1
|
Ko EJ, Jeong JY, Bae SC, Cha HJ. Expression profiles of TNF-Alpha and HERV-K Env proteins in multiple types of colon and lung disease. Genes Genomics 2024:10.1007/s13258-024-01585-9. [PMID: 39567418 DOI: 10.1007/s13258-024-01585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/22/2024]
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) were integrated into the human genome millions of years ago and have since proliferated to comprise about 8% of the human genome. For a long time, HERVs were thought to be remnants of ancient viruses, rendered inactive over the ages. However, recent studies have revealed that HERVs are involved in various diseases, including cancer. Notably, HERVs have been found to play a crucial role in immune responses and inflammatory processes, indicating their significant influence on the regulation of immune-related diseases. OBJECTIVE We reported in previous reports that HERV-K119 env Knockout (KO) and inflammatory response were associated. In this study, we identified the correlation between inflammatory disease and HERV-K Env and TNF-Alpha protein expression in multiple types of colon disease tissue and lung disease spectrum tissue. METHODS We performed Immunofluorescence (IF) using multiple types of colon disease and lung disease spectrum tissue microarray (TMAs) and compared and analyzed the patient clinical data provided. RESULTS As a result, we identified that the expression of HERV-K Env and TNF-Alpha proteins in certain colorectal inflammatory diseases and certain lung inflammatory diseases showed specific expression. And through the analysis of the clinical data provided, environmental factors could be identified. CONCLUSION Our study demonstrates that the relationship between TNF-Alpha and HERV-K Env expression in inflammation disease and clinical significance of disease tissues.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, 10032, USA.
| | - Jee-Yeong Jeong
- Department of Biochemistry, Kosin University College of Medicine, Busan, 49241, Republic of Korea
- Institute for Medical Science, Kosin University College of Medicine, Busan, 49241, Republic of Korea
| | - Sung Chul Bae
- Department of Biological Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Hee-Jae Cha
- Departments of Parasitology and Genetics, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
- Institute for Medical Science, Kosin University College of Medicine, Busan, 49241, Republic of Korea.
| |
Collapse
|
2
|
Robertoni FSZ, Velosa APP, Oliveira LDM, de Almeida FM, da Silveira LKR, Queiroz ZADJ, Lobo TDM, Contini VE, Baldavira CM, Carrasco S, Fernezlian SDM, Sato MN, Capelozzi VL, Lopes FDTQDS, Teodoro WPR. Type V collagen-induced nasal tolerance prevents lung damage in an experimental model: new evidence of autoimmunity to collagen V in COPD. Front Immunol 2024; 15:1444622. [PMID: 39301030 PMCID: PMC11410637 DOI: 10.3389/fimmu.2024.1444622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) has been linked to immune responses to lung-associated self-antigens. Exposure to cigarette smoke (CS), the main cause of COPD, causes chronic lung inflammation, resulting in pulmonary matrix (ECM) damage. This tissue breakdown exposes collagen V (Col V), an antigen typically hidden from the immune system, which could trigger an autoimmune response. Col V autoimmunity has been linked to several lung diseases, and the induction of immune tolerance can mitigate some of these diseases. Evidence suggests that autoimmunity to Col V might also occur in COPD; thus, immunotolerance to Col V could be a novel therapeutic approach. Objective The role of autoimmunity against collagen V in COPD development was investigated by analyzing the effects of Col V-induced tolerance on the inflammatory response and lung remodeling in a murine model of CS-induced COPD. Methods Male C57BL/6 mice were divided into three groups: one exposed to CS for four weeks, one previously tolerated for Col V and exposed to CS for four weeks, and one kept in clean air for the same period. Then, we proceeded with lung functional and structural evaluation, assessing inflammatory cells in bronchoalveolar lavage fluid (BALF) and inflammatory markers in the lung parenchyma, inflammatory cytokines in lung and spleen homogenates, and T-cell phenotyping in the spleen. Results CS exposure altered the structure of elastic and collagen fibers and increased the pro-inflammatory immune response, indicating the presence of COPD. Col V tolerance inhibited the onset of emphysema and prevented structural changes in lung ECM fibers by promoting an immunosuppressive microenvironment in the lung and inducing Treg cell differentiation. Conclusion Induction of nasal tolerance to Col V can prevent inflammatory responses and lung remodeling in experimental COPD, suggesting that autoimmunity to Col V plays a role in COPD development.
Collapse
Affiliation(s)
| | | | - Luana de Mendonça Oliveira
- Laboratory of Dermatology and Immunodeficiencies, Laboratório de Investigação Médica (LIM)-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Francine Maria de Almeida
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics, Laboratório de Investigação Médica (LIM)-20, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Thays de Matos Lobo
- Division of Rheumatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Vitória Elias Contini
- Division of Rheumatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Solange Carrasco
- Division of Rheumatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, Laboratório de Investigação Médica (LIM)-56, Department of Dermatology, Tropical Medicine Institute of São Paulo, University of São Paulo Medical School, São Paulo, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
3
|
Shakeel I, Ashraf A, Afzal M, Sohal SS, Islam A, Kazim SN, Hassan MI. The Molecular Blueprint for Chronic Obstructive Pulmonary Disease (COPD): A New Paradigm for Diagnosis and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2297559. [PMID: 38155869 PMCID: PMC10754640 DOI: 10.1155/2023/2297559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD. We present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure, pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understanding of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
4
|
Kargarpour Z, Cicko S, Köhler TC, Zech A, Stoshikj S, Bal C, Renner A, Idzko M, El-Gazzar A. Blocking P2Y2 purinergic receptor prevents the development of lipopolysaccharide-induced acute respiratory distress syndrome. Front Immunol 2023; 14:1310098. [PMID: 38179047 PMCID: PMC10765495 DOI: 10.3389/fimmu.2023.1310098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with high morbidity and mortality resulting from a direct or indirect injury of the lung. It is characterized by a rapid alveolar injury, lung inflammation with neutrophil accumulation, elevated permeability of the microvascular-barrier leading to an aggregation of protein-rich fluid in the lungs, followed by impaired oxygenation in the arteries and eventual respiratory failure. Very recently, we have shown an involvement of the Gq-coupled P2Y2 purinergic receptor (P2RY2) in allergic airway inflammation (AAI). In the current study, we aimed to elucidate the contribution of the P2RY2 in lipopolysaccharide (LPS)-induced ARDS mouse model. We found that the expression of P2ry2 in neutrophils, macrophages and lung tissue from animals with LPS-induced ARDS was strongly upregulated at mRNA level. In addition, ATP-neutralization by apyrase in vivo markedly attenuated inflammation and blocking of P2RY2 by non-selective antagonist suramin partially decreased inflammation. This was indicated by a reduction in the number of neutrophils, concentration of proinflammatory cytokines in the BALF, microvascular plasma leakage and reduced features of inflammation in histological analysis of the lung. P2RY2 blocking has also attenuated polymorphonuclear neutrophil (PMN) migration into the interstitium of the lungs in ARDS mouse model. Consistently, treatment of P2ry2 deficient mice with LPS lead to an amelioration of the inflammatory response showed by reduced number of neutrophils and concentrations of proinflammatory cytokines. In attempts to identify the cell type specific role of P2RY2, a series of experiments with conditional P2ry2 knockout animals were performed. We observed that P2ry2 expression in neutrophils, but not in the airway epithelial cells or CD4+ cells, was associated with the inflammatory features caused by ARDS. Altogether, our findings imply for the first time that increased endogenous ATP concentration via activation of P2RY2 is related to the pathogenesis of LPS-induced lung inflammation and may represent a potential therapeutic target for the treatment of ARDS and predictably assess new treatments in ARDS.
Collapse
Affiliation(s)
- Zahra Kargarpour
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Sanja Cicko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Thomas C. Köhler
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Andreas Zech
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Slagjana Stoshikj
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Christina Bal
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Andreas Renner
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| | - Marco Idzko
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
- Department of Pneumology, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ahmed El-Gazzar
- Department of Pulmonology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Hu Y, Shao X, Xing L, Li X, Nonis GM, Koelwyn GJ, Zhang X, Sin DD. Single-Cell Sequencing of Lung Macrophages and Monocytes Reveals Novel Therapeutic Targets in COPD. Cells 2023; 12:2771. [PMID: 38132091 PMCID: PMC10741950 DOI: 10.3390/cells12242771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Macrophages and monocytes orchestrate inflammatory processes in the lungs. However, their role in the pathogenesis of chronic obstructive pulmonary disease (COPD), an inflammatory condition, is not well known. Here, we determined the characteristics of these cells in lungs of COPD patients and identified novel therapeutic targets. METHODS We analyzed the RNA sequencing (scRNA-seq) data of explanted human lung tissue from COPD (n = 18) and control (n = 28) lungs and found 16 transcriptionally distinct groups of macrophages and monocytes. We performed pathway and gene enrichment analyses to determine the characteristics of macrophages and monocytes from COPD (versus control) lungs and to identify the therapeutic targets, which were then validated using data from a randomized controlled trial of COPD patients (DISARM). RESULTS In the alveolar macrophages, 176 genes were differentially expressed (83 up- and 93 downregulated; Padj < 0.05, |log2FC| > 0.5) and were enriched in downstream biological processes predicted to cause poor lipid uptake and impaired cell activation, movement, and angiogenesis in COPD versus control lungs. Classical monocytes from COPD lungs harbored a differential gene set predicted to cause the activation, mobilization, and recruitment of cells and a hyperinflammatory response to influenza. In silico, the corticosteroid fluticasone propionate was one of the top compounds predicted to modulate the abnormal transcriptional profiles of these cells. In vivo, a fluticasone-salmeterol combination significantly modulated the gene expression profiles of bronchoalveolar lavage cells of COPD patients (p < 0.05). CONCLUSIONS COPD lungs harbor transcriptionally distinct lung macrophages and monocytes, reflective of a dysfunctional and hyperinflammatory state. Inhaled corticosteroids and other compounds can modulate the transcriptomic profile of these cells in patients with COPD.
Collapse
Affiliation(s)
- Yushan Hu
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8P 5C2, Canada;
| | - Xiaojian Shao
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| | - Li Xing
- Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Xuan Li
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada; (X.L.); (G.M.N.); (G.J.K.); (D.D.S.)
| | - Geoffrey M. Nonis
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada; (X.L.); (G.M.N.); (G.J.K.); (D.D.S.)
| | - Graeme J. Koelwyn
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada; (X.L.); (G.M.N.); (G.J.K.); (D.D.S.)
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Xuekui Zhang
- Department of Mathematics and Statistics, University of Victoria, Victoria, BC V8P 5C2, Canada;
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada; (X.L.); (G.M.N.); (G.J.K.); (D.D.S.)
| | - Don D. Sin
- UBC Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada; (X.L.); (G.M.N.); (G.J.K.); (D.D.S.)
- Division of Respirology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
6
|
Nehring P, Gromadzka G, Jastrzębski M, Przybyłkowski A. Genetic Variants in Matrix Metalloproteinases MMP3 (rs3025058) and MMP9 (rs3918242) Associated with Colonic Diverticulosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2031. [PMID: 38004080 PMCID: PMC10673370 DOI: 10.3390/medicina59112031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Diverticulosis affects a significant portion of the elderly population, with age and lifestyle being established risk factors. Additionally, genetic predisposition is gaining recognition as a contributing factor. This pilot study sought to explore the frequency of genetic variants in matrix metalloproteinases (MMPs) 3, 9, and 12 in a population of colonic diverticulosis patients. Materials and Methods: The study encompassed 134 participants: 59 diagnosed with colon diverticulosis during colonoscopy and 75 healthy controls. The cases and controls were meticulously matched in terms of age and gender. We assessed the distribution of genetic variants MMP3 rs3025058, MMP9 rs3918242, and MMP12 rs2276109 using the polymerase chain reaction-restriction fragments length polymorphism technique. Results: The MMP9 rs3918242 allele T was notably more frequent in individuals with diverticulosis when compared with the control group (p < 0.03). Furthermore, it was associated with dominant (OR = 2.62; 95% CI: 1.24-5.56; p < 0.01) and co-dominant (OR = 2.10; 95% CI: 1.06-4.13; p < 0.03) genetic models. The MMP3 rs3025058 5A/5A genotype was nearly twice as frequent in patients with diverticulosis, while the 6A/6A genotype was only half as common in this group. Conversely, no significant correlation was established between MMP12 rs2276109 and colonic diverticulosis. Conclusions: Our study offers the first insight into a potential connection between genetic variants in MMPs and colon diverticulosis. Specifically, allele T of MMP9 rs3918242 and allele 5A of MMP3 rs3025058 appear to be linked to this condition. These findings indirectly suggest a role for extracellular matrix proteins in the pathogenesis of diverticulosis.
