1
|
Somay E, Topkan E, Kucuk A, Ozturk D, Ozkan EE, Ozdemir BS, Besen AA, Mertsoylu H, Pehlivan B, Selek U. Pre-chemoradiotherapy high platelet counts predict jaw osteoradionecrosis in locally advanced nasopharyngeal carcinoma patients. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101838. [PMID: 38518893 DOI: 10.1016/j.jormas.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION This retrospective study aimed to investigate if pretreatment platelet (PLT) levels can predict the risk of osteoradionecrosis of the jaw (ORNJ) in patients with locally advanced nasopharyngeal carcinoma (LA-NPC) who received concurrent chemoradiotherapy (CCRT). MATERIAL &METHODS ORNJ instances were identified from LA-NPC patients' pre- and post-CCRT oral exam records. All pretreatment PLT values were acquired on the first day of CCRT. Receiver operating characteristic curve analysis was used to determine the optimal PLT cutoff that divides patients into two subgroups with distinctive ORNJ rates. The primary outcome measure was the association between pretreatment PLT values and ORNJ incidence rates. RESULTS The incidence of ORNJ was 8.8 % among the 240 LA-NPC patients analyzed. The ideal pre-CCRT PLT cutoff which divided the patients into two significantly different ORNJ rate groups was 285,000 cells/µL (PLT ≤ 285,000 cells/µL (N = 175) vs. PLT > 285,000 cells/µL (N = 65)). A comparison of the two PLT groups revealed that the incidence of ORNJ was substantially higher in patients with PLT > 285,000 cells/L than in those with PLT≤285,000 cells/L (26.2% vs. 2.3 %; P < 0.001). The presence of pre-CCRT ≥3 tooth extractions, any post-CCRT tooth extractions, mean mandibular dose ≥ 34.1 Gy, mandibular V57.5 Gy ≥ 34.7 %, and post-CCRT tooth extractions > 9 months after CCRT completion were also associated with significantly increased ORNJ rates. A multivariate Cox regression analysis demonstrated that each characteristic had an independent significance on ORNJ rates after CCRT. CONCLUSION An affordable and easily accessible novel biomarker, PLT> 285,000 cells/L, may predict substantially higher ORNJ rates after definitive CCRT in individuals with LA-NPC.
Collapse
Affiliation(s)
- Efsun Somay
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Baskent University, Ankara, Turkey.
| | - Erkan Topkan
- Department of Radiation Oncology, Faculty of Medicine, Baskent University, Adana, Turkey
| | - Ahmet Kucuk
- Clinics of Radiation Oncology, Mersin City Education and Research Hospital, Mersin, Turkey
| | - Duriye Ozturk
- Department of Radiation Oncology, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Emine Elif Ozkan
- Department of Radiation Oncology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | | | - Ali Ayberk Besen
- Clinics of Medical Oncology, Istinye University, Adana Medical Park Hospital, Turkey
| | - Huseyin Mertsoylu
- Clinics of Medical Oncology, Istinye University, Adana Medical Park Hospital, Turkey
| | - Berrin Pehlivan
- Department of Radiation Oncology, Bahcesehir University, Istanbul, Turkey
| | - Ugur Selek
- Department of Radiation Oncology, School of Medicine, Koc University, Istanbul, Turkey
| |
Collapse
|
2
|
Cunningham P, Unger CA, Patton EA, Aiken A, Browne A, James E, Aladhami AK, Hope 3rd MC, VanderVeen BN, Cardaci TD, Murphy EA, Enos RT, Velázquez KT. Platelet status in cancer cachexia progression in Apc Min/+ mice. Front Immunol 2023; 14:1253587. [PMID: 37701438 PMCID: PMC10493779 DOI: 10.3389/fimmu.2023.1253587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
Cachexia, a complex wasting syndrome, significantly affects the quality of life and treatment options for cancer patients. Studies have reported a strong correlation between high platelet count and decreased survival in cachectic individuals. Therefore, this study aimed to investigate the immunopathogenesis of cancer cachexia using the ApcMin/+ mouse model of spontaneous colorectal cancer. The research focused on identifying cellular elements in the blood at different stages of cancer cachexia, assessing inflammatory markers and fibrogenic factors in the skeletal muscle, and studying the behavioral and metabolic phenotype of ApcMin/+ mice at the pre-cachectic and severely cachectic stages. Platelet measurements were also obtained from other animal models of cancer cachexia - Lewis Lung Carcinoma and Colon 26 adenocarcinoma. Our study revealed that platelet number is elevated prior to cachexia development in ApcMin/+ mice and can become activated during its progression. We also observed increased expression of TGFβ2, TGFβ3, and SMAD3 in the skeletal muscle of pre-cachectic ApcMin/+ mice. In severely cachectic mice, we observed an increase in Ly6g, CD206, and IL-10 mRNA. Meanwhile, IL-1β gene expression was elevated in the pre-cachectic stage. Our behavioral and metabolic phenotyping results indicate that pre-cachectic ApcMin/+ mice exhibit decreased physical activity. Additionally, we found an increase in anemia at pre-cachectic and severely cachectic stages. These findings highlight the altered platelet status during early and late stages of cachexia and provide a basis for further investigation of platelets in the field of cancer cachexia.
Collapse
Affiliation(s)
- Patrice Cunningham
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Christian A. Unger
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Emma A. Patton
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Akyla Aiken
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
- Columbia Department of Veterans Affairs Health Care System, Columbia, SC, United States
| | - Alea Browne
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ella James
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Ahmed K. Aladhami
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Marion C. Hope 3rd
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Brandon N. VanderVeen
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Thomas D. Cardaci
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - E. Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Reilly T. Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Kandy T. Velázquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States
- Columbia Department of Veterans Affairs Health Care System, Columbia, SC, United States
| |
Collapse
|
3
|
Trappe A, Lakkappa N, Carter S, Dillon E, Wynne K, McKone E, McNally P, Coppinger JA. Investigating serum extracellular vesicles in Cystic Fibrosis. J Cyst Fibros 2023; 22:674-679. [PMID: 36858853 DOI: 10.1016/j.jcf.2023.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are emerging as biomarkers of disease with diagnostic potential in CF. With the advent of highly effective modulator therapy, sputum production is less common and there is a need to identify novel markers of CF disease progression, exacerbation and response to therapies in accessible fluids such as serum. METHODS We used size exclusion chromatography (SEC) to isolate and characterise EVs from the blood of PWCF of different ages and compared to ultracentrifugation (UC). We used nanoparticle tracking analysis to measure the number of EVs present in serum obtained from children and adults with CF. Mass spectrometry based proteomics was used to characterise protein expression changes between the groups. RESULTS EVs were successfully isolated in SEC fractions from 250 µl serum from PWCF in greater numbers (p <0.01) than density ultracentrifugation. There was not a significant difference in EV numbers between young children with CF and controls. However, there was significantly more EVs in adults compared to children (<6yrs) (p < 0.05). EVs from PWCF before and after Kaftrio treatment were also analysed. Significant protein expression changes were observed within all 3 group. The largest changes detected were between children and adults with CF (57 proteins had a 1.5 fold change in expression with 19 significant changes p < 0.05) and PWCF taking Kaftrio (24 significant changes in EV protein expression was observed 12 months post treatment). CONCLUSION In this pilot study, we performed an initial characterisation of EVs in serum from PWCF demonstrating the potential of serum EVs for further diagnostic investigation.
