betamethasone-Regulated Target Genes and Cell Pathways in Fetal Rat Lung Mesenchymal Fibroblasts. Endocrinology 2019; 160:1868-1884. [PMID: 31107524 DOI: 10.1210/en.2018-01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
Preterm birth is characterized by severe lung immaturity that is frequently treated antenatally or postnatally with the synthetic steroid betamethasone. The underlying cellular targets and pathways stimulated by betamethasone in the fetal lung are poorly defined. In this study, betamethasone was compared with corticosterone in steroid-treated primary cultures of fetal rat lung fibroblasts stimulated for 6 hours and analyzed by whole-cell transcriptome sequencing and glucocorticoid (GC) receptor (GR) chromatin immunoprecipitation sequencing (ChIP-Seq) analysis. Strikingly, betamethasone stimulated a much stronger transcriptional response compared with corticosterone for both induced and repressed genes. A total of 483 genes were significantly stimulated by betamethasone or corticosterone, with 476 stimulated by both steroids, indicating a strong overlap in regulation. Changes in mRNA levels were confirmed by quantitative PCR for eight induced and repressed target genes. Pathway analysis identified cell proliferation and cytoskeletal/cell matrix remodeling pathways as key processes regulated by both steroids. One target, transglutaminase 2 (Tgm2), was localized to fetal lung mesenchymal cells. Tgm2 mRNA and protein levels were strongly increased in fibroblasts by both steroids. Whole-genome GR ChIP-Seq analysis with betamethasone identified GC response element-binding sites close to the previously characterized GR target genes Per1, Dusp1, Fkbp5, and Sgk1 and near the genes identified by transcriptome sequencing encoding Crispld2, Tgm2, Hif3α, and Kdr, defining direct genomic induction of expression in fetal lung fibroblasts via the GR. These results demonstrate that betamethasone stimulates specific genes and cellular pathways controlling cell proliferation and extracellular matrix remodeling in lung mesenchymal fibroblasts, providing a basis for betamethasone's treatment efficacy in preterm birth.
Collapse
Affiliation(s)
- Bennet K L Seow
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Annie R A McDougall
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Kelly L Short
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| | - Megan J Wallace
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, Victoria, Australia
| | - Timothy J Cole
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Division of Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| |
Collapse
|
26
|
Knipe RS, Probst CK, Lagares D, Franklin A, Spinney JJ, Brazee PL, Grasberger P, Zhang L, Black KE, Sakai N, Shea BS, Liao JK, Medoff BD, Tager AM. The Rho Kinase Isoforms ROCK1 and ROCK2 Each Contribute to the Development of Experimental Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2019; 58:471-481. [PMID: 29211497 DOI: 10.1165/rcmb.2017-0075oc] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pulmonary fibrosis is thought to result from dysregulated wound repair after repetitive lung injury. Many cellular responses to injury involve rearrangements of the actin cytoskeleton mediated by the two isoforms of the Rho-associated coiled-coil-forming protein kinase (ROCK), ROCK1 and ROCK2. In addition, profibrotic mediators such as transforming growth factor-β, thrombin, and lysophosphatidic acid act through receptors that activate ROCK. Inhibition of ROCK activation may be a potent therapeutic strategy for human pulmonary fibrosis. Pharmacological inhibition of ROCK using nonselective ROCK inhibitors has been shown to prevent fibrosis in animal models; however, the specific roles of each ROCK isoform are poorly understood. Furthermore, the pleiotropic effects of this kinase have raised concerns about on-target adverse effects of ROCK inhibition such as hypotension. Selective inhibition of one isoform might be a better-tolerated strategy. In the present study, we used a genetic approach to determine the roles of ROCK1 and ROCK2 in a mouse model of bleomycin-induced pulmonary fibrosis. Using ROCK1- or ROCK2-haploinsufficient mice, we found that reduced expression of either ROCK1 or ROCK2 was sufficient to protect them from bleomycin-induced pulmonary fibrosis. In addition, we found that both isoforms contribute to the profibrotic responses of epithelial cells, endothelial cells, and fibroblasts. Interestingly, ROCK1- and ROCK2-haploinsufficient mice exhibited similar protection from bleomycin-induced vascular leak, myofibroblast differentiation, and fibrosis; however, ROCK1-haploinsufficient mice demonstrated greater attenuation of epithelial cell apoptosis. These findings suggest that selective inhibition of either ROCK isoform has the potential to be an effective therapeutic strategy for pulmonary fibrosis.
Collapse
Affiliation(s)
- Rachel S Knipe
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Clemens K Probst
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - David Lagares
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alicia Franklin
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jillian J Spinney
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patricia L Brazee
- 4 Division of Pulmonary Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Paula Grasberger
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Linlin Zhang
- 5 Division of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Katharine E Black
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Norihiko Sakai
- 6 Division of Nephrology and.,7 Division of Blood Purification, Kanazawa University Hospital, Kanazawa, Japan; and
| | - Barry S Shea
- 8 Division of Pulmonary, Critical Care and Sleep Medicine, Rhode Island Hospital and Alpert Medical School, Providence, Rhode Island
| | - James K Liao
- 5 Division of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois
| | - Benjamin D Medoff
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrew M Tager
- 1 Division of Pulmonary and Critical Care Medicine.,2 The Andrew M. Tager Fibrosis Research Center, and.,3 Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Strassheim D, Gerasimovskaya E, Irwin D, Dempsey EC, Stenmark K, Karoor V. RhoGTPase in Vascular Disease. Cells 2019; 8:E551. [PMID: 31174369 PMCID: PMC6627336 DOI: 10.3390/cells8060551] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
Ras-homologous (Rho)A/Rho-kinase pathway plays an essential role in many cellular functions, including contraction, motility, proliferation, and apoptosis, inflammation, and its excessive activity induces oxidative stress and promotes the development of cardiovascular diseases. Given its role in many physiological and pathological functions, targeting can result in adverse effects and limit its use for therapy. In this review, we have summarized the role of RhoGTPases with an emphasis on RhoA in vascular disease and its impact on endothelial, smooth muscle, and heart and lung fibroblasts. It is clear from the various studies that understanding the regulation of RhoGTPases and their regulators in physiology and pathological conditions is required for effective targeting of Rho.
