1
|
Ambrosino P, Marcuccio G, Raffio G, Formisano R, Candia C, Manzo F, Guerra G, Lubrano E, Mancusi C, Maniscalco M. Endotyping Chronic Respiratory Diseases: T2 Inflammation in the United Airways Model. Life (Basel) 2024; 14:899. [PMID: 39063652 PMCID: PMC11278432 DOI: 10.3390/life14070899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Over the past 15 years, the paradigm of viewing the upper and lower airways as a unified system has progressively shifted the approach to chronic respiratory diseases (CRDs). As the global prevalence of CRDs continues to increase, it becomes evident that acknowledging the presence of airway pathology as an integrated entity could profoundly impact healthcare resource allocation and guide the implementation of pharmacological and rehabilitation strategies. In the era of precision medicine, endotyping has emerged as another novel approach to CRDs, whereby pathologies are categorized into distinct subtypes based on specific molecular mechanisms. This has contributed to the growing acknowledgment of a group of conditions that, in both the upper and lower airways, share a common type 2 (T2) inflammatory signature. These diverse pathologies, ranging from allergic rhinitis to severe asthma, frequently coexist and share diagnostic and prognostic biomarkers, as well as therapeutic strategies targeting common molecular pathways. Thus, T2 inflammation may serve as a unifying endotypic trait for the upper and lower airways, reinforcing the practical significance of the united airways model. This review aims to summarize the literature on the role of T2 inflammation in major CRDs, emphasizing the value of common biomarkers and integrated treatment strategies targeting shared molecular mechanisms.
Collapse
Affiliation(s)
- Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Directorate of Telese Terme Institute, 82037 Telese Terme, Italy
| | - Giuseppina Marcuccio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Giuseppina Raffio
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
| | - Roberto Formisano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
| | - Claudio Candia
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| | - Fabio Manzo
- Fleming Clinical Laboratory, 81020 Casapulla, Italy;
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Ennio Lubrano
- Istituti Clinici Scientifici Maugeri IRCCS, Cardiac Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (R.F.); (E.L.)
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy;
| | - Costantino Mancusi
- Department of Advanced Biomedical Science, Federico II University, 80131 Naples, Italy;
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Unit of Telese Terme Institute, 82037 Telese Terme, Italy; (G.M.); (G.R.)
- Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| |
Collapse
|
2
|
Yu R, Liu S, Li Y, Lu L, Huang S, Chen X, Xue Y, Fu T, Liu J, Li Z. TRPV1 + sensory nerves suppress conjunctival inflammation via SST-SSTR5 signaling in murine allergic conjunctivitis. Mucosal Immunol 2024; 17:211-225. [PMID: 38331094 DOI: 10.1016/j.mucimm.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Allergic conjunctivitis (AC), an allergen-induced ocular inflammatory disease, primarily involves mast cells (MCs) and eosinophils. The role of neuroimmune mechanisms in AC, however, remains to be elucidated. We investigated the effects of transient receptor potential vanilloid 1 (TRPV1)-positive sensory nerve ablation (using resiniferatoxin) and TRPV1 blockade (using Acetamide, N-[4-[[6-[4-(trifluoromethyl)phenyl]-4-pyrimidinyl]oxy]-2-benzothiazolyl] (AMG-517)) on ovalbumin-induced conjunctival allergic inflammation in mice. The results showed an exacerbation of allergic inflammation as evidenced by increased inflammatory gene expression, MC degranulation, tumor necrosis factor-α production by MCs, eosinophil infiltration and activation, and C-C motif chemokine 11 (CCL11) (eotaxin-1) expression in fibroblasts. Subsequent findings demonstrated that TRPV1+ sensory nerves secrete somatostatin (SST), which binds to SST receptor 5 (SSTR5) on MCs and conjunctival fibroblasts. SST effectively inhibited tumor necrosis factor-α production in MCs and CCL11 expression in fibroblasts, thereby reducing eosinophil infiltration and alleviating AC symptoms, including eyelid swelling, lacrimation, conjunctival chemosis, and redness. These findings suggest that targeting TRPV1+ sensory nerve-mediated SST-SSTR5 signaling could be a promising therapeutic strategy for AC, offering insights into neuroimmune mechanisms and potential targeted treatments.
Collapse
Affiliation(s)
- Ruoxun Yu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sijing Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yan Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shuoya Huang
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinwei Chen
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Zhijie Li
- International Ocular Surface Research Center, Institute of Ophthalmology, and Key Laboratory for Regenerative Medicine, Jinan University, Guangzhou, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Darzi S, Alappadan J, Paul K, Mazdumder P, Rosamilia A, Truong YB, Gargett C, Werkmeister J, Mukherjee S. Immunobiology of foreign body response to composite PLACL/gelatin electrospun nanofiber meshes with mesenchymal stem/stromal cells in a mouse model: Implications in pelvic floor tissue engineering and regeneration. BIOMATERIALS ADVANCES 2023; 155:213669. [PMID: 37980818 DOI: 10.1016/j.bioadv.2023.213669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
Pelvic Organ Prolapse (POP) is a common gynaecological disorder where pelvic organs protrude into the vagina. While transvaginal mesh surgery using non-degradable polymers was a commonly accepted treatment for POP, it has been associated with high rates of adverse events such as mesh erosion, exposure and inflammation due to serious foreign body response and therefore banned from clinical use after regulatory mandates. This study proposes a tissue engineering strategy using uterine endometrium-derived mesenchymal stem/stromal cells (eMSC) delivered with degradable poly L-lactic acid-co-poly ε-caprolactone (PLACL) and gelatin (G) in form of a composite electrospun nanofibrous mesh (P + G nanomesh) and evaluates the immunomodulatory mechanism at the material interfaces. The study highlights the critical acute and chronic inflammatory markers along with remodelling factors that determine the mesh surgery outcome. We hypothesise that such a bioengineered construct enhances mesh integration and mitigates the Foreign Body Response (FBR) at the host interface associated with mesh complications. Our results show that eMSC-based nanomesh significantly increased 7 genes associated with ECM synthesis and cell adhesion including, Itgb1, Itgb2, Vcam1, Cd44, Cdh2, Tgfb1, Tgfbr1, 6 genes related to angiogenesis including Ang1, Ang2, Vegfa, Pdgfa, Serpin1, Cxcl12, and 5 genes associated with collagen remodelling Col1a1, Col3a1, Col6a1, Col6a2, Col4a5 at six weeks post-implantation. Our findings suggest that cell-based tissue-engineered constructs potentially mitigate the FBR response elicited by biomaterial implants. From a clinical perspective, this construct provides an alternative to current inadequacies in surgical outcomes by modulating the immune response, inducing angiogenesis and ECM synthesis during the acute and chronic phases of the FBR.
Collapse
Affiliation(s)
- Saeedeh Darzi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Janet Alappadan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Kallyanashis Paul
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Permita Mazdumder
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Anna Rosamilia
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia; Pelvic Floor Disorders Unit, Monash Health, Clayton, VIC 3168, Australia
| | | | - Caroline Gargett
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Jerome Werkmeister
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Shayanti Mukherjee
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia; Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
4
|
Intranasal administration of budesonide-loaded nanocapsule microagglomerates as an innovative strategy for asthma treatment. Drug Deliv Transl Res 2020; 10:1700-1715. [PMID: 32789546 DOI: 10.1007/s13346-020-00813-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The co-existence with rhinitis limits the control of asthma. Compared with oral H1 receptor antagonists, intranasal corticosteroids have been demonstrated to provide greater relief of all symptoms of rhinitis and are recommended as first-line treatment for allergic rhinitis. Intrinsic limitations of nasal delivery, such as the presence of the protective mucous layer, the relentless mucociliary clearance, and the consequent reduced residence time of the formulation in the nasal cavity, limit budesonide efficacy to the treatment of local nasal symptoms. To overcome these limitations and to enable the treatment of asthma via nasal administration, we developed a budesonide-loaded lipid-core nanocapsule (BudNC) microagglomerate powder by spray-drying using a one-step innovative approach. BudNC was obtained, as a white powder, using L-leucine as adjuvant with 75 ± 6% yield. The powder showed a bimodal size distribution curve by laser diffraction with a principal peak just above 3 μm and a second one around 0.45 μm and a drug content determined by HPLC of 8.7 mg of budesonide per gram. In vivo after nasal administration, BudNC showed an improved efficacy in terms of reduction of immune cell influx; production of eotaxin-1, the main inflammatory chemokine; and arrest of airways remodeling when compared with a commercial budesonide product in both short- and long-term asthma models. In addition, data showed that the results in the long-term asthma model were more compelling than the results obtained in the short-term model. Graphical abstract.
