1
|
Tashkin DP. Is Smoked Marijuana a Risk Factor for Chronic Obstructive Pulmonary Disease? An Enduring Controversy. Ann Am Thorac Soc 2024; 21:1474-1479. [PMID: 39110420 DOI: 10.1513/annalsats.202405-478ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/01/2024] [Indexed: 11/02/2024] Open
Affiliation(s)
- Donald P Tashkin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
2
|
Zou X, Tian B, Lin Q, Xia J, Qiu Y, Huang L, Li W, Yang M, Gao F. Diagnostic value of CT in patients with stable chronic obstructive pulmonary disease at high altitude: Observational study. Medicine (Baltimore) 2024; 103:e40291. [PMID: 39495983 PMCID: PMC11537622 DOI: 10.1097/md.0000000000040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/10/2024] [Indexed: 11/06/2024] Open
Abstract
This research aims to explore the diagnostic value of computed tomography (CT) indicators in patients with stable chronic obstructive pulmonary disease (COPD) in a plateau of China, and to find out the correlation between CT indexes and lung function and symptoms. This study screened out 53 stable COPD patients and 53 healthy people through inclusion and exclusion criteria in Hongyuan county, Aba Prefecture, Sichuan Province, between July 2020 and December 2020, and then collected their baseline data, conducted lung function tests and chest CT scans, and collected COPD Assessment Test (CAT), modified Medical Research Council Dyspnea Scale (mMRC) scores. The CT indexes of the 2 groups were compared, binary logistic regression was used to analyze the influence of COPD, the receiver operating characteristic (ROC) curve was used to evaluate the diagnostic value of the CT indexes for COPD. The Spearman test was used to understand the correlation analysis between the CT indexes and lung function, symptom score, and the number of acute exacerbations. Multiple linear regression was used to analyze the influencing factors of lung function. The percentage of low-attenuation areas less than -950 Hounsfield units (%LAA-950; t = -4.387,P = 0), percentage of wall area (WA%; t = -4.501, P = 0), and thickness-diameter ratio (TDR; t = -4.779, P = 0) in the COPD group were higher than those in the normal group. ROC shows that: %LAA-950 (P = .047) and TDR (P = .034) were independent influence in COPD in the plateau. %LAA-950 combined with TDR (AUC = 0.757, P < .001) had the value of diagnosis of COPD in the plateau. All 3 indexes are negatively correlated with lung function, and positively correlated with the symptoms and the number of acute exacerbations. Multiple linear regression analysis showed that the main factors for decrease of ratio of measurement to prediction of forced expiratory volume to the first second (FEV1%) included %LAA-950 (OR = -0.449, P < .001) and WA% (OR = -0.516, P < .001). CT indexes have a certain diagnostic value in patients with stable COPD at high altitude.
Collapse
Affiliation(s)
- Xingxiong Zou
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Bowen Tian
- Department of Radiology, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Qingqing Lin
- Department of Laboratory Medicine, Mianyang People’s Hospital, Mianyang, Sichuan, China
| | - Junjie Xia
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Yu Qiu
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Ling Huang
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Wenjun Li
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Ming Yang
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Feng Gao
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, Sichuan, China
| |
Collapse
|
3
|
Dournes G, Zysman M, Benlala I, Berger P. [CT imaging of chronic obstructive pulmonary disease: What aspects and what role?]. Rev Mal Respir 2024:S0761-8425(24)00298-5. [PMID: 39488460 DOI: 10.1016/j.rmr.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/03/2024] [Indexed: 11/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), commonly defined as irreversible airflow limitation, is associated with specific morphological changes involving all three parts of the lung, namely the bronchi, parenchyma and pulmonary vessels. In vivo imaging, with its ability to describe the different types of lung alterations and their regional distribution, helps to elucidate the relationship between lung structure and respiratory function. High-resolution computed tomography (CT) of the lung is the imaging modality best suited to assessing the pathological changes associated with airflow obstruction occurring in COPD. Over the last few decades, numerous studies have demonstrated the role of CT as a morphological and functional method conducive to the phenotyping of COPD patients. This review proposes to examine the data on CT imaging of COPD with a critical approach to recent data, and to determine the extent to which CT could be integrated into care or clinical research on patients with this/these disease(s).
Collapse
Affiliation(s)
- G Dournes
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France.
| | - M Zysman
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| | - I Benlala
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| | - P Berger
- Centre de recherche cardio-thoracique de Bordeaux, U1045, CIC 1401, université de Bordeaux, Inserm, 33600 Pessac, France; Service d'imagerie thoracique et cardiovasculaire, service des maladies respiratoires, service d'exploration fonctionnelle respiratoire, Paediatric Cystic Fibrosis Reference Center (CRCM), CIC 1401, CHU de Bordeaux, 33600 Pessac, France; Centre de recherche cardio-thoracique de Bordeaux, CIC 1401, Inserm, U1045, 33600 Pessac, France
| |
Collapse
|
4
|
Chen B, Gao P, Yang Y, Ma Z, Sun Y, Lu J, Qi L, Li M. Discordant definitions of small airway dysfunction between spirometry and parametric response mapping: the HRCT-based study. Insights Imaging 2024; 15:233. [PMID: 39356413 PMCID: PMC11447176 DOI: 10.1186/s13244-024-01819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
OBJECTIVES To analyze the lung structure of small airway dysfunction (SAD) defined by spirometry and parametric response mapping (PRM) using high-resolution computed tomography (HRCT), and to analyze the predictive factors for SAD. METHODS A prospective study was conducted with 388 participants undergoing pulmonary function test (PFT) and inspiratory-expiratory chest CT scans. The clinical data and HRCT assessments of SAD patients defined by both methods were compared. A prediction model for SAD was constructed based on logistic regression. RESULTS SAD was defined in 122 individuals by spirometry and 158 by PRM. In HRCT visual assessment, emphysema, tree-in-bud sign, and bronchial wall thickening have higher incidence in SAD defined by each method. (p < 0.001). Quantitative CT showed that spirometry-SAD had thicker airway walls (p < 0.001), smaller lumens (p = 0.011), fewer bronchi (p < 0.001), while PRM-SAD had slender blood vessels. Predictive factors for spirometry-SAD were age, male gender, the volume percentage of emphysema in PRM (PRMEmph), tree-in-bud sign, bronchial wall thickening, bronchial count; for PRM-SAD were age, male gender, BMI, tree-in-bud sign, emphysema, the percentage of blood vessel volume with a cross-sectional area less than 1 mm2 (BV1/TBV). The area under curve (AUC) values for the fitted predictive models were 0.855 and 0.808 respectively. CONCLUSIONS Compared with PRM, SAD defined by spirometry is more closely related to airway morphology, while PRM is sensitive to early pulmonary dysfunction but may be interfered by pulmonary vessels. Models combining patient information and HRCT assessment have good predictive value for SAD. CRITICAL RELEVANCE STATEMENT HRCT reveals lung structural differences in small airway dysfunction defined by spirometry and parametric response mapping. This insight aids in understanding methodological differences and developing radiological tools for small airways that align with pathophysiology. KEY POINTS Spirometry-SAD shows thickened airway walls, narrowed lumen, and reduced branch count, which are closely related to airway morphology. PRM shows good sensitivity to early pulmonary dysfunction, although its assessment of SAD based on gas trapping may be affected by the density of pulmonary vessels and other lung structures. Combining patient information and HRCT features, the fitted model has good predictive performance for SAD defined by both spirometry and PRM (AUC values are 0.855 and 0.808, respectively).
Collapse
Affiliation(s)
- Bin Chen
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Pan Gao
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Yuling Yang
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Zongjing Ma
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Yingli Sun
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China
| | - Jinjuan Lu
- Department of Radiology, Shanghai Geriatric Medical Center, Shanghai, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China.
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
- Zhang Guozhen Small pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China.
| |
Collapse
|
5
|
Matson SM, Choi J, Rorah D, Khan S, Trofimoff A, Kim T, Lee DH, Abdolijomoor A, Chen M, Azeem I, Ngo L, Bang TJ, Sachs P, Deane KD, Demoruelle MK, Castro M, Lee JS. Airways Abnormalities in a Prospective Cohort of Patients With Rheumatoid Arthritis. Chest 2024:S0012-3692(24)05159-6. [PMID: 39343293 DOI: 10.1016/j.chest.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) affects roughly 1% of the population and commonly involves the lungs. Of lung involvement in RA, interstitial lung disease (ILD) is well known; however, airways disease in RA is relatively understudied. RESEARCH QUESTION What are the baseline airways abnormalities in a prospective cohort of patients with RA based on pulmonary function testing (PFT) results, high-resolution CT (HRCT) scans, and computational imaging analysis and are there associations between these abnormalities and respiratory symptoms? STUDY DESIGN AND METHODS In this single-center study, 188 patients with RA without a clinical diagnosis of ILD underwent HRCT imaging and PFT. Radiologists assessed HRCT scans for airway abnormalities. Computational imaging via VIDA Vision software and in-house quantitative CT imaging analysis was applied to 147 HRCT scans to quantify airway abnormalities. RESULTS Airways obstruction (FEV1 to FVC ratio < 0.7) was present in 20.7% of patients and was associated with older age, male sex, and higher smoking rate. Radiologists identified airway abnormalities in 61% of patients: 55% had bronchial wall thickening, 12% had bronchiectasis, and 5% had mosaic attenuation. These airways findings were associated with older age; male sex; lower FEV1, FVC, and FEV1 to FVC ratio; and higher rates of rheumatoid factor positivity. Prespecified quantitative CT scan metrics (wall thickening percentage and emphysema percentage) correlated with obstruction in PFT results and more severe respiratory symptoms, including shortness of breath and cough. INTERPRETATION High rates of airways abnormalities were found in this prospective RA cohort based on 3 methods of detection. Significant associations were identified between quantitative CT scan measures and respiratory symptoms. Airways disease may be an underrecognized extra-articular manifestation of RA and quantitative CT imaging may be a sensitive method to detect the clinical impact on respiratory symptoms.
Collapse
Affiliation(s)
- Scott M Matson
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Cente, Kansas City KS.
| | - Jiwoong Choi
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Cente, Kansas City KS
| | - Drayton Rorah
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City KS
| | - Shamir Khan
- University of Kansas School of Medicine, Kansas City KS
| | | | - Taewon Kim
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Cente, Kansas City KS
| | - David H Lee
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Cente, Kansas City KS
| | - Asma Abdolijomoor
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Cente, Kansas City KS
| | - Maggie Chen
- University of Kansas School of Medicine, Kansas City KS
| | - Imaan Azeem
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Cente, Kansas City KS
| | - Linh Ngo
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Cente, Kansas City KS
| | - Tami J Bang
- Department of Thoracic Radiology, National Jewish Hospital, Denver, CO
| | - Peter Sachs
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kevin D Deane
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - M Kristen Demoruelle
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mario Castro
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Kansas Medical Cente, Kansas City KS
| | - Joyce S Lee
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
6
|
Loeb E, Zock JP, Miravitlles M, Rodríguez E, Kromhout H, Vermeulen R, Soler-Cataluña JJ, Soriano JB, García-Río F, de Lucas P, Alfageme I, Casanova C, González-Moro JR, Ancochea J, Cosío BG, Ferrer Sancho J. Occupational Exposures, Chronic Obstructive Pulmonary Disease and Tomographic Findings in the Spanish Population. TOXICS 2024; 12:689. [PMID: 39453109 PMCID: PMC11510821 DOI: 10.3390/toxics12100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024]
Abstract
Self-reported occupational exposure was previously associated with COPD in the Spanish population. This study aimed to analyse the relationship between occupational exposure to various chemical and biological agents, COPD, emphysema, and the bronchial wall area, which was determined by lung computed tomography (CT) in 226 individuals with COPD and 300 individuals without COPD. Lifetime occupational exposures were assessed using the ALOHA(+) job exposure matrix, and CT and spirometry were also performed. COPD was associated with high exposure to vapours, gases, dust and fumes (VGDF) (OR 2.25 95% CI 1.19-4.22), biological dust (OR 3.01 95% CI 1.22-7.45), gases/fumes (OR 2.49 95% CI 1.20-5.17) and with exposure to various types of solvents. High exposure to gases/fumes, chlorinated solvents and metals (coefficient 8.65 95% CI 1.21-16.09, 11.91 95%CI 0.46- 23.36, 14.45 95% CI 4.42-24.49, respectively) and low exposure to aromatic solvents (coefficient 8.43 95% CI 1.16-15.70) were associated with a low 15th percentile of lung density indicating emphysema. We conclude that occupational exposure to several specific agents is associated with COPD and emphysema in the Spanish population.
Collapse
Affiliation(s)
- Eduardo Loeb
- Departamento de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (E.L.); (E.R.)
- Servicio de Neumología, Centro Médico Teknon, Grupo Quironsalud, 08022 Barcelona, Spain
| | - Jan-Paul Zock
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven, The Netherlands;
| | - Marc Miravitlles
- Servicio de Neumología, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Esther Rodríguez
- Departamento de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (E.L.); (E.R.)
- Servicio de Neumología, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands; (H.K.); (R.V.)
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, 3584 CM Utrecht, The Netherlands; (H.K.); (R.V.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Juan José Soler-Cataluña
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Arnau de Vilanova-Lliria, Universitat de València, 46015 Valencia, Spain
| | - Joan B. Soriano
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | - Francisco García-Río
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario La Paz-IdiPAZ, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Pilar de Lucas
- Servicio de Neumología, Hospital General Gregorio Marañon, 28007 Madrid, Spain;
| | - Inmaculada Alfageme
- Departamento de Medicina, Unidad de Gestión Clínica de Neumología, Hospital Universitario Virgen de Valme, Universidad de Sevilla, 41014 Sevilla, Spain;
| | - Ciro Casanova
- Departamento de Medicina, Servicio de Neumología-Unidad de Investigación Hospital Universitario Nuestra Señora de Candelaria, CIBERES, ISCIII, Universidad de La Laguna, 38010 Santa Cruz de Tenerife, Spain;
| | - José Rodríguez González-Moro
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario Vithas Madrid Arturo Soria, Universidad Europea (UE), 28043 Madrid, Spain;
| | - Julio Ancochea
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario La Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain
| | - Borja G. Cosío
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
- Departamento de Medicina, Servicio de Neumología, Hospital Universitario Son Espases-IdISBa, Universidad de las Islas Baleares, 07120 Palma de Mallorca, Spain
| | - Jaume Ferrer Sancho
- Departamento de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain; (E.L.); (E.R.)