Collapse
Affiliation(s)
- Derek Strassheim
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - David Irwin
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Edward C Dempsey
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA.
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| | - Vijaya Karoor
- Cardiovascular and Pulmonary Research Lab, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
- Pulmonary Sciences and Critical Care Medicine, Department of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Calvello M, Flore MC, Richeldi L. Novel drug targets in idiopathic pulmonary fibrosis. Expert Opin Orphan Drugs 2019. [DOI: 10.1080/21678707.2019.1590196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mariarosaria Calvello
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Chiara Flore
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Richeldi
- Unità Operativa Complessa di Pneumologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UniversitàCattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
29
|
Combined Activation of Guanylate Cyclase and Cyclic AMP in Lung Fibroblasts as a Novel Therapeutic Concept for Lung Fibrosis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1345402. [PMID: 30984775 PMCID: PMC6431482 DOI: 10.1155/2019/1345402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Remodelling of the peripheral lung tissue and fibrotic foci are the main pathologies of idiopathic pulmonary fibrosis (IPF), a disease that is difficult to treat. TGF-β activation of peripheral lung fibroblasts is indicated as the major cause of tissue remodelling in IPF and is resulting in fibroblast hyperplasia and deposition of extracellular matrix. Soluble guanylate cyclase (sGC) stimulators combined with cyclic AMP (cAMP) activators have been reported to reduce proliferation and matrix deposition in other conditions than IPF. Therefore, this drug combination may present a novel therapeutic concept for IPF. This study investigated the effect of BAY 41-2272 and forskolin on remodelling parameters in primary human lung fibroblasts. The study determined TGF-β induced proliferation by direct cell counts after 3 days; and deposition of collagen type-I, type III, and fibronectin. BAY 41-2272 significantly reduced TGF-β induced fibroblast proliferation, but did not reduce viability. This inhibitory effect was further supported by forskolin. Both BAY 41-2272 and forskolin alone reduced TGF-β induced collagen and fibronectin de novo synthesis as well as deposition. This effect was significantly stronger when the two compounds were combined. Furthermore, the TGF-β induced expression of fibrilar α-smooth muscle actin was reduced by BAY 41-2272 and this effect was strengthened by forskolin. In addition, BAY 41-2272 and forskolin reduced TGF-β induced β-catenin. All effects of BAY 41-2272 were concentration dependent. The findings suggest that BAY 41-2272 in combination with cAMP stimulation may present a novel therapeutic strategy to reduce tissue remodelling in IPF.
Collapse
|
30
|
Qiu Y, Pan X, Hu Y. Polydatin ameliorates pulmonary fibrosis by suppressing inflammation and the epithelial mesenchymal transition via inhibiting the TGF-β/Smad signaling pathway. RSC Adv 2019; 9:8104-8112. [PMID: 35521205 PMCID: PMC9061874 DOI: 10.1039/c8ra08659a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Pulmonary fibrosis is a chronic and progressive lung disease which results in a loss of pulmonary function and eventually respiratory failure. Inflammation and epithelial mesenchymal transition (EMT) play important roles in the pathogenesis of pulmonary fibrosis. This study aimed to investigate the therapeutic effect of polydatin (PD) in bleomycin-induced pulmonary fibrosis. A bleomycin-induced pulmonary fibrosis animal model used SD rats. Morphological changes were analyzed by hematoxylin-eosin staining. RT-qPCR and western blot were used for the detection of the expression of TGF-β1, collagen I, collagen III, E-cadherin, fibronectin and the ratios of p-Smad2/Smad2, p-Smad3/Smad3. The concentrations of PICP, PIIINP, TNF-α, IL-1β, IL-6 and IL-17 were measured by enzyme linked immunosorbent assay (Elisa) assay. Results showed that PD attenuated bleomycin-induced pulmonary fibrosis. The beneficial effect of PD was possibly related to the inhibition of inflammation and EMT through suppressing the TGF-β/Smad signaling pathway. Our findings suggested that PD might be a potential therapeutic candidate in the treatment of pulmonary fibrosis. Pulmonary fibrosis is a chronic and progressive lung disease which results in a loss of pulmonary function and eventually respiratory failure.![]()
Collapse
Affiliation(s)
- Yue Qiu
- Department of Chinese Medicine
- The Third Affiliated Hospital of Beijing University of Chinese Medicine
- Beijing
- China
| | - Xue Pan
- Department of Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing
- China
| | - Yahui Hu
- Department of Chinese Medicine
- Beijing University of Chinese Medicine
- Beijing
- China
| |
Collapse
|
31
|
Wei J, Wang P, Li Y, Dou Q, Lin J, Tao W, Lin J, Fu X, Huang Z, Zhang W. Inhibition of RHO Kinase by Fasudil Attenuates Ischemic Lung Injury After Cardiac Arrest in Rats. Shock 2018; 50:706-713. [DOI: 10.1097/shk.0000000000001097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
32
|
Haupt J, Stanley A, McLeod CM, Cosgrove BD, Culbert AL, Wang L, Mourkioti F, Mauck RL, Shore EM. ACVR1 R206H FOP mutation alters mechanosensing and tissue stiffness during heterotopic ossification. Mol Biol Cell 2018; 30:17-29. [PMID: 30379592 PMCID: PMC6337906 DOI: 10.1091/mbc.e18-05-0311] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
An activating bone morphogenetic proteins (BMP) type I receptor ACVR1 (ACVR1R206H) mutation enhances BMP pathway signaling and causes the rare genetic disorder of heterotopic (extraskeletal) bone formation fibrodysplasia ossificans progressiva. Heterotopic ossification frequently occurs following injury as cells aberrantly differentiate during tissue repair. Biomechanical signals from the tissue microenvironment and cellular responses to these physical cues, such as stiffness and rigidity, are important determinants of cell differentiation and are modulated by BMP signaling. We used an Acvr1R206H/+ mouse model of injury-induced heterotopic ossification to examine the fibroproliferative tissue preceding heterotopic bone and identified pathologic stiffening at this stage of repair. In response to microenvironment stiffness, in vitro assays showed that Acvr1R206H/+ cells inappropriately sense their environment, responding to soft substrates with a spread morphology similar to wild-type cells on stiff substrates and to cells undergoing osteoblastogenesis. Increased activation of RhoA and its downstream effectors demonstrated increased mechanosignaling. Nuclear localization of the pro-osteoblastic factor RUNX2 on soft and stiff substrates suggests a predisposition to this cell fate. Our data support that increased BMP signaling in Acvr1R206H/+ cells alters the tissue microenvironment and results in misinterpretation of the tissue microenvironment through altered sensitivity to mechanical stimuli that lowers the threshold for commitment to chondro/osteogenic lineages.