Collapse
|
5
|
Sridhar S, Liu H, Pham TH, Damera G, Newbold P. Modulation of blood inflammatory markers by benralizumab in patients with eosinophilic airway diseases. Respir Res 2019; 20:14. [PMID: 30658649 PMCID: PMC6339432 DOI: 10.1186/s12931-018-0968-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/19/2018] [Indexed: 01/01/2023] Open
Abstract
Background Benralizumab, a humanized, afucosylated, monoclonal antibody that targets interleukin-5 receptor α, depletes eosinophils and basophils by enhanced antibody-dependent cell-mediated cytotoxicity. It demonstrated efficacy for patients with moderate to severe asthma and, in a Phase IIa trial, for chronic obstructive pulmonary disease (COPD) with eosinophilic inflammation. We investigated effects of benralizumab 100 mg every 8 weeks (first three doses every 4 weeks) subcutaneous on blood inflammatory markers through proteomic and gene-expression analyses collected during two Phase II studies of patients with eosinophilic asthma and eosinophilic COPD. Methods Serum samples for proteomic analysis and whole blood for gene expression analysis were collected at baseline and 52 weeks (asthma study) or 32 weeks (COPD study) post-treatment. Proteomic analyses were conducted on a custom set of 90 and 147 Rules-Based Medicine analytes for asthma and COPD, respectively. Gene expression was profiled by Affymetrix Human Genome U133 plus 2 arrays (~ 54 K probes). Gene set variation analysis (GSVA) was used to determine transcriptomic activity of immune signatures. Treatment-related differences between analytes, genes, and gene signatures were analyzed for the overall population and for patient subgroups stratified by baseline blood eosinophil count (eosinophil-high [≥300 cells/μL] and eosinophil-low [< 300 cells/μL]) via t-test and repeated measures analysis of variance. Results Eosinophil chemokines eotaxin-1 and eotaxin-2 were significantly upregulated (false discovery rate [FDR] < 0.05) by approximately 2.1- and 1.4-fold in the asthma study and by 2.3- and 1.7-fold in the COPD study following benralizumab treatment. Magnitude of upregulation of these two chemokines was greater for eosinophil-high patients than eosinophil-low patients in both studies. Benralizumab was associated with significant reductions (FDR < 0.05) in expression of genes associated with eosinophils and basophils, such as CLC, IL-5Rα, and PRSS33; immune-signaling complex genes (FCER1A); G-protein–coupled receptor genes (HRH4, ADORA3, P2RY14); and further immune-related genes (ALOX15 and OLIG2). The magnitude of downregulation of gene expression was greater for eosinophil-high than eosinophil-low patients. GSVA on immune signatures indicated significant treatment reductions (FDR < 0.05) in eosinophil-associated signatures. Conclusions Benralizumab is highly selective, modulating blood proteins or genes associated with eosinophils or basophils. Modulated protein and gene expression patterns are most prominently altered in eosinophil-high vs. eosinophil-low patients. Trial registration NCT01227278 and NCT01238861. Electronic supplementary material The online version of this article (10.1186/s12931-018-0968-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sriram Sridhar
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA
| | - Hao Liu
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA
| | - Tuyet-Hang Pham
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA
| | - Gautam Damera
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA
| | - Paul Newbold
- MedImmune LLC, One MedImmune Way, #4552B, Gaithersburg, MD, USA.
| |
Collapse
|
6
|
Lewis TC, Metitiri EE, Mentz GB, Ren X, Carpenter AR, Goldsmith AM, Wicklund KE, Eder BN, Comstock AT, Ricci JM, Brennan SR, Washington GL, Owens KB, Mukherjee B, Robins TG, Batterman SA, Hershenson MB. Influence of viral infection on the relationships between airway cytokines and lung function in asthmatic children. Respir Res 2018; 19:228. [PMID: 30463560 PMCID: PMC6249926 DOI: 10.1186/s12931-018-0922-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/24/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Few longitudinal studies examine inflammation and lung function in asthma. We sought to determine the cytokines that reduce airflow, and the influence of respiratory viral infections on these relationships. METHODS Children underwent home collections of nasal lavage during scheduled surveillance periods and self-reported respiratory illnesses. We studied 53 children for one year, analyzing 392 surveillance samples and 203 samples from 85 respiratory illnesses. Generalized estimated equations were used to evaluate associations between nasal lavage biomarkers (7 mRNAs, 10 proteins), lung function and viral infection. RESULTS As anticipated, viral infection was associated with increased cytokines and reduced FVC and FEV1. However, we found frequent and strong interactions between biomarkers and virus on lung function. For example, in the absence of viral infection, CXCL10 mRNA, MDA5 mRNA, CXCL10, IL-4, IL-13, CCL4, CCL5, CCL20 and CCL24 were negatively associated with FVC. In contrast, during infection, the opposite relationship was frequently found, with IL-4, IL-13, CCL5, CCL20 and CCL24 levels associated with less severe reductions in both FVC and FEV1. CONCLUSIONS In asthmatic children, airflow obstruction is driven by specific pro-inflammatory cytokines. In the absence of viral infection, higher cytokine levels are associated with decreasing lung function. However, with infection, there is a reversal in this relationship, with cytokine abundance associated with reduced lung function decline. While nasal samples may not reflect lower airway responses, these data suggest that some aspects of the inflammatory response may be protective against viral infection. This study may have ramifications for the treatment of viral-induced asthma exacerbations.
Collapse
Affiliation(s)
- Toby C. Lewis
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
- Health Behavior/Health Education, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ediri E. Metitiri
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Graciela B. Mentz
- Health Behavior/Health Education, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Xiaodan Ren
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Ashley R. Carpenter
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Adam M. Goldsmith
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Kyra E. Wicklund
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
- Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Breanna N. Eder
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Adam T. Comstock
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Jeannette M. Ricci
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Sean R. Brennan
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Ginger L. Washington
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Kendall B. Owens
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
| | - Bhramar Mukherjee
- Departments of Biostatistics, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Thomas G. Robins
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Stuart A. Batterman
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| | - Marc B. Hershenson
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
| | - the Community Action Against Asthma Steering Committee
- Departments of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1150 W. Medical Center Dr., Building MSRB2, Room 3570B, Ann Arbor, MI 48109-5688 USA
- Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
- Departments of Biostatistics, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
- Environmental Health Sciences, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
- Epidemiology, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
- Health Behavior/Health Education, University of Michigan School of Public Health, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
7
|
Synergistic activation of pro-inflammatory type-2 CD8 + T lymphocytes by lipid mediators in severe eosinophilic asthma. Mucosal Immunol 2018; 11:1408-1419. [PMID: 29907870 PMCID: PMC6448764 DOI: 10.1038/s41385-018-0049-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 04/12/2018] [Accepted: 05/06/2018] [Indexed: 02/04/2023]
Abstract
Human type-2 CD8+ T cells are a cell population with potentially important roles in allergic disease. We investigated this in the context of severe asthma with persistent airway eosinophilia-a phenotype associated with high exacerbation risk and responsiveness to type-2 cytokine-targeted therapies. In two independent cohorts we show that, in contrast to Th2 cells, type-2 cytokine-secreting CD8+CRTH2+ (Tc2) cells are enriched in blood and airways in severe eosinophilic asthma. Concentrations of prostaglandin D2 (PGD2) and cysteinyl leukotriene E4 (LTE4) are also increased in the airways of the same group of patients. In vitro PGD2 and LTE4 function synergistically to trigger Tc2 cell recruitment and activation in a TCR-independent manner. These lipids regulate diverse genes in Tc2 cells inducing type-2 cytokines and many other pro-inflammatory cytokines and chemokines, which could contribute to eosinophilia. These findings are consistent with an important innate-like role for human Tc2 cells in severe eosinophilic asthma and suggest a potential target for therapeutic intervention in this and other diseases.
Collapse
|
8
|
Urinary polycyclic aromatic hydrocarbon metabolites and adult asthma: a case-control study. Sci Rep 2018; 8:7658. [PMID: 29769601 PMCID: PMC5956083 DOI: 10.1038/s41598-018-26021-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) exposure was reported to be associated with childhood asthma. However, the quantitative relationship between PAHs exposure and adult asthma and possible inflammatory pathways are less clear. We aimed to investigate potential associations between urinary PAHs metabolites and adult asthma. We enrolled 507 adult asthma cases and 536 matched controls. The concentrations of 12 urinary PAHs metabolites and plasma cytokines of interleukin (IL)-9 and eotaxin were measured. Potential associations between urinary PAHs metabolites and adult asthma were analyzed by logistic regression. The relationships between urinary PAHs metabolites and plasma cytokines were determined by generalized linear regression. After adjusted for covariates, each 1-unit-increase in natural log-transformed concentrations of 2-hydroxyfluorene (2-OHFLU), 4- hydroxyphenanthrene (4-OHPHE), 1-OHPHE, 2-OHPHE, 1-Hydroxypyrene (1-OHPYR) and ∑OH-PAHs were significantly associated with elevated risk of adult asthma with odds ratios of 2.04, 2.38, 2.04, 1.26, 2.35 and 1.34, respectively. And the associations were more pronounced in the subjects who were female, younger than 45 years, smoker and had history of occupational dust exposure. No associations were observed between urinary PAHs metabolites levels and expressions of IL-9 and eotaxin. Our results demonstrated that elevated urinary PAHs metabolites levels were associated with increased risk of asthma in adults.
Collapse
|
9
|
King GG, James A, Harkness L, Wark PAB. Pathophysiology of severe asthma: We've only just started. Respirology 2018; 23:262-271. [PMID: 29316003 DOI: 10.1111/resp.13251] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 12/01/2022]
Abstract
Severe asthma is defined by the high treatment requirements to partly or fully control the clinical manifestations of disease. It remains a problem worldwide with a large burden for individuals and health services. The key to improving targeted treatments, reducing disease burden and improving patient outcomes is a better understanding of the pathophysiology and mechanisms of severe disease. The heterogeneity, complexity and difficulties in undertaking clinical studies in severe asthma remain challenges to achieving better understanding and better outcomes. In this review, we focus on the structural, mechanical and inflammatory abnormalities that are relevant in severe asthma.
