1
|
Ambhore NS, Balraj P, Pabelick CM, Prakash YS, Sathish V. Estrogen receptors differentially modifies lamellipodial and focal adhesion dynamics in airway smooth muscle cell migration. Mol Cell Endocrinol 2024; 579:112087. [PMID: 37827228 PMCID: PMC10842142 DOI: 10.1016/j.mce.2023.112087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Sex-steroid signaling, especially estrogen, has a paradoxical impact on regulating airway remodeling. In our previous studies, we demonstrated differential effects of 17β-estradiol (E2) towards estrogen receptors (ERs: α and β) in regulating airway smooth muscle (ASM) cell proliferation and extracellular matrix (ECM) production. However, the role of ERs and their signaling on ASM migration is still unexplored. In this study, we examined how ERα versus ERβ affects the mitogen (Platelet-derived growth factor, PDGF)-induced human ASM cell migration as well as the underlying mechanisms involved. We used Lionheart-FX automated microscopy and transwell assays to measure cell migration and found that activating specific ERs had differential effects on PDGF-induced ASM cell migration. Pharmacological activation of ERβ or shRNA mediated knockdown of ERα and specific activation of ERβ blunted PDGF-induced cell migration. Furthermore, specific ERβ activation showed inhibition of actin polymerization by reducing the F/G-actin ratio. Using Zeiss confocal microscopy coupled with three-dimensional algorithmic ZEN-image analysis showed an ERβ-mediated reduction in PDGF-induced expressions of neural Wiskott-Aldrich syndrome protein (N-WASP) and actin-related proteins-2/3 (Arp2/3) complex, thereby inhibiting actin-branching and lamellipodia. In addition, ERβ activation also reduces the clustering of actin-binding proteins (vinculin and paxillin) at the leading edge of ASM cells. However, cells treated with E2 or ERα agonists do not show significant changes in actin/lamellipodial dynamics. Overall, these findings unveil the significance of ERβ activation in regulating lamellipodial and focal adhesion dynamics to regulate ASM cell migration and could be a novel target to blunt airway remodeling.
Collapse
Affiliation(s)
| | - Premanand Balraj
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
2
|
Salehi Z, Motlagh Ghoochani BFN, Hasani Nourian Y, Jamalkandi SA, Ghanei M. The controversial effect of smoking and nicotine in SARS-CoV-2 infection. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:49. [PMID: 37264452 PMCID: PMC10234254 DOI: 10.1186/s13223-023-00797-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023]
Abstract
The effects of nicotine and cigarette smoke in many diseases, notably COVID-19 infection, are being debated more frequently. The current basic data for COVID-19 is increasing and indicating the higher risk of COVID-19 infections in smokers due to the overexpression of corresponding host receptors to viral entry. However, current multi-national epidemiological reports indicate a lower incidence of COVID-19 disease in smokers. Current data indicates that smokers are more susceptible to some diseases and more protective of some other. Interestingly, nicotine is also reported to play a dual role, being both inflammatory and anti-inflammatory. In the present study, we tried to investigate the effect of pure nicotine on various cells involved in COVID-19 infection. We followed an organ-based systematic approach to decipher the effect of nicotine in damaged organs corresponding to COVID-19 pathogenesis (12 related diseases). Considering that the effects of nicotine and cigarette smoke are different from each other, it is necessary to be careful in generalizing the effects of nicotine and cigarette to each other in the conducted researches. The generalization and the undifferentiation of nicotine from smoke is a significant bias. Moreover, different doses of nicotine stimulate different effects (dose-dependent response). In addition to further assessing the role of nicotine in COVID-19 infection and any other cases, a clever assessment of underlying diseases should also be considered to achieve a guideline for health providers and a personalized approach to treatment.
Collapse
Affiliation(s)
- Zahra Salehi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Esnault S, Jarjour NN. Development of Adaptive Immunity and Its Role in Lung Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1426:287-351. [PMID: 37464127 DOI: 10.1007/978-3-031-32259-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Asthma is characterized by airflow limitations resulting from bronchial closure, which can be either reversible or fixed due to changes in airway tissue composition and structure, also known as remodeling. Airway remodeling is defined as increased presence of mucins-producing epithelial cells, increased thickness of airway smooth muscle cells, angiogenesis, increased number and activation state of fibroblasts, and extracellular matrix (ECM) deposition. Airway inflammation is believed to be the main cause of the development of airway remodeling in asthma. In this chapter, we will review the development of the adaptive immune response and the impact of its mediators and cells on the elements defining airway remodeling in asthma.
Collapse
|
4
|
Lv C, Liao G, Wu L, Li J, Gao Y. Effects of Different Intervention Factors on Vascular Endothelial Growth Factor-Induced Human Airway Smooth Muscle Cell Migration. Can Respir J 2022; 2022:6879539. [PMID: 36262381 PMCID: PMC9576450 DOI: 10.1155/2022/6879539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Background Asthma airway remodeling is closely related to the abnormal migration of human airway smooth muscle cells (ASMCs), and vascular endothelial growth factor (VEGF) is involved in the pathophysiological process of asthma. This study aimed to investigate the effect of VEGF on ASMC migration through in vitro cell experiments and to intervene in ASMC migration with different asthma drugs and signaling pathway inhibitors to provide a basis for screening effective drugs for airway remodeling. Methods The effect of VEGF on the proliferation of ASMCs was detected by the CCK-8 method, and the effect of VEGF on the migration of ASMCs was proven by scratch and transwell assays. Different asthma drugs and signaling pathway inhibitors were used to interfere with the migration of ASMCs. The number of migrating cells was compared between the intervention and nonintervention groups. Results Our results showed that VEGF induction enhanced ASMC migration; pretreatment with the commonly used asthma drugs (salbutamol, budesonide, and ipratropium bromide) significantly attenuated VEGF-induced ASMC migration; and inhibitors SB203580, LY294002, and Y27632 blocked the VEGF-induced activation of p38 MAPK, PI3K, and ROCK signaling pathway targets in ASMCs and inhibited migration. Conclusion This study shows that the current commonly used asthma drugs salbutamol, budesonide, and ipratropium have potential value in the treatment of airway remodeling, and the p38 MAPK, PI3K, and ROCK signaling pathway targets are involved in the VEGF-induced ASMC migration process. Signaling pathway inhibitor drugs may be a new way to treat asthma-induced airway remodeling in asthma patients in the future. However, the related mechanism and safety profile still need further research.
Collapse
Affiliation(s)
- Chengtian Lv
- Department of Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guangyuan Liao
- Department of Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lichan Wu
- Department of Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- Department of Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuanmei Gao
- Department of Critical Care Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Hassoun D, Rose L, Blanc FX, Magnan A, Loirand G, Sauzeau V. Bronchial smooth muscle cell in asthma: where does it fit? BMJ Open Respir Res 2022; 9:9/1/e001351. [PMID: 36109087 PMCID: PMC9478857 DOI: 10.1136/bmjresp-2022-001351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/04/2022] [Indexed: 11/04/2022] Open
Abstract
Asthma is a frequent respiratory condition whose pathophysiology relies on altered interactions between bronchial epithelium, smooth muscle cells (SMC) and immune responses. Those leads to classical hallmarks of asthma: airway hyper-responsiveness, bronchial remodelling and chronic inflammation. Airway smooth muscle biology and pathophysiological implication in asthma are now better understood. Precise deciphering of intracellular signalling pathways regulating smooth muscle contraction highlighted the critical roles played by small GTPases of Rho superfamily. Beyond contractile considerations, active involvement of airway smooth muscle in bronchial remodelling mechanisms is now established. Not only cytokines and growth factors, such as fibroblats growth factor or transforming growth factor-β, but also extracellular matrix composition have been demonstrated as potent phenotype modifiers for airway SMC. Although basic science knowledge has grown significantly, little of it has translated into improvement in asthma clinical practice. Evaluation of airway smooth muscle function is still limited to its contractile activity. Moreover, it relies on tools, such as spirometry, that give only an overall assessment and not a specific one. Interesting technics such as forced oscillometry or specific imagery (CT and MRI) give new perspectives to evaluate other aspects of airway muscle such as bronchial remodelling. Finally, except for the refinement of conventional bronchodilators, no new drug therapy directly targeting airway smooth muscle proved its efficacy. Bronchial thermoplasty is an innovative and efficient therapeutic strategy but is only restricted to a small proportion of severe asthmatic patients. New diagnostic and therapeutic strategies specifically oriented toward airway smooth muscle are needed to improve global asthma care.
Collapse
Affiliation(s)
- Dorian Hassoun
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Lindsay Rose
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - François-Xavier Blanc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Antoine Magnan
- INRAe, UMR 0892, Hôpital Foch, Suresnes, France.,Université Versailles-Saint-Quentin-en-Yvelines Paris-Saclay, Versailles, France
| | - Gervaise Loirand
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| | - Vincent Sauzeau
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Pays de la Loire, France
| |
Collapse
|
6
|
Joseph C, Tatler AL. Pathobiology of Airway Remodeling in Asthma: The Emerging Role of Integrins. J Asthma Allergy 2022; 15:595-610. [PMID: 35592385 PMCID: PMC9112045 DOI: 10.2147/jaa.s267222] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Airway remodeling is a complex clinical feature of asthma that involves long-term disruption and modification of airway architecture, which contributes significantly to airway hyperresponsiveness (AHR) and lung function decline. It is characterized by thickening of the airway smooth muscle layer, deposition of a matrix below the airway epithelium, resulting in subepithelial fibrosis, changes within the airway epithelium, leading to disruption of the barrier, and excessive mucous production and angiogenesis within the airway wall. Airway remodeling contributes to stiffer and less compliant airways in asthma and leads to persistent, irreversible airflow obstruction. Current asthma treatments aim to reduce airway inflammation and exacerbations but none are targeted towards airway remodeling. Inhibiting the development of airway remodeling or reversing established remodeling has the potential to dramatically improve symptoms and disease burden in asthmatic patients. Integrins are a family of transmembrane heterodimeric proteins that serve as the primary receptors for extracellular matrix (ECM) components, mediating cell-cell and cell-ECM interactions to initiate intracellular signaling cascades. Cells present within the lungs, including structural and inflammatory cells, express a wide and varying range of integrin heterodimer combinations and permutations. Integrins are emerging as an important regulator of inflammation, repair, remodeling, and fibrosis in the lung, particularly in chronic lung diseases such as asthma. Here, we provide a comprehensive summary of the current state of knowledge on integrins in the asthmatic airway and how these integrins promote the remodeling process, and emphasize their potential involvement in airway disease.
Collapse
Affiliation(s)
- Chitra Joseph
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, National Institute for Health Research Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
7
|
Celle A, Esteves P, Cardouat G, Beaufils F, Eyraud E, Dupin I, Maurat E, Lacomme S, Ousova O, Begueret H, Thumerel M, Marthan R, Girodet PO, Berger P, Trian T. Rhinovirus infection of bronchial epithelium induces specific bronchial smooth muscle cell migration of severe asthmatic patients. J Allergy Clin Immunol 2022; 150:104-113. [PMID: 35143808 DOI: 10.1016/j.jaci.2022.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Patients with severe asthma show an increase in both exacerbation frequency and bronchial smooth muscle (BSM) mass. Rhinovirus (RV) infection of the bronchial epithelium (BE) is the main trigger of asthma exacerbations. Histological analysis of biopsies shows that a close connection between BE and hypertrophic BSM is a criterion for severity of asthma. OBJECTIVE We hypothesized that RV infection of BE specifically increases asthmatic BSM cell migration. METHODS Serum samples, biopsies or BSM cells were obtained from 86 patients with severe asthma and 31 non-asthmatic subjects. BE cells from non-asthmatic subjects were cultured in an air-liquid interface and exposed to RV-16. Migration of BSM cells was assessed in response to BE supernatant using chemotaxis assays. Chemokine concentrations were analyzed by transcriptomics and ELISAs. Immunocytochemistry, western blotting and flow cytometry were used to quantify CXCR3 isoform distribution. CXCR3 downstream signaling pathways were assessed by calcium imaging and western blots. RESULTS BSM cells from severe asthmatic patients specifically migrated toward RV-infected BE, whereas those from non-asthmatic subjects did not. This specific migration is driven by BE CXCL10, which was increased in vitro in response to RV infection as well as in vivo in serum from exacerbating patients with severe asthma. The mechanism is related to both decreased expression and activation of the CXCR3-B-specific isoform in severe asthmatic BSM cells. CONCLUSION We have demonstrated a novel mechanism of BSM remodeling in severe asthmatic patients following RV exacerbation. This study highlights the CXCL10/CXCR3-A axis as a potential therapeutic target in severe asthma.