Collapse
Affiliation(s)
- Anne Trappe
- National Children's Research Centre, Children's Health Ireland, Dublin 12, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Navya Lakkappa
- National Children's Research Centre, Children's Health Ireland, Dublin 12, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | | | - Eugene Dillon
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | - Edward McKone
- St. Vincent's University Hospital, Dublin 4, Ireland
| | - Paul McNally
- National Children's Research Centre, Children's Health Ireland, Dublin 12, Ireland; Department of Paediatrics, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Judith A Coppinger
- National Children's Research Centre, Children's Health Ireland, Dublin 12, Ireland; School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland.
| |
Collapse
|
4
|
Jin X, Zhang Z, Guan G, Zhou Q, Zheng Y, Jiang G. Silica Nanoparticles Promote the Megakaryocyte Maturation and Differentiation: Potential Implications for Hematological Homeostasis. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37310794 DOI: 10.1021/acsami.3c04046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silica nanoparticles (SiO2 NPs) have been widely applied in diverse areas, thus causing the extensive release through multiple routes. Their toxicological effects, especially for the disturbance in hematological homeostasis, have raised public concern. Considering the detrimental role of excessive platelets in many cardiovascular diseases, the regulation of platelet formation offers a unique aspect for studying the blood compatibility of nanomaterials. In this study, the effects of SiO2 NPs with four sizes (80, 120, 200, and 400 nm) were investigated on the maturation and differentiation of the megakaryocytes into platelets. The results showed that SiO2 NPs promoted megakaryocyte development as manifested by the occurrence of irregular cell morphology, enlargement of cell size, increases in DNA content and DNA ploidy, and formation of spore-like protrusions. The expression of megakaryocyte-specific antigen (CD41a) was up-regulated, due to SiO2 NP treatments. The correlation analysis of SiO2 NP size with the above test bioindicators showed that the smaller the SiO2 NPs were, the stronger effects they induced. Moreover, exposure to SiO2 NPs induced the up-regulation of both GATA-1 and FLI-1, while the transcriptional expressions of aNF-E2 and fNF-E2 remained unchanged. The significant positive correlation of GATA-1 and FLI-1 with megakaryocytic maturation and differentiation suggested their crucial roles in the SiO2 NP-promoted effect. The finding herein provided new insight into the potential health risk of SiO2 NPs by perturbing the platelet-involved hematological homeostasis.
Collapse
Affiliation(s)
- Xiaoting Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Ze Zhang
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Ge Guan
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Ghorban Movahed M, Abdi Ali A, Ghazanfari T, Modaresi M. Cytokine patterns in cystic fibrosis patients with different microbial infections in oropharyngeal samples. Cytokine 2022; 160:156038. [PMID: 36150317 DOI: 10.1016/j.cyto.2022.156038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cytokines play a crucial role in the immune system's regulation by mediating protective responses to infections. anti-inflammatory and pro-inflammatory cytokines are in equilibrium. Therefore, any alteration in cytokine production or cytokine receptor expression might result in pathological illnesses and health issues. Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane regulator (CFTR) gene. Lung infection in these patients is related to chronic bacterial airway infection and inflammation, which is triggered by some inflammatory cytokines. Our goal was to compare the cytokine patterns in CF patient's serum and PBMCs caused by microbial pathogens that colonized their airways to controls. METHODS ELISA and Real-time PCR were used to determine the levels of IL-10, IFN-γ, IL-4, TGF-β, IL-8, and IL-17 in serum and PBMC cells. Blood parameters in both patients and healthy people were studied. RESULTS An increase in IL-10, IFN-γ, IL-4 (p-v = 0.03, 0.024 and 0.003) levels and a decrease in IL-17 (p-v = 0.004) was found in Pseudomonas aeruginosa positive patients. There were no different in TGF-β and IL-8 (p-value = 0.778 and 0.903) in this patients. IL-10, IFN-γ, and IL-4 (p-value = 0.023, 0.001 and 0.002) levels were high in Staphylococcus aureus positive patients and TGF-β, IL-17, and IL-8 (p-value = 0.085, 0.167 and 0.362) were not significantly different in the patient and control groups. IFN-γ and IL-4 levels were higher in patients without infection who had normal microbiota (p-v = 0.002 and 0.024). In patients with P. aeruginosa, WBC and platelets increased, and MCH and MCV decreased. Patients with normal microbiota had less MCV. CONCLUSION According to our research, patients with P. aeruginosa, S. aureus, and normal microbiota are exposed to cytokine alterations and changes in blood factors. The link between the CF patient's airway microbiota and the kind of generated cytokines might lead to the modulation of inflammatory cytokines alone or in combination with antibiotics, reducing disease-causing effects while avoiding drug resistance.
Collapse
Affiliation(s)
- Mahtab Ghorban Movahed
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Ahya Abdi Ali
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Tooba Ghazanfari
- Immunoregulation Research Center, Shahed University, Tehran, Iran.
| | - Mohammadreza Modaresi
- Pdiatric Pulmonary Disease and Sleep Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Xin Y, Peng J, Hong YY, Chao QC, Na S, Pan S, Zhao LF. Advances in research on the effects of platelet activation in acute lung injury (Review). Biomed Rep 2022; 16:17. [PMID: 35154701 PMCID: PMC8814673 DOI: 10.3892/br.2022.1500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Acute lung injury (ALI) is an acute hypoxic respiratory insufficiency or failure caused by various factors inside and outside the lungs. ALI is associated with high morbidity and a poor prognosis in hospitalized patients. The lungs serve as a reservoir for platelet precursor megakaryocytes and are closely associated with platelets. Platelets not only play a central role in hemostasis, coagulation and wound healing, but can also act as inflammatory cells capable of stimulating non-hemostatic immune functions under inflammatory conditions, participating in the progression of various inflammatory diseases, and can result in tissue damage. Therefore, it was speculated that platelets may play an important role in the pathogenesis of ALI. In this review, the latest research progress on secretion of bioactive mediators from platelets, platelet activation-related signaling pathways, and the direct contact reactions between platelets and neutrophils with endothelial cells that result in ALI are described, providing evidence to support the importance of the consideration of platelets in the search for ALI interventional targets.
Collapse
Affiliation(s)
- Yuan Xin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Jiang Peng
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Yu Yun Hong
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Qiao Cong Chao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Su Na
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Sun Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Lin Fang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
7
|
Cystic fibrosis-related liver disease: Clinical presentations, diagnostic and monitoring approaches in the era of CFTR modulator therapies. J Hepatol 2022; 76:420-434. [PMID: 34678405 DOI: 10.1016/j.jhep.2021.09.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/09/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive disease in the Caucasian population. Cystic fibrosis-related liver disease (CFLD) is defined as the pathogenesis related to the underlying CFTR defect in biliary epithelial cells. CFLD needs to be distinguished from other liver manifestations that may not have any pathological significance. The clinical/histological presentation and severity of CFLD vary. The main histological presentation of CFLD is focal biliary fibrosis, which is usually asymptomatic. Portal hypertension develops in a minority of cases (about 10%) and may require specific management including liver transplantation for end-stage liver disease. Portal hypertension is usually the result of the progression of focal biliary fibrosis to multilobular cirrhosis during childhood. Nevertheless, non-cirrhotic portal hypertension as a result of porto-sinusoidal vascular disease is now identified increasingly more frequently, mainly in young adults. To evaluate the effect of new CFTR modulator therapies on the liver, the spectrum of hepatobiliary involvement must first be precisely classified. This paper discusses the phenotypic features of CFLD, its underlying physiopathology and relevant diagnostic and follow-up approaches, with a special focus on imaging.
