1
|
Dushianthan A, Grocott MPW, Murugan GS, Wilkinson TMA, Postle AD. Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics (Basel) 2023; 13:2964. [PMID: 37761330 PMCID: PMC10528901 DOI: 10.3390/diagnostics13182964] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of hypoxemic respiratory failure in adults, leading to the requirement for mechanical ventilation and poorer outcomes. Dysregulated surfactant metabolism and function are characteristic of ARDS. A combination of alveolar epithelial damage leading to altered surfactant synthesis, secretion, and breakdown with increased functional inhibition from overt alveolar inflammation contributes to the clinical features of poor alveolar compliance and alveolar collapse. Quantitative and qualitative alterations in the bronchoalveolar lavage and tracheal aspirate surfactant composition contribute to ARDS pathogenesis. Compared to neonatal respiratory distress syndrome (nRDS), replacement studies of exogenous surfactants in adult ARDS suggest no survival benefit. However, these studies are limited by disease heterogeneity, variations in surfactant preparations, doses, and delivery methods. More importantly, the lack of mechanistic understanding of the exact reasons for dysregulated surfactant remains a significant issue. Moreover, studies suggest an extremely short half-life of replaced surfactant, implying increased catabolism. Refining surfactant preparations and delivery methods with additional co-interventions to counteract surfactant inhibition and degradation has the potential to enhance the biophysical characteristics of surfactant in vivo.
Collapse
Affiliation(s)
- Ahilanandan Dushianthan
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Michael P. W. Grocott
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | | | - Tom M. A. Wilkinson
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Anthony D. Postle
- National Institute for Health Research (NIHR) Southampton Biomedical Research Centre, University Hospital Southampton National Health System Foundation Trust, Southampton SO16 6YD, UK; (M.P.W.G.); (T.M.A.W.); (A.D.P.)
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Sibila O, Perea L, Albacar N, Moisés J, Cruz T, Mendoza N, Solarat B, Lledó G, Espinosa G, Barberà JA, Badia JR, Agustí A, Sellarés J, Faner R. Elevated plasma levels of epithelial and endothelial cell markers in COVID-19 survivors with reduced lung diffusing capacity six months after hospital discharge. Respir Res 2022; 23:37. [PMID: 35189887 PMCID: PMC8860292 DOI: 10.1186/s12931-022-01955-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Some COVID-19 survivors present lung function abnormalities during follow-up, particularly reduced carbon monoxide lung diffusing capacity (DLCO). To investigate risk factors and underlying pathophysiology, we compared the clinical characteristics and levels of circulating pulmonary epithelial and endothelial markers in COVID-19 survivors with normal or reduced DLCO 6 months after discharge. METHODS Prospective, observational study. Clinical characteristics during hospitalization, and spirometry, DLCO and plasma levels of epithelial (surfactant protein (SP) A (SP-A), SP-D, Club cell secretory protein-16 (CC16) and secretory leukocyte protease inhibitor (SLPI)), and endothelial (soluble intercellular adhesion molecule 1 (sICAM-1), soluble E-selectin and Angiopoietin-2) 6 months after hospital discharge were determined in 215 COVID-19 survivors. RESULTS DLCO was < 80% ref. in 125 (58%) of patients, who were older, more frequently smokers, had hypertension, suffered more severe COVID-19 during hospitalization and refer persistent dyspnoea 6 months after discharge. Multivariate regression analysis showed that age ≥ 60 years and severity score of the acute episode ≥ 6 were independent risk factors of reduced DLCO 6 months after discharge. Levels of epithelial (SP-A, SP-D and SLPI) and endothelial (sICAM-1 and angiopoietin-2) markers were higher in patients with reduced DLCO, particularly in those with DLCO ≤ 50% ref. Circulating SP-A levels were associated with the occurrence of acute respiratory distress syndrome (ARDS), organizing pneumonia and pulmonary embolisms during hospitalization. CONCLUSIONS Reduced DLCO is common in COVID-19 survivors 6 months after hospital discharge, especially in those older than 60 years with very severe acute disease. In these individuals, elevated levels of epithelial and endothelial markers suggest persistent lung damage.
Collapse
Affiliation(s)
- Oriol Sibila
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain.
| | - Lídia Perea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Núria Albacar
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Jorge Moisés
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Tamara Cruz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Núria Mendoza
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Belen Solarat
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Gemma Lledó
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Autoimmune Diseases Department, IDIBAPS, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | - Gerard Espinosa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Autoimmune Diseases Department, IDIBAPS, University of Barcelona, Hospital Clínic, Barcelona, Spain
| | - Joan Albert Barberà
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Joan Ramon Badia
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Alvar Agustí
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Jacobo Sellarés
- Pulmonary Service, Respiratory Institute, Hospital Clínic, University of Barcelona, C/Villaroel 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| | - Rosa Faner
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), C/Roselló 149, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER), Barcelona, Spain
| |
Collapse
|
3
|
Chakrabarti A, Nguyen A, Newhams MM, Ohlson MB, Yang X, Ulufatu S, Liu S, Park S, Xu M, Jiang J, Halpern WG, Anania VG, McBride JM, Rosenberger CM, Randolph AG. Surfactant protein D is a biomarker of influenza-related pediatric lung injury. Pediatr Pulmonol 2022; 57:519-528. [PMID: 34842360 PMCID: PMC8792225 DOI: 10.1002/ppul.25776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/30/2021] [Accepted: 11/26/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Biomarkers that can risk-stratify children with influenza virus lower respiratory infection may identify patients for targeted intervention. Early elevation of alveolar-related proteins in the bloodstream in these patients could indicate more severe lung damage portending worse outcomes. METHODS We used a mouse model of human influenza infection and evaluated relationships between lung pathophysiology and surfactant protein D (SP-D), SP-A, and Club cell protein 16 (CC16). We then measured SP-A, SP-D, and CC16 levels in plasma samples from 94 children with influenza-associated acute respiratory failure (PICFLU cohort), excluding children with underlying conditions explaining disease severity. We tested for associations between levels of circulating proteins and disease severity including the diagnosis of acute respiratory distress syndrome (ARDS), mechanical ventilator, intensive care unit and hospital days, and hospital mortality. RESULTS Circulating SP-D showed a greater increase than SP-A and CC16 in mice with increased alveolar-vascular permeability following influenza infection. In the PICFLU cohort, SP-D was associated with moderate-severe ARDS diagnosis (p = 0.01) and with mechanical ventilator (r = 0.45, p = 0.002), ICU (r = 0.44, p = 0.002), and hospital days (r = 0.37, p = 0.001) in influenza-infected children without bacterial coinfection. Levels of SP-D were lower in children with secondary bacterial pneumonia (p = 0.01) and not associated with outcomes. CC16 and SP-A levels did not differ with bacterial coinfection and were not consistently associated with severe outcomes. CONCLUSIONS SP-D has potential as an early circulating biomarker reflecting a degree of lung damage caused directly by influenza virus infection in children. Secondary bacterial pneumonia alters SP-D biomarker performance.
Collapse
Affiliation(s)
| | - Allen Nguyen
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Margaret M Newhams
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Maikke B Ohlson
- Biomarker Discovery, Genentech, Inc., South San Francisco, California, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xiaoying Yang
- Biostatistics, Genentech, Inc., South San Francisco, California, USA
| | - Sheila Ulufatu
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Shannon Liu
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California, USA
| | - Summer Park
- Translational Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Min Xu
- Translational Immunology, Genentech, Inc., South San Francisco, California, USA
| | - Jenny Jiang
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | - Wendy G Halpern
- Department of Pathology, Genentech, Inc., South San Francisco, California, USA
| | - Veronica G Anania
- Biomarker Development, Genentech, Inc., South San Francisco, California, USA
| | | | | | - Adrienne G Randolph
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
- Departments of Anaesthesia and Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Bihari S, Bersten A, Paul E, McGuinness S, Dixon D, Sinha P, Calfee CS, Nichol A, Hodgson C. Acute respiratory distress syndrome phenotypes with distinct clinical outcomes in PHARLAP trial cohort. CRIT CARE RESUSC 2021; 23:163-170. [PMID: 38045528 PMCID: PMC10692525 DOI: 10.51893/2021.2.oa3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The Permissive Hypercapnia, Alveolar Recruitment and Low Airway Pressure (PHARLAP) randomised controlled trial compared an open lung ventilation strategy with control ventilation, and found that open lung ventilation did not reduce the number of ventilatorfree days (VFDs) or mortality in patients with moderate-to-severe acute respiratory distress syndrome (ARDS). Parsimonious models can identify distinct phenotypes of ARDS (hypo-inflammatory and hyperinflammatory) which are associated with different outcomes and treatment responses. Objective: To test the hypothesis that a parsimonious model would identify patients with distinctly different clinical outcomes in the PHARLAP study. Design, setting and participants: Blood and lung lavage samples were collected in a subset of PHARLAP patients who were recruited in Australian and New Zealand centres. A previously validated parsimonious model (interleukin-8, soluble tumour necrosis factor receptor-1 and bicarbonate) was used to classify patients with blood samples into hypo-inflammatory and hyperinflammatory groups. Generalised linear modelling was used to examine the interaction between inflammatory phenotype and treatment group (intervention or control). Main outcome measure: The primary outcome was number of VFDs at Day 28. Results: Data for the parsimonious model were available for 56 of 115 patients (49%). Within this subset, 38 patients (68%) and 18 patients (32%) were classified as having hypo-inflammatory and hyperinflammatory phenotypes, respectively. Patients with the hypo- inflammatory phenotype had more VFDs at Day 28 when compared with those with the hyperinflammatory phenotype (median [IQR], 19.5[11-24] versus 8[0-21];P= 0.03). Patients with the hyperinflammatory phenotype had numerically fewer VFDs when managed with an open lung strategy than when managed with control "protective" ventilation (median [IQR], 0 [0-19] versus 16 [8-22]). Conclusion: In the PHARLAP trial, ARDS patients classified as having a hyperinflammatory phenotype, with a parsimonious three-variable model, had fewer VFDs at Day 28 compared with patients classified as having a hypo-inflammatory phenotype. Future clinical studies of ventilatory strategies should consider incorporating distinct ARDS phenotypes into their trial design.