Collapse
Affiliation(s)
- Alexis Celle
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Guillaume Cardouat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Fabien Beaufils
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Edmée Eyraud
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Isabelle Dupin
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Elise Maurat
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Sabrina Lacomme
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France
| | - Olga Ousova
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France
| | - Hugues Begueret
- CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Matthieu Thumerel
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Roger Marthan
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Pierre-Olivier Girodet
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Patrick Berger
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France; CHU de Bordeaux, Service d'exploration fonctionnelle respiratoire, Service de chirurgie, CIC 1401
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4-33000 Bordeaux, France; INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, F-33000 Bordeaux, France.
| |
Collapse
|
8
|
Jurkeviciute E, Januskevicius A, Rimkunas A, Palacionyte J, Malakauskas K. α 4β 1 and α Mβ 2 Integrin Expression and Pro-Proliferative Properties of Eosinophil Subtypes in Asthma. J Pers Med 2021; 11:jpm11090829. [PMID: 34575607 PMCID: PMC8467456 DOI: 10.3390/jpm11090829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 12/02/2022] Open
Abstract
Eosinophilic inflammation is one of the main pathophysiological features in asthma. Two subtypes of eosinophils exist in the lung and systemic circulation: lung-resident eosinophils (rEOS) and inflammatory eosinophils (iEOS). We evaluated the expression of α4β1 and αMβ2 integrins of eosinophil subtypes and their influence on airway smooth muscle (ASM) cell proliferation and viability in asthma. We included 16 severe non-allergic eosinophilic asthma (SNEA) patients, 13 steroid-free, non-severe allergic asthma (AA) patients, and 12 healthy control subjects (HS). For AA patients, a bronchial allergen challenge with Dermatophagoides pteronyssinus was performed. The eosinophil subtypes were distinguished using magnetic bead-labeled antibodies against surface CD62L, and individual combined cell cultures were prepared with ASM cells. The integrins gene expression was analyzed by a quantitative real-time polymerase chain reaction. Proliferation was assessed by the Alamar blue assay, and viability by annexin V and propidium iodide staining. rEOS-like cells were characterized by the relatively higher gene expression of the β1 integrin subunit, whereas iEOS-like cells were characterized by the αM and β2 integrin subunits. The inclusion of either eosinophil subtypes in co-culture significantly increased the proliferation of ASM cells, and the effect of rEOS-like cells was stronger than iEOS-like cells (p < 0.05). Furthermore, rEOS-like cells had a more pronounced effect on reducing ASM cell apoptosis compared to that of iEOS-like cells (p < 0.05). Lastly, the bronchial allergen challenge significantly enhanced only the iEOS-like cells’ effect on ASM cell proliferation and viability in AA patients (p < 0.05). These findings highlight the different expression of α4β1 and αMβ2 integrins on distinct eosinophil subtypes in asthma. Therefore, rEOS-like cells have a stronger effect in stimulating ASM cell proliferation and viability; however, contact with specific allergens mainly enhances pro-proliferative iEOS-like cell properties.
Collapse
Affiliation(s)
- Egle Jurkeviciute
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Correspondence: ; Tel.: +370-653-61275
| | - Andrius Januskevicius
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Airidas Rimkunas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
| | - Jolita Palacionyte
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| | - Kestutis Malakauskas
- Laboratory of Pulmonology, Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania; (A.J.); (A.R.); (K.M.)
- Department of Pulmonology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania;
| |
Collapse
|
9
|
Chetty A, Nielsen HC. Targeting Airway Smooth Muscle Hypertrophy in Asthma: An Approach Whose Time Has Come. J Asthma Allergy 2021; 14:539-556. [PMID: 34079293 PMCID: PMC8164696 DOI: 10.2147/jaa.s280247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
Airway smooth muscle (ASM) cell dysfunction is an important component of several obstructive pulmonary diseases, particularly asthma. External stimuli such as allergens, dust, air pollutants, and change in environmental temperatures provoke ASM cell hypertrophy, proliferation, and migration without adequate mechanistic controls. ASM cells can switch between quiescent, migratory, and proliferative phenotypes in response to extracellular matrix proteins, growth factors, and other soluble mediators. While some aspects of airway hypertrophy and remodeling could have beneficial effects, in many cases these contribute to a clinical phenotype of difficult to control asthma. In this review, we discuss the factors responsible for ASM hypertrophy and proliferation in asthma, focusing on cytokines, growth factors, and ion transporters, and discuss existing and potential approaches that specifically target ASM hypertrophy to reduce the ASM mass and improve asthma symptoms. The goal of this review is to highlight strategies that appear ready for translational investigations to improve asthma therapy.
Collapse
Affiliation(s)
- Anne Chetty
- Tufts Medical Center, Tufts University, Boston, MA, USA
| | | |
Collapse
|
10
|
Role of Airway Smooth Muscle in Inflammation Related to Asthma and COPD. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:139-172. [PMID: 33788192 DOI: 10.1007/978-3-030-63046-1_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Airway smooth muscle contributes to both contractility and inflammation in the pathophysiology of asthma and COPD. Airway smooth muscle cells can change the degree of a variety of functions, including contraction, proliferation, migration, and the secretion of inflammatory mediators (phenotype plasticity). Airflow limitation, airway hyperresponsiveness, β2-adrenergic desensitization, and airway remodeling, which are fundamental characteristic features of these diseases, are caused by phenotype changes in airway smooth muscle cells. Alterations between contractile and hyper-contractile, synthetic/proliferative phenotypes result from Ca2+ dynamics and Ca2+ sensitization. Modulation of Ca2+ dynamics through the large-conductance Ca2+-activated K+ channel/L-type voltage-dependent Ca2+ channel linkage and of Ca2+ sensitization through the RhoA/Rho-kinase pathway contributes not only to alterations in the contractile phenotype involved in airflow limitation, airway hyperresponsiveness, and β2-adrenergic desensitization but also to alteration of the synthetic/proliferative phenotype involved in airway remodeling. These Ca2+ signal pathways are also associated with synergistic effects due to allosteric modulation between β2-adrenergic agonists and muscarinic antagonists. Therefore, airway smooth muscle may be a target tissue in the therapy for these diseases. Moreover, the phenotype changing in airway smooth muscle cells with focuses on Ca2+ signaling may provide novel strategies for research and development of effective remedies against both bronchoconstriction and inflammation.
Collapse
|
11
|
Melatonin modulates airway smooth muscle cell phenotype by targeting the STAT3/Akt/GSK-3β pathway in experimental asthma. Cell Tissue Res 2019; 380:129-142. [PMID: 31867684 DOI: 10.1007/s00441-019-03148-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Among the troika of clinicopathologic features of asthma, airway remodelling has gained sufficient attention for its contribution to progressive airway narrowing. Much effort has been directed at the management of airway smooth muscle cells (ASMCs), but few attempts have proven to prevent the progression of remodelling. Recently, accumulating data have shown the anti-inflammatory/anti-proliferative potency of melatonin (a crucial neurohormone involved in many physiological and pathological processes) in diverse cells. However, no evidence has confirmed its effect on ASMCs. The present study investigates the benefits of melatonin in asthma, with an emphasis on airway remodelling. The results indicated that melatonin significantly attenuated airway hyperresponsiveness (AHR), inflammation and remodelling in a house dust mite (HDM) model. Melatonin markedly alleviated goblet cell hyperplasia/metaplasia, collagen deposition and airway smooth muscle hyperplasia/hypertrophy, implying the achievement of remodelling remission. The data obtained in vitro further revealed that melatonin notably inhibited ASMCs proliferation, VEGF synthesis and cell migration induced by PDGF, which might depend on STAT3 signalling. Moreover, melatonin remarkably relieved ASMCs contraction and reversed ASMCs phenotype switching induced by TGF-β, probably via the Akt/GSK-3β pathway. Altogether, our findings illustrated for the first time that melatonin improves asthmatic airway remodelling by balancing the phenotypic proportions of ASMCs, thus highlighting a novel purpose for melatonin as a potent option for the management of asthma.
Collapse
|
12
|
Tetrandrine Ameliorates Airway Remodeling of Chronic Asthma by Interfering TGF- β1/Nrf-2/HO-1 Signaling Pathway-Mediated Oxidative Stress. Can Respir J 2019; 2019:7930396. [PMID: 31781316 PMCID: PMC6875008 DOI: 10.1155/2019/7930396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background Imbalanced oxidative stress and antioxidant defense are involved in airway remodeling in asthma. It has been demonstrated that Tetrandrine has a potent role in antioxidant defense in rheumatoid arthritis and hypertension. However, the correlation between Tetrandrine and oxidative stress in asthma is utterly blurry. This study aimed to investigate the role of Tetrandrine on oxidative stress-mediated airway remolding. Materials and Methods Chronic asthma was established by ovalbumin (OVA) administration in male Wistar rats. Histopathology was determined by HE staining. Immunofluorescence was employed to detect the expression of α-SMA and Nrf-2. Level of oxidative stress and matrix metalloproteinases were examined by ELISA kits. Cell viability and cell cycle of primary airway smooth muscle cells (ASMCs) were evaluated by CCK8 and flow cytometry, respectively. Signal molecules were detected using western blot. Results Tetrandrine effectively impairs OVA-induced airway inflammatory and airway remodeling by inhibiting the expression of CysLT1 and CysLTR1. The increase of oxidative stress and subsequent enhancement of MMP9 and TGF-β1 expression were rescued by the administration of Tetrandrine in the rat model of asthma. In in vitro experiments, Tetrandrine markedly suppressed TGF-β1-evoked cell viability and cell cycle promotion of ASMCs in a dose-dependent manner. Furthermore, Tetrandrine promoted Nrf-2 nuclear transcription and activated its downstream HO-1 in vivo and in vitro. Conclusion Tetrandrine attenuates airway inflammatory and airway remodeling in rat model of asthma and TGF-β1-induced cell proliferation of ASMCs by regulating oxidative stress in primary ASMCs, suggesting that Tetrandrine possibly is an effective candidate therapy for asthma.
