1
|
Li Y, Yin H, Yuan H, Wang E, Wang C, Li H, Geng X, Zhang Y, Bai J. IL-10 deficiency aggravates cell senescence and accelerates BLM-induced pulmonary fibrosis in aged mice via PTEN/AKT/ERK pathway. BMC Pulm Med 2024; 24:443. [PMID: 39261827 PMCID: PMC11389321 DOI: 10.1186/s12890-024-03260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an aging-related progressive lung disorder. The aged lung undergoes functional and structural changes termed immunosenescence and inflammaging, which facilitate the occurrence of fibrosis. Interleukin-10 (IL-10) is a potent anti-inflammatory and immunoregulatory cytokine, yet it remains unclear how IL-10 deficiency-induced immunosenescence participates in the development of PF. METHODS Firstly we evaluated the susceptibility to fibrosis and IL-10 expression in aged mice. Then 13-month-old wild-type (WT) and IL-10 knockout (KO) mice were subjected to bleomycin(BLM) and analyzed senescence-related markers by PCR, western blot and immunohistochemistry staining of p16, p21, p53, as well as DHE and SA-β-gal staining. We further compared 18-month-old WT mice with 13-month-old IL-10KO mice to assess aging-associated cell senescence and inflamation infiltration in both lung and BALF. Moreover, proliferation and apoptosis of alveolar type 2 cells(AT2) were evaluated by FCM, immunofluorescence, TUNEL staining, and TEM analysis. Recombinant IL-10 (rIL-10) was also administered intratracheally to evaluate its therapeutic potential and related mechanism. For the in vitro experiments, 10-week-old naïve pramily lung fibroblasts(PLFs) were treated with the culture medium of 13-month PLFs derived from WT, IL-10KO, or IL-10KO + rIL-10 respectively, and examined the secretion of senescence-associated secretory phenotype (SASP) factors and related pathways. RESULTS The aged mice displayed increased susceptibility to fibrosis and decreased IL-10 expression. The 13-month-old IL-10KO mice exhibited significant exacerbation of cell senescence compared to their contemporary WT mice, and even more severe epithelial-mesenchymal transition (EMT) than that of 18 month WT mice. These IL-10 deficient mice showed heightened inflammatory responses and accelerated PF progression. Intratracheal administration of rIL-10 reduced lung CD45 + cell infiltration by 15%, including a 6% reduction in granulocytes and a 10% reduction in macrophages, and increased the proportion of AT2 cells by approximately 8%. Additionally, rIL-10 significantly decreased α-SMA and collagen deposition, and reduced the expression of senescence proteins p16 and p21 by 50% in these mice. In vitro analysis revealed that conditioned media from IL-10 deficient mice promoted SASP secretion and upregulated senescence genes in naïve lung fibroblasts, which was mitigated by rIL-10 treatment. Mechanistically, rIL-10 inhibited TGF-β-Smad2/3 and PTEN/PI3K/AKT/ERK pathways, thereby suppressing senescence and fibrosis-related proteins. CONCLUSIONS IL-10 deficiency in aged mice leads to accelerated cell senescence and exacerbated fibrosis, with IL-10KO-PLFs displaying increased SASP secretion. Recombinant IL-10 treatment effectively mitigates these effects, suggesting its potential as a therapeutic target for PF.
Collapse
Affiliation(s)
- Yinzhen Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Yin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, China
| | - Huixiao Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Ying Zhang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
2
|
Li J, Zhang G, Zhi F, Zhai Y, Zhou D, Chen H, Lin P, Tang K, Liu W, Jin Y, Wang A. BtpB inhibits innate inflammatory responses in goat alveolar macrophages through the TLR/NF-κB pathway and NLRP3 inflammasome during Brucella infection. Microb Pathog 2022; 166:105536. [DOI: 10.1016/j.micpath.2022.105536] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/15/2022] [Accepted: 04/10/2022] [Indexed: 01/19/2023]
|
3
|
Wang J, Chen Z, Li M, Song Y, Xu W, Wang L, Chen S. Genome-wide identification, immune response profile and functional characterization of IL-10 from spotted knifejaw (Oplegnathus punctatus) during host defense against bacterial and viral infection. FISH & SHELLFISH IMMUNOLOGY 2022; 124:513-524. [PMID: 35472402 DOI: 10.1016/j.fsi.2022.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Interleukin 10 (IL-10), a pleiotropic cytokine, plays an essential role in multiple immunity responses. In the current study, the sequences of IL-10 family were identified from spotted knifejaw (Oplegnathus punctatus) whole genome, and O. punctatus IL-10 (OpIL-10) was cloned and characterized. OpIL-10 encodes 187 amino acids with a typical IL-10 family signature motif and predicted α-helices. It shared high identities with Notolabrus celidotus IL-10 and Epinephelus Lanceolatus IL-10. OpIL-10 was widely detected in healthy tissues, with the abundant expression in liver and skin. It was significantly up-regulated in the six immune-related tissues (liver, spleen, kidney, intestine, gill and skin) after infection against Vibrio harveyi and spotted knifejaw iridovirus (SKIV). Dual-luciferase analysis showed that OpIL-10 overexpression could suppress the activity of NF-κB. Meanwhile, OpIL-10 knockdown caused the down-regulation of five immune-related genes in JAK2/STAT3 signaling pathway and NF-κB signaling pathway, including IL-10R2, TYK2, STAT3, NOD2, and IκB. In addition, LPS and poly I:C stimulated expression of pro-inflammatory cytokines, including IL-6, IL-1β, IL-8, and IL-12, were lower with recombinant OpIL-10 (rOp IL-10) than the control group, indicating the anti-inflammatory roles of rOpIL-10. Taken together, these results indicated OpIL-10 as a negative regulator in the inflammatory responses of spotted knifejaw against bacterial and viral infection, which would help us better understand the role of IL-10 in teleost immunity.
Collapse
Affiliation(s)
- Jie Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| | - Ming Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Yu Song
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenteng Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao, 266071, China.
| |
Collapse
|
4
|
Ladaycia A, Loretz B, Passirani C, Lehr CM, Lepeltier E. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Adv Drug Deliv Rev 2021; 170:44-70. [PMID: 33388279 DOI: 10.1016/j.addr.2020.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 02/08/2023]
Abstract
Nanomedicine implication in cancer treatment and diagnosis studies witness huge attention, especially with the promising results obtained in preclinical studies. Despite this, only few nanomedicines succeeded to pass clinical phase. The human microbiota plays obvious roles in cancer development. Nanoparticles have been successfully used to modulate human microbiota and notably tumor associated microbiota. Taking the microbiota involvement under consideration when testing nanomedicines for cancer treatment might be a way to improve the poor translation from preclinical to clinical trials. Co-culture models of bacteria and cancer cells, as well as animal cancer-microbiota models offer a better representation for the tumor microenvironment and so potentially better platforms to test nanomedicine efficacy in cancer treatment. These models would allow closer representation of human cancer and might smoothen the passage from preclinical to clinical cancer studies for nanomedicine efficacy.
Collapse
|
5
|
Belo VA, Pereira JA, Souza SFD, Tana FDL, Pereira BP, Lopes DDO, Ceron CS, Novaes RD, Corsetti PP, de Almeida LA. The role of IL-10 in immune responses against Pseudomonas aeruginosa during acute lung infection. Cell Tissue Res 2020; 383:1123-1133. [PMID: 33165659 DOI: 10.1007/s00441-020-03308-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa is considered an opportunistic pathogen of great clinical importance. The clearance of this bacterium occurs through recognition of the pathogen by innate immune system receptors, leading to a lung inflammatory response. However, this response must be controlled via immunoregulatory pathways. In this study, we evaluate the role of endogenous murine IL-10 after acute infection with the virulent strain P. aeruginosa PA14. To assess the role of IL-10, intratracheal infection with the PA14 strain was performed in C57BL/6 or IL-10 KO mice. The PA14 strain was recovered in both types of animals, although IL-10 KO mice presented a higher number of viable bacteria in the lung when compared to the C57BL/6 group. Histopathological and stereological analyses showed that IL-10 KO mice had higher tissue damage and inflammatory infiltrate when compared to control animals. The activity of MMP-9 but not MMP-2, as well as IL-6 and TNF-α expression, were augmented in the lungs of infected animals and was much more evident in IL-10 KO animals when compared to the other analyzed groups. This work indicates that endogenous IL-10 control P. aeruginosa infection, the expression of pro-inflammatory genes, MMP-9 activity and histopathological processes of the infectious process in question.
Collapse
Affiliation(s)
- Valéria Aparecida Belo
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Jéssica Assis Pereira
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Sara Franchin D Souza
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Fernanda de Lima Tana
- Departmento de Microbiologia E Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Bruna P Pereira
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Débora de Oliveira Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João Del-Rei (CCO), Divinópolis, Brazil
| | - Carla S Ceron
- Faculdade de Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Rômulo D Novaes
- Departamento de Biologia Estrutural, Universidade Federal de Alfenas, Alfenas, Brazil
| | - Patrícia Paiva Corsetti
- Laboratório de Imunologia das Doenças Infecciosas E Crônicas, Universidade José Do Rosário Vellano, Alfenas, Minas Gerais, Brazil
| | | |
Collapse
|
6
|
Yi J, Chen Z, Xu F, Wang Z, Zhang A, Liu T, Zhao N, Xiong Y, Jiang G, Ma J, Luan X. IL-27 Promotes Human Placenta-Derived Mesenchymal Stromal Cell Ability To Induce the Generation of CD4 +IL-10 +IFN-γ + T Cells via the JAK/STAT Pathway in the Treatment of Experimental Graft-versus-Host Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:1124-1136. [PMID: 30651340 DOI: 10.4049/jimmunol.1800963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
Abstract
Human mesenchymal stromal cells (MSCs) harbor immunomodulatory properties to induce the generation of suppressive T cells. MSCs have been successfully used in treating graft-versus-host disease (GVHD) accompanied by abundant inflammatory cytokines such as IL-27. This study investigated the effects of IL-27 on the human placenta-derived MSCs (hPMSCs) to induce generation of CD4+IL-10+IFN-γ+ T cells in vitro and in the humanized xenogenic GVHD NOD/SCID model. The results showed that the percentages of CD4+IL-10+IFN-γ+ T cells were significantly increased in activated human PBMC from both healthy donors and GVHD patients with hPMSCs and in the liver and spleen of hPMSC-treated GVHD mice, and the level of CD4+IL-10+IFN-γ+ T cells in the liver was greater than that in the spleen in hPMSC-treated GVHD mice. The serum level of IL-27 decreased and the symptoms abated in hPMSC-treated GVHD. Further, in vitro results showed that IL-27 promoted the regulatory effects of hPMSCs by enhancing the generation of CD4+IL-10+IFN-γ+ T cells from activated PBMC. Activation occurred through increases in the expression of programmed death ligand 2 (PDL2) in hPMSCs via the JAK/STAT signaling pathway. These findings indicated that hPMSCs could alleviate GVHD mice symptoms by upregulating the production of CD4+IL-10+IFN-γ+ T cells in the spleen and liver and downregulating serum levels of IL-27. In turn, the ability of hPMSCs to induce the generation of CD4+IL-10+IFN-γ+ T cells could be promoted by IL-27 through increases in PDL2 expression in hPMSCs. The results of this study will be of benefit for the application of hPMSCs in clinical trials.