Collapse
Affiliation(s)
- Gregory G King
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Department of Respiratory Medicine, Royal North Shore Hospital, Sydney, NSW, Australia.,The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Alan James
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Department of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, WA, Australia.,School of Medicine and Pharmacology, University of Western Australia, Perth, WA, Australia
| | - Louise Harkness
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,The Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Peter A B Wark
- NHMRC Centre for Excellence in Severe Asthma, Newcastle, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia.,Department of Respiratory Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
10
|
Associations between Th17-related inflammatory cytokines and asthma in adults: A Case-Control Study. Sci Rep 2017; 7:15502. [PMID: 29138487 PMCID: PMC5686108 DOI: 10.1038/s41598-017-15570-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic airway inflammation is recognized as an essential process in the pathogenesis of asthma. Cytokine profiles derived from immune and inflammation cells such as T-helper (Th) cells, eosinophilia and neutrophilia are not limited to the Th2 type in asthma. However, little is understood about associations between Th2-low inflammatory cytokine profiles and risk of asthma in adults. A case-control study of 910 adult asthma and 881 healthy controls was conducted. Inflammatory cytokines screening was undertaken by high-throughput protein microarray technology, and Th17-related inflammatory cytokines (IL17A, IL-9, adipsin and CCL11) were finally selected. Associations between these four cytokines and adult asthma risk were analyzed by multivariate logistic regression models. We observed that plasma IL-17A and IL-9 levels were significantly increased in asthmatics when compared with controls. However, the plasma expressions of adipsin and CCL11 in asthmatics were significantly lower than that in health controls. The adjusted ORs (95%CI) of association between IL-17A, IL-9, adipsin and CCL11 expressions and adult asthma were 3.08 (1.91, 4.97), 1.93 (1.41, 2.64), 10.02 (6.99, 14.37) and 3.29 (2.36, 4.59), respectively (all P trend < 0.0001). Our results suggested that elevated IL-17A and IL-9 expressions and decreased levels of adipsin and CCL11 were positively associated with adult asthma.
Collapse
|
11
|
Larose MC, Archambault AS, Provost V, Laviolette M, Flamand N. Regulation of Eosinophil and Group 2 Innate Lymphoid Cell Trafficking in Asthma. Front Med (Lausanne) 2017; 4:136. [PMID: 28848734 PMCID: PMC5554517 DOI: 10.3389/fmed.2017.00136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/27/2017] [Indexed: 12/17/2022] Open
Abstract
Asthma is an inflammatory disease usually characterized by increased Type 2 cytokines and by an infiltration of eosinophils to the airways. While the production of Type 2 cytokines has been associated with TH2 lymphocytes, increasing evidence indicates that group 2 innate lymphoid cells (ILC2) play an important role in the production of the Type 2 cytokines interleukin (IL)-5 and IL-13, which likely amplifies the recruitment of eosinophils from the blood to the airways. In that regard, recent asthma treatments have been focusing on blocking Type 2 cytokines, notably IL-4, IL-5, and IL-13. These treatments mainly result in decreased blood or sputum eosinophil counts as well as decreased asthma symptoms. This supports that therapies blocking eosinophil recruitment and activation are valuable tools in the management of asthma and its severity. Herein, we review the mechanisms involved in eosinophil and ILC2 recruitment to the airways, with an emphasis on eotaxins, other chemokines as well as their receptors. We also discuss the involvement of other chemoattractants, notably the bioactive lipids 5-oxo-eicosatetraenoic acid, prostaglandin D2, and 2-arachidonoyl-glycerol. Given that eosinophil biology differs between human and mice, we also highlight and discuss their responsiveness toward the different eosinophil chemoattractants.
Collapse
Affiliation(s)
- Marie-Chantal Larose
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Anne-Sophie Archambault
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Véronique Provost
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Michel Laviolette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Faculté de Médecine, Département de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
12
|
Bazett M, Biala A, Huff RD, Bosiljcic M, Gunn H, Kalyan S, Hirota JA. A novel microbe-based treatment that attenuates the inflammatory profile in a mouse model of allergic airway disease. Sci Rep 2016; 6:35338. [PMID: 27734946 PMCID: PMC5062168 DOI: 10.1038/srep35338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
There is an unmet need for effective new and innovative treatments for asthma. It is becoming increasingly evident that bacterial stimulation can have beneficial effects at attenuating allergic airway disease through immune modulation. Our aim was to test the ability of a novel inactivated microbe-derived therapeutic based on Klebsiella (KB) in a model of allergic airway disease in mice. BALB/c mice were exposed intranasally to house dust mite (HDM) for two weeks. Mice were treated prophylactically via subcutaneous route with either KB or placebo for one week prior to HDM exposure and throughout the two week exposure period. 24 hours after the last exposure, lungs were analysed for inflammatory cell infiltrate, gene expression, cytokine levels, goblet cell metaplasia, and serum was analysed for allergen-specific serum IgE levels. HDM exposed mice developed goblet cell hyperplasia, elevated allergen-specific serum IgE, airway eosinophilia, and a concomitant increase in TH2 cytokines including IL-4, IL-13 and IL-5. Treatment with KB attenuated HDM-mediated airway eosinophilia, total bronchoalveolar lavage (BAL) cell numbers, BAL TH2 cytokine production, and goblet cell metaplasia. Our prophylactic intervention study illustrates the potential of subcutaneous treatment with bacterial derived biologics as a promising approach for allergic airway disease treatment.
Collapse
Affiliation(s)
- Mark Bazett
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada
| | - Agnieszka Biala
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| | - Ryan D Huff
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| | | | - Hal Gunn
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada
| | - Shirin Kalyan
- Qu Biologics Inc., Vancouver, BC, V5T 4T5, Canada.,University of British Columbia, Department of Medicine, Division of Endocrinology, CeMCOR, Vancouver, BC, V5Z 1M9
| | - Jeremy A Hirota
- University of British Columbia, Department of Medicine, Division of Respiratory Medicine, Vancouver, BC, V6H 3Z6, Canada
| |
Collapse
|
13
|
Adar T, Shteingart S, Ben-Ya'acov A, Shitrit ABG, Livovsky DM, Shmorak S, Mahamid M, Melamud B, Vernea F, Goldin E. The Importance of Intestinal Eotaxin-1 in Inflammatory Bowel Disease: New Insights and Possible Therapeutic Implications. Dig Dis Sci 2016; 61:1915-24. [PMID: 26874691 DOI: 10.1007/s10620-016-4047-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Involvement of eotaxin-1 in inflammatory bowel disease has been previously suggested and increased levels of eotaxin-1 have been described in both ulcerative colitis and in Crohn's disease. The association between serum levels of eotaxin-1 and that within the colonic mucosa has not been well defined, as is the potential therapeutic value of targeting eotaxin-1. AIMS To characterize serum and intestinal wall eotaxin-1 levels in various inflammatory bowel disease patients and to explore the effect of targeting eotaxin-1 by specific antibodies in dextran sodium sulfate-induced colitis model. METHODS Eotaxin-1 levels were measured in colonic biopsies and in the sera of 60 ulcerative colitis patients, Crohn's disease patients and healthy controls. We also followed in experimental colitis the effect of targeting eotaxin-1 by a monoclonal antibody. RESULTS Colon eotaxin-1 levels were significantly increased in active but not in quiescent ulcerative colitis and Crohn's disease patients compared to healthy controls. Levels of eotaxin-1 in the colon were correlated with eosinophilia only in tissues from active Crohn's disease patients. Our results did not show any statistically significant change in serum eotaxin-1 levels among ulcerative colitis, Crohn's disease and healthy controls. Moreover, we demonstrate that in dextran sodium sulfate-induced colitis, targeting of eotaxin-1 with 2 injections of anti eotaxin-1 monoclonal antibody ameliorates disease activity along with decreasing colon weight and improving histologic inflammation. CONCLUSION Eotaxin-1 is increasingly recognized as a major mediator of intestinal inflammation. Our preliminary human and animal results further emphasize the value of targeting eotaxin-1 in inflammatory bowel disease.