- Servicio de Neumología, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (J.J.S.-C.); (J.B.S.); (F.G.-R.); (J.A.); (B.G.C.)
| |
Collapse
|
7
|
Liang J, Xia T, Wu S, Liu S, Guan Y. Application research on asthma-COPD overlap using low-dose CT scan and quantitative analysis. Clin Radiol 2024:S0009-9260(24)00510-5. [PMID: 39384459 DOI: 10.1016/j.crad.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/23/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
PURPOSE The aim of this study was to assess the proximal airway remodeling, emphysema, and air trapping of asthma-COPD Overlap. MATERIALS AND METHODS 20 ACO patients, 55 mild to moderate COPD patients and 38 non-severe asthma patients were participated in low-dose dual phase CT scanning and pulmonary function test, comparative analysis was performed to identify differences in CT measurements among three groups. RESULTS (Ⅰ) The average age and smoking index of ACO and mild to moderate COPD were both higher than non-severe asthma. ACO and mild to moderate COPD group had a higher proportion of males than non-severe asthma. (Ⅱ) In terms of pulmonary function test, FEV1 (%Pred), FEV1/FVC%, MEF25% (%Pred), MEF 50% (%Pred), MMEF (%Pred), and PEF (%Pred) in ACO were significantly reduced than those in non-severe asthma. (Ⅲ) On proximal airway parameters, ACO exhibited higher WA% and Pi10 compared to mild to moderate COPD. However, there was no statistically significant difference in WA% and Pi10 between ACO and non-severe asthma. (Ⅳ) On CT lung function, the emphysema index VI-910ex of ACO was significantly higher than non-severe asthma.Additionally, ACO demonstrated higher MLDex and VI-856ex compared to non-severe asthma. CONCLUSIONS Compared with non-severe asthma, ACO is more common in male patients with older age and a longer history of smoking, which had more severe airflow obstruction and airway dysfunction than non-severe asthma.ACO showed more obvious proximal airway remodeling than mild to moderate COPD, and was more similar to non-severe asthma.The extent of emphysema and air trapping in ACO were more pronounced compared to non-severe asthma.
Collapse
Affiliation(s)
- J Liang
- Department of Radiology, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou 510095, China
| | - T Xia
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - S Wu
- Department of Radiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - S Liu
- Department of Radiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China
| | - Y Guan
- Department of Radiology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510799, China.
| |
Collapse
|
8
|
Tanabe N, Nakagawa H, Sakao S, Ohno Y, Shimizu K, Nakamura H, Hanaoka M, Nakano Y, Hirai T. Lung imaging in COPD and asthma. Respir Investig 2024; 62:995-1005. [PMID: 39213987 DOI: 10.1016/j.resinv.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are common lung diseases with heterogeneous clinical presentations. Lung imaging allows evaluations of underlying pathophysiological changes and provides additional personalized approaches for disease management. This narrative review provides an overview of recent advances in chest imaging analysis using various modalities, such as computed tomography (CT), dynamic chest radiography, and magnetic resonance imaging (MRI). Visual CT assessment localizes emphysema subtypes and mucus plugging in the airways. Dedicated software quantifies the severity and spatial distribution of emphysema and the airway tree structure, including the central airway wall thickness, branch count and fractal dimension of the tree, and airway-to-lung size ratio. Nonrigid registration of inspiratory and expiratory CT scans quantifies small airway dysfunction, local volume changes and shape deformations in specific regions. Lung ventilation and diaphragm movement are also evaluated on dynamic chest radiography. Functional MRI detects regional oxygen transfer across the alveolus using inhaled oxygen and ventilation defects and gas diffusion into the alveolar-capillary barrier tissue and red blood cells using inhaled hyperpolarized 129Xe gas. These methods have the potential to determine local functional properties in the lungs that cannot be detected by lung function tests in patients with COPD and asthma. Further studies are needed to apply these technologies in clinical practice, particularly for early disease detection and tailor-made interventions, such as the efficient selection of patients likely to respond to biologics. Moreover, research should focus on the extension of healthy life expectancy in patients at higher risk and with established diseases.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686 Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Kaoruko Shimizu
- Division of Emergent Respiratory and Cardiovascular medicine, Hokkaido University Hospital, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| |
Collapse
|
9
|
Simargi Y, Turana Y, Icksan AG, Harahap AR, Siste K, Mansyur M, Damayanti T, Maryastuti M, Fazharyasti V, Dewi IP, Ramli Y, Prasetyo M, Rumende CM. A Multicenter Study of COPD and Cognitive Impairment: Unraveling the Interplay of Quantitative CT, Lung Function, HIF-1α, and Clinical Variables. Int J Chron Obstruct Pulmon Dis 2024; 19:1741-1753. [PMID: 39099608 PMCID: PMC11296506 DOI: 10.2147/copd.s466173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose The exact link between cognitive impairment (CI) and chronic obstructive pulmonary disease (COPD) is still limited. Thus, we aim to find the relationship and interaction of quantitative CT (QCT), lung function, HIF-1α, and clinical factors with the development of CI among COPD patients. Patients and Methods A cross-sectional multicentre study was conducted from January 2022 to December 2023. We collected clinical data, spirometry, CT images, and venous blood samples from 114 COPD participants. Cognitive impairment assessment using the Montreal Cognitive Assessment Indonesian version (MoCA-Ina) with a cutoff value 26. The QCT analysis consists of lung density, airway wall thickness, pulmonary artery-to-aorta ratio (PA:A), and pectoralis muscles using 3D Slicer software. Serum HIF-1α analysis was performed using ELISA. Results We found significant differences between %LAA-950, age, COPD duration, BMI, FEV1 pp, and FEV1/FVC among GOLD grades I-IV. Only education duration was found to correlate with CI (r = 0.40; p < 0.001). We found no significant difference in HIF-1α among GOLD grades (p = 0.149) and no correlation between HIF-1α and CI (p = 0.105). From multiple linear regression, we observed that the MoCA-Ina score was influenced mainly by %LAA-950 (p = 0.02) and education duration (p = 0.01). The path analysis model showed both %LAA and education duration directly and indirectly through FEV1 pp contributing to CI. Conclusion We conclude that the utilization of QCT parameters is beneficial as it can identify abnormalities and contribute to the development of CI, indicating its potential utility in clinical decision-making. The MoCA-Ina score in COPD is mainly affected by %LAA-950 and education duration. Contrary to expectations, this study concludes that HIF-1α does not affect CI among COPD patients.
Collapse
Affiliation(s)
- Yopi Simargi
- Doctoral Program in Medical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Radiology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
- Department of Radiology, Atma Jaya Hospital, Jakarta, Indonesia
| | - Yuda Turana
- Department of Neurology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | | | - Alida Roswita Harahap
- Doctoral Program in Medical Science, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Kristiana Siste
- Department of Psychiatry, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Psychiatry, Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Muchtaruddin Mansyur
- Department of Community, Occupational and Family Medicine, Faculty of Medicine, University of Indonesia, Depok, Indonesia
| | - Triya Damayanti
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Pulmonology and Respiratory Medicine, National Respiratory Center Persahabatan Hospital, Jakarta, Indonesia
| | - Maryastuti Maryastuti
- Department of Radiology, National Respiratory Center Persahabatan Hospital, Jakarta, Indonesia
| | | | - Indah Puspita Dewi
- Department of Radiology, Faculty of Medicine and Health, University of Muhammadiyah Jakarta, Jakarta, Indonesia
- Department of Radiology, Jakarta Islamic Hospital Cempaka Putih, Jakarta, Indonesia
| | - Yetty Ramli
- Department of Neurology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department Neurology, Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Marcel Prasetyo
- Department of Radiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Radiology, Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| | - Cleopas Martin Rumende
- Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia
| |
Collapse
|
10
|
Dudurych I, Pelgrim GJ, Sidorenkov G, Garcia-Uceda A, Petersen J, Slebos DJ, de Bock GH, van den Berge M, de Bruijne M, Vliegenthart R. Low-Dose CT-derived Bronchial Parameters in Individuals with Healthy Lungs. Radiology 2024; 311:e232677. [PMID: 38916504 DOI: 10.1148/radiol.232677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background CT-derived bronchial parameters have been linked to chronic obstructive pulmonary disease and asthma severity, but little is known about these parameters in healthy individuals. Purpose To investigate the distribution of bronchial parameters at low-dose CT in individuals with healthy lungs from a Dutch general population. Materials and Methods In this prospective study, low-dose chest CT performed between May 2017 and October 2022 were obtained from participants who had completed the second-round assessment of the prospective, longitudinal Imaging in Lifelines study. Participants were aged at least 45 years, and those with abnormal spirometry, self-reported respiratory disease, or signs of lung disease at CT were excluded. Airway lumens and walls were segmented automatically. The square root of the bronchial wall area of a hypothetical airway with an internal perimeter of 10 mm (Pi10), luminal area (LA), wall thickness (WT), and wall area percentage were calculated. Associations between sex, age, height, weight, smoking status, and bronchial parameters were assessed using univariable and multivariable analyses. Results The study sample was composed of 8869 participants with healthy lungs (mean age, 60.9 years ± 10.4 [SD]; 4841 [54.6%] female participants), including 3672 (41.4%) never-smokers and 1197 (13.5%) individuals who currently smoke. Bronchial parameters for male participants were higher than those for female participants (Pi10, slope [β] range = 3.49-3.66 mm; LA, β range = 25.40-29.76 mm2; WT, β range = 0.98-1.03 mm; all P < .001). Increasing age correlated with higher Pi10, LA, and WT (r2 range = 0.06-0.09, 0.02-0.01, and 0.02-0.07, respectively; all P < .001). Never-smoking individuals had the lowest Pi10 followed by formerly smoking and currently smoking individuals (3.62 mm ± 0.13, 3.68 mm ± 0.14, and 3.70 mm ± 0.14, respectively; all P < .001). In multivariable regression models, age, sex, height, weight, and smoking history explained up to 46% of the variation in bronchial parameters. Conclusion In healthy individuals, bronchial parameters differed by sex, height, weight, and smoking history; male sex and increasing age were associated with wider lumens and thicker walls. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Emrich and Varga-Szemes in this issue.
Collapse
Affiliation(s)
- Ivan Dudurych
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Gert-Jan Pelgrim
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Grigory Sidorenkov
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Antonio Garcia-Uceda
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Jens Petersen
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Dirk-Jan Slebos
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Geertruida H de Bock
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Maarten van den Berge
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Marleen de Bruijne
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Rozemarijn Vliegenthart
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| |
Collapse
|
11
|
Ritchie AI, Donaldson GC, Hoffman EA, Allinson JP, Bloom CI, Bolton CE, Choudhury G, Gerard SE, Guo J, Alves-Moreira L, McGarvey L, Sapey E, Stockley RA, Yip KP, Singh D, Wilkinson T, Fageras M, Ostridge K, Jöns O, Bucchioni E, Compton CH, Jones P, Mezzi K, Vestbo J, Calverley PMA, Wedzicha JA. Structural Predictors of Lung Function Decline in Young Smokers with Normal Spirometry. Am J Respir Crit Care Med 2024; 209:1208-1218. [PMID: 38175920 PMCID: PMC11146542 DOI: 10.1164/rccm.202307-1203oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) due to tobacco smoking commonly presents when extensive lung damage has occurred. Objectives: We hypothesized that structural change would be detected early in the natural history of COPD and would relate to loss of lung function with time. Methods: We recruited 431 current smokers (median age, 39 yr; 16 pack-years smoked) and recorded symptoms using the COPD Assessment Test (CAT), spirometry, and quantitative thoracic computed tomography (QCT) scans at study entry. These scan results were compared with those from 67 never-smoking control subjects. Three hundred sixty-eight participants were followed every six months with measurement of postbronchodilator spirometry for a median of 32 months. The rate of FEV1 decline, adjusted for current smoking status, age, and sex, was related to the initial QCT appearances and symptoms, measured using the CAT. Measurements and Main Results: There were no material differences in demography or subjective CT appearances between the young smokers and control subjects, but 55.7% of the former had CAT scores greater than 10, and 24.2% reported chronic bronchitis. QCT assessments of disease probability-defined functional small airway disease, ground-glass opacification, bronchovascular prominence, and ratio of small blood vessel volume to total pulmonary vessel volume were increased compared with control subjects and were all associated with a faster FEV1 decline, as was a higher CAT score. Conclusions: Radiological abnormalities on CT are already established in young smokers with normal lung function and are associated with FEV1 loss independently of the impact of symptoms. Structural abnormalities are present early in the natural history of COPD and are markers of disease progression. Clinical trial registered with www.clinicaltrials.gov (NCT03480347).
Collapse
Affiliation(s)
- Andrew I. Ritchie
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- AstraZeneca, Cambridge, United Kingdom
| | - Gavin C. Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Eric A. Hoffman
- Department of Radiology and
- Roy J. Carver Department of Biomedical Engineering, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - James P. Allinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, London, United Kingdom
| | - Chloe I. Bloom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Charlotte E. Bolton
- NIHR Nottingham Biomedical Research Centre
- Centre for Respiratory Research, NIHR Nottingham, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Gourab Choudhury
- ELEGI and COLT Laboratories, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Sarah E. Gerard
- Roy J. Carver Department of Biomedical Engineering, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | | | - Luana Alves-Moreira
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. Stockley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - K. P. Yip
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Tom Wilkinson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | | | - Kristoffer Ostridge
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- AstraZeneca, Gothenburg, Sweden
| | - Olaf Jöns
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | | | | | - Paul Jones
- GlaxoSmithKline, Brentford, United Kingdom
| | | | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Peter M. A. Calverley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Elbehairy AF, Marshall H, Naish JH, Wild JM, Parraga G, Horsley A, Vestbo J. Advances in COPD imaging using CT and MRI: linkage with lung physiology and clinical outcomes. Eur Respir J 2024; 63:2301010. [PMID: 38548292 DOI: 10.1183/13993003.01010-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 03/16/2024] [Indexed: 05/04/2024]
Abstract
Recent years have witnessed major advances in lung imaging in patients with COPD. These include significant refinements in images obtained by computed tomography (CT) scans together with the introduction of new techniques and software that aim for obtaining the best image whilst using the lowest possible radiation dose. Magnetic resonance imaging (MRI) has also emerged as a useful radiation-free tool in assessing structural and more importantly functional derangements in patients with well-established COPD and smokers without COPD, even before the existence of overt changes in resting physiological lung function tests. Together, CT and MRI now allow objective quantification and assessment of structural changes within the airways, lung parenchyma and pulmonary vessels. Furthermore, CT and MRI can now provide objective assessments of regional lung ventilation and perfusion, and multinuclear MRI provides further insight into gas exchange; this can help in structured decisions regarding treatment plans. These advances in chest imaging techniques have brought new insights into our understanding of disease pathophysiology and characterising different disease phenotypes. The present review discusses, in detail, the advances in lung imaging in patients with COPD and how structural and functional imaging are linked with common resting physiological tests and important clinical outcomes.