Collapse
Affiliation(s)
- Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Zhenghua Chen
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province 264100, China
| | - Fenghuang Xu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570102, China
| | - ZhuoYa Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Aiping Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Tongshen Liu
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Nannan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Yanlian Xiong
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, China; and
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, China; .,Taishan Scholar Immunology Program, Binzhou Medical University, Yantai, Shandong Province 264003, China
| |
Collapse
|
7
|
Peñaloza HF, Noguera LP, Riedel CA, Bueno SM. Expanding the Current Knowledge About the Role of Interleukin-10 to Major Concerning Bacteria. Front Microbiol 2018; 9:2047. [PMID: 30279680 PMCID: PMC6153308 DOI: 10.3389/fmicb.2018.02047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Interleukin-10 (IL-10) is one of the most important anti-inflammatory cytokine produced during bacterial infection. Two related phenomena explain the importance of IL-10 production in this context: first, the wide range of cells able to produce this cytokine and second, the wide effects that it causes on target cells. In a previous report we described opposing roles of IL-10 production during bacterial infection. Overall, during infections caused by intracellular bacteria or by pathogens that modulate the inflammatory response, IL-10 production facilitates bacterial persistence and dissemination within the host. Whereas during infections caused by extracellular or highly inflammatory bacteria, IL-10 production reduces host tissue damage and facilitates host survival. Given that these data were obtained using antibiotic susceptible bacteria, the potential application of these studies to multi-drug resistant (MDR) bacteria needs to be evaluated. MDR bacteria can become by 2050 a major death cause worldwide, not only for its ability to resist antimicrobial therapy but also because the virulence of these strains is different as compared to antibiotic susceptible strains. Therefore, it is important to understand the interaction of MDR-bacteria with the immune system during infection. This review discusses the current data about the role of IL-10 during infections caused by major circulating antibiotic resistant bacteria. We conclude that the production of IL-10 improves host survival during infections caused by extracellular or highly inflammatory bacteria, however, it is detrimental during infections caused by intracellular bacteria or bacterial pathogens that modulate the inflammatory response. Importantly, during MDR-bacterial infections a differential IL-10 production has been described, compared to non-MDR bacteria, which might be due to virulence factors specific of MDR bacteria that modulate production of IL-10. This knowledge is important for the development of new therapies against infections caused by these bacteria, where antibiotics effectiveness is dramatically decreasing.
Collapse
Affiliation(s)
- Hernán F. Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Loreani P. Noguera
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
8
|
Effect of synbiotic supplementation in children and adolescents with cystic fibrosis: a randomized controlled clinical trial. Eur J Clin Nutr 2017; 72:736-743. [PMID: 29277839 DOI: 10.1038/s41430-017-0043-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/02/2017] [Accepted: 10/17/2017] [Indexed: 01/18/2023]
Abstract
BACKGROUND/OBJECTIVES Cystic fibrosis (CF) is characterized by excessive activation of immune processes. The aim of this study was to evaluate the effect of synbiotic supplementation on the inflammatory response in children/adolescents with CF. SUBJECTS/METHODS A randomized, placebo-controlled, double-blind, clinical-trial was conducted with control group (CG, n = 17), placebo-CF-group (PCFG, n = 19), synbiotic CF-group (SCFG, n = 22), PCFG negative (n = 8) and positive (n = 11) bacteriology, and SCFG negative (n = 12) and positive (n = 10) bacteriology. Markers of lung function (FEV1), nutritional status [body mass index-for age (BMI/A), height-for-age (H/A), weight-for-age (W/A), upper-arm fat area (UFA), upper-arm muscle area (UMA), body fat (%BF)], and inflammation [interleukin (IL)-12, tumor necrosis factor-alpha (TNF-α), IL-10, IL-6, IL-1β, IL-8, myeloperoxidase (MPO), nitric oxide metabolites (NOx)] were evaluated before and after 90-day of supplementation with a synbiotic. RESULTS No significance difference was found between the baseline and end evaluations of FEV1 and nutricional status markers. A significant interaction (time vs. group) was found for IL-12 (p = 0.010) and myeloperoxidase (p = 0.036) between PCFG and SCFG, however, the difference was not maintained after assessing the groups individually. NOx diminished significantly after supplementation in the SCFG (p = 0.030). In the SCFG with positive bacteriology, reductions were found in IL-6 (p = 0.033) and IL-8 (p = 0.009) after supplementation. CONCLUSIONS Synbiotic supplementation shown promise at diminishing the pro-inflammatory markers IL-6, IL-8 in the SCFG with positive bacteriology and NOx in the SCFG in children/adolescents with CF.
Collapse
|
9
|
Peñaloza HF, Salazar-Echegarai FJ, Bueno SM. Interleukin 10 modulation of neutrophil subsets infiltrating lungs during Streptococcus pneumoniae infection. Biochem Biophys Rep 2017; 13:12-16. [PMID: 29226257 PMCID: PMC5714253 DOI: 10.1016/j.bbrep.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
Interleukin-10 production and lung neutrophil infiltration are two essential components of the balanced immune response to pneumonia caused by Streptococcus pneumoniae. Here we describe the existence of two neutrophil subsets in lungs during experimental S. pneumoniae infection in mice, which have different size, granularity and expression of activation markers. During infection, both neutrophils subsets were increased in the lungs of IL-10 producing mice, however this increment was significantly higher in the absence of this cytokine. These results suggest that IL-10 is a key cytokine that regulates lung inflammation during bacterial infection caused by specific neutrophil subsets infiltrating the lungs.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Francisco J Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|
10
|
Bedi P, Chalmers JD, Graham C, Clarke A, Donaldson S, Doherty C, Govan JRW, Davidson DJ, Rossi AG, Hill AT. A Randomized Controlled Trial of Atorvastatin in Patients With Bronchiectasis Infected With Pseudomonas Aeruginosa: A Proof of Concept Study. Chest 2017; 152:368-378. [PMID: 28554732 DOI: 10.1016/j.chest.2017.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND There are no randomized controlled trials of statin therapy in patients with severe bronchiectasis who are chronically infected with Pseudomonas aeruginosa. METHODS Thirty-two patients chronically infected with P aeruginosa were recruited in this double-blind cross-over randomized controlled trial. Sixteen patients were recruited in each arm, were given atorvastatin 80 mg or placebo for 3 months followed by a washout period for 6 weeks, and then crossed over and administered the alternative therapy for 3 months. RESULTS Twenty-seven patients completed the study. Atorvastatin did not significantly improve the primary end point of cough as measured by the Leicester Cough Questionnaire (mean difference, 1.92; 95% CI for difference, -0.57-4.41; P = .12). However, atorvastatin treatment resulted in an improved St. Georges Respiratory Questionnaire (-5.62 points; P = .016) and reduced serum levels of CXCL8 (P = .04), tumor necrosis factor (P = .01), and intercellular adhesion molecule 1 (P = .04). There was a trend toward improvement in serum C-reactive protein and serum neutrophil counts (P = .07 and P = .06, respectively). We demonstrated in vitro that atorvastatin 10 μM reduced formyl-methionyl-leucyl phenylalanine-induced upregulation of CD11b expression and changes in calcium flux, reflecting an ability to decrease neutrophil activation. CONCLUSIONS We demonstrated that atorvastatin reduced systemic inflammation and improved quality of life in patients with bronchiectasis who were infected with P aeruginosa. These effects may be due to an ability of atorvastatin to modulate neutrophil activation. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01299194; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Pallavi Bedi
- University of Edinburgh/MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, Scotland.
| | | | - Catriona Graham
- Wellcome Trust Clinical Research Facility, University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Andrea Clarke
- University of Edinburgh/MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, Scotland; Royal Infirmary of Edinburgh, Edinburgh, Scotland
| | | | - Catherine Doherty
- Cystic Fibrosis Laboratory, Centre for Infectious Diseases, Edinburgh, Scotland
| | - John R W Govan
- Cystic Fibrosis Laboratory, Centre for Infectious Diseases, Edinburgh, Scotland
| | - Donald J Davidson
- University of Edinburgh/MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, Scotland
| | - Adriano G Rossi
- University of Edinburgh/MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, Scotland
| | - Adam T Hill
- University of Edinburgh/MRC Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, Scotland; Royal Infirmary of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
11
|
Peñaloza HF, Schultz BM, Nieto PA, Salazar GA, Suazo I, Gonzalez PA, Riedel CA, Alvarez-Lobos MM, Kalergis AM, Bueno SM. Opposing roles of IL-10 in acute bacterial infection. Cytokine Growth Factor Rev 2016; 32:17-30. [PMID: 27522641 DOI: 10.1016/j.cytogfr.2016.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 07/14/2016] [Indexed: 12/16/2022]
Abstract
Interleukin-10 (IL-10) is recognized as an anti-inflammatory cytokine that downmodulates inflammatory immune responses at multiple levels. In innate cells, production of this cytokine is usually triggered after pathogen recognition receptor (PRR) engagement by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patters (DAMPs), as well as by other soluble factors. Importantly, IL-10 is frequently secreted during acute bacterial infections and has been described to play a key role in infection resolution, although its effects can significantly vary depending on the infecting bacterium. While the production of IL-10 might favor host survival in some cases, it may also result harmful for the host in other circumstances, as it can prevent appropriate bacterial clearance. In this review we discuss the role of IL-10 in bacterial clearance and propose that this cytokine is required to recover from infection caused by extracellular or highly pro-inflammatory bacteria. Altogether, we propose that IL-10 drives excessive suppression of the immune response upon infection with intracellular bacteria or in non-inflammatory bacterial infections, which ultimately favors bacterial persistence and dissemination within the host. Thus, the nature of the bacterium causing infection is an important factor that needs to be taken into account when considering new immunotherapies that consist on the modulation of inflammation, such as IL-10. Indeed, induction of this cytokine may significantly improve the host's immune response to certain bacteria when antibiotics are not completely effective.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Barbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pamela A Nieto
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Geraldyne A Salazar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Isidora Suazo
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Pablo A Gonzalez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Chile
| | - Manuel M Alvarez-Lobos
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Chile; INSERM U1064, Nantes, France.