Collapse
Affiliation(s)
- Tomer Adar
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel.
| | - Shimon Shteingart
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel
| | - Ami Ben-Ya'acov
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel
| | - Ariella Bar-Gill Shitrit
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel
| | - Dan M Livovsky
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel
| | - Shimrit Shmorak
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel
| | - Mahmud Mahamid
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel
| | - Bernardo Melamud
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel
| | - Fiona Vernea
- Department of Pathology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eran Goldin
- Digestive Diseases Institute, Shaare Zedek Medical Center, Affiliated with the Hebrew University School of Medicine, 12 Bayit St., 91031, Jerusalem, Israel
| |
Collapse
|
14
|
Neighbour H, Boulet LP, Lemiere C, Sehmi R, Leigh R, Sousa AR, Martin J, Dallow N, Gilbert J, Allen A, Hall D, Nair P. Safety and efficacy of an oral CCR3 antagonist in patients with asthma and eosinophilic bronchitis: a randomized, placebo-controlled clinical trial. Clin Exp Allergy 2014; 44:508-16. [PMID: 24286456 DOI: 10.1111/cea.12244] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Several chemokines, notably eotaxin, mediate the recruitment of eosinophils into tissues via the CCR3 receptor. OBJECTIVE In this study, we investigated the role of CCR3 agonists in asthma by observing the effect of a small molecule antagonist of the CCR3 receptor (GW766994) on sputum eosinophil counts in patients with eosinophilic asthma. METHODS Clinical and physiological outcomes, the chemotactic activity of sputum supernatant for eosinophils and the presence of eosinophil progenitors in sputum and blood samples were also studied. RESULTS In a double-blind parallel group study, 60 patients with asthma were randomized to 300 mg of GW766994 twice daily or matching placebo for 10 days followed by prednisone 30 mg for 5 days. Of these patients, 53 had a sputum eosinophil count > 4.9% at baseline. Despite plasma concentrations of drug consistent with > 90% receptor occupancy during the dosing period, the CCR3 antagonist did not significantly reduce eosinophils or eosinophil progenitor cells (CD34(+) 45(+) IL-5Rα(+)) in sputum or in blood. The ex vivo chemotactic effect of sputum supernatants on eosinophils was attenuated by GW766944 compared to placebo. There was no improvement in FEV1 ; however, there was a modest but statistically significant improvement in PC20 methacholine (0.66 doubling dose) and ACQ scores, (0.43). Whilst the improvement in PC20 is statistically significant, it is not of clinical significance. CONCLUSIONS AND CLINICAL RELEVANCE In conclusion, this study calls into question the role of CCR3 in airway eosinophilia in asthma and suggests that other cellular mechanisms mediated by the CCR3 receptor may contribute to airway hyperresponsiveness.
Collapse
Affiliation(s)
- H Neighbour
- Division of Respirology, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Trejo Bittar HE, Yousem SA, Wenzel SE. Pathobiology of severe asthma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2014; 10:511-45. [PMID: 25423350 DOI: 10.1146/annurev-pathol-012414-040343] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Severe asthma (SA) afflicts a heterogeneous group of asthma patients who exhibit poor responses to traditional asthma medications. SA patients likely represent 5-10% of all asthma patients; however, they have a higher economic burden when compared with milder asthmatics. Considerable research has been performed on pathological pathways and structural changes associated with SA. Although limitations of the pathological approaches, ranging from sampling, to quantitative assessments, to heterogeneity of disease, have prevented a more definitive understanding of the underlying pathobiology, studies linking pathology to molecular markers to targeted therapies are beginning to solidify the identification of select molecular phenotypes. This review addresses the pathobiology of SA and discusses the current limitations of studies, the inflammatory cells and pathways linked to emerging phenotypes, and the structural and remodeling changes associated with severe disease. In all cases, an effort is made to link pathological findings to specific clinical/molecular phenotypes.
Collapse
|
16
|
Huffaker MF, Phipatanakul W. Pediatric asthma: guidelines-based care, omalizumab, and other potential biologic agents. Immunol Allergy Clin North Am 2014; 35:129-44. [PMID: 25459581 DOI: 10.1016/j.iac.2014.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Over the past several decades, the evidence supporting rational pediatric asthma management has grown considerably. As more is learned about the various phenotypes of asthma, the complexity of management will continue to grow. This article focuses on the evidence supporting the current guidelines-based pediatric asthma management and explores the future of asthma management with respect to phenotypic heterogeneity and biologics.
Collapse
Affiliation(s)
- Michelle Fox Huffaker
- Division of Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Wanda Phipatanakul
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
17
|
Effects of 60-day bed rest with and without exercise on cellular and humoral immunological parameters. Cell Mol Immunol 2014; 12:483-92. [PMID: 25382740 DOI: 10.1038/cmi.2014.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 01/12/2023] Open
Abstract
Exercise at regular intervals is assumed to have a positive effect on immune functions. Conversely, after spaceflight and under simulated weightlessness (e.g., bed rest), immune functions can be suppressed. We aimed to assess the effects of simulated weightlessness (Second Berlin BedRest Study; BBR2-2) on immunological parameters and to investigate the effect of exercise (resistive exercise with and without vibration) on these changes. Twenty-four physically and mentally healthy male volunteers (20-45 years) performed resistive vibration exercise (n=7), resistance exercise without vibration (n=8) or no exercise (n=9) within 60 days of bed rest. Blood samples were taken 2 days before bed rest, on days 19 and 60 of bed rest. Composition of immune cells was analyzed by flow cytometry. Cytokines and neuroendocrine parameters were analyzed by Luminex technology and ELISA/RIA in plasma. General changes over time were identified by paired t-test, and exercise-dependent effects by pairwise repeated measurements (analysis of variance (ANOVA)). With all subjects pooled, the number of granulocytes, natural killer T cells, hematopoietic stem cells and CD45RA and CD25 co-expressing T cells increased and the number of monocytes decreased significantly during the study; the concentration of eotaxin decreased significantly. Different impacts of exercise were seen for lymphocytes, B cells, especially the IgD(+) subpopulation of B cells and the concentrations of IP-10, RANTES and DHEA-S. We conclude that prolonged bed rest significantly impacts immune cell populations and cytokine concentrations. Exercise was able to specifically influence different immunological parameters. In summary, our data fit the hypothesis of immunoprotection by exercise and may point toward even superior effects by resistive vibration exercise.
Collapse
|
18
|
Wu D, Zhou J, Bi H, Li L, Gao W, Huang M, Adcock IM, Barnes PJ, Yao X. CCL11 as a potential diagnostic marker for asthma? J Asthma 2014; 51:847-54. [PMID: 24796647 DOI: 10.3109/02770903.2014.917659] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Asthma is an inflammatory airway disease characterized by airway eosinophilia, in which CCL11 (eotaxin) plays a crucial role. The aim of study is to determine the elevation of CCL11 levels in bronchoalveolar lavage fluid (BALF), blood, exhaled breath condensate (EBC) and sputum in asthma patients and to identify which medium yields the most significant change in CCL11 level. METHODS The databases of PubMed, Embase and Cochrane Centre Register of Controlled Trials were systematically searched from inception to September 2013. Controlled clinical trials that focused on CCL11 concentrations in asthma patients and controls, and their correlations with other asthma indicators were obtained. Data were analysed using Stata 12.0. RESULTS Thirty studies were included in this investigation. CCL11 levels in blood, EBC and sputum were significantly higher in asthma patients than in healthy subjects. Sputum CCL11 concentrations were significantly elevated in unstable asthma patients versus stable asthma patients and in uncontrolled asthma patients versus partially controlled asthma patients. CCL11 levels in sputum and blood were negatively correlated with the lung function as measured by FEV1% predicted, and were positively correlated with BALF, EBC and sputum eosinophil counts. Similarly, CCL11 concentrations were positively correlated with eosinophil cationic protein in EBC, blood and sputum as well as with interleukin-5 in sputum and fractional exhaled nitric oxide in EBC. Steroid treatment had no significant effect on CCL11 levels. CONCLUSIONS CCL11 is a potentially useful biomarker for the diagnosis and assessment of asthma severity and control, especially in sputum. CCL11 is crucial in eosinophil chemoattraction and activation in asthma pathogenesis. Further studies using anti-CCL11 approaches are needed to confirm a role for CCL11 in asthma pathogenesis particularly in patients with more severe disease.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University , Guangzhou Road, Nanjing , China and
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Adar T, Shteingart S, Ben Ya'acov A, Bar-Gil Shitrit A, Goldin E. From airway inflammation to inflammatory bowel disease: eotaxin-1, a key regulator of intestinal inflammation. Clin Immunol 2014; 153:199-208. [PMID: 24786916 DOI: 10.1016/j.clim.2014.04.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/17/2014] [Accepted: 04/22/2014] [Indexed: 02/06/2023]
Abstract
Eotaxin-1 (CCL-11) is a potent eosinophil chemoattractant that is considered a major contributor to tissue eosinophilia. Elevated eotaxin-1 levels have been described in various pathologic conditions, ranging from airway inflammation, to Hodgkin lymphoma, obesity and coronary artery disease. The main receptor for eotaxin-1 is CCR3; however, recent evidence indicates that eotaxin-1 may also bind to other receptors expressed by various cell types, suggesting a more widespread regulatory role for eotaxin-1 beyond the recruitment of eosinophils. Eotaxin-1 is also strongly associated with various gastrointestinal (GI) disorders. Although the etiology of inflammatory bowel disease (IBD) is still unknown, eotaxin-1 may play a key role in the development of mucosal inflammation. In this review, we summarize the biological context and effects of eotaxin-1, as well as its potential role as a therapeutic target, with a special focus on gastrointestinal inflammation.