Collapse
Affiliation(s)
- Julia Haupt
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexandra Stanley
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Claire M McLeod
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Brian D Cosgrove
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Andria L Culbert
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Linda Wang
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Foteini Mourkioti
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert L Mauck
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104.,Department of Mechanical Engineering and Applied Mechanics, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104.,Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104
| | - Eileen M Shore
- Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104.,Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104.,Department of Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
33
|
Stradiot L, Mannaerts I, van Grunsven LA. P311, Friend, or Foe of Tissue Fibrosis? Front Pharmacol 2018; 9:1151. [PMID: 30369881 PMCID: PMC6194156 DOI: 10.3389/fphar.2018.01151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/24/2018] [Indexed: 01/26/2023] Open
Abstract
P311 was first identified by the group of Studler et al. (1993) in the developing brain. In healthy, but mainly in pathological tissues, P311 is implicated in cell migration and proliferation. Furthermore, evidence in models of tissue fibrosis points to the colocalization with and the stimulation of transforming growth factor β1 by P311. This review provides a comprehensive overview on P311 and discusses its potential as an anti-fibrotic target.
Collapse
Affiliation(s)
- Leslie Stradiot
- Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Inge Mannaerts
- Liver Cell Biology Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | | |
Collapse
|
34
|
Tsoyi K, Chu SG, Patino-Jaramillo NG, Wilder J, Villalba J, Doyle-Eisele M, McDonald J, Liu X, El-Chemaly S, Perrella MA, Rosas IO. Syndecan-2 Attenuates Radiation-induced Pulmonary Fibrosis and Inhibits Fibroblast Activation by Regulating PI3K/Akt/ROCK Pathway via CD148. Am J Respir Cell Mol Biol 2018; 58:208-215. [PMID: 28886261 DOI: 10.1165/rcmb.2017-0088oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Radiation-induced pulmonary fibrosis is a severe complication of patients treated with thoracic irradiation. We have previously shown that syndecan-2 reduces fibrosis by exerting alveolar epithelial cytoprotective effects. Here, we investigate whether syndecan-2 attenuates radiation-induced pulmonary fibrosis by inhibiting fibroblast activation. C57BL/6 wild-type mice and transgenic mice that overexpress human syndecan-2 in alveolar macrophages were exposed to 14 Gy whole-thoracic radiation. At 24 weeks after irradiation, lungs were collected for histological, protein, and mRNA evaluation of pulmonary fibrosis, profibrotic gene expression, and α-smooth muscle actin (α-SMA) expression. Mouse lung fibroblasts were activated with transforming growth factor (TGF)-β1 in the presence or absence of syndecan-2. Cell proliferation, migration, and gel contraction were assessed at different time points. Irradiation resulted in significantly increased mortality and pulmonary fibrosis in wild-type mice that was associated with elevated lung expression of TGF-β1 downstream target genes and cell death compared with irradiated syndecan-2 transgenic mice. In mouse lung fibroblasts, syndecan-2 inhibited α-SMA expression, cell contraction, proliferation, and migration induced by TGF-β1. Syndecan-2 attenuated phosphoinositide 3-kinase/serine/threonine kinase/Rho-associated coiled-coil kinase signaling and serum response factor binding to the α-SMA promoter. Syndecan-2 attenuates pulmonary fibrosis in mice exposed to radiation and inhibits TGF-β1-induced fibroblast-myofibroblast differentiation, migration, and proliferation by down-regulating phosphoinositide 3-kinase/serine/threonine kinase/Rho-associated coiled-coil kinase signaling and blocking serum response factor binding to the α-SMA promoter via CD148. These findings suggest that syndecan-2 has potential as an antifibrotic therapy in radiation-induced lung fibrosis.
Collapse
Affiliation(s)
- Konstantin Tsoyi
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Sarah G Chu
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | | | - Julie Wilder
- 2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Julian Villalba
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and.,2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Melanie Doyle-Eisele
- 2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Jacob McDonald
- 2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Xiaoli Liu
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Souheil El-Chemaly
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Mark A Perrella
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Ivan O Rosas
- 1 Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and.,2 Pulmonary Fibrosis Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| |
Collapse
|
35
|
Effects of the Rho-Kinase Inhibitor Y-27632 on Extraocular Muscle Surgery in Rabbits. J Ophthalmol 2017; 2017:8653130. [PMID: 28815090 PMCID: PMC5549496 DOI: 10.1155/2017/8653130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/27/2017] [Accepted: 06/15/2017] [Indexed: 11/18/2022] Open
Abstract
Purpose To evaluate the effect of the Rho-kinase inhibitor Y-27632 on postoperative inflammation and adhesion following extraocular muscle surgery in rabbits. Methods The superior rectus muscle reinsertion was performed on both eyes of 8 New Zealand white rabbits. After reinsertion, the rabbits received subconjunctival injections of the Rho-kinase inhibitor and saline on each eye. To assess acute and late inflammatory changes, Ki-67, CD11β+, and F4/80 were evaluated and the sites of muscle reattachment were evaluated for a postoperative adhesion score and histopathologically for collagen formation. Results F4/80 antibody expression was significantly different in the Rho-kinase inhibitor-injected group at both postoperative day 3 and week 4 (p = 0.038, 0.031). However, Ki-67 and CD11β+ were not different the between two groups. The difference in the SRM/conjunctiva adhesion score between the two groups was also significant (p = 0.034). Conclusion. Intraoperative subconjunctival injection of the Rho-kinase inhibitor may be effective for adjunctive management of inflammation and fibrosis in rabbit eyes following extraocular muscle surgery.