Collapse
Affiliation(s)
- Shailesh Bihari
- College of Medicine and Public Health- Flinders University-, Adelaide, - SA-, Australia
- Intensive and Critical Care Unit- Flinders Medical Centre-, Adelaide, - SA-, Australia
| | - Andrew Bersten
- College of Medicine and Public Health- Flinders University-, Adelaide, - SA-, Australia
- Intensive and Critical Care Unit- Flinders Medical Centre-, Adelaide, - SA-, Australia
| | - Eldho Paul
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
| | - Shay McGuinness
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
- Cardiothoracic and Vascular Intensive Care Unit-, Auckland, City Hospital- Auckland- New Zealand
- Medical Research Institute of New Zealand-, Wellington- New Zealand
| | - Dani Dixon
- College of Medicine and Public Health- Flinders University-, Adelaide, - SA-, Australia
- Intensive and Critical Care Unit- Flinders Medical Centre-, Adelaide, - SA-, Australia
| | - Pratik Sinha
- Division of Pulmonary- Critical Care- Allergy and Sleep Medicine Department of Medicine- University of California San Francisco-, San Francisco, - Calif-, USA
| | - Carolyn S. Calfee
- Division of Pulmonary- Critical Care- Allergy and Sleep Medicine Department of Medicine- University of California San Francisco-, San Francisco, - Calif-, USA
| | - Alistair Nichol
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
- Intensive Care Unit- The Alfred-, Melbourne, - VIC-, Australia
- University College Dublin Clinical Research Centre- St Vincent's University Hospital-, Dublin- Ireland
| | - Carol Hodgson
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
- Intensive Care Unit- The Alfred-, Melbourne, - VIC-, Australia
- Contributed equally to the manuscript
| | - for the PHARLAP Study Investigators
- College of Medicine and Public Health- Flinders University-, Adelaide, - SA-, Australia
- Intensive and Critical Care Unit- Flinders Medical Centre-, Adelaide, - SA-, Australia
- Australian and New Zealand Intensive Care Research Centre, Monash University-, Melbourne, - VIC-, Australia
- Cardiothoracic and Vascular Intensive Care Unit-, Auckland, City Hospital- Auckland- New Zealand
- Medical Research Institute of New Zealand-, Wellington- New Zealand
- Division of Pulmonary- Critical Care- Allergy and Sleep Medicine Department of Medicine- University of California San Francisco-, San Francisco, - Calif-, USA
- Intensive Care Unit- The Alfred-, Melbourne, - VIC-, Australia
- University College Dublin Clinical Research Centre- St Vincent's University Hospital-, Dublin- Ireland
- Contributed equally to the manuscript
| |
Collapse
|
5
|
Hagens LA, Heijnen NFL, Smit MR, Schultz MJ, Bergmans DCJJ, Schnabel RM, Bos LDJ. Systematic review of diagnostic methods for acute respiratory distress syndrome. ERJ Open Res 2021; 7:00504-2020. [PMID: 33532455 PMCID: PMC7836439 DOI: 10.1183/23120541.00504-2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/18/2020] [Indexed: 01/10/2023] Open
Abstract
Rationale Acute respiratory distress syndrome (ARDS) is currently diagnosed by the Berlin definition, which does not include a direct measure of pulmonary oedema, endothelial permeability or pulmonary inflammation. We hypothesised that biomarkers of these processes have good diagnostic accuracy for ARDS. Methods Medline and Scopus were searched for original diagnostic studies using minimally invasive testing. Primary outcome was the diagnostic accuracy per test and was categorised by control group. The methodological quality was assessed with QUADAS-2 tool. Biomarkers that had an area under the receiver operating characteristic curve (AUROCC) of >0.75 and were studied with minimal bias against an unselected control group were considered to be promising. Results Forty-four articles were included. The median AUROCC for all evaluated tests was 0.80 (25th to 75th percentile: 0.72–0.88). The type of control group influenced the diagnostic accuracy (p=0.0095). Higher risk of bias was associated with higher diagnostic accuracy (AUROCC 0.75 for low-bias, 0.77 for intermediate-bias and 0.84 for high-bias studies; p=0.0023). Club cell protein 16 and soluble receptor for advanced glycation end-products in plasma and two panels with biomarkers of oxidative stress in breath showed good diagnostic accuracy in low-bias studies that compared ARDS patients to an unselected intensive care unit (ICU) population. Conclusion This systematic review revealed only four diagnostic tests fulfilling stringent criteria for a promising biomarker in a low-bias setting. For implementation into the clinical setting, prospective studies in a general unselected ICU population with good methodological quality are needed. Accuracy of diagnosis of acute respiratory distress syndrome (ARDS) is associated with risk of bias. There is a lack of validated diagnostic tests in an unbiased setting, emphasising the need for quality driven diagnostic research in ARDS.https://bit.ly/2GfPAvf
Collapse
Affiliation(s)
- Laura A Hagens
- Dept of Intensive Care, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Dept of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Marry R Smit
- Dept of Intensive Care, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Dept of Intensive Care, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Dennis C J J Bergmans
- Dept of Intensive Care, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Lieuwe D J Bos
- Dept of Intensive Care, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands.,Dept of Respiratory Medicine, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Kharlamovа OS, Nikolaev KY, Ragino YI, Voevoda MI. [Surfactant proteins A and D: role in the pathogenesis of community-acquired pneumonia and possible predictive perspectives]. TERAPEVT ARKH 2020; 92:109-115. [PMID: 32598802 DOI: 10.26442/00403660.2020.03.000275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 11/22/2022]
Abstract
Community-acquired pneumonia is one of the most common infectious diseases and remains one of the leading causes of death in this group of diseases. Studies of community-acquired pneumonia are extremely relevant for modern clinical practice. One of the important role in the pathogenesis of bacterial, viral, fungal invasion in the system of a human lung system belongs to the pulmonary surfactant, in particular, its proteins SP-A and SP-D. This article reviews the well-known mechanisms of important biological properties of immunomodulatory activity of the proteins SP-A and SP-D in response to microbial infection in the lungs. The mechanisms of participation of surfactant proteins SP-A and SP-D in the cascade of reactions that lead to severe life-threatening complications in community-acquired pneumonia are considered. The use of serum levels of surfactant proteins SP-A and SP-D can help finding new diagnostic and prognostic approaches in patients with community-acquired pneumonia.
Collapse
Affiliation(s)
- O S Kharlamovа
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics.,City Clinical Hospital №25
| | - K Y Nikolaev
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics.,Novosibirsk National Research State University
| | - Y I Ragino
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| | - M I Voevoda
- Research Institute of Therapy and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| |
Collapse
|
7
|
Emmens JE, Jones DJL, Cao TH, Chan DCS, Romaine SPR, Quinn PA, Anker SD, Cleland JG, Dickstein K, Filippatos G, Hillege HL, Lang CC, Ponikowski P, Samani NJ, van Veldhuisen DJ, Zannad F, Zwinderman AH, Metra M, de Boer RA, Voors AA, Ng LL. Proteomic diversity of high-density lipoprotein explains its association with clinical outcome in patients with heart failure. Eur J Heart Fail 2017; 20:260-267. [PMID: 29251807 DOI: 10.1002/ejhf.1101] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/26/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
AIMS Previously, low high-density lipoprotein (HDL) cholesterol was found to be one of the strongest predictors of mortality and/or heart failure (HF) hospitalisation in patients with HF. We therefore performed in-depth investigation of the multifunctional HDL proteome to reveal underlying pathophysiological mechanisms explaining the association between HDL and clinical outcome. METHODS AND RESULTS We selected a cohort of 90 HF patients with 1:1 cardiovascular death/survivor ratio from BIOSTAT-CHF. A novel optimised protocol for selective enrichment of lipoproteins was used to prepare plasma. Enriched lipoprotein content of samples was analysed using high resolution nanoscale liquid chromatography-mass spectrometry-based proteomics, utilising a label free approach. Within the HDL proteome, 49 proteins significantly differed between deaths and survivors. An optimised model of 12 proteins predicted death with 76% accuracy (Nagelkerke R2 =0.37, P < 0.001). The strongest contributors to this model were filamin-A (related to crosslinking of actin filaments) [odds ratio (OR) 0.31, 95% confidence interval (CI) 0.15-0.61, P = 0.001] and pulmonary surfactant-associated protein B (related to alveolar capillary membrane function) (OR 2.50, 95% CI 1.57-3.98, P < 0.001). The model predicted mortality with an area under the curve of 0.82 (95% CI 0.77-0.87, P < 0.001). Internal cross validation resulted in 73.3 ± 7.2% accuracy. CONCLUSION This study shows marked differences in composition of the HDL proteome between HF survivors and deaths. The strongest differences were seen in proteins reflecting crosslinking of actin filaments and alveolar capillary membrane function, posing potential pathophysiological mechanisms underlying the association between HDL and clinical outcome in HF.