| |
Collapse
|
12
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
13
|
Impact of fish oils on the outcomes of a mouse model of acutePseudomonas aeruginosapulmonary infection. Br J Nutr 2015; 113:191-9. [DOI: 10.1017/s0007114514003705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pseudomonas aeruginosais an opportunistic Gram-negative bacterium that causes pneumonia in immunocompromised humans and severe pulmonary damage in patients with cystic fibrosis. Imbalanced fatty acid incorporation in membranes, including increased arachidonic acid and decreased DHA concentrations, is known to play a critical role in chronic inflammation associated with bacterial infection. Other lipids, such as EPA and alkylglycerols, are also known to play a role in inflammation, particularly by stimulating the immune system, decreasing inflammation and inhibiting bacterial growth. In this context, the goal of the present study was to assess the effect of dietary DHA/EPA, in a 2:1 ratio, and alkylglycerols, as natural compounds extracted from oils of rays and chimeras, respectively, on the inflammatory reaction induced byP. aeruginosapulmonary infection in mice. To this end, mice were fed with a control diet or isolipidic, isoenergetic diets prepared with oils enriched in DHA/EPA (2:1) or alkylglycerols for 5 weeks before the induction of acuteP. aeruginosalung infection by endotracheal instillation. In our model, DHA/EPA (2:1) significantly improved the survival of mice after infection, which was associated with the acceleration of bacterial clearance and the resolution of inflammation leading to the improvement of pulmonary injuries. By contrast, alkylglycerols did not affect the outcomes ofP. aeruginosainfection. Our findings suggest that supplementation with ray oil enriched in DHA/EPA (2:1) can be considered as a preventive treatment for patients at risk forP. aeruginosainfection.
Collapse
|
14
|
Heat-shock response increases lung injury caused by Pseudomonas aeruginosa via an interleukin-10-dependent mechanism in mice. Anesthesiology 2014; 120:1450-62. [PMID: 24667831 DOI: 10.1097/aln.0000000000000235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND The heat-shock response (HSR) protects from insults, such as ischemia-reperfusion injury, by inhibiting signaling pathways activated by sterile inflammation. However, the mechanisms by which the HSR activation would modulate lung damage and host response to a bacterial lung infection remain unknown. METHODS HSR was activated with whole-body hyperthermia or by intraperitoneal geldanamycin in mice that had their lungs instilled with Pseudomonas aeruginosa 24 h later (at least six mice per experimental group). Four hours after instillation, lung endothelial and epithelial permeability, bacterial counts, protein levels in bronchoalveolar lavage fluid, and lung myeloperoxidase activity were measured. Mortality rate 24 h after P. aeruginosa instillation was recorded. The HSR effect on the release of interleukin-10 and killing of P. aeruginosa bacteria by a mouse alveolar macrophage cell line and on neutrophil phagocytosis was also examined. RESULTS HSR activation worsened lung endothelial (42%) and epithelial permeability (50%) to protein, decreased lung bacterial clearance (71%), and increased mortality (50%) associated with P. aeruginosa pneumonia, an effect that was not observed in heat-shock protein-72-null mice. HSR-mediated decrease in neutrophil phagocytosis (69%) and bacterial killing (38%) by macrophages was interleukin-10 dependent, a mechanism confirmed by increased lung bacterial clearance and decreased mortality (70%) caused by P. aeruginosa pneumonia in heat-shocked interleukin-10-null mice. CONCLUSIONS Prior HSR activation worsens lung injury associated with P. aeruginosa pneumonia in mice via heat-shock protein-72- and interleukin-10-dependent mechanisms. These results provide a novel mechanism for the immunosuppression observed after severe trauma that is known to activate HSR in humans.
Collapse
|
15
|
Chmiel JF, Konstan MW, Elborn JS. Antibiotic and anti-inflammatory therapies for cystic fibrosis. Cold Spring Harb Perspect Med 2013; 3:a009779. [PMID: 23880054 DOI: 10.1101/cshperspect.a009779] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cystic fibrosis (CF) lung disease is characterized by chronic bacterial infection and an unremitting inflammatory response, which are responsible for most of CF morbidity and mortality. The median expected survival has increased from <6 mo in 1940 to >38 yr now. This dramatic improvement, although not great enough, is due to the development of therapies directed at secondary disease pathologies, especially antibiotics. The importance of developing treatments directed against the vigorous inflammatory response was realized in the 1990s. New therapies directed toward the basic defect are now visible on the horizon. However, the impact of these drugs on downstream pathological consequences is unknown. It is likely that antibiotics and anti-inflammatory drugs will remain an important part of the maintenance regimen for CF in the foreseeable future. Current and future antibiotic and anti-inflammatory therapies for CF are reviewed.
Collapse
Affiliation(s)
- James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio 44106
| | | | | |
Collapse
|
16
|
Effect of reinfestations on systemic immune responses in cattle naturally infested by Hypoderma sp. (Diptera: Oestridae). Vet Parasitol 2013; 193:238-44. [DOI: 10.1016/j.vetpar.2012.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/06/2012] [Accepted: 11/08/2012] [Indexed: 11/15/2022]
|
17
|
Durgaryan AA, Matevosyan MB, Seferyan TY, Sargsyan MA, Grigoryan SL, Galoian KA, Galoyan AA. The protective and immunomodulatory effects of hypothalamic proline-rich polypeptide galarmin against methicillin-resistant Staphylococcus aureus infection in mice. Eur J Clin Microbiol Infect Dis 2012; 31:2153-65. [PMID: 22322358 DOI: 10.1007/s10096-012-1550-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/06/2012] [Indexed: 12/23/2022]
Abstract
The present research summarizes the protective and immunomodulatory activity of hypothalamic proline-rich polypeptide galarmin against methicillin-resistant Staphylococcus aureus (MRSA). The protective effect of galarmin was shown on MRSA-infected animals' survival and weight loss recovery. The immunological impact of galarmin was evaluated in terms of immunocompetent cell recruitment, serum immunoglobulins, complement components C3 and C4, and pro- and anti-inflammatory cytokines (IL-6, IL-8, IL-10, IL-1b, TNFa, and KC) secretion. Galarmin efficiently protects mice against lethal MRSA infection (100% of survival vs. 0% in the untreated group) when intramuscularly injected 24 h before infection and during the 1-h post-infection period at a concentration of 1 μg per mouse, while its higher concentrations (5 and 10 μg) were protective when injected in parallel to the infection process. The protective effect of galarmin was not due to a direct effect on MRSA, but should be attributed to an action on the host response to infection. Galarmin significantly increased and modulated the levels of IL-6, IL-8, IL-1b, IL-10, and KC in both peritoneal lavages and blood, leukocyte and platelet counts, lymphocytes percentage, serum IgM and IgG, and complement C3 and C4 components secretion. The experimental results allow concluding that galarmin is a powerful immunomodulatory and protective agent for the in vivo prophylaxis and treatment of MRSA-induced infection.
Collapse
Affiliation(s)
- A A Durgaryan
- Department of Neurohormones Biochemistry, H. Buniatian Institute of Biochemistry NAS RA, 5/1 P. Sevak Str., 0014, Yerevan, Armenia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 2011; 13:1133-45. [PMID: 21839853 DOI: 10.1016/j.micinf.2011.07.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/05/2023]
Abstract
Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models.
Collapse
|
19
|
Interleukin-10 and immunity against prokaryotic and eukaryotic intracellular pathogens. Infect Immun 2011; 79:2964-73. [PMID: 21576331 DOI: 10.1128/iai.00047-11] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The generation of an effective immune response against an infection while also limiting tissue damage requires a delicate balance between pro- and anti-inflammatory responses. Interleukin-10 (IL-10) has potent immunosuppressive effects and is essential for regulation of immune responses. However, the immunosuppressive properties of IL-10 can also be exploited by pathogens to facilitate their own survival. In this minireview, we discuss the role of IL-10 in modulating intracellular bacterial, fungal, and parasitic infections. Using information from several different infection models, we bring together and highlight some common pathways for IL-10 regulation and function that cannot be fully appreciated by studies of a single pathogen.
Collapse
|
20
|
Brereton CF, Blander JM. The unexpected link between infection-induced apoptosis and a TH17 immune response. J Leukoc Biol 2011; 89:565-76. [PMID: 21248151 DOI: 10.1189/jlb.0710421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Microbial pathogens can initiate MOMP in host cells and as such, initiate the mitochondrial pathway of apoptosis. Innate immune recognition of cells dying in this way by infection-induced apoptosis would involve recognition of ligands derived from the apoptotic host cell simultaneously with those derived from the infecting pathogen. The resultant signal transduction pathways engaged direct DCs to concomitantly synthesize TGF-β and IL-6, two cytokines that subsequently favor the differentiation of naïve CD4 T cells into T(h)17 cells. Citrobacter rodentium is one rodent pathogen that targets mitochondria and induces apoptosis, and blockade of apoptosis during enteric Citrobacter infection impairs the characteristic T(h)17 response in the intestinal LP. Here, we review these original findings. We discuss microbial infections other than Citrobacter that have been shown to induce T(h)17 responses, and we examine what is known about the ability of those pathogens to induce apoptosis. We also consider types of cell death other than apoptosis that can be triggered by microbial infection, and we highlight how little we know about the impact of various forms of cell death on the ensuing adaptive immune response.
Collapse
Affiliation(s)
- Corinna F Brereton
- Mount Sinai School of Medicine, Immunology Institute, Department of Medicine, 1425 Madison Ave., 12-20D, New York, NY 10029, USA
| | | |
Collapse
|
21
|
Dubin PJ, Kolls JK. Pseudomonas aeruginosa and the host pulmonary immune response. Expert Rev Respir Med 2010; 1:121-37. [PMID: 20477272 DOI: 10.1586/17476348.1.1.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pseudomonas aeruginosa is a highly adaptable, opportunistic pathogen that is commonly found in the environment. It can infect a number of sites in the body and disseminate. It can cause both acute and chronic pulmonary infection and the acuity of infection and accompanying inflammatory phenotype is determined, for the most part, by the host. Although P. aeruginosa has been a successful opportunist in the context of a number of different disease states, it has been best studied in the context of cystic fibrosis (CF). The adaptability of P. aeruginosa has enabled it to adjust quickly to the CF airway, transitioning from initial colonization to chronic infection. The organism quickly expresses virulence factors that allow it to circumvent some elements of the host immune response and, even more importantly, quickly develops antimicrobial resistance. In the case of CF, chronic infection resulting in progressive lung damage, coupled with antimicrobial resistance, becomes an increasingly important issue as individuals with CF live longer. It is for these reasons that both organism- and host-targeted immunotherapies are being increasingly explored.