Collapse
|
36
|
Varone F, Montemurro G, Macagno F, Calvello M, Conte E, Intini E, Iovene B, Leone PM, Mari PV, Richeldi L. Investigational drugs for idiopathic pulmonary fibrosis. Expert Opin Investig Drugs 2017; 26:1019-1031. [PMID: 28777013 DOI: 10.1080/13543784.2017.1364361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION IPF is a specific form of chronic fibrosing interstitial pneumonia of unknown cause, characterized by progressive worsening in lung function and an unfavorable prognosis. Current concepts on IPF pathogenesis are based on a dysregulated wound healing response, leading to an over production of extracellular matrix. Based on recent research however, several other mechanisms are now proposed as potential targets for novel therapeutic strategies. Areas covered: This review analyzes the current investigational strategies targeting extracellular matrix deposition, tyrosine-kinase antagonism, immune and autoimmune response, and cell-based therapy. A description of the pathogenic rationale implied in each novel therapeutic approach is summarized. Expert opinion: New IPF drugs are being evaluated in the context of phase 1 and 2 clinical trials. Nevertheless, many drugs that have shown efficacy in preclinical studies, failed to exhibit the same positive effect when translated to humans. A possible explanation for these failures might be related to the known limitations of animal models of the disease. The recent development of 3D systems composed of cells from individual patients that recreate an ex-vivo model of IPF, could lead to significant improvements in disease pathogenesis and treatment. New drugs could be tested on more genuine models and clinicians could tailor therapy based on patient's response.
Collapse
Affiliation(s)
- Francesco Varone
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Giuliano Montemurro
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Francesco Macagno
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Mariarosaria Calvello
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Emanuele Conte
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Enrica Intini
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Bruno Iovene
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Paolo Maria Leone
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Pier-Valerio Mari
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| | - Luca Richeldi
- a Unità Operativa Complessa di Pneumologia , Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli , Rome , Italy
| |
Collapse
|
37
|
Htwe SS, Cha BH, Yue K, Khademhosseini A, Knox AJ, Ghaemmaghami AM. Role of Rho-Associated Coiled-Coil Forming Kinase Isoforms in Regulation of Stiffness-Induced Myofibroblast Differentiation in Lung Fibrosis. Am J Respir Cell Mol Biol 2017; 56:772-783. [PMID: 28225294 DOI: 10.1165/rcmb.2016-0306oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fibrosis is a major cause of progressive organ dysfunction in several chronic pulmonary diseases. Rho-associated coiled-coil forming kinase (ROCK) has been shown to be involved in myofibroblast differentiation driven by altered matrix stiffness in a fibrotic state. There are two known ROCK isoforms in humans, ROCK1 and ROCK2, but the specific role of each isoform in myofibroblast differentiation in lung fibrosis remains unknown. To study this, we developed a gelatin methacryloyl hydrogel-based culture system with different stiffness levels relevant to healthy and fibrotic lungs. We have shown that stiff matrix, but not soft matrix, can induce myofibroblast differentiation with high smooth muscle actin isoform (αSMA) expression. Furthermore, our data confirmed that the inhibition of ROCK signaling by a pharmacological inhibitor (i.e., Y27632) attenuates stiffness-induced αSMA expression and fiber assembly in myofibroblasts. To assess the role of ROCK isoforms in this process, we used short interfering RNA to knock down the expression of each isoform. Our data showed that knocking down either ROCK1 or ROCK2 did not result in a reduction in αSMA expression in myofibroblasts on stiff matrix, as opposed to soft matrix, where αSMA expression was reduced significantly. Paradoxically, on stiff matrix, the absence of one isoform (particularly ROCK2) exaggerated αSMA expression and led to thick fiber assembly. Moreover, complete loss of αSMA fiber assembly was seen only in the absence of both ROCK isoforms, suggesting that both isoforms are implicated in this process. Overall, our results indicate the differential role of ROCK isoforms in myofibroblast differentiation on soft and stiff matrices.
Collapse
Affiliation(s)
- Su S Htwe
- 1 Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, and
| | - Byung H Cha
- 2 Biomaterials Innovation Research Centre, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Kan Yue
- 2 Biomaterials Innovation Research Centre, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Ali Khademhosseini
- 2 Biomaterials Innovation Research Centre, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Alan J Knox
- 3 Division of Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham, United Kingdom; and
| | - Amir M Ghaemmaghami
- 1 Division of Immunology, School of Life Sciences, Faculty of Medicine and Health Sciences, Queen's Medical Centre, and
| |
Collapse
|
38
|
Intrahepatic upregulation of MRTF-A signaling contributes to increased hepatic vascular resistance in cirrhotic rats with portal hypertension. Clin Res Hepatol Gastroenterol 2017; 41:303-310. [PMID: 28043789 DOI: 10.1016/j.clinre.2016.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/09/2016] [Accepted: 11/22/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Portal hypertension in cirrhosis is mediated, in part, by increased intrahepatic resistance, reflecting massive structural changes associated with fibrosis and intrahepatic vasoconstriction. Activation of the Rho/MRTF/SRF signaling pathway is essential for the cellular regulatory network of fibrogenesis. The aim of this study was to investigate MRTF-A-mediated regulation of intrahepatic fibrogenesis in cirrhotic rats. METHODS Portal hypertension was induced in rats via an injection of CCl4 oil. Hemodynamic measurements were obtained using a polyethylene PE-50 catheter and pressure transducers. Expression of hepatic fibrogenesis was measured using histological staining. Expression of protein was measured using western blotting. RESULTS Upregulation of MRTF-A protein expression in the livers of rats with CCl4-induced cirrhosis was relevant to intrahepatic resistance and hepatic fibrogenesis in portal hypertensive rats with increased modeling time. Inhibition of MRTF-A by CCG-1423 decelerated hepatic fibrosis, decreased intrahepatic resistance and portal pressure, and alleviated portal hypertension. CONCLUSION Increased intrahepatic resistance in rats with CCl4-induced portal hypertension is associated with an upregulation of MRTF-A signaling. Inhibition of this pathway in the liver can decrease hepatic fibrosis and intrahepatic resistance, as well as reduce portal pressure in cirrhotic rats with CCl4-induced portal hypertension.