Collapse
|
13
|
Yap HM, Israf DA, Harith HH, Tham CL, Sulaiman MR. Crosstalk Between Signaling Pathways Involved in the Regulation of Airway Smooth Muscle Cell Hyperplasia. Front Pharmacol 2019; 10:1148. [PMID: 31649532 PMCID: PMC6794426 DOI: 10.3389/fphar.2019.01148] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Increased ASM mass, primarily due to ASM hyperplasia, has been recognized as a hallmark of airway remodeling in asthma. Increased ASM mass is the major contributor to the airway narrowing, thus worsening the bronchoconstriction in response to stimuli. Inflammatory mediators and growth factors released during inflammation induce increased ASM mass surrounding airway wall via increased ASM proliferation, diminished ASM apoptosis and increased ASM migration. Several major pathways, such as MAPKs, PI3K/AKT, JAK2/STAT3 and Rho kinase, have been reported to regulate these cellular activities in ASM and were reported to be interrelated at certain points. This article aims to provide an overview of the signaling pathways/molecules involved in ASM hyperplasia as well as the mapping of the interplay/crosstalk between these major pathways in mediating ASM hyperplasia. A more comprehensive understanding of the complexity of cellular signaling in ASM cells will enable more specific and safer drug development in the control of asthma.
Collapse
Affiliation(s)
- Hui Min Yap
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
14
|
Wu F, Wen Z, Zhi Z, Li Y, Zhou L, Li H, Xu X, Tang W. MPGES-1 derived PGE2 inhibits cell migration by regulating ARP2/3 in the pathogenesis of Hirschsprung disease. J Pediatr Surg 2019; 54:2032-2037. [PMID: 30814036 DOI: 10.1016/j.jpedsurg.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND We previously studied the metabolomics, transcriptomics and proteomics of intestinal tissue of Hirschsprung disease (HSCR) patients; the results suggested that the expression of prostaglandin E2(PGE2), prostaglandin E receptor 2(PTGER2) and microsomal prostaglandin E synthase-1 (mPGES-1) notably increased in HSCR colon tissues. We already verified the differential expression of PGE2/EP2 in HSCR patients; therefore we investigate how mPGES-1 derived PGE2 affects the migration and the potential mechanism in cells, revealing the role of mPGES-1 derived PGE2 in the pathogenesis of Hirschsprung disease. METHODS SH-SY5Y and SK-N-BE2 cell lines were obtained from American Type Culture Collection (ATCC, USA). Prostaglandin E2 and its synthetase inhibitors were purchased from Med Chem Express (MCE, USA). Migration assays were performed with transwell and scratch assays. Cell proliferation was confirmed by CCK8 method. Flow cytometer was used to detect the cell cycle and cell apoptosis. The expressions of mRNA and protein of EP2, ARP2/3 were determined by qRT-PCR and western blot respectively. Immunofluorescence and confocal laser scanning microscopy were used to observe the morphology and function of cytoskeleton. RESULTS MPGES-1 derived PGE2 decreased the relative expression of EP2 and ARP2/3 and caused damage to cytoskeleton. As to cell functions, PGE2 inhibited cell migration while having no effects on the proliferation, cell cycle and apoptosis. By adding mPGES-1 inhibitor MK886 the abnormal expression and damaged cell function were reversed. CONCLUSIONS MPGES-1 derived PGE2 inhibits the cell migration by regulating ARP2/3 complex via prostaglandin E2 receptor. Potential mechanisms are the damage of cytoskeleton and related proteins leading to failure of cell polarize and migration. Here we thoroughly inquire the role mPGES-1 derived PGE2 plays in cell migration which might provide a new thinking in the investigation interrelated to the pathogenesis of HSCR.
Collapse
Affiliation(s)
- Feng Wu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zechao Wen
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqun Xu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Trinh HKT, Suh DH, Nguyen TVT, Choi Y, Park HS, Shin YS. Characterization of cysteinyl leukotriene-related receptors and their interactions in a mouse model of asthma. Prostaglandins Leukot Essent Fatty Acids 2019; 141:17-23. [PMID: 30661601 DOI: 10.1016/j.plefa.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 09/01/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Identification of the characterization of cysteinyl leukotrienes receptor (CysLTRs) could facilitate our understanding of these receptors' role in asthma. We aimed to investigate the localization and interactions of CysLTRs using a mouse model of asthma. BALB/c mice were administered ovalbumin (OVA) to induce allergic asthma. Some mice were administered the antagonists of CysLTR1, CysLTR2, and purinergic receptor P2Y12 (P2Y12R) (montelukast, HAMI 3379 and clopidogrel, respectively). The expression levels of CysLTR1, CysLTR2, and P2Y12R on lung tissues and inflammatory cells were evaluated by western blot, flow cytometry, and immunochemistry. CysLTR1 and P2Y12R were significantly up-regulated in lung tissues (P < 0.05 for each) from mouse after being sensitized and challenged with OVA (OVA/OVA). The ratio of CysLTR1: CysLTR2: P2Y12R in lungs of negative control (NC) mice was shifted from 1:0.43:0.35 to 1:0.65:1.34 in OVA/OVA mice. Montelukast significantly diminished the up-regulation of CysLTR1, CysLTR2, and P2Y12R (P < 0.05 for each), while the effects of HAMI 3379 and clopidogrel were predominant on the expression of CysLTR2 and P2Y12R, respectively. Montelukast predominantly diminished the cell count, while clopidogrel potently inhibited the release of interleukin (IL)-4, IL-5, and IL-13. Our study demonstrated the interactions between CysLTRs, thereby highlighting the potential synergistic effects of CysLTR antagonists in asthma treatment.
Collapse
Affiliation(s)
- Hoang Kim Tu Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Dong-Hyeon Suh
- Department of Pharmacology, CKD Research institute, Yong-in, South Korea
| | - Thuy Van Thao Nguyen
- Pediatric Department, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh city, Vietnam
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Science, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
16
|
Xia M, Xu H, Dai W, Zhu C, Wu L, Yan S, Ge X, Zhou W, Chen C, Dai Y. The role of HDAC2 in cigarette smoke-induced airway inflammation in a murine model of asthma and the effect of intervention with roxithromycin. J Asthma 2018; 55:337-344. [PMID: 28960099 DOI: 10.1080/02770903.2017.1337788] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Cigarette smoke is well known to worsen asthma symptoms in asthmatic patients and to make them refractory to treatment, but the underling molecular mechanism is unclear. We hypothesized that cigarette smoke can reduce the expression of HDAC2 in asthma and the process was achieved by activating the PI3K-δ/Akt signaling pathway. We further hypothesized that roxithromycin (RXM) can alleviate the impacts by cigarette smoke. METHODS A murine model of asthma induced by ovalbumin (OVA) and cigarette smoke has been established. The infiltration of inflammatory cells and inflammatory factors was examined in this model. Finally, we evaluated the expression of HDAC2, Akt phosphorylation levels, and the effects of RXM treatment on the model described earlier. RESULTS Cigarette smoke exposure reduced HDAC2 protein expression by enhancing the phosphorylation of Akt in PI3K-δ/Akt signaling pathway. Furthermore, RMX reduced the airway inflammation and improved the level of expression of HDAC2 in the cigarette smoke-exposed asthma mice. CONCLUSIONS This study provides a novel insight into the mechanism of cigarette smoke exposure in asthma and the effects of RXM treatment on this condition. These results may be helpful for treating refractory asthma and emphasizing the need for a smoke-free environment for asthmatic patients.
Collapse
Affiliation(s)
- Mengling Xia
- a Department of Pulmonary Medicine , Hangzhou Hospital of Traditional Chinese Medicine , Hangzhou , China
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Hui Xu
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Wei Dai
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Cong Zhu
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Liqin Wu
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Sunshun Yan
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xiangting Ge
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Wangfeng Zhou
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Cuicui Chen
- c Department of Pulmonary Medicine, Zhongshan Hospital , Fudan University , Shanghai , P.R. China
| | - Yuanrong Dai
- b Department of Pulmonary Medicine , the Second Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
17
|
Giesler A, Mukherjee M, Radford K, Janssen L, Nair P. Modulation of human airway smooth muscle biology by human adipocytes. Respir Res 2018; 19:33. [PMID: 29486749 PMCID: PMC5830317 DOI: 10.1186/s12931-018-0741-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Asthma and obesity, two growing epidemics worldwide, may share an underlying causal relationship. Airway hyperresponsiveness (AHR), a defining component of asthma, has been documented in both ‘obese’ animal models and non-asthmatic obese individuals. However, there is a paucity of evidence that obesity-derived factors directly affect human airway smooth muscles (ASM). Methods Experiments were designed with primary ASM and adipocytes isolated from the same human tissue explants (n = 6). The modulatory effects of human adipocytes extracted from subcutaneous (extrathoracic) and visceral (intrathoracic) depots, on ASM biology was examined with respect to proliferation, migration, contractility and pro-inflammatory cytokine synthesis. Results Adipocyte-conditioned media as well as myocyte-adipocyte co-cultures failed to show any significant changes in the proliferative or migrational properties of the ASM. Adipocyte-conditioned media also had no effect on the contractility or relaxation of bovine tracheal muscle strips. In contrast, there was a moderate yet significant increase of IL-6 and eotaxin release by ASM incubated with adipocyte-conditioned media (P = 0.0035 and P = 0.0067, vs. control, respectively), thereby further consolidating the altered inflammatory state reported for both diseases. Conclusion We report, for the first time, that adipocytes from either subcutaneous or visceral depots can trigger an inflammatory state in the ASM, with negligible modulatory effects on hyperplasia, hypertrophy or contractile properties. Electronic supplementary material The online version of this article (10.1186/s12931-018-0741-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amanda Giesler
- Firestone Institute for Respiratory Health, St Joseph's Healthcare & Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Manali Mukherjee
- Firestone Institute for Respiratory Health, St Joseph's Healthcare & Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Katherine Radford
- Firestone Institute for Respiratory Health, St Joseph's Healthcare & Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Luke Janssen
- Firestone Institute for Respiratory Health, St Joseph's Healthcare & Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph's Healthcare & Department of Medicine, McMaster University, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
18
|
Salter B, Pray C, Radford K, Martin JG, Nair P. Regulation of human airway smooth muscle cell migration and relevance to asthma. Respir Res 2017; 18:156. [PMID: 28814293 PMCID: PMC5559796 DOI: 10.1186/s12931-017-0640-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/10/2017] [Indexed: 01/15/2023] Open
Abstract
Airway remodelling is an important feature of asthma pathogenesis. A key structural change inherent in airway remodelling is increased airway smooth muscle mass. There is emerging evidence to suggest that the migration of airway smooth muscle cells may contribute to cellular hyperplasia, and thus increased airway smooth muscle mass. The precise source of these cells remains unknown. Increased airway smooth muscle mass may be collectively due to airway infiltration of myofibroblasts, neighbouring airway smooth muscle cells in the bundle, or circulating hemopoietic progenitor cells. However, the relative contribution of each cell type is not well understood. In addition, although many studies have identified pro and anti-migratory agents of airway smooth muscle cells, whether these agents can impact airway remodelling in the context of human asthma, remains to be elucidated. As such, further research is required to determine the exact mechanism behind airway smooth muscle cell migration within the airways, how much this contributes to airway smooth muscle mass in asthma, and whether attenuating this migration may provide a therapeutic avenue for asthma. In this review article, we will discuss the current evidence with respect to the regulation of airway smooth muscle cell migration in asthma.