Collapse
Affiliation(s)
- Patricia J Dubin
- Children's Hospital of Pittsburgh, Suite 3765, 3705 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
22
|
IL-10 delivery by AAV5 vector attenuates inflammation in mice with Pseudomonas pneumonia. Gene Ther 2010; 17:567-76. [PMID: 20357828 DOI: 10.1038/gt.2010.28] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lung infections with Pseudomonas aeruginosa and other pathogens in cystic fibrosis (CF) cause progressive airway obstruction and tissue damage, the predominant cause of morbidity and mortality in CF. We investigated whether a recombinant adeno-associated virus type 5 (AAV5) vector expressing murine interleukin (IL)-10 (AAV5.Cbeta-mIL-10), a regulatory/anti-inflammatory cytokine, could decrease airway inflammation in IL-10 knockout mice chronically infected with mucoid P. aeruginosa. Mice that received AAV5.Cbeta-mIL10 through intratracheal inoculation produced IL-10 at an average of 25 000 pg/ml in the epithelial lining fluid (ELF) and 12 000 pg/g-lung tissue 6 weeks post-vector delivery, significantly higher levels than in placebo-treated mice. At 3 days post-infection, proinflammatory cytokines (IL-1beta, tumor necrosis factor (TNF)-alpha, macrophage inhibitory protein (MIP)-1alpha and (KC) in the ELF and lung homogenate were decreased (1-9 folds) in the AAV5.Cbeta-mIL10-treated mice accompanied by less pronounced and more localized neutrophil infiltration in lung sections, when compared with placebo-treated mice. These results suggest that AAV5.Cbeta-mIL10 induces IL-10 levels in the lungs mediating a significant anti-inflammatory response and making AAV-IL-10 gene transfer a potentially useful therapy in the treatment of CF lung disease.
Collapse
|
23
|
Mittal R, Sharma S, Chhibber S, Harjai K. Evaluation of interleukin-10 production in Pseudomonas aeruginosa induced acute pyelonephritis. J Infect Public Health 2009; 2:136-40. [PMID: 20701873 DOI: 10.1016/j.jiph.2009.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 06/09/2009] [Accepted: 06/13/2009] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen of immunocompromised hosts. This pathogen has a tendency to form biofilms on the surface of indwelling catheters leading to acute and chronic urinary tract infections that result in significant morbidity and mortality. In the present study, kinetics of interleukin-10 (IL-10) production in mouse renal tissue was studied employing experimental mouse model of acute pyelonephritis induced with planktonic and biofilm cells of P. aeruginosa. IL-10 production was found to be significantly lower in biofilm cell instilled mice compared to planktonic cell infected animals, which corroborated with higher bacterial load and tissue damage. The data suggests that downregulation of IL-10 production may be novel strategy employed by biofilm cells to cause tissue damage and hence bacterial persistence. The results of the present study may open up avenues of research that will ultimately provide the foundation for the development of preventative measures and therapeutic strategies to successfully treat P. aeruginosa biofilm infections based on the administration of anti-inflammatory agents.
Collapse
Affiliation(s)
- Rahul Mittal
- Division of Infectious Diseases, Childrens Hospital Los Angeles, Los Angeles, CA 90027, USA.
| | | | | | | |
Collapse
|
24
|
Chen J, Liu XS. Development and function of IL-10 IFN-gamma-secreting CD4(+) T cells. J Leukoc Biol 2009; 86:1305-10. [PMID: 19741156 DOI: 10.1189/jlb.0609406] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
IL-10 IFN-gamma-secreting CD4(+) T cells were first found in the early 1990s. They are suppressive T cells able to inhibit cytotoxic T lymphocytes. These cells (Foxp3-T bet(+)) have a similar function but are distinct from conventional Tregs. The production of IL-10 in these cells requires IL-27 and TGF-beta and was regulated by several signal pathways including Notch, STAT, and NF-kappaB. The crosstalk among these pathways is critical for the generation and function of these cells. IL-10 IFN-gamma-secreting CD4(+) T cells are activated in chronic infection and are responsible for prolonged infection. Thus, their modulation has therapeutic implications for the treatment of infectious diseases. However, it is complicated, and fine-tuning of IFN-gamma and IL-10 secretion by these cells is needed for disease management, as inhibition of these cells will also lead to overimmune responses. On the other hand, increasing their numbers in autoimmune diseases may have beneficial effects.
Collapse
Affiliation(s)
- Jiezhong Chen
- Illawarra Health and Medical Research Institute, University of Wollongong, NSW, Australia.
| | | |
Collapse
|
25
|
Nichols DP, Konstan MW, Chmiel JF. Anti-inflammatory therapies for cystic fibrosis-related lung disease. Clin Rev Allergy Immunol 2009; 35:135-53. [PMID: 18546078 DOI: 10.1007/s12016-008-8081-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease affecting many organ systems. In the lung, the underlying ion transport defect in CF establishes a perpetuating cycle of impaired airway clearance, chronic endobronchial infection, and exuberant inflammation. The interrelated nature of these components of CF lung disease makes it likely that the most effective therapeutic strategies will include treatments of each of these. This chapter reviews the preclinical and clinical data focused on ways to better understand and particularly to limit inflammation in the CF airway. Anti-inflammatories are an attractive therapeutic target in CF with a proven ability to decrease the rate of decline in lung function. However, the inherent complexity of the inflammatory response combined with the obvious dependency on this response to contain infection and the side effect profiles of common anti-inflammatories have made identifying the most suitable agents challenging. Research continues to discover impairments in signaling events in CF that may contribute to the excessive inflammation seen clinically. Concurrent with these findings, promising new therapies are being evaluated to determine which agents will be most effective and well tolerated. Available data from studies commenced over the last two decades, which have generated both encouraging and disappointing results, are reviewed below.
Collapse
Affiliation(s)
- David P Nichols
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | | | | |
Collapse
|
26
|
The pros and cons of immunomodulatory IL-10 gene therapy with recombinant AAV in a Cftr-/- -dependent allergy mouse model. Gene Ther 2008; 16:172-83. [PMID: 18818669 DOI: 10.1038/gt.2008.156] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) patients have decreased levels of lung epithelial interleukin (IL)-10 and increased levels of proinflammatory cytokines (tumor necrosis factor-alpha, IL-4, IL-8 and IL-6). This has also been documented in Cftr (cystic fibrosis transmembrane conductance regulator)-deficient mice (Cftr 489X(-/-), FABP-hCFTR(+/+)). Our laboratory has recently characterized a peculiar hyper-IgE phenotype in these mice, in response to Aspergillus fumigatus crude protein extract (Af-cpe). Thus, we hypothesized that sustained systemic circulating IL-10 levels achieved through skeletal muscle transduction with recombinant adeno-associated vectors expressing IL-10 (rAAV1-IL-10) would serve to downregulate Th1 and Th2 cytokine production. This in turn would dampen the allergic response in the Cftr(-/-)-dependent mouse model of allergic bronchopulmonary aspergillosis. After Af-cpe sensitization and airway challenge, mice treated with rAAV1-IL-10 had markedly lower IgE levels when compared to the control-treated rAAV1-GFP group. This was accompanied by a significant reduction in the levels of IL-5, IL-4 and IL-13 in the lung compartment. The lower lung cytokine profiles resulted in a near absence of eosinophil recruitment in the lung and a lower inflammatory response in the lung tissue of mice receiving rAAV1-IL-10. Unfortunately, sustained secretion of IL-10 from transduced muscle did lead to thrombocytopenia and splenomegaly in mice injected with rAAV1-IL-10. These results highlight that while IL-10 gene therapy is very effective for treating allergic responses caution must be taken with the prolonged secretion of IL-10.
Collapse
|
27
|
Perez A, van Heeckeren AM, Nichols D, Gupta S, Eastman JF, Davis PB. Peroxisome proliferator-activated receptor-gamma in cystic fibrosis lung epithelium. Am J Physiol Lung Cell Mol Physiol 2008; 295:L303-13. [PMID: 18556801 DOI: 10.1152/ajplung.90276.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathophysiology of cystic fibrosis (CF) inflammatory lung disease is not well understood. CF airway epithelial cells respond to inflammatory stimuli with increased production of proinflammatory cytokines as a result of increased NF-kappaB activation. Peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits NF-kappaB activity and is reported to be reduced in CF. If PPARgamma participates in regulatory dysfunction in the CF lung, perhaps PPARgamma ligands might be useful therapeutically. Cell models of CF airway epithelium were used to evaluate PPARgamma expression and binding to NF-kappaB at basal and under conditions of inflammatory stimulation by Pseudomonas aeruginosa or TNFalpha/IL-1beta. An animal model of CF was used to evaluate the potential of PPARgamma agonists as therapeutic agents in vivo. In vitro, PPARgamma agonists reduced IL-8 and MMP-9 release from airway epithelial cells in response to PAO1 or TNFalpha/IL-1beta stimulation. Less NF-kappaB bound to PPARgamma in CF than normal cells, in two different assays; PPARgamma agonists abrogated this reduction. PPARgamma bound less to its target DNA sequence in CF cells. To test the importance of the reported PPARgamma inactivation by phosphorylation, we observed that inhibitors of ERK, but not JNK, were synergistic with PPARgamma agonists in reducing IL-8 secretion. In vivo, administration of PPARgamma agonists reduced airway inflammation in response to acute infection with P. aeruginosa in CF, but not wild-type, mice. In summary, PPARgamma inhibits the inflammatory response in CF, at least in part by interaction with NF-kappaB in airway epithelial cells. PPARgamma agonists may be therapeutic in CF.
Collapse
Affiliation(s)
- Aura Perez
- Deptartment of Pediatrics, School of Medicine, Case Western Reserve University, BRB Bldg. R829, 10900 Euclid Ave., Cleveland, OH 44106-4948, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Nichols D, Chmiel J, Berger M. Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev Allergy Immunol 2008; 34:146-62. [PMID: 17960347 DOI: 10.1007/s12016-007-8039-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A vicious cycle of airway obstruction, infection, and inflammation continues to cause most of the morbidity and mortality in cystic fibrosis (CF). Mutations that result in decreased expression or function of the membrane Cl(-) channel, cystic fibrosis transmembrane regulator (CFTR), result in a decrease in the volume (and hence the depth) of liquid on the airway surface, impaired ciliary function, and dehydrated glandular secretions. In turn, these abnormalities contribute to a milieu, which promotes chronic infection with a limited but unique spectrum of microorganisms. Defects in CFTR also perturb regulation of several intracellular signaling pathways including signal transducers and activator of transcription, I-kappaB and nuclear factor-kappa B, and low molecular weight GTPases. Together, these abnormalities result in excessive production of NF-kappaB dependent cytokines such as interleukin (IL)-1, tumor necrosis factor (TNF), IL-6, and IL-8. There are decreased responses to interferon gamma and transforming growth factor beta leading to decreased production of iNOS and NO. Abnormalities of lipid mediators and decreased secretion of counter/regulatory cytokines have also been reported. Together, these effects combine to create a chronic inflammatory process, which damages and obstructs the airways, and eventually claims the life of the patient.