Collapse
Affiliation(s)
- Piotr Nehring
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.J.)
| | - Grażyna Gromadzka
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Miłosz Jastrzębski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.J.)
| | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland (M.J.)
| |
Collapse
|
7
|
Rodriguez-Herrera AJ, de Souza ABF, Castro TDF, Machado-Junior PA, Marcano-Gomez EC, Menezes TP, Castro MLDC, Talvani A, Costa DC, Cangussú SD, Bezerra FS. Long-term e-cigarette aerosol exposure causes pulmonary emphysema in adult female and male mice. Regul Toxicol Pharmacol 2023; 142:105412. [PMID: 37247649 DOI: 10.1016/j.yrtph.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
This study aimed to evaluate long-term exposure to conventional cigarette smoke (CC) and electronic cigarette (EC) aerosol in adult male and female C57BL/6 mice. Forty-eight C57BL/6 mice were used, male (n = 24) and female (n = 24), both were divided into three groups: control, CC and EC. The CC and EC groups were exposed to cigarette smoke or electronic cigarette aerosol, respectively, 3 times a day for 60 consecutive days. Afterwards, they were maintained for 60 days without exposure to cigarettes or electronic cigarette aerosol. Both cigarettes promoted an influx of inflammatory cells to the lung in males and females. All animals exposed to CC and EC showed an increase in lipid peroxidation and protein oxidation. There was an increase of IL-6 in males and females exposed to EC. The IL-13 levels were higher in the females exposed to EC and CC. Both sexes exposed to EC and CC presented tissue damage characterized by septal destruction and increased alveolar spaces compared to control. Our results demonstrated that exposure to CC and EC induced pulmonary emphysema in both sexes, and females seem to be more susceptible to EC.
Collapse
Affiliation(s)
- Andrea Jazel Rodriguez-Herrera
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Elena Cecilia Marcano-Gomez
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
8
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
9
|
Axelsson GT, Jonmundsson T, Woo YJ, Frick EA, Aspelund T, Loureiro JJ, Orth AP, Jennings LL, Gudmundsson G, Emilsson V, Gudmundsdottir V, Gudnason V. Proteomic associations with forced expiratory volume - a Mendelian randomisation study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.30.23292035. [PMID: 37425696 PMCID: PMC10327250 DOI: 10.1101/2023.06.30.23292035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
A decline in forced expiratory volume (FEV1) is a hallmark of obstructive respiratory diseases, an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. Data from the general population-based AGES-Reykjavik study were used. Proteomic measurements were done using 4,782 DNA aptamers (SOMAmers). Data from 1,648 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5,368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). In observational analyses, 473 SOMAmers were associated with FEV1 after multiple testing adjustment. The most significant were R-Spondin 4, Alkaline Phosphatase, Placental Like 2 and Retinoic Acid Receptor Responder 2. Of the 235 SOMAmers with genetic data, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta and Apolipoprotein M. THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. In summary, this large scale proteogenomic analyses of FEV1 reveals protein markers of FEV1, as well as several proteins with potential causality to lung function.
Collapse
|
10
|
Cha SR, Jang J, Park SM, Ryu SM, Cho SJ, Yang SR. Cigarette Smoke-Induced Respiratory Response: Insights into Cellular Processes and Biomarkers. Antioxidants (Basel) 2023; 12:1210. [PMID: 37371940 DOI: 10.3390/antiox12061210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Cigarette smoke (CS) poses a significant risk factor for respiratory, vascular, and organ diseases owing to its high content of harmful chemicals and reactive oxygen species (ROS). These substances are known to induce oxidative stress, inflammation, apoptosis, and senescence due to their exposure to environmental pollutants and the presence of oxidative enzymes. The lung is particularly susceptible to oxidative stress. Persistent oxidative stress caused by chronic exposure to CS can lead to respiratory diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), and lung cancer. Avoiding exposure to environmental pollutants, like cigarette smoke and air pollution, can help mitigate oxidative stress. A comprehensive understanding of oxidative stress and its impact on the lungs requires future research. This includes identifying strategies for preventing and treating lung diseases as well as investigating the underlying mechanisms behind oxidative stress. Thus, this review aims to investigate the cellular processes induced by CS, specifically inflammation, apoptosis, senescence, and their associated biomarkers. Furthermore, this review will delve into the alveolar response provoked by CS, emphasizing the roles of potential therapeutic target markers and strategies in inflammation and oxidative stress.
Collapse
Affiliation(s)
- Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Sung-Min Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se Min Ryu
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Seong-Joon Cho
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Kotlyarov S. The Role of Smoking in the Mechanisms of Development of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int J Mol Sci 2023; 24:8725. [PMID: 37240069 PMCID: PMC10217854 DOI: 10.3390/ijms24108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Tobacco smoking is a major cause of chronic obstructive pulmonary disease (COPD) and atherosclerotic cardiovascular disease (ASCVD). These diseases share common pathogenesis and significantly influence each other's clinical presentation and prognosis. There is increasing evidence that the mechanisms underlying the comorbidity of COPD and ASCVD are complex and multifactorial. Smoking-induced systemic inflammation, impaired endothelial function and oxidative stress may contribute to the development and progression of both diseases. The components present in tobacco smoke can have adverse effects on various cellular functions, including macrophages and endothelial cells. Smoking may also affect the innate immune system, impair apoptosis, and promote oxidative stress in the respiratory and vascular systems. The purpose of this review is to discuss the importance of smoking in the mechanisms underlying the comorbid course of COPD and ASCVD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
12
|
Extracellular Vesicles' Role in the Pathophysiology and as Biomarkers in Cystic Fibrosis and COPD. Int J Mol Sci 2022; 24:ijms24010228. [PMID: 36613669 PMCID: PMC9820204 DOI: 10.3390/ijms24010228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/03/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
In keeping with the extraordinary interest and advancement of extracellular vesicles (EVs) in pathogenesis and diagnosis fields, we herein present an update to the knowledge about their role in cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). Although CF and COPD stem from a different origin, one genetic and the other acquired, they share a similar pathophysiology, being the CF transmembrane conductance regulator (CFTR) protein implied in both disorders. Various subsets of EVs, comprised mainly of microvesicles (MVs) and exosomes (EXOs), are secreted by various cell types that are either resident or attracted in the airways during the onset and progression of CF and COPD lung disease, representing a vehicle for metabolites, proteins and RNAs (especially microRNAs), that in turn lead to events as such neutrophil influx, the overwhelming of proteases (elastase, metalloproteases), oxidative stress, myofibroblast activation and collagen deposition. Eventually, all of these pathomechanisms lead to chronic inflammation, mucus overproduction, remodeling of the airways, and fibrosis, thus operating a complex interplay among cells and tissues. The detection of MVs and EXOs in blood and biological fluids coming from the airways (bronchoalveolar lavage fluid and sputum) allows the consideration of EVs and their cargoes as promising biomarkers for CF and COPD, although clinical expectations have yet to be fulfilled.
Collapse
|
13
|
Fang L, Wang X, Zhang M, Khan P, Tamm M, Roth M. MicroRNA-101-3p Suppresses mTOR and Causes Mitochondrial Fragmentation and Cell Degeneration in COPD. Can Respir J 2022; 2022:5933324. [PMID: 36518817 PMCID: PMC9744603 DOI: 10.1155/2022/5933324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Cigarette smoke is assumed to cause the loss of airway wall structure in chronic obstructive pulmonary disease (COPD) by reducing airway smooth muscle cell (ASMC) function. It also modifies mTOR activity, microRNA (miR)-101-3p expression, and mitochondria function. Here, the link between miR-101-3p and mTOR-regulated mitochondria integrity and ASMC deterioration was assessed. METHODS Disease-specific miR-101-3p expression was determined by RT-PCR in primary ASMC (non-COPD smokers: n = 6; COPD: n = 8; healthy: n = 6). The regulatory effect of miR-101-3p modification on mTOR expression, mitochondrial fragmentation, and remodeling properties (α-SMA, fibronectin, MTCO2, and p70S6 kinase) was assessed in ASMC (healthy nonsmokers: n = 3; COPD: n = 3) by Western blotting and immunofluorescence microscopy. MiR-101-3p was modified by specific mimics or inhibitors, in ASMC stimulated with TNF-α (10 ng/ml) or cigarette smoke extract (CSE). RESULTS MiR-101-3p expression was significantly higher in ASMC of COPD patients, compared to ASMC of healthy or active smokers. MiR-101-3p expression was increased by TNF-α or CSE. TNF-α or miR-101-3p deteriorated ASMC and mitochondria, while decreasing mTOR signaling, α-SMA, fibronectin, and MTCO2. MiR-101-3p inhibition reduced ASMC deterioration and mitochondrial fragmentation. CONCLUSION Constitutive high miR-101-3p expression characterizes COPD-ASMC, causing increased mitochondrial fragmentation and ASMC deterioration. Thus, reactivation mTOR or blocking miR-101-3p presents a potential new strategy for COPD therapy.