Collapse
Affiliation(s)
- Tomer Adar
- Digestive Disease Institute, Shaare Zedek Medical Center, affiliated with the Hebrew University School of Medicine, Jerusalem, Israel.
| | - Shimon Shteingart
- Digestive Disease Institute, Shaare Zedek Medical Center, affiliated with the Hebrew University School of Medicine, Jerusalem, Israel
| | - Ami Ben Ya'acov
- Digestive Disease Institute, Shaare Zedek Medical Center, affiliated with the Hebrew University School of Medicine, Jerusalem, Israel
| | - Ariella Bar-Gil Shitrit
- Digestive Disease Institute, Shaare Zedek Medical Center, affiliated with the Hebrew University School of Medicine, Jerusalem, Israel
| | - Eran Goldin
- Digestive Disease Institute, Shaare Zedek Medical Center, affiliated with the Hebrew University School of Medicine, Jerusalem, Israel
| |
Collapse
|
20
|
de Boer JD, Yang J, van den Boogaard FE, Hoogendijk AJ, de Beer R, van der Zee JS, Roelofs JJTH, van 't Veer C, de Vos AF, van der Poll T. Mast cell-deficient kit mice develop house dust mite-induced lung inflammation despite impaired eosinophil recruitment. J Innate Immun 2013; 6:219-26. [PMID: 24157568 DOI: 10.1159/000354984] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Mast cells are implicated in allergic and innate immune responses in asthma, although their role in models using an allergen relevant for human disease is incompletely understood. House dust mite (HDM) allergy is common in asthma patients. Our aim was to investigate the role of mast cells in HDM-induced allergic lung inflammation. METHODS Wild-type (Wt) and mast cell-deficient Kit(w-sh) mice on a C57BL/6 background were repetitively exposed to HDM via the airways. RESULTS HDM challenge resulted in a rise in tryptase activity in bronchoalveolar lavage fluid (BALF) of Wt mice, indicative of mast cell activation. Kit(w-sh) mice showed a strongly attenuated HDM- induced recruitment of eosinophils in BALF and lung tissue, accompanied by reduced pulmonary levels of the eosinophil chemoattractant eotaxin. Remarkably, Kit(w-sh) mice demonstrated an unaltered capacity to develop lung pathology and increased mucus production in response to HDM. The increased plasma IgE in response to HDM in Wt mice was absent in Kit(w-sh) mice. CONCLUSION These data contrast with previous reports on the role of mast cells in models using ovalbumin as allergen in that C57BL/6 Kit(w-sh) mice display a selective impairment of eosinophil recruitment without differences in other features of allergic inflammation.
Collapse
Affiliation(s)
- J Daan de Boer
- Center of Infection and Immunity Amsterdam & Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Camilleri M. Pharmacological agents currently in clinical trials for disorders in neurogastroenterology. J Clin Invest 2013; 123:4111-20. [PMID: 24084743 DOI: 10.1172/jci70837] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Esophageal, gastrointestinal, and colonic diseases resulting from disorders of the motor and sensory functions represent almost half the patients presenting to gastroenterologists. There have been significant advances in understanding the mechanisms of these disorders, through basic and translational research, and in targeting the receptors or mediators involved, through clinical trials involving biomarkers and patient responses. These advances have led to relief of patients' symptoms and improved quality of life, although there are still significant unmet needs. This article reviews the pipeline of medications in development for esophageal sensorimotor disorders, gastroparesis, chronic diarrhea, chronic constipation (including opioid-induced constipation), and visceral pain.
Collapse
|
22
|
Isgrò M, Bianchetti L, Marini MA, Bellini A, Schmidt M, Mattoli S. The C-C motif chemokine ligands CCL5, CCL11, and CCL24 induce the migration of circulating fibrocytes from patients with severe asthma. Mucosal Immunol 2013; 6:718-27. [PMID: 23149666 DOI: 10.1038/mi.2012.109] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The C-C motif chemokine ligand 5 (CCL5), CCL11, and CCL24 are involved in the pathogenesis of asthma, and their function is mainly associated with the airway recruitment of eosinophils. This study tested their ability to induce the migration of circulating fibrocytes, which may contribute to the development of irreversible airflow obstruction in severe asthma. The sputum fluid phase (SFP) from patients with severe/treatment-refractory asthma (PwSA) contained elevated concentrations of CCL5, CCL11, and CCL24 in comparison with the SFP from patients with non-severe/treatment-responsive asthma (PwNSA). The circulating fibrocytes from PwSA expressed the receptors for these chemokines at increased levels and migrated in response to recombinant CCL5, CCL11, and CCL24. The SFP from PwSA induced the migration of autologous fibrocytes, and its activity was significantly attenuated by neutralization of endogenous CCL5, CCL11, and CCL24. These findings suggest that CCL5, CCL11, and CCL24 may contribute to the airway recruitment of fibrocytes in severe asthma.
Collapse
Affiliation(s)
- M Isgrò
- Avail Biomedical Research Institute, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
Atamas SP, Chapoval SP, Keegan AD. Cytokines in chronic respiratory diseases. F1000 BIOLOGY REPORTS 2013; 5:3. [PMID: 23413371 PMCID: PMC3564216 DOI: 10.3410/b5-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytokines are small, secreted proteins that control immune responses. Within the lung, they can control host responses to injuries or infection, resulting in clearance of the insult, repair of lung tissue, and return to homeostasis. Problems can arise when this response is over exuberant and/or cytokine production becomes dysregulated. In such cases, chronic and repeated inflammatory reactions and cytokine production can be established, leading to airway remodeling and fibrosis with unintended, maladaptive consequences. In this report, we describe the cytokines and molecular mechanisms behind the pathology observed in three major chronic diseases of the lung: asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Overlapping mechanisms are presented as potential sites for therapeutic intervention.
Collapse
Affiliation(s)
- Sergei P Atamas
- Department of Medicine, University of Maryland School of Medicine Baltimore, MD 21201 USA ; Department of Microbiology and Immunology, University of Maryland School of Medicine Baltimore, MD 21201 USA ; Baltimore VA Medical Center Baltimore, MD 21201 USA
| | | | | |
Collapse
|
24
|
Antoniu SA. Monoclonal antibodies for asthma and chronic obstructive pulmonary disease. Expert Opin Biol Ther 2013; 13:257-68. [PMID: 23282002 DOI: 10.1517/14712598.2012.758247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION In asthma and chronic obstructive pulmonary disease (COPD), the inflammation in the airways cannot always be controlled with conventional therapies, such as inhaled corticosteroids. Addition of more specific anti-inflammatory therapies, such as monoclonal antibodies, against inflammation pathways might improve the disease outcome. AREAS COVERED This review individually discusses the major inflammation pathways and their potential blocking monoclonal antibodies in asthma and COPD. EXPERT OPINION The current use of omalizumab in asthma provides a good example on the potential therapeutic role of monoclonal antibodies in both asthma and COPD. There are many other monoclonal antibodies which are currently investigated as possible therapies in these diseases. The identification of the disease subsets in which such antibodies might exert the maximum benefit opens the door for personalized medicine and for targeted biological therapy in asthma and COPD.
Collapse
Affiliation(s)
- Sabina Antonela Antoniu
- University of Medicine and Pharmacy, Pulmonary Disease University Hospital, Division of Pulmonary Disease, Iasi 700115, Romania.
| |
Collapse
|
25
|
Boucherat O, Chakir J, Jeannotte L. The loss of Hoxa5 function promotes Notch-dependent goblet cell metaplasia in lung airways. Biol Open 2012; 1:677-91. [PMID: 23213461 PMCID: PMC3507293 DOI: 10.1242/bio.20121701] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hox genes encode transcription factors controlling complex developmental processes in various organs. Little is known, however, about how HOX proteins control cell fate. Herein, we demonstrate that the goblet cell metaplasia observed in lung airways from Hoxa5−/− mice originates from the transdifferentiation of Clara cells. Reduced CC10 expression in Hoxa5−/− embryos indicates that altered cell specification occurs prior to birth. The loss of Hoxa5 function does not preclude airway repair after naphthalene exposure, but the regenerated epithelium presents goblet cell metaplasia and less CC10-positive cells, demonstrating the essential role of Hoxa5 for correct differentiation. Goblet cell metaplasia in Hoxa5−/− mice is a FOXA2-independent process. However, it is associated with increased Notch signaling activity. Consistent with these findings, expression levels of activated NOTCH1 and the effector gene HEY2 are enhanced in patients with chronic obstructive pulmonary disease. In vivo administration of a γ-secretase inhibitor attenuates goblet cell metaplasia in Hoxa5−/− mice, highlighting the contribution of Notch signaling to the phenotype and suggesting a potential therapeutic strategy to inhibit goblet cell differentiation and mucus overproduction in airway diseases. In summary, the loss of Hoxa5 function in lung mesenchyme impacts on epithelial cell fate by modulating Notch signaling.