Collapse
Affiliation(s)
- David Nichols
- Pulmonology and Allergy-Immunology Divisions, Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow, Babies and Children's Hospital, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
29
|
Broughton-Head VJ, Shur J, Carroll MP, Smith JR, Shute JK. Unfractionated heparin reduces the elasticity of sputum from patients with cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1240-9. [PMID: 17827252 DOI: 10.1152/ajplung.00206.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mucus obstruction of the airway in patients with cystic fibrosis (CF) reduces lung function, invites infection, and limits delivery of inhaled drugs including gene therapy vectors to target cells. Not all patients respond to presently available mucolytics, and new approaches are needed. Our objectives were to investigate the in vitro effects of unfractionated heparin (UFH) on the morphology and rheology of sputum and the effect of UFH on diffusion of 200-nm nanospheres through sputum from adult CF patients. Confocal laser scanning microscopy was used to image fluorescently stained actin and DNA components of CF sputum, and atomic force microscopy was used to image isolated DNA networks. The viscoelasticity of CF sputum was measured using dynamic oscillatory rheometry. Nanosphere diffusion was measured through CF sputum using a Boyden chamber-based assay. Actin-DNA bundles in CF sputum were disaggregated by UFH at concentrations of 0.1–10 mg/ml, and UFH enhanced the endonuclease activity in sputum from patients on dornase alfa therapy. UFH significantly reduced the elasticity and yield stress, but not the viscosity, of CF sputum from patients not receiving dornase alfa therapy. Heparin dose-dependently significantly increased the diffusion of nanospheres through CF sputum from patients not on dornase alfa therapy from 10.5 ± 2.5% at baseline to 36.9 ± 4.4% at 10 mg/ml but was more potent, with maximal effect at 0.1 mg/ml, in patients who were on dornase alfa therapy. Thus the mucoactive properties of UFH indicate its potential as a new therapeutic approach in patients with cystic fibrosis.
Collapse
|
30
|
Sagel SD, Chmiel JF, Konstan MW. Sputum biomarkers of inflammation in cystic fibrosis lung disease. PROCEEDINGS OF THE AMERICAN THORACIC SOCIETY 2007; 4:406-17. [PMID: 17652508 PMCID: PMC2647605 DOI: 10.1513/pats.200703-044br] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 05/11/2007] [Indexed: 11/20/2022]
Abstract
Pulmonary biomarkers are being used more frequently to monitor disease activity and evaluate response to treatment in individuals with cystic fibrosis (CF). This article summarizes the current state of knowledge of biomarkers of inflammation relevant to CF lung disease, and the tools to measure inflammation, with specific emphasis on sputum. Sputum is a rich, noninvasive source of biomarkers of inflammation and infection. Sputum induction, through the inhalation of hypertonic saline, has expanded the possibilities for monitoring airway inflammation and infection, especially in individuals who do not routinely expectorate sputum. We critically examine the existing data supporting the validity of sputum biomarkers in CF, with an eye toward their application as surrogate endpoints or outcome measures in CF clinical trials. Further validation studies are needed regarding the variability of inflammatory biomarker measurements, and to evaluate how these biomarkers relate to disease severity, and to longitudinal changes in lung function and other clinical endpoints. We highlight the need to incorporate sputum collection, by induction if necessary, and measurement of sputum biomarkers into routine CF clinical care. In the future, pulmonary biomarkers will likely be useful in predicting disease progression, indicating the onset and resolution of a pulmonary exacerbation, and assessing response to current therapies or candidate therapeutics.
Collapse
Affiliation(s)
- Scott D Sagel
- Department of Pediatrics, The Children's Hospital and University of Colorado at Denver and Health Sciences Center, Denver, Colorado 80218, USA.
| | | | | |
Collapse
|
31
|
Chmiel JF, Konstan MW. Inflammation and anti-inflammatory therapies for cystic fibrosis. Clin Chest Med 2007; 28:331-46. [PMID: 17467552 DOI: 10.1016/j.ccm.2007.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cystic fibrosis lung disease is characterized by a self-propagating cycle of obstruction, infection, and inflammation. The inflammatory response, which accounts for the majority of the morbidity and mortality of the disease, begins early in life, becomes persistent, and is excessive relative to the bacterial burden. Therapies aimed at decreasing the inflammatory response represent a relatively new strategy for treatment. This article reviews the current state of the art of anti-inflammatory therapy in cystic fibrosis and introduces clinical trials that are underway.
Collapse
Affiliation(s)
- James F Chmiel
- Division of Pediatric Pulmonology, Department of Pediatrics, Case Western Reserve University School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | |
Collapse
|
32
|
Sugiyama K, Shirai R, Mukae H, Ishimoto H, Nagata T, Sakamoto N, Ishii H, Nakayama S, Yanagihara K, Mizuta Y, Kohno S. Differing effects of clarithromycin and azithromycin on cytokine production by murine dendritic cells. Clin Exp Immunol 2007; 147:540-6. [PMID: 17302905 PMCID: PMC1810497 DOI: 10.1111/j.1365-2249.2007.03299.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Summary The macrolide antibiotics are now well known to have anti-inflammatory effects. Because dendritic cells (DCs) orchestrate immune responses, we examined the in vitro effects of clarithromycin (CAM), azithromycin (AZM) and midecamycin (MDM) on the expression of co-stimulatory molecules and production of cytokines [interleukin (IL)-10, IL-6, interferon (IFN)-gamma, IL-12p40, tumour necrosis factor (TNF)-alpha] of murine bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation. A 15-membered macrolide, AZM, and a 14-membered macrolide, CAM, significantly enhanced the intensity of a co-stimulatory molecule, CD80, on DCs but not CD86 and CD40. AZM significantly increased the production of IL-10 and CAM significantly inhibited the production of IL-6 by DCs. However, a 16-membered macrolide, MDM, did not have any significant effect on these surface markers and cytokine productions. Moreover, AZM increased IL-10 and CAM decreased IL-2 productions significantly, when naive T cells derived from spleen were co-cultured with DCs treated in advance with LPS and these macrolides. These findings suggest that 14-membered and 15-membered, but not 16-membered macrolides play as anti-inflammatory agents, at least in part, through modulating the functions of DCs. However, each macrolide affects them in different ways.
Collapse
Affiliation(s)
- K Sugiyama
- Second Department of Internal Medicine, Nagasaki University School of Medicine, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sun B, Sun H, Liu C, Shen J, Chen Z, Chen X. Role of CO-releasing molecules liberated CO in attenuating leukocytes sequestration and inflammatory responses in the lung of thermally injured mice. J Surg Res 2007; 139:128-35. [PMID: 17292406 DOI: 10.1016/j.jss.2006.08.032] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/07/2006] [Accepted: 08/29/2006] [Indexed: 12/27/2022]
Abstract
BACKGROUND Acute lung injury and pulmonary inflammatory responses are important complications most frequently encountered in severely burned patients. Polymorphonuclear leukocyte (PMN) sequestration and the subsequent generation of oxidants and inflammatory mediators play the key roles in the pathogenesis of acute lung injury. In this study, we used CO-releasing molecules (CORM-2) to determine whether the CO-releasing molecules-liberated CO could attenuate leukocytes sequestration and the inflammatory response in the lung of thermally injured mice. MATERIALS AND METHODS Fifty-four mice were assigned to three groups in three respective experiments. In each experiment, mice in sham group (n=6) underwent sham thermal injury, whereas mice in the burn group (n=6) received 15% total body surface area (TBSA) full-thickness thermal injury and mice in CORM-2 group (n=6) underwent the same thermal injury with immediate administration of CORM-2 (8 mg/kg, i.v.). PMN accumulation (MPO assay) in mice lungs and tumor necrosis factor-alpha and interleukin-1beta in BAL fluid, pulmonary edema formation, and wet/dry weight ratios of lung were determined. Activation of NF-kappaB and expression level of ICAM-1 in the lung was assessed. In in vitro experiment, PMN adhesion to experimental mice serum-stimulated mouse lung endothelial cells (MLEC) was assessed. RESULTS Treatment of thermally injured mice with CORM-2 attenuated PMN accumulation and prevented activation of NF-kappaB in the lung. This was accompanied by a decrease of the expression of ICAM-1. In parallel, PMN adhesion to MLEC stimulated by CORM-2-treated thermally injured mice serum was markedly decreased. Also, CORM-2 markedly decreased the production of inflammatory mediators in BAL fluid without suppressing the permeability of pulmonary microcirculation. CONCLUSIONS CORM-released CO attenuates the inflammatory response in the lung of thermally injured mice by decreasing leukocyte sequestration and interfering with NF-kappaB activation, protein expression of ICAM-1, and therefore, suppressing endothelial cells' pro-adhesive phenotype.
Collapse
Affiliation(s)
- Bingwei Sun
- Department of Burns and Plastic Surgery, Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
34
|
Jankovic D, Kullberg MC, Feng CG, Goldszmid RS, Collazo CM, Wilson M, Wynn TA, Kamanaka M, Flavell RA, Sher A. Conventional T-bet(+)Foxp3(-) Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. ACTA ACUST UNITED AC 2007; 204:273-83. [PMID: 17283209 PMCID: PMC2118735 DOI: 10.1084/jem.20062175] [Citation(s) in RCA: 470] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although interferon γ (IFN-γ) secretion is essential for control of most intracellular pathogens, host survival often also depends on the expression of interleukin 10 (IL-10), a cytokine known to counteract IFN-γ effector functions. We analyzed the source of regulatory IL-10 in mice infected with the protozoan parasite Toxoplasma gondii. Unexpectedly, IFN-γ–secreting T-bet+Foxp3− T helper type 1 (Th1) cells were found to be the major producers of IL-10 in these animals. Further analysis revealed that the same IL-10+IFN-γγ population displayed potent effector function against the parasite while, paradoxically, also inducing profound suppression of IL-12 production by antigen-presenting cells. Although at any given time point only a fraction of the cells appeared to simultaneously produce IL-10 and IFN-γ, IL-10 production could be stimulated in IL-10−IFN-γ+ cells by further activation in vitro. In addition, experiments with T. gondii–specific IL-10+IFN-γ+ CD4 clones revealed that although IFN-γ expression is imprinted and triggered with similar kinetics regardless of the state of Th1 cell activation, IL-10 secretion is induced more rapidly from recently activated than from resting cells. These findings indicate that IL-10 production by CD4+ T lymphocytes need not involve a distinct regulatory Th cell subset but can be generated in Th1 cells as part of the effector response to intracellular pathogens.