Collapse
Affiliation(s)
- Lei Fang
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Xinggang Wang
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
- Reproductive Medicine Centre, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Ming Zhang
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Petra Khan
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Michael Tamm
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Michael Roth
- Departments of Biomedicine & Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
14
|
Liu G, Jarnicki AG, Paudel KR, Lu W, Wadhwa R, Philp AM, Van Eeckhoutte H, Marshall JE, Malyla V, Katsifis A, Fricker M, Hansbro NG, Dua K, Kermani NZ, Eapen MS, Tiotiu A, Chung KF, Caramori G, Bracke K, Adcock IM, Sohal SS, Wark PA, Oliver BG, Hansbro PM. Adverse roles of mast cell chymase-1 in COPD. Eur Respir J 2022; 60:2101431. [PMID: 35777766 DOI: 10.1183/13993003.01431-2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/08/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND COPD is the third leading cause of death worldwide. Cigarette smoke (CS)-induced chronic inflammation inducing airway remodelling, emphysema and impaired lung function is the primary cause. Effective therapies are urgently needed. Human chymase (hCMA)1 and its orthologue mCMA1/mouse mast cell protease (mMCP)5 are exocytosed from activated mast cells and have adverse roles in numerous disorders, but their role in COPD is unknown. METHODS We evaluated hCMA1 levels in lung tissues of COPD patients. We used mmcp5-deficient (-/-) mice to evaluate this protease's role and potential for therapeutic targeting in CS-induced experimental COPD. In addition, we used ex vivo/in vitro studies to define mechanisms. RESULTS The levels of hCMA1 mRNA and CMA1+ mast cells were increased in lung tissues from severe compared to early/mild COPD patients, non-COPD smokers and healthy controls. Degranulated mast cell numbers and mMCP5 protein were increased in lung tissues of wild-type mice with experimental COPD. mmcp5 -/- mice were protected against CS-induced inflammation and macrophage accumulation, airway remodelling, emphysema and impaired lung function in experimental COPD. CS extract challenge of co-cultures of mast cells from wild-type, but not mmcp5 -/- mice with wild-type lung macrophages increased in tumour necrosis factor (TNF)-α release. It also caused the release of CMA1 from human mast cells, and recombinant hCMA-1 induced TNF-α release from human macrophages. Treatment with CMA1 inhibitor potently suppressed these hallmark features of experimental COPD. CONCLUSION CMA1/mMCP5 promotes the pathogenesis of COPD, in part, by inducing TNF-α expression and release from lung macrophages. Inhibiting hCMA1 may be a novel treatment for COPD.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Andrew G Jarnicki
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Australia
| | - Keshav R Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- St Vincent's Medical School, University of New South Wales Medicine, University of New South Wales, Sydney, Australia
| | - Hannelore Van Eeckhoutte
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Angelica Katsifis
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
| | - Nazanin Z Kermani
- Data Science Institute, Department of Computing, Imperial College London, London, UK
| | - Mathew S Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Angelica Tiotiu
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Pulmonology, University Hospital of Nancy, Nancy, France
| | - K Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ken Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ian M Adcock
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Brian G Oliver
- Woolcock Institute and School of Life Science, Faculty of Science Life Science, University of Technology Sydney, Sydney, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
15
|
Molecular Mechanisms of RSV and Air Pollution Interaction: A Scoping Review. Int J Mol Sci 2022; 23:ijms232012704. [PMID: 36293561 PMCID: PMC9604398 DOI: 10.3390/ijms232012704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RSV is one of the major infectious agents in paediatrics, and its relationship with air pollution is frequently observed. However, the molecular basis of this interaction is sparsely reported. We sought to systematically review the existing body of literature and identify the knowledge gaps to answer the question: which molecular mechanisms are implied in the air pollutants-RSV interaction? Online databases were searched for original studies published before August 2022 focusing on molecular mechanisms of the interaction. The studies were charted and a narrative synthesis was based upon three expected directions of influence: a facilitated viral entry, an altered viral replication, and an inappropriate host reaction. We identified 25 studies published between 1993 and 2020 (without a noticeable increase in the number of studies) that were performed in human (n = 12), animal (n = 10) or mixed (n = 3) models, and analysed mainly cigarette smoke (n = 11), particulate matter (n = 4), nanoparticles (n = 3), and carbon black (n = 2). The data on a damage to the epithelial barrier supports the hypothesis of facilitated viral entry; one study also reported accelerated viral entry upon an RSV conjugation to particulate matter. Air pollution may result in the predominance of necrosis over apoptosis, and, as an effect, an increased viral load was reported. Similarly, air pollution mitigates epithelium function with decreased IFN-γ and Clara cell secretory protein levels and decreased immune response. Immune response might also be diminished due to a decreased viral uptake by alveolar macrophages and a suppressed function of dendritic cells. On the other hand, an exuberant inflammatory response might be triggered by air pollution and provoke airway hyperresponsiveness (AHR), prolonged lung infiltration, and tissue remodeling, including a formation of emphysema. AHR is mediated mostly by increased IFN-γ and RANTES concentrations, while the risk of emphysema was related to the activation of the IL-17 → MCP-1 → MMP-9 → MMP-12 axis. There is a significant lack of evidence on the molecular basics of the RSV-air pollution interaction, which may present a serious problem with regards to future actions against air pollution effects. The major knowledge gaps concern air pollutants (mostly the influence of cigarette smoke was investigated), the mechanisms facilitating an acute infection or a worse disease course (since it might help plan short-term, especially non-pharmacological, interventions), and the mechanisms of an inadequate response to the infection (which may lead to a prolonged course of an acute infection and long-term sequelae). Thus far, the evidence is insufficient regarding the broadness and complexity of the interaction, and future studies should focus on common mechanisms stimulated by various air pollutants and a comparison of influence of the different contaminants at various concentrations.
Collapse
|
16
|
Wang X, Murugesan P, Zhang P, Xu S, Peng L, Wang C, Cai H. NADPH Oxidase Isoforms in COPD Patients and Acute Cigarette Smoke-Exposed Mice: Induction of Oxidative Stress and Lung Inflammation. Antioxidants (Basel) 2022; 11:antiox11081539. [PMID: 36009258 PMCID: PMC9405243 DOI: 10.3390/antiox11081539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cigarette smoke (CS) is a major risk factor for chronic obstructive pulmonary disease (COPD), which represents the third leading cause of death worldwide. CS induces reactive oxygen species (ROS) production, leading to pulmonary inflammation and remodeling. NADPH oxidases (NOXs) represent essential sources of ROS production in the cardiovascular system. Whether and how NOX isoforms are activated in COPD patients and in response to acute cigarette smoke (ACS) remains incompletely understood. In the present study, the expression of NOX isoforms was examined in the lungs of end-stage COPD patients. In addition, mice silenced of NOX1 or NOX4 expression using in vivo RNA interference (RNAi), and NOX2-deficient (NOX2−/y) mice, were exposed to ACS for 1 h using a standard TE-10B smoking machine. In lung sections isolated from COPD patients undergoing lung transplantation, protein expression of NOX1, NOX2, NOX4, or NOX5 was markedly upregulated compared to non-smoking donor controls. Likewise, ACS upregulated protein expression of NOX1, NOX2, and NOX4, production of ROS, inflammatory cell infiltration, and mRNA expression of proinflammatory cytokines TNF-α and KC in the mouse lung. In vivo RNAi knockdown of NOX1 or NOX4 decreased ACS induced ROS production, inflammatory cell influx, and the expression of TNF-α and KC, which were accompanied by inhibition of the NF-κB-COX-2 axis. Although ACS induced ROS production was reduced in the lungs of NOX2−/y mice, inflammatory cell influx and expression of NF-κB/COX-2 were increased. Taken together, our results demonstrate for the first time that NOX isoforms 1, 2, 4 and 5 all remain activated in end-stage COPD patients, while NOX1 and NOX4 mediate oxidative stress and inflammatory responses in response to acute cigarette smoke. Therefore, targeting different isoforms of NOX might be necessary to treat COPD at different stages of the disease, which represents novel mechanistic insights enabling improved management of the devastating disease.
Collapse
Affiliation(s)
- Xinjing Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Priya Murugesan
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Pan Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Shiqing Xu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Liang Peng
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Capital Medical University, Beijing 100069, China
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence: (C.W.); (H.C.)
| | - Hua Cai
- Department of Anesthesiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (C.W.); (H.C.)
| |
Collapse
|
17
|
Figueiredo-Junior AT, Valença SS, Finotelli PV, dos Anjos FDF, de Brito-Gitirana L, Takiya CM, Lanzetti M. Treatment with Bixin-Loaded Polymeric Nanoparticles Prevents Cigarette Smoke-Induced Acute Lung Inflammation and Oxidative Stress in Mice. Antioxidants (Basel) 2022; 11:antiox11071293. [PMID: 35883784 PMCID: PMC9311961 DOI: 10.3390/antiox11071293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 02/05/2023] Open
Abstract
The use of annatto pigments has been evaluated as a therapeutic strategy in animal models of several health disorders. Beneficial effects were generally attributed to the inhibition of oxidative stress. Bixin is the main pigment present in annatto seeds and has emerged as an important scavenger of reactive oxygen (ROS) and nitrogen species (RNS). However, this carotenoid is highly hydrophobic, affecting its therapeutic applicability. Therefore, bixin represents an attractive target for nanotechnology to improve its pharmacokinetic parameters. In this study, we prepared bixin nanoparticles (npBX) and evaluated if they could prevent pulmonary inflammation and oxidative stress induced by cigarette smoke (CS). C57BL/6 mice were exposed to CS and treated daily (by gavage) with different concentrations of npBX (6, 12 and 18%) or blank nanoparticles (npBL, 18%). The negative control group was sham smoked and received 18% npBL. On day 6, the animals were euthanized, and bronchoalveolar lavage fluid (BALF), as well as lungs, were collected for analysis. CS exposure led to an increase in ROS and nitrite production, which was absent in animals treated with npBX. In addition, npBX treatment significantly reduced leukocyte numbers and TNF-α levels in the BALF of CS-exposed mice, and it strongly inhibited CS-induced increases in MDA and PNK in lung homogenates. Interestingly, npBX protective effects against oxidative stress seemed not to act via Nrf2 activation in the CS + npBX 18% group. In conclusion, npBX prevented oxidative stress and acute lung inflammation in a murine model of CS-induced acute lung inflammation.
Collapse
Affiliation(s)
- Alexsandro Tavares Figueiredo-Junior
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Samuel Santos Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Priscilla Vanessa Finotelli
- Departamento de Produtos Naturais e Alimentos da Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Francisca de Fátima dos Anjos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Lycia de Brito-Gitirana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
| | - Christina Maeda Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Manuella Lanzetti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (A.T.F.-J.); (S.S.V.); (F.d.F.d.A.); (L.d.B.-G.)
- Correspondence:
| |
Collapse
|
18
|
Porto GD, Haupenthal DPDS, Souza PS, Silveira GDB, Nesi RT, Feuser PE, Possato JC, de Andrade VM, Pinho RA, Silveira PCL. Effects of the intranasal application of gold nanoparticles on the pulmonary tissue after acute exposure to industrial cigarette smoke. J Biomed Mater Res B Appl Biomater 2022; 110:1234-1244. [PMID: 34894049 DOI: 10.1002/jbm.b.34994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 11/15/2021] [Accepted: 12/05/2021] [Indexed: 11/09/2022]
Abstract
Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.
Collapse
Affiliation(s)
- Germano Duarte Porto
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | | | - Priscila Soares Souza
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Gustavo de Bem Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Renata Tiscoski Nesi
- Biochemistry in Health, Graduate Program in Health Sciences, Medicine School, Pontifícia Universidade Católica do Paraná, Puerto Rico, Brazil
| | - Paulo Emilio Feuser
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Jonathann Corrêa Possato
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Vanessa Moraes de Andrade
- Translational Biomedicine Laboratory, Graduate Program of Health Sciences, Department of Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Ricardo Aurino Pinho
- Biochemistry in Health, Graduate Program in Health Sciences, Medicine School, Pontifícia Universidade Católica do Paraná, Puerto Rico, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
19
|
Chronic Inflammation as the Underlying Mechanism of the Development of Lung Diseases in Psoriasis: A Systematic Review. Int J Mol Sci 2022; 23:ijms23031767. [PMID: 35163689 PMCID: PMC8836589 DOI: 10.3390/ijms23031767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
Abstract
Psoriasis is a systemic inflammatory disease caused by dysfunctional interactions between the innate and adaptive immune responses. The systemic inflammation in psoriasis may be associated with the development of comorbidities, including lung diseases. In this review, we aimed to provide a summary of the evidence regarding the prevalence of lung diseases in patients with psoriasis and the potential underlying mechanisms. Twenty-three articles published between March 2010 and June 2021 were selected from 195 initially identified records. The findings are discussed in terms of the prevalence of asthma, chronic obstructive pulmonary disease, interstitial lung disease, obstructive sleep apnea, pulmonary hypertension, and sarcoidosis in psoriasis. A higher prevalence of lung diseases in psoriasis has been confirmed in asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and pulmonary hypertension. These conditions are important as they are previously unrecognized causes of morbidity and mortality in psoriasis. The development of lung diseases in patients with psoriasis can be explained by several mechanisms, including common risk factors, shared immune and molecular characteristics associated with chronic inflammation, as well as other mechanisms. Understanding the prevalence of lung diseases in psoriasis and their underlying mechanisms can help implement appropriate preventative and therapeutic strategies to address respiratory diseases in patients with psoriasis.