Collapse
|
8
|
Averna M, Melotti P, Sorio C. Revisiting the Role of Leukocytes in Cystic Fibrosis. Cells 2021; 10:cells10123380. [PMID: 34943888 PMCID: PMC8699441 DOI: 10.3390/cells10123380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/17/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
Cystic fibrosis in characterized by pulmonary bacterial colonization and hyperinflammation. Lymphocytes, monocytes/macrophages, neutrophils, and dendritic cells of patients with CF express functional CFTR and are directly affected by altered CFTR expression/function, impairing their ability to resolve infections and inflammation. However, the mechanism behind and the contribution of leukocytes in the pathogenesis of CF are still poorly characterized. The recent clinical introduction of specific CFTR modulators added an important tool not only for the clinical management of the disease but also to the investigation of the pathophysiological mechanisms related to CFTR dysfunction and dysregulated immunity. These drugs treat the basic defect in cystic fibrosis (CF) by increasing CFTR function with improvement of lung function and quality of life, and may improve clinical outcomes also by correcting the dysregulated immune function that characterizes CF. Measure of CFTR function, protein expression profiling and several omics methods were used to identify molecular changes in freshly isolated leukocytes of CF patients, highlighting two roles of leukocytes in CF: one more generally related to the mechanism(s) causing immune dysregulation in CF and unresolved inflammation, and another more applicative role, which identifies in myeloid cells, an important tool predictive of the therapeutic response of CF patients. In this review we will summarize available data on CFTR expression and function in leukocyte populations and will discuss potential clinical applications based on available data.
Collapse
Affiliation(s)
- Monica Averna
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy;
| | - Paola Melotti
- Cystic Fibrosis Centre, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy;
| | - Claudio Sorio
- Department of Medicine, General Pathology Division, University of Verona, 37134 Verona, Italy
- Correspondence: ; Tel.: +39-045-802-7688
| |
Collapse
|
9
|
Jin X, Yu H, Wang B, Sun Z, Zhang Z, Liu QS, Zheng Y, Zhou Q, Jiang G. Airborne particulate matters induce thrombopoiesis from megakaryocytes through regulating mitochondrial oxidative phosphorylation. Part Fibre Toxicol 2021; 18:19. [PMID: 33985555 PMCID: PMC8117637 DOI: 10.1186/s12989-021-00411-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Although airborne fine particulate matter (PM) pollution has been demonstrated as an independent risk factor for pulmonary and cardiovascular diseases, their currently-available toxicological data is still far from sufficient to explain the cause-and-effect. Platelets can regulate a variety of physiological and pathological processes, and the epidemiological study has indicated a positive association between PM exposure and the increased number of circulative platelets. As one of the target organs for PM pollution, the lung has been found to be involved in the storage of platelet progenitor cells (i.e. megakaryocytes) and thrombopoiesis. Whether PM exposure influences thrombopoiesis or not is thus explored in the present study by investigating the differentiation of megakaryocytes upon PM treatment. RESULTS The results showed that PM exposure promoted the thrombopoiesis in an exposure concentration-dependent manner. PM exposure induced the megakaryocytic maturation and development by causing cell morphological changes, occurrence of DNA ploidy, and alteration in the expressions of biomarkers for platelet formation. The proteomics assay demonstrated that the main metabolic pathway regulating PM-incurred alteration of megakaryocytic maturation and thrombopoiesis was the mitochondrial oxidative phosphorylation (OXPHOS) process. Furthermore, airborne PM sample promoted-thrombopoiesis from megakaryocytes was related to particle size, but independent of sampling filters. CONCLUSION The findings for the first time unveil the potential perturbation of haze exposure in thrombopoiesis from megakaryocytes by regulating mitochondrial OXPHOS. The substantial evidence on haze particle-incurred hematotoxicity obtained herein provided new insights for assessing the hazardous health risks from PM pollution.
Collapse
Affiliation(s)
- Xiaoting Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hongyan Yu
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Baoqiang Wang
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China
| | - Ze Zhang
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Yuxin Zheng
- China School of Public Health, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, People's Republic of China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310000, People's Republic of China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
10
|
Morrison JM, Betensky M, Kiskaddon AL, Goldenberg NA. Venous Thromboembolism among Noncritically Ill Hospitalized Children: Key Considerations for the Pediatric Hospital Medicine Specialist. Semin Thromb Hemost 2021; 48:434-445. [PMID: 33962474 DOI: 10.1055/s-0041-1729170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Venous thromboembolism (VTE) is a leading cause of morbidity and preventable harm among noncritically ill hospitalized children. Several clinical factors relevant to the noncritically ill hospitalized child significantly increase the risk of VTE including the presence of central venous catheters, systemic inflammation, and prolonged immobilization. Although risk mitigation strategies have been described, the diagnosis, treatment, and prevention of VTE require standardization of institutional practices combined with multidisciplinary collaboration among pediatric hospitalists, hematologists, and other care providers. In this narrative review, we summarize the epidemiology of VTE, risk models identifying high-risk conditions associated with VTE, and prevention and treatment strategies. We further describe successful quality improvement efforts implementing institutional VTE risk stratification and thromboprophylaxis procedures. Finally, we highlight unique challenges facing pediatric hospital medicine specialists in the era of the COVID-19 pandemic, including caring for adults admitted to pediatric hospital units, and describe future research opportunities for VTE in the noncritically ill hospitalized child.
Collapse
Affiliation(s)
- John M Morrison
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Pediatric Hospital Medicine, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Marisol Betensky
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Pediatric Hematology, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Amy L Kiskaddon
- Department of Pharmacy, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| | - Neil A Goldenberg
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Pediatric Hematology, Johns Hopkins All Children's Hospital, St. Petersburg, Florida
| |
Collapse
|
11
|
DeRoo E, Martinod K, Cherpokova D, Fuchs T, Cifuni S, Chu L, Staudinger C, Wagner DD. The role of platelets in thrombus fibrosis and vessel wall remodeling after venous thrombosis. J Thromb Haemost 2021; 19:387-399. [PMID: 33058430 PMCID: PMC8530247 DOI: 10.1111/jth.15134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 01/20/2023]
Abstract
PURPOSE Platelets are known to play an important role in venous thrombogenesis, but their role in thrombus maturation, resolution, and postthrombotic vein wall remodeling is unclear. The purpose of this study was to determine the role that circulating platelets play in the later phases of venous thrombosis. METHODS We used a murine inferior vena cava (IVC) stenosis model. Baseline studies in untreated mice were performed to determine an optimal postthrombotic time point for tissue harvest that would capture both thrombus maturation/resolution and postthrombotic vein wall remodeling. This time point was found to be postoperative day 10. After undergoing IVC ultrasound on day 2 to confirm venous thrombus formation, mice were treated with a daily injection of platelet-depleting antibody (anti-GP1bα) to maintain thrombocytopenia or with control IgG until postoperative day 10, at which time IVC and thrombi were harvested and thrombus length, volume, fibrosis, neovascularization, and smooth muscle cell invasion analyzed. Vein wall fibrosis and intimal thickening were also determined. RESULTS Mice that were made thrombocytopenic after venous thrombogenesis had thrombi that were less fibrotic, with fewer invading smooth muscle cells. Furthermore, thrombocytopenia in the setting of venous thrombosis resulted in less postthrombotic vein wall intimal thickening. Thrombus volume did not differ between thrombocytopenic mice and their control peers. CONCLUSIONS This work suggests that circulating platelets contribute to venous thrombus maturation, fibrosis, and adverse vein wall remodeling, and that that inhibition of platelet recruitment may decrease thrombus and vein wall fibrosis, thus helping thrombolysis and preventing postthrombotic syndrome.