Collapse
Affiliation(s)
- Dragana Jankovic
- Immunobiology Section and 2Immunopathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Saadane A, Masters S, DiDonato J, Li J, Berger M. Parthenolide inhibits IkappaB kinase, NF-kappaB activation, and inflammatory response in cystic fibrosis cells and mice. Am J Respir Cell Mol Biol 2007; 36:728-36. [PMID: 17272824 PMCID: PMC1899341 DOI: 10.1165/rcmb.2006-0323oc] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cystic fibrosis (CF) is characterized by prolonged and excessive inflammatory responses in the lung and increased activation of NF-kappaB. Parthenolide is a sesquiterpene lactone derived from the plant feverfew, which has been used in folk medicine for anti-inflammatory activity. Several studies suggest that this compound inhibits the NF-kappaB pathway, but the exact site is controversial. We hypothesized that parthenolide might ameliorate the excessive inflammatory response in CF models by inhibiting activation of NF-kappaB. This was tested in vitro, using two pairs of cell lines with defective versus normal CF transmembrane conductance regulator (CFTR) (antisense/sense transfected 16 HBE and IB-3/S9), and in vivo, using CFTR-knockout (KO) mice. All cell lines were pretreated with parthenolide and then stimulated with IL-1beta and/or TNF. Parthenolide significantly inhibited IL-8 secretion induced by these cytokines and prevented NF-kappaB activation, IkappaBalpha degradation, and IkappaB Kinase complex activity. CFTR-KO and wild-type mice were pretreated with parthenolide or vehicle alone then challenged intratracheally with LPS. Bronchoalveolar lavage was performed 3, 6, and 8 h later. Parthenolide pretreatment inhibited PMN influx as well as cytokine and chemokine production. This was also associated with inhibition of IkappaBalpha degradation and NF-kappaB activation. We thus conclude that parthenolide inhibits IkappaB kinase, resulting in stabilization of cytoplasmic IkappaBalpha, which in turn leads to inhibition of NF-kappaB translocation and attenuation of subsequent inflammatory responses. IkappaB kinase may be a good target, and parthenolide and/or feverfew might be promising treatments for the excessive inflammation in CF.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Pediatrics, Rainbow Babies and Childrens' Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
36
|
Dubin PJ, Kolls JK. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol Lung Cell Mol Physiol 2006; 292:L519-28. [PMID: 17071720 PMCID: PMC2841977 DOI: 10.1152/ajplung.00312.2006] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with cystic fibrosis (CF) develop chronic Pseudomonas aeruginosa lung infection with mucoid strains of P. aeruginosa; these infections cause significant morbidity. The immunological response in these infections is characterized by an influx of neutrophils to the lung and subsequent lung damage over time; however, the underlying mediators to this response are not well understood. We recently reported that IL-23 and IL-17 were elevated in the sputum of patients with CF who were actively infected with P. aeruginosa; however, the importance of IL-23 and IL-17 in mediating this inflammation was unclear. To understand the role that IL-23 plays in initiating airway inflammation in response to P. aeruginosa, IL-23p19(-/-) (IL-23 deficient) and wild-type (WT) mice were challenged with agarose beads containing a clinical, mucoid isolate of P. aeruginosa. Levels of proinflammatory cytokines, chemokines, bacterial dissemination, and inflammatory infiltrates were measured. IL-23-deficient mice had significantly lower induction of IL-17, keratinocyte-derived chemokine (KC), and IL-6, decreased bronchoalveolar lavage (BAL) neutrophils, metalloproteinase-9 (MMP-9), and reduced airway inflammation than WT mice. Despite the reduced level of inflammation in IL-23p19(-/-) mice, there were no differences in the induction of TNF and interferon-gamma or in bacterial dissemination between the two groups. This study demonstrates that IL-23 plays a critical role in generating airway inflammation observed in mucoid P. aeruginosa infection and suggests that IL-23 could be a potential target for immunotherapy to treat airway inflammation in CF.
Collapse
Affiliation(s)
- Patricia J Dubin
- Division of Pediatric Pulmonology, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
37
|
Legssyer R, Huaux F, Lebacq J, Delos M, Marbaix E, Lebecque P, Lison D, Scholte BJ, Wallemacq P, Leal T. Azithromycin reduces spontaneous and induced inflammation in DeltaF508 cystic fibrosis mice. Respir Res 2006; 7:134. [PMID: 17064416 PMCID: PMC1637104 DOI: 10.1186/1465-9921-7-134] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 10/25/2006] [Indexed: 12/05/2022] Open
Abstract
Background Inflammation plays a critical role in lung disease development and progression in cystic fibrosis. Azithromycin is used for the treatment of cystic fibrosis lung disease, although its mechanisms of action are poorly understood. We tested the hypothesis that azithromycin modulates lung inflammation in cystic fibrosis mice. Methods We monitored cellular and molecular inflammatory markers in lungs of cystic fibrosis mutant mice homozygous for the ΔF508 mutation and their littermate controls, either in baseline conditions or after induction of acute inflammation by intratracheal instillation of lipopolysaccharide from Pseudomonas aeruginosa, which would be independent of interactions of bacteria with epithelial cells. The effect of azithromycin pretreatment (10 mg/kg/day) given by oral administration for 4 weeks was evaluated. Results In naive cystic fibrosis mice, a spontaneous lung inflammation was observed, characterized by macrophage and neutrophil infiltration, and increased intra-luminal content of the pro-inflammatory cytokine macrophage inflammatory protein-2. After induced inflammation, cystic fibrosis mice combined exaggerated cellular infiltration and lower anti-inflammatory interleukin-10 production. In cystic fibrosis mice, azithromycin attenuated cellular infiltration in both baseline and induced inflammatory condition, and inhibited cytokine (tumor necrosis factor-α and macrophage inflammatory protein-2) release in lipopolysaccharide-induced inflammation. Conclusion Our findings further support the concept that inflammatory responses are upregulated in cystic fibrosis. Azithromycin reduces some lung inflammation outcome measures in cystic fibrosis mice. We postulate that some of the benefits of azithromycin treatment in cystic fibrosis patients are due to modulation of lung inflammation.
Collapse
Affiliation(s)
- Rachida Legssyer
- Clinical Chemistry, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| | - François Huaux
- Industrial Toxicology and Occupational Medicine, Université Catholique de Louvain, Clos Chapelle aux Champs 30.54, Brussels, Belgium
| | - Jean Lebacq
- Cell Physiology, Université Catholique de Louvain, Ave Hippocrate 55, Brussels, Belgium
| | - Monique Delos
- Pathology, Louvain University Hospital at Mont-Godinne, Yvoir, Belgium
| | - Etienne Marbaix
- Pathology, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| | - Patrick Lebecque
- Pneumology, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| | - Dominique Lison
- Industrial Toxicology and Occupational Medicine, Université Catholique de Louvain, Clos Chapelle aux Champs 30.54, Brussels, Belgium
| | - Bob J Scholte
- Erasmus University Medical Center, Cell Biology, Rotterdam, The Netherlands
| | - Pierre Wallemacq
- Clinical Chemistry, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| | - Teresinha Leal
- Clinical Chemistry, Université Catholique de Louvain, Ave Hippocrate 10, Brussels, Belgium
| |
Collapse
|
38
|
Büscher R, Grasemann H. Disease modifying genes in cystic fibrosis: therapeutic option or one-way road? Naunyn Schmiedebergs Arch Pharmacol 2006; 374:65-77. [PMID: 17033796 DOI: 10.1007/s00210-006-0101-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2006] [Accepted: 07/27/2006] [Indexed: 01/14/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease among Caucasians and is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. CF affects multiple organs but lung disease is the major determinant for morbidity and mortality. Many studies have focussed on the correlation between CFTR genotype and severity of disease. Since patients with identical CFTR mutations often show considerable variability in disease progression, genes other than CFTR are thought to have the potential to modify the course of lung disease in CF patients. Therefore, identification of CF-modifying genes has become the goal of several studies over the last 15 years. Pharmaceutical approaches for CF lung disease have been developed regardless of the underlying genetic defect and in general target symptoms such as airway obstruction and treatment of bacterial infection. Analysing the pathophysiological processes of modifiers may lead to the discovery of pathways involved in CF pathophysiology and possibly to the design of new therapeutics. The purpose of this review is not only to list potential CFTR modifier genes, but also to discuss new therapeutic strategies that could be derived from knowledge of these CF modifiers.
Collapse
Affiliation(s)
- Rainer Büscher
- Department of Pediatrics, University Children's Hospital, Hufelandstrasse 55, Essen, Germany.
| | | |
Collapse
|
39
|
Colasurdo GN, Fullmer JJ, Elidemir O, Atkins C, Khan AM, Stark JM. Respiratory syncytial virus infection in a murine model of cystic fibrosis. J Med Virol 2006; 78:651-8. [PMID: 16555274 DOI: 10.1002/jmv.20589] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viral respiratory infections play an important role in the development and progression of pulmonary disease in cystic fibrosis (CF). The CF mouse model provides a tool to examine the relationship between the cystic fibrosis transmembrane conductance regulator (CFTR) defect and lung disease. This work investigates the cellular response to a common viral pathogen, respiratory syncytial virus (RSV) in the lung of CF mice. RSV was administered by intranasal inoculation of CFTR(tm1Unc)-Tg(FABPCFTR)1Jaw/J (CFTR-/-) and control mice. At day 5 post infection, viral titers, bronchoalveolar fluid nitrate levels (BALF) cell and differential counts, histology and studies on airway mechanics were performed. CFTR-/- mice had an impaired ability to clear RSV. This was associated with an exaggerated inflammatory response (increased lymphocytes and neutrophils) in BALF of RSV-infected CFTR-/- mice and a decreased ability to generate nitric oxide (NO) (measured as BAL nitrate). Lung histopathology of RSV-infected CFTR-/- mice demonstrated increased inflammation compared to RSV (-) CFTR-/- and control mice (regardless of RSV treatment). The airway response to methacholine was increased by RSV infection in CF mice when compared to controls. The CFTR-/- mouse exhibits an aberrant response to RSV infection. This model should be useful in providing further mechanistic information on the biology of respiratory viruses in mammalian models, and provide new insights into the pathogenesis of airway inflammation in patients with CF.