Collapse
|
39
|
He Z, Yang Y, Wen Z, Chen C, Xu X, Zhu Y, Wang Y, Wang DW. CYP2J2 metabolites, epoxyeicosatrienoic acids, attenuate Ang II-induced cardiac fibrotic response by targeting Gα 12/13. J Lipid Res 2017; 58:1338-1353. [PMID: 28554983 DOI: 10.1194/jlr.m074229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
The arachidonic acid-cytochrome P450 2J2-epoxyeicosatrienoic acid (AA-CYP2J2-EET) metabolic pathway has been identified to be protective in the cardiovascular system. This study explored the effects of the AA-CYP2J2-EET metabolic pathway on cardiac fibrosis from the perspective of cardiac fibroblasts and underlying mechanisms. In in vivo studies, 8-week-old male CYP2J2 transgenic mice (aMHC-CYP2J2-Tr) and littermates were infused with angiotensin II (Ang II) or saline for 2 weeks. Results showed that CYP2J2 overexpression increased EET production. Meanwhile, impairment of cardiac function and fibrotic response were attenuated by CYP2J2 overexpression. The effects of CYP2J2 were associated with reduced activation of the α subunits of G12 family G proteins (Gα12/13)/RhoA/Rho kinase (ROCK) cascade and elevation of the NO/cyclic guanosine monophosphate (cGMP) level in cardiac tissue. In in vitro studies, cardiac fibroblast activation, proliferation, migration, and collagen production induced by Ang II were associated with activation of the Gα12/13/RhoA/ROCK pathway, which was inhibited by exogenous 11,12-EET. Moreover, silencing of Gα12/13 or RhoA exerted similar effects as 11,12-EET. Furthermore, inhibitory effects of 11,12-EET on Gα12/13 were blocked by NO/cGMP pathway inhibitors. Our findings indicate that enhancement of the AA-CYP2J2-EET metabolic pathway by CYP2J2 overexpression attenuates Ang II-induced cardiac dysfunction and fibrosis by reducing the fibrotic response of cardiac fibroblasts by targeting the Gα12/13/RhoA/ROCK pathway via NO/cGMP signaling.
Collapse
Affiliation(s)
- Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yong Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanfang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
40
|
Rom S, Zuluaga-Ramirez V, Reichenbach NL, Dykstra H, Gajghate S, Pacher P, Persidsky Y. PARP inhibition in leukocytes diminishes inflammation via effects on integrins/cytoskeleton and protects the blood-brain barrier. J Neuroinflammation 2016; 13:254. [PMID: 27677851 PMCID: PMC5039899 DOI: 10.1186/s12974-016-0729-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/21/2016] [Indexed: 12/24/2022] Open
Abstract
Background Blood-brain barrier (BBB) dysfunction/disruption followed by leukocyte infiltration into the brain causes neuroinflammation and contributes to morbidity in multiple sclerosis, encephalitis, traumatic brain injury, and stroke. The identification of pathways that decreases the inflammatory potential of leukocytes would prevent such injury. Poly(ADP-ribose) polymerase 1 (PARP) controls various genes via its interaction with myriad transcription factors. Selective PARP inhibitors have appeared lately as potent anti-inflammatory tools. Their effects are outside the recognized PARP functions in DNA repair and transcriptional regulation. In this study, we explored the idea that selective inhibition of PARP in leukocytes would diminish their engagement of the brain endothelium. Methods Cerebral vascular changes and leukocyte-endothelium interactions were surveyed by intravital videomicroscopy utilizing a novel in vivo model of localized aseptic meningitis when TNFα was introduced intracerebrally in wild-type (PARP+/+) and PARP-deficient (PARP−/−) mice. The effects of selective PARP inhibition on primary human monocytes ability to adhere to or migrate across the BBB were also tested in vitro, employing primary human brain microvascular endothelial cells (BMVEC) as an in vitro model of the BBB. Results PARP suppression in monocytes diminished their adhesion to and migration across BBB in vitro models and prevented barrier injury. In monocytes, PARP inactivation decreased conformational activation of integrins that plays a key role in their tissue infiltration. Such changes were mediated by suppression of activation of small Rho GTPases and cytoskeletal rearrangements in monocytes. In vitro observations were confirmed in vivo showing diminished leukocyte-endothelial interaction after selective PARP suppression in leukocytes accompanied by BBB protection. PARP knockout animals demonstrated a substantial diminution of inflammatory responses in brain microvasculature and a decrease in BBB permeability. Conclusions These results suggest PARP inhibition in leukocytes as a novel approach to BBB protection in the setting of endothelial dysfunction caused by inflammation-induced leukocyte engagement. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0729-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| | - Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Holly Dykstra
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, Bethesda, MD, 20852, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia, PA, 19140, USA. .,Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
41
|
Futakuchi A, Inoue T, Fujimoto T, Inoue-Mochita M, Kawai M, Tanihara H. The effects of ripasudil (K-115), a Rho kinase inhibitor, on activation of human conjunctival fibroblasts. Exp Eye Res 2016; 149:107-115. [PMID: 27394186 DOI: 10.1016/j.exer.2016.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/17/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023]
Abstract
The most common cause of glaucoma surgery failure is scar formation induced by activation of wound-healing responses and resultant fibrosis at the surgical site. We investigated the effects of ripasudil, a Rho kinase inhibitor, on activation of human conjunctival fibroblasts (HConF). HConF were pretreated with different concentrations of ripasudil for 1 h before addition of transforming growth factor (TGF)-β2, followed by incubation for 48 h. TGF-β2-treated fibroblasts exhibited a significant increase in expression of α-smooth muscle actin (α-SMA), a marker of fibroblast-to-myofibroblast differentiation, and this increase was significantly suppressed, in a dose-dependent manner, by pretreatment with ripasudil. Ripasudil pretreatment also significantly attenuated TGF-β2-induced fibronectin production and collagen gel contraction. TGF-β2 increased both the number of viable cells and the number of cells in the G2/M phase of the cell cycle; these effects were attenuated by pretreatment with ripasudil. In addition, we explored the effects of ripasudil on stimulation of HConF by activated macrophages. Human monocytic cell line THP-1 cells were differentiated into M1 or M2 macrophage-like cells, and HConF were treated with conditioned media derived from these macrophages in the presence or absence of ripasudil. Conditioned medium from M2 macrophage-like cells induced a significant increase in α-SMA expression, viable cell numbers, and gel contraction, all of which were significantly suppressed by ripasudil. Thus, overall, ripasudil attenuated activation of human conjunctival fibroblasts. Ripasudil may be of therapeutic utility, preventing excessive scarring after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Akiko Futakuchi
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Inoue
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Tomokazu Fujimoto
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miyuki Inoue-Mochita
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Motofumi Kawai
- Department of Ophthalmology, Asahikawa Medical University, Asahikawa, Japan
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
42
|
Zhang R, Feng X, Zhan M, Huang C, Chen K, Tang X, Kang T, Xiong Y, Lei M. Transcription Factor Sp1 Promotes the Expression of Porcine ROCK1 Gene. Int J Mol Sci 2016; 17:ijms17010112. [PMID: 26784181 PMCID: PMC4730353 DOI: 10.3390/ijms17010112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/27/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022] Open