Collapse
Affiliation(s)
- Elise DeRoo
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kimberly Martinod
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Deya Cherpokova
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Tobias Fuchs
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stephen Cifuni
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Long Chu
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Caleb Staudinger
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Denisa D. Wagner
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA
| |
Collapse
|
12
|
Zimmerman GA. Platelets: inflammatory effector cells in the conflagration of cystic fibrosis lung disease. J Clin Invest 2020; 130:1632-1634. [PMID: 32175918 DOI: 10.1172/jci135949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cystic fibrosis (CF) is a multisystem disorder, but progressive inflammatory lung disease causes the greatest burden of morbidity and death. Recent translational and mechanistic studies of samples from patients, and observations in animal models, indicate that platelets may drive lung injury and contribute to dysregulated host defense in CF lung disease. In this issue of the JCI, Ortiz-Muñoz and Yu et al. explored the role that the cystic fibrosis transmembrane conductance regulator (CFTR) plays in platelet-related inflammation. The authors used mouse and human model systems to show that CFTR dysfunction in platelets increased calcium entry though the transient receptor potential cation channel 6 (TRPC6), causing hyperactivation and consequent experimental lung inflammation. The study persuasively suggests that platelets are critical thromboinflammatory effector cells in CF lung disease. In the context of platelet-related organ injury seen in a variety of other diseases and syndromes, platelets may also contribute to nonpulmonary manifestations and comorbidities of CF.
Collapse
|
13
|
Ortiz-Muñoz G, Yu MA, Lefrançais E, Mallavia B, Valet C, Tian JJ, Ranucci S, Wang KM, Liu Z, Kwaan N, Dawson D, Kleinhenz ME, Khasawneh FT, Haggie PM, Verkman AS, Looney MR. Cystic fibrosis transmembrane conductance regulator dysfunction in platelets drives lung hyperinflammation. J Clin Invest 2020; 130:2041-2053. [PMID: 31961827 PMCID: PMC7108932 DOI: 10.1172/jci129635] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by an inflammatory response that can lead to terminal respiratory failure. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF, and we hypothesized that dysfunctional CFTR in platelets, which are key participants in immune responses, is a central determinant of CF inflammation. We found that deletion of CFTR in platelets produced exaggerated acute lung inflammation and platelet activation after intratracheal LPS or Pseudomonas aeruginosa challenge. CFTR loss of function in mouse or human platelets resulted in agonist-induced hyperactivation and increased calcium entry into platelets. Inhibition of the transient receptor potential cation channel 6 (TRPC6) reduced platelet activation and calcium flux, and reduced lung injury in CF mice after intratracheal LPS or Pseudomonas aeruginosa challenge. CF subjects receiving CFTR modulator therapy showed partial restoration of CFTR function in platelets, which may be a convenient approach to monitoring biological responses to CFTR modulators. We conclude that CFTR dysfunction in platelets produces aberrant TRPC6-dependent platelet activation, which is a major driver of CF lung inflammation and impaired bacterial clearance. Platelets and TRPC6 are what we believe to be novel therapeutic targets in the treatment of CF lung disease.
Collapse
Affiliation(s)
| | - Michelle A. Yu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Emma Lefrançais
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Beñat Mallavia
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Colin Valet
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Serena Ranucci
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Kristin M. Wang
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Zhe Liu
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Nicholas Kwaan
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Diana Dawson
- Department of Medicine, UCSF, San Francisco, California, USA
| | | | - Fadi T. Khasawneh
- School of Pharmacy, University of Texas, El Paso, El Paso, Texas, USA
| | - Peter M. Haggie
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Physiology and
| | - Alan S. Verkman
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Physiology and
| | - Mark R. Looney
- Department of Medicine, UCSF, San Francisco, California, USA
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
14
|
Ratté MT, Jones AE, Witt DM, Young DC. Survey of current treatment practices for venous thromboembolism in patients with cystic fibrosis. Pediatr Pulmonol 2020; 55:149-155. [PMID: 31502767 DOI: 10.1002/ppul.24512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Patients with cystic fibrosis (CF) and venous thromboembolism (VTE) pose therapeutic challenges including potential drug interactions between CF-related therapies and anticoagulants. Despite these challenges, there are no recommendations for VTE management specific to patients with CF. Our objective was to describe VTE treatment practices among Cystic Fibrosis Foundation (CFF)-accredited care centers and affiliate programs in the United States. METHODS An online survey was distributed to CF center directors. The survey included questions regarding centers' demographics and posed a series of hypothetical clinical scenarios to gather centers' VTE treatment practices including choice of anticoagulant, dosing practices, duration decisions, and monitoring efforts. Descriptive statistics were utilized to summarize the survey results. RESULTS The survey response rate was 56.3%. Most centers reported treating zero to five VTE episodes per year. The following anticoagulants were used most often for VTE treatment: low-molecular-weight heparin (LMWH) (73.2%), apixaban (36.6%), warfarin (35.2%), rivaroxaban (33.8%), and unfractionated heparin (18.3%). On a scale of 0 to 100, the median confidence level in managing anticoagulant therapy was 50. Many centers expressed a desire for a CF-specific VTE treatment guideline. The most commonly cited challenging clinical situations were managing anticoagulant therapy complications (26.5%) and drug-drug interactions (21.3%). For common VTE scenarios, pediatric patients were most often treated with LMWH and warfarin, whereas adult patients were more often treated with apixaban or rivaroxaban. CONCLUSIONS Survey results indicated CF care centers find managing VTE in patients with CF challenging and indicated that a CF-specific VTE treatment guideline would be helpful.
Collapse
Affiliation(s)
- Morgan T Ratté
- Department of Pharmacy, University of Utah Health, Salt Lake City, Utah
| | - Aubrey E Jones
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - Daniel M Witt
- Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah
| | - David C Young
- Department of Pharmacy, University of Utah Health, Salt Lake City, Utah.,Department of Pharmacotherapy, University of Utah College of Pharmacy, Salt Lake City, Utah
| |
Collapse
|
15
|
The role of endothelial cells in cystic fibrosis. J Cyst Fibros 2019; 18:752-761. [DOI: 10.1016/j.jcf.2019.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/18/2019] [Accepted: 07/23/2019] [Indexed: 12/22/2022]
|
16
|
Soluble P-Selectin in Acute Exacerbations and Stable Bronchiectasis in Adults. Ann Am Thorac Soc 2019; 16:1587-1591. [PMID: 31394907 DOI: 10.1513/annalsats.201902-140rl] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
17
|
Rondina MT, Zimmerman GA. The Role of Platelets in Inflammation. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
18
|
Branchford BR, Carpenter SL. The Role of Inflammation in Venous Thromboembolism. Front Pediatr 2018; 6:142. [PMID: 29876337 PMCID: PMC5974100 DOI: 10.3389/fped.2018.00142] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/27/2018] [Indexed: 12/12/2022] Open
Abstract
Venous thromboembolism (VTE), comprising deep vein thrombosis (DVT), and pulmonary embolism (PE), is becoming increasingly recognized as a cause of morbidity and mortality in pediatrics, particularly among hospitalized children. Furthermore, evidence is accumulating that suggests the inflammatory response may be a cause, as well as consequence, of VTE, but current anticoagulation treatment regimens are not designed to inhibit inflammation. In fact, many established clinical VTE risk factors such as surgery, obesity, cystic fibrosis, sepsis, systemic infection, cancer, inflammatory bowel disease, and lupus likely modulate thrombosis through inflammatory mediators. Unlike other traumatic mechanisms of thrombosis involving vascular transection and subsequent exposure of subendothelial collagen and other procoagulant extracellular matrix materials, inflammation of the vessel wall may initiate thrombosis on an intact vein. Activation of endothelial cells, platelets, and leukocytes with subsequent formation of microparticles can trigger the coagulation system through the induction of tissue factor (TF). Identification of biomarkers to evaluate VTE risk could be of great use to the clinician caring for a patient with inflammatory disease to guide decisions regarding the risk:benefit ratio of various types of potential thromboprophylaxis strategies, or suggest a role for anti-inflammatory therapy. Unfortunately, no such validated inflammatory scoring system yet exists, though research in this area is ongoing. Elevation of C-reactive protein, IL-6, IL-8, and TNF-alpha during a response to systemic inflammation have been associated with increased VTE risk. Consequent platelet activation enhances the prothrombotic state, leading to VTE development, particularly in patients with other risk factors, most notably central venous catheters.