Collapse
Affiliation(s)
- Giuseppe N Colasurdo
- Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
40
|
Saadane A, Soltys J, Berger M. Acute Pseudomonas challenge in cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, cytokine secretion, and persistent lung inflammation. J Allergy Clin Immunol 2006; 117:1163-9. [PMID: 16675347 DOI: 10.1016/j.jaci.2006.01.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 01/09/2006] [Accepted: 01/12/2006] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cystic fibrosis (CF) is characterized by an excessive and prolonged inflammatory response to Pseudomonas aeruginosa in the lung. There are high levels of cytokines and chemokines and an exaggerated PMN influx causing significant morbidity and mortality. OBJECTIVE To compare the kinetics of the inflammatory response with the kinetics of clearance of acute bacterial challenge in the lungs of CF and wild-type (WT) mice. METHODS We challenged CF knockout (KO) and WT mice intratracheally with P aeruginosa in suspension and evaluated bacteria counts, nuclear factor-kappaB (NF-kappaB), and inhibitor of NF-kappaB alpha protein (I-kappaBalpha) in lung tissue, cytokines, and PMN in bronchoalveolar lavage (BAL). RESULTS Both groups of mice cleared the infection with the same kinetics. CF-KO mice had more PMN in BAL than WT mice. CF-KO mice had high concentrations of proinflammatory cytokines in BAL on days 2 and 4, whereas cytokines in BAL from WT mice were only slightly elevated. CF-KO mice failed to regenerate I-kappaBalpha once it was degraded, and consequently had prolonged and excessive activation of NF-kappaB for the entire 6-day duration of the study. In contrast, WT mice showed only slight NF-kappaB activation, which plateaued at day 4. CONCLUSION These data suggest that NF-kappaB is dysregulated in CF lung infection and could be a good target for therapy. Prolonged responses to initial acute infections may contribute to the eventual establishment of chronic persistent inflammation. CLINICAL IMPLICATIONS Dysregulation of the I-kappaB/NF-kappaB pathway in cystic fibrosis leads to prolonged cytokine secretion and persistent inflammation in response to acute challenges and may be important in the development of chronic lung inflammation and infection.
Collapse
Affiliation(s)
- Aicha Saadane
- Department of Pediatrics, Rainbow Babies and Childrens' Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
41
|
Corvol H, Flamant C, Vallet C, Clement A, Brouard J. Les gènes modificateurs dans la mucoviscidose. Arch Pediatr 2006; 13:57-63. [PMID: 16274977 DOI: 10.1016/j.arcped.2005.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 09/27/2005] [Indexed: 10/25/2022]
Abstract
Cystic fibrosis is the most common lethal autosomal recessive disease among the Caucasian population. It is caused by defects in the CFTR gene (Cystic Fibrosis Transmembrane Conductance Regulator). Although over 1600 disease-causing mutations in the CFTR gene have been described, the highly variable disease phenotype in cystic fibrosis cannot be explained on the basis of this gene alone. Both the environment and other non-CFTR genes are likely to be important. The increased understanding of pathophysiological processes in the cystic fibrosis lung has led to several studies on genes in these pathways. One of the major aims of such studies is to produce targets for novel drug developments.
Collapse
Affiliation(s)
- H Corvol
- Service de pneumologie pédiatrique, hôpital Armand-Trousseau, Assistance publique-Hôpitaux de Paris, 26, avenue du Docteur-A.-Netter, 75012 Paris, France.
| | | | | | | | | |
Collapse
|
42
|
Tabary O, Corvol H, Boncoeur E, Chadelat K, Fitting C, Cavaillon JM, Clément A, Jacquot J. Adherence of airway neutrophils and inflammatory response are increased in CF airway epithelial cell-neutrophil interactions. Am J Physiol Lung Cell Mol Physiol 2005; 290:L588-96. [PMID: 16272177 DOI: 10.1152/ajplung.00013.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Persistent presence of PMN in airways is the hallmark of CF. Our aim was to assess PMN adherence, percentage of apoptotic airway PMN (aPMN), and IL-6 and IL-8 production when aPMN are in contact with airway epithelial cells. Before coculture, freshly isolated CF aPMN have greater spontaneous and TNF-alpha-induced apoptosis compared with blood PMN from the same CF patients and from aPMN of non-CF patients. We then examined cocultures of PMN isolated from CF and non-CF airways with bronchial epithelial cells bearing mutated cftr compared with cftr-corrected bronchial epithelial cells. After 18-h coculture, the number of CF aPMN adhered on cftr-deficient bronchial epithelial cells was 2.3-fold higher compared with the coculture of non-CF aPMN adhered on cftr-corrected bronchial epithelial cells. The percentage of CF apoptotic aPMN (9.5 +/- 0.2%) adhered on cftr-deficient bronchial epithelial cells was similar to the percentage of non-CF apoptotic aPMN adhered on cftr-corrected bronchial epithelial cells (10.3 +/- 0.7%). IL-6 and IL-8 levels were enhanced 6.5- and 2.9-fold, respectively, in coculture of CF aPMN adhered on cftr-deficient bronchial epithelial cells compared with coculture of non-CF aPMN adhered on cftr-corrected bronchial epithelial cells. Moreover, blocking surface adhesion molecules ICAM-1, VCAM-1, and E-selectin on cftr-deficient bronchial epithelial cells with specific MAbs inhibited the adherence of CF aPMN by 64, 51, and 50%, respectively. Our data suggest that in CF patients a high number of nonapoptotic PMN adhered on airway epithelium associated with elevated IL-6 and IL-8 levels may contribute to sustained and exaggerated inflammatory response in CF airways.
Collapse
Affiliation(s)
- Olivier Tabary
- Inserm U719, Hôpital St-Antoine, Bâtiment Kourilsky, 184, rue du Fg St-Antoine, F-75571 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chang CK, Zdon MJ. Inflammatory response of interleukin-1beta and interleukin-6 in septic rats undergoing laparotomy and laparoscopy. Surg Laparosc Endosc Percutan Tech 2005; 15:124-8. [PMID: 15956894 DOI: 10.1097/01.sle.0000166971.46595.0c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
It is generally accepted that greater inflammatory response is observed after laparotomy than laparoscopy in animal models. However, in a previous study, we reported there are no significant differences in the systemic response of tumor necrosis factor (TNF)-alpha between the laparotomy and laparoscopy groups in a rat model of endotoxic shock. The present study extends this investigation to the inflammatory response of 2 additional proinflammatory mediators, interleukin (IL)-1beta and IL-6, in septic rats after laparotomy and laparoscopy in the same animal model. Rats received lipopolysaccharide (LPS) intraperitoneally and underwent laparotomy (n = 5), laparoscopy (n = 5), or no surgical intervention (n = 5). A control group received anesthesia only (n = 5). Serum IL-1beta and IL-6 levels were significantly higher at 2, 4, and 8 hours after LPS injection and were equally suppressed in the laparotomy and laparoscopic groups (P < 0.05). Liver IL-1beta mRNA and protein levels were significantly inhibited at 2, 4, and 8 hours in the laparotomy and laparoscopic groups. Liver IL-6 mRNA (2 and 4 hours) and protein (4 hours) levels were also suppressed significantly in both the laparotomy and laparoscopic groups (P < 0.05). There were no significant differences in hepatic levels of mRNA and protein of IL-beta and IL-6 in both the laparotomy and laparoscopic groups. These results extend our previous finding demonstrating the suppression of TNF-alpha in both the laparotomy and laparoscopic groups. The behavior of the markers used in our study demonstrated that the inflammatory response does not differ between laparotomy and laparoscopic surgery in our rat model of endotoxic shock.
Collapse
Affiliation(s)
- Cheow K Chang
- Department of Surgery, Chicago Medical School of Rosalind Franklin University of Medicine and Science at Mount Sinai Hospital Medical Center, Chicago, IL 60608, USA
| | | |
Collapse
|
44
|
McAllister F, Henry A, Kreindler JL, Dubin PJ, Ulrich L, Steele C, Finder JD, Pilewski JM, Carreno BM, Goldman SJ, Pirhonen J, Kolls JK. Role of IL-17A, IL-17F, and the IL-17 receptor in regulating growth-related oncogene-alpha and granulocyte colony-stimulating factor in bronchial epithelium: implications for airway inflammation in cystic fibrosis. THE JOURNAL OF IMMUNOLOGY 2005; 175:404-12. [PMID: 15972674 PMCID: PMC2849297 DOI: 10.4049/jimmunol.175.1.404] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IL-17R signaling is critical for pulmonary neutrophil recruitment and host defense against Gram-negative bacteria through the coordinated release of G-CSF and CXC chemokine elaboration. In this study, we show that IL-17R is localized to basal airway cells in human lung tissue, and functional IL-17R signaling occurs on the basolateral surface of human bronchial epithelial (HBE) cells. IL-17A and IL-17F were potent inducers of growth-related oncogene-alpha and G-CSF in HBE cells, and significant synergism was observed with TNF-alpha largely due to signaling via TNFRI. The activities of both IL-17A and IL-17F were blocked by a specific anti-IL-17R Ab, but only IL-17A was blocked with a soluble IL-17R, suggesting that cell membrane IL-17R is required for signaling by both IL-17A and IL-17F. Because IL-17A and IL-17F both regulate lung neutrophil recruitment, we measured these molecules as well as the proximal regulator IL-23p19 in the sputum of patients with cystic fibrosis (CF) undergoing pulmonary exacerbation. We found significantly elevated levels of these molecules in the sputum of patients with CF who were colonized with Pseudomonas aeruginosa at the time of pulmonary exacerbation, and the levels declined with therapy directed against P. aeruginosa. IL-23 and the downstream cytokines IL-17A and IL-17F are critical molecules for proinflammatory gene expression in HBE cells and are likely involved in the proinflammatory cytokine network involved with CF pathogenesis.