Collapse
Affiliation(s)
- Johanna Elisabeth Emmens
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Donald J L Jones
- Department of Cancer Studies, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| | - Thong H Cao
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK.,Department of General Internal Medicine, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Daniel C S Chan
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Paulene A Quinn
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stefan D Anker
- Division of Cardiology and Metabolism - Heart Failure, Cachexia and Sarcopenia, Department of Cardiology (CVK); and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) Berlin, Charité Universitätsmedizin Berlin, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG), Göttingen, Germany
| | - John G Cleland
- National Heart and Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| | - Kenneth Dickstein
- University of Bergen, Bergen, Norway.,Stavanger University Hospital, Stavanger, Norway
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Heart Failure Unit, Department of Cardiology, Athens University Hospital Attikon, Athens, Greece
| | - Hans L Hillege
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chim C Lang
- School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Piotr Ponikowski
- Department of Heart Diseases, Wroclaw Medical University, and Cardiology Department, Military Hospital, Wroclaw, Poland
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Faiz Zannad
- Inserm CIC 1433, Université de Lorrain, CHU de Nancy, Nancy, France
| | - Aeilko H Zwinderman
- Department of Epidemiology, Biostatistics and Bioinformatics, Academic Medical Centre, Amsterdam, The Netherlands
| | - Marco Metra
- Institute of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Leong L Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
8
|
Störmann P, Lustenberger T, Relja B, Marzi I, Wutzler S. Role of biomarkers in acute traumatic lung injury. Injury 2017; 48:2400-2406. [PMID: 28888717 DOI: 10.1016/j.injury.2017.08.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/18/2017] [Accepted: 08/20/2017] [Indexed: 02/02/2023]
Abstract
In severely injured patients severe thoracic trauma is common and can significantly influence the outcome of these critically ill patients by increased rates of mainly pulmonary complications. Furthermore, patients who sustained thoracic trauma are at increased risk for Acute Lung Injury (ALI) or Adult Respiratory Distress Syndrome (ARDS). Therapeutic options are limited, basically consisting of prophylactic antibiotic therapy and changing patient's positions. It is known, that ALI and ARDS differ clinically and pathobiologically from ALI/ARDS caused by other reasons, but the exact pathology remains elusive. Due to that no reliable predictive or surveillance biomarkers could be established for clinical diagnosis and identification of patients at high risk for acute traumatic lung injury. Nevertheless, there are plenty of promising markers that need to be further elucidated in larger case numbers and multicenter studies. This article sums up the recent status of those promising clinical biomarkers.
Collapse
Affiliation(s)
- Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery Hospital of the Johann Wolfgang Goethe - University Frankfurt am Main, Germany.
| | - Thomas Lustenberger
- Department of Trauma, Hand and Reconstructive Surgery Hospital of the Johann Wolfgang Goethe - University Frankfurt am Main, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery Hospital of the Johann Wolfgang Goethe - University Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery Hospital of the Johann Wolfgang Goethe - University Frankfurt am Main, Germany
| | - Sebastian Wutzler
- Department of Trauma, Hand and Reconstructive Surgery Hospital of the Johann Wolfgang Goethe - University Frankfurt am Main, Germany
| |
Collapse
|
9
|
Banfi C, Agostoni P. Surfactant protein B: From biochemistry to its potential role as diagnostic and prognostic marker in heart failure. Int J Cardiol 2016; 221:456-62. [PMID: 27414721 DOI: 10.1016/j.ijcard.2016.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/29/2016] [Accepted: 07/02/2016] [Indexed: 01/21/2023]
Abstract
Growing interest raised on circulating biomarkers of structural alveolar-capillary unit damage and very recent data support surfactant protein type B (SP-B) as the most promising candidate in this setting. With respect to other proteins proposed as possible markers of lung damage, SP-B has some unique qualities: it is critical for the assembly of pulmonary surfactant, making its lack incompatible with life; it has no other known site of synthesis except alveolar epithelial cells different from other surfactant proteins; and, it undergoes a proteolytic processing in a pulmonary-cell-specific manner. In the recent years circulating SP-B isoforms, mature or immature, have been demonstrated to be detectable in the circulation depending on the magnitude of the damage of alveolar capillary membrane. In the present review, we summarize the recent knowledge on SP-B regulation, function and we discuss its potential role as reliable biological marker of alveolar capillary membrane (dys)function in the context of heart failure.
Collapse
Affiliation(s)
- Cristina Banfi
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138 Milano, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Via Parea 4, 20138 Milano, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy.
| |
Collapse
|
10
|
Blondonnet R, Constantin JM, Sapin V, Jabaudon M. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome. DISEASE MARKERS 2016; 2016:3501373. [PMID: 26980924 PMCID: PMC4766331 DOI: 10.1155/2016/3501373] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/10/2016] [Indexed: 01/10/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is an acute-onset hypoxic condition with radiographic bilateral lung infiltration. It is characterized by an acute exudative phase combining diffuse alveolar damage and lung edema followed by a later fibroproliferative phase. Despite an improved understanding of ARDS pathobiology, our ability to predict the development of ARDS and risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the highest risk of developing ARDS, assess response to therapy, predict outcome, and optimize enrollment in clinical trials. After a short description of ARDS pathobiology, here, we review the scientific evidence that supports the value of various ARDS biomarkers with regard to their major biological roles in ARDS-associated lung injury and/or repair. Ongoing research aims at identifying and characterizing novel biomarkers, in order to highlight relevant mechanistic explorations of lung injury and repair, and to ultimately develop innovative therapeutic approaches for ARDS patients. This review will focus on the pathophysiologic, diagnostic, and therapeutic implications of biomarkers in ARDS and on their utility to ultimately improve patient care.
Collapse
Affiliation(s)
- Raiko Blondonnet
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| | - Jean-Michel Constantin
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| | - Vincent Sapin
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
- Department of Medical Biochemistry and Molecular Biology, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
| | - Matthieu Jabaudon
- CHU Clermont-Ferrand, Intensive Care Unit, Department of Perioperative Medicine, Estaing University Hospital, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 7281, R2D2, 63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Nieman GF, Gatto LA, Habashi NM. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. J Appl Physiol (1985) 2015; 119:1245-61. [PMID: 26472873 DOI: 10.1152/japplphysiol.00659.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023] Open
Abstract
The earliest description of what is now known as the acute respiratory distress syndrome (ARDS) was a highly lethal double pneumonia. Ashbaugh and colleagues (Ashbaugh DG, Bigelow DB, Petty TL, Levine BE Lancet 2: 319-323, 1967) correctly identified the disease as ARDS in 1967. Their initial study showing the positive effect of mechanical ventilation with positive end-expiratory pressure (PEEP) on ARDS mortality was dampened when it was discovered that improperly used mechanical ventilation can cause a secondary ventilator-induced lung injury (VILI), thereby greatly exacerbating ARDS mortality. This Synthesis Report will review the pathophysiology of ARDS and VILI from a mechanical stress-strain perspective. Although inflammation is also an important component of VILI pathology, it is secondary to the mechanical damage caused by excessive strain. The mechanical breath will be deconstructed to show that multiple parameters that comprise the breath-airway pressure, flows, volumes, and the duration during which they are applied to each breath-are critical to lung injury and protection. Specifically, the mechanisms by which a properly set mechanical breath can reduce the development of excessive fluid flux and pulmonary edema, which are a hallmark of ARDS pathology, are reviewed. Using our knowledge of how multiple parameters in the mechanical breath affect lung physiology, the optimal combination of pressures, volumes, flows, and durations that should offer maximum lung protection are postulated.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, Upstate Medical University, Syracuse, New York;
| | - Louis A Gatto
- Biological Sciences Department, State University of New York, Cortland, New York; and
| | - Nader M Habashi
- R Adams Cowley Shock/Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
12
|
Erranz MB, Wilhelm BJ, Riquelme VR, Cruces RP. [Genetic predisposition and Pediatric Acute Respiratory Distress Syndrome: New tools for genetic study]. REVISTA CHILENA DE PEDIATRIA 2015; 86:73-79. [PMID: 26235685 DOI: 10.1016/j.rchipe.2015.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is the most severe form of respiratory failure. Theoretically, any acute lung condition can lead to ARDS, but only a small percentage of individuals actually develop the disease. On this basis, genetic factors have been implicated in the risk of developing ARDS. Based on the pathophysiology of this disease, many candidate genes have been evaluated as potential modifiers in patient, as well as in animal models, of ARDS. Recent experimental data and clinical studies suggest that variations of genes involved in key processes of tissue, cellular and molecular lung damage may influence susceptibility and prognosis of ARDS. However, the pathogenesis of pediatric ARDS is complex, and therefore, it can be expected that many genes might contribute. Genetic variations such as single nucleotide polymorphisms and copy-number variations are likely associated with susceptibility to ARDS in children with primary lung injury. Genome-wide association (GWA) studies can objectively examine these variations, and help identify important new genes and pathogenetic pathways for future analysis. This approach might also have diagnostic and therapeutic implications, such as predicting patient risk or developing a personalized therapeutic approach to this serious syndrome.