Abstract
Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) gene plays a crucial role in maintaining genomic stability, tumorigenesis and myogenesis. However, little is known about the regulatory elements governing the transcription of porcine ROCK1 gene. In the current study, the transcription start site (TSS) was identified by 5'-RACE, and was found to differ from the predicted one. The region in ROCK1 promoter which is critical for promoter activity was investigated via progressive deletions. Site-directed mutagenesis indicated that the region from -604 to -554 bp contains responsive elements for Sp1. Subsequent experiments showed that ROCK1 promoter activity is enhanced by Sp1 in a dose-dependent manner, whereas treatment with specific siRNA repressed ROCK1 promoter activity. Electrophoretic mobility shift assay (EMSA), DNA pull down and chromatin immunoprecipitation (ChIP) assays revealed Sp1 can bind to this region. qRT-PCR and Western blotting research followed by overexpression or inhibition of Sp1 indicate that Sp1 can affect endogenous ROCK1 expression at both mRNA and protein levels. Overexpression of Sp1 can promote the expression of myogenic differentiation 1(MyoD), myogenin (MyoG), myosin heavy chain (MyHC). Taken together, we conclude that Sp1 positively regulates ROCK1 transcription by directly binding to the ROCK1 promoter region (from -604 to -532 bp) and may affect the process of myogenesis.
Collapse
Affiliation(s)
- Ruirui Zhang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoting Feng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- College of Life Science and Technology, Wuhan Bioengineering Institute, Wuhan 430070, China.
| | - Mengsi Zhan
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Cong Huang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Kun Chen
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyin Tang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingting Kang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuanzhu Xiong
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Minggang Lei
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
43
|
Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol Rev 2015; 67:103-17. [PMID: 25395505 DOI: 10.1124/pr.114.009381] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive lung scarring, short median survival, and limited therapeutic options, creating great need for new pharmacologic therapies. IPF is thought to result from repetitive environmental injury to the lung epithelium, in the context of aberrant host wound healing responses. Tissue responses to injury fundamentally involve reorganization of the actin cytoskeleton of participating cells, including epithelial cells, fibroblasts, endothelial cells, and macrophages. Actin filament assembly and actomyosin contraction are directed by the Rho-associated coiled-coil forming protein kinase (ROCK) family of serine/threonine kinases (ROCK1 and ROCK2). As would therefore be expected, lung ROCK activation has been demonstrated in humans with IPF and in animal models of this disease. ROCK inhibitors can prevent fibrosis in these models, and more importantly, induce the regression of already established fibrosis. Here we review ROCK structure and function, upstream activators and downstream targets of ROCKs in pulmonary fibrosis, contributions of ROCKs to profibrotic cellular responses to lung injury, ROCK inhibitors and their efficacy in animal models of pulmonary fibrosis, and potential toxicities of ROCK inhibitors in humans, as well as involvement of ROCKs in fibrosis in other organs. As we discuss, ROCK activation is required for multiple profibrotic responses, in the lung and multiple other organs, suggesting ROCK participation in fundamental pathways that contribute to the pathogenesis of a broad array of fibrotic diseases. Multiple lines of evidence therefore indicate that ROCK inhibition has great potential to be a powerful therapeutic tool in the treatment of fibrosis, both in the lung and beyond.
Collapse
Affiliation(s)
- Rachel S Knipe
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - Andrew M Tager
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| | - James K Liao
- Pulmonary and Critical Care Unit and Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (R.S.K., A.M.T.); and Section of Cardiology, Department of Medicine, University of Chicago, Chicago, Illinois (J.K.L.)
| |
Collapse
|
44
|
Bernau K, Ngam C, Torr EE, Acton B, Kach J, Dulin NO, Sandbo N. Megakaryoblastic leukemia-1 is required for the development of bleomycin-induced pulmonary fibrosis. Respir Res 2015; 16:45. [PMID: 25885656 PMCID: PMC4392778 DOI: 10.1186/s12931-015-0206-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/13/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Fibrosing disorders of the lung, such as idiopathic pulmonary fibrosis, are characterized by progressive extracellular matrix accumulation that is driven by myofibroblasts. The transcription factor megakaryoblastic leukemia-1 (MKL1) mediates myofibroblast differentiation in response to several profibrotic stimuli, but the role it plays in mediating pulmonary fibrosis has not been fully elucidated. In this study, we utilized mice that had a germline deletion of MKL1 (MKL1 (-,-)) to determine the role that MKL1 plays in the development of bleomycin-induced pulmonary fibrosis. METHODS Bleomycin or normal saline were intratracheally delivered to 9 to 12 week old female MKL1 (+,+) and MKL1 (-,-) mice. Mice were assessed for weight loss and survival to 28 days. Inflammatory responses were assessed through bronchoalveolar lavage at days 3 and 7 post-treatment. The development of pulmonary fibrosis was characterized using hydroxyproline assay and histological staining. MKL1 (+,+) and MKL1 (-,-) mouse lung fibroblasts were isolated to compare morphologic, gene expression and functional differences. RESULTS MKL1 (-,-) mice demonstrated increased survival, attenuated weight loss, and decreased collagen accumulation compared to wild-type animals 28-days after intratracheal instillation of bleomycin. Histological analysis demonstrated decreased trichrome, smooth muscle α-actin, and fibronectin staining in MKL1(-,-) mice compared to MKL1 (+,+) controls. Differential cell counts from bronchoalveolar lavage demonstrated that there was attenuated neutrophilia 3 days after bleomycin administration, but no difference at day 7. Isolated mouse lung fibroblasts from MKL1 (-,-) mice had decreased contractility and deposited less fibronectin matrix compared to wild-type controls, suggesting a defect in key remodeling functions. CONCLUSIONS Altogether, these data demonstrate that MKL1 plays a significant role in mediating the fibrotic response to bleomycin injury. Loss of MKL1 attenuated early neutrophil influx, as well as myofibroblast-mediated remodeling. Targeting MKL1 activity may therefore be a useful strategy in treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Ksenija Bernau
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Caitlyn Ngam
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Elizabeth E Torr
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Benjamin Acton
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jacob Kach
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Nickolai O Dulin
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Nathan Sandbo
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
45
|
Riches DWH, Backos DS, Redente EF. ROCK and Rho: Promising therapeutic targets to ameliorate pulmonary fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:909-12. [PMID: 25687558 DOI: 10.1016/j.ajpath.2015.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 11/18/2022]
Abstract
This commentary highlights the article by Sisson et al, which establishes the importance of the myocardin-related transcription factor/serum response factor signaling pathway as a therapeutic target in the management of fibrotic lung disease.