Collapse
Affiliation(s)
- Olivier Boucherat
- Centre de recherche en cancérologie de l'Université Laval, Centre Hospitalier Universitaire de Québec , L'Hôtel-Dieu de Québec, 9 rue McMahon, Québec QC G1R 2J6 , Canada
| | | | | |
Collapse
|
26
|
Phosphoinositide 3-kinase γ mediates chemotactic responses of human eosinophils to platelet-activating factor. Int Immunopharmacol 2010; 10:1017-21. [DOI: 10.1016/j.intimp.2010.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 12/11/2022]
|
27
|
Zietkowski Z, Tomasiak-Lozowska MM, Skiepko R, Zietkowska E, Bodzenta-Lukaszyk A. Eotaxin-1 in exhaled breath condensate of stable and unstable asthma patients. Respir Res 2010; 11:110. [PMID: 20704746 PMCID: PMC2929222 DOI: 10.1186/1465-9921-11-110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 08/12/2010] [Indexed: 11/21/2022] Open
Abstract
Background Airway eosinophilia is considered a central event in the pathogenesis of asthma. Eotaxin plays a key role in selective eosinophil accumulation in the airways and, subsequently, their activation and degranulation. The study was undertaken to evaluate eotaxin-1 levels in the exhaled breath condensate (EBC) of asthmatics with different degrees of asthma severity and to establish the possible correlation of these measurements with other recognized parameters of airway inflammation. Methods EBC was collected from 46 patients with allergic asthma (14 with steroid-naïve asthma, 16 with ICS-treated, stable asthma, 16 with ICS-treated unstable asthma) and 12 healthy volunteers. Concentrations of eotaxin-1 were measured by ELISA. Results In the three groups of asthmatics, eotaxin-1 concentrations in EBC were significantly higher compared with healthy volunteers (steroid-naïve asthma: 9.70 pg/ml ± 1.70, stable ICS-treated asthma: 10.45 ± 2.00, unstable ICS-treated asthma: 17.97 ± 3.60, healthy volunteers: 6.24 ± 0.70). Eotaxin-1 levels were significantly higher in patients with unstable asthma than in the two groups with stable disease. We observed statistically significant correlations between the concentrations of eotaxin-1 in EBC and exhaled nitric oxide (FENO) or serum eosinophil cationic protein (ECP) in the three studied groups of asthmatics. We also discovered a significantly positive correlation between eotaxin-1 in EBC and blood eosinophil count in the groups of patients with unstable asthma and steroid-naïve asthma. Conclusions Measurements of eotaxin-1 in the EBC of asthma patients may provide another useful diagnostic tool for detecting and monitoring airway inflammation and disease severity.
Collapse
Affiliation(s)
- Ziemowit Zietkowski
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland.
| | | | | | | | | |
Collapse
|
28
|
Gong L, Wilhelm RS. CCR3 antagonists: a survey of the patent literature. Expert Opin Ther Pat 2009; 19:1109-32. [DOI: 10.1517/13543770903008544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Rådinger M, Lötvall J. Eosinophil progenitors in allergy and asthma - do they matter? Pharmacol Ther 2008; 121:174-84. [PMID: 19059433 DOI: 10.1016/j.pharmthera.2008.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 10/15/2008] [Indexed: 01/21/2023]
Abstract
Allergic inflammation is associated with marked infiltration of eosinophils in affected tissues. The eosinophil is believed to be a key effector cells in allergen induced asthma pathogenesis. However, the role of eosinophils in the clinical manifestation of asthma has recently been questioned, since therapies directed against eosinophil infiltration (i.e. anti-interleukin-5) failed to improve clinical symptoms such as airways hyper-responsiveness (AHR) in patients with asthma. Although eosinophils in peripheral blood and the airways were largely depleted after anti-IL-5 treatment, residual eosinophilia in lung tissue persisted, which permits speculation that the remaining eosinophils may be sufficient to drive the asthma symptomatology. Furthermore, recent findings suggest that primitive eosinophil progenitor cells traffic from the bone marrow to sites of inflammation in response to allergen exposure. These progenitors may then differentiate in situ and thus provide an ongoing supply of mature pro-inflammatory cells and secretory mediators that augment the inflammatory response. In the present article, we will review the evidence for these findings, and discuss the rationale for targeting hematopoiesis and their migration pathways in the treatment of allergic diseases. Furthermore, this review will highlight the hypothesis that both IL-5- and CCR3-mediated signaling pathways may need to be targeted in order to control the inflammation and AHR associated with asthma.
Collapse
Affiliation(s)
- Madeleine Rådinger
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
30
|
Hiromura Y, Kishida T, Nakano H, Hama T, Imanishi J, Hisa Y, Mazda O. IL-21 administration into the nostril alleviates murine allergic rhinitis. THE JOURNAL OF IMMUNOLOGY 2007; 179:7157-65. [PMID: 17982108 DOI: 10.4049/jimmunol.179.10.7157] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Type I allergic diseases such as allergic rhinitis are caused by IgE-mediated humoral immune responses, while eosinophils also fulfill important roles in the etiology of IgE-mediated allergy. IL-21 regulates growth, differentiation, and function of T, B, and NK cells, while the production of IgE is also influenced by IL-21. In this study we examined whether IL-21 is capable of controlling IgE-mediated allergic reactions in vivo by using the allergic rhinitis mouse model that was established by repetitive sensitization and intranasal challenge with OVA. Intranasal administration with recombinant mouse IL-21 (rmIL-21) significantly reduced the number of sneezes, as well as the serum concentration of OVA-specific IgE, in comparison with that of untreated allergic mice. The rmIL-21 treatment also suppressed germline Cepsilon transcription in the nasal-associated lymphoid tissues, which may have, at least partly, resulted from the up-regulation of Bcl-6 mRNA caused by IL-21. Local expression of IL-4, IL-5, and IL-13 was also inhibited by the intranasal cytokine therapy whereas, in contrast, the expression of endogenous IL-21 mRNA was induced by exogenous rmIL-21. Moreover, IL-21 acted on nasal fibroblasts to inhibit production of eotaxin. This novel function of IL-21 may be associated with the attenuation of eosinophil infiltration into nasal mucosa that was revealed by histopathological observation. These results indicated that IL-21 nasal administration effectively ameliorated allergic rhinitis through pleiotropic activities, i.e., the prevention of IgE production by B cells and eotaxin production by fibroblasts.
Collapse
Affiliation(s)
- Yayoi Hiromura
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Farahi N, Cowburn AS, Upton PD, Deighton J, Sobolewski A, Gherardi E, Morrell NW, Chilvers ER. Eotaxin-1/CC chemokine ligand 11: a novel eosinophil survival factor secreted by human pulmonary artery endothelial cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:1264-73. [PMID: 17617619 DOI: 10.4049/jimmunol.179.2.1264] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Airway eosinophilia plays a major role in the pathogenesis of asthma with the inhibition of apoptosis by GM-CSF and IL-5 proposed as a mechanism underlying prolonged eosinophil survival. In vivo and ex vivo studies have indicated the capacity of interventions that drive human eosinophil apoptosis to promote the resolution of inflammation. Far less is known about the impact of transendothelial migration on eosinophil survival, in particular, the capacity of endothelial cell-derived factors to contribute toward the apoptosis-resistant phenotype characteristic of airway-resident eosinophils. We examined the effects of conditioned medium from human pulmonary artery endothelial cells (HPAEC-CM) on eosinophil apoptosis in vitro. HPAEC-CM inhibited eosinophil, but not neutrophil apoptosis. This effect was specific to HPAECs and comparable in efficacy to the survival effects of GM-CSF and IL-5. The HPAEC survival factor was shown, on the basis of GM-CSF, IL-5, and IL-3 detection assays, Ab neutralization, and sensitivity to PI3K inhibition, to be clearly discrete from these factors. Gel filtration of HPAEC-CM revealed a peak of eosinophil survival activity at 8-12 kDa, and PCR confirmed the presence of mRNA for CCL5, CCL11, CCL24, CCL26, and CCL27 in the HPAECs. The CCR3 antagonist GW782415 caused a major inhibition of the HPAEC-CM-induced survival effect, and Ab neutralization of individual CCR3 chemokines revealed CCL11 as the major survival factor present in the HPAEC-CM. Furthermore, chemokine Ab arrays demonstrated up-regulation of CCL11 in HPAEC-CM. These data demonstrate the capacity of HPAECs to generate CCR3 agonists and the ability of CCL11 to inhibit human eosinophil apoptosis.
Collapse
Affiliation(s)
- Neda Farahi
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's and Papworth Hospitals, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Yoshikawa T, Dent G, Ward J, Angco G, Nong G, Nomura N, Hirata K, Djukanovic R. Impaired neutrophil chemotaxis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 175:473-9. [PMID: 17110644 DOI: 10.1164/rccm.200507-1152oc] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Neutrophilic airway inflammation is considered to be a major factor in the pathogenesis of chronic obstructive pulmonary disease (COPD), with sputum and bronchoalveolar lavage neutrophil counts broadly correlating with disease severity. The mechanisms responsible for neutrophil accumulation are poorly understood, but they could involve increased influx and/or survival of these cells. OBJECTIVES To investigate whether neutrophil chemotactic responsiveness and/or chemotactic activity in airway secretions are increased in subjects with COPD. METHODS Chemotaxis experiments were performed using induced sputum supernatants from subjects with and without COPD as a source of chemotactic activity, and neutrophils from healthy donors as responder cells. In addition, chemotactic responses to N-formyl-Met-Leu-Phe (fMLP) and interleukin-8 (IL-8/CXCL8) were studied using neutrophils from healthy subjects and subjects with COPD. MEASUREMENTS AND MAIN RESULTS As reported in the literature, sputum neutrophil counts were significantly increased in subjects with COPD compared with healthy subjects. However, this was associated with reduced chemotactic activity in sputum in COPD, as judged by reduced chemotaxis to the fluid phase of sputum from subjects with COPD compared with healthy subjects. Furthermore, whereas neutrophils from subjects with stage I COPD had normal responses to fMLP and IL-8, subjects with more severe stage II-IV COPD showed reduced levels of spontaneous migration and chemotaxis to fMLP and IL-8. CONCLUSIONS Neither increased chemotactic activity in the airways nor increased chemotactic responsiveness of neutrophils explains the increased number of these cells in subjects with stable COPD. The implications of the observed reduction in neutrophil chemotactic activity remain to be established.