Collapse
Affiliation(s)
- Brittany Salter
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Cara Pray
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - Katherine Radford
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| | - James G. Martin
- Meakins Christie Laboratories, McGill University, Montreal, QC Canada
| | - Parameswaran Nair
- Firestone Institute for Respiratory Health, St Joseph’s Healthcare and Department of Medicine, 50 Charlton Avenue, East, Hamilton, ON L8N 4A6 Canada
| |
Collapse
|
19
|
Kong X, Wu SH, Zhang L, Chen XQ. Pilot application of lipoxin A 4 analog and lipoxin A 4 receptor agonist in asthmatic children with acute episodes. Exp Ther Med 2017; 14:2284-2290. [PMID: 28962156 DOI: 10.3892/etm.2017.4787] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 03/17/2017] [Indexed: 01/10/2023] Open
Abstract
Previous studies have demonstrated that lipoxin A4 (LXA4) analogs blocked both airway hyper-responsiveness and pulmonary inflammation in a murine model of asthma. The present pilot study investigated the initial efficacy and safety of inhaled 5(S),6(R)-LXA4 methyl ester and BML-111, a LXA4 agonist, in the treatment of asthmatic children with acute episodes. A total of 50 asthmatic children diagnosed with acute moderate asthma were randomly assigned into groups and subjected to an inhalation challenge with pulmicort (n=10), ventolin (n=10), 5(S),6(R)-LXA4 methyl ester (n=10), BML-111 (n=10) or normal saline as a placebo (n=10). Pulmonary function was assessed prior to and following the challenge. Acute toxicity and safety of the inhaled 5(S),6(R)-LXA4 methyl ester and BML-111 in normal BALB/c mice were investigated prior to the current pilot study conducted in patients. Following the inhalation challenge, pulmonary function parameters in all groups with the exception of the normal saline-treated group indicated an improvement. The efficacies of 5(S),6(R)-LXA4 methyl ester and BML-111 were superior to the efficacy of pulmicort but reduced when compared to the efficacy of ventolin with regard to the improvement of pulmonary function following the inhalation challenge. No clinical adverse events were observed in the enrolled patients. All safety parameters in the full blood counts, routine urine and feces examination, electrocardiogram and liver and kidney function tests at baseline and the end of the current study were within normal limits for all patients. No significant differences in kidney or liver function tests were observed in mice treated with 5(S),6(R)-LXA4 methyl ester and BML-111. Light and electron microscopy demonstrated no airway epithelium or alveolar epithelial cell damage in the treated mice. The present preliminary study of a small sample demonstrates the initial efficacy and safety of inhaled 5(S),6(R)-LXA4 methyl ester and BML-111 in the treatment of asthmatic children with acute moderate episodes, and suggests that an inhaled LXA4 analog and LXA4 receptor agonist may exhibit potential as a novel therapeutic strategy for asthma.
Collapse
Affiliation(s)
- Xia Kong
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China.,Department of Pediatrics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Sheng-Hua Wu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Zhang
- Department of Pediatrics, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xiao-Qing Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
21
|
Lu JJ, Xu GN, Yu P, Song Y, Wang XL, Zhu L, Chen HZ, Cui YY. The activation of M3 mAChR in airway epithelial cells promotes IL-8 and TGF-β1 secretion and airway smooth muscle cell migration. Respir Res 2016; 17:25. [PMID: 26956674 PMCID: PMC4784334 DOI: 10.1186/s12931-016-0344-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/05/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Muscarinic acetylcholine receptors (mAChRs) have been identified in airway epithelium, and epithelium-derived chemokines can initiate the migration of airway smooth muscle (ASM) cells. However, the mAChRs that are expressed in airway epithelium and the mechanism underlying the regulation of ASM cell migration are not clear. The aim of this study was to test whether the effects of the epithelium-derived chemokines on ASM cell migration could be modulated by mAChRs. METHOD Human epithelial cells (A549 cells) were stimulated with cigarette smoke extract (CSE) or the mAChRs agonist carbachol. IL-8 and TGF-β1 production were measured by ELISA, and human ASM cell migration was measured using the transwell migration assay and scratch assay. The mRNA levels of the mAChRs subtypes and the acetylcholine concentrations were measured using RT-PCR and LC-MS/MS, respectively. RESULTS ASM cell migration toward CSE-stimulated A549 cells was markedly reduced by Ac-RRWWCR-NH2 (IL-8 inhibitor) and SB431542 (TGF-β1 inhibitor). CSE-induced ASM cell migration was also suppressed by the mAChRs antagonist tiotropium. Interestingly, carbachol-stimulated A549 cells also induced ASM cell migration; this migration event was suppressed by tiotropium, Ac-RRWWCR-NH2 and SB431542. In addition, the effects of CSE on ASM cell migration were significantly and cooperatively enhanced by carbachol compared to CSE alone. Carbachol-induced ASM cell migration was reduced by selective inhibitors of PI3K/Akt (LY294002) and p38 (SB203580), suggesting that it occurred through p38 and Akt phosphorylation, which was inhibited by the M3 mAChR antagonist 4-DAMP. CONCLUSIONS These findings indicate that M3 mAChR may be important therapeutic target for obstructive airway diseases, as it regulates the effects of the epithelial-derived chemokines on ASM cell migration, which results in lung remodeling.
Collapse
Affiliation(s)
- Juan-Juan Lu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Guang-Ni Xu
- Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Yu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yun Song
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Xiao-Lin Wang
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Liang Zhu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Yong-Yao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.
| |
Collapse
|
22
|
Kume H, Fukunaga K, Oguma T. Research and development of bronchodilators for asthma and COPD with a focus on G protein/KCa channel linkage and β2-adrenergic intrinsic efficacy. Pharmacol Ther 2015; 156:75-89. [PMID: 26432616 DOI: 10.1016/j.pharmthera.2015.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bronchodilators are used to improve symptoms and lung function in asthma and COPD. Airway smooth muscle tone is regulated by both muscarinic and β2-adrenergic receptor activity. Large-conductance Ca(2+)-activated K(+) (KCa) channels are activated by β2-adrenergic receptor agonists, via Gs, and suppressed by muscarinic receptor antagonists via Gi. This functional antagonism converges on the G protein/KCa channel linkages. Membrane potential regulated by KCa channels contributes to airway smooth muscle tension via Ca(2+) influx passing through voltage-dependent Ca(2+) (VDC) channels. The Gs/KCa/VDC channel linkage is a key process in not only physiological effects, but also in dysfunction of β2-adrenergic receptors and airway remodeling. Moreover, this pathway is involved in the synergistic effects between β2-adrenergic receptor agonists and muscarinic receptor antagonists. Intrinsic efficacy is also an important characteristic for both maintenance and loss of β2-adrenergic action. Allosteric modulators of G protein-coupled receptors contribute not only to this synergistic effect between β2-adrenergic and muscarinic M2 receptors, but also to intrinsic efficacy. The effects of weak partial agonists are suppressed by lowering receptor number, disordering receptor function, and enhancing functional antagonism; in contrast, those of full or strong partial agonists are not suppressed. Excessive exposure to full agonists causes β2-adrenergic desensitization; in contrast, exposure to partial agonists does not cause desensitization. Intrinsic efficacy may provide the rationale for the clinical use of β2-adrenergic receptor agonists in asthma and COPD. In conclusion, the G protein/KCa linkage and intrinsic efficacy (allosteric effects) may be therapeutic targets for research and development of novel agents against both airway obstruction and airway remodeling.
Collapse
Affiliation(s)
- Hiroaki Kume
- Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, Japan.
| | - Kentaro Fukunaga
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Japan
| | - Tetsuya Oguma
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Japan
| |
Collapse
|
23
|
Harada T, Yamasaki A, Chikumi H, Hashimoto K, Okazaki R, Takata M, Fukushima T, Watanabe M, Kurai J, Halayko AJ, Shimizu E. γ-Tocotrienol reduces human airway smooth muscle cell proliferation and migration. Pulm Pharmacol Ther 2015; 32:45-52. [PMID: 25956071 DOI: 10.1016/j.pupt.2015.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/18/2015] [Accepted: 04/24/2015] [Indexed: 10/24/2022]
Abstract
AIMS Vitamin E is an antioxidant that occurs in 8 different forms (α, β, γ, and δ tocopherol and tocotrienol). Clinical trials of tocopherol supplementation to assess the impact of antioxidant activity in asthma have yielded equivocal results. Tocotrienol exhibits greater antioxidant activity than tocopherol in several biological phenomena in vivo and in vitro. We tested the effect of tocotrienol on human airway smooth muscle (ASM) cell growth and migration, both of which mediate airway remodeling in asthma. MAIN METHODS We measured platelet-derived growth factor-BB (PDGF-BB)-induced ASM cell proliferation and migration by colorimetric and Transwell migration assays in the presence and absence of γ-tocotrienol (an isoform of tocotrienol). KEY FINDINGS PDGF-BB-induced ASM cell proliferation and migration were inhibited by γ-tocotrienol. This effect was associated with inhibition of RhoA activation, but it had no effect on p42/p44 mitogen-activated protein kinase (MAPK) or Akt1 activation. We confirmed that pharmacological inhibition of Rho kinase activity was sufficient to inhibit PDGF-BB-induced ASM cell proliferation and migration. SIGNIFICANCE γ-Tocotrienol could impart therapeutic benefits for airway remodeling in asthma by inhibiting human ASM cell proliferation and migration.
Collapse
Affiliation(s)
- Tomoya Harada
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Akira Yamasaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan.
| | - Hiroki Chikumi
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kiyoshi Hashimoto
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Ryota Okazaki
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Miki Takata
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Takehito Fukushima
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Masanari Watanabe
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Jun Kurai
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Andrew J Halayko
- Department of Physiology and Internal Medicine, University of Manitoba, Winnipeg, Canada
| | - Eiji Shimizu
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
24
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
25
|
Abstract
Airway remodeling comprises the structural changes of airway walls, induced by repeated injury and repair processes. It is characterized by the changes of tissue, cellular, and molecular composition, affecting airway smooth muscle, epithelium, blood vessels, and extracellular matrix. It occurs in patients with chronic inflammatory airway diseases such as asthma, COPD, bronchiectasis, and cystic fibrosis. Airway remodeling is arguably one of the most intractable problems in these diseases, leading to irreversible loss of lung function. Current therapeutics can ameliorate inflammation, but there is no available therapy proven to prevent or reverse airway remodeling, although reversibility of airway remodeling is suggested by studies in animal models of disease. Airway remodeling is often considered the result of longstanding airway inflammation, but it may be present to an equivalent degree in the airways of children with asthma, raising the necessity for early and specific therapeutic interventions. In this review, we consider the factors that may contribute to airway remodeling and discuss the current and potential therapeutic interventions.
Collapse
Affiliation(s)
- Nobuaki Hirota
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | - James G Martin
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
26
|
Al-Alwan LA, Chang Y, Mogas A, Halayko AJ, Baglole CJ, Martin JG, Rousseau S, Eidelman DH, Hamid Q. Differential roles of CXCL2 and CXCL3 and their receptors in regulating normal and asthmatic airway smooth muscle cell migration. THE JOURNAL OF IMMUNOLOGY 2013; 191:2731-41. [PMID: 23904157 DOI: 10.4049/jimmunol.1203421] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Structural cell migration plays a central role in the pathophysiology of several diseases, including asthma. Previously, we established that IL-17-induced (CXCL1, CXCL2, and CXCL3) production promoted airway smooth muscle cell (ASMC) migration, and consequently we sought to investigate the molecular mechanism of CXC-induced ASMC migration. Recombinant human CXCL1, CXCL2, and CXCL3 were used to assess migration of human primary ASMCs from normal and asthmatic subjects using a modified Boyden chamber. Neutralizing Abs or small interfering RNA (siRNA) knockdown and pharmacological inhibitors of PI3K, ERK1/2, and p38 MAPK pathways were used to investigate the receptors and the signaling pathways involved in CXC-induced ASMC migration, respectively. We established the ability of CXCL2 and CXCL3, but not CXCL1, to induce ASMC migration at the tested concentrations using normal ASMCs. We found CXCL2-induced ASMC migration to be dependent on p38 MAPK and CXCR2, whereas CXCL3-induced migration was dependent on p38 and ERK1/2 MAPK pathways via CXCR1 and CXCR2. While investigating the effect of CXCL2 and CXCL3 on asthmatic ASMC migration, we found that they induced greater migration of asthmatic ASMCs compared with normal ones. Interestingly, unlike normal ASMCs, CXCL2- and CXCL3-induced asthmatic ASMC migration was mainly mediated by the PI3K pathway through CXCR1. In conclusion, our results establish a new role of CXCR1 in ASMC migration and demonstrate the diverse mechanisms by which CXCL2 and CXCL3 mediate normal and asthmatic ASMC migration, suggesting that they may play a role in the pathogenesis of airway remodeling in asthma.