Collapse
Affiliation(s)
- M Benjamín Erranz
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - B Jan Wilhelm
- Departamento de Pediatría, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - V Raquel Riquelme
- Unidad de Paciente Crítico Pediátrica, Hospital El Carmen de Maipú, Santiago, Chile
| | - R Pablo Cruces
- Unidad de Paciente Crítico Pediátrica, Hospital El Carmen de Maipú, Santiago, Chile; Centro de Investigación de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
13
|
Leung JM, Mayo J, Tan W, Tammemagi CM, Liu G, Peacock S, Shepherd FA, Goffin J, Goss G, Nicholas G, Tremblay A, Johnston M, Martel S, Laberge F, Bhatia R, Roberts H, Burrowes P, Manos D, Stewart L, Seely JM, Gingras M, Pasian S, Tsao MS, Lam S, Sin DD. Plasma pro-surfactant protein B and lung function decline in smokers. Eur Respir J 2015; 45:1037-45. [PMID: 25614175 DOI: 10.1183/09031936.00184214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Plasma pro-surfactant protein B (pro-SFTPB) levels have recently been shown to predict the development of lung cancer in current and ex-smokers, but the ability of pro-SFTPB to predict measures of chronic obstructive pulmonary disease (COPD) severity is unknown. We evaluated the performance characteristics of pro-SFTPB as a biomarker of lung function decline in a population of current and ex-smokers. Plasma pro-SFTPB levels were measured in 2503 current and ex-smokers enrolled in the Pan-Canadian Early Detection of Lung Cancer Study. Linear regression was performed to determine the relationship of pro-SFTPB levels to changes in forced expiratory volume in 1 s (FEV1) over a 2-year period as well as to baseline FEV1 and the burden of emphysema observed in computed tomography (CT) scans. Plasma pro-SFTPB levels were inversely related to both FEV1 % predicted (p=0.024) and FEV1/forced vital capacity (FVC) (p<0.001), and were positively related to the burden of emphysema on CT scans (p<0.001). Higher plasma pro-SFTPB levels were also associated with a more rapid decline in FEV1 at 1 year (p=0.024) and over 2 years of follow-up (p=0.004). Higher plasma pro-SFTPB levels are associated with increased severity of airflow limitation and accelerated decline in lung function. Pro-SFTPB is a promising biomarker for COPD severity and progression.
Collapse
Affiliation(s)
- Janice M Leung
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - John Mayo
- Dept of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Wan Tan
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | - C Martin Tammemagi
- Dept of Community Health Sciences, Brock University, St Catharines, ON, Canada
| | - Geoffrey Liu
- University Health Network, Ontario Cancer Institute, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Stuart Peacock
- The Canadian Centre for Applied Research in Cancer Control, Vancouver, BC, Canada The British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Frances A Shepherd
- University Health Network, Ontario Cancer Institute, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - John Goffin
- The Juravinsky Cancer Centre, Hamilton, ON, Canada
| | | | | | - Alain Tremblay
- University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Michael Johnston
- Beatrice Hunter Cancer Research Institute and Dalhousie University, Halifax, NS, Canada
| | - Simon Martel
- Institut universitaire de cardiologie et de pneumologie de Québec and Laval University, Québec, QC, Canada
| | - Francis Laberge
- Institut universitaire de cardiologie et de pneumologie de Québec and Laval University, Québec, QC, Canada
| | | | - Heidi Roberts
- University Health Network, Ontario Cancer Institute, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Paul Burrowes
- University of Calgary, Foothills Medical Centre, Calgary, AB, Canada
| | - Daria Manos
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Lori Stewart
- Dept of Diagnostic Imaging, Henderson Hospital, Hamilton, ON, Canada
| | | | - Michel Gingras
- Institut universitaire de cardiologie et de pneumologie de Québec and Laval University, Québec, QC, Canada
| | - Sergio Pasian
- Institut universitaire de cardiologie et de pneumologie de Québec and Laval University, Québec, QC, Canada
| | - Ming-Sound Tsao
- University Health Network, Ontario Cancer Institute, and Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Stephen Lam
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada The British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Don D Sin
- Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW The article provides an overview of efforts to identify and validate biomarkers in acute respiratory distress syndrome (ARDS) and a discussion of the challenges confronting researchers in this area. RECENT FINDINGS Although various putative biomarkers have been investigated in ARDS, the data have been largely disappointing and the 'troponin' of ARDS remains elusive. Establishing a relationship between measurable biological processes and clinical outcomes is vital to advancing clinical trials in ARDS and expanding our arsenal of treatments for this complex syndrome. SUMMARY This article summarizes the current status of ARDS biomarker research and provides a framework for future investigation.
Collapse
|
15
|
Bhargava M, Becker TL, Viken KJ, Jagtap PD, Dey S, Steinbach MS, Wu B, Kumar V, Bitterman PB, Ingbar DH, Wendt CH. Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors. PLoS One 2014; 9:e109713. [PMID: 25290099 PMCID: PMC4188744 DOI: 10.1371/journal.pone.0109713] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 09/11/2014] [Indexed: 01/02/2023] Open
Abstract
Acute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF) proteome to identify proteins that differentiate survivors from non-survivors of ARDS. Patients were divided into early-phase (1 to 7 days) and late-phase (8 to 35 days) groups based on time after initiation of mechanical ventilation for ARDS (Day 1). Isobaric tags for absolute and relative quantitation (iTRAQ) with LC MS/MS was performed on pooled BALF enriched for medium and low abundance proteins from early-phase survivors (n = 7), early-phase non-survivors (n = 8), and late-phase survivors (n = 7). Of the 724 proteins identified at a global false discovery rate of 1%, quantitative information was available for 499. In early-phase ARDS, proteins more abundant in survivors mapped to ontologies indicating a coordinated compensatory response to injury and stress. These included coagulation and fibrinolysis; immune system activation; and cation and iron homeostasis. Proteins more abundant in early-phase non-survivors participate in carbohydrate catabolism and collagen synthesis, with no activation of compensatory responses. The compensatory immune activation and ion homeostatic response seen in early-phase survivors transitioned to cell migration and actin filament based processes in late-phase survivors, revealing dynamic changes in the BALF proteome as the lung heals. Early phase proteins differentiating survivors from non-survivors are candidate biomarkers for predicting survival in ARDS.
Collapse
Affiliation(s)
- Maneesh Bhargava
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Trisha L. Becker
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kevin J. Viken
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Pratik D. Jagtap
- Minnesota Supercomputer Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Sanjoy Dey
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael S. Steinbach
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Baolin Wu
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Vipin Kumar
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Peter B. Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David H. Ingbar
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Christine H. Wendt
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- Minneapolis VA Medical Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
16
|
IsiK O, Disli OM, Bas T, AydiN H, Koç M, Kutsal A. High postoperative serum levels of surfactant type B as novel prognostic markers for congenital heart surgery. Braz J Cardiovasc Surg 2014; 29:186-91. [PMID: 25140468 PMCID: PMC4389470 DOI: 10.5935/1678-9741.20140039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/28/2013] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Congenital heart diseases are observed in 5 to 8 of every 1000 live births. The presence of a valuable biomarker during the surgical periods may aid the clinician in a more accurate prognosis during treatment. METHODS For this reason, surfactant protein B plasma levels may help to evaluate patients with cardiac problems diminishing the alveolocapillary membrane stability. In this study, plasma levels of this biomarker were measured in the preoperative and postoperative periods. This study was conducted to detect the differences between pulmonary hypertensive and normotensive patients. The differences before and after cardiopulmonary bypass were examined. RESULTS The differences in cardiopulmonary bypass time, cross-clamp time , inotropic support dose, and duration of intensive care of patients with and without pulmonary hypertensive were found to be statistically significant (P<0.05). The results revealed that this pathophysiological state was related to other variables that were studied. We believe that the differences in preoperative and postoperative SPB levels could be attributed to alveolocapillary membrane damage and alveolar surfactant dysfunction. We found that this pathophysiological condition was significantly associated with postoperative parameters. CONCLUSION The findings of the current study showed that surfactant protein B was present in the blood of patients with a congenital heart disease during the preoperative period. Long by-pass times may exert damage to the alveolocapillary membrane in patients with pulmonary hypertension and preoperative heart failure, and it is recommended to keep the option of surfactant therapy in mind during the postoperative course at the intensive care unit before preparing the patients for extubation.