Collapse
Affiliation(s)
- Brian R Branchford
- University of Colorado Hemophilia and Thrombosis Center, Pediatric Hematology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, United States
| | - Shannon L Carpenter
- Kansas City Regional Hemophilia Treatment Center, Pediatric Hematology, UMKC School of Medicine and Children's Mercy Hospital, Kansas, CO, United States
| |
Collapse
|
19
|
Nurden A. Platelets, inflammation and tissue regeneration. Thromb Haemost 2017; 105 Suppl 1:S13-33. [DOI: 10.1160/ths10-11-0720] [Citation(s) in RCA: 469] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 02/04/2011] [Indexed: 12/20/2022]
Abstract
SummaryBlood platelets have long been recognised to bring about primary haemostasis with deficiencies in platelet production and function manifesting in bleeding while upregulated function favourises arterial thrombosis. Yet increasing evidence indicates that platelets fulfil a much wider role in health and disease. First, they store and release a wide range of biologically active substances including the panoply of growth factors, chemokines and cytokines released from α-granules. Membrane budding gives rise to microparticles (MPs), another active participant within the blood stream. Platelets are essential for the innate immune response and combat infection (viruses, bacteria, micro-organisms). They help maintain and modulate inflammation and are a major source of pro-inflammatory molecules (e.g. P-selectin, tissue factor, CD40L, metalloproteinases). As well as promoting coagulation, they are active in fibrinolysis; wound healing, angiogenesis and bone formation as well as in maternal tissue and foetal vascular remodelling. Activated platelets and MPs intervene in the propagation of major diseases. They are major players in atherosclerosis and related diseases, pathologies of the central nervous system (Alzheimers disease, multiple sclerosis), cancer and tumour growth. They participate in other tissue-related acquired pathologies such as skin diseases and allergy, rheumatoid arthritis, liver disease; while, paradoxically, autologous platelet-rich plasma and platelet releasate are being used as an aid to promote tissue repair and cellular growth. The above mentioned roles of platelets are now discussed.
Collapse
|
20
|
Borges I, Sena I, Azevedo P, Andreotti J, Almeida V, Paiva A, Santos G, Guerra D, Prazeres P, Mesquita LL, Silva LSDB, Leonel C, Mintz A, Birbrair A. Lung as a Niche for Hematopoietic Progenitors. Stem Cell Rev Rep 2017; 13:567-574. [PMID: 28669077 PMCID: PMC6093188 DOI: 10.1007/s12015-017-9747-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets are released from megakaryocytes. The bone marrow has been proposed to be the major site where this process occurs. Lefrançais et al. (2017) using state-of-the-art techniques including two-photon microscopy, in vivo lineage-tracing technologies, and sophisticated lung transplants reveal that the lung is also a primary site for platelet biogenesis. Strikingly, lung megakaryocytes can completely reconstitute platelet counts in the blood in mice with thrombocytopenia. This study also shows that hematopoietic progenitors, with capacity to repopulate the bone marrow after irradiation, are present in the lungs. This work brings a novel unexpected role for the lung as a niche for hematopoiesis. The emerging knowledge from this research may be important for the treatment of several disorders.
Collapse
Affiliation(s)
- Isabella Borges
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Isadora Sena
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Patrick Azevedo
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Julia Andreotti
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Viviani Almeida
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paiva
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel Guerra
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Prazeres
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Caroline Leonel
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Akiva Mintz
- Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein College of Medicine, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY, USA.
| |
Collapse
|
21
|
Poole LG, Massey VL, Siow DL, Torres-Gonzáles E, Warner NL, Luyendyk JP, Ritzenthaler JD, Roman J, Arteel GE. Plasminogen Activator Inhibitor-1 Is Critical in Alcohol-Enhanced Acute Lung Injury in Mice. Am J Respir Cell Mol Biol 2017; 57:315-323. [PMID: 28445073 PMCID: PMC5625219 DOI: 10.1165/rcmb.2016-0184oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 04/19/2017] [Indexed: 01/07/2023] Open
Abstract
Chronic alcohol exposure is a clinically important risk factor for the development of acute respiratory distress syndrome, the most severe form of acute lung injury (ALI). However, the mechanisms by which alcohol sensitizes the lung to development of this disease are poorly understood. We determined the role of the antifibrinolytic protein plasminogen activator inhibitor-1 (PAI-1) in alcohol enhancement of experimental endotoxin-induced ALI. Wild-type, PAI-1-/-, and integrin β3-/- mice were fed ethanol-containing Lieber-DeCarli liquid or a control diet for 6 weeks, followed by systemic LPS challenge. LPS administration triggered coagulation cascade activation as evidenced by increased plasma thrombin-antithrombin levels and pulmonary fibrin deposition. Ethanol-exposed animals showed enhanced PAI-1 expression and pulmonary fibrin deposition with coincident exaggeration of pulmonary inflammatory edematous injury. PAI-1 deficiency markedly reduced pulmonary fibrin deposition and greatly reduced inflammation and injury without impacting upstream coagulation. Interestingly, pulmonary platelet accumulation was effectively abolished by PAI-1 deficiency in ethanol/LPS-challenged mice. Moreover, mice lacking integrin αIIBβ3, the primary platelet receptor for fibrinogen, displayed a dramatic reduction in early inflammatory changes after ethanol/LPS challenge. These results indicate that the mechanism whereby alcohol exaggerates LPS-induced lung injury requires PAI-1-mediated pulmonary fibrin accumulation, and suggest a novel mechanism whereby alcohol contributes to inflammatory ALI by enhancing fibrinogen-platelet engagement.
Collapse
Affiliation(s)
- Lauren G. Poole
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Veronica L. Massey
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Deanna L. Siow
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| | - Edilson Torres-Gonzáles
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Nikole L. Warner
- Department of Microbiology and Immunology, University of Louisville Health Sciences Center, Louisville, Kentucky
| | - James P. Luyendyk
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Jeffrey D. Ritzenthaler
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Jesse Roman
- Division of Pulmonary, Critical Care and Sleep Disorders Medicine, Department of Medicine, and
| | - Gavin E. Arteel
- Department of Pharmacology and Toxicology
- Alcohol Research Center, University of Louisville, Louisville, Kentucky; and
| |
Collapse
|
22
|
Anıl H, Kılıç Yıldırım G, Harmancı K, Bozkurt Turhan A, Akay OM, Bör Ö, Aydoğdu S, Kocak A. Thromboelastogram as a Tool to Predict Hypercoagulability in Children With Cystic Fibrosis. Clin Appl Thromb Hemost 2016; 24:348-352. [PMID: 28030968 DOI: 10.1177/1076029616683045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Increased thrombophilic tendency in patients with cystic fibrosis (CF) has recently been reported. The determinants of thrombosis in children with CF remain largely unknown. Our aim in this study was to evaluate the thromboelastography (TEG) profile of children with CF through ROTEM (whole blood rotation thromboelastometry). Nineteen patients with CF and 20 controls were included in the study. Whole blood count, prothrombin time, activated prothrombin time, fibrinogen, d-dimer levels, and ROTEM assays (INTEM, EXTEM) were performed. Clotting time, clot formation time (CFT), and maximum clot firmness (MCF) were determined by INTEM and EXTEM analysis. In INTEM assay, MCF ( P = .001) value was significantly increased and CFT ( P = .031) value was decreased in patients with CF compared with those of the control group. In the EXTEM assay, there was a similar significant increase in MCF ( P = .023) value in patients with CF compared with that of the control group. There was a significant positive correlation between fibrinogen levels and MCF in EXTEM ( r = .72) and INTEM ( r = .76) assays, whereas there was a negative correlation with CFT in EXTEM ( r = -.61) and INTEM ( r = -.67). The results of our study indicated that TEG profiles in patients with CF were more hypercoagulable compared with those of the control group.