Collapse
Affiliation(s)
- Laila A Al-Alwan
- Meakins-Christie Laboratories and Respiratory Division, Department of Medicine, McGill University, Montreal, Quebec H2X 2P2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Balgoma D, Checa A, Sar DG, Snowden S, Wheelock CE. Quantitative metabolic profiling of lipid mediators. Mol Nutr Food Res 2013; 57:1359-77. [PMID: 23828856 DOI: 10.1002/mnfr.201200840] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 12/25/2022]
Abstract
Lipids are heterogeneous biological molecules that possess multiple physiological roles including cell structure, homeostasis, and restoration of tissue functionality during and after inflammation. Lipid metabolism constitutes a network of pathways that are related at multiple biosynthetic hubs. Disregulation of lipid metabolism can lead to pathophysiological effects and multiple lipid mediators have been described to be involved in physiological processes, (e.g. inflammation). Accordingly, a thorough description of these pathways may shed light on putative relations in multiple complex diseases, including chronic obstructive pulmonary disease, asthma, Alzheimer's disease, multiple sclerosis, obesity, and cancer. Due to the structural complexity of lipids and the low abundance of many lipid mediators, mass spectrometry is the most commonly employed method for analysis. However, multiple challenges remain in the efforts to analyze every lipid subfamily. In this review, the biological role of sphingolipids, glycerolipids, oxylipins (e.g. eicosanoids), endocannabinoids, and N-acylethanolamines in relation to health and disease and the state-of-the-art analyses are summarized. The characterization and understanding of these pathways will increase our ability to examine for interrelations among lipid pathways and improve the knowledge of biological mechanisms in health and disease.
Collapse
Affiliation(s)
- David Balgoma
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
28
|
Billington CK, Ojo OO, Penn RB, Ito S. cAMP regulation of airway smooth muscle function. Pulm Pharmacol Ther 2013; 26:112-20. [PMID: 22634112 PMCID: PMC3574867 DOI: 10.1016/j.pupt.2012.05.007] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/11/2022]
Abstract
Agonists activating β(2)-adrenoceptors (β(2)ARs) on airway smooth muscle (ASM) are the drug of choice for rescue from acute bronchoconstriction in patients with both asthma and chronic obstructive pulmonary disease (COPD). Moreover, the use of long-acting β-agonists combined with inhaled corticosteroids constitutes an important maintenance therapy for these diseases. β-Agonists are effective bronchodilators due primarily to their ability to antagonize ASM contraction. The presumed cellular mechanism of action involves the generation of intracellular cAMP, which in turn can activate the effector molecules cAMP-dependent protein kinase (PKA) and Epac. Other agents such as prostaglandin E(2) and phosphodiesterase inhibitors that also increase intracellular cAMP levels in ASM, can also antagonize ASM contraction, and inhibit other ASM functions including proliferation and migration. Therefore, β(2)ARs and cAMP are key players in combating the pathophysiology of airway narrowing and remodeling. However, limitations of β-agonist therapy due to drug tachyphylaxis related to β(2)AR desensitization, and recent findings regarding the manner in which β(2)ARs and cAMP signal, have raised new and interesting questions about these well-studied molecules. In this review we discuss current concepts regarding β(2)ARs and cAMP in the regulation of ASM cell functions and their therapeutic roles in asthma and COPD.
Collapse
Affiliation(s)
- Charlotte K Billington
- Division of Therapeutics and Molecular Medicine, The University of Nottingham, Nottingham NG7 2UH, UK.
| | | | | | | |
Collapse
|
29
|
Aso H, Ito S, Mori A, Suganuma N, Morioka M, Takahara N, Kondo M, Hasegawa Y. Differential regulation of airway smooth muscle cell migration by E-prostanoid receptor subtypes. Am J Respir Cell Mol Biol 2012; 48:322-9. [PMID: 23221043 DOI: 10.1165/rcmb.2012-0158oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Migration of airway smooth muscle (ASM) cells plays an important role in the pathophysiology of airway hyperresponsiveness and remodeling in asthma. It has been reported that prostaglandin (PG)E2 inhibits migration of ASM cells. Although PGE2 regulates cellular functions via binding to distinct prostanoid EP receptors, the role of EP receptor subtypes in mechanisms underlying cell migration has not been fully elucidated. We investigated the role of EP receptors in the inhibitory effects of PGE2 on the migration of human ASM cells. Migration induced by platelet-derived growth factor (PDGF)-BB (10 ng/ml, 6 h) was assessed by a chemotaxis chamber assay. PDGF-BB-induced cell migration was inhibited by PGE2, the specific EP2 agonist ONO-AE1-259-01, the specific EP4 agonist ONO-AE1-329, and cAMP-mobilizing agents. The inhibition of cell migration by PGE2 was significantly reversed by a blockade of EP2 and EP4 receptors using antagonists or transfection with siRNAs. Moreover, PGE2, the EP2 agonist, and the EP4 agonist significantly increased phosphorylation of small heat shock protein 20, one of the protein substrates for protein kinase A (PKA), with depolymerization of actin. In contrast, the EP3 agonist ONO-AE-248 significantly promoted baseline cell migration without affecting PDGF-BB-induced cell migration. In summary, activation of EP2 and EP4 receptors and subsequent activation of the cAMP/PKA pathway are the main mechanisms of inhibition of ASM cell migration by PGE2. HSP20 phosphorylation by PKA is possibly involved in this mechanism. Conversely, EP3 is potent in promoting cell migration. EP receptor subtypes may be novel therapeutic target molecules in airway remodeling and asthma.
Collapse
Affiliation(s)
- Hiromichi Aso
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Halwani R, Vazquez-Tello A, Sumi Y, Pureza MA, Bahammam A, Al-Jahdali H, Soussi-Gounni A, Mahboub B, Al-Muhsen S, Hamid Q. Eosinophils induce airway smooth muscle cell proliferation. J Clin Immunol 2012. [PMID: 23180361 DOI: 10.1007/s10875-012-9836-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Asthma is characterized by eosinophilic airway inflammation and remodeling of the airway wall. Features of airway remodeling include increased airway smooth muscle (ASM) mass. However, little is known about the interaction between inflammatory eosinophils and ASM cells. In this study, we investigated the effect of eosinophils on ASM cell proliferation. Eosinophils were isolated from peripheral blood of mild asthmatics and non-asthmatic subjects and co-cultured with human primary ASM cells. ASM proliferation was estimated using Ki-67 expression assay. The expression of extracellular matrix (ECM) mRNA in ASM cells was measured using quantitative real-time PCR. The role of eosinophil derived Cysteinyl Leukotrienes (CysLTs) in enhancing ASM proliferation was estimated by measuring the release of leukotrienes from eosinophils upon their direct contact with ASM cells using ELISA. This role was confirmed either by blocking eosinophil-ASM contact or co-culturing them in the presence of leukotrienes antagonist. ASM cells co-cultured with eosinophils, isolated from asthmatics, but not non-asthmatics, had a significantly higher rate of proliferation compared to controls. This increase in ASM proliferation was independent of their release of ECM proteins but dependent upon eosinophils release of CysLTs. Eosinophil-ASM cell to cell contact was required for CysLTs release. Preventing eosinophil contact with ASM cells using anti-adhesion molecules antibodies, or blocking the activity of eosinophil derived CysLTs using montelukast inhibited ASM proliferation. Our results indicated that eosinophils contribute to airway remodeling during asthma by enhancing ASM cell proliferation and hence increasing ASM mass. Direct contact of eosinophils with ASM cells triggers their release of CysLTs which enhance ASM proliferation. Eosinophils, and their binding to ASM cells, constitute a potential therapeutic target to interfere with the series of biological events leading to airway remodeling and Asthma.
Collapse
Affiliation(s)
- Rabih Halwani
- Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Suganuma N, Ito S, Aso H, Kondo M, Sato M, Sokabe M, Hasegawa Y. STIM1 regulates platelet-derived growth factor-induced migration and Ca2+ influx in human airway smooth muscle cells. PLoS One 2012; 7:e45056. [PMID: 22984609 PMCID: PMC3439366 DOI: 10.1371/journal.pone.0045056] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
It is suggested that migration of airway smooth muscle (ASM) cells plays an important role in the pathogenesis of airway remodeling in asthma. Increases in intracellular Ca(2+) concentrations ([Ca(2+)](i)) regulate most ASM cell functions related to asthma, such as contraction and proliferation. Recently, STIM1 was identified as a sarcoplasmic reticulum (SR) Ca(2+) sensor that activates Orai1, the Ca(2+) channel responsible for store-operated Ca(2+) entry (SOCE). We investigated the role of STIM1 in [Ca(2+)](i) and cell migration induced by platelet-derived growth factor (PDGF)-BB in human ASM cells. Cell migration was assessed by a chemotaxis chamber assay. Human ASM cells express STIM1, STIM2, and Orai1 mRNAs. SOCE activated by thapsigargin, an inhibitor of SR Ca(2+)-ATPase, was significantly blocked by STIM1 siRNA and Orai1 siRNA but not by STIM2 siRNA. PDGF-BB induced a transient increase in [Ca(2+)](i) followed by sustained [Ca(2+)](i) elevation. Sustained increases in [Ca(2+)](i) due to PDGF-BB were significantly inhibited by a Ca(2+) chelating agent EGTA or by siRNA for STIM1 or Orai1. The numbers of migrating cells were significantly increased by PDGF-BB treatment for 6 h. Knockdown of STIM1 and Orai1 by siRNA transfection inhibited PDGF-induced cell migration. Similarly, EGTA significantly inhibited PDGF-induced cell migration. In contrast, transfection with siRNA for STIM2 did not inhibit the sustained elevation of [Ca(2+)](i) or cell migration induced by PDGF-BB. These results demonstrate that STIM1 and Orai1 are essential for PDGF-induced cell migration and Ca(2+) influx in human ASM cells. STIM1 could be an important molecule responsible for airway remodeling.
Collapse
Affiliation(s)
- Nobukazu Suganuma
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Ito
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Hiromichi Aso
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masashi Kondo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mitsuo Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
32
|
Siddiqui S, Redhu NS, Ojo OO, Liu B, Irechukwu N, Billington C, Janssen L, Moir LM. Emerging airway smooth muscle targets to treat asthma. Pulm Pharmacol Ther 2012; 26:132-44. [PMID: 22981423 DOI: 10.1016/j.pupt.2012.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 07/28/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
Abstract
Asthma is characterized in part by variable airflow obstruction and non-specific hyperresponsiveness to a variety of bronchoconstrictors, both of which are mediated by the airway smooth muscle (ASM). The ASM is also involved in the airway inflammation and airway wall remodeling observed in asthma. For all these reasons, the ASM provides an important target for the treatment of asthma. Several classes of drugs were developed decades ago which targeted the ASM - including β-agonists, anti-cholinergics, anti-histamines and anti-leukotrienes - but no substantially new class of drug has appeared recently. In this review, we summarize the on-going work of several laboratories aimed at producing novel targets and/or tools for the treatment of asthma. These range from receptors and ion channels on the ASM plasmalemma, to intracellular effectors (particularly those related to cyclic nucleotide signaling, calcium-homeostasis and phosphorylation cascades), to anti-IgE therapy and outright destruction of the ASM itself.