Collapse
Affiliation(s)
- Onur IsiK
- Dr. Sami Ulus Maternity and Children's Research and Education Hospital, Department of Cardiovascular Surgery, Ankara, Turkey, Ankara, Turkey
| | - Olcay Murat Disli
- Department of Cardiovascular Surgery, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Tolga Bas
- Department of Cardiovascular Surgery, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Hakan AydiN
- Dr. Sami Ulus Maternity and Children's Research and Education Hospital, Department of Cardiovascular Surgery, Ankara, Turkey, Ankara, Turkey
| | - Murat Koç
- Dr. Sami Ulus Maternity and Children's Research and Education Hospital, Department of Cardiovascular Surgery, Ankara, Turkey, Ankara, Turkey
| | - Ali Kutsal
- Dr. Sami Ulus Maternity and Children's Research and Education Hospital, Department of Cardiovascular Surgery, Ankara, Turkey, Ankara, Turkey
| |
Collapse
|
17
|
Walter JM, Wilson J, Ware LB. Biomarkers in acute respiratory distress syndrome: from pathobiology to improving patient care. Expert Rev Respir Med 2014; 8:573-86. [DOI: 10.1586/17476348.2014.924073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Ding YL, Zhang LJ, Wang X, Zhou QC, Li N, Wang CX, Zhang XQ. Fetal lung surfactant and development alterations in intrahepatic cholestasis of pregnancy. World J Obstet Gynecol 2014; 3:78-84. [DOI: 10.5317/wjog.v3.i2.78] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/07/2013] [Accepted: 01/14/2014] [Indexed: 02/05/2023] Open
Abstract
AIM: To investigate the association between total bile acid (TBA) level during intrahepatic cholestasis of pregnancy (ICP) and fetal lung surfactant alteration.
METHODS: We recruited 42 ICP and 32 normal pregnancy women in this study. The maternal blood, fetal blood and amniotic fluid TBA level were detected using a circulating enzymatic method. Umbilical blood pulmonary surfactant protein A (SP-A) was evaluated with enzyme-linked immunosorbent assay. High performance liquid chromatography was used for the determination of phosphatidyl choline (PC), phosphatidyl inositol (PI), lysolecithin (LPC) and sphingomyelin (SM). Amniotic fluid lamellar body was counted with a fully automatic blood cell counter. Fetal lung area and fetal body weight were calculated from data obtained with an iu22 color supersonic diagnostic set. Clinical information of a nonstress test, amniotic fluid properties and neonatal Apgar score, and birth weight were recorded for review.
RESULTS: The TBA level in maternal blood, fetal blood and amniotic fluid in the ICP group were significantly higher than that in the control group (maternal blood: 34.11 ± 6.75 mmol/L vs 4.55 ± 1.72 mmol/L, P < 0.05; fetal blood: 11.9 ± 2.23 mmol/L vs 3.52 ± 1.56 mmol/L, P < 0.05; amniotic fluid: 3.89 ± 1.99 mmol/L vs 1.43 ± 1.14 mmol/L, P < 0.05). Amniotic fluid PC and PI in the ICP group were significantly lower than that in the control group (PC: 65.71 ± 7.23 μg/mL vs 69.70 ± 6.68 μg/mL, P < 0.05; PI: 3.87 ± 0.65 μg/mL vs 4.28 ± 0.74 μg/mL, P < 0.05). PC/LPC ratio of the ICP group was lower than that of the control group (14.40 ± 3.14 vs 16.90 ± 2.52, P < 0.05). Amniotic LB in the ICP group was significantly lower than that of the control group ((74.13 ± 4.37) × 109/L vs (103.0 ± 26.82) × 109/L, P < 0.05). Fetal umbilical blood SP-A level in the ICP group was significantly higher than that of the control group (30.26 ± 7.01 ng/mL vs 22.63 ± 7.42 ng/mL, P < 0.05). Fetal lung area/body weight ratio of the ICP group was significantly lower than that of the control group (5.76 ± 0.63 cm2/kg vs 6.89 ± 0.48 cm2/kg, P < 0.05). In the ICP group, umbilical cord blood TBA concentration was positively correlated to the maternal blood TBA concentration (r = 0.746, P < 0.05) and umbilical blood SP-A (r = 0.422, P < 0.05), but it was negatively correlated to the amniotic fluid lamellar corpuscle (r = 0.810, P < 0.05) and fetal lung area/body weight ratio (r = 0.769, P < 0.05). Furthermore, umbilical blood TBA showed a negative correlation to PC, SM and PI (rpc = 0.536, rsm = 0.438, rpi = 0.387 respectively, P < 0.05). The neonatal asphyxia, neonatal respiratory distress syndrome, fetal distress and perinatal death rates in the ICP group are higher than that of the control group.
CONCLUSION: ICP has higher TBA in maternal and fetal blood and amniotic fluid. The high concentration of TBA may affect fetal pulmonary surfactant production and fetal lung maturation.
Collapse
|
19
|
Pathophysiology and biomarkers of acute respiratory distress syndrome. J Intensive Care 2014; 2:32. [PMID: 25520844 PMCID: PMC4267590 DOI: 10.1186/2052-0492-2-32] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/24/2014] [Indexed: 01/28/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is defined as an acute-onset, progressive, hypoxic condition with radiographic bilateral lung infiltration, which develops after several diseases or injuries, and is not derived from hydrostatic pulmonary edema. One specific pathological finding of ARDS is diffuse alveolar damage. In 2012, in an effort to increase diagnostic specificity, a revised definition of ARDS was published in JAMA. However, no new parameters or biomarkers were adopted by the revised definition. Discriminating between ARDS and other similar diseases is critically important; however, only a few biomarkers are currently available for diagnostic purposes. Furthermore, predicting the severity, response to therapy, or outcome of the illness is also important for developing treatment strategies for each patient. However, the PaO2/FIO2 ratio is currently the sole clinical parameter used for this purpose. In parallel with progress in understanding the pathophysiology of ARDS, various humoral factors induced by inflammation and molecules derived from activated cells or injured tissues have been shown as potential biomarkers that may be applied in clinical practice. In this review, the current understanding of the basic pathophysiology of ARDS and associated candidate biomarkers will be discussed.
Collapse
|
20
|
Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis*. Crit Care Med 2014; 42:691-700. [PMID: 24158164 DOI: 10.1097/01.ccm.0000435669.60811.24] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Numerous studies have focused on biomarkers for acute lung injury and acute respiratory distress syndrome. Although several biomarkers have been identified, their relative performance is unclear. We aim to provide a quantitative overview of plasma-derived biomarkers associated with acute respiratory distress syndrome diagnosis or mortality. DATA SOURCES MEDLINE (inception to January 2012) and personal databases. STUDY SELECTION English-language studies on plasma biomarkers associated with acute respiratory distress syndrome diagnosis or mortality. DATA EXTRACTION Demographic variables, plasma levels of biomarker, statistical data, acute respiratory distress syndrome occurrence, and mortality rates were retrieved. The methodological quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies score. Clinical outcomes included 1) diagnosis of acute respiratory distress syndrome in the at-risk population and 2) mortality in acute respiratory distress syndrome patients. For each biomarker, pooled odds ratios for clinical outcome were calculated by meta-analysis, and biomarkers were ranked according to pooled odds ratio. DATA SYNTHESIS Fifty-four studies appeared eligible for meta-analysis, together including 3,753 patients. We identified 20 biomarkers for diagnosis of acute respiratory distress syndrome in the at-risk population and 19 biomarkers for mortality of acute respiratory distress syndrome patients. The biomarkers most strongly associated with acute respiratory distress syndrome diagnosis in the at-risk population, when increased, were Krebs von den Lungen-6 (odds ratio [95% CI], 6.1 [3.0-12.1]), lactate dehydrogenase (5.7 [1.7-19.1]), soluble receptor for advanced glycation end products (3.5 [1.7-7.2]), and von Willebrand Factor (3.1 [2.0-5.2]). The biomarkers most strongly associated with acute respiratory distress syndrome mortality, when increased, were interleukin-4 (18.0 [6.0-54.2]), interleukin-2 (11.8 [4.3-32.2]), angiopoietin-2 (6.4 [1.3-30.4]), and Krebs von den Lungen-6 (5.1 [3.0-12.2]). Decreased levels of Protein C were associated with increased odds for acute respiratory distress syndrome diagnosis and mortality. CONCLUSIONS This meta-analysis provides a unique ranking of plasma biomarkers according to their strength of association with acute respiratory distress syndrome diagnosis or acute respiratory distress syndrome mortality. The relative performance of biomarkers among studies shown in this ranking may help to improve acute respiratory distress syndrome diagnosis and outcome prediction.
Collapse
|
21
|
Czernik C, Schmalisch G, Bührer C, Proquitté H. Fetal and neonatal samples of a precursor surfactant protein B inversely related to gestational age. BMC Pediatr 2013; 13:164. [PMID: 24112641 PMCID: PMC3852371 DOI: 10.1186/1471-2431-13-164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/08/2013] [Indexed: 11/12/2022] Open
Abstract
Background Alveolar–capillary membrane leaks can increase the amount of surfactant protein B (SP-B) in the bloodstream. The purpose of this study was to measure the concentration of C-proSP-B, a SP-B precursor that includes C-terminal domains, in various body fluids of newborn infants and determine its dependence on gestational age. Methods C-pro-SPB was measured in amniotic fluid and umbilical cord blood at birth, and in peripheral blood and urine on postnatal day 3 in 137 newborn infants with a median birth weight of 2015 g (range, 550–4475 g) and gestational age of 34 weeks (range, 23–42 weeks). Results C-proSP-B levels differed more than 100-fold among samples. The levels (median; interquartile range) were highest in peripheral blood (655.6 ng/mL; 419.0-1467.0 ng/mL) and lowest in urine (3.08 ng/mL; 2.96-3.35 ng/mL). C-proSP-B levels in amniotic fluid (314.9 ng/mL; 192.7–603.6 ng/mL) were approximately half of those in peripheral blood. In cord blood C-proSP-B was slightly lower (589.1 ng/mL; 181.2-1129.0 ng/mL) compared with peripheral blood. C-proSP-B levels significantly increased in all the fluids sampled except urine with decreasing gestational age (p < 0.001). Conclusions This novel assay allows for the quantitative measurement of C-proSP-B in blood and amniotic fluid. The dependence of C-proSP-B on gestational age may hamper its use for the detection of alveolar leaks in preterm newborns.