Collapse
Affiliation(s)
- David W H Riches
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado; Department of Immunology, University of Colorado School of Medicine, Aurora, Colorado; Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.
| | - Donald S Backos
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Elizabeth F Redente
- Program in Cell Biology, Department of Pediatrics, National Jewish Health, Denver, Colorado; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
46
|
Torr EE, Ngam CR, Bernau K, Tomasini-Johansson B, Acton B, Sandbo N. Myofibroblasts exhibit enhanced fibronectin assembly that is intrinsic to their contractile phenotype. J Biol Chem 2015; 290:6951-61. [PMID: 25627685 DOI: 10.1074/jbc.m114.606186] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myofibroblasts have increased expression of contractile proteins and display augmented contractility. It is not known if the augmented contractile gene expression characterizing the myofibroblast phenotype impacts its intrinsic ability to assemble fibronectin (FN) and extracellular matrix. In this study we investigated whether myofibroblasts displayed increased rates of FN fibril assembly when compared with their undifferentiated counterparts. Freshly plated myofibroblasts assemble exogenous FN (488-FN) into a fibrillar matrix more rapidly than fibroblasts that have not undergone myofibroblast differentiation. The augmented rate of FN matrix formation by myofibroblasts was dependent on intact Rho/Rho kinase (ROCK) and myosin signals inasmuch as treatment with Y27632 or blebbistatin attenuated 488-FN assembly. Inhibiting contractile gene expression by pharmacologic disruption of the transcription factors megakaryoblastic leukemia-1 (MKL1)/serum response factor (SRF) during myofibroblast differentiation resulted in decreased contractile force generation and attenuated 488-FN incorporation although not FN expression. Furthermore, disruption of the MKL1/SRF target gene, smooth muscle α-actin (α-SMA) via siRNA knockdown resulted in attenuation of 488-FN assembly. In conclusion, this study demonstrates a linkage between increased contractile gene expression, most importantly α-SMA, and the intrinsic capacity of myofibroblasts to assemble exogenous FN into fibrillar extracellular matrix.
Collapse
Affiliation(s)
| | | | | | - Bianca Tomasini-Johansson
- Surgery, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin 53792
| | | | | |
Collapse
|
47
|
Qi XJ, Ning W, Xu F, Dang HX, Fang F, Li J. Fasudil, an inhibitor of Rho-associated coiled-coil kinase, attenuates hyperoxia-induced pulmonary fibrosis in neonatal rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12140-50. [PMID: 26722398 PMCID: PMC4680343 DOI: pmid/26722398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/24/2015] [Indexed: 11/18/2022]
Abstract
BACKGROUND Oxygen therapy is important during the management of high-risk neonatal infants, such as those with preterm birth, low birth weight, and asphyxia. However, prolonged exposure to high oxygen concentrations can readily lead to diffuse nonspecific inflammation, which promotes airway remodeling and pulmonary fibrosis. The Rho/Rho-associated coiled-coil kinase (Rho/ROCK) signaling pathway plays an important role in numerous developmental and proliferative diseases. This study was performed to determine the efficacy of ROCK inhibitor fasudil in blocking the development of hyperoxia-induced lung injury and fibrosis in neonatal rats. METHODS Neonatal rats were randomly divided into four groups: air + saline group, air + fasudil group, hyperoxia + saline group, and hyperoxia + fasudil group. The hyperoxia + saline and Hyp + fasudil groups were exposed to 95% oxygen for 21 days and administered intraperitoneal saline or fasudil once daily. The air + saline and air + fasudil group were exposed to 21% oxygen (room air) and administered the same volume of intraperitoneal saline or fasudil. RESULTS Fasudil-treated rats exhibited improved histopathological changes and decreased lung hydroxyproline content. Fasudil attenuated the protein level of alpha-smooth muscle actin, transforming growth factor-β1, and connective tissue growth factor. Additionally, fasudil reduced the activation of ROCK1 and myosin phosphatase targeting subunit 1 protein in the Rho/ROCK signaling pathway. CONCLUSIONS Fasudil may be a potentially effective therapeutic drug for hyperoxia-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Xiu-Jie Qi
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing 400014, China ; Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Wei Ning
- Daping Hospital and The Research Institute of Surgery of The Third Military Medical University Chongqing 400042, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Hong-Xing Dang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Fang Fang
- Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| | - Jing Li
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University Chongqing 400014, China
| |
Collapse
|
48
|
Park JS, Park HJ, Park YS, Lee SM, Yim JJ, Yoo CG, Han SK, Kim YW. Clinical significance of mTOR, ZEB1, ROCK1 expression in lung tissues of pulmonary fibrosis patients. BMC Pulm Med 2014; 14:168. [PMID: 25358403 PMCID: PMC4233073 DOI: 10.1186/1471-2466-14-168] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 10/15/2014] [Indexed: 12/17/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease of unknown causes. Three proteins (mammalian target of rapamycin, mTOR; zinc finger E-box-binding homeobox 1, ZEB1; Rho-associated, coiled-coil containing protein kinase 1, ROCK1) may be related to pulmonary fibrosis. However, they have not been assessed in human pulmonary fibrosis. We assessed the clinical significance of mTOR, ZEB1, and ROCK1 expression in human pulmonary fibrosis of usual interstitial pneumonia (UIP) pattern. Methods The mTOR, ZEB1, and ROCK1 expression was evaluated by immunohistochemical staining of 30 surgical lung biopsy tissues from 26 IPF and 4 UIP pattern connective tissue disease related interstitial lung disease (CTD-ILD) patients. The expression scores correlated with the clinical features. Results The mTOR, ZEB1 and ROCK1 mainly expressed in alveolar epithelial cells of UIP lungs. The histological fibrosis scores and lung function decline in the strong mTOR expression group were higher than those in the weak and intermediate expression group. Patients with positive ZEB1 expression had higher fibrosis scores and greater decline in carbon monoxide diffusion capacity (DLCO) than patients with negative ZEB1 expression. Patients with positive mTOR or ZEB1 expression had poorer prognosis than that of patients with negative mTOR or ZEB1 expression, although it was not statistically significant. ROCK1 was not associated with the studied clinicopathological features. Conclusions The mTOR and ZEB1 expression in pulmonary fibrosis patients significantly correlated with the fibrosis score and lung function decline, indicating that it may be related to the prognosis of pulmonary fibrosis. Further studies involving large numbers of homogeneous IPF patients are warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Young Whan Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea.