Collapse
Affiliation(s)
- Sana Siddiqui
- Meakins-Christie Laboratories, Department of Medicine, McGill University, 3626 St Urbain, Montréal, Québec H2X 2P2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yeganeh B, Xia C, Movassagh H, Koziol-White C, Chang Y, Al-Alwan L, Bourke JE, Oliver BGG. Emerging mediators of airway smooth muscle dysfunction in asthma. Pulm Pharmacol Ther 2012; 26:105-11. [PMID: 22776693 DOI: 10.1016/j.pupt.2012.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/27/2012] [Accepted: 06/27/2012] [Indexed: 12/26/2022]
Abstract
Phenotypic changes in airway smooth muscle are integral to the pathophysiological changes that constitute asthma - namely inflammation, airway wall remodelling and bronchial hyperresponsiveness. In vitro and in vivo studies have shown that the proliferative, secretory and contractile functions of airway smooth muscle are dysfunctional in asthma. These functions can be modulated by various mediators whose levels are altered in asthma, derived from inflammatory cells or produced by airway smooth muscle itself. In this review, we describe the emerging roles of the CXC chemokines (GROs, IP-10), Th17-derived cytokines (IL-17, IL-22) and semaphorins, as well as the influence of viral infection on airway smooth muscle function, with a view to identifying new opportunities for therapeutic intervention in asthma.
Collapse
Affiliation(s)
- Behzad Yeganeh
- Department of Physiology, Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Eap R, Jacques E, Semlali A, Plante S, Chakir J. Cysteinyl leukotrienes regulate TGF-β(1) and collagen production by bronchial fibroblasts obtained from asthmatic subjects. Prostaglandins Leukot Essent Fatty Acids 2012; 86:127-33. [PMID: 22316690 DOI: 10.1016/j.plefa.2011.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes (CysLTs) play an important role in airway inflammation in asthma but their role in airway remodeling is not completely known. METHODS CysLTs receptors and procollagen I(α(1)) mRNA were determined by qPCR. Procollagen protein production was measured by RIA and TGF-β(1) expression was determined by ELISA. TGF-β receptor expression was assessed by western blots. RESULTS CysLT1R, TGF-β-R1 and active TGF-β(1) are highly expressed in cells from asthmatics compared to normal controls. LTD(4) increased significantly procollagen I(α(1)) mRNA and protein expression in fibroblasts from asthmatics. This increase was blocked by CysLTs receptor antagonist. LTD(4) increased significantly mRNA expression of TGF-β(1) and active form production in fibroblasts from asthmatics. Inhibition of TGF-β(1) signaling blocked LTD(4)-induced procollagen I(α(1)) expression. CONCLUSIONS Fibroblasts from asthmatic subjects express high level of CysLT1R. LTD(4) regulates procollagen I(α(1)) transcription in fibroblasts derived from asthmatic patients by modulating TGF-β(1) expression. This suggests that CysLTs may play a role in regulating collagen deposition in asthma.
Collapse
Affiliation(s)
- R Eap
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | | | | | | | | |
Collapse
|
35
|
Wang Z, Andrade N, Torp M, Wattananit S, Arvidsson A, Kokaia Z, Jørgensen JR, Lindvall O. Meteorin is a chemokinetic factor in neuroblast migration and promotes stroke-induced striatal neurogenesis. J Cereb Blood Flow Metab 2012; 32:387-98. [PMID: 22044868 PMCID: PMC3272610 DOI: 10.1038/jcbfm.2011.156] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 08/24/2011] [Accepted: 09/22/2011] [Indexed: 12/19/2022]
Abstract
Ischemic stroke affecting the adult brain causes increased progenitor proliferation in the subventricular zone (SVZ) and generation of neuroblasts, which migrate into the damaged striatum and differentiate to mature neurons. Meteorin (METRN), a newly discovered neurotrophic factor, is highly expressed in neural progenitor cells and immature neurons during development, suggesting that it may be involved in neurogenesis. Here, we show that METRN promotes migration of neuroblasts from SVZ explants of postnatal rats and stroke-subjected adult rats via a chemokinetic mechanism, and reduces N-methyl-D-asparate-induced apoptotic cell death in SVZ cells in vitro. Stroke induced by middle cerebral artery occlusion upregulates the expression of endogenous METRN in cells with neuronal phenotype in striatum. Recombinant METRN infused into the stroke-damaged brain stimulates cell proliferation in SVZ, promotes neuroblast migration, and increases the number of immature and mature neurons in the ischemic striatum. Our findings identify METRN as a new factor promoting neurogenesis both in vitro and in vivo by multiple mechanisms. Further work will be needed to translate METRN's actions on endogenous neurogenesis into improved recovery after stroke.
Collapse
Affiliation(s)
- Zhaolu Wang
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | - Nuno Andrade
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | | | | | - Andreas Arvidsson
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Neural Stem Cell Biology and Therapy, Lund, Sweden
- Lund Stem Cell Center, University Hospital, Lund, Sweden
| | | | - Olle Lindvall
- Laboratory of Neurogenesis and Cell Therapy, Wallenberg Neuroscience Center, Lund, Sweden
- Lund Stem Cell Center, University Hospital, Lund, Sweden
| |
Collapse
|
36
|
Abstract
Airway smooth muscle has classically been of interest for its contractile response linked to bronchoconstriction. However, terminally differentiated smooth muscle cells are phenotypically plastic and have multifunctional capacity for proliferation, cellular hypertrophy, migration, and the synthesis of extracellular matrix and inflammatory mediators. These latter properties of airway smooth muscle are important in airway remodeling which is a structural alteration that compounds the impact of contractile responses on limiting airway conductance. In this overview, we describe the important signaling components and the functional evidence supporting a view of smooth muscle cells at the core of fibroproliferative remodeling of hollow organs. Signal transduction components and events are summarized that control the basic cellular processes of proliferation, cell survival, apoptosis, and cellular migration. We delineate known intracellular control mechanisms and suggest future areas of interest to pursue to more fully understand factors that regulate normal myocyte function and airway remodeling in obstructive lung diseases.
Collapse
Affiliation(s)
- William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA.
| | | | | | | | | |
Collapse
|
37
|
Ichimaru Y, Krimmer DI, Burgess JK, Black JL, Oliver BGG. TGF-β enhances deposition of perlecan from COPD airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2011; 302:L325-33. [PMID: 22003087 DOI: 10.1152/ajplung.00453.2010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are characterized by irreversible remodeling of the airway walls, including thickening of the airway smooth muscle layer. Perlecan is a large, multidomain, proteoglycan that is expressed in the lungs, and in other organ systems, and has been described to have a role in cell adhesion, angiogenesis, and proliferation. This study aimed to investigate functional properties of the different perlecan domains in relation to airway smooth muscle cells (ASMC). Primary human ASMC obtained from donors with asthma (n = 13), COPD (n = 12), or other lung disease (n = 20) were stimulated in vitro with 1 ng/ml transforming growth factor-β(1) (TGF-β(1)) before perlecan deposition and cytokine release were analyzed. In some experiments, inhibitors of signaling molecules were added. Perlecan domains I-V were seeded on tissue culture plates at 10 μg/ml with 1 μg/ml collagen I as a control. ASM was incubated on top of the peptides before being analyzed for attachment, proliferation, and wound healing. TGF-β(1) upregulated deposition of perlecan by ASMC from COPD subjects only. TGF-β(1) upregulated release of IL-6 into the supernatant of ASMC from all subjects. Inhibitors of SMAD and JNK signaling molecules decreased TGF-β(1)-induced perlecan deposition by COPD ASMC. Attachment of COPD ASMC was upregulated by collagen I and perlecan domains IV and V, while perlecan domain II upregulated attachment only of asthmatic ASMC. Seeding on perlecan domains did not increase proliferation of any ASMC type. TGF-β(1)-induced perlecan deposition may enhance attachment of migrating ASMC in vivo and thus may be a mechanism for ASMC layer hypertrophy in COPD.
Collapse
Affiliation(s)
- Yukikazu Ichimaru
- Cell Biology group, Woolcock Institute of Medical Research, NSW, Australia
| | | | | | | | | |
Collapse
|
38
|
Alkhouri H, Hollins F, Moir LM, Brightling CE, Armour CL, Hughes JM. Human lung mast cells modulate the functions of airway smooth muscle cells in asthma. Allergy 2011; 66:1231-41. [PMID: 21557752 DOI: 10.1111/j.1398-9995.2011.02616.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Activated mast cell densities are increased on the airway smooth muscle in asthma where they may modulate muscle functions and thus contribute to airway inflammation, remodelling and airflow obstruction. OBJECTIVES To determine the effects of human lung mast cells on the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. METHODS Freshly isolated human lung mast cells were stimulated with IgE/anti-IgE. Culture supernatants were collected after 2 and 24 h and the mast cells lysed. The supernatants/lysates were added to serum-deprived, subconfluent airway smooth muscle cells for up to 48 h. Released chemokines and extracellular matrix were measured by ELISA, proliferation was quantified by [(3) H]-thymidine incorporation and cell counting, and intracellular signalling by phospho-arrays. RESULTS Mast cell 2-h supernatants reduced CCL11 and increased CXCL8 and fibronectin production from both asthmatic and nonasthmatic muscle cells. Leupeptin reversed these effects. Mast cell 24-h supernatants and lysates reduced CCL11 release from both muscle cell types but increased CXCL8 release by nonasthmatic cells. The 24-h supernatants also reduced asthmatic, but not nonasthmatic, muscle cell DNA synthesis and asthmatic cell numbers over 5 days through inhibiting extracellular signal-regulated kinase (ERK) and phosphatidylinositol (PI3)-kinase pathways. However, prostaglandins, thromboxanes, IL-4 and IL-13 were not involved in reducing the proliferation. CONCLUSIONS Mast cell proteases and newly synthesized products differentially modulated the secretory and proliferative functions of airway smooth muscle cells from donors with and without asthma. Thus, mast cells may modulate their own recruitment and airway smooth muscle functions locally in asthma.
Collapse
Affiliation(s)
- H Alkhouri
- Faculty of Pharmacy, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | | | | | | | |
Collapse
|
39
|
Okunishi K, Peters-Golden M. Leukotrienes and airway inflammation. Biochim Biophys Acta Gen Subj 2011; 1810:1096-102. [PMID: 21352897 DOI: 10.1016/j.bbagen.2011.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Asthma is a common chronic inflammatory disease of the airways characterized by airway obstruction and hyperresponsiveness. Leukotrienes (LTs) are lipid mediators that contribute to many aspects of asthma pathogenesis. As the LT pathway is relatively steroid-resistant, its blockade by alternative strategies is a desirable component of asthma management. Cysteinyl LT (cysLT) receptor 1 antagonists (LTRAs) have been utilized worldwide for more than 10years, and while their efficacy in asthma is well accepted, their limitations are also evident. SCOPE OF REVIEW In this review, we summarize the biological effects of LTs in asthma, review recent advances in LT receptors, and consider possible new therapeutic targets in the LT pathway that offer the potential to achieve better control of asthma in the future. MAJOR CONCLUSIONS CysLTs play pathogenetic roles in many aspects of asthma, and blockade of cysLT receptor 1 by currently available LTRAs is certainly beneficial in disease management. On the other hand, the limitations of LTRAs are also apparent. Recent studies have revealed new receptors for cysLTs other than classical cysLT receptors 1 and 2, as well as the potential importance of LTB(4) in asthma. GENERAL SIGNIFICANCE Recent findings provide clues to new approaches for targeting the LT pathway that may overcome the current limitations of LTRAs and achieve superior control of asthma. This article is part of a Special Issue entitled: Biochemistry of Asthma.