Collapse
|
20
|
Lam TYW, Nguyen N, Peh HY, Shanmugasundaram M, Chandna R, Tee JH, Ong CB, Hossain MZ, Venugopal S, Zhang T, Xu S, Qiu T, Kong WT, Chakarov S, Srivastava S, Liao W, Kim JS, Teh M, Ginhoux F, Fred Wong WS, Ge R. ISM1 protects lung homeostasis via cell-surface GRP78-mediated alveolar macrophage apoptosis. Proc Natl Acad Sci U S A 2022; 119:e2019161119. [PMID: 35046017 PMCID: PMC8794848 DOI: 10.1073/pnas.2019161119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/20/2021] [Indexed: 12/18/2022] Open
Abstract
Alveolar macrophages (AMs) are critical for lung immune defense and homeostasis. They are orchestrators of chronic obstructive pulmonary disease (COPD), with their number significantly increased and functions altered in COPD. However, it is unclear how AM number and function are controlled in a healthy lung and if changes in AMs without environmental assault are sufficient to trigger lung inflammation and COPD. We report here that absence of isthmin 1 (ISM1) in mice (Ism1-/- ) leads to increase in both AM number and functional heterogeneity, with enduring lung inflammation, progressive emphysema, and significant lung function decline, phenotypes similar to human COPD. We reveal that ISM1 is a lung resident anti-inflammatory protein that selectively triggers the apoptosis of AMs that harbor high levels of its receptor cell-surface GRP78 (csGRP78). csGRP78 is present at a heterogeneous level in the AMs of a healthy lung, but csGRP78high AMs are expanded in Ism1-/- mice, cigarette smoke (CS)-induced COPD mice, and human COPD lung, making these cells the prime targets of ISM1-mediated apoptosis. We show that csGRP78high AMs mostly express MMP-12, hence proinflammatory. Intratracheal delivery of recombinant ISM1 (rISM1) depleted csGRP78high AMs in both Ism1-/- and CS-induced COPD mice, blocked emphysema development, and preserved lung function. Consistently, ISM1 expression in human lungs positively correlates with AM apoptosis, suggesting similar function of ISM1-csGRP78 in human lungs. Our findings reveal that AM apoptosis regulation is an important physiological mechanism for maintaining lung homeostasis and demonstrate the potential of pulmonary-delivered rISM1 to target csGRP78 as a therapeutic strategy for COPD.
Collapse
Affiliation(s)
- Terence Y W Lam
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ngan Nguyen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahalakshmi Shanmugasundaram
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Ritu Chandna
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Jong Huat Tee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Chee Bing Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore 138673, Singapore
| | - Md Zakir Hossain
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Shruthi Venugopal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tianyi Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Simin Xu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Tao Qiu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Wan Ting Kong
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Svetoslav Chakarov
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - Supriya Srivastava
- Department of Medicine, National University Hospital, Singapore 119228, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Ming Teh
- Department of Pathology, National University Hospital, Singapore 119228
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore 138648, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
- Immunology Program, Life Science Institute, National University of Singapore, Singapore 117456, Singapore
- Singapore-Hebrew University of Jerusalem Alliance for Research and Enterprise, National University of Singapore, Singapore 138602, Singapore
| | - Ruowen Ge
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
| |
Collapse
|
21
|
Araújo NPDS, de Matos NA, Oliveira M, de Souza ABF, Castro TDF, Machado-Júnior PA, de Souza DMS, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Quercetin Improves Pulmonary Function and Prevents Emphysema Caused by Exposure to Cigarette Smoke in Male Mice. Antioxidants (Basel) 2022; 11:antiox11020181. [PMID: 35204064 PMCID: PMC8868486 DOI: 10.3390/antiox11020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.
Collapse
Affiliation(s)
- Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil;
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
- Correspondence:
| |
Collapse
|
22
|
Feng Q, Yu YZ, Meng QH. Blocking tumor necrosis factor-α delays progression of chronic obstructive pulmonary disease in rats through inhibiting MAPK signaling pathway and activating SOCS3/TRAF1. Exp Ther Med 2021; 22:1311. [PMID: 34630665 PMCID: PMC8461615 DOI: 10.3892/etm.2021.10746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
The present study was conducted in order to study the detailed molecular mechanism of tumor necrosis factor (TNF)-α in chronic obstructive pulmonary disease (COPD). The rats were treated with cigarette smoke (CS) and lipopolysaccharide (LPS) to establish the COPD model. Next, the changes in lung injury in COPD rats with TNF-α knockdown was tested. Meanwhile, the regulation of TNF-α on MAPK pathway and its downstream molecules (SOCS3/TRAF1) was determined by western blotting. On this basis, the activation of MAPK and inhibition of SOCS3/TRAF1 was also examined. Subsequently, the lung function was tested with the plethysmograph, the cells of bronchoalveolar lavage fluid was counted and classified. Furthermore, lung tissue sections were stained with hematoxylin and eosin to verify whether the treatment of MAPK pathway and downstream molecules affected the effect of TNF-α knockdown on COPD. The present study showed that TNF-α knockdown could alleviate the decrease in the function and inflammatory injury of the lungs of rats with COPD. Western blot analysis verified that TNF-α knockdown could inhibit the activation of MAPK pathway and increase the expression of SOCS3/TRAF1. The following experimental results showed that the relief of lung injury caused by TNF-α knockdown could be deteriorated by activating MAPK pathway. It was also found that the symptom of COPD was decreased following transfection with sh-TNF-α but worsened by SOCS3/TRAF1 knockdown. Overall, TNF-α knockdown inhibited the activation of MAPK pathway and increased the expression of SOCS3/TRAF1, thus delaying the process of COPD.
Collapse
Affiliation(s)
- Qiong Feng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Jianghan University, Wuhan, Hubei 430015, P.R. China
| | - Yan-Zi Yu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Jianghan University, Wuhan, Hubei 430015, P.R. China
| | - Qing-Hua Meng
- Department of Pulmonary and Critical Care Medicine, The Affiliated Hospital of Jianghan University, Wuhan, Hubei 430015, P.R. China
| |
Collapse
|
23
|
Makino A, Shibata T, Nagayasu M, Hosoya I, Nishimura T, Nakano C, Nagata K, Ito T, Takahashi Y, Nakamura S. RSV infection-elicited high MMP-12-producing macrophages exacerbate allergic airway inflammation with neutrophil infiltration. iScience 2021; 24:103201. [PMID: 34703996 PMCID: PMC8524145 DOI: 10.1016/j.isci.2021.103201] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/20/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection often exacerbates bronchial asthma, but there is no licensed RSV vaccine or specific treatments. Here we show that RSV-induced alveolar macrophages, which produce high levels of matrix metalloproteinase-12 (MMP-12), exacerbate allergic airway inflammation with increased neutrophil infiltration. When mice subjected to allergic airway inflammation via exposure to the house dust mite antigen (HDM) were infected with RSV (HDM/RSV), MMP-12 expression, viral load, neutrophil infiltration, and airway hyperresponsiveness (AHR) were increased compared to those in the HDM and RSV groups. These exacerbations in the HDM/RSV group were attenuated in MMP-12-deficient mice and mice treated with MMP408, a selective MMP-12 inhibitor, but not in mice treated with dexamethasone. Finally, M2-like macrophages produced MMP-12, and its production was promoted by increase of IFN-β-induced IL-4 receptor expression with RSV infection. Thus, targeting MMP-12 represents a potentially novel therapeutic strategy for the exacerbation of asthma.
Collapse
Affiliation(s)
- Airi Makino
- Department of Microbiology, Tokyo Medical University, Tokyo 160-8402, Japan.,Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Takehiko Shibata
- Department of Microbiology, Tokyo Medical University, Tokyo 160-8402, Japan.,Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Mashiro Nagayasu
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.,Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Ikuo Hosoya
- Graduate School of Health Care Science, Bunkyo Gakuin University, Tokyo 113-8668, Japan
| | - Toshiyo Nishimura
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Chihiro Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Toho University Ohashi Medical Center, Tokyo 153-0044, Japan
| | - Kisaburo Nagata
- Department of Biomolecular Science, Faculty of Science, Toho University, Chiba 274-8510, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Shigeki Nakamura
- Department of Microbiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
24
|
Chen XY, Chen YY, Lin W, Chen CH, Wen YC, Hsiao TC, Chou HC, Chung KF, Chuang HC. Therapeutic Potential of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Recovering From Murine Pulmonary Emphysema Under Cigarette Smoke Exposure. Front Med (Lausanne) 2021; 8:713824. [PMID: 34646841 PMCID: PMC8502916 DOI: 10.3389/fmed.2021.713824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) were shown to have potential for immunoregulation and tissue repair. The objective of this study was to investigate the effects of hUC-MSCs on emphysema in chronic obstructive pulmonary disease (COPD). The C57BL/6JNarl mice were exposed to cigarette smoke (CS) for 4 months followed by administration of hUC-MSCs at 3 × 106 (low dose), 1 × 107 (medium dose), and 3 × 107 cells/kg body weight (high dose). The hUC-MSCs caused significant decreases in emphysema severity by measuring the mean linear intercept (MLI) and destructive index (DI). A decrease in neutrophils (%) and an increase in lymphocytes (%) in bronchoalveolar lavage fluid (BALF) were observed in emphysematous mice after hUC-MSC treatment. Lung levels of interleukin (IL)-1β, C-X-C motif chemokine ligand 1 (CXCL1)/keratinocyte chemoattractant (KC), and matrix metalloproteinase (MMP)-12 significantly decreased after hUC-MSC administration. Significant reductions in tumor necrosis factor (TNF)-α, IL-1β, and IL-17A in serum occurred after hUC-MSC administration. Notably, the cell viability of lung fibroblasts improved with hUC-MSCs after being treated with CS extract (CSE). Furthermore, the hUC-MSCs-conditioned medium (hUC-MSCs-CM) restored the contractile force, and increased messenger RNA expressions of elastin and fibronectin by lung fibroblasts. In conclusion, hUC-MSCs reduced inflammatory responses and emphysema severity in CS-induced emphysematous mice.
Collapse
Affiliation(s)
- Xiao-Yue Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ying Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Willie Lin
- Meridigen Biotech Co., Ltd., Taipei, Taiwan
| | | | | | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Hsiu-Chu Chou
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
25
|
Dobric A, De Luca SN, Spencer SJ, Bozinovski S, Saling MM, McDonald CF, Vlahos R. Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease. Pharmacol Ther 2021; 233:108017. [PMID: 34626675 DOI: 10.1016/j.pharmthera.2021.108017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/19/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.
Collapse
Affiliation(s)
- Aleksandar Dobric
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Simone N De Luca
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Sarah J Spencer
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia; ARC Centre of Excellence for Nanoscale Biophotonics, RMIT University, Melbourne, VIC, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Michael M Saling
- Clinical Neuropsychology, The University of Melbourne and Austin Health, VIC, Australia
| | - Christine F McDonald
- Institute for Breathing and Sleep, Austin Health, Melbourne, VIC, Australia; Department of Respiratory & Sleep Medicine, The University of Melbourne and Austin Health, Melbourne, VIC, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
26
|
Lu J, Xie L, Sun S. The inhibitor miR-21 regulates macrophage polarization in an experimental model of chronic obstructive pulmonary disease. Tob Induc Dis 2021; 19:69. [PMID: 34539308 PMCID: PMC8409097 DOI: 10.18332/tid/140095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION In chronic obstructive pulmonary disease (COPD), macrophages play an indispensable role. In the lung tissues of COPD patients and smokers, macrophages can be observed to polarize towards M2 phenotype. The molecular mechanism of this process is unclear, and it has not been fully elucidated in COPD. METHODS We bought laboratory animals [C57BL/6 and miR-21-/- C57BL/6(F1)] from the Jackson Laboratory. The model of COPD mice was established by cigarette smoke (CS) exposure combined with intraperitoneal injection of cigarette smoke extract (CSE). RT-PCR detected the expression levels of inflammatory factors and markers associated with M1 and M2 macrophages. The ratio of M2 macrophages to M1 macrophages was detected by immunohistochemical staining. RESULTS The level of miR-21 was increased in RAW264.7 cells intervened by CSE and in lung tissue and bone marrow-derived macrophages (BMDMs) from COPD mice. CSE can gradually over time increase the level of miR-21. The proportion of M2 macrophages to M1 macrophages had a positive correlation with miR-21. Knockdowning miR-21 can reduce lung tissue damage. CSE also increased the levels of related inflammatory factors and markers associated with M2 macrophages, and an miR-21 inhibitor can reverse this conversion. CONCLUSIONS We confirmed that CSE can lead to macrophage transformation to the M2 phenotype and an increase in the expression level of miR-21. Knockdown of the miR-21 gene could inhibit the transformation of macrophages to the M2 phenotype in COPD.