Collapse
Affiliation(s)
- Hülya Anıl
- 1 Department of Pediatric Allergy and Immunology, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Gonca Kılıç Yıldırım
- 2 Department of Pediatric Nutrition and Metabolism, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Koray Harmancı
- 1 Department of Pediatric Allergy and Immunology, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Ayşe Bozkurt Turhan
- 3 Department of Pediatric Hematology and Oncology, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Olga Meltem Akay
- 4 Department of Hematology, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Özcan Bör
- 3 Department of Pediatric Hematology and Oncology, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Sultan Aydoğdu
- 2 Department of Pediatric Nutrition and Metabolism, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Abdulkadır Kocak
- 1 Department of Pediatric Allergy and Immunology, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
23
|
Véricel E, Mazur S, Colas R, Delaup V, Calzada C, Reix P, Durieu I, Lagarde M, Bellon G. Moderate intake of docosahexaenoic acid raises plasma and platelet vitamin E levels in cystic fibrosis patients. Prostaglandins Leukot Essent Fatty Acids 2016; 115:41-47. [PMID: 27914512 DOI: 10.1016/j.plefa.2016.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 12/31/2022]
Abstract
Patients with cystic fibrosis have increased oxidative stress and impaired antioxidant systems. Moderate intake of docosahexaenoic acid (DHA) may favor the lowering of oxidative stress. In this randomized, double-blind, cross-over study, DHA or placebo capsules, were given daily to 10 patients, 5mg/kg for 2 weeks then 10mg/kg DHA for the next 2 weeks (or placebo). After 9 weeks of wash-out, patients took placebo or DHA capsules. Biomarkers of lipid peroxidation and vitamin E were measured at baseline, and after 2 and 4 weeks of treatment in each phase. The proportions of DHA increased both in plasma and platelet lipids after DHA supplementations. The lipid peroxidation markers did not significantly decrease, in spite of a trend, after the first and/or the second dose of DHA but plasma and platelet vitamin E amounts increased significantly after DHA supplementation. Our findings reinforce the antioxidant potential of moderate DHA intake in subjects displaying increased oxidative stress.
Collapse
Affiliation(s)
- Evelyne Véricel
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France.
| | - Stéphane Mazur
- Centre de Référence pédiatrique Mucoviscidose de Lyon, Hôpital Femme Mère Enfant, F-69500 Bron, France
| | - Romain Colas
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Véronique Delaup
- Centre de Référence pédiatrique Mucoviscidose de Lyon, Hôpital Femme Mère Enfant, F-69500 Bron, France
| | - Catherine Calzada
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Philippe Reix
- Centre de Référence pédiatrique Mucoviscidose de Lyon, Hôpital Femme Mère Enfant, F-69500 Bron, France
| | - Isabelle Durieu
- Centre de Référence adulte Mucoviscidose de Lyon, Centre Hospitalier Lyon-Sud, F-69310 Pierre-Bénite, France
| | - Michel Lagarde
- Univ-Lyon, CarMeN laboratory, Inserm U1060, INRA U1397, Université Claude Bernard Lyon 1, INSA-Lyon, IMBL, 69621 Villeurbanne, France
| | - Gabriel Bellon
- Centre de Référence pédiatrique Mucoviscidose de Lyon, Hôpital Femme Mère Enfant, F-69500 Bron, France
| |
Collapse
|
24
|
Reihill JA, Moreland M, Jarvis GE, McDowell A, Einarsson GG, Elborn JS, Martin SL. Bacterial proteases and haemostasis dysregulation in the CF lung. J Cyst Fibros 2016; 16:49-57. [PMID: 27839953 DOI: 10.1016/j.jcf.2016.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/13/2016] [Accepted: 10/10/2016] [Indexed: 01/21/2023]
Abstract
BACKGROUND Pathogenic bacteria which chronically colonise the cystic fibrosis (CF) lung produce a number of virulence determinants, including distinct proteolytic activities. The potential role bacterial proteases play on haemostatic dysregulation within the CF lung is, however, poorly defined, despite haemoptysis being a common complication in CF. METHODS The potential impact of known CF pathogens (Pseudomonas aeruginosa and Burkholderia cepacia complex spp.) on haemostasis was examined for their ability to degrade fibrinogen and dysregulate fibrin clot formation and platelet aggregation. RESULTS Results demonstrate that key CF pathogens growing as a biofilm on mucin exhibit considerable fibrinogenolytic activity, resulting in fibrinogen breakdown, impaired clot formation, and modulation of platelet aggregation. Human neutrophil elastase may also contribute to fibrinogen breakdown and dysregulated clot formation at high concentration. CONCLUSION Bacterial-derived proteases may play an important role in the dysregulation of airway haemostasis, and potentially contribute to episodes of haemoptysis within the CF lung.
Collapse
Affiliation(s)
- James A Reihill
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Michelle Moreland
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Gavin E Jarvis
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Department of Physiology, Development and Neuroscience, Selwyn College, University of Cambridge, CB2 3DY, United Kingdom
| | - Andrew McDowell
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, C-TRIC Building, Altnagelvin Area Hospital, University of Ulster, Londonderry, BT47 6SB, United Kingdom
| | - Gisli G Einarsson
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - J Stuart Elborn
- Centre for Infection and Immunity, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - S Lorraine Martin
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
25
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
26
|
Diagnostic value of platelet parameters versus interleukin-6 in children with urinary tract infection. EGYPTIAN PEDIATRIC ASSOCIATION GAZETTE 2016. [DOI: 10.1016/j.epag.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
27
|
Maloney JP, Narasimhan J, Biller J. Decreased TGF-β1 and VEGF Release in Cystic Fibrosis Platelets: Further Evidence for Platelet Defects in Cystic Fibrosis. Lung 2016; 194:791-8. [PMID: 27423781 DOI: 10.1007/s00408-016-9925-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE Cystic fibrosis (CF) patients suffer from chronic lung inflammation. This inflammation may activate platelets. There are limited data on the role of platelet-secreted cytokines in CF. Platelet cytokines with inflammatory effects include vascular endothelial growth factor (VEGF) and transforming growth factor-β1 (TGF-β1). As levels of these cytokines are tenfold greater in serum than plasma due to platelet release, serum levels may be one index of platelet content, but a more specific index is release during the aggregation of isolated platelets. We postulated that altered release of these platelet cytokines occurs in CF. METHODS We obtained sera and plasma from CF outpatients (n = 21) and from healthy controls (n = 20), measured VEGF and TGF-β1, assessed for correlations with platelet number, analyzed cytokine release during platelet aggregation to collagen, and analyzed differences in maximal platelet aggregation. RESULTS Platelet number and maximal aggregation levels were higher in CF. Plasma and serum levels of TGF-β1 and VEGF were higher in CF, but these levels were similar after adjusting for platelet number (serum cytokines correlated with platelet count). The release of VEGF and TGF-β1 during aggregation was decreased in CF platelets (by 52 and 29 %, respectively). CONCLUSION Platelet release is not a source of the elevated blood proinflammatory cytokines TGF-β1 and VEGF in CF, as platelets from CF patients actually release less of these cytokines. These data provide further evidence for platelet defects in CF.