Collapse
Affiliation(s)
- Amany F Elbehairy
- Department of Chest Diseases, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Helen Marshall
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Josephine H Naish
- MCMR, Manchester University NHS Foundation Trust, Manchester, UK
- Bioxydyn Limited, Manchester, UK
| | - Jim M Wild
- POLARIS, Imaging, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, Sheffield, UK
| | - Grace Parraga
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Division of Respirology, Western University, London, ON, Canada
| | - Alexander Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester and Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
13
|
Kwon OB, Lee HU, Park HE, Choi JY, Kim JW, Lee SH, Yeo CD. Predicting Postoperative Lung Function in Patients with Lung Cancer Using Imaging Biomarkers. Diseases 2024; 12:65. [PMID: 38667523 PMCID: PMC11049658 DOI: 10.3390/diseases12040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
There have been previous studies conducted to predict postoperative lung function with pulmonary function tests (PFTs). Computing tomography (CT) can quantitatively measure small airway walls' thickness, lung volume, pulmonary vessel volume, and emphysema area, which reflect the severity of respiratory diseases. These measurements are considered imaging biomarkers. This study aimed to predict postoperative lung function with imaging biomarkers. A retrospective analysis of 79 patients with lung cancer who had undergone lung surgery was completed. Postoperative lung function measured by forced expiratory volume in one second (FEV1) was defined as an outcome. Preoperative clinico-pathological parameters and imaging biomarkers representing airway walls' thickness, severity of emphysema, total lung volume, and pulmonary vessel volume were measured quantitatively in chest CT by an automated segmentation software, AVIEW COPD. Pi1 was defined as the first percentile along the histogram of lung attenuation that represents the degree of emphysema. Wafw was defined as the airway thickness, which was calculated by the full-width at half-maximum method. Logistic and linear regressions were used to assess these variables. If the actual postoperative FEV1 was higher than the postoperative FEV1 projected by a formula, the group was considered to be preserved. Among the 79 patients, 16 of the patients were grouped as a non-preserved group, and 63 of them were grouped as a preserved group. The patients in the preserved FEV1 group had a higher vessel volume than the non-preserved group. Pi1 and Wafw were independent predictors of postoperative lung function. Imaging biomarkers can be considered significant variables in predicting postoperative lung function in patients with lung cancer.
Collapse
Affiliation(s)
- Oh-Beom Kwon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.-B.K.); (J.-Y.C.); (J.-W.K.); (S.-H.L.)
- Department of Internal Medicine, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea
| | - Hae-Ung Lee
- Coreline Soft Co., Ltd., Seoul 03991, Republic of Korea; (H.-U.L.); (H.-E.P.)
| | - Ha-Eun Park
- Coreline Soft Co., Ltd., Seoul 03991, Republic of Korea; (H.-U.L.); (H.-E.P.)
| | - Joon-Young Choi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.-B.K.); (J.-Y.C.); (J.-W.K.); (S.-H.L.)
| | - Jin-Woo Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.-B.K.); (J.-Y.C.); (J.-W.K.); (S.-H.L.)
| | - Sang-Haak Lee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.-B.K.); (J.-Y.C.); (J.-W.K.); (S.-H.L.)
| | - Chang-Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (O.-B.K.); (J.-Y.C.); (J.-W.K.); (S.-H.L.)
| |
Collapse
|
14
|
Choe J, Choi HY, Lee SM, Oh SY, Hwang HJ, Kim N, Yun J, Lee JS, Oh YM, Yu D, Kim B, Seo JB. Evaluation of retrieval accuracy and visual similarity in content-based image retrieval of chest CT for obstructive lung disease. Sci Rep 2024; 14:4587. [PMID: 38403628 PMCID: PMC10894863 DOI: 10.1038/s41598-024-54954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 02/19/2024] [Indexed: 02/27/2024] Open
Abstract
The aim of our study was to assess the performance of content-based image retrieval (CBIR) for similar chest computed tomography (CT) in obstructive lung disease. This retrospective study included patients with obstructive lung disease who underwent volumetric chest CT scans. The CBIR database included 600 chest CT scans from 541 patients. To assess the system performance, follow-up chest CT scans of 50 patients were evaluated as query cases, which showed the stability of the CT findings between baseline and follow-up chest CT, as confirmed by thoracic radiologists. The CBIR system retrieved the top five similar CT scans for each query case from the database by quantifying and comparing emphysema extent and size, airway wall thickness, and peripheral pulmonary vasculatures in descending order from the database. The rates of retrieval of the same pairs of query CT scans in the top 1-5 retrievals were assessed. Two expert chest radiologists evaluated the visual similarities between the query and retrieved CT scans using a five-point scale grading system. The rates of retrieving the same pairs of query CTs were 60.0% (30/50) and 68.0% (34/50) for top-three and top-five retrievals. Radiologists rated 64.8% (95% confidence interval 58.8-70.4) of the retrieved CT scans with a visual similarity score of four or five and at least one case scored five points in 74% (74/100) of all query cases. The proposed CBIR system for obstructive lung disease integrating quantitative CT measures demonstrated potential for retrieving chest CT scans with similar imaging phenotypes. Further refinement and validation in this field would be valuable.
Collapse
Affiliation(s)
- Jooae Choe
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
| | - Hye Young Choi
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
- Department of Radiology, Kyung Hee University Hospital at Gangdong, College of Medicine Kyung, Hee University, Seoul, Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea.
| | - Sang Young Oh
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
| | - Hye Jeon Hwang
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
| | - Namkug Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
- Department of Convergence Medicine, Biomedical Engineering Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jihye Yun
- Department of Convergence Medicine, Biomedical Engineering Research Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Seung Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 86 Asanbyeongwon-Gil, Songpa-Gu, 05505, Seoul, Korea
| |
Collapse
|
15
|
Ross JC, San José Estépar R, Ash S, Pistenmaa C, Han M, Bhatt SP, Bodduluri S, Sparrow D, Charbonnier JP, Washko GR, Diaz AA. Dysanapsis is differentially related to lung function trajectories with distinct structural and functional patterns in COPD and variable risk for adverse outcomes. EClinicalMedicine 2024; 68:102408. [PMID: 38273887 PMCID: PMC10809101 DOI: 10.1016/j.eclinm.2023.102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Background Abnormal lung function trajectories are associated with increased risk of chronic obstructive pulmonary disease (COPD) and premature mortality; several risk factors for following these trajectories have been identified. Airway under-sizing dysanapsis (small airway lumens relative to lung size), is associated with an increased risk for COPD. The relationship between dysanapsis and lung function trajectories at risk for adverse outcomes of COPD is largely unexplored. We test the hypothesis that dysanapsis differentially affects distinct lung function trajectories associated with adverse outcomes of COPD. Methods To identify lung function trajectories, we applied Bayesian trajectory analysis to longitudinal FEV1 and FVC Z-scores in the COPDGene Study, an ongoing longitudinal study that collected baseline data from 2007 to 2012. To ensure clinical relevance, we selected trajectories based on risk stratification for all-cause mortality and prospective exacerbations of COPD (ECOPD). Dysanapsis was measured in baseline COPDGene CT scans as the airway lumen-to-lung volume (a/l) ratio. We compared a/l ratios between trajectories and evaluated their association with trajectory assignment, controlling for previously identified risk factors. We also assigned COPDGene participants for whom only baseline data is available to their most likely trajectory and repeated our analysis to further evaluate the relationship between trajectory assignment and a/l ratio measures. Findings We identified seven trajectories: supranormal, reference, and five trajectories at increased risk for mortality and exacerbations. Three at-risk trajectories are characterized by varying degrees of concomitant FEV1 and FVC impairments and exhibit airway predominant COPD patterns as assessed by quantitative CT imaging. These trajectories have lower a/l ratio values and increased risk for mortality and ECOPD compared to the reference trajectory. Two at-risk trajectories are characterized by disparate levels of FEV1 and FVC impairment and exhibit mixed airway and emphysema COPD patterns on quantitative CT imaging. These trajectories have markedly lower a/l ratio values compared to both the reference trajectory and airway-predominant trajectories and are at greater risk for mortality and ECOPD compared to the airway-predominant trajectories. These findings were observed among the participants with baseline-only data as well. Interpretation The degree of dysanapsis appears to portend patterns of progression leading to COPD. Assignment of individuals-including those without spirometric obstruction-to distinct trajectories is possible in a clinical setting and may influence management strategies. Strategies that combine CT-assessed dysanapsis together with spirometric measures of lung function and smoke exposure assessment are likely to further improve trajectory assignment accuracy, thereby improving early detection of those most at risk for adverse outcomes. Funding United States National Institute of Health, COPD Foundation, and Brigham and Women's Hospital.
Collapse
Affiliation(s)
- James C. Ross
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raul San José Estépar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sam Ash
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carrie Pistenmaa
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - MeiLan Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine; University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sandeep Bodduluri
- Division of Pulmonary, Allergy and Critical Care Medicine; University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Sparrow
- VA Normative Aging Study, Veterans Affairs Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | | | - George R. Washko
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandro A. Diaz
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Ortiz-Puerta D, Diaz O, Retamal J, Hurtado DE. Morphometric analysis of airways in pre-COPD and mild COPD lungs using continuous surface representations of the bronchial lumen. Front Bioeng Biotechnol 2023; 11:1271760. [PMID: 38192638 PMCID: PMC10773673 DOI: 10.3389/fbioe.2023.1271760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Introduction: Chronic Obstructive Pulmonary Disease (COPD) is a prevalent respiratory disease that presents a high rate of underdiagnosis during onset and early stages. Studies have shown that in mild COPD patients, remodeling of the small airways occurs concurrently with morphological changes in the proximal airways. Despite this evidence, the geometrical study of the airway tree from computed tomography (CT) lung images remains underexplored due to poor representations and limited tools to characterize the airway structure. Methods: We perform a comprehensive morphometric study of the proximal airways based on geometrical measures associated with the different airway generations. To this end, we leverage the geometric flexibility of the Snakes IsoGeometric Analysis method to accurately represent and characterize the airway luminal surface and volume informed by CT images of the respiratory tree. Based on this framework, we study the airway geometry of smoking pre-COPD and mild COPD individuals. Results: Our results show a significant difference between groups in airway volume, length, luminal eccentricity, minimum radius, and surface-area-to-volume ratio in the most distal airways. Discussion: Our findings suggest a higher degree of airway narrowing and collapse in COPD patients when compared to pre-COPD patients. We envision that our work has the potential to deliver a comprehensive tool for assessing morphological changes in airway geometry that take place in the early stages of COPD.
Collapse
Affiliation(s)
- David Ortiz-Puerta
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando Diaz
- Department of Intensive Care Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Retamal
- Department of Intensive Care Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel E. Hurtado
- Department of Structural and Geotechnical Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Ji Y, Chen L, Yang J, Yang X, Yang F. Quantitative assessment of airway wall thickness in COPD patients with interstitial lung abnormalities. Front Med (Lausanne) 2023; 10:1280651. [PMID: 38146423 PMCID: PMC10749311 DOI: 10.3389/fmed.2023.1280651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/24/2023] [Indexed: 12/27/2023] Open
Abstract
Background Whether the airway is involved in the pathogenesis of interstitial lung abnormalities (ILA) is not well understood. Also the impact of ILA on lung function in COPD patients remains controversial. We aimed to assess the quantitative CT measurements of airway wall thickness (AWT) and lung function according to ILA status in COPD patients. Methods 157 COPD patients discharged from our hospital from August 1, 2019 through August 31, 2022 who underwent chest CT imagings and pulmonary function tests were retrospectively enrolled. Linear regression analysis and multiple models were used to analyze associations between quantitative assessment of airway wall changes and the presence of ILA. Results In 157 COPD patients, 23 patients (14.6%) had equivocal ILA, 42 patients (26.8%) had definite ILA. The definite ILA group had the highest measurements of Pi10 (square root of theoretical airway wall area with a lumen perimeter of 10 mm), segmental AWT and segmental WA% (percentage of wall area), whereas the no ILA group had the lowest measurements of Pi10, segmental AWT and segmental WA%. In the adjusted analyses (adjusted by age, sex, body mass index, smoking intensity, COPD GOLD stage, lung function, slice thickness and scanner type), compared to COPD patients without ILA, the measurements of Pi10, segmental AWT and segmental WA% were higher in definite ILA group with differences of 0.225 mm (p = 0.012), 0.152 mm (p < 0.001), 4.8% (p < 0.001) respectively. COPD patients with definite ILA tended to have higher FEV1% predicted, FVC% predicted and lower MMEF75/25% predicted, but there were no statistically differences among the three groups. Conclusion Our study demonstrates the higher AWT measures in COPD patients with ILA compared to the patients without ILA. These findings suggest that the airway may be involved in the pathogenesis of ILA.