Collapse
Affiliation(s)
- Christoph Czernik
- Department of Neonatology, Charité University Medical Center, Berlin, Germany.
| | | | | | | |
Collapse
|
22
|
Opposite behavior of plasma levels surfactant protein type B and receptor for advanced glycation end products in pulmonary sarcoidosis. Respir Med 2013; 107:1617-24. [DOI: 10.1016/j.rmed.2013.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 05/13/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022]
|
23
|
Abstract
The role of biomarkers in the management of patients with acute heart failure (HF) has evolved rapidly in the past several years. Representing a major burden on health systems, acute HF has increased the need for earlier diagnosis, better risk stratification, and cost-effective treatment to reduce rates of hospitalization. Biomarker-guided diagnosis and treatment have become essential, especially in the acute setting to which the majority of the patients with acute HF initially present. Studies clearly demonstrate the complexity of these patients, who commonly have multiple comorbidities necessitating an integrative approach. Several groundbreaking studies conducted in the past decade have demonstrated how biomarkers, individually or in combination, can outperform conventional laboratory tests used in the emergency department as well as in hospitalized patients with acute HF. In this Review, we will provide an update on biomarkers considered state of the art in the diagnosis and management of patients with acute HF.
Collapse
Affiliation(s)
- Alan S Maisel
- Department of Medicine, Division of Cardiology, San Diego Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA 92161, USA.
| | | |
Collapse
|
24
|
Bhargava M, Wendt CH. Biomarkers in acute lung injury. Transl Res 2012; 159:205-17. [PMID: 22424425 PMCID: PMC4537856 DOI: 10.1016/j.trsl.2012.01.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 01/06/2012] [Accepted: 01/08/2012] [Indexed: 01/11/2023]
Abstract
Acute respiratory distress syndrome (ARDS) and acute lung injury (ALI) result in high permeability pulmonary edema causing hypoxic respiratory failure with high morbidity and mortality. As the population ages, the incidence of ALI is expected to rise. Over the last decade, several studies have identified biomarkers in plasma and bronchoalveolar lavage fluid providing important insights into the mechanisms involved in the pathophysiology of ALI. Several biomarkers have been validated in subjects from the large, multicenter ARDS clinical trials network. Despite these studies, no single or group of biomarkers has made it into routine clinical practice. New high throughput "omics" techniques promise improved understanding of the biologic processes in the pathogenesis in ALI and possibly new biomarkers that predict disease and outcomes. In this article, we review the current knowledge on biomarkers in ALI.
Collapse
Affiliation(s)
- Maneesh Bhargava
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN 55417, USA
| | | |
Collapse
|
25
|
Abstract
This article reviews the state of the art regarding biomarkers for prediction, diagnosis, and prognosis in acute lung injury. Biomarkers and the goals of biomarker research are defined. Progress along 4 general routes is examined. First, the results of wide-ranging existing protein biomarkers are reported. Second, newer biomarkers awaiting or with strong potential for validation are described. Third, progress in the fields of genomics and proteomics is reported. Finally, given the complexity and number of potential biomarkers, the results of combining clinical predictors with protein and other biomarkers to produce better prognostic and diagnostic indices are examined.
Collapse
Affiliation(s)
- Nicolas Barnett
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232-2650, USA
| | | |
Collapse
|
26
|
Zhou T, Garcia JG, Zhang W. Integrating microRNAs into a system biology approach to acute lung injury. Transl Res 2011; 157:180-90. [PMID: 21420028 PMCID: PMC3073780 DOI: 10.1016/j.trsl.2011.01.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/15/2011] [Accepted: 01/18/2011] [Indexed: 01/02/2023]
Abstract
Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease.
Collapse
Affiliation(s)
- Tong Zhou
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joe G.N. Garcia
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Personalized Respiratory Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wei Zhang
- Department of Pediatrics, University of Illinois at Chicago, Chicago, IL 60612, USA
- Institute for Human Genetics, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
27
|
Genetic Susceptibility in ALI/ARDS: What have we Learned? Intensive Care Med 2009. [DOI: 10.1007/978-0-387-77383-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Gong MN. Genetic epidemiology of acute respiratory distress syndrome: implications for future prevention and treatment. Clin Chest Med 2006; 27:705-24; abstract x. [PMID: 17085257 PMCID: PMC2703471 DOI: 10.1016/j.ccm.2006.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genetic susceptibility to the development of and variable outcomes in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) has become a topic of great interest in the pulmonary and critical care community. Published studies of variable genetic susceptibility to ALI/ARDS already have identified some important candidate genes and potential gene-environment interactions. This article reviews these recent studies, features of the current approach, and implications for future prevention and treatment in ALI. The challenges and potential contributions of genetic epidemiology to the future prevention and treatment in ALI are discussed.
Collapse
Affiliation(s)
- Michelle Ng Gong
- Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
29
|
Moss M. Searching for the Holy Grail of the acute respiratory distress syndrome. Intensive Care Med 2006; 32:1112-4. [PMID: 16794837 DOI: 10.1007/s00134-006-0236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
|
30
|
Lesur O, Langevin S, Berthiaume Y, Légaré M, Skrobik Y, Bellemare JF, Lévy B, Fortier Y, Lauzier F, Bravo G, Nickmilder M, Rousseau E, Bernard A. Outcome value of Clara cell protein in serum of patients with acute respiratory distress syndrome. Intensive Care Med 2006; 32:1167-74. [PMID: 16794838 DOI: 10.1007/s00134-006-0235-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Accepted: 05/11/2006] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Injury to the alveolocapillary barrier characterizes ALI/ARDS; therefore determining levels of lung epithelium-specific small proteins in serum may help predict clinical outcomes. We examined whether serum Clara cell protein (CC-16) concentration is correlated with the outcome, mechanical ventilation duration, and incidence of nonpulmonary organ failure. DESIGN Prospective multicenter observational study conducted by the Quebec Critical Care Network. MEASUREMENTS Seventy-eight adult ARDS patients requiring mechanical ventilation were enrolled and 28-day mortality was the primary outcome. Ventilatory parameters were computed and blood was sampled daily. Clinical information collected included cause of death, duration of mechanical ventilation, number of ventilator-free days, and organ failures. RESULTS Median serum levels of CC-16 were significantly higher in nonsurvivors than survivors on days 0-2 (19.93 microg/l, IQR 11.8-44.32, vs. 8.9, 5.66-26.38) and sustained up to day 14. CC-16 levels were correlated positively with the number of failing organs (rho 0.3623) and requirement for prolonged mechanical ventilation. Predictors of patient mortality included age, arterial carbon dioxide partial pressure, CC-16, and APACHE II score (odds ratios 1.35, 1.52, 1.37, 1.159, respectively). CONCLUSIONS Higher initial CC-16 serum level is associated with increased risk of death, fewer ventilator-free days, and increased frequency of nonpulmonary multiple organ failure. CC-16 is a valuable biomarker of ARDS that may help predict outcome among ARDS patients with high-risk mortality.
Collapse
Affiliation(s)
- Olivier Lesur
- Groupe de Recherche en Physiopathologie Respiratoire, Centre de Recherche Clinique, Centre Hospitalier Universitaire de Sherbrooke 3001, 12 Avenue Nord, Sherbrooke, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Tzouvelekis A, Pneumatikos I, Bouros D. Serum biomarkers in acute respiratory distress syndrome an ailing prognosticator. Respir Res 2005; 6:62. [PMID: 15972108 PMCID: PMC1168906 DOI: 10.1186/1465-9921-6-62] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 06/22/2005] [Indexed: 01/09/2023] Open
Abstract
The use of biomarkers in medicine lies in their ability to detect disease and support diagnostic and therapeutic decisions. New research and novel understanding of the molecular basis of the disease reveals an abundance of exciting new biomarkers who present a promise for use in the everyday clinical practice. The past fifteen years have seen the emergence of numerous clinical applications of several new molecules as biologic markers in the research field relevant to acute respiratory distress syndrome (translational research). The scope of this review is to summarize the current state of knowledge about serum biomarkers in acute lung injury and acute respiratory distress syndrome and their potential value as prognostic tools and present some of the future perspectives and challenges.