Collapse
Affiliation(s)
- James P Maloney
- Divisions of Pulmonary and Critical Care Medicine, University of Colorado, Denver, 12700 East 19th Avenue, C-272, Aurora, Denver, CO, 80045, USA.
| | | | - Julie Biller
- The Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
28
|
Quality improvement initiative to reduce deep vein thrombosis associated with peripherally inserted central catheters in adults with cystic fibrosis. Ann Am Thorac Soc 2015; 11:1404-10. [PMID: 25295962 DOI: 10.1513/annalsats.201404-175oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RATIONALE Peripherally inserted central catheters (PICCs) are common in the treatment of patients with cystic fibrosis (CF). Previous reports suggest that patients with CF are at increased risk for PICC-associated deep vein thrombosis (DVT). OBJECTIVES We assessed potential risk factors for symptomatic PICC-associated DVT with subsequent implementation of a quality improvement (QI) initiative to reduce PICC-associated DVT in patients with CF. METHODS This was a 5-year retrospective cohort study with subsequent 21-month prospective observation following implementation of a QI intervention in adults (aged 18 yr or older) with CF. All patients with a PICC inserted from July 2006 to March 2013 at our CF Foundation-accredited center were included. Symptomatic DVT was diagnosed by Doppler ultrasound. PICC insertions were analyzed, and nine risk factors for DVT were analyzed to formulate a QI initiative to reduce risk of PICC-associated DVT. The QI program focused on staff education and included modification to PICC order entry with a 4 French (F) single-lumen (SL) catheter as standard for all patients with CF. MEASUREMENTS AND MAIN RESULTS A total of 369 PICCs were analyzed in 117 unique patients for a total of 5,437 PICC-days of placement. Symptomatic DVT was diagnosed in 28 (7.6%) of the 369 PICCs analyzed. Using regression analysis, the strongest predictors for DVT occurrence were warfarin use (odds ratio [OR] = 9.2, P = 0.006) and history of PICC-associated DVT (OR = 2.97, P = 0.08). Insertion of a 4F SL PICC resulted in zero symptomatic DVT. Zero episodes of DVT associated with 4F PICC insertion prevented use of PICC size in regression analysis. However, univariate analysis revealed that insertion of a 4F SL PICC instead of either 5F double lumen or 6F triple lumen was associated with a reduction in PICC-associated DVT (P = 0.001). After the QI intervention, 4F SL catheter insertion substantially increased to 65.8% of all PICCs inserted, whereas 6F triple-lumen catheter insertion declined to 6.8% of PICCs inserted. The QI initiative resulted in an absolute risk reduction in DVT per PICC placed of 6.1% (P = 0.055). CONCLUSIONS To reduce risk of PICC-associated DVT in patients with CF, QI strategies should focus on insertion of smaller-diameter 4F PICCs and reduction in PICC use in high-risk patients when possible.
Collapse
|
29
|
Thrombospondin-1 restrains neutrophil granule serine protease function and regulates the innate immune response during Klebsiella pneumoniae infection. Mucosal Immunol 2015; 8:896-905. [PMID: 25492474 PMCID: PMC4465063 DOI: 10.1038/mi.2014.120] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/31/2014] [Indexed: 02/04/2023]
Abstract
Neutrophil elastase (NE) and cathepsin G (CG) contribute to intracellular microbial killing but, if left unchecked and released extracellularly, promote tissue damage. Conversely, mechanisms that constrain neutrophil serine protease activity protect against tissue damage but may have the untoward effect of disabling the microbial killing arsenal. The host elaborates thrombospondin-1 (TSP-1), a matricellular protein released during inflammation, but its role during neutrophil activation following microbial pathogen challenge remains uncertain. Mice deficient in TSP-1 (thbs1(-/-)) showed enhanced lung bacterial clearance, reduced splenic dissemination, and increased survival compared with wild-type (WT) controls during intrapulmonary Klebsiella pneumoniae infection. More effective pathogen containment was associated with reduced burden of inflammation in thbs1(-/-) mouse lungs compared with WT controls. Lung NE activity was increased in thbs1(-/-) mice following K. pneumoniae challenge, and thbs1(-/-) neutrophils showed enhanced intracellular microbial killing that was abrogated with recombinant TSP-1 administration or WT serum. Thbs1(-/-) neutrophils exhibited enhanced NE and CG enzymatic activity, and a peptide corresponding to amino-acid residues 793-801 within the type-III repeat domain of TSP-1 bridled neutrophil proteolytic function and microbial killing in vitro. Thus, TSP-1 restrains proteolytic action during neutrophilic inflammation elicited by K. pneumoniae, providing a mechanism that may regulate the microbial killing arsenal.
Collapse
|
30
|
Reverri EJ, Morrissey BM, Cross CE, Steinberg FM. Inflammation, oxidative stress, and cardiovascular disease risk factors in adults with cystic fibrosis. Free Radic Biol Med 2014; 76:261-77. [PMID: 25172163 DOI: 10.1016/j.freeradbiomed.2014.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) represents one of a number of localized lung and non-lung diseases with an intense chronic inflammatory component associated with evidence of systemic oxidative stress. Many of these chronic inflammatory diseases are accompanied by an array of atherosclerotic processes and cardiovascular disease (CVD), another condition strongly related to inflammation and oxidative stress. As a consequence of a dramatic increase in long-lived patients with CF in recent decades, the specter of CVD must be considered in these patients who are now reaching middle age and beyond. Buttressed by recent data documenting that CF patients exhibit evidence of endothelial dysfunction, a recognized precursor of atherosclerosis and CVD, the spectrum of risk factors for CVD in CF is reviewed here. Epidemiological data further characterizing the presence and extent of atherogenic processes in CF patients would seem important to obtain. Such studies should further inform and offer mechanistic insights into how other chronic inflammatory diseases potentiate the processes leading to CVDs.
Collapse
Affiliation(s)
- Elizabeth J Reverri
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| | - Brian M Morrissey
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA
| | - Carroll E Cross
- Adult Cystic Fibrosis Clinic and Division of Pulmonary-Critical Care Medicine, University of California Davis Medical Center, 4150 V Street, Sacramento, CA 95817, USA.