Collapse
Affiliation(s)
- Yingying Ji
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Leqing Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jinrong Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiangying Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
18
|
Mettler SK, Nath HP, Grumley S, Orejas JL, Dolliver WR, Nardelli P, Yen AC, Kligerman SJ, Jacobs K, Manapragada PP, Abozeed M, Aziz MU, Zahid M, Ahmed AN, Terry NL, Elalami R, Estépar RSJ, Sonavane S, Billatos E, Wang W, Estépar RSJ, Richards JB, Cho MH, Diaz AA. Silent Airway Mucus Plugs in COPD and Clinical Implications. Chest 2023:S0012-3692(23)05825-7. [PMID: 38013161 DOI: 10.1016/j.chest.2023.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Airway mucus plugs are frequently identified on CT scans of patients with COPD with a smoking history without mucus-related symptoms (ie, cough, phlegm [silent mucus plugs]). RESEARCH QUESTION In patients with COPD, what are the risk and protective factors associated with silent airway mucus plugs? Are silent mucus plugs associated with functional, structural, and clinical measures of disease? STUDY DESIGN AND METHODS We identified mucus plugs on chest CT scans of participants with COPD from the COPDGene study. The mucus plug score was defined as the number of pulmonary segments with mucus plugs, ranging from 0 to 18, and categorized into three groups (0, 1-2, and ≥ 3). We determined risk and protective factors for silent mucus plugs and the associations of silent mucus plugs with measures of disease severity using multivariable linear and logistic regression models. RESULTS Of 4,363 participants with COPD, 1,739 had no cough or phlegm. Among the 1,739 participants, 627 (36%) had airway mucus plugs identified on CT scan. Risk factors of silent mucus plugs (compared with symptomatic mucus plugs) were older age (OR, 1.02), female sex (OR, 1.40), and Black race (OR, 1.93) (all P values < .01). Among those without cough or phlegm, silent mucus plugs (vs absence of mucus plugs) were associated with worse 6-min walk distance, worse resting arterial oxygen saturation, worse FEV1 % predicted, greater emphysema, thicker airway walls, and higher odds of severe exacerbation in the past year in adjusted models. INTERPRETATION Mucus plugs are common in patients with COPD without mucus-related symptoms. Silent mucus plugs are associated with worse functional, structural, and clinical measures of disease. CT scan-identified mucus plugs can complement the evaluation of patients with COPD.
Collapse
Affiliation(s)
- Sofia K Mettler
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Hrudaya P Nath
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Scott Grumley
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - José L Orejas
- Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Wojciech R Dolliver
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Pietro Nardelli
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Andrew C Yen
- Department of Radiology, University of California San Diego, San Diego, CA
| | | | - Kathleen Jacobs
- Department of Radiology, University of California San Diego, San Diego, CA
| | - Padma P Manapragada
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mostafa Abozeed
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Muhammad Usman Aziz
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mohd Zahid
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Asmaa N Ahmed
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Nina L Terry
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Rim Elalami
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Ruben San José Estépar
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | - Ehab Billatos
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, MA
| | - Raúl San José Estépar
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Jeremy B Richards
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA; Harvard Medical School, Boston, MA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Alejandro A Diaz
- Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
19
|
Iwasawa T, Matsushita S, Hirayama M, Baba T, Ogura T. Quantitative Analysis for Lung Disease on Thin-Section CT. Diagnostics (Basel) 2023; 13:2988. [PMID: 37761355 PMCID: PMC10528918 DOI: 10.3390/diagnostics13182988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Thin-section computed tomography (CT) is widely employed not only for assessing morphology but also for evaluating respiratory function. Three-dimensional images obtained from thin-section CT provide precise measurements of lung, airway, and vessel volumes. These volumetric indices are correlated with traditional pulmonary function tests (PFT). CT also generates lung histograms. The volume ratio of areas with low and high attenuation correlates with PFT results. These quantitative image analyses have been utilized to investigate the early stages and disease progression of diffuse lung diseases, leading to the development of novel concepts such as pre-chronic obstructive pulmonary disease (pre-COPD) and interstitial lung abnormalities. Quantitative analysis proved particularly valuable during the COVID-19 pandemic when clinical evaluations were limited. In this review, we introduce CT analysis methods and explore their clinical applications in the context of various lung diseases. We also highlight technological advances, including images with matrices of 1024 × 1024 and slice thicknesses of 0.25 mm, which enhance the accuracy of these analyses.
Collapse
Affiliation(s)
- Tae Iwasawa
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Shoichiro Matsushita
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Mariko Hirayama
- Department of Radiology, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (S.M.); (M.H.)
| | - Tomohisa Baba
- Department of Respiratory Medicine, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (T.B.); (T.O.)
| | - Takashi Ogura
- Department of Respiratory Medicine, Kanagawa Cardiovascular & Respiratory Center, 6-16-1 Tomioka-higashi, Kanazawa-ku, Yokohama 236-0051, Japan; (T.B.); (T.O.)
| |
Collapse
|
20
|
Yamazaki A, Kinose D, Kawashima S, Tsunoda Y, Matsuo Y, Uchida Y, Nakagawa H, Yamaguchi M, Ogawa E, Nakano Y. Predictors of longitudinal changes in body weight, muscle and fat in patients with and ever-smokers at risk of COPD. Respirology 2023; 28:851-859. [PMID: 37364930 DOI: 10.1111/resp.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND AND OBJECTIVE Weight and muscle loss are predictors of poor outcomes in chronic obstructive pulmonary disease. However, to our knowledge, no study has investigated the predictors of longitudinal weight loss or its composition from functional and morphological perspectives. METHODS This longitudinal observational study with a median follow-up period of 5 years (range: 3.0-5.8 years) included patients with COPD and ever-smokers at risk of COPD. Using chest computed tomography (CT) images, airway and emphysematous lesions were assessed as the square root of the wall area of a hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10) and the percentage of low attenuation volume (LAV%). Muscle mass was estimated using cross-sectional areas (CSAs) of the pectoralis and erector spinae muscles, and fat mass was estimated using the subcutaneous fat thickness at the level of the 8th rib measured using chest CT images. Statistical analyses were performed using the linear mixed-effects models. RESULTS In total, 114 patients were enrolled. Their body mass index remained stable during the study period while body weight and muscle CSA decreased over time and the subcutaneous fat thickness increased. Reduced forced expiratory volume in 1 s and peak expiratory flow (PEF) at baseline predicted the future decline in muscle CSA. CONCLUSION Severe airflow limitation predicted future muscle wasting in patients with COPD and ever-smokers at risk of COPD. Airflow limitation with a PEF slightly below 90% of the predicted value may require intervention to prevent future muscle loss.
Collapse
Affiliation(s)
- Akio Yamazaki
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Satoru Kawashima
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yoko Tsunoda
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yumiko Matsuo
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasuki Uchida
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Emiko Ogawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
21
|
Zeng S, Luo G, Lynch DA, Bowler RP, Arjomandi M. Lung volumes differentiate the predominance of emphysema versus airway disease phenotype in early COPD: an observational study of the COPDGene cohort. ERJ Open Res 2023; 9:00289-2023. [PMID: 37727675 PMCID: PMC10505951 DOI: 10.1183/23120541.00289-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/19/2023] [Indexed: 09/21/2023] Open
Abstract
Rationale Lung volumes identify the "susceptible smokers" who progress to develop spirometric COPD. However, among susceptible smokers, development of spirometric COPD seems to be heterogeneous, suggesting the presence of different pathological mechanisms during early establishment of spirometric COPD. The objective of the present study was to determine the differential patterns of radiographic pathologies among susceptible smokers. Methods We categorised smokers with preserved spirometry (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 0) in the Genetic Epidemiology of COPD (COPDGene) cohort based on tertiles (low, intermediate and high) of lung volumes (either total lung capacity (TLC), functional residual capacity FRC or FRC/TLC) at baseline visit. We then examined the differential patterns of change in spirometry and the associated prevalence of computed tomography measured pathologies of emphysema and airway disease with those categories of lung volumes. Results The pattern of spirometric change differed when participants were categorised by TLC versus FRC/TLC: those in the high TLC tertile showed stable forced expiratory volume in 1 s (FEV1), but enlarging forced vital capacity (FVC), while those in the high FRC/TLC tertile showed decline in both FEV1 and FVC. When participants from the high TLC and high FRC/TLC tertiles were partitioned into mutually exclusive groups, compared to those with high TLC, those with high FRC/TLC had lesser emphysema, but greater air trapping, more self-reported respiratory symptoms and exacerbation episodes and higher likelihood of progressing to more severe spirometric disease (GOLD stages 2-4 versus GOLD stage 1). Conclusions Lung volumes identify distinct physiological and radiographic phenotypes in early disease among susceptible smokers and predict the rate of spirometric disease progression and the severity of symptoms in early COPD.
Collapse
Affiliation(s)
- Siyang Zeng
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
- Medical Service, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Gang Luo
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, WA, USA
| | | | | | - Mehrdad Arjomandi
- Medical Service, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
22
|
Labaki WW, Gu T, Murray S, Curtis JL, Wells JM, Bhatt SP, Bon J, Diaz AA, Hersh CP, Wan ES, Kim V, Beaty TH, Hokanson JE, Bowler RP, Arenberg DA, Kazerooni EA, Martinez FJ, Silverman EK, Crapo JD, Make BJ, Regan EA, Han MK. Causes of and Clinical Features Associated with Death in Tobacco Cigarette Users by Lung Function Impairment. Am J Respir Crit Care Med 2023; 208:451-460. [PMID: 37159910 PMCID: PMC10449063 DOI: 10.1164/rccm.202210-1887oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/08/2023] [Indexed: 05/11/2023] Open
Abstract
Rationale: Cigarette smoking contributes to the risk of death through different mechanisms. Objectives: To determine how causes of and clinical features associated with death vary in tobacco cigarette users by lung function impairment. Methods: We stratified current and former tobacco cigarette users enrolled in Genetic Epidemiology of Chronic Obstructive Pulmonary Disease (COPDGene) into normal spirometry, PRISm (Preserved Ratio Impaired Spirometry), Global Initiative for Chronic Obstructive Lung Disease (GOLD) 1-2 COPD, and GOLD 3-4 COPD. Deaths were identified via longitudinal follow-up and Social Security Death Index search. Causes of death were adjudicated after a review of death certificates, medical records, and next-of-kin interviews. We tested associations between baseline clinical variables and all-cause mortality using multivariable Cox proportional hazards models. Measurements and Main Results: Over a 10.1-year median follow-up, 2,200 deaths occurred among 10,132 participants (age 59.5 ± 9.0 yr; 46.6% women). Death from cardiovascular disease was most frequent in PRISm (31% of deaths). Lung cancer deaths were most frequent in GOLD 1-2 (18% of deaths vs. 9-11% in other groups). Respiratory deaths outpaced competing causes of death in GOLD 3-4, particularly when BODE index ⩾7. St. George's Respiratory Questionnaire score ⩾25 was associated with higher mortality in all groups: Hazard ratio (HR), 1.48 (1.20-1.84) normal spirometry; HR, 1.40 (1.05-1.87) PRISm; HR, 1.80 (1.49-2.17) GOLD 1-2; HR, 1.65 (1.26-2.17) GOLD 3-4. History of respiratory exacerbations was associated with higher mortality in GOLD 1-2 and GOLD 3-4, quantitative emphysema in GOLD 1-2, and airway wall thickness in PRISm and GOLD 3-4. Conclusions: Leading causes of death vary by lung function impairment in tobacco cigarette users. Worse respiratory-related quality of life is associated with all-cause mortality regardless of lung function.
Collapse
Affiliation(s)
| | - Tian Gu
- Department of Biostatistics, T.H. Chan School of Public Health
| | | | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine
- Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - J. Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jessica Bon
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Medical Service, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | | | - Craig P. Hersh
- Division of Pulmonary and Critical Care Medicine, and
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Emily S. Wan
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
- Veterans Affairs Boston Healthcare System, Boston, Massachusetts
| | - Victor Kim
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Terri H. Beaty
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - John E. Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | | | - Ella A. Kazerooni
- Division of Pulmonary and Critical Care Medicine
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - Fernando J. Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Edwin K. Silverman
- Division of Pulmonary and Critical Care Medicine, and
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | - James D. Crapo
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | - Barry J. Make
- Division of Pulmonary, Critical Care and Sleep Medicine and
| | | | | |
Collapse
|
23
|
Konietzke P, Brunner C, Konietzke M, Wagner WL, Weinheimer O, Heußel CP, Herth FJF, Trudzinski F, Kauczor HU, Wielpütz MO. GOLD stage-specific phenotyping of emphysema and airway disease using quantitative computed tomography. Front Med (Lausanne) 2023; 10:1184784. [PMID: 37534319 PMCID: PMC10393128 DOI: 10.3389/fmed.2023.1184784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
Background In chronic obstructive pulmonary disease (COPD) abnormal lung function is related to emphysema and airway obstruction, but their relative contribution in each GOLD-stage is not fully understood. In this study, we used quantitative computed tomography (QCT) parameters for phenotyping of emphysema and airway abnormalities, and to investigate the relative contribution of QCT emphysema and airway parameters to airflow limitation specifically in each GOLD stage. Methods Non-contrast computed tomography (CT) of 492 patients with COPD former GOLD 0 COPD and COPD stages GOLD 1-4 were evaluated using fully automated software for quantitative CT. Total lung volume (TLV), emphysema index (EI), mean lung density (MLD), and airway wall thickness (WT), total diameter (TD), lumen area (LA), and wall percentage (WP) were calculated for the entire lung, as well as for all lung lobes separately. Results from the 3rd-8th airway generation were aggregated (WT3-8, TD3-8, LA3-8, WP3-8). All subjects underwent whole-body plethysmography (FEV1%pred, VC, RV, TLC). Results EI was higher with increasing GOLD stages with 1.0 ± 1.8% in GOLD 0, 4.5 ± 9.9% in GOLD 1, 19.4 ± 15.8% in GOLD 2, 32.7 ± 13.4% in GOLD 3 and 41.4 ± 10.0% in GOLD 4 subjects (p < 0.001). WP3-8 showed no essential differences between GOLD 0 and GOLD 1, tended to be higher in GOLD 2 with 52.4 ± 7.2%, and was lower in GOLD 4 with 50.6 ± 5.9% (p = 0.010 - p = 0.960). In the upper lobes WP3-8 showed no significant differences between the GOLD stages (p = 0.824), while in the lower lobes the lowest WP3-8 was found in GOLD 0/1 with 49.9 ± 6.5%, while higher values were detected in GOLD 2 with 51.9 ± 6.4% and in GOLD 3/4 with 51.0 ± 6.0% (p < 0.05). In a multilinear regression analysis, the dependent variable FEV1%pred can be predicted by a combination of both the independent variables EI (p < 0.001) and WP3-8 (p < 0.001). Conclusion QCT parameters showed a significant increase of emphysema from GOLD 0-4 COPD. Airway changes showed a different spatial pattern with higher values of relative wall thickness in the lower lobes until GOLD 2 and subsequent lower values in GOLD3/4, whereas there were no significant differences in the upper lobes. Both, EI and WP5-8 are independently correlated with lung function decline.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Christian Brunner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Marilisa Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Willi Linus Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Claus Peter Heußel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix J. F. Herth
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pulmonology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Franziska Trudzinski
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Pulmonology, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark Oliver Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Matsuo Y, Ogawa E, Tsunoda Y, Yamazaki A, Kawashima S, Uchida Y, Nakagawa H, Kinose D, Yamaguchi M, Nakano Y. Inspiratory and Expiratory Computed Tomography Imaging Clusters Reflect Functional Characteristics in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:1047-1055. [PMID: 37304764 PMCID: PMC10257425 DOI: 10.2147/copd.s405845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023] Open
Abstract
Purpose Disease probability measure (DPM) is a useful voxel-wise imaging assessment of gas-trapping and emphysematous lesions in patients with chronic obstructive pulmonary disease (COPD). To elucidate the progression of COPD, we performed a cluster analysis using the following DPM parameters: normal (DPMNormal), gas-trapping (DPMGasTrap), and emphysematous lesions (DPMEmph). Our findings revealed the characteristics of each cluster and the 3-year disease progression using imaging parameters. Patients and Methods Inspiratory and expiratory chest computed tomography (CT) images of 131 patients with COPD were examined, of which 84 were followed up for 3 years. The percentage of low attenuation volume (LAV%) and the square root of the wall area of a hypothetical airway with an internal perimeter of 10 mm (√Aaw at Pi10) were quantitatively measured using inspiratory chest CT. A hierarchical cluster analysis was performed using the DPM parameters at baseline. Five clusters were named according to the dominant DPM parameters: normal (NL), normal-GasTrap (NL-GT), GasTrap (GT), GasTrap-Emphysema (GT-EM), and Emphysema (EM). Results Women were predominantly diagnosed with GT. Forced expiratory volume in 1 s gradually decreased in the following order: NL, NL-GT, GT, GT-EM, and EM. DPMEmph correlated well with LAV%. Four clusters other than NL showed significantly higher values of √Aaw at Pi10 than NL; however, no significant differences were observed among them. In all clusters, DPMEmph increased after 3 years. DPMNormal only increased in the GT cluster. Conclusion Clusters using DPM parameters may reflect the characteristics of COPD and help understand the pathophysiology of the disease.