Collapse
Affiliation(s)
- Argyris Tzouvelekis
- Interstitial Lung Disease Unit, Royal Brompton Hospital, Imperial College, Faculty of Medicine London, UK
| | - Ioannis Pneumatikos
- Department of Pneumonology, Medical School, Democritus University of Thrace, Greece
| | - Demosthenes Bouros
- Department of Pneumonology, Medical School, Democritus University of Thrace, Greece
| |
Collapse
|
32
|
Kida H, Yoshida M, Hoshino S, Inoue K, Yano Y, Yanagita M, Kumagai T, Osaki T, Tachibana I, Saeki Y, Kawase I. Protective effect of IL-6 on alveolar epithelial cell death induced by hydrogen peroxide. Am J Physiol Lung Cell Mol Physiol 2005; 288:L342-9. [PMID: 15475383 DOI: 10.1152/ajplung.00016.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The goal of this study was to examine whether IL-6 could directly protect lung resident cells, especially alveolar epithelial cells, from reactive oxygen species (ROS)-induced cell death. ROS induced IL-6 gene expression in organotypic lung slices of wild-type (WT) mice. ROS also induced IL-6 gene expression in mouse primary lung fibroblasts, dose dependently. The organotypic lung slices of WT were more resistant to ROS-induced DNA fragmentation than those of IL-6-deficient (IL-6−/−) mice. WT resistance against ROS was abrogated by treatment with anti-IL-6 antibody. TdT-mediated dUTP nick end labeling stain and electron microscopy revealed that DNA fragmented cells in the IL-6−/− slice included alveolar epithelial cells and endothelial cells. In vitro studies demonstrated that IL-6 reduced ROS-induced A549 alveolar epithelial cell death. Together, these data suggest that IL-6 played an antioxidant role in the lung by protecting lung resident cells, especially alveolar epithelial cells, from ROS-induced cell death.
Collapse
Affiliation(s)
- Hiroshi Kida
- National Hospital Organization Japan, Osaka Minami Medical Center, Kawachinagano, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
De Pasquale CG, Arnolda LF, Doyle IR, Aylward PE, Chew DP, Bersten AD. Plasma surfactant protein-B: a novel biomarker in chronic heart failure. Circulation 2004; 110:1091-6. [PMID: 15302797 DOI: 10.1161/01.cir.0000140260.73611.fa] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND In chronic heart failure (CHF), elevated pulmonary microvascular pressure (P(mv)) results in pulmonary edema. Because elevated P(mv) may alter the integrity of the alveolocapillary barrier, allowing leakage of surfactant protein-B (SP-B) from the alveoli into the circulation, we aimed to determine plasma levels of SP-B in CHF and their relation to clinical status. METHODS AND RESULTS Fifty-three outpatients with CHF had plasma SP-B and N-terminal proBNP (NT-proBNP) assayed, in addition to a formalized clinical assessment at each clinic review over a period of 18 months. The control group comprised 19 normal volunteers. Plasma SP-B was elevated in CHF (P<0.001), and levels increased with New York Heart Association classification (P<0.001). SP-B correlated with objective clinical status parameters and NT-proBNP. During follow-up, major cardiovascular events occurred in patients with higher plasma SP-B (P<0.01) and NT-proBNP (P<0.05). Furthermore, on conditional logistic regression analysis, only SP-B was independently associated with CHF hospitalization (P=0.005). The 53 patients underwent a total of 210 outpatient visits. When the diuretic dosage was increased on clinical grounds, SP-B had increased 39% (P<0.001) and NT-proBNP had increased 32% (P<0.001). Conversely, at the next visit, SP-B fell 12% (P<0.001), whereas NT-proBNP fell 39% (P<0.001). CONCLUSIONS Plasma SP-B is increased in CHF, and levels are related to clinical severity. Furthermore, within individual patients, SP-B levels vary with dynamic clinical status and NT-proBNP levels. Because plasma SP-B is independently associated with CHF hospitalization, it may, by virtue of its differing release mechanism to NT-proBNP, be a clinically useful biomarker of the pulmonary consequences of raised P(mv).
Collapse
Affiliation(s)
- Carmine G De Pasquale
- Cardiac Services, Flinders Medical Centre, Flinders Drive, Bedford Park, 5042, Adelaide, South Australia, Australia.
| | | | | | | | | | | |
Collapse
|
34
|
Ishizaka A, Matsuda T, Albertine KH, Koh H, Tasaka S, Hasegawa N, Kohno N, Kotani T, Morisaki H, Takeda J, Nakamura M, Fang X, Martin TR, Matthay MA, Hashimoto S. Elevation of KL-6, a lung epithelial cell marker, in plasma and epithelial lining fluid in acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1088-94. [PMID: 12959931 DOI: 10.1152/ajplung.00420.2002] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
KL-6 is a pulmonary epithelial mucin more prominently expressed on the surface membrane of alveolar type II cells when these cells are proliferating, stimulated, and/or injured. We hypothesized that high levels of KL-6 in epithelial lining fluid and plasma would reflect the severity of lung injury in patients with acute lung injury (ALI). Epithelial lining fluid was obtained at onset (day 0) and day 1 of acute respiratory distress syndrome (ARDS)/ALI by bronchoscopic microsampling procedure in 35 patients. On day 0, KL-6 and albumin concentrations in epithelial lining fluid were significantly higher than in normal controls (P < 0.001), and the concentrations of KL-6 in epithelial lining fluid (P < 0.002) and in plasma (P < 0.0001) were higher in nonsurvivors than in survivors of ALI/ARDS. These observations were corroborated by the immunohistochemical localization of KL-6 protein expression in the lungs of nonsurvivors with ALI and KL-6 secretion from cultured human alveolar type II cells stimulated by proinflammatory cytokines. Because injury to distal lung epithelial cells, including alveolar type II cells, is important in the pathogenesis of ALI, the elevation of KL-6 concentrations in plasma and epithelial lining fluid could be valuable indicators for poor prognosis in clinical ALI.
Collapse
Affiliation(s)
- Akitoshi Ishizaka
- Department of Medicine, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Zagorski J, Debelak J, Gellar M, Watts JA, Kline JA. Chemokines Accumulate in the Lungs of Rats with Severe Pulmonary Embolism Induced by Polystyrene Microspheres. THE JOURNAL OF IMMUNOLOGY 2003; 171:5529-36. [PMID: 14607960 DOI: 10.4049/jimmunol.171.10.5529] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pulmonary thromboembolism (PEm) is a serious and life threatening disease and the most common cause of acute pulmonary vascular occlusion. Even following successful treatment of PEm, many patients experience long-term disability due to diminished heart and lung function. Considerable damage to the lungs presumably occurs due to reperfusion injury following anti-occlusive treatments for PEm and the resulting chronic inflammatory state in the lung vasculature. We have used a rat model of irreversible PEm to ask whether pulmonary vascular occlusion in the absence of reperfusion is itself sufficient to induce an inflammatory response in lungs. By adjusting the severity of the vascular occlusion, we were able to generate hypertensive and nonhypertensive PEm, and then examine lung tissue for expression of CXC and C-C chemokine genes and bronchoalveolar lavage (BAL) fluid for the presence of chemokine proteins. Hypertensive and nonhypertensive PEm resulted in increased expression of both CXC and C-C chemokines genes in lung tissues. Hypertensive PEm was also associated with a 50-100-fold increase in protein content in lung BAL fluid, which included the CXC chemokines cytokine-induced neutrophil chemoattractant and macrophage-inflammatory protein 2. The presence of chemokines in BALs was reflected by a potent neutrophil chemotactic activity in in vitro chemotaxis assays. Abs to cytokine-induced neutrophil chemoattractant blocked the in vitro neutrophil chemotactic activity of BAL by 44%. Our results indicate that the ischemia and hypertension associated with PEm are sufficient to induce expression of proinflammatory mediators such as chemokines, and establish a proinflammatory environment in the ischemic lung even before reperfusion.
Collapse
MESH Headings
- Animals
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/cytology
- Bronchoalveolar Lavage Fluid/immunology
- Cell Line
- Chemokine CXCL2
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Chemokines, CXC/metabolism
- Chemokines, CXC/physiology
- Chemotaxis, Leukocyte
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Eosinophils/pathology
- Infusions, Intravenous
- Intercellular Signaling Peptides and Proteins/biosynthesis
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/physiology
- Leukocyte Count
- Lung/drug effects
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Male
- Microspheres
- Monokines/biosynthesis
- Monokines/genetics
- Monokines/physiology
- Neutrophils/immunology
- Neutrophils/pathology
- Pilot Projects
- Pleural Effusion/immunology
- Pleural Effusion/metabolism
- Pleural Effusion/pathology
- Polystyrenes
- Proteins/analysis
- Pulmonary Embolism/chemically induced
- Pulmonary Embolism/immunology
- Pulmonary Embolism/metabolism
- Pulmonary Embolism/pathology
- Rats
- Rats, Sprague-Dawley
- Severity of Illness Index
Collapse
Affiliation(s)
- John Zagorski
- Department of Emergency Medicine, James G. Cannon Research Center, Carolinas Medical Center, Charlotte, NC 28203, USA.
| | | | | | | | | |
Collapse
|
36
|
Melton KR, Nesslein LL, Ikegami M, Tichelaar JW, Clark JC, Whitsett JA, Weaver TE. SP-B deficiency causes respiratory failure in adult mice. Am J Physiol Lung Cell Mol Physiol 2003; 285:L543-9. [PMID: 12639841 DOI: 10.1152/ajplung.00011.2003] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Targeted deletion of the surfactant protein (SP)-B locus in mice causes lethal neonatal respiratory distress. To assess the importance of SP-B for postnatal lung function, compound transgenic mice were generated in which the mouse SP-B cDNA was conditionally expressed under control of exogenous doxycycline in SP-B-/- mice. Doxycycline-regulated expression of SP-B fully corrected lung function in compound SP-B-/- mice and protected mice from respiratory failure at birth. Withdrawal of doxycycline from adult compound SP-B-/- mice resulted in decreased alveolar content of SP-B, causing respiratory failure when SP-B concentration was reduced to <25% of normal levels. Decreased SP-B was associated with low alveolar content of phosphatidylglycerol, accumulation of misprocessed SP-C proprotein in the air spaces, increased protein content in bronchoalveolar lavage fluid, and altered surfactant activity in vitro. Consistent with surfactant dysfunction, hysteresis, maximal tidal volumes, and end expiratory volumes were decreased. Reduction of alveolar SP-B content causes surfactant dysfunction and respiratory failure, indicating that SP-B is required for postnatal lung function.