Collapse
Affiliation(s)
- JunJuan Lu
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, Changsha, People's Republic of China
| | - LiHua Xie
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, Changsha, People's Republic of China
| | - ShengHua Sun
- Department of Respiratory Medicine, The Third XiangYa Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
27
|
Cazzola M, Ora J, Cavalli F, Rogliani P, Matera MG. An Overview of the Safety and Efficacy of Monoclonal Antibodies for the Chronic Obstructive Pulmonary Disease. Biologics 2021; 15:363-374. [PMID: 34475751 PMCID: PMC8407524 DOI: 10.2147/btt.s295409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022]
Abstract
Several mAbs have been tested or are currently under clinical evaluation for the treatment of COPD. They can be subdivided into those that aim to block specific pro-inflammatory and pro-neutrophilic cytokines and chemokines, such as TNF-α, IL-1β, CXCL8 and IL-1β, and those that act on T2-mediated inflammation, respectively, by blocking IL-5 and/or its receptor, preventing IL-4 and IL-13 signaling, affecting IL-33 pathway and blocking TSLP. None of these approaches has proved to be effective, probably because in COPD there is no dominant cytokine or chemokine and, therefore, a single mAb cannot be effective on all pathways. With a more in-depth understanding of the numerous pheno/endotypic pathways that play a role in COPD, it may eventually be possible to identify those specific patients in whom some of these cytokines or chemokines might predominate. In this case, it will be possible to implement a personalized treatment, but the use of each mAb will only be reserved for a very limited number of subjects.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Francesco Cavalli
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
28
|
Simms L, Mason E, Berg EL, Yu F, Rudd K, Czekala L, Trelles Sticken E, Brinster O, Wieczorek R, Stevenson M, Walele T. Use of a rapid human primary cell-based disease screening model, to compare next generation products to combustible cigarettes. Curr Res Toxicol 2021; 2:309-321. [PMID: 34485931 PMCID: PMC8408431 DOI: 10.1016/j.crtox.2021.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/01/2022] Open
Abstract
A growing number of public health bodies, regulators and governments around the world consider electronic vapor products a lower risk alternative to conventional cigarettes. Of critical importance are rapid new approach methodologies to enable the screening of next generation products (NGPs) also known as next generation tobacco and nicotine products. In this study, the activity of conventional cigarette (3R4F) smoke and a range of NGP aerosols (heated tobacco product, hybrid product and electronic vapor product) captured in phosphate buffered saline, were screened by exposing a panel of human cell-based model systems using Biologically Multiplexed Activity Profiling (BioMAP® Diversity PLUS® Panel, Eurofins Discovery). Following exposure, the biological activity for a wide range of biomarkers in the BioMAP panel were compared to determine the presence of toxicity signatures that are associated with specific clinical findings. NGP aerosols were found to be weakly active in the BioMAP Diversity PLUS Panel (≤3/148 biomarkers) whereas significant activity was observed for 3R4F (22/148 biomarkers). Toxicity associated biomarker signatures for 3R4F included immunosuppression, skin irritation and thrombosis, with no toxicity signatures seen for the NGPs. BioMAP profiling could effectively be used to differentiate between complex mixtures of cigarette smoke or NGP aerosol extracts in a panel of human primary cell-based assays. Clinical validation of these results will be critical for confirming the utility of BioMAP for screening NGPs for potential adverse human effects.
Collapse
Key Words
- ACM, aerosol collected mass
- AhR, Aryl hydrocarbon receptor
- Alternative methods
- COPD, Chronic obstructive pulmonary disease
- EGFR, epidermal growth factor receptor
- ELISA, enzyme-linked immunosorbent assay
- EVP, Electronic vapor product
- HDFn, Human neonatal dermal fibroblasts
- HTP, Heated Tobacco Product
- HUVEC, Human umbilical vein endothelial cells
- HYB, Hybrid product containing e-liquid drawn through a tobacco plug
- IL, interleukin
- ISO, International Organization for Standardization
- In vitro assays
- MOA, Mechanism of action
- M−CSF, Macrophage colony-stimulating factor
- NGP, Next generation product
- NRC, National Research Council
- NRF2, Nuclear factor erythroid 2-related factor 2
- Next generation products
- PBMC, Peripheral blood mononuclear cells
- PBS, Phosphate buffered saline
- Panel
- Phenotypic screening
- SRB, Sulforhodamine B
- TCR, T cell receptor
- TF, Tissue factor
- TLR, toll-like receptor
- TNFα, tumor necrosis factor alpha
- TPM, Total particulate matter
- Toxicity signature
- bPBS, Bubbled phosphate buffered saline
- mTOR, mechanistic target of rapamycin
Collapse
Affiliation(s)
- Liam Simms
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Elizabeth Mason
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Ellen L. Berg
- Eurofins Discovery, Inc., 111 Anza Blvd, Suite 414, Burlingame, CA 94010, USA
| | - Fan Yu
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Kathryn Rudd
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Lukasz Czekala
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| | - Edgar Trelles Sticken
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Albert-EinsteinRing-7, D-22761 Hamburg, Germany
| | - Oleg Brinster
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Albert-EinsteinRing-7, D-22761 Hamburg, Germany
| | - Roman Wieczorek
- Reemtsma Cigarettenfabriken GmbH, An Imperial Brands PLC Company, Albert-EinsteinRing-7, D-22761 Hamburg, Germany
| | | | - Tanvir Walele
- Imperial Brands PLC, 121 Winterstoke Road, Bristol BS3 2LL UK
| |
Collapse
|
29
|
Li L, Liu Y, Chiu C, Jin Y, Zhou W, Peng M, Chen LC, Sun Q, Gao J. A Regulatory Role of Chemokine Receptor CXCR3 in the Pathogenesis of Chronic Obstructive Pulmonary Disease and Emphysema. Inflammation 2021; 44:985-998. [PMID: 33415536 DOI: 10.1007/s10753-020-01393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/11/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD)/pulmonary emphysema is driven by the dysregulated airway inflammation and primarily influenced by the interaction between cigarette smoking (CS) and the individual's susceptibility. The inflammation in COPD involves both innate and adaptive immunity. By binding to its specific ligands, chemokine receptor CXCR3 plays an important role in regulating tissue inflammation and damage. In acute animal model challenged with either CS or pathogens, CXCR3 knockout (KO) attenuated lung inflammation and pathology. However, the role of CXCR3 in CS-induced chronic airway inflammation and pulmonary emphysema remains unknown. In this present study, we investigated the effect of CXCR3 in CS-induced pulmonary emphysema in an animal model, and the association between CXCR3 single nucleotide polymorphisms (SNPs) and COPD susceptibility in human subjects. We found that after chronic exposure to side stream CS (SSCS) for 24 weeks, CXCR3 KO mice demonstrated significant airspace enlargement expressed by mean linear intercept (Lm) compared with the wild-type (WT) mice. Consistently, CXCR3 KO mice had significantly higher BAL fluid macrophages and neutrophils, TNFα, and lung homogenate MMP-9 and MMP-12. Through genetic analysis of CXCR3 polymorphisms in a cohort of COPD patients with Han Chinese ethnicity, one CXCR3 SNP, rs2280964, was found to be genetically related to COPD susceptibility. Furthermore, CXCR3 SNP rs2280964 was significantly associated with the levels of serum MMP-9 in COPD patients. Our data from both animal and human studies revealed a novel role of CXCR3 possibly via influencing MMP9 production in the pathogenesis and progression of CS-associated COPD/pulmonary emphysema.
Collapse
MESH Headings
- Adult
- Aged
- Animals
- Case-Control Studies
- China
- Disease Models, Animal
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease
- Humans
- Lung/immunology
- Lung/metabolism
- Lung/pathology
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Male
- Matrix Metalloproteinase 12/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Middle Aged
- Neutrophils/immunology
- Neutrophils/metabolism
- Phenotype
- Polymorphism, Single Nucleotide
- Pulmonary Disease, Chronic Obstructive/genetics
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- Pulmonary Disease, Chronic Obstructive/pathology
- Pulmonary Emphysema/genetics
- Pulmonary Emphysema/immunology
- Pulmonary Emphysema/metabolism
- Pulmonary Emphysema/pathology
- Receptors, CXCR3/genetics
- Receptors, CXCR3/metabolism
- Tumor Necrosis Factor-alpha/metabolism
- Mice
Collapse
Affiliation(s)
- Lun Li
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
- Department of Respiratory Medicine, Civil Aviation General Hospital, Beijing, 100123, China
| | - Chin Chiu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, MA, USA
| | - Weixun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Min Peng
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, USA
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, the Ohio State University, Columbus, OH, USA
| | - Jinming Gao
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, #1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
30
|
Wong ET, Szostak J, Titz B, Lee T, Wong SK, Lavrynenko O, Merg C, Corciulo M, Simicevic J, Auberson M, Peric D, Dulize R, Bornand D, Loh GJ, Lee KM, Zhang J, Miller JH, Schlage WK, Guedj E, Schneider T, Phillips B, Leroy P, Choukrallah MA, Sierro N, Buettner A, Xiang Y, Kuczaj A, Ivanov NV, Luettich K, Vanscheeuwijck P, Peitsch MC, Hoeng J. A 6-month inhalation toxicology study in Apoe -/- mice demonstrates substantially lower effects of e-vapor aerosol compared with cigarette smoke in the respiratory tract. Arch Toxicol 2021; 95:1805-1829. [PMID: 33963423 PMCID: PMC8113187 DOI: 10.1007/s00204-021-03020-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 03/03/2021] [Indexed: 11/26/2022]
Abstract
Cigarette smoking is the major cause of chronic obstructive pulmonary disease. Considerable attention has been paid to the reduced harm potential of nicotine-containing inhalable products such as electronic cigarettes (e-cigarettes). We investigated the effects of mainstream cigarette smoke (CS) and e-vapor aerosols (containing nicotine and flavor) generated by a capillary aerosol generator on emphysematous changes, lung function, and molecular alterations in the respiratory system of female Apoe-/- mice. Mice were exposed daily (3 h/day, 5 days/week) for 6 months to aerosols from three different e-vapor formulations-(1) carrier (propylene glycol and vegetable glycerol), (2) base (carrier and nicotine), or (3) test (base and flavor)-or to CS from 3R4F reference cigarettes. The CS and base/test aerosol concentrations were matched at 35 µg nicotine/L. CS exposure, but not e-vapor exposure, led to impairment of lung function (pressure-volume loop area, A and K parameters, quasi-static elastance and compliance) and caused marked lung inflammation and emphysematous changes, which were confirmed histopathologically and morphometrically. CS exposure caused lung transcriptome (activation of oxidative stress and inflammatory responses), lipidome, and proteome dysregulation and changes in DNA methylation; in contrast, these effects were substantially reduced in response to the e-vapor aerosol exposure. Compared with sham, aerosol exposure (carrier, base, and test) caused a slight impact on lung inflammation and epithelia irritation. Our results demonstrated that, in comparison with CS, e-vapor aerosols induced substantially lower biological and pathological changes in the respiratory tract associated with chronic inflammation and emphysema.