Collapse
Affiliation(s)
- Takahiro Yoshikawa
- Allergy & Inflammation Research, Division of Infection, Inflammation, and Repair, Mailpoint 810, Level F, South Block, University of Southampton School of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Medina-Tato DA, Watson ML, Ward SG. Leukocyte navigation mechanisms as targets in airway diseases. Drug Discov Today 2006; 11:866-79. [PMID: 16997136 DOI: 10.1016/j.drudis.2006.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 07/21/2006] [Accepted: 08/14/2006] [Indexed: 12/12/2022]
Abstract
Respiratory diseases, including asthma and chronic obstructive pulmonary disease, are among the most significant diseases in terms of their disabling effects and healthcare burden. A characteristic feature of almost all respiratory diseases is the accumulation and activation of inflammatory leukocytes in the lung or airway. Recent advances in the understanding of the molecules and intracellular signalling events controlling these processes are now translating to new therapeutic entities. In this article, the process of leukocyte accumulation is summarized, together with the preclinical and clinical evidence supporting the utility of the individual components of this process as targets for disease therapy.
Collapse
Affiliation(s)
- David A Medina-Tato
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | | | | |
Collapse
|
35
|
Woodman L, Sutcliffe A, Kaur D, Berry M, Bradding P, Pavord ID, Brightling CE. Chemokine concentrations and mast cell chemotactic activity in BAL fluid in patients with eosinophilic bronchitis and asthma, and in normal control subjects. Chest 2006; 130:371-8. [PMID: 16899834 DOI: 10.1378/chest.130.2.371] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Asthma and eosinophilic bronchitis share many immunopathologic features including increased numbers of eosinophils and mast cells in the superficial airway. The mast cell chemotactic activity of airway secretions has not been assessed in patients with eosinophilic bronchitis. OBJECTIVES To investigate the concentration of chemokines in bronchial wash samples and BAL fluid, and the mast cell chemotactic activity in BAL fluid from subjects with asthma and eosinophilic bronchitis, and from healthy control subjects. METHODS We measured the concentrations of CCL11, CXCL8, and CXCL10 in bronchial wash samples and BAL fluid from 14 subjects with eosinophilic bronchitis, 14 subjects with asthma, and 15 healthy control subjects. Mast cell chemotaxis to BAL fluid from these subjects was examined using the human mast cell line HMC-1. RESULTS The bronchial wash sample and BAL fluid concentrations of CXCL10 and CXCL8 was increased in subjects with eosinophilic bronchitis compared to those in subjects with asthma and healthy control subjects (p < 0.05). The CCL11 concentration was below the limit of detection in most subjects. BAL fluid from subjects with eosinophilic bronchitis was chemotactic for mast cells (1.4-fold migration compared to a control, 95% confidence interval, 1.1 to 1.9; p = 0.04) and was inhibited by blocking CXCR1 (45% inhibition; p = 0.002), CXCR3 (38% inhibition; p = 0.034), or both (65% inhibition; p = 0.01). BAL fluid from the subjects with asthma and healthy control subjects was not chemotactic for mast cells. Mast cell migration to BAL fluid was correlated with the concentration of CXCL8 (r = 0.42; p = 0.031) and CXCL10 (r = 0.52; p = 0.007). CONCLUSION In subjects with eosinophilic bronchitis, CXCL8 and CXCL10 concentrations were elevated in airway secretions. These chemokines may play a key role in mast cell recruitment to the superficial airway in this condition.
Collapse
Affiliation(s)
- Lucy Woodman
- Insitute for Lung Health, University of Leicester, Glenfield Hospital, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Chemokines and chemokine receptors: Large and small therapeutic strategies for inflammatory diseases. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.ddstr.2006.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Andrews AL, Holloway JW, Holgate ST, Davies DE. IL-4 receptor alpha is an important modulator of IL-4 and IL-13 receptor binding: implications for the development of therapeutic targets. THE JOURNAL OF IMMUNOLOGY 2006; 176:7456-61. [PMID: 16751391 DOI: 10.4049/jimmunol.176.12.7456] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-4 is a key cytokine associated with allergy and asthma. Induction of cell signaling by IL-4 involves interaction with its cognate receptors, a complex of IL-4Ralpha with either the common gamma-chain or the IL-13R chain alpha1 (IL-13Ralpha1). We found that IL-4 bound to the extracellular domain of IL-4Ralpha (soluble human (sh)IL-4Ralpha) with high affinity and specificity. In contrast with the sequential mechanism of binding and stabilization afforded by IL-4Ralpha to the binding of IL-13 to IL-13Ralpha1, neither common gamma-chain nor IL-13Ralpha1 contributed significantly to the stabilization of the IL-4:IL-4Ralpha complex. Based on the different mechanisms of binding and stabilization of the IL-4R and IL-13R complexes, we compared the effects of shIL-4Ralpha and an IL-4 double mutein (R121D/Y124D, IL-4R antagonist) on IL-4- and IL-13-mediated responses. Whereas IL-4R antagonist blocked responses to both cytokines, shIL-4Ralpha only blocked IL-4. However, shIL-4Ralpha stabilized and augmented IL-13-mediated STAT6 activation and eotaxin production by primary human bronchial fibroblasts at suboptimal doses of IL-13. These data demonstrate that IL-4Ralpha plays a key role in the binding affinity of both IL-13R and IL-4R complexes. Under certain conditions, shIL-4Ralpha has the potential to stabilize binding IL-13 to its receptor to augment IL-13-mediated responses. Thus, complete understanding of the binding interactions between IL-4 and IL-13 and their cognate receptors may facilitate development of novel treatments for asthma that selectively target these cytokines without unpredicted or detrimental side effects.
Collapse
MESH Headings
- Adjuvants, Immunologic/physiology
- Adult
- Binding Sites
- Cells, Cultured
- Drug Delivery Systems/methods
- Female
- Fibroblasts/metabolism
- Humans
- Interleukin Receptor Common gamma Subunit
- Interleukin-13/antagonists & inhibitors
- Interleukin-13/chemistry
- Interleukin-13/metabolism
- Interleukin-13/physiology
- Interleukin-13 Receptor alpha1 Subunit
- Interleukin-4/antagonists & inhibitors
- Interleukin-4/metabolism
- Interleukin-4/physiology
- Interleukin-4 Receptor alpha Subunit
- Kinetics
- Ligands
- Male
- Middle Aged
- Phosphorylation
- Protein Transport
- Receptors, Interleukin/chemistry
- Receptors, Interleukin/metabolism
- Receptors, Interleukin/physiology
- Receptors, Interleukin-13
- Receptors, Interleukin-4/agonists
- Receptors, Interleukin-4/chemistry
- Receptors, Interleukin-4/metabolism
- Receptors, Interleukin-4/physiology
- STAT6 Transcription Factor/metabolism
- Solubility
- Surface Plasmon Resonance/methods
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Allison-Lynn Andrews
- The Brooke Laboratories, Division of Infection, Inflammation, and Repair, Southampton General Hospital, UK.
| | | | | | | |
Collapse
|
38
|
Ko FWS, Lau CYK, Leung TF, Wong GWK, Lam CWK, Lai CKW, Hui DSC. Exhaled breath condensate levels of eotaxin and macrophage-derived chemokine in stable adult asthma patients. Clin Exp Allergy 2006; 36:44-51. [PMID: 16393265 DOI: 10.1111/j.1365-2222.2006.02398.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asthma is associated with esoinophilic airway inflammation and overproduction of T-helper type 2 (Th2) lymphocyte-related cytokines. OBJECTIVE This study assessed the eosinophil chemoattractant eotaxin and Th2-specific macrophage-derived chemokine (MDC) in the adult asthmatic airway. Eotaxin and MDC levels were determined in exhaled breath condensate (EBC) obtained from adult patients with asthma. METHODS Fifty-four asthmatics (20 male, mean (SD) age 40 (12) years and percentage predicted forced expiratory volume in 1 s (FEV(1)) 81.7 (20.8)) and 20 age- and sex-matched controls were studied. EBC was collected using EcoScreen by 10 min of tidal breathing with a nose clip. Concentrations of eotaxin and MDC were measured by ELISA. RESULTS Asthma patients on inhaled corticosteroid (ICS) had a higher median interquartile range (IQR) level of eotaxin than the steroid-naïve asthmatics (18.5 (17.7-20.1) vs. 17.9 (17.0-18.6) pg/mL, P=0.02) and controls (18.5 (17.7-20.1) pg/mL vs 17.4 (16.3-18.0) pg/mL, P=0.001). Eotaxin level in EBC had a significant negative correlation with the FEV(1)/forced vital capacity ratio (r=-0.43, P=0.03) in steroid-naïve asthmatics. EBC MDC level was higher in subjects on ICS than the steroid naïve asthmatics (120 (118-125) vs. 117 (116-119) pg/mL, P=0.01) and the controls (120 (118-125) vs. 117 (116-120) pg/mL, P=0.02). CONCLUSIONS Eotaxin and MDC could be measured in EBC of adults with asthma. EBC eotaxin and MDC levels were higher in asthmatics on ICS than the steroid-naïve asthmatics or controls. Exhaled chemokines may be potential non-invasive markers for assessing airway inflammation in asthmatics.