Collapse
Affiliation(s)
- Yumiko Matsuo
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Emiko Ogawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
- Health Administration Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yoko Tsunoda
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Akio Yamazaki
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Satoru Kawashima
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasuki Uchida
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Daisuke Kinose
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Masafumi Yamaguchi
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
25
|
Wang JM, Labaki WW, Murray S, Martinez FJ, Curtis JL, Hoffman EA, Ram S, Bell AJ, Galban CJ, Han MK, Hatt C. Machine learning for screening of at-risk, mild and moderate COPD patients at risk of FEV 1 decline: results from COPDGene and SPIROMICS. Front Physiol 2023; 14:1144192. [PMID: 37153221 PMCID: PMC10161244 DOI: 10.3389/fphys.2023.1144192] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose: The purpose of this study was to train and validate machine learning models for predicting rapid decline of forced expiratory volume in 1 s (FEV1) in individuals with a smoking history at-risk-for chronic obstructive pulmonary disease (COPD), Global Initiative for Chronic Obstructive Lung Disease (GOLD 0), or with mild-to-moderate (GOLD 1-2) COPD. We trained multiple models to predict rapid FEV1 decline using demographic, clinical and radiologic biomarker data. Training and internal validation data were obtained from the COPDGene study and prediction models were validated against the SPIROMICS cohort. Methods: We used GOLD 0-2 participants (n = 3,821) from COPDGene (60.0 ± 8.8 years, 49.9% male) for variable selection and model training. Accelerated lung function decline was defined as a mean drop in FEV1% predicted of > 1.5%/year at 5-year follow-up. We built logistic regression models predicting accelerated decline based on 22 chest CT imaging biomarker, pulmonary function, symptom, and demographic features. Models were validated using n = 885 SPIROMICS subjects (63.6 ± 8.6 years, 47.8% male). Results: The most important variables for predicting FEV1 decline in GOLD 0 participants were bronchodilator responsiveness (BDR), post bronchodilator FEV1% predicted (FEV1.pp.post), and CT-derived expiratory lung volume; among GOLD 1 and 2 subjects, they were BDR, age, and PRMlower lobes fSAD. In the validation cohort, GOLD 0 and GOLD 1-2 full variable models had significant predictive performance with AUCs of 0.620 ± 0.081 (p = 0.041) and 0.640 ± 0.059 (p < 0.001). Subjects with higher model-derived risk scores had significantly greater odds of FEV1 decline than those with lower scores. Conclusion: Predicting FEV1 decline in at-risk patients remains challenging but a combination of clinical, physiologic and imaging variables provided the best performance across two COPD cohorts.
Collapse
Affiliation(s)
- Jennifer M. Wang
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Susan Murray
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | | | - Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, United States
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Sundaresh Ram
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Alexander J. Bell
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - Craig J. Galban
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Charles Hatt
- Department of Radiology, University of Michigan, Ann Arbor, MI, United States
- Imbio Inc., Minneapolis, MN, United States
| |
Collapse
|
26
|
Nardelli P, San José Estépar R, Vegas Sanchez-Ferrero G, San José Estépar R. QUANTITATIVE BIOMARKERS REPRODUCIBILITY USING GENERATIVE ADVERSARIAL APPROACHES IN REDUCED TO CONVENTIONAL DOSE CT. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023:10.1109/isbi53787.2023.10230808. [PMID: 39070981 PMCID: PMC11282167 DOI: 10.1109/isbi53787.2023.10230808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In recent years, several techniques for image-to-image translation by means of generative adversarial neural networks (GAN) have been proposed to learn mapping characteristics between a source and a target domain. In particular, in the medical imaging field conditional GAN frameworks with paired samples (cGAN) and unconditional cycle-consistent GANs with unpaired data (CycleGAN) have been demonstrated as a powerful scheme to model non-linear mappings that produce realistic target images from different modality sources. When proposing the usage and adaptation of these frameworks for medical image synthesis, quantitative and qualitative validation are usually performed by assessing the similarity between synthetic and target images in terms of metrics such as mean absolute error (MAE) or structural similarity (SSIM) index. However, an evaluation of clinically relevant markers showing that diagnostic information is not overlooked in the translation process is often missing. In this work, we aim at demonstrating the importance of validating medical image-to-image translation techniques by assessing their effect on the measurement of clinically relevant metrics and biomarkers. We implemented both a conditional and an unconditional approach to synthesize conventional dose chest CT scans from reduced dose CT and show that while both visually and in terms of traditional metrics the network appears to successfully minimize perceptual discrepancies, these methods are not reliable to systematically reproduce quantitative measurements of various chest biomarkers.
Collapse
Affiliation(s)
- Pietro Nardelli
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rubén San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Raúl San José Estépar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Yang Y, Ge H, Lu J, Huang X, Wang K, Jin L, Qi L, Li M. Structural features on quantitative chest computed tomography of patients with maximal mid-expiratory flow impairment in a normal lung function population. BMC Pulm Med 2023; 23:86. [PMID: 36922831 PMCID: PMC10015933 DOI: 10.1186/s12890-023-02380-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND Maximal mid-expiratory flow (MMEF) is an earlier predictor of chronic obstructive pulmonary disease (COPD) development than forced expiratory volume in 1 s (FEV1). Changes of lung structure in patients with MMEF impairment only is still not clear. Therefore, this study aimed to investigate the structural features of patients with decreased MMEF by quantitative computed tomography (QCT) and develop a predictive model for predicting patients with reduced MMEF in normal lung function population. METHODS In this study, 131 patients with normal spirometry results and available volumetric chest CT images were enrolled and divided into the reduced MMEF group (FEV1/forced expiratory vital capacity (FEV1/FVC) > 0.7, FEV1% predictive values (FEV1%pred) > 80%, MMEF%pred < 80%, n = 52) and the normal MMEF group (FEV1/FVC > 0.7, FEV1%pred > 80%, MMEF%pred ≥ 80%, n = 79). The emphysema, small airway disease and medium-size airway parameters were measured by a commercial software. The differences were investigated in clinical features, spirometrical parameters and QCT parameters between the two groups. A nomogram model was constructed based on the results of the multivariable logistic regression model. Spearman's correlation coefficients were calculated between QCT measurements and spirometrical parameters. RESULTS There were more males in reduced MMEF group than normal group (P < 0.05). Lung parenchyma parameter (PRMEmph) and airway-related parameters (functional small airway disease (PRMfSAD), luminal area of fifth- and sixth- generation airway (LA5, LA6) were significantly different between the reduced MMEF group and the normal group (20.2 ± 17.4 vs 9.4 ± 6.7, 3.4 ± 3.5 vs 1.9 ± 2.0, 12.2 ± 2.5 vs 13.7 ± 3.4, 7.7 ± 2.4 vs 8.9 ± 2.8, respectively, all P < 0.01). After multivariable logistical regression, only sex (odds ratio [OR]: 2.777; 95% confidence interval [CI]:1.123-3.867), PRMfSAD (OR:1.102, 95%CI:1.045-1.162) and LA6 (OR:0.650, 95%CI:0.528-0.799) had significant differences between the two groups (P < 0.05) and a model incorporating with the three indicators was constructed (area under curve, 0.836). Correlation analysis showed MMEF%pred had mild to moderate correlation with airway-related measurements. CONCLUSION In normal lung function population, patients with reduced MMEF have potential medium-size and small airway changes, and MMEF%pred is significantly associated with airway-related CT parameters. The nomogram incorporating with sex, PRMfSAD and LA6 has good predictive value and offers more objective evidences in a group with reduced MMEF.
Collapse
Affiliation(s)
- Yuling Yang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Haiyan Ge
- Department of Respiratory Medicine, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Jinjuan Lu
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Xuemei Huang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Kun Wang
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Liang Jin
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China
| | - Lin Qi
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China.
| | - Ming Li
- Department of Radiology, Huadong Hospital Affiliated With Fudan University, No. 221 West Yanan Road, Shanghai, 200040, China.
| |
Collapse
|
28
|
Pompe E, Kwee AK, Tejwani V, Siddharthan T, Mohamed Hoesein FA. Imaging-derived biomarkers in Asthma: Current status and future perspectives. Respir Med 2023; 208:107130. [PMID: 36702169 DOI: 10.1016/j.rmed.2023.107130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Asthma is a common disorder affecting around 315 million individuals worldwide. The heterogeneity of asthma is becoming increasingly important in the era of personalized treatment and response assessment. Several radiological imaging modalities are available in asthma including chest x-ray, computed tomography (CT) and magnetic resonance imaging (MRI) scanning. In addition to qualitative imaging, quantitative imaging could play an important role in asthma imaging to identify phenotypes with distinct disease course and response to therapy, including biologics. MRI in asthma is mainly performed in research settings given cost, technical challenges, and there is a need for standardization. Imaging analysis applications of artificial intelligence (AI) to subclassify asthma using image analysis have demonstrated initial feasibility, though additional work is necessary to inform the role of AI in clinical practice.
Collapse
Affiliation(s)
- Esther Pompe
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Anastasia Kal Kwee
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | | | - Trishul Siddharthan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami (TS), USA.
| | | |
Collapse
|
29
|
Horst C, Patel S, Nair A. Reporting and management of incidental lung findings on computed tomography: beyond lung nodules. Br J Radiol 2023; 96:20220207. [PMID: 36124681 PMCID: PMC9975526 DOI: 10.1259/bjr.20220207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/03/2022] [Accepted: 08/30/2022] [Indexed: 01/27/2023] Open
Abstract
Non-nodular incidental lung findings can broadly be categorised as airway- or airspace-related abnormalities and diffuse parenchymal abnormalities. Airway-related abnormalities include bronchial dilatation and thickening, foci of low attenuation, emphysema, and congenital variants. Diffuse parenchymal abnormalities relate to the spectrum of diffuse parenchymal lung diseases cover a spectrum from interstitial lung abnormalities (ILAs) and pulmonary cysts to established diffuse parenchymal lung abnormalities such as the idiopathic interstitial pneumonias and cystic lung diseases. In this review, we discuss the main manifestations of these incidental findings, paying attention to their prevalence and importance, descriptors to use when reporting, the limits of what can be considered "normal", and conclude each section with some pragmatic reporting recommendations. We also highlight technical and patient factors which can lead to spurious abnormalities.
Collapse
Affiliation(s)
- Carolyn Horst
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | | | - Arjun Nair
- University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Elicker BM. Chronic Obstructive Pulmonary Disease and Small Airways Diseases. Semin Respir Crit Care Med 2022; 43:825-838. [PMID: 36252610 DOI: 10.1055/s-0042-1755567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The small airways are a common target of injury within the lungs and may be affected by a wide variety of inhaled, systemic, and other disorders. Imaging is critical in the detection and diagnosis of small airways disease since significant injury may occur prior to pulmonary function tests showing abnormalities. The goal of this article is to describe the typical imaging findings and patterns of small airways diseases. An approach which divides the imaging appearances into four categories (tree-in-bud opacities, poorly defined centrilobular nodules, mosaic attenuation, and emphysema) will provide a framework in which to formulate appropriate and focused differential diagnoses.