Collapse
Affiliation(s)
- Katsuhide Okunishi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 4810--5642, USA
| | | |
Collapse
|
40
|
Girodet PO, Ozier A, Bara I, Tunon de Lara JM, Marthan R, Berger P. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacol Ther 2011; 130:325-37. [PMID: 21334378 DOI: 10.1016/j.pharmthera.2011.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 01/10/2023]
Abstract
The chronic inflammatory response within the airways of asthmatics is associated with structural changes termed airway remodeling. This remodeling process is a key feature of severe asthma. The 5-10% of patients with a severe form of the disease account for the higher morbidity and health costs related to asthma. Among the histopathological characteristics of airway remodeling, recent reports indicate that the increased mass of airway smooth muscle (ASM) plays a critical role. ASM cell proliferation in severe asthma implicates a gallopamil-sensitive calcium influx and the activation of calcium-calmodulin kinase IV leading to enhanced mitochondrial biogenesis through the activation of various transcription factors (PGC-1α, NRF-1 and mt-TFA). The altered expression and function of sarco/endoplasmic reticulum Ca(2+) pump could play a role in ASM remodeling in moderate to severe asthma. Additionally, aberrant communication between an injured airway epithelium and ASM could also contribute to disease severity. Airway remodeling is insensitive to corticosteroids and anti-leukotrienes whereas the effect of monoclonal antibodies (the anti-IgE omalizumab, the anti-interleukin-5 mepolizumab or anti-tumor necrosis factor-alpha) remains to be investigated. This review focuses on potential new therapeutic strategies targeting ASM cells, especially Ca(2+) and mitochondria-dependent pathways.
Collapse
|
41
|
Hirota JA, Ask K, Farkas L, Smith JA, Ellis R, Rodriguez-Lecompte JC, Kolb M, Inman MD. In vivo role of platelet-derived growth factor-BB in airway smooth muscle proliferation in mouse lung. Am J Respir Cell Mol Biol 2011; 45:566-72. [PMID: 21216974 DOI: 10.1165/rcmb.2010-0277oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Airway smooth muscle (ASM) hyperplasia in asthma likely contributes considerably to functional changes. Investigating the mechanisms behind proliferation of these cells may lead to therapeutic benefit. Platelet-derived growth factor (PDGF)-BB is a well known ASM mitogen in vitro but has yet to be directly explored using in vivo mouse models in the context of ASM proliferation and airway responsiveness. To determine the in vivo influence of PDGF-BB on gene transcripts encoding contractile proteins, ASM proliferation, and airway physiology, we used an adenovirus overexpression system and a model of chronic allergen exposure. We used adenovirus technology to selectively overexpress PDGF-BB in the airway epithelium of mice. Outcome measurements, including airway physiology, real time RT-PCR measurements, proliferating cell nuclear antigen staining, and airway smooth muscle quantification, were performed 7 days after exposure. The same outcome measurements were performed 24 hours and 4 weeks after a chronic allergen exposure model. PDGF-BB overexpression resulted in airway hyperresponsiveness, decreased lung compliance, increased airway smooth muscle cell numbers, positive proliferating cell nuclear antigen-stained airway smooth muscle cells, and a reduction in genes encoding contractile proteins. Chronic allergen exposure resulted in elevations in lung lavage PDGF-BB, which were observed in conjunction with changes in gene transcript expression encoding contractile proteins and ASM proliferation. We demonstrate for the first time in vivo that PDGF-BB induces ASM hyperplasia and changes in lung mechanics in mice and that, during periods of allergen exposure changes in lung, PDGF-BB are associated with changes in airway structure and function.
Collapse
Affiliation(s)
- Jeremy A Hirota
- Firestone Institute for Respiratory Health, St. Joseph's Hospital, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Chung KF. Should treatments for asthma be aimed at the airway smooth muscle? Expert Rev Respir Med 2010; 1:209-17. [PMID: 20477185 DOI: 10.1586/17476348.1.2.209] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The airway smooth muscle (ASM) cell is an important part of the airway wall of asthma patients because of its increased contractile properties, which appear to be enhanced in this condition and which contribute to airflow obstruction and bronchial hyper-responsiveness. ASM cells are also abnormal in asthma with increased expression of certain chemokines, with increased proliferation rate, numbers and size. beta-adrenergic agonists and corticosteroids are the two most important treatments for asthma; other drugs used are leukotriene receptor antagonists and theophylline. Combination therapy of beta-adrenergic agonists and corticosteroids has become the treatment of choice for moderate-to-severe asthma. beta-adrenergic agonists cause relaxation of ASM cells, leading to a decrease in airflow obstruction of asthma and acute relief of symptoms. Corticosteroids also have direct effects on ASM cells. It is postulated that the effect of anti-inflammatory agents on ASM cells is the most important determinant of the therapeutic effects of these agents. Targeting the ASM cell in asthma could be the focus of therapies for asthma. Specific delivery of active agents to ASM cells may also be part of this strategy.
Collapse
Affiliation(s)
- Kian Fan Chung
- National Heart & Lung Institute, Imperial College, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
43
|
Mishra NC, Rir-sima-ah J, Boyd RT, Singh SP, Gundavarapu S, Langley RJ, Razani-Boroujerdi S, Sopori ML. Nicotine inhibits Fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha 7/alpha 9/alpha 10-nicotinic receptors. THE JOURNAL OF IMMUNOLOGY 2010; 185:588-96. [PMID: 20505147 DOI: 10.4049/jimmunol.0902227] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Smokers are less likely to develop some inflammatory and allergic diseases. In Brown-Norway rats, nicotine inhibits several parameters of allergic asthma, including the production of Th2 cytokines and the cysteinyl leukotriene LTC(4). Cysteinyl leukotrienes are primarily produced by mast cells, and these cells play a central role in allergic asthma. Mast cells express a high-affinity receptor for IgE (FcepsilonRI). Following its cross-linking, cells degranulate and release preformed inflammatory mediators (early phase) and synthesize and secrete cytokines/chemokines and leukotrienes (late phase). The mechanism by which nicotine modulates mast cell activation is unclear. Using alpha-bungarotoxin binding and quantitative PCR and PCR product sequencing, we showed that the rat mast/basophil cell line RBL-2H3 expresses nicotinic acetylcholine receptors (nAChRs) alpha7, alpha9, and alpha10; exposure to exceedingly low concentrations of nicotine (nanomolar), but not the biologically inactive metabolite cotinine, for > or = 8 h suppressed the late phase (leukotriene/cytokine production) but not degranulation (histamine and hexosaminidase release). These effects were unrelated to those of nicotine on intracellular free calcium concentration but were causally associated with the inhibition of cytosolic phospholipase A(2) activity and the PI3K/ERK/NF-kappaB pathway, including phosphorylation of Akt and ERK and nuclear translocation of NF-kappaB. The suppressive effect of nicotine on the late-phase response was blocked by the alpha7/alpha9-nAChR antagonists methyllycaconitine and alpha-bungarotoxin, as well as by small interfering RNA knockdown of alpha7-, alpha9-, or alpha10-nAChRs, suggesting a functional interaction between alpha7-, alpha9-, and alpha10-nAChRs that might explain the response of RBL cells to nanomolar concentrations of nicotine. This "hybrid" receptor might serve as a target for novel antiallergic/antiasthmatic therapies.
Collapse
Affiliation(s)
- Neerad C Mishra
- Immunology and Asthma Division, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu SH, Yin PL, Zhang YM, Tao HX. Reversed changes of lipoxin A4 and leukotrienes in children with asthma in different severity degree. Pediatr Pulmonol 2010; 45:333-40. [PMID: 20232472 DOI: 10.1002/ppul.21186] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES To investigate the expressions of 15-lipoxygenase (15-LO) and 5-lipoxygenase (5-LO) in leukocytes and the changes of blood lipoxin A(4)(LXA(4)), leukotriene (LT)B(4) and LTC(4) in children with asthma, and to explore the relationship between the blood eicosanoids and one of serum high-sensitivity C-reactive protein (hsCRP), interleukin (IL)-5, IL-8 and IL-13 and IgE in children with asthma. STUDY DESIGN One hundred six asthmatic children were divided into three groups, that is, mild persistent asthmatic group, moderate persistent asthmatic group and severe persistent asthmatic group. Forty healthy children were served as controls. METHODOLOGY The expressions of 15-LO and 5-LO mRNA in leukocytes were assessed by reverse transcription-polymerase chain reaction, and the blood LXA(4), LTB(4), LTC(4), IL-5, IL-8, and IL-13 were determined with enzyme-linked immunosorbent assay. Serum hsCRP was determined with latex-enhanced immuno-turbidimetry kits. RESULTS The leukocytic 15-LO expression and blood LXA(4) were gradually decreased, and the leukocytic 5-LO expression, blood LTB(4), LTC(4), IL-5, IL-8, IL-13, and hsCRP were gradually increased in children with asthma from mild degree to moderate and severe degree. There were positive correlations between blood LXA(4) and one of the peak expiratory flow (PEF) and forced expiratory volume in 1 sec (FEV(1)) percent-predicted values, and negative correlations between blood LTC(4) and one of the PEF and FEV(1) percent-predicted values in children with asthma. There were negative correlations between blood LXA(4) and one of the IL-5, IL-8, IL-13, and hsCRP levels, and positive correlations between one of blood LTB(4), LTC(4) and one of the IL-5, IL-8, IL-13 and hsCRP levels in children with asthma. CONCLUSIONS The reversed changes between 15-LO, its product LXA(4) and 5-LO, its products LTB(4) and LTC(4) in children with asthma from mild, moderate to severe degree were found, suggesting that insufficient generation of LXA(4) and overproduction of LTs may be the reason for the asthmatic children whose illness become more serious.
Collapse
Affiliation(s)
- Sheng-Hua Wu
- Department of Pediatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | | | | | | |
Collapse
|
45
|
Liu D, Ge S, Zhou G, Xu G, Zhang R, Zhu W, Liu Z, Cheng S, Liu X. Montelukast inhibits matrix metalloproteinases expression in atherosclerotic rabbits. Cardiovasc Drugs Ther 2010; 23:431-7. [PMID: 19998057 DOI: 10.1007/s10557-009-6211-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play important roles in the development and destabilization of atherosclerotic plaques. It is known that montelukast inhibits neointimal hyperplasia. However, the underlying mechanisms for the inhibitory effects of montelukast on neointimal formation have been poorly defined. METHODS Thirty-six male New Zealand White rabbits were randomized as normal control, placebo (0.9% NaCl, 1.5 ml/kg/day, via intraperitoneal injection), atorvastatin (atorvastatin, 1.5 mg/kg/day, orally) and montelukast groups (montelukast, 1.5 mg/kg/day, via intraperitoneal injection). Atherosclerosis was induced by balloon-injury and high-cholesterol (HC) diet. Serum lipids were measured at 0, 8 and 12 weeks. After 12 weeks, the rabbits were sacrificed and histopathological changes examined. Immunohistochemistry and reverse transcription-polymerase chain reaction were used to measure the expression of MMP-2 and MMP-9 in the plaques. RESULTS It was found that montelukast reduced neointimal formation, decreased macrophage accumulation, and increased smooth muscle cells. It also attenuated the expression of MMP-2 and MMP-9 in atherosclerotic plaques, but it had no effect on plasma lipid levels. CONCLUSION These data indicate that montelukast inhibits neointimal hyperplasia in association with decreased expression of MMP-2 and MMP-9 independent of plasma lipid levels in atherosclerotic plaques after vascular injury in hyperlipidemic rabbits.