Collapse
Affiliation(s)
- Kristin R Melton
- Cincinnati Children's Hospital Medical Center, Division of Pulmonary Biology, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
A number of conditions, such as pneumonia, trauma, or systemic sepsis arising from the gut, may result in the acute respiratory distress syndrome (ARDS). Because of its significant morbidity and mortality, ARDS has been the focus of extensive research. One specific area of interest has been the investigation of the role of the surfactant system in the pathophysiology of this disease. Several studies have demonstrated that alterations of surfactant contribute to the lung dysfunction associated with ARDS, which has led to investigations into the use of exogenous surfactant as a therapy for this syndrome. Clinical experience with surfactant therapy has been variable owing to a number of factors including the nature of the injury at the time of treatment, the specific surfactant preparation utilized, the dose and delivery method chosen, the timing of surfactant administration over the course of the disease, and the mode of ventilation used during and after surfactant administration.
Collapse
Affiliation(s)
- James F Lewis
- Department of Medicine, Lawson Health Research Institute, University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
38
|
De Pasquale CG, Bersten AD, Doyle IR, Aylward PE, Arnolda LF. Infarct-induced chronic heart failure increases bidirectional protein movement across the alveolocapillary barrier. Am J Physiol Heart Circ Physiol 2003; 284:H2136-45. [PMID: 12573996 DOI: 10.1152/ajpheart.00875.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic heart failure (CHF) is associated with adaptive structural changes at the alveolocapillary barrier that may be associated with altered protein permeability. Bidirectional protein movement across the barrier was studied in anesthetized rats with infarct-induced CHF by following (125)I-labeled albumin ((125)I-albumin) flux into the alveoli and the leakage of surfactant protein (SP)-B from the alveoli into the circulation. Three groups were studied: controls [0% left ventricular (LV) infarction], moderate infarct (25-45% LV infarction), and large infarct (>46% LV infarction). Wet and dry lung weights increased in the large infarct group (both P < 0.001), consistent with increased lung water and solid lung tissue. (125)I-albumin flux increased across the endothelial (P < 0.001) and epithelial (P < 0.01) components of the alveolocapillary barrier in the large infarct group. Plasma SP-B increased 23% with moderate infarcts (P < 0.05) and 97% with large infarcts (P < 0.001), independent of alveolar levels. Lavage fluid immune cells (P < 0.01) and myeloperoxidase activity (P < 0.05) increased in the large infarct group, consistent with inflammation. Bidirectional protein movement across the alveolocapillary barrier is increased in CHF, and alveolar inflammation may contribute to this pathophysiological defect.
Collapse
Affiliation(s)
- Carmine G De Pasquale
- Cardiac Services, Department of Critical Care Medicine, Flinders Medical Centre, 5042 Adelaide, South Australia.
| | | | | | | | | |
Collapse
|
39
|
De Pasquale CG, Arnolda LF, Doyle IR, Grant RL, Aylward PE, Bersten AD. Prolonged alveolocapillary barrier damage after acute cardiogenic pulmonary edema. Crit Care Med 2003; 31:1060-7. [PMID: 12682473 DOI: 10.1097/01.ccm.0000059649.31659.22] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To determine whether acute cardiogenic pulmonary edema is associated with damage to the alveolocapillary barrier, as evidenced by increased leakage of surfactant specific proteins into the circulation, to document the duration of alveolocapillary barrier damage in this setting, and to explore the role of pulmonary parenchymal inflammation by determining if circulating tumor necrosis factor-alpha is increased after acute cardiogenic pulmonary edema. DESIGN Prospective, observational study. SETTING Critical care, cardiac intensive care, and cardiology wards of a tertiary-care university teaching hospital. PATIENTS A total of 28 patients presenting with acute cardiogenic pulmonary edema and 13 age-matched normal volunteers. INTERVENTIONS Circulating surfactant protein-A and -B and tumor necrosis factor-alpha were measured on days 0 (presentation), 1, 3, 7, and 14. Clinical markers of pulmonary edema were documented at the same times. MEASUREMENTS AND MAIN RESULTS Surfactant protein-A and -B were elevated on day 0 compared with controls (367 +/- 17 ng/mL vs. 303 +/- 17 and 3821 +/- 266 ng/mL vs. 2747 +/- 157 [mean +/- sem], p <.05), and although clinical, hemodynamic and radiographic variables improved rapidly (p <.001), surfactant protein-A and -B rose further until day 3 (437 +/- 22, p <.001, 4642 +/- 353, p <.01). Tumor necrosis factor-alpha was elevated at presentation (p <.05), doubled by day 1 (6.98 +/- 1.36 pg/mL, p <.05), remained elevated on day 3 (5.72 +/- 0.96 pg/mL, p <.05), and peak levels were related to chest radiograph extravascular lung water score (r(p) = 0.64, p =.003). CONCLUSIONS Although the initial increase in plasma surfactant protein-A and -B may represent hydrostatic stress failure of the alveolocapillary barrier, the prolonged elevation, when hemodynamic abnormalities have resolved, and the delayed elevation of tumor necrosis factor-alpha are consistent with pulmonary parenchymal inflammation, which may further damage the alveolocapillary barrier. This prolonged physiologic defect at the alveolocapillary barrier after acute cardiogenic pulmonary edema may partly account for the vulnerability of these patients to recurrent pulmonary fluid accumulation.
Collapse
|
40
|
|
41
|
Cheng IW, Ware LB, Greene KE, Nuckton TJ, Eisner MD, Matthay MA. Prognostic value of surfactant proteins A and D in patients with acute lung injury. Crit Care Med 2003; 31:20-7. [PMID: 12544988 DOI: 10.1097/00003246-200301000-00003] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The primary objective of this study was to test the hypothesis that in patients intubated for acute lung injury, lower concentrations of surfactant proteins A and D in the pulmonary edema fluid and higher concentrations in the plasma are associated with more severe lung injury and worse clinical outcomes. DESIGN Observational study. SETTING Intensive care unit patients in a tertiary university hospital and a university-affiliated city hospital. PATIENTS Thirty-eight intubated, mechanically ventilated intensive care unit patients with acute lung injury or acute respiratory distress syndrome as defined by the North American European Consensus Conference. INTERVENTIONS Undiluted pulmonary edema fluid and plasma samples were collected within 24 hrs of endotracheal intubation in all patients. MEASUREMENTS AND MAIN RESULTS The concentrations of surfactant proteins A and D were measured in pulmonary edema fluid and in plasma. Plasma surfactant protein A, but not surfactant protein D, was higher in patients with fewer days of unassisted ventilation (p = .03) and in patients with an absence of intact alveolar fluid clearance (p =.03). In contrast, pulmonary edema fluid surfactant protein D, but not surfactant protein A, was lower in patients with worse oxygenation, as measured by the alveolar-arterial oxygen difference (p = .01) and was lower in the patients who died (2646 ng/mL) compared with those who survived (5503 ng/mL; p = .02). CONCLUSIONS These results demonstrate that reduced pulmonary edema fluid surfactant protein D and elevated plasma surfactant protein A concentrations at the onset of acute lung injury may be associated with more severe disease and worse clinical outcome and may serve as valuable biochemical markers of prognosis.
Collapse
Affiliation(s)
- Ivan W Cheng
- Cardiovascular Research Institute and Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, USA
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Martin J Tobin
- Division of Pulmonary and Critical Care Medicine, Hines Veterans Affairs Hospital, Route 11N, Hines, Illinois 60141, USA.
| |
Collapse
|
43
|
Abstract
Surfactant proteins, SP-A, SP-B, SP-C and SP-D, play important roles in pulmonary surfactant function and metabolism. SP-A and SP-D, being members of the collectin family of proteins, also interact with pathogens and are involved in pulmonary host defense. Respiratory diseases are among the most common causes of death worldwide. Several life-threatening lung diseases, such as neonatal respiratory distress syndrome (RDS) and acute ROS (ARDS), are associated with impaired surfactant function. Allelic variations of the SP-A and SP-B genes have been shown to be important genetic determinants in individual susceptibility to RDS, which is a good general model for a multifactorial pulmonary disease resulting from complex interactions between several environmental and genetic factors. Because SP-A and SP-D act directly in the clearance of common lung pathogens, the genes encoding these proteins have been implicated as candidates in a few infectious diseases, including respiratory syncytial virus (RSV) infections and tuberculosis.
Collapse
Affiliation(s)
- Ritva Haataja
- Department of Paediatrics and Biocenter Oulu, University of Oulu, Finland.
| | | |
Collapse
|