Collapse
Affiliation(s)
- Ee Tsin Wong
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland.
| | - Bjoern Titz
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Tom Lee
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | - Sin Kei Wong
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | - Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Celine Merg
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Maica Corciulo
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Jovan Simicevic
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Mehdi Auberson
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Remi Dulize
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - David Bornand
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Guo Jie Loh
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | | | - Jingjie Zhang
- Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | - John H Miller
- Altria Client Services LLC, 601 East Jackson Street, Richmond, VA, 23219, USA
| | | | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Blaine Phillips
- PMI R&D, Philip Morris International Research Laboratories Pte. Ltd, Science Park II, Singapore, 117406, Singapore
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Yang Xiang
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Arkadiusz Kuczaj
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Karsta Luettich
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | | | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A, Quai Jeanrenaud 5, 2000, Neuchâtel, Switzerland
| |
Collapse
|
31
|
Serré J, Tanjeko AT, Mathyssen C, Vanherwegen AS, Heigl T, Janssen R, Verbeken E, Maes K, Vanaudenaerde B, Janssens W, Gayan-Ramirez G. Enhanced lung inflammatory response in whole-body compared to nose-only cigarette smoke-exposed mice. Respir Res 2021; 22:86. [PMID: 33731130 PMCID: PMC7968299 DOI: 10.1186/s12931-021-01680-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by a progressive and abnormal inflammatory response in the lungs, mainly caused by cigarette smoking. Animal models exposed to cigarette smoke (CS) are used to mimic human COPD but the use of different CS protocols makes it difficult to compare the immunological and structural consequences of using a nose-only or whole-body CS exposure system. We hypothesized that when using a standardized CS exposure protocol based on particle density and CO (carbon monoxide) levels, the whole-body CS exposure system would generate a more severe inflammatory response than the nose-only system, due to possible sensitization by uptake of CS-components through the skin or via grooming. METHODS In this study focusing on early COPD, mice were exposed twice daily 5 days a week to CS either with a nose-only or whole-body exposure system for 14 weeks to assess lung function, remodeling and inflammation. RESULTS At sacrifice, serum cotinine levels were significantly higher in the whole-body (5.3 (2.3-6.9) ng/ml) compared to the nose-only ((2.0 (1.8-2.5) ng/ml) exposure system and controls (1.0 (0.9-1.0) ng/ml). Both CS exposure systems induced a similar degree of lung function impairment, while inflammation was more severe in whole body exposure system. Slightly more bronchial epithelial damage, mucus and airspace enlargement were observed with the nose-only exposure system. More lymphocytes were present in the bronchoalveolar lavage (BAL) and lymph nodes of the whole-body exposure system while enhanced IgA and IgG production was found in BAL and to a lesser extent in serum with the nose-only exposure system. CONCLUSION The current standardized CS-exposure protocol resulted in a higher internal load of serum cotinine in the whole-body exposure system, which was associated with more inflammation. However, both exposure systems resulted in a similar lung function impairment. Data also highlighted differences between the two models in terms of lung inflammation and remodelling, and potential sensitization to CS. Researchers should be aware of these differences when designing their future studies for an early intervention in COPD.
Collapse
Affiliation(s)
- Jef Serré
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Ajime Tom Tanjeko
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Carolien Mathyssen
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - An-Sofie Vanherwegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Tobias Heigl
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Eric Verbeken
- Translational Cell & Tissue Research, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Karen Maes
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Bart Vanaudenaerde
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Wim Janssens
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium
| | - Ghislaine Gayan-Ramirez
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Herestraat 49, O&NI bis, box 706, 3000, Leuven, Belgium.
| |
Collapse
|
32
|
McNulty MJ, Silberstein DZ, Kuhn BT, Padgett HS, Nandi S, McDonald KA, Cross CE. Alpha-1 antitrypsin deficiency and recombinant protein sources with focus on plant sources: Updates, challenges and perspectives. Free Radic Biol Med 2021; 163:10-30. [PMID: 33279618 DOI: 10.1016/j.freeradbiomed.2020.11.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Alpha-1 antitrypsin deficiency (A1ATD) is an autosomal recessive disease characterized by low plasma levels of A1AT, a serine protease inhibitor representing the most abundant circulating antiprotease normally present at plasma levels of 1-2 g/L. The dominant clinical manifestations include predispositions to early onset emphysema due to protease/antiprotease imbalance in distal lung parenchyma and liver disease largely due to unsecreted polymerized accumulations of misfolded mutant A1AT within the endoplasmic reticulum of hepatocytes. Since 1987, the only FDA licensed specific therapy for the emphysema component has been infusions of A1AT purified from pooled human plasma at the 2020 cost of up to US $200,000/year with the risk of intermittent shortages. In the past three decades various, potentially less expensive, recombinant forms of human A1AT have reached early stages of development, one of which is just reaching the stage of human clinical trials. The focus of this review is to update strategies for the treatment of the pulmonary component of A1ATD with some focus on perspectives for therapeutic production and regulatory approval of a recombinant product from plants. We review other competitive technologies for treating the lung disease manifestations of A1ATD, highlight strategies for the generation of data potentially helpful for securing FDA Investigational New Drug (IND) approval and present challenges in the selection of clinical trial strategies required for FDA licensing of a New Drug Approval (NDA) for this disease.
Collapse
Affiliation(s)
- Matthew J McNulty
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - David Z Silberstein
- Department of Chemical Engineering, University of California, Davis, CA, USA
| | - Brooks T Kuhn
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Karen A McDonald
- Department of Chemical Engineering, University of California, Davis, CA, USA; Global HealthShare Initiative®, University of California, Davis, CA, USA
| | - Carroll E Cross
- Department of Internal Medicine, University of California, Davis, CA, USA; University of California, Davis, Alpha-1 Deficiency Clinic, Sacramento, CA, USA; Department of Physiology and Membrane Biology, University of California, Davis, CA, USA.
| |
Collapse
|
33
|
Gonzalez J, Rivera-Ortega P, Rodríguez-Fraile M, Restituto P, Colina I, Calleja MDLD, Alcaide AB, Campo A, Bertó J, Seijo L, Pérez-Warnisher MT, Zulueta JJ, Varo N, de-Torres JP. Exploring the Association Between Emphysema Phenotypes and Low Bone Mineral Density in Smokers with and without COPD. Int J Chron Obstruct Pulmon Dis 2020; 15:1823-1829. [PMID: 32801680 PMCID: PMC7401322 DOI: 10.2147/copd.s257918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale Emphysema and osteoporosis are tobacco-related diseases. Many studies have shown that emphysema is a strong and independent predictor of low bone mineral density (BMD) in smokers; however, none of them explored its association with different emphysema subtypes. Objective To explore the association between the different emphysema subtypes and the presence of low bone mineral density in a population of active or former smokers with and without chronic obstructive pulmonary disease (COPD). Methods One hundred and fifty-three active and former smokers from a pulmonary clinic completed clinical questionnaires, pulmonary function tests, a low-dose chest computed tomography (LDCT) and a dual-energy absorptiometry (DXA) scans. Subjects were classified as having normal BMD or low BMD (osteopenia or osteoporosis). Emphysema was classified visually for its subtype and severity. Logistic regression analysis explored the relationship between the different emphysema subtypes and the presence of low BMD adjusting for other important factors. Results Seventy-five percent of the patients had low BMD (78 had osteopenia and 37 had osteoporosis). Emphysema was more frequent (66.1 vs 26.3%, p=<0.001) and severe in those with low BMD. Multivariable analysis adjusting for other significant cofactors (age, sex, FEV1, and severity of emphysema) showed that BMI (OR=0.91, 95% CI: 0.76–0.92) and centrilobular emphysema (OR=26.19, 95% CI: 1.71 to 399.44) were associated with low BMD. Conclusion Low BMD is highly prevalent in current and former smokers. BMI and centrilobular emphysema are strong and independent predictors of its presence, which suggests that they should be considered when evaluating smokers at risk for low BMD.
Collapse
Affiliation(s)
- Jessica Gonzalez
- Pulmonary Department, Hospital Universitari Arnau de Vilanova, Lleida, Spain
| | | | | | - Patricia Restituto
- Biochemistry Department, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Inmaculada Colina
- Department of Internal Medicine, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Ana B Alcaide
- Pulmonary Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Aránzazu Campo
- Pulmonary Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Juan Bertó
- Pulmonary Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Luis Seijo
- Pulmonary Department, Clínica Universidad de Navarra, Madrid, Spain
| | | | - Javier J Zulueta
- Pulmonary Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Nerea Varo
- Biochemistry Department, Clínica Universitaria de Navarra, Pamplona, Spain
| | | |
Collapse
|
34
|
Yu Y, Zhao L, Xie Y, Xu Y, Jiao W, Wu J, Deng X, Fang G, Xue Q, Zheng Y, Gao Z. Th1/Th17 Cytokine Profiles are Associated with Disease Severity and Exacerbation Frequency in COPD Patients. Int J Chron Obstruct Pulmon Dis 2020; 15:1287-1299. [PMID: 32606639 PMCID: PMC7294048 DOI: 10.2147/copd.s252097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Background T helper (Th) cell cytokine imbalances have been associated with the pathophysiology of chronic obstructive pulmonary disease (COPD), including the Th1/Th2 and Th17/T regulatory cells (Treg) paradigms. Clarifying cytokine profiles during COPD acute exacerbation (AE) and their relationships with clinical manifestations would help in understanding the pathogenesis of disease and improve clinical management. Materials and Methods Eighty seven patients admitted to the hospital with AEs of COPD were included in this study, and follow-up was conducted after discharge (every 30 days, for a total of 120 days). Sputum samples of patients at different time points (including at admission, discharge, and follow-up) were collected, and sputum cytokine profiling (12 cytokines in total) was performed using a Luminex assay. Results According to the cytokine profiles at admission, patients were divided into three clusters by a k-means clustering algorithm, namely, Th1high Th17high (n=26), Th1lowTh17low (n=56), and Th1high Th17low (n=5), which revealed distinct clinical characteristics. Patients with Th1high Th17low profile had a significantly longer length of non-invasive ventilation time and length of hospital stay than patients with Th1high Th17high profile (7 vs 0 days, 22 vs 11 days, respectively, p < 0.05), and had the highest AE frequency. Sputum levels of Th17 cytokines (IL-17A, IL-22, and IL-23) during AE were negatively correlated with AE frequency in the last 12 months (r = −0.258, −0.289 and −0.216, respectively, p < 0.05). Moreover, decreased sputum IL-17A levels were independently associated with increased AE frequency, with an OR (95% CI) of 0.975 (0.958–0.993) and p = 0.006. Conclusion Th1/Th17 imbalance during AE is associated with the severity of COPD. Decreased Th17 cytokine expression is correlated with increased AE frequency. The Th1/Th17 balance may be a specific target for the therapeutic manipulation of COPD.
Collapse
Affiliation(s)
- Yan Yu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Lili Zhao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Yu Xie
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Yu Xu
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China
| | - Weike Jiao
- Department of Pulmonary and Critical Care Medicine, Ningde Municipal Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, People's Republic of China
| | - Jianhui Wu
- Department of Pulmonary and Critical Care Medicine, Ningde Municipal Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, People's Republic of China
| | - Xinyu Deng
- Department of Pulmonary and Critical Care Medicine, Ningde Municipal Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, People's Republic of China
| | - Guiju Fang
- Department of Pulmonary and Critical Care Medicine, Ningde Municipal Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, People's Republic of China
| | - Qing Xue
- Department of Pulmonary and Critical Care Medicine, Ningde Municipal Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, People's Republic of China
| | - Yali Zheng
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Department of Respiratory and Critical Care Medicine, Xiang'An Hospital of Xiamen University, Xiamen, Fujian 361100, People's Republic of China
| | - Zhancheng Gao
- Department of Respiratory and Critical Care Medicine, Peking University People's Hospital, Beijing 100044, People's Republic of China.,Department of Respiratory and Critical Care Medicine, Xiang'An Hospital of Xiamen University, Xiamen, Fujian 361100, People's Republic of China
| |
Collapse
|
35
|
Mir H, Koul PA, Bhat D, Shah ZA. A case-control study of tumor necrosis factor-alpha promoter polymorphism and its serum levels in patients with chronic obstructive pulmonary disease in Kashmir, North India. Lung India 2020; 37:204-209. [PMID: 32367841 PMCID: PMC7353946 DOI: 10.4103/lungindia.lungindia_477_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aim: Data about polymorphism in tumor necrosis factor-alpha (TNF-α) and its serum levels in chronic obstructive pulmonary disease (COPD) are conflicting. We aimed to evaluate the association of TNF-α-308 G > A polymorphism in patients with COPD in Kashmir (North India), a high burden area and also determined the serum TNF-α levels in these patients. Materials and Methods: One hundred spirometrically confirmed COPD patients and 163 controls resident from Kashmir valley (North India) were recruited. Genotyping of the promoter region of TNF-α was carried out using polymerase chain reaction-restriction fragment length polymorphism. The serum TNF-α was quantified using the Cytometric Bead Array flex system by flow cytometry. Results were subjected to appropriate statistical treatment and P < 0.05 was considered statistically significant. Results: Ninety-one COPD patients (91%) had G/G (wild homozygous) genotype and nine patients (9%) had G/A (heterozygous) genotype. Among the control population, 150 (92%) had G/G genotype and 13 (8%) had G/A genotype. The variant allele “A” was not detected in either of the two groups. Serum levels of TNF-α were significantly higher in patients compared to control group (8.0 ± 10.1 pg/ml vs. 3.3 ± 0.42 pg/ml, respectively, P = 0.0001). Conclusion: While serum levels of TNF-α are higher in COPD patients compared to the controls, there was no difference in the prevalence of TNF-α-308 polymorphism in the ethnic Kashmiri population with COPD.