Collapse
Affiliation(s)
- Brett M Elicker
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
31
|
Weikert T, Friebe L, Wilder-Smith A, Yang S, Sperl JI, Neumann D, Balachandran A, Bremerich J, Sauter AW. Automated quantification of airway wall thickness on chest CT using retina U-Nets - Performance evaluation and application to a large cohort of chest CTs of COPD patients. Eur J Radiol 2022; 155:110460. [PMID: 35963191 DOI: 10.1016/j.ejrad.2022.110460] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/17/2022] [Accepted: 07/31/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE Airway wall thickening is a consequence of chronic inflammatory processes and usually only qualitatively described in CT radiology reports. The purpose of this study is to automatically quantify airway wall thickness in multiple airway generations and assess the diagnostic potential of this parameter in a large cohort of patients with Chronic Obstructive Pulmonary Disease (COPD). MATERIALS AND METHODS This retrospective, single-center study included a series of unenhanced chest CTs. Inclusion criteria were the mentioning of an explicit COPD GOLD stage in the written radiology report and time period (01/2019-12/2021). A control group included chest CTs with completely unremarkable lungs according to the report. The DICOM images of all cases (axial orientation; slice-thickness: 1 mm; soft-tissue kernel) were processed by an AI algorithm pipeline consisting of (A) a 3D-U-Net for det detection and tracing of the bronchial tree centerlines (B) extraction of image patches perpendicular to the centerlines of the bronchi, and (C) a 2D U-Net for segmentation of airway walls on those patches. The performance of centerline detection and wall segmentation was assessed. The imaging parameter average wall thickness was calculated for bronchus generations 3-8 (AWT3-8) across the lungs. Mean AWT3-8 was compared between five groups (control, COPD Gold I-IV) using non-parametric statistics. Furthermore, the established emphysema score %LAV-950 was calculated and used to classify scans (normal vs. COPD) alone and in combination with AWT3-8. RESULTS: A total of 575 chest CTs were processed. Algorithm performance was very good (airway centerline detection sensitivity: 86.9%; airway wall segmentation Dice score: 0.86). AWT3-8 was statistically significantly greater in COPD patients compared to controls (2.03 vs. 1.87 mm, p < 0.001) and increased with COPD stage. The classifier that combined %LAV-950 and AWT3-8 was superior to the classifier using only %LAV-950 (AUC = 0.92 vs. 0.79). CONCLUSION Airway wall thickness increases in patients suffering from COPD and is automatically quantifiable. AWT3-8 could become a CT imaging parameter in COPD complementing the established emphysema biomarker %LAV-950. CLINICAL RELEVANCE STATEMENT Quantitative measurements considering the complete visible bronchial tree instead of qualitative description could enhance radiology reports, allow for precise monitoring of disease progression and diagnosis of early stages of disease.
Collapse
Affiliation(s)
- Thomas Weikert
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.
| | - Liene Friebe
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Adrian Wilder-Smith
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Shan Yang
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | | | - Dominik Neumann
- Siemens Healthineers, Henkestrasse 127, 91052 Erlangen, Germany
| | | | - Jens Bremerich
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| | - Alexander W Sauter
- Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland
| |
Collapse
|
32
|
Suzuki Y, Kitaguchi Y, Ueno F, Droma Y, Goto N, Kinjo T, Wada Y, Yasuo M, Hanaoka M. Associations Between Morphological Phenotypes of COPD and Clinical Characteristics in Surgically Resected Patients with COPD and Concomitant Lung Cancer. Int J Chron Obstruct Pulmon Dis 2022; 17:1443-1452. [PMID: 35761955 PMCID: PMC9233490 DOI: 10.2147/copd.s366265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/22/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The associations between morphological phenotypes of COPD based on the chest computed tomography (CT) findings and clinical characteristics in surgically resected patients with COPD and concomitant lung cancer are unclear. The purpose of this study was to clarify the differences in clinical characteristics and prognosis among morphological phenotypes based on the chest CT findings in these patients. Patients and Methods We retrospectively reviewed the medical records of 132 patients with COPD and concomitant lung cancer who had undergone pulmonary resection for primary lung cancer. According to the presence of emphysema and bronchial wall thickness on chest CT, patients were classified into three phenotypes: non-emphysema phenotype, emphysema phenotype, or mixed phenotype. Results The mixed phenotype was associated with poorer performance status, higher score on the modified British Medical Research Council (mMRC) dyspnea scale, higher residual volume in pulmonary function, and higher proportion of squamous cell carcinoma than the other phenotypes. Univariate and multivariate Cox proportional hazards regression analyses showed that the extent of emphysema on chest CT, presented as a low attenuation area (LAA) score, was an independent determinant that predicted prognosis. In the Kaplan-Meier analysis, the Log rank test showed significant differences in survival between the non-emphysema and mixed phenotypes, and between the emphysema and mixed phenotypes. Conclusion The cross-sectional pre-operative LAA score can predict the prognosis in surgically resected patients with COPD and concomitant lung cancer. The COPD phenotype with both emphysema and bronchial wall thickness on chest CT was associated with poorer performance status, greater extent of dyspnea, greater impairment of pulmonary function, and worse prognosis.
Collapse
Affiliation(s)
- Yusuke Suzuki
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yoshiaki Kitaguchi
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Fumika Ueno
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yunden Droma
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Norihiko Goto
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Takumi Kinjo
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Yosuke Wada
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Masanori Yasuo
- Departments of Clinical Laboratory Sciences, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| |
Collapse
|
33
|
Guo F, Huang J, Hu Y, Qiu J, Zhang H, Zhang W, Cheng Y, Liao J, Wang G. Clinical outcomes and quantitative CT analysis after bronchoscopic lung volume reduction using valves for advanced emphysema. J Thorac Dis 2022; 14:1922-1932. [PMID: 35813714 PMCID: PMC9264089 DOI: 10.21037/jtd-21-1734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/09/2022] [Indexed: 12/04/2022]
Abstract
Background Bronchoscopic lung volume reduction (BLVR) using Zephyr endobronchial valve (EBV) and intrabronchial valve (IBV) has been shown to improve lung function and exercise capacity in severe emphysema. However, changes in airway structures and whether these are related to the clinical improvements remain unclear. Methods A retrospective study was performed on patients treated with BLVR. We compared changes in 2nd-, 3rd-, and 4th-generation bronchial structures after therapy, including wall thickness (WT), percentage of wall thickness (WT%), intraluminal area (LA), wall area (WA), and WA%. Responder and non-responder subgroup analysis according to minimum clinically important difference (MCID) which was defined as an improvement of 15% in forced expiratory volume in 1 s (FEV1) and 26 m in 6 min walk distance (6MWD) was conducted. Results Of the 19 patients, 11 were treated with EBV and 8 with IBV. In ipsilateral non-target lobes, WT% decreased significantly in 3rd-generation bronchi at 1 month, 3, and 6 months, as well as their WA% at 1 month and 6 months. Non-responders, who were unable to achieve MCID, showed no consistent bronchial wall changes. And their LA of 3rd-generation bronchi decreased especially at 1 month. After BLVR, the target lobe volume decreased significantly until 12 months of follow-up. The volume of ipsilateral lobes could increase correspondingly and achieve the best improvements at 6 months. The contralateral lung volume showed slight amelioration but there was no statistical significance. Conclusions Both airway structures and lung volumes showed changes after BLVR. The 3rd- and 4th-bronchial walls tend to be thinner, which were consistent with clinical improvements. Further studies are needed to prove this conclusion and find detect potential mechanics.
Collapse
Affiliation(s)
- Fangfang Guo
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Junfang Huang
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yan Hu
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Hong Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Jiping Liao
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Pulmonary and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
34
|
Hoffman EA. Origins of and lessons from quantitative functional X-ray computed tomography of the lung. Br J Radiol 2022; 95:20211364. [PMID: 35193364 PMCID: PMC9153696 DOI: 10.1259/bjr.20211364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/16/2022] Open
Abstract
Functional CT of the lung has emerged from quantitative CT (qCT). Structural details extracted at multiple lung volumes offer indices of function. Additionally, single volumetric images, if acquired at standardized lung volumes and body posture, can be used to model function by employing such engineering techniques as computational fluid dynamics. With the emergence of multispectral CT imaging including dual energy from energy integrating CT scanners and multienergy binning using the newly released photon counting CT technology, function is tagged via use of contrast agents. Lung disease phenotypes have previously been lumped together by the limitations of spirometry and plethysmography. QCT and its functional embodiment have been imbedded into studies seeking to characterize chronic obstructive pulmonary disease, severe asthma, interstitial lung disease and more. Reductions in radiation dose by an order of magnitude or more have been achieved. At the same time, we have seen significant increases in spatial and density resolution along with methodologic validations of extracted metrics. Together, these have allowed attention to turn towards more mild forms of disease and younger populations. In early applications, clinical CT offered anatomic details of the lung. Functional CT offers regional measures of lung mechanics, the assessment of functional small airways disease, as well as regional ventilation-perfusion matching (V/Q) and more. This paper will focus on the use of quantitative/functional CT for the non-invasive exploration of dynamic three-dimensional functioning of the breathing lung and beating heart within the unique negative pressure intrathoracic environment of the closed chest.
Collapse
Affiliation(s)
- Eric A Hoffman
- Departments of Radiology, Internal Medicine and Biomedical Engineering University of Iowa, Iowa, United States
| |
Collapse
|
35
|
Zhang DW, Ye JJ, Sun Y, Ji S, Kang JY, Wei YY, Fei GH. CD19 and POU2AF1 are Potential Immune-Related Biomarkers Involved in the Emphysema of COPD: On Multiple Microarray Analysis. J Inflamm Res 2022; 15:2491-2507. [PMID: 35479834 PMCID: PMC9035466 DOI: 10.2147/jir.s355764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Emphysema is the main cause of the progression of chronic obstructive pulmonary disease (COPD). This study aimed to identify the key genes involved in COPD-related emphysema. Patients and Methods GSE76925 was downloaded from Gene Expression Omnibus database. Protein–protein interaction networks of differentially expressed genes (DEGs) between control and COPD groups were constructed to identify hub genes using Cytoscape. Diagnostic performance of hub genes was evaluated using receiver operating characteristic analysis. Correlation analysis was performed to identify the key genes by analyzing the relationship between the hub genes and lung function and computed tomography (CT) indexes of emphysema. COPD patients were then divided into two groups based on the median expression of key genes and DEGs between these two groups were identified. Enrichment analysis of DEGs and correlation analysis between key genes and the infiltration of the immune cells were also analyzed. Finally, the role of key genes was evaluated in a lung tissues dataset (GSE47460) and a blood dataset (GSE76705). Additionally, the expression of key genes was validated by quantitative real-time polymerase chain reaction and immunohistochemistry. Results CD19 and POU2AF1 had diagnostic efficacy for COPD and were significantly correlated with lung function and CT indexes of emphysema. Enrichment and immune analyses revealed that CD19 and POU2AF1 were correlated with the B cells in COPD. These results were consistent in GSE47460. The expression of CD19 and POU2AF1 in blood was the opposite of that in lung tissues, and CD19 and POU2AF1 were both significantly upregulated in COPD lung tissues at both the mRNA and protein levels. Conclusion CD19 and POU2AF1 may serve as key regulators of emphysema and contribute to the progression of COPD by regulating the B-cell immunology. Targeting B cells may be a promising strategy for treating COPD.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People’s Republic of China
| | - Jing-Jing Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People’s Republic of China
| | - Ying Sun
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People’s Republic of China
| | - Shuang Ji
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People’s Republic of China
| | - Jia-Ying Kang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People’s Republic of China
| | - Yuan-Yuan Wei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People’s Republic of China
| | - Guang-He Fei
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People’s Republic of China
- Key Laboratory of Respiratory Diseases Research and Medical Transformation of Anhui Province, Hefei, 230022, Anhui Province, People’s Republic of China
- Correspondence: Guang-He Fei, Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui Province, People’s Republic of China, Tel +86 551 6292 2013, Fax +86 551 6363 5578, Email
| |
Collapse
|
36
|
Wu F, Jiang C, Zhou Y, Zheng Y, Tian H, Li H, Deng Z, Zhao N, Chen H, Ran P. Association of Total Airway Count on Computed Tomography with Pulmonary Function Decline in Early-Stage COPD: A Population-Based Prospective Cohort Study. Int J Chron Obstruct Pulmon Dis 2022; 16:3437-3448. [PMID: 34984001 PMCID: PMC8702985 DOI: 10.2147/copd.s339029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background It has been found that the degree of terminal bronchiole destruction is associated with the severity of COPD. However, total airway count (TAC) of CT-visible and its relationship with COPD lung function severity and pulmonary function decline remains controversial. The present study aimed to determine whether TAC is significantly reduced in early-stage COPD (GOLD stage I–II) compared with healthy control subjects and whether TAC is associated with annual decline in pulmonary function in Chinese patients with early-stage COPD. Methods A total of 176 participants were enrolled in this study, of which 139 participants had undergone at least two spirometry measurements within 7 years (average 5.5 [standard deviation 0.8] years) after baseline data acquisition. CT-visible TAC was measured by summing all airway segments using semi-automated software. Average lumen diameter, average inner area, emphysema index, air trapping, and inspiratory Pi10 were also measured. Multivariable linear analysis was performed to evaluate variables that were significantly related to pulmonary function parameters and to evaluate the correlation between TAC and annual decline in longitudinal pulmonary function. Results Compared with healthy control subjects, CT-visible TAC was significantly reduced by 51% in GOLD II and by 31% in GOLD I after adjustment. TAC had the greatest impact on pre-bronchodilator FEV1, pre-bronchodilator FVC, post-bronchodilator FEV1, and post-bronchodilator FEV1/FVC (both p<0.001) among all CT indicators measured. TAC has the best correlation with inspiratory Pi10 (ρ=−0.751, p<0.001), an evaluation indicator of the degree of airway remodeling. TAC was independently associated with annual decline in pre-bronchodilator FEV1 (p=0.023), post-bronchodilator FEV1 (p=0.018), and post-bronchodilator FEV1/FVC (p<0.001). Conclusion This finding suggests that CT-visible TAC may be an evaluation indicator of the degree of airway remodeling, and was diminished in greater COPD lung function severity, and independently associated with disease progression. Early-stage COPD patients have already occurred lung structural changes and early intervention may be needed to ameliorate the progression of disease. Clinical Trial Registration ChiCTR-OO-14004264.