Collapse
Affiliation(s)
| | - Adam Henry
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Patricia J. Dubin
- Lung Immunology and Host Defense Laboratory, Department of Pediatrics
| | - Lauren Ulrich
- Lung Immunology and Host Defense Laboratory, Department of Pediatrics
| | - Chad Steele
- Lung Immunology and Host Defense Laboratory, Department of Pediatrics
| | | | - Joseph M. Pilewski
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | | | | | - Jaana Pirhonen
- Department of Microbiology, National Public Health Institute, Helsinki, Finland
| | - Jay K. Kolls
- Lung Immunology and Host Defense Laboratory, Department of Pediatrics
- Address correspondence and reprint requests to Dr. Jay K. Kolls, Children's Hospital of Pittsburgh, Suite 3765, 3705 Fifth Avenue, Pittsburgh, PA 15213.
| |
Collapse
|
45
|
Solic N, Wilson J, Wilson SJ, Shute JK. Endothelial activation and increased heparan sulfate expression in cystic fibrosis. Am J Respir Crit Care Med 2005; 172:892-8. [PMID: 15976375 DOI: 10.1164/rccm.200409-1207oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Pulmonary disease in cystic fibrosis (CF) is characterized by an exaggerated interleukin (IL)-8-driven, neutrophilic, inflammatory response to infection. Binding of IL-8 to heparan sulfate (HS)-containing proteoglycans (HSPG) facilitates binding of the chemokine to its specific receptor, stabilizes and prolongs IL-8 activity, and protects it from proteolysis. We hypothesized that increased expression of HSPG contributes to the sustained inflammatory response in CF bronchial tissue. OBJECTIVES Our objectives were to analyze the distribution and abundance of IL-8 and HS, in intact and cleaved forms, in bronchial tissue from adult patients with CF or chronic obstructive pulmonary disease (COPD) and a control group without inflammatory airway disease. METHODS Immunostaining and quantitative image analysis were applied to ethanol-fixed and paraffin-embedded tissue obtained at transplant in patients with CF or COPD, or postmortem in the control group. MEASUREMENTS AND MAIN RESULTS Quantitative immunohistochemical analysis demonstrated significant disease-related differences. Intact HS was significantly more abundant in epithelial and endothelial basement membranes in CF than in COPD or the control group. Conversely, cleaved HS was significantly more abundant in COPD than the other groups. More IL-8-positive blood vessels were observed in CF and COPD compared with the control group, whereas more extensive IL-8 expression in the epithelium was observed in CF compared with COPD. CONCLUSIONS Sustained neutrophil recruitment in the CF airway may therefore be related not only to increased IL-8 expression but also to the increased stability and prolonged activity and retention of IL-8 when it is bound to HSPG in bronchial tissue.
Collapse
Affiliation(s)
- Nicola Solic
- Respiratory Cell and Molecular Biology Division, Southampton University School of Medicine, UK, and Department of Allergy, Immunology, and Respiratory Medicine, Alfred Hospital, Victoria, Australia
| | | | | | | |
Collapse
|
46
|
Allen L, Dockrell DH, Pattery T, Lee DG, Cornelis P, Hellewell PG, Whyte MKB. Pyocyanin Production byPseudomonas aeruginosaInduces Neutrophil Apoptosis and Impairs Neutrophil-Mediated Host Defenses In Vivo. THE JOURNAL OF IMMUNOLOGY 2005; 174:3643-9. [PMID: 15749902 DOI: 10.4049/jimmunol.174.6.3643] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Clearance of neutrophils from inflamed sites is critical for resolution of inflammation, but pathogen-driven neutrophil apoptosis can impair host defenses. We previously showed that pyocyanin, a phenazine toxic metabolite produced by Pseudomonas aeruginosa, accelerates neutrophil apoptosis in vitro. We compared wild-type and pyocyanin-deficient strains of P. aeruginosa in a murine model of acute pneumonia. Intratracheal instillation of either strain of P. aeruginosa caused a rapid increase in bronchoalveolar lavage neutrophil counts up to 18 h after infection. In wild-type infection, neutrophil numbers then declined steadily, whereas neutrophil numbers increased up to 48 h in mice infected with pyocyanin-deficient P. aeruginosa. In keeping with these differences, pyocyanin production was associated with reduced bacterial clearance from the lungs. Neutrophil apoptosis was increased in mice infected with wild-type compared with the phenazine-deficient strain or two further strains that lack pyocyanin production, but produce other phenazines. Concentrations of potent neutrophil chemokines (MIP-2, KC) and cytokines (IL-6, IL-1beta) were significantly lower in wild-type compared with phenazine-deficient strain-infected mice at 18 h. We conclude that pyocyanin production by P. aeruginosa suppresses the acute inflammatory response by pathogen-driven acceleration of neutrophil apoptosis and by reducing local inflammation, and that this is advantageous for bacterial survival.
Collapse
Affiliation(s)
- Lucy Allen
- Division of Clinical Sciences (North), University of Sheffield, Sheffield, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
47
|
Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med 2005; 171:1209-23. [PMID: 15695491 PMCID: PMC2718459 DOI: 10.1164/rccm.200408-1044so] [Citation(s) in RCA: 574] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is an important pathogen causing a wide range of acute and chronic infections. P. aeruginosa rarely causes infection in the normal host, but is an efficient opportunistic pathogen causing serious infections in patients who are mechanically ventilated, individuals who are immunocompromised, and patients with malignancies or HIV infection. Among these risk groups, the most vulnerable hosts are neutropenic and patients who are mechanically ventilated. In addition, P. aeruginosa is the most prevalent chronic infection contributing to the pathogenesis of cystic fibrosis. Because of the ubiquitous nature of P. aeruginosa and its ability to develop resistance to antibiotics, it continues to be problematic from a treatment perspective. The pathogenicity of P. aeruginosa is largely caused by multiple bacterial virulence factors and genetic flexibility enabling it to survive in varied environments. Lung injury associated with P. aeruginosa infection results from both the direct destructive effects of the organism on the lung parenchyma and exuberant host immune responses. This article focuses on the major bacterial virulence factors and important aspects of the host immunity that are involved in the pathogenesis of serious P. aeruginosa infection. In addition to antibiotic therapy, strategies directed toward enhancing host defense and/or limiting excessive inflammation could be important to improve outcome in P. aeruginosa lung infections.
Collapse
Affiliation(s)
- Ruxana T Sadikot
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
48
|
Saadane A, Soltys J, Berger M. Role of IL-10 deficiency in excessive nuclear factor-κB activation and lung inflammation in cystic fibrosis transmembrane conductance regulator knockout mice. J Allergy Clin Immunol 2005; 115:405-11. [PMID: 15696103 DOI: 10.1016/j.jaci.2004.10.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Patients with cystic fibrosis (CF) and CF transmembrane conductance regulator knockout (CF-KO) mice are deficient in pulmonary IL-10 and have excessive inflammatory response to Pseudomonas aeruginosa infection. OBJECTIVE We hypothesized that local IL-10 deficiency in the lung was responsible for prolonged and excessive inflammatory responses and observations of inflammation in the absence of infection. METHODS To determine whether IL-10 deficiency could account for persistent inflammation in CF mice independent of interactions of bacteria with epithelial cells, we challenged IL-10-knockout (IL-10-KO), CF-KO, and wild-type (WT) mice intratracheally with LPS and determined the effects of IL-10 replacement in CF-KO mice. RESULTS In response to LPS, IL-10-KO and CF-KO mice had more neutrophils and proinflammatory cytokines in bronchoalveolar lavage than WT mice. Both types of knockout mice had more profound and prolonged consumption of I-kappaB and increased activation of nuclear factor kappaB (NF-kappaB). Activated NF-kappaB persisted for 6 to 8 hours in CF-KO and IL-10-KO mice but was not detected beyond 2 hours in WT mice. IL-10 treatment of CF-KO mice attenuated the reduction in I-kappaBalpha and activation of NF-kappaB and reduced the excessive inflammation. CONCLUSION Similarities in the responses of CF-KO and IL-10-KO mice and correction of excessive responses in CF mice by exogenous IL-10 suggest that deficiency of IL-10 may be responsible for prolonged and excessive inflammatory responses in CF. Because LPS was used as the stimulus, these excessive responses are independent of any possible differences in the interactions of bacteria with CF epithelial cells.
Collapse
Affiliation(s)
- Aicha Saadane
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
49
|
Kradin RL, Sakamoto H, Jain F, Zhao LH, Hymowitz G, Preffer F. IL-10 inhibits inflammation but does not affect fibrosis in the pulmonary response to bleomycin. Exp Mol Pathol 2004; 76:205-11. [PMID: 15126102 DOI: 10.1016/j.yexmp.2003.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Indexed: 11/26/2022]
Abstract
Bleomycin yields pulmonary injury characterized by inflammation that proceeds to fibrosis. The production of IL-10 by pulmonary macrophages is increased in the inflammation that accompanies bleomycin lung injury. In the present study, IL-10 deficient and wildtype mice received 0.075 units of bleomycin intratracheally at day 0 and were sacrificed at day 7 or day 14. At day 7, pulmonary inflammation was increased in IL-10-deficient mice as reflected by increased representation of CD3+ and CD4+ lymphocytes and GR-1+ pulmonary granulocytes in the bronchoalveolar lavage (BAL) fluid. Pulmonary interstitial CD80+ and CD86+ mononuclear cells were increased in situ. At day 14, mononuclear cell inflammation was comparable between groups but pulmonary eosinophils were increased in the wildtype. There was no difference in the degree of pulmonary fibrosis, as judged by histology or lung hydroxyproline content. Lung chemokine expression of MIP-1alpha/beta, MIP-2, and eotaxin was increased at days 7 and 14 with a trend towards increased MCP-1 expression at day 14. The findings suggest an immunomodulatory role for IL-10 in the inflammatory response but not in the pulmonary fibrosis yielded by bleomycin.
Collapse
Affiliation(s)
- Richard L Kradin
- The Immunopathology and Pulmonary and Critical Care Units, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Paul K, Rietschel E, Ballmann M, Griese M, Worlitzsch D, Shute J, Chen C, Schink T, Döring G, van Koningsbruggen S, Wahn U, Ratjen F. Effect of Treatment with Dornase Alpha on Airway Inflammation in Patients with Cystic Fibrosis. Am J Respir Crit Care Med 2004; 169:719-25. [PMID: 14684561 DOI: 10.1164/rccm.200307-959oc] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recombinant human deoxyribonuclease (rhDNase) has been shown to improve lung function and reduce the number of pulmonary exacerbations in patients with cystic fibrosis (CF), but its long-term effect on airway inflammation remains unknown. In this study, we used bronchoalveolar lavage (BAL) to investigate the long-term effect of rhDNase on inflammation in patients with CF having mild lung disease. A total of 105 patients with CF (> or =5 years of age) having normal lung function were randomized to receive rhDNase (2.5 mg/day) or no rhDNase. Patients with a normal percentage of neutrophils in BAL fluid at baseline were not randomized and served as the control group. The percentage of neutrophils in the pooled BAL sample was similar in both randomized groups at baseline. A significant increase in neutrophils was observed over the 3-year study period in both untreated patients and control subjects, whereas neutrophils remained unchanged in patients treated with rhDNase. Elastase activities and interleukin-8 concentrations also increased in untreated patients and remained stable in patients on rhDNase. We conclude that in patients with CF, an increase in neutrophilic airway inflammation is found that is positively influenced by rhDNase treatment.
Collapse
Affiliation(s)
- Karl Paul
- Department of Pediatric Pneumology and Immunology, Charité, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|