Collapse
Affiliation(s)
- Hyder Mir
- Department of Biotechnology, Mewar University, Chittorgarh, Rajasthan, India
| | - Parvaiz Ahmad Koul
- Department of Internal and Pulmonary Medicine, Sheri Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Dilafroze Bhat
- Department of Clinical Biochemistry, Sheri Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Zaffar Amin Shah
- Department of Immunology and Molecular Medicine, Sheri Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
36
|
Hughes MJ, McGettrick HM, Sapey E. Shared mechanisms of multimorbidity in COPD, atherosclerosis and type-2 diabetes: the neutrophil as a potential inflammatory target. Eur Respir Rev 2020; 29:190102. [PMID: 32198215 PMCID: PMC9488696 DOI: 10.1183/16000617.0102-2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/02/2019] [Indexed: 12/17/2022] Open
Abstract
Multimorbidity is increasingly common and current healthcare strategies are not always aligned to treat this complex burden of disease. COPD, type-2 diabetes mellitus (T2D) and cardiovascular disease, especially atherosclerosis, occur more frequently together than expected, even when risk factors such as smoking, obesity, inactivity and poverty are considered. This supports the possibility of unifying mechanisms that contribute to the pathogenesis or progression of each condition.Neutrophilic inflammation is causally associated with COPD, and increasingly recognised in the pathogenesis of atherosclerosis and T2D, potentially forming an aetiological link between conditions. This link might reflect an overspill of inflammation from one affected organ into the systemic circulation, exposing all organs to an increased milieu of proinflammatory cytokines. Additionally, increasing evidence supports the involvement of other processes in chronic disease pathogenesis, such as cellular senescence or changes in cellular phenotypes.This review explores the current scientific evidence for inflammation, cellular ageing and cellular processes, such as reactive oxygen species production and phenotypic changes in the pathogenesis of COPD, T2D and atherosclerosis; highlighting common mechanisms shared across these diseases. We identify emerging therapeutic approaches that target these areas, but also where more work is still required to improve our understanding of the underlying cellular biology in a multimorbid disease setting.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
37
|
Suzuki S, Ishii M, Asakura T, Namkoong H, Okamori S, Yagi K, Kamata H, Kusumoto T, Kagawa S, Hegab AE, Yoda M, Horiuchi K, Hasegawa N, Betsuyaku T. ADAM17 protects against elastase-induced emphysema by suppressing CD62L + leukocyte infiltration in mice. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1172-L1182. [PMID: 32130031 DOI: 10.1152/ajplung.00214.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease and is associated with chronic pulmonary inflammation caused by cigarette smoking, with contributions from immune cells such as neutrophils, macrophages, and lymphocytes. Although matrix metalloproteinases are well known to contribute to emphysema progression, the role of a disintegrin and metalloproteinase (ADAM) family proteins, other major metalloproteinases, in disease pathogenesis is largely unknown. ADAM17 is a major sheddase that cleaves various cell surface proteins, including CD62L, an adhesion molecule that plays a critical role in promoting the migration of immune cells to the site of inflammation. In the present study, we aimed to investigate the potential role of ADAM17 and CD62L in the development of elastase-induced emphysema. Control and Adam17flox/flox/Mx1-Cre (Adam17ΔMx1) mice (8-10 wk old) were intratracheally injected with 5 units of porcine pancreas elastase and monitored for 35 days after injection. Lung alveolar destruction was evaluated by analyzing the mean linear intercepts of lung tissue specimens and by histopathological examination. Mean linear intercepts data indicated that the degree of elastase-induced emphysema was significantly more severe in Adam17ΔMx1 mice. Furthermore, flow cytometry showed that CD62L+ neutrophil, CD62L+ macrophage, and CD62L+ B lymphocyte numbers were significantly increased in Adam17ΔMx1 mice. Moreover, the pharmacological depletion of CD62L+ cells with a CD62L-neutralizing antibody ameliorated the extent of emphysema in Adam17ΔMx1 mice. Collectively, these results suggest that ADAM17 possibly suppresses the progression of emphysema by proteolytically processing CD62L in immune cells and that ADAM17 and CD62L could be novel therapeutic targets for treating pulmonary emphysema.
Collapse
Affiliation(s)
- Shoji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Society of Promotion of Science, Tokyo, Japan
| | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Society of Promotion of Science, Tokyo, Japan
| | - Ho Namkoong
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamori
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.,Japan Society of Promotion of Science, Tokyo, Japan
| | - Kazuma Yagi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuya Kusumoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shizuko Kagawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Ahmed E Hegab
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Yoda
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Cell and Tissue Biology, Keio University School of Medicine, Tokyo, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan.,Department of Orthopedic Surgery, National Defense Medical College, Saitama, Japan
| | - Naoki Hasegawa
- Center for Infectious Diseases and Infection Control, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Betsuyaku
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Hadzic S, Wu CY, Avdeev S, Weissmann N, Schermuly RT, Kosanovic D. Lung epithelium damage in COPD - An unstoppable pathological event? Cell Signal 2020; 68:109540. [PMID: 31953012 DOI: 10.1016/j.cellsig.2020.109540] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/11/2020] [Accepted: 01/11/2020] [Indexed: 10/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common term for alveolar septal wall destruction resulting in emphysema, and chronic bronchitis accompanied by conductive airway remodelling. In general, this disease is characterized by a disbalance of proteolytic/anti-proteolytic activity, augmented inflammatory response, increased oxidative/nitrosative stress, rise in number of apoptotic cells and decreased proliferation. As the first responder to the various environmental stimuli, epithelium occupies an important position in different lung pathologies, including COPD. Epithelium sequentially transitions from the upper airways in the direction of the gas exchange surface in the alveoli, and every cell type possesses a distinct role in the maintenance of the homeostasis. Basically, a thick ciliated structure of the airway epithelium has a major function in mucus secretion, whereas, alveolar epithelium which forms a thin barrier covered by surfactant has a function in gas exchange. Following this line, we will try to reveal whether or not the chronic bronchitis and emphysema, being two pathological phenotypes in COPD, could originate in two different types of epithelium. In addition, this review focuses on the role of lung epithelium in COPD pathology, and summarises underlying mechanisms and potential therapeutics.
Collapse
Affiliation(s)
- Stefan Hadzic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Cheng-Yu Wu
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Sergey Avdeev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Djuro Kosanovic
- Department of Internal Medicine, Cardio-Pulmonary Institute (CPI), German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany; Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| |
Collapse
|
39
|
Comparative Study on Pulmonary Toxicity in Mice Induced by Exposure to Unflavoured and Apple- and Strawberry-Flavoured Tobacco Waterpipe Smoke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6450450. [PMID: 32025277 PMCID: PMC6983288 DOI: 10.1155/2020/6450450] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022]
Abstract
The use of flavoured tobacco products in waterpipe smoking (WPS) has increased its attractiveness and consumption. Nonetheless, the influence of flavourings on pulmonary toxicity caused by WPS remains unclear. Here, the pulmonary toxicity induced by plain (P)-WPS, apple-flavoured (AF)-WPS, and strawberry-flavoured (SF)-WPS (30 minutes/day, 5 days/week for 1 month) was investigated in mice. Control mice were exposed to air. Exposure to P-WPS or AF-WPS or SF-WPS induced a dose-dependent increase of airway hyperreactivity to methacholine. The histological evaluation of the lungs in all the WPS groups revealed the presence focal areas of dilated alveolar spaces and foci of widening of interalveolar spaces with inflammatory cells. In the lung, the activity of neutrophil elastase and myeloperoxidase and the concentrations of tumor necrosis factor-α and glutathione were increased by the exposure to P-WPS, AF-WPS, or SF-WPS. However, the levels of interleukin-6 and catalase were only increased in the AF-WPS and SF-WPS groups, while nitric oxide activity was only increased in the SF-WPS group. DNA injury was increased in all the WPS groups, but the concentration of cleaved caspase-3 was only elevated in the SF-WPS group. The exposure to either P-WPS or AF-WPS or SF-WPS increased the expression of nuclear factor kappa-B (NF-κB) in the lung. In conclusion, the exposure to P-WPS or AF-WPS or SF-WPS induces alterations in lung function and morphology and causes oxidative stress and inflammation via mechanisms that include activation of NF-κB. Overall, the toxicity of flavoured tobacco WPS, in particular SF-WPS, was found to be greater than that of unflavoured WPS.
Collapse
|
40
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
41
|
Hu G, Dong T, Wang S, Jing H, Chen J. Vitamin D 3-vitamin D receptor axis suppresses pulmonary emphysema by maintaining alveolar macrophage homeostasis and function. EBioMedicine 2019; 45:563-577. [PMID: 31278070 PMCID: PMC6642288 DOI: 10.1016/j.ebiom.2019.06.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is characterized by emphysema and/or obstructive bronchiolitis. Deficiency in vitamin D3 (VD3), which regulates gene expression through binding to vitamin D receptor (VDR), is associated with high risks of COPD susceptibility. Alveolar macrophages (AM), which are generated during early ontogeny and maintained in alveoli by self-renewal in response to cytokine GM-CSF, are positively correlated with severity of emphysema. However, whether and how VD3, VDR and AM interact to contribute to COPD pathogenesis at the molecular and cellular levels are largely unknown. Methods We used systems biology approaches to analyze gene expression in mouse macrophages from different tissues to identify key transcription factors (TF) for AM and infer COPD disease genes. We used RNA-seq and ChIP-seq to identify genes that are regulated by VD3 in AM. We used VDR-deficient (Vdr−/−) mice to investigate the role of VD3-VDR axis in the pathogenesis of COPD and characterized the transcriptional and functional alterations of Vdr−/− AM. Findings We find that VDR is a key TF for AM and a COPD disease gene. VDR is highly expressed in AM and in response to VD3 inhibits GM-CSF-induced AM proliferation. In Vdr−/− AM, genes involved in proliferation and immune response are upregulated. Consistently, Vdr−/− mice progressively accumulate AM and concomitantly develop emphysema without apparent infiltration of immune cells into the lung tissue. Intratracheal transfer of Vdr−/− AM into wildtype mice readily induces emphysema. The production of reactive oxygen species at basal level and in response to heme or lipopolysaccharide is elevated in Vdr−/− AM and suppressed by VD3 in wildtype AM. Interpretation These results show that the VD3-VDR axis is critical to counteract GM-CSF-induced AM proliferation and defect in this regulation leads to altered AM homeostasis and function. Our findings identify that VD3 deficiency contributes to emphysema by altering AM function without contributing to bronchiolitis. Our findings also suggest possibilities of modulating the VD3-VDR axis for inhibiting emphysema in COPD patients.