Collapse
Affiliation(s)
- Fan Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangzhou Laboratory, Bio-island, Guangzhou, People's Republic of China
| | - Changbin Jiang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Yumin Zhou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangzhou Laboratory, Bio-island, Guangzhou, People's Republic of China
| | - Youlan Zheng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Heshen Tian
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Haiqing Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Zhishan Deng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Ningning Zhao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Huai Chen
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Pixin Ran
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China.,Guangzhou Laboratory, Bio-island, Guangzhou, People's Republic of China
| |
Collapse
|
37
|
Tanabe N, Hirai T. Recent advances in airway imaging using micro-computed tomography and computed tomography for chronic obstructive pulmonary disease. Korean J Intern Med 2021; 36:1294-1304. [PMID: 34607419 PMCID: PMC8588974 DOI: 10.3904/kjim.2021.124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex lung disease characterized by a combination of airway disease and emphysema. Emphysema is classified as centrilobular emphysema (CLE), paraseptal emphysema (PSE), or panlobular emphysema (PLE), and airway disease extends from the respiratory, terminal, and preterminal bronchioles to the central segmental airways. Although clinical computed tomography (CT) cannot be used to visualize the small airways, micro-CT has shown that terminal bronchiole disease is more severe in CLE than in PSE and PLE, and micro-CT findings suggest that the loss and luminal narrowing of terminal bronchioles is an early pathological change in CLE. Furthermore, the introduction of ultra-high-resolution CT has enabled direct evaluation of the proximal small (1 to 2-mm diameter) airways, and new CT analytical methods have enabled estimation of small airway disease and prediction of future COPD onset and lung function decline in smokers with and without COPD. This review discusses the literature on micro-CT and the technical advancements in clinical CT analysis for COPD. Hopefully, novel micro-CT findings will improve our understanding of the distinct pathogeneses of the emphysema subtypes to enable exploration of new therapeutic targets, and sophisticated CT imaging methods will be integrated into clinical practice to achieve more personalized management.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
38
|
Zhao D, Abbasi A, Casaburi R, Adami A, Tiller NB, Yuan W, Yee C, Jendzjowsky NG, MacDonald DM, Kunisaki KM, Stringer WW, Porszasz J, Make BJ, Bowler RP, Rossiter HB. Identifying a Heart Rate Recovery Criterion After a 6-Minute Walk Test in COPD. Int J Chron Obstruct Pulmon Dis 2021; 16:2545-2560. [PMID: 34511898 PMCID: PMC8427685 DOI: 10.2147/copd.s311572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Slow heart rate recovery (HRR) after exercise is associated with autonomic dysfunction and increased mortality. What HRR criterion at 1-minute after a 6-minute walk test (6MWT) best defines pulmonary impairment?. STUDY DESIGN AND METHODS A total of 5008 phase 2 COPDGene (NCT00608764) participants with smoking history were included. A total of 2127 had COPD and, of these, 385 were followed-up 5-years later. Lung surgery, transplant, bronchiectasis, atrial fibrillation, heart failure and pacemakers were exclusionary. HR was measured from pulse oximetry at end-walk and after 1-min seated recovery. A receiver operator characteristic (ROC) identified optimal HRR cut-off. Generalized linear regression determined HRR association with spirometry, chest CT, symptoms and exacerbations. RESULTS HRR after 6MWT (bt/min) was categorized in quintiles: ≤5 (23.0% of participants), 6-10 (20.7%), 11-15 (18.9%), 16-22 (18.5%) and ≥23 (18.9%). Compared to HRR≤5, HRR≥11 was associated with (p<0.001): lower pre-walk HR and 1-min post HR; greater end-walk HR; greater 6MWD; greater FEV1%pred; lower airway wall area and wall thickness. HRR was positively associated with FEV1%pred and negatively associated with airway wall thickness. An optimal HRR ≤10 bt/min yielded an area under the ROC curve of 0.62 (95% CI 0.58-0.66) for identifying FEV1<30%pred. HRR≥11 bt/min was the lowest HRR associated with consistently less impairment in 6MWT, spirometry and CT variables. In COPD, HRR≤10 bt/min was associated with (p<0.001): ≥2 exacerbations in the previous year (OR=1.76[1.33-2.34]); CAT≥10 (OR=1.42[1.18-1.71]); mMRC≥2 (OR=1.42[1.19-1.69]); GOLD 4 (OR=1.98[1.44-2.73]) and GOLD D (OR=1.51[1.18-1.95]). HRR≤10 bt/min was predicted COPD exacerbations at 5-year follow-up (RR=1.83[1.07-3.12], P=0.027). CONCLUSION HRR≤10 bt/min after 6MWT in COPD is associated with more severe expiratory flow limitation, airway wall thickening, worse dyspnoea and quality of life, and future exacerbations, suggesting that an abnormal HRR≤10 bt/min after a 6MWT may be used in a comprehensive assessment in COPD for risk of severity, symptoms and future exacerbations.
Collapse
Affiliation(s)
- Dongxing Zhao
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Asghar Abbasi
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alessandra Adami
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
| | - Nicholas B Tiller
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Wei Yuan
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Respiratory Medicine Department, Beijing Friendship Hospital Affiliated of Capital Medical University, Beijing, 100050, People’s Republic of China
| | | | - Nicholas G Jendzjowsky
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David M MacDonald
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Ken M Kunisaki
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - William W Stringer
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Janos Porszasz
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | | | | | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - On behalf of the COPDGene Investigators
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, People’s Republic of China
- Department of Kinesiology, University of Rhode Island, Kingston, RI, USA
- Respiratory Medicine Department, Beijing Friendship Hospital Affiliated of Capital Medical University, Beijing, 100050, People’s Republic of China
- MemorialCare Long Beach Medical Center, Long Beach, CA, USA
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
- National Jewish Health, Denver, CO, USA
| |
Collapse
|
39
|
Bakker JT, Klooster K, Vliegenthart R, Slebos DJ. Measuring pulmonary function in COPD using quantitative chest computed tomography analysis. Eur Respir Rev 2021; 30:30/161/210031. [PMID: 34261743 PMCID: PMC9518001 DOI: 10.1183/16000617.0031-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/08/2021] [Indexed: 12/25/2022] Open
Abstract
COPD is diagnosed and evaluated by pulmonary function testing (PFT). Chest computed tomography (CT) primarily serves a descriptive role for diagnosis and severity evaluation. CT densitometry-based emphysema quantification and lobar fissure integrity assessment are most commonly used, mainly for lung volume reduction purposes and scientific efforts. A shift towards a more quantitative role for CT to assess pulmonary function is a logical next step, since more, currently underutilised, information is present in CT images. For instance, lung volumes such as residual volume and total lung capacity can be extracted from CT; these are strongly correlated to lung volumes measured by PFT. This review assesses the current evidence for use of quantitative CT as a proxy for PFT in COPD and discusses challenges in the movement towards CT as a more quantitative modality in COPD diagnosis and evaluation. To better understand the relevance of the traditional PFT measurements and the role CT might play in the replacement of these parameters, COPD pathology and traditional PFT measurements are discussed. CT may be used as a proxy for lung function in COPD diagnosis and evaluation, particularly for the hyperinflation markershttps://bit.ly/2RrGAZf
Collapse
Affiliation(s)
- Jens T Bakker
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Karin Klooster
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rozemarijn Vliegenthart
- Dept of Radiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- Dept of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Automated Diseased Lung Volume Percentage Calculation in Quantitative CT Evaluation of Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis. J Comput Assist Tomogr 2021; 45:649-658. [PMID: 34176875 DOI: 10.1097/rct.0000000000001182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Several software-based quantitative computed tomography (CT) analysis methods have been developed for assessing emphysema and interstitial lung disease. Although the texture classification method appeared to be more successful than the other methods, the software programs are not commercially available, to our knowledge. Therefore, this study aimed to investigate the usefulness of a commercially available software program for quantitative CT analyses. METHODS This prospective cohort study included 80 patients with chronic obstructive pulmonary disease (COPD) or idiopathic pulmonary fibrosis (IPF). RESULTS The percentage of low attenuation volume and high attenuation volume had high sensitivity and high specificity for detecting emphysema and pulmonary fibrosis, respectively. The percentage of diseased lung volume (DLV%) was significantly correlated with the lung diffusion capacity for carbon monoxide in all patients with COPD and IPF patients. CONCLUSIONS The quantitative CT analysis may improve the precision of the assessment of DLV%, which itself could be a useful tool in predicting lung diffusion capacity in patients with the clinical diagnosis of COPD or IPF.
Collapse
|
41
|
Górka K, Gross-Sondej I, Górka J, Stachura T, Polok K, Celejewska-Wójcik N, Mikrut S, Andrychiewicz A, Sładek K, Soja J. Assessment of Airway Remodeling Using Endobronchial Ultrasound in Asthma-COPD Overlap. J Asthma Allergy 2021; 14:663-674. [PMID: 34163179 PMCID: PMC8214023 DOI: 10.2147/jaa.s306421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The aim of this study was to evaluate the structural changes of the airways using the endobronchial ultrasound (EBUS) in ACO patients compared to severe asthma and COPD patients. PATIENTS AND METHODS The study included 17 patients with ACO, 17 patients with COPD and 33 patients with severe asthma. Detailed clinical data were obtained from all participants. Basic laboratory tests were performed, including measurement of eosinophil counts in blood and serum immunoglobulin E (IgE) concentrations. All patients underwent spirometry and bronchoscopy with EBUS (a 20‑MHz ultrasound probe) to measure the total thicknesses of the bronchial walls and their particular layers in segmental bronchi of the right lower lobe. EBUS allows to distinguish five layers of the bronchial wall. Layer 1 (L1) and layer 2 (L2) were analyzed separately, while the outer layers (layers 3-5 [L3-5]) that correspond to cartilage were assessed together. RESULTS In patients with ACO the thicknesses of the L1 and L2 layers, which are mainly responsible for remodeling, were significantly greater than in patients with COPD and significantly smaller than in patients with severe asthma (median L1= 0.17 mm vs 0.16 mm vs 0.18 mm, p<0.001; median L2= 0.18 mm vs 0.17 mm vs 0.20 mm, p<0.001, respectively). The thicknesses of the total bronchial walls (L1+L2+L3-5) and L3-5 were significantly smaller in ACO and COPD patients compared to asthma patients (median L1+L2+L3-5= 1.2 mm vs 1.14 mm vs 1.31 mm, p<0.001; median L3-5= 0.85 mm vs, 0.81 mm vs 0.92 mm, p=0.001, respectively). CONCLUSION The process of structural changes in the airways assessed by EBUS is more advanced in individuals with ACO compared to patients with COPD, and less pronounced compared to patients with severe asthma. It seems that EBUS may provide useful information about differences in airway remodeling between ACO, COPD and severe asthma.
Collapse
Affiliation(s)
- Karolina Górka
- Department of Pulmonology and Allergology, University Hospital, Kraków, Poland
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Iwona Gross-Sondej
- Department of Pulmonology and Allergology, University Hospital, Kraków, Poland
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jacek Górka
- Centre for Intensive Care and Perioperative Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Stachura
- Department of Pulmonology and Allergology, University Hospital, Kraków, Poland
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Kamil Polok
- Department of Pulmonology and Allergology, University Hospital, Kraków, Poland
- Centre for Intensive Care and Perioperative Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Natalia Celejewska-Wójcik
- Department of Pulmonology and Allergology, University Hospital, Kraków, Poland
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Sławomir Mikrut
- Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, Kraków, Poland
| | | | - Krzysztof Sładek
- Department of Pulmonology and Allergology, University Hospital, Kraków, Poland
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jerzy Soja
- Department of Pulmonology and Allergology, University Hospital, Kraków, Poland
- 2nd Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
42
|
Benlala I, Laurent F, Dournes G. Structural and functional changes in COPD: What we have learned from imaging. Respirology 2021; 26:731-741. [PMID: 33829593 DOI: 10.1111/resp.14047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality worldwide. It is a heterogeneous disease involving different components of the lung to varying extents. Developments in medical imaging and image analysis techniques provide new insights in the assessment of the structural and functional changes of the disease. This article reviews the leading imaging techniques: CT and MRI of the lung in research settings and clinical routine. Both visual and quantitative methods are reviewed, emphasizing their relevance to patient phenotyping and outcome prediction.
Collapse
Affiliation(s)
- Ilyes Benlala
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| | - François Laurent
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| | - Gael Dournes
- Centre de recherche Cardio-Thoracique de Bordeaux, University of Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|
43
|
van den Bosch WB, James AL, Tiddens HA. Structure and function of small airways in asthma patients revisited. Eur Respir Rev 2021; 30:200186. [PMID: 33472958 PMCID: PMC9488985 DOI: 10.1183/16000617.0186-2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Small airways (<2 mm in diameter) are probably involved across almost all asthma severities and they show proportionally more structural and functional abnormalities with increasing asthma severity. The structural and functional alterations of the epithelium, extracellular matrix and airway smooth muscle in small airways of people with asthma have been described over many years using in vitro studies, animal models or imaging and modelling methods. The purpose of this review was to provide an overview of these observations and to outline several potential pathophysiological mechanisms regarding the role of small airways in asthma.
Collapse
Affiliation(s)
- Wytse B. van den Bosch
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alan L. James
- Dept of Pulmonary Physiology and Sleep Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Harm A.W.M. Tiddens
- Dept of Paediatric Pulmonology and Allergology, Erasmus MC – Sophia Children’s Hospital, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Dept of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Chubachi S, Yamada Y, Yamada M, Yokoyama Y, Tanabe A, Matsuoka S, Niijima Y, Yamasawa W, Irie H, Murata M, Fukunaga K, Jinzaki M. Differences in airway lumen area between supine and upright computed tomography in patients with chronic obstructive pulmonary disease. Respir Res 2021; 22:95. [PMID: 33789651 PMCID: PMC8010787 DOI: 10.1186/s12931-021-01692-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND No clinical studies to date have compared the inspiratory and expiratory airway lumen area between supine and standing positions. Thus, the aims of this study were twofold: (1) to compare inspiratory and expiratory airway lumen area (IAA and EAA, respectively) on computed tomography (CT) among supine and standing positions; and (2) to investigate if IAA and EAA are associated with lung function abnormality in patients with chronic obstructive pulmonary disease (COPD). METHODS Forty-eight patients with COPD underwent both low-dose conventional (supine position) and upright CT (standing position) during inspiration and expiration breath-holds and a pulmonary function test (PFT) on the same day. We measured the IAA and EAA in each position. RESULTS For the trachea to the third-generation bronchi, the IAA was significantly larger in the standing position than in the supine position (4.1-4.9% increase, all p < 0.05). The EAA of all bronchi was significantly larger in the standing position than in the supine position (9.7-62.5% increases, all p < 0.001). The correlation coefficients of IAA in the standing position and forced expiratory volume in 1 s were slightly higher than those in the supine position. The correlation coefficients of EAA or EAA/IAA in the standing position and residual volume, and the inspiratory capacity/total lung capacity ratio were higher than those in the supine position. CONCLUSIONS Airway lumen areas were larger in the standing position than in the supine position. IAAs reflect airway obstruction, and EAAs reflect lung hyperinflation. Upright CT might reveal these abnormalities more precisely. Trial registration University Hospital Medical Information Network (UMIN 000026587), Registered 17 March 2017. URL: https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000030456 .