Collapse
Affiliation(s)
- Dezhi Liu
- Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, 305# East Zhongshan Road, Nanjing, 210002, Jiangsu Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ito I, Fixman ED, Asai K, Yoshida M, Gounni AS, Martin JG, Hamid Q. Platelet-derived growth factor and transforming growth factor-beta modulate the expression of matrix metalloproteinases and migratory function of human airway smooth muscle cells. Clin Exp Allergy 2009; 39:1370-80. [PMID: 19522858 DOI: 10.1111/j.1365-2222.2009.03293.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) have been suggested to be involved in the pathogenesis of asthma. Their expression in airway smooth muscle (ASM) cells could be involved in collagen turnover and migration of these cells and thus may contribute to airway remodelling. OBJECTIVE To examine the effect of pro-fibrotic growth factors TGF-beta and platelet-derived growth factor (PDGF) on the expression of MMPs/TIMPs in cultured human ASM cells and to examine the role of MMP in the migration of ASM cells. METHODS ASM cells were stimulated with TGF-beta and/or PDGF. Expression and activity of MMP-1, MMP-2, MMP-3, TIMP-1 and TIMP-2 were evaluated by quantitative RT-PCR, Western blot and zymography. Modified Boyden-chamber migration assay was performed to investigate the effect of secreted MMP-3 and TIMP-1 on ASM-cell migration. RESULTS PDGF strongly up-regulated the expression of MMP-1 at mRNA and protein levels. PDGF, when combined with TGF-beta, caused synergistic up-regulation of MMP-3. TIMP-1 was additively up-regulated by TGF-beta and PDGF. These growth factors had no effect on the expression of MMP-2 and TIMP-2. U0126, an extracellular signal-regulated kinase (ERK) pathway inhibitor, inhibited the up-regulation of MMP-1 by PDGF. The synergistic/additive up-regulation of MMP-3 and TIMP-1 was inhibited by U0126 and SB431542, a Smad pathway inhibitor. Supernatant from ASM cells in which MMP-3 production was knocked down by RNA interference showed a decreased migratory effect on ASM cells, whereas supernatant from cells with suppressed TIMP-1 expression resulted in increased migration. CONCLUSION Our results suggest that PDGF with/without TGF-beta could facilitate migration of ASM cells by modification of MMP-TIMP balance through the ERK pathway.
Collapse
Affiliation(s)
- I Ito
- Meakins-Christie Laboratories, Department of Medicine, McGill University, Montreal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
47
|
Watanabe S, Yamasaki A, Hashimoto K, Shigeoka Y, Chikumi H, Hasegawa Y, Sumikawa T, Takata M, Okazaki R, Watanabe M, Yokogawa T, Yamamura M, Hayabuchi T, Gerthoffer WT, Halayko AJ, Shimizu E. Expression of functional leukotriene B4 receptors on human airway smooth muscle cells. J Allergy Clin Immunol 2009; 124:59-65.e1-3. [PMID: 19477492 DOI: 10.1016/j.jaci.2009.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 02/20/2009] [Accepted: 03/09/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND Leukotriene B4 (LTB4) increases in induced sputum and exhaled breath condensate in people with asthma. Furthermore, the T(H)2-type immune response and airway hyperresponsiveness induced by ovalbumin sensitization is markedly suppressed in LTB4 receptor (BLT) 1 null mice. These studies suggest that LTB4 may contribute to asthma pathophysiology. However, the direct effects of LTB4 on human airway smooth muscle (ASM) have not been studied. OBJECTIVES We sought to determine the expression of LTB4 receptors on human ASM and its functional role in mediating responses of human ASM cells, and the effect of LTB4 on these cells. METHODS Immunohistochemistry, RT-PCR, Western blotting, and flow cytometry were used to determine the expression of LTB4 receptors. To determine the effect of LTB4 on human ASM cells, cell proliferation was assessed by counting cells, and chemokinesis was assessed by gold particle phagokinesis assay. RESULTS We confirmed expression of both BLT1 and BLT2 in human ASM cells in bronchial tissue and in cell culture. LTB4 markedly induced cyclin D1 expression, proliferation, and chemokinesis of human ASM cells. LTB4 also induced phosphorylation of both p42/p44 mitogen-activated protein kinase (MAPK) and downstream PI3 kinase effector, Akt1. However, we observed no induction of c-Jun N-terminal kinase or p38 MAPK. Notably, LTB4-induced migration and proliferation of ASM cells were inhibited by the BLT1 specific antagonist, U75302, and by inhibitors of p42/p44 MAPK phosphorylation (U1026), and PI3 kinase (LY294002). CONCLUSIONS These observations are the first to suggest a role for a LTB4-BLT1 signaling axis in ASM responses that may contribute to the pathogenesis of airway remodeling in asthma.
Collapse
Affiliation(s)
- Satoko Watanabe
- Division of Medical Oncology and Molecular Respirology, Department of Multidisciplinary Internal Medicine, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Fanat AI, Thomson JV, Radford K, Nair P, Sehmi R. Human airway smooth muscle promotes eosinophil differentiation. Clin Exp Allergy 2009; 39:1009-17. [PMID: 19438586 DOI: 10.1111/j.1365-2222.2009.03246.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Human airway smooth muscle (HASM) cells in culture synthesize cytokines and chemokines that may orchestrate the tissue homing and in situ differentiation of haemopoietic progenitor cells from the peripheral circulation. OBJECTIVE To study the effect of a supernatant from cultured HASM cells on the differentiative and transmigrational responses of haemopoietic progenitor cells. METHODS HASM cells were grown to confluence and stimulated with a cytomix of TNF-alpha, IL-1beta and IFN-gamma. Peripheral blood-derived progenitors from atopic asthmatics (n=12) and non-atopic controls (n=11) were grown in a methylcellulose culture with a supernatant from stimulated HASM cells to assess clonogenic potential. The ability of HASM cells to stimulate directional migration and adhesion to fibronectin of blood progenitors was also investigated. RESULTS HASM cells stimulated significant growth of eosinophil/basophil colony forming units (Eo/B CFUs) from blood progenitor cells from both groups of subjects. This activity was significantly attenuated in the presence of anti-IL-5 and anti-granulocyte macrophage-colony forming factor blocking antibodies and by pre-treatment with SB202190 [p38 mitogen-activated protein kinase (MAPK) inhibitor]. An src kinase (srcK) inhibitor (Pyrazolopyrimidine 1) was less effective at attenuating IL-5- and HASM-stimulated Eo/B CFU growth from both groups of subjects. Examination of the phosphorylation of these kinases in CD34(+) cells following co-incubation with the major constituents of HASM showed activation of p38 MAPK but not that of the srcK pathway. The HASM supernatant had no significant effect on the migrational and adhesive responses of haemopoietic progenitor cells in vitro. CONCLUSION We have shown that HASM cell-derived cytokines promote eosinophil differentiation that is dependent on p38 MAPK but not on the srcK pathway. This study shows that a major structural cell of the lungs, airway smooth muscle, has the capability to direct eosinophil differentiation and maturation from progenitor cells, which in turn may perpetuate an eosinophilic inflammation and consequently tissue remodelling in patients with chronic asthma.
Collapse
Affiliation(s)
- A I Fanat
- Asthma Research Group, Firestone Institute for Respiratory Health, St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
49
|
Takeda N, Sumi Y, Préfontaine D, Al Abri J, Al Heialy N, Al-Ramli W, Michoud MC, Martin JG, Hamid Q. Epithelium-derived chemokines induce airway smooth muscle cell migration. Clin Exp Allergy 2009; 39:1018-26. [PMID: 19364333 DOI: 10.1111/j.1365-2222.2009.03238.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The remodelling of airway smooth muscle (ASM) associated with asthma severity may involve the migration of ASM cells towards the epithelium. However, little is known about the mechanisms of cell migration and the effect of epithelial-derived mediators on this process. OBJECTIVE The main objective of the current study is to assess the effects of epithelial-derived chemokines on ASM cell migration. METHODS Normal human ASM cells were incubated with supernatants from cells of the bronchial epithelial cell line BEAS-2B and normal human bronchial epithelial (NHBE) cells. To induce chemokine production, epithelial cells were treated with TNF-alpha. Chemokine expression by epithelial cells was evaluated by quantitative real-time PCR, ELISA and membrane antibody array. To identify the role of individual chemokines in ASM cell migration, we performed migration assays with a modified Boyden chamber using specific neutralizing antibodies to block chemokine effects. RESULTS Supernatants from BEAS-2B cells treated with TNF-alpha increased ASM cell migration; migration was increased 1.6 and 2.5-fold by supernatant from BEAS-2B cells treated with 10 and 100 ng/mL TNF-alpha, respectively. Protein levels in supernatants and mRNA expression by BEAS-2B cells of regulated on activation, normal T cell expressed and secreted (RANTES) and IL-8 were significantly increased by 100 ng/mL TNF-alpha treatment. The incubation of supernatant with antibodies to RANTES or IL-8 significantly reduced ASM cell migration, and the combined antibodies further inhibited the cell migration. The migratory effects of supernatants and inhibiting effects of RANTES and/or IL-8 were confirmed also using NHBE cells. CONCLUSION The results show that chemokines from airway epithelial cells cause ASM cell migration and might potentially play a role in the process of airway remodelling in asthma.
Collapse
Affiliation(s)
- N Takeda
- Meakins-Christie Laboratories, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ramsay CF, Sullivan P, Gizycki M, Wang D, Swern AS, Barnes NC, Reiss TF, Jeffery PK. Montelukast and bronchial inflammation in asthma: a randomised, double-blind placebo-controlled trial. Respir Med 2009; 103:995-1003. [PMID: 19249198 DOI: 10.1016/j.rmed.2009.01.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/19/2009] [Accepted: 01/19/2009] [Indexed: 10/21/2022]
Abstract
BACKGROUND Examination of bronchoalveolar lavage, induced sputum, and peripheral blood indicate that cysteinyl leukotriene receptor blockers decrease inflammatory cells in asthma but these do not examine airway tissue per se. OBJECTIVES Our objective was to determine the effect of montelukast, a leukotriene receptor antagonist, on airway tissue inflammatory cells by direct bronchoscopic examination of the bronchial mucosa. METHODS Adult subjects with mild asthma (pre-bronchodilator FEV(1)> or =70% predicted; PC(20) of < or =4 mg/mL) were given 10mg/day oral montelukast (N=38) or placebo (N=37) for 6 weeks. Bronchial mucosal eosinophils and mast cells were identified and counted. RESULTS Change from baseline in numbers of biopsy EG2+ ("activated") eosinophils was the primary endpoint; numbers of total (chromotrope 2R+) eosinophils and (tryptase+) mast cells were secondary. Unexpectedly, there were many patients with zero EG2+ eosinophils at baseline. There was a within-group decrease in EG2+ cells, from 13.54 cells/mm (at baseline) to 0.79 cells/mm at 6 weeks in the montelukast group (LS mean change; 95% confidence interval=-13.59 [-25.45, -1.74]cells/mm; P<0.05), a change not observed in the placebo group (-1.17 [-13.26, 10.91]cells/mm; NS). The zero-inflated Poisson statistical model demonstrated that montelukast significantly reduced post-treatment EG2+ cells by 80% compared with placebo (95% CI [70.6-86.8%]; P<0.0001). The data for total eosinophils showed similar changes. The reduction in mast cell numbers was 12% (95% CI [7.9, 16.0]; P<0.0001). CONCLUSION Direct examination of airway tissue confirms that montelukast decreases the number of eosinophils and mast cells in asthma.
Collapse
Affiliation(s)
- C F Ramsay
- Department of Respiratory Medicine, Royal London Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|