Collapse
Affiliation(s)
- Guangan Hu
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Ting Dong
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Sisi Wang
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, China
| | - Hongyu Jing
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun 130021, China
| | - Jianzhu Chen
- David H. Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
42
|
Jeon BN, Song JY, Huh JW, Yang WI, Hur MW. Derepression of matrix metalloproteinase gene transcription and an emphysema-like phenotype in transcription factor Zbtb7c knockout mouse lungs. FEBS Lett 2019; 593:2665-2674. [PMID: 31222731 DOI: 10.1002/1873-3468.13501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 12/15/2022]
Abstract
Dysregulated matrix metalloproteinase (MMP) gene expression is a major cause of the degradation of lung tissue that is integral to emphysema pathogenesis. Cigarette smoking (CS) increases MMP gene expression, a major contributor to emphysema development. We previously reported that Zbtb7c is a transcriptional repressor of several Mmp genes (Mmps-8, -10, -13, and -16). Here, we show that Zbtb7c knockout mice have mild emphysema-like phenotypes, including alveolar wall destruction, enlarged alveoli, and upregulated Mmp genes. Alveolar size and Mmp gene expression in Zbtb7c-/- mouse lungs are increased more severely upon exposure to CS, compared to those of Zbtb7c+/+ mouse lungs. These observations suggest that Zbtb7c degradation or absence may contribute to the pathogenesis of emphysema.
Collapse
Affiliation(s)
- Bu-Nam Jeon
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Ji-Yang Song
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Jin Won Huh
- Department of Pulmonary and Critical Care Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Woo-Ick Yang
- Department of Pathology, Yonsei University School of Medicine, Seoul, Korea
| | - Man-Wook Hur
- Brain Korea 21 Plus Project for Medical Science, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| |
Collapse
|
43
|
Chan SMH, Selemidis S, Bozinovski S, Vlahos R. Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies. Pharmacol Ther 2019; 198:160-188. [PMID: 30822464 PMCID: PMC7112632 DOI: 10.1016/j.pharmthera.2019.02.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and is currently the 4th largest cause of death in the world. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities (e.g. skeletal muscle wasting, ischemic heart disease, cognitive dysfunction) and infective viral and bacterial acute exacerbations (AECOPD). Current pharmacological treatments for COPD are relatively ineffective and the development of effective therapies has been severely hampered by the lack of understanding of the mechanisms and mediators underlying COPD. Since comorbidities have a tremendous impact on the prognosis and severity of COPD, the 2015 American Thoracic Society/European Respiratory Society (ATS/ERS) Research Statement on COPD urgently called for studies to elucidate the pathobiological mechanisms linking COPD to its comorbidities. It is now emerging that up to 50% of COPD patients have metabolic syndrome (MetS) as a comorbidity. It is currently not clear whether metabolic syndrome is an independent co-existing condition or a direct consequence of the progressive lung pathology in COPD patients. As MetS has important clinical implications on COPD outcomes, identification of disease mechanisms linking COPD to MetS is the key to effective therapy. In this comprehensive review, we discuss the potential mechanisms linking MetS to COPD and hence plausible therapeutic strategies to treat this debilitating comorbidity of COPD.
Collapse
Affiliation(s)
- Stanley M H Chan
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Steven Bozinovski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Ross Vlahos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia.
| |
Collapse
|
44
|
Ito JT, Lourenço JD, Righetti RF, Tibério IFLC, Prado CM, Lopes FDTQS. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019; 8:E342. [PMID: 30979017 PMCID: PMC6523091 DOI: 10.3390/cells8040342] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Changes in extracellular matrix (ECM) components in the lungs are associated with the progression of respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Experimental and clinical studies have revealed that structural changes in ECM components occur under chronic inflammatory conditions, and these changes are associated with impaired lung function. In bronchial asthma, elastic and collagen fiber remodeling, mostly in the airway walls, is associated with an increase in mucus secretion, leading to airway hyperreactivity. In COPD, changes in collagen subtypes I and III and elastin, interfere with the mechanical properties of the lungs, and are believed to play a pivotal role in decreased lung elasticity, during emphysema progression. In ARDS, interstitial edema is often accompanied by excessive deposition of fibronectin and collagen subtypes I and III, which can lead to respiratory failure in the intensive care unit. This review uses experimental models and human studies to describe how inflammatory conditions and ECM remodeling contribute to the loss of lung function in these respiratory diseases.
Collapse
Affiliation(s)
- Juliana T Ito
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Juliana D Lourenço
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Renato F Righetti
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
- Rehabilitation service, Sírio-Libanês Hospital, Sao Paulo 01308-050, Brazil.
| | - Iolanda F L C Tibério
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Carla M Prado
- Department of Bioscience, Laboratory of Studies in Pulmonary Inflammation, Federal University of Sao Paulo, Santos 11015-020, Brazil.
| | - Fernanda D T Q S Lopes
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| |
Collapse
|
45
|
Lycopene mitigates pulmonary emphysema induced by cigarette smoke in a murine model. J Nutr Biochem 2019; 65:93-100. [DOI: 10.1016/j.jnutbio.2018.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 10/09/2018] [Accepted: 12/15/2018] [Indexed: 12/20/2022]
|
46
|
Chuang CC, Zhou T, Olfert IM, Zuo L. Hypoxic Preconditioning Attenuates Reoxygenation-Induced Skeletal Muscle Dysfunction in Aged Pulmonary TNF-α Overexpressing Mice. Front Physiol 2019; 9:1720. [PMID: 30622474 PMCID: PMC6308319 DOI: 10.3389/fphys.2018.01720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/15/2018] [Indexed: 11/26/2022] Open
Abstract
Aim: Skeletal muscle subjected to hypoxia followed by reoxygenation is susceptible to injury and subsequent muscle function decline. This phenomenon can be observed in the diaphragm during strenuous exercise or in pulmonary diseases such as chronic obstructive pulmonary diseases (COPD). Previous studies have shown that PO2 cycling or hypoxic preconditioning (HPC), as it can also be referred to as, protects muscle function via mechanisms involving reactive oxygen species (ROS). However, this HPC protection has not been fully elucidated in aged pulmonary TNF-α overexpressing (Tg+) mice (a COPD-like model). We hypothesize that HPC can exert protection on the diaphragms of Tg+ mice during reoxygenation through pathways involving ROS/phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/extracellular signal regulated kinase (ERK), as well as the downstream activation of mitochondrial ATP-sensitive potassium channel (mitoKATP) and inhibition of mitochondrial permeability transition pore (mPTP). Methods: Isolated Tg+ diaphragm muscle strips were pre-treated with inhibitors for ROS, PI3K, Akt, ERK, or a combination of mitoKATP inhibitor and mPTP opener, respectively, prior to HPC. Another two groups of muscles were treated with either mitoKATP activator or mPTP inhibitor without HPC. Muscles were treated with 30-min hypoxia, followed by 15-min reoxygenation. Data were analyzed by multi-way ANOVA and expressed as means ± SE. Results: Muscle treated with HPC showed improved muscle function during reoxygenation (n = 5, p < 0.01). Inhibition of ROS, PI3K, Akt, or ERK abolished the protective effect of HPC. Simultaneous inhibition of mitoKATP and activation of mPTP also diminished HPC effects. By contrast, either the opening of mitoKATP channel or the closure of mPTP provided a similar protective effect to HPC by alleviating muscle function decline, suggesting that mitochondria play a role in HPC initiation (n = 5; p < 0.05). Conclusion: Hypoxic preconditioning may protect respiratory skeletal muscle function in Tg+ mice during reoxygenation through redox-sensitive signaling cascades and regulations of mitochondrial channels.
Collapse
Affiliation(s)
- Chia-Chen Chuang
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Tingyang Zhou
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States
| | - I Mark Olfert
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Li Zuo
- Radiologic Sciences and Respiratory Therapy Division, School of Health and Rehabilitation Sciences, The Ohio State University College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.,Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH, United States.,Department of Biology, The University of Maine, Presque Isle, ME, United States
| |
Collapse
|
47
|
Dong J, Liao W, Peh HY, Tan WSD, Zhou S, Wong WSF. Ribosomal Protein S3 Gene Silencing Protects Against Cigarette Smoke-Induced Acute Lung Injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:370-380. [PMID: 30195775 PMCID: PMC6031153 DOI: 10.1016/j.omtn.2018.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 01/18/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is estimated to be the third leading cause of death by 2030. Transcription factor NF-κB may play a critical role in COPD pathogenesis. Ribosomal protein S3 (RPS3), a 40S ribosomal protein essential for executing protein translation, has recently been found to interact with the NF-κB p65 subunit and promote p65 DNA-binding activity. We sought to study whether RPS3 gene silencing could protect against cigarette-smoke (CS)-induced acute lung injury in a mouse model. Effects of an intratracheal RPS3 siRNA in CS-induced lung injury were determined by measuring bronchoalveolar lavage (BAL) fluid cell counts, levels of inflammatory and oxidative damage markers, and NF-κB translocation. Lung RPS3 level was found to be upregulated for the first time with CS exposure, and RPS3 siRNA blocked CS-induced neutrophil counts in BAL fluid. RPS3 siRNA suppressed CS-induced lung inflammatory mediator and oxidative damage marker levels, as well as nuclear p65 accumulation and transcriptional activation. RPS3 siRNA was able to disrupt CS extract (CSE)-induced NF-κB activation in an NF-κB reporter gene assay. We report for the first time that RPS3 gene silencing ameliorated CS-induced acute lung injury, probably via interruption of the NF-κB activity, postulating that RPS3 is a novel therapeutic target for COPD.
Collapse
Affiliation(s)
- Jinrui Dong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Wupeng Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Hong Yong Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W S Daniel Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - Shuo Zhou
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Immunology Program, Life Science Institute, National University of Singapore, Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, Molecular Mechanisms of Inflammatory Diseases Interdisciplinary Research Group, Singapore, Singapore.
| |
Collapse
|
48
|
Butler A, Walton GM, Sapey E. Neutrophilic Inflammation in the Pathogenesis of Chronic Obstructive Pulmonary Disease. COPD 2018; 15:392-404. [DOI: 10.1080/15412555.2018.1476475] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aidan Butler
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgia May Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
49
|
Parasaram V, Nosoudi N, Chowdhury A, Vyavahare N. Pentagalloyl glucose increases elastin deposition, decreases reactive oxygen species and matrix metalloproteinase activity in pulmonary fibroblasts under inflammatory conditions. Biochem Biophys Res Commun 2018; 499:24-29. [PMID: 29550472 DOI: 10.1016/j.bbrc.2018.03.100] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/11/2022]
Abstract
Emphysema is characterized by degradation of lung alveoli that leads to poor airflow in lungs. Irreversible elastic fiber degradation by matrix metalloproteinases (MMPs) and reactive oxygen species (ROS) activity leads to loss of elasticity and drives the progression of this disease. We investigated if a polyphenol, pentagalloyl glucose (PGG) can increase elastin production in pulmonary fibroblasts. We also studied the effect of PGG treatment in reducing MMP activity and ROS levels in cells. We exposed rat pulmonary fibroblasts to two different types of inflammatory environments i.e., tumor necrosis factor-α (TNF-α) and cigarette smoke extract (CSE) to mimic the disease. Parameters like lysyl oxidase (LOX) and elastin gene expression, MMP-9 activity in the medium, lysyl oxidase (LOX) activity and ROS levels were studied to assess the effect of PGG on pulmonary fibroblasts. CSE inhibited lysyl oxidase (LOX) enzyme activity that resulted in a decreased elastin formation. Similarly, TNF-α treated cells showed less elastin in the cell layers. Both these agents caused increase in MMP activity and ROS levels in cells. However, when supplemented with PGG treatment along with these two inflammatory agents, we saw a significant increase in elastin deposition, reduction in both MMP activity and ROS levels. Thus PGG, which has anti-inflammatory, anti-oxidant properties coupled with its ability to aid in elastic fiber formation, can be a multifunctional drug to potentially arrest the progression of emphysema.
Collapse
Affiliation(s)
| | - Nasim Nosoudi
- Department of Biomedical, Industrial and Human Factors Engineering, Wright State University, OH, United States
| | - Aniqa Chowdhury
- Department of Bioengineering, Clemson University, SC, United States
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC, United States.
| |
Collapse
|
50
|
|