Collapse
Affiliation(s)
- Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoshitake Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Minoru Yamada
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yoichi Yokoyama
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Akiko Tanabe
- Department of Clinical Laboratory, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Shiho Matsuoka
- Department of Clinical Laboratory, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yuki Niijima
- Office of Radiation Technology, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Wakako Yamasawa
- Department of Laboratory Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Hidehiro Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Mitsuru Murata
- Department of Laboratory Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| |
Collapse
|
45
|
Tanabe N, Shimizu K, Terada K, Sato S, Suzuki M, Shima H, Oguma A, Oguma T, Konno S, Nishimura M, Hirai T. Central airway and peripheral lung structures in airway disease-dominant COPD. ERJ Open Res 2021; 7:00672-2020. [PMID: 33778061 PMCID: PMC7983277 DOI: 10.1183/23120541.00672-2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/21/2020] [Indexed: 01/14/2023] Open
Abstract
The concept that the small airway is a primary pathological site for all COPD phenotypes has been challenged by recent findings that the disease starts from the central airways in COPD subgroups and that a smaller central airway tree increases COPD risk. This study aimed to examine whether the computed tomography (CT)-based airway disease-dominant (AD) subtype, defined using the central airway dimension, was less associated with small airway dysfunction (SAD) on CT, compared to the emphysema-dominant (ED) subtype. COPD patients were categorised into mild, AD, ED and mixed groups based on wall area per cent (WA%) of the segmental airways and low attenuation volume per cent in the Kyoto–Himeji (n=189) and Hokkaido COPD cohorts (n=93). The volume per cent of SAD regions (SAD%) was obtained by nonrigidly registering inspiratory and expiratory CT. The AD group had a lower SAD% than the ED group and similar SAD% to the mild group. The AD group had a smaller lumen size of airways proximal to the segmental airways and more frequent asthma history before age 40 years than the ED group. In multivariable analyses, while the AD and ED groups were similarly associated with greater airflow limitation, the ED, but not the AD, group was associated with greater SAD%, whereas the AD, but not the ED, group was associated with a smaller central airway size. The CT-based AD COPD subtype might be associated with a smaller central airway tree and asthma history, but not with peripheral lung pathologies including small airway disease, unlike the ED subtype. This study shows that airway disease-dominant COPD, defined using central airway dimension on CT, is associated with a smaller central airway tree, less small airway dysfunction and slower lung function decline than the emphysema-dominant COPDhttps://bit.ly/3nNwxIC
Collapse
Affiliation(s)
- Naoya Tanabe
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.,These authors contributed equally
| | - Kaoruko Shimizu
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,These authors contributed equally
| | - Kunihiko Terada
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Japan
| | - Susumu Sato
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaru Suzuki
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shima
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akira Oguma
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Oguma
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Konno
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaharu Nishimura
- Dept of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan.,Hokkaido Institute of Respiratory Diseases, Sapporo, Japan
| | - Toyohiro Hirai
- Dept of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
46
|
Chae KJ, Jin GY, Choi J, Lee CH, Choi S, Choi H, Park J, Lin CL, Hoffman EA. Generation-based study of airway remodeling in smokers with normal-looking CT with normalization to control inter-subject variability. Eur J Radiol 2021; 138:109657. [PMID: 33773402 DOI: 10.1016/j.ejrad.2021.109657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/01/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE With the help of quantitative computed tomography (QCT), it is possible to identify smoking-associated airway remodeling. However, there is currently little information on whether QCT-based airway metrics are sensitive to early airway wall remodeling in subclinical phases of smoking-associated airway disease. This study aimed to evaluate a predictive model that normalized airway parameters and investigate structural airway alterations in smokers with normal-looking CT using the normalization scheme. METHODS In this retrospective analysis, 222 non-smokers (male 97, female 125) and 69 smokers (male 66, female 3) from January 2014 to December 2016 were included, and airway parameters were quantitatively analyzed. To control inter-subject variability, multiple linear regressions of tracheal wall thickness (WT), diameter (D), and luminal area (LA) were performed, adjusted for age, sex, and height. Using this normalization scheme, airway parameters with matched generation were compared between smokers and non-smokers. RESULTS Using the normalization scheme, it was possible to assess generation-based structural alterations of the airways in subclinical smokers. Smokers showed diffuse luminal narrowing of airways for most generations (P < 0.05, except 3rd generation), no change in wall thickness of the proximal bronchi (1st-3rd generation), and a thinning of distal airways (P <0.05, ≥4th generation). CONCLUSION QCT assessment for subclinical smokers can help identify minimal structural changes in airways induced by smoking.
Collapse
Affiliation(s)
- Kum Ju Chae
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Gong Yong Jin
- Department of Radiology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea.
| | - Jiwoong Choi
- Department of Internal Medicine, School of Medicine, University of Kansas, Kansas City, KS, USA; Department of Bioengineering, University of Kansas, Lawrence, KS, USA
| | - Chang Hyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea; Department of Radiology, Seoul National University College of Medicine, Institute of Radiation Medicine, Seoul, South Korea
| | - Sanghun Choi
- School of Mechanical Engineering, Kyungpook National University, Daegu, South Korea
| | - Hyemi Choi
- Department of Statistics and Institute of Applied Statistics, Jeonbuk National University, Jeonju, Jeonbuk, South Korea
| | - Jeongjae Park
- Department of Statistics, Regional Cardiocerebrovascular Center, Wonkwang University School of Medicine, Iksan, Jeonbuk, South Korea
| | - Ching-Long Lin
- Department of Radiology & Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| | - Eric A Hoffman
- Department of Radiology & Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA
| |
Collapse
|
47
|
Goldin JG. The Emerging Role of Quantification of Imaging for Assessing the Severity and Disease Activity of Emphysema, Airway Disease, and Interstitial Lung Disease. Respiration 2021; 100:277-290. [PMID: 33621969 DOI: 10.1159/000513642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/02/2020] [Indexed: 11/19/2022] Open
Abstract
There has been an explosion of use for quantitative image analysis in the setting of lung disease due to advances in acquisition protocols and postprocessing technology, including machine and deep learning. Despite the plethora of published papers, it is important to understand which approach has clinical validation and can be used in clinical practice. This paper provides an introduction to quantitative image analysis techniques being used in the investigation of lung disease and focusses on the techniques that have a reasonable clinical validation for being used in clinical trials and patient care.
Collapse
Affiliation(s)
- Jonathan Gerald Goldin
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA,
| |
Collapse
|
48
|
Konietzke P, Weinheimer O, Wagner WL, Wuennemann F, Hintze C, Biederer J, Heussel CP, Kauczor HU, Wielpütz MO. Optimizing airway wall segmentation and quantification by reducing the influence of adjacent vessels and intravascular contrast material with a modified integral-based algorithm in quantitative computed tomography. PLoS One 2020; 15:e0237939. [PMID: 32813730 PMCID: PMC7437894 DOI: 10.1371/journal.pone.0237939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 08/05/2020] [Indexed: 11/18/2022] Open
Abstract
Introduction Quantitative analysis of multi-detector computed tomography (MDCT) plays an increasingly important role in assessing airway disease. Depending on the algorithms used, airway dimensions may be over- or underestimated, primarily if contrast material was used. Therefore, we tested a modified integral-based method (IBM) to address this problem. Methods Temporally resolved cine-MDCT was performed in seven ventilated pigs in breath-hold during iodinated contrast material (CM) infusion over 60s. Identical slices in non-enhanced (NE), pulmonary-arterial (PA), systemic-arterial (SA), and venous phase (VE) were subjected to an in-house software using a standard and a modified IBM. Total diameter (TD), lumen area (LA), wall area (WA), and wall thickness (WT) were measured for ten extra- and six intrapulmonary airways. Results The modified IBM significantly reduced TD by 7.6%, LA by 12.7%, WA by 9.7%, and WT by 3.9% compared to standard IBM on non-enhanced CT (p<0.05). Using standard IBM, CM led to a decrease of all airway parameters compared to NE. For example, LA decreased from 80.85±49.26mm2 at NE, to 75.14±47.96mm2 (-7.1%) at PA (p<0.001), 74.96±48.55mm2 (-7.3%) at SA (p<0.001), and to 78.95±48.94mm2 (-2.4%) at VE (p = 0.200). Using modified IBM, the differences were reduced to -3.1% at PA, -2.9% at SA and -0.7% at VE (p<0.001; p<0.001; p = 1.000). Conclusions The modified IBM can optimize airway wall segmentation and reduce the influence of CM on quantitative CT. This allows a more precise measurement as well as potentially the comparison of enhanced with non-enhanced scans in inflammatory airway disease.
Collapse
Affiliation(s)
- Philip Konietzke
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
- * E-mail:
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Willi L. Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Felix Wuennemann
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Christian Hintze
- Department of Diagnostic Radiology, University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Radiologie Rein-Nahe, Bingen, Germany
| | - Juergen Biederer
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Claus P. Heussel
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
49
|
de la Hoz RE, Shapiro M, Nolan A, Celedón JC, Szeinuk J, Lucchini RG. Association of low FVC spirometric pattern with WTC occupational exposures. Respir Med 2020; 170:106058. [PMID: 32843177 PMCID: PMC7605357 DOI: 10.1016/j.rmed.2020.106058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND A reduced forced vital capacity without obstruction (low FVC) is the predominant spirometric abnormality reported in workers and volunteers exposed to dust, gases, and fumes at the World Trade Center (WTC) disaster site in 2001-2002. While low FVC has been associated with obesity and metabolic syndrome, its association with WTC occupational exposures has not been demonstrated. We estimated the prevalence of this abnormality and examined its association with WTC exposure level. METHODS Longitudinal study of the relation between arrival at the WTC site within 48 h and FVC below the lower limit of normal (FVC < LLN, with normal FEV1/FVC ratio) at any time in 10,284 workers with at least two spirometries between 2002 and 2018. Logistic regression and linear mixed models were used for the multivariable analyses. RESULTS The prevalence of low FVC increased from 17.0% (95% CI 15.4%, 18.5%) in June 2003, to 26.4% (95% CI 24.8%, 28.1%) in June 2018, and exceeded at both times that of obstruction. The rate of FVC decline was -43.7 ml/year during the study period. In a multivariable analysis adjusting for obesity, metabolic syndrome indicators, and other factors, early arrival at the WTC disaster site was significantly associated with low FVC, but only among men (ORadj = 1.29, 95% CI 1.17, 1.43). Longitudinal FVC rate of decline did not differ by WTC site arrival time. CONCLUSIONS Among WTC workers, the prevalence of low FVC increased over a 16-year period. Early arrival to the WTC disaster site was significantly associated with low FVC in males.
Collapse
Affiliation(s)
- Rafael E de la Hoz
- Department of Environmental Medicine and Public Health, and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Moshe Shapiro
- Department of Environmental Medicine and Public Health, and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anna Nolan
- Department of Medicine, New York University School of Medicine, New York, NY, USA.
| | - Juan C Celedón
- Division of Pediatric Pulmonology, Allergy and Immunology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Jaime Szeinuk
- Department of Occupational Medicine, Epidemiology, and Prevention, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Roberto G Lucchini
- Department of Environmental Medicine and Public Health, and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
50
|
Yasuo M, Kitaguchi Y, Tokoro Y, Kosaka M, Wada Y, Kinjo T, Ushiki A, Yamamoto H, Hanaoka M. Differences Between Central Airway Obstruction and Chronic Obstructive Pulmonary Disease Detected with the Forced Oscillation Technique. Int J Chron Obstruct Pulmon Dis 2020; 15:1425-1434. [PMID: 32606651 PMCID: PMC7310967 DOI: 10.2147/copd.s246126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Obstructive ventilatory disturbances occur in both chronic obstructive pulmonary disease (COPD), a typical disease representative of peripheral airway obstruction, and central airway obstruction (CAO). Pulmonary function tests (PFTs), which depend on patient effort, are traditionally used to evaluate lung function. The forced oscillation technique (FOT) is an effort-independent method for examining lung function during tidal breathing. The FOT is used universally to assess respiratory function in patients with COPD. Several studies have measured FOT to assess ventilatory disturbances in CAO. The results showed that FOT measurements in patients with CAO were similar to those reported in patients with COPD. However, no studies have compared FOT measurements directly between CAO and COPD. The aim of this study was to identify differences in ventilatory disturbances between peripheral and central airway obstructions in COPD and CAO, before patients received pharmacological therapy or bronchoscopic interventions, respectively. Patients and Methods We retrospectively included 16 patients with CAO (10 cases of tracheal obstruction and 6 cases of bronchial obstruction) and 75 treatment-naïve patients with COPD (60 cases in Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage II and 15 cases in GOLD stage III) that were admitted from December 2013 to May 2017. Prior to treatment, patients were examined with the FOT and PFTs. Results All parameters measured with the FOT in the inspiratory phase were significantly worse in patients with CAO than in patients with COPD. The PFTs showed that the CAO group had a significantly lower peak expiratory flow rate. In the airway wall thickening phenotype of COPD, a difference between the inspiratory and expiratory phases of the resonance frequency (ΔFres) was the best indicator for distinguishing between peripheral and central airway obstructions. Conclusion This study compared differences between CAO and COPD (mainly GOLD stage II). We found that the FOT measurement, ΔFres, was the optimal indicator of the difference between the airway wall thickening COPD phenotype and CAO. Thus, the difference might be due to mechanical changes that occur in COPD with airway wall thickening.
Collapse
Affiliation(s)
- Masanori Yasuo
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoshiaki Kitaguchi
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yayoi Tokoro
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Makoto Kosaka
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yosuke Wada
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takumi Kinjo
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Atsuhito Ushiki
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hiroshi Yamamoto
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayuki Hanaoka
- The First Department of Internal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|