Collapse
Affiliation(s)
- F W S Ko
- Departments of Medicine and Therapeutics, Paediatrics and Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
39
|
Kong JSW, Teuber SS, Gershwin ME. Potential adverse events with biologic response modifiers. Autoimmun Rev 2006; 5:471-85. [PMID: 16920574 DOI: 10.1016/j.autrev.2006.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
In recent years, an explosion of biologic response modifiers has entered the market to combat a variety of immune-mediated diseases. These can be in the form of recombinant cytokines, as in the case of interferon beta in the treatment of multiple sclerosis, or novel engineered antibodies constructed by combining non-human determinants with a human immunoglobulin scaffold, as in the case of omalizumab in the treatment of allergic asthma. More recently, completely human monoclonal antibodies have also been constructed. Adverse reactions related to these agents can be classified as expected or unexpected events. A number of case studies and a handful of randomized trials have demonstrated the potential toxicities with the use of biologic response modifiers. This article aims to review adverse event profiles of select biologic response modifiers for which the most data is available and are common to a rheumatology, allergy/immunology, and dermatology patient population.
Collapse
Affiliation(s)
- James S W Kong
- Division of Rheumatology, Allergy, and Clinical Immunology, Department of Internal Medicine, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
40
|
Abstract
Ocular allergy is a common condition that usually affects the conjunctiva of the eye and is, therefore, often referred to as allergic conjunctivitis. The severity of the disease can range from mild itching and redness, as seen in seasonal allergic conjunctivitis, to the more severe, sight-threatening forms such as vernal and atopic keratoconjunctivitis. The central mechanism in the pathogenesis of these diseases is IgE-mediated mast cell degranulation and activation of T lymphocytes, eosinophils and conjunctival structural cells. The pharmacotherapy of allergic conjunctivitis consists of several classes of drugs: antihistamines, mast cell stabilisers, dual-acting agents and corticosteroids. None of the available drugs completely abolishes the development of ocular allergy. For this reason, new topical antiallergic/anti-inflammatory agents are currently and continually under clinical trials. This review provides a background to ocular allergic diseases, the medical need for therapy and current and potential new treatments.
Collapse
Affiliation(s)
- Andrea Leonardi
- Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
41
|
Choi BW. Update in Asthma Treatment. Tuberc Respir Dis (Seoul) 2006. [DOI: 10.4046/trd.2006.61.1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Byoung Whui Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Division of Pulmonology and Allergy, Korea
| |
Collapse
|
42
|
Hemelaers L, Henket M, Sele J, Bureau F, Louis R. Cysteinyl-leukotrienes contribute to sputum eosinophil chemotactic activity in asthmatics. Allergy 2006; 61:136-9. [PMID: 16364169 DOI: 10.1111/j.1398-9995.2006.00993.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cysteinyl-leukotrienes are lipid derived mediators involved in asthma. They are able to stimulate eosinophil chemotaxis in vitro. Induced sputum from asthmatics has been shown to contain eosinophil chemotactic activity. The purpose of our study was to evaluate the contribution of cysteinyl-leukotrienes to sputum eosinophil chemotactic activity in asthmatics and to seek whether there might be differences between asthmatics free of inhaled corticosteroids vs those regularly receiving this treatment. METHODS Twenty-two patients (11 corticosteroid free, mean FEV1 99% predicted, 11 corticosteroid-treated, mean FEV1 77% predicted) recruited from our asthma clinic underwent a sputum induction. Sputum was processed according to standard procedure. Eosinophil chemotactic activity contained in the fluid phase was assessed using Boyden microchamber model and expressed as chemotaxis index (CI). Cysteinyl-leukotrienes were measured in sputum supernatant by ELISA and their role in sputum eosionophil chemotactic activity was evaluated by using montelukast, a selective antagonist of a cys-LT1 receptor. RESULTS Cysteinyl-leukotrienes were well detectable in sputum supernatants from both steroid-naive (247 +/- 42 pg/ml) and steroid-treated (228 +/- 26 pg/ml) asthmatics. Sputum eosinophil chemotactic activity was indiscriminately present in both corticosteroid-naive (CI: 2.61 +/- 0.22) and corticosteroid-treated (2.98 +/- 0.35) asthmatics. Montelukast (100 microM) significantly inhibited the eosinophil chemotactic activity in both groups achieving a mean inhibition of 54.2 +/- 9.2% (P < 0.001) and 64.7 +/- 7.8% (P < 0.001) in steroid-naive and steroid-treated asthmatics respectively. CONCLUSION Cysteinyl-leukotrienes actively participate in sputum eosinophil chemotactic activity found in asthmatics irrespective of whether they are or not under treatment with inhaled corticoids.
Collapse
Affiliation(s)
- L Hemelaers
- Department of Pneumology, CHU Sart-Tilman, University of Liege, Liege, Belgium
| | | | | | | | | |
Collapse
|
43
|
Mishra RK, Scaife JE, Harb Z, Gray BC, Djukanovic R, Dent G. Differential dependence of eosinophil chemotactic responses on phosphoinositide 3-kinase (PI3K). Allergy 2005; 60:1204-7. [PMID: 16076309 DOI: 10.1111/j.1398-9995.2005.00845.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Control of eosinophil migration to sites of inflammatory responses is a potentially therapeutic intervention in diseases such as bronchial asthma. Chemoattractants, their receptors and the associated signalling pathways may, therefore, be important targets for novel therapeutics. While several potentially important chemoattractants have been identified, the signalling pathways mediating their actions are incompletely understood. AIMS OF THE STUDY The role of phosphoinositide 3-kinase (PI3K) in responses of human eosinophils to two important eosinophil chemoattractants -- platelet-activating factor (PAF) and eotaxin (CCL11) -- was studied to determine whether this enzyme activity might be crucial for eosinophil migration. METHODS Eosinophils were isolated from atopic donor blood by immunomagnetic selection. Chemotaxis was assayed in a 96-well blind-chamber cell fluorescence assay. Respiratory burst and leukotriene C(4) secretion were also assayed. RESULTS Two PI3K inhibitors, wortmannin and LY294002, caused concentration-dependent inhibition of PAF-induced eosinophil chemotaxis (IC(50) = 0.54 nM and 0.15 microM, respectively) but exhibited at least 100-fold lower potency against eotaxin-induced responses (IC(50) = 48 nM and >100 microM, respectively), indicating that these responses were not dependent upon PI3K. Wortmannin and LY294002 also inhibited PAF induced respiratory burst but not PAF-induced LTC(4) secretion. CONCLUSIONS We conclude that PI3K-dependence varies with stimulus and response, and that eotaxin-induced eosinophil migration is not controlled by PI3K. This may indicate a limit to the potential of PI3K inhibitors to suppress tissue eosinophilia in diseases such as asthma.
Collapse
Affiliation(s)
- R K Mishra
- Division of Infection, Inflammation and Repair, University of Southampton School of Medicine, Southampton, UK
| | | | | | | | | | | |
Collapse
|
44
|
Weller CL, Jose PJ, Williams TJ. Selective suppression of leukocyte recruitment in allergic inflammation. Mem Inst Oswaldo Cruz 2005; 100 Suppl 1:153-60. [PMID: 15962115 DOI: 10.1590/s0074-02762005000900026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Allergic diseases result in a considerable socioeconomic burden. The incidence of allergic diseases, notably allergic asthma, has risen to high levels for reasons that are not entirely understood. With an increasing knowledge of underlying mechanisms, there is now more potential to target the inflammatory process rather than the overt symptoms. This focuses attention on the role of leukocytes especially Th2 lymphocytes that regulate allergic inflammation and effector cells where eosinophils have received much attention. Eosinophils are thought to be important based on the high numbers that are recruited to sites of allergic inflammation and the potential of these cells to effect both tissue injury and remodelling. It is hoped that future therapy will be directed towards specific leukocyte types, without overtly compromising essential host defence responses. One obvious target is leukocyte recruitment. This necessitates a detailed understanding of underlying mechanisms, particularly those involving soluble chemoattractants signals and cell-cell adhesion molecules.
Collapse
Affiliation(s)
- C L Weller
- Leukocyte Biology Section, Biomedical Sciences Division, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
45
|
Fabbri L, Peters SP, Pavord I, Wenzel SE, Lazarus SC, Macnee W, Lemaire F, Abraham E. Allergic rhinitis, asthma, airway biology, and chronic obstructive pulmonary disease in AJRCCM in 2004. Am J Respir Crit Care Med 2005; 171:686-98. [PMID: 15790866 DOI: 10.1164/rccm.2412006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Leonardo Fabbri
- Medical, Oncological, and Radiological Sciences, University of Modena, Modena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
|