| |
Collapse
|
49
|
Ji H, Tang H, Lin H, Mao J, Gao L, Liu J, Wu T. Rho/Rock cross-talks with transforming growth factor-β/Smad pathway participates in lung fibroblast-myofibroblast differentiation. Biomed Rep 2014; 2:787-792. [PMID: 25279146 DOI: 10.3892/br.2014.323] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 06/27/2014] [Indexed: 11/06/2022] Open
Abstract
The differentiation of fibroblasts, which are promoted by transforming growth factor-β (TGF-β)/Smad, is involved in the process of pulmonary fibrosis. The Rho/Rho-associated coiled-coil-forming protein kinase (Rock) pathway may regulate the fibroblast differentiation and myofibroblast expression of α-smooth muscle actin (α-SMA), however, the mechanism is not clear. The aim of the present study was to evaluate the role of Rho/Rock and TGF-β/Smad in TGF-β1-induced lung fibroblasts differentiation. Human embryonic lung fibroblasts were stimulated by TGF-β1, Y-27632 (inhibitor of Rho/Rock signaling) and staurosporine (inhibitor of TGF-β/Smad signaling). The α-SMA expression, cell cycle progression, content of the extracellular matrix (ECM) in cell culture supernatants and the expression of RhoA, RhoC, Rock1 and Smad2 were detected. The results demonstrated that α-SMA-positive cells significantly increased following TGF-β1 stimulation. Rho/Rock and TGF-β/Smad inhibitors suppressed TGF-β1-induced lung fibroblast differentiation. The inhibitors increased G0/G1 and decreased S and G2/M percentages. The concentrations of the ECM proteins in the supernatant were significantly increased by TGF-β1 stimulation, whereas they were decreased by inhibitor stimulation. RhoA, RhoC, Rock1, Smad2 and tissue inhibitor of metalloproteinase-1 were upregulated by TGF-β1 stimulation. The Rho/Rock inhibitor downregulated Smad2 expression and the TGF-β/Smad inhibitor downregulated RhoA, RhoC and Rock1 expression. Therefore, the Rho/Rock pathway and Smad signaling were involved in the process of lung fibroblasts transformation, induced by TGF-β1, to myofibroblasts. The two pathways may undergo cross-talk in the lung fibroblasts differentiation in vitro.
Collapse
Affiliation(s)
- Hong Ji
- Department of Paediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Haiying Tang
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Hongli Lin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jingwei Mao
- Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lili Gao
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Jia Liu
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Taihua Wu
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
50
|
Arizmendi N, Puttagunta L, Chung KL, Davidson C, Rey-Parra J, Chao DV, Thebaud B, Lacy P, Vliagoftis H. Rac2 is involved in bleomycin-induced lung inflammation leading to pulmonary fibrosis. Respir Res 2014; 15:71. [PMID: 24970330 PMCID: PMC4082672 DOI: 10.1186/1465-9921-15-71] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 06/16/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Pulmonary fibrotic diseases induce significant morbidity and mortality, for which there are limited therapeutic options available. Rac2, a ras-related guanosine triphosphatase expressed mainly in hematopoietic cells, is a crucial molecule regulating a diversity of mast cell, macrophage, and neutrophil functions. All these cell types have been implicated in the development of pulmonary fibrosis in a variety of animal models. For the studies described here we hypothesized that Rac2 deficiency protects mice from bleomycin-induced pulmonary fibrosis. METHODS To determine the role of Rac2 in pulmonary fibrosis we used a bleomycin-induced mouse model. Anesthetized C57BL/6 wild type and rac2-/- mice were instilled intratracheally with bleomycin sulphate (1.25 U/Kg) or saline as control. Bronchoalveolar lavage (BAL) samples were collected at days 3 and 7 of treatment and analyzed for matrix metalloproteinases (MMPs). On day 21 after bleomycin treatment, we measured airway resistance and elastance in tracheotomized animals. Lung sections were stained for histological analysis, while homogenates were analyzed for hydroxyproline and total collagen content. RESULTS BLM-treated rac2-/- mice had reduced MMP-9 levels in the BAL on day 3 and reduced neutrophilia and TNF and CCL3/MIP-1α levels in the BAL on day 7 compared to BLM-treated WT mice. We also showed that rac2-/- mice had significantly lower mortality (30%) than WT mice (70%) at day 21 of bleomycin treatment. Lung function was diminished in bleomycin-treated WT mice, while it was unaffected in bleomycin-treated rac2-/- mice. Histological analysis of inflammation and fibrosis as well as collagen and hydroxyproline content in the lungs did not show significant differences between BLM-treated rac2-/- and WT and mice that survived to day 21. CONCLUSION Rac2 plays an important role in bleomycin-induced lung injury. It is an important signaling molecule leading to BLM-induced mortality and it also mediates the physiological changes seen in the airways after BLM-induced injury.
Collapse
Affiliation(s)
- Narcy Arizmendi
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Lakshmi Puttagunta
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kerri L Chung
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Courtney Davidson
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Juliana Rey-Parra
- Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Danny V Chao
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Bernard Thebaud
- Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Lacy
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harissios Vliagoftis
- Pulmonary Research Group and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|