| | - Francene M Steinberg
- Department of Nutrition, University of California Davis, One Shields Avenue, 3135 Meyer Hall, Davis, CA 95616, USA
| |
Collapse
|
31
|
Stoll P, Lommatzsch M. Platelets in asthma: does size matter? Respiration 2014; 88:22-3. [PMID: 24903626 DOI: 10.1159/000362798] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Paul Stoll
- Department of Pneumology and Critical Care Medicine, University of Rostock, Rostock, Germany
| | | |
Collapse
|
32
|
Wang C, Wang C, Ma C, Huang Q, Sun H, Zhang X, Bai X. Hydroxysafflor yellow A of Carthamus tinctorius attenuates lung injury of aged rats exposed to gasoline engine exhaust by down-regulating platelet activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:199-206. [PMID: 24192212 DOI: 10.1016/j.phymed.2013.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/05/2013] [Accepted: 09/28/2013] [Indexed: 06/02/2023]
Abstract
Long-term inhalation of gasoline engine exhaust (GEE) increases the risk of respiratory disease. Studies have suggested involvement of platelets in the development of some lung diseases. Hydroxysafflor yellow A (HSYA), a flavonoid compound, prevents hemostasis. Therefore, we investigated its effects on GEE-induced lung injury, and role of platelets in injury. Sixty-week-old male Sprague-Dawley rats were exposed to GEE for 4h/day for 6 weeks, and then grouped as follows: control, GEE, GEE+HSYA, GEE+HSYA+GW9662, and GEE+GW9662. Arterial oxygen tension (PaO2), carbon dioxide tension (PaCO2), pH, and the PaO2/fraction of inspired oxygen ratio (PaO2/FiO2) in the blood were detected using a blood gas analyzer. Wet/dry lung weight ratio, total protein in bronchoalveolar lavage fluid (BALF), and cytokine concentrations in serum and BALF were determined. Furthermore, cyclic adenosine monophosphate (cAMP) level and expression levels of target proteins were analyzed. Platelets were counted and their state was evaluated. HSYA attenuated GEE-mediated decreases in PaO2, PaO2/FiO2, platelet cAMP level, protein kinase A (PKA) activity, and peroxisome proliferator-activated receptor γ (PPARγ) expression. HSYA also attenuated GEE-mediated increases in lung permeability, cytokine levels in serum and BALF, plasma platelet count, and ADP-mediated platelet aggregation. Moreover, it suppressed GEE-induced increases in the expression of adhesion molecules and proinflammatory cytokines in platelets and lung tissue. Therefore, HSYA is therapeutically effective for GEE-mediated lung injury and acts by enhancing PKA activity and inhibiting platelet activation.
Collapse
Affiliation(s)
- Chaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunhua Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunlei Ma
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Qingxian Huang
- Department of Hepatobiliary Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, PR China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaomin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xianyong Bai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
33
|
Baltazar MT, Dinis-Oliveira RJ, Bastos MDL, Duarte JA, Carvalho F. Lysine acetylsalicylate improves the safety of paraquat formulation in rats by increasing its elimination and preventing lung and kidney injury. Toxicol Res (Camb) 2014; 3:266. [DOI: 10.1039/c3tx50102g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
|
34
|
Zhao C, Su EM, Yang X, Gao Z, Li L, Wu H, Jiang Y, Su X. Important role of platelets in modulating endotoxin-induced lung inflammation in CFTR-deficient mice. PLoS One 2013; 8:e82683. [PMID: 24367540 PMCID: PMC3868547 DOI: 10.1371/journal.pone.0082683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/27/2013] [Indexed: 12/13/2022] Open
Abstract
Mutation of CFTR (cystic fibrosis transmembrane conductance regulator) leads to cystic fibrosis (CF). Patients with CF develop abnormalities of blood platelets and recurrent lung inflammation. However, whether CFTR-mutated platelets play a role in the development of lung inflammation is elusive. Therefore, we intratracheally challenged wildtype and F508del (a common type of CFTR mutation) mice with LPS to observe changes of F508del platelets in the peripheral blood and indexes of lung inflammation (BAL neutrophils and protein levels). Furthermore, we investigated whether or not and how F508del platelets modulate the LPS-induced acute lung inflammation by targeting anti-platelet aggregation, depletion of neutrophils, reconstitution of bone marrow or neutrophils, blockade of P-selectin glycoprotein ligand-1 (PSGL-1), platelet activating factor (PAF), and correction of mutated CFTR trafficking. We found that LPS-challenged F508del mice developed severe thrombocytopenia and had higher levels of plasma TXB2 coincided with neutrophilic lung inflammation relative to wildtype control. Inhibition of F508del platelet aggregation or depletion of F508del neutrophils diminished the LPS-induced lung inflammation in the F508del mice. Moreover, wildtype mice reconstituted with either F508del bone marrow or neutrophils developed worse thrombocytopenia. Blocking PSGL-1, platelet activating factor (PAF), or rectifying trafficking of mutated CFTR in F508del mice diminished and alveolar neutrophil transmigration in the LPS-challenged F508del mice. These findings suggest that F508del platelets and their interaction with neutrophils are requisite for the development of LPS-induced lung inflammation and injury. As such, targeting platelets might be an emerging strategy for dampening recurrent lung inflammation in cystic fibrosis patients.
Collapse
Affiliation(s)
- Caiqi Zhao
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Emily M. Su
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Xi Yang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhaowei Gao
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ling Li
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Haiya Wu
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yiyi Jiang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Su
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
McGivern TJP, Molloy K, Bahar M, McElvaney NG, Moran N, Kerrigan SW. A platelet dense-granule secretion defect may lead to a muted inflammatory cell mobilization response in cystic fibrosis patients. J Thromb Haemost 2013; 11:1939-42. [PMID: 23941691 DOI: 10.1111/jth.12377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Affiliation(s)
- T J P McGivern
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
36
|
Gziut M, MacGregor HJ, Nevell TG, Mason T, Laight D, Shute JK. Anti-inflammatory effects of tobramycin and a copper-tobramycin complex with superoxide dismutase-like activity. Br J Pharmacol 2013; 168:1165-81. [PMID: 23072509 DOI: 10.1111/bph.12018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 09/04/2012] [Accepted: 09/17/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Airway inflammation in cystic fibrosis (CF) patients is characterized by accumulations of neutrophils in the airway and T cells in bronchial tissue, with activation of platelets in the circulation. CF patients are routinely treated with systemic or inhaled tobramycin for airway infection with Pseudomonas aeruginosa. Clinical trials have indicated an anti-inflammatory effect of tobramycin beyond its bactericidal activity. Here, we investigate the anti-inflammatory properties of tobramycin in vitro and consider if these relate to the ability of tobramycin to bind copper, which is elevated in blood and sputum in CF. EXPERIMENTAL APPROACH A copper-tobramycin complex was synthesized. The effect of tobramycin and copper-tobramycin on neutrophil activation and migration of T cells and neutrophils across human lung microvascular endothelial cells in response to thrombin-activated platelets were investigated in vitro. Tobramycin uptake was detected by immunocytochemistry. Intracellular reactive oxygen species were detected using the fluorescent indicator, 2',7'-dichlorofluorescein diacetate (DCFDA). Neutrophil superoxide, hydrogen peroxide and neutrophil elastase activity were measured using specific substrates. Copper was measured using atomic absorption spectroscopy. KEY RESULTS Tobramycin and copper-tobramycin were taken up by endothelial cells via a heparan sulphate-dependent mechanism and significantly inhibited T-cell and neutrophil transendothelial migration respectively. Copper-tobramycin has intracellular and extracellular superoxide dismutase-like activity. Neutrophil elastase inhibition by α1-antitrypsin is enhanced in the presence of copper-tobramycin. Tobramycin and copper-tobramycin are equally effective anti-pseudomonal antibiotics. CONCLUSIONS AND IMPLICATIONS Anti-inflammatory effects of tobramycin in vivo may relate to the spontaneous formation of a copper-tobramycin complex, implying that copper-tobramycin may be more effective therapy.
Collapse
Affiliation(s)
- M Gziut
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | | | | | | | | | | |
Collapse
|
37
|
Liou JT, Lee CM, Lin YC, Chen CY, Liao CC, Lee HC, Day YJ. P-selectin is required for neutrophils and macrophage infiltration into injured site and contributes to generation of behavioral hypersensitivity following peripheral nerve injury in mice. Pain 2013; 154:2150-2159. [PMID: 23831400 DOI: 10.1016/j.pain.2013.06.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Growing evidence suggests that leukocyte extravasation is initiated by the interaction of selectins with their ligands; as well as an essential role for P-selectin in the initial recruitment of inflammatory cells to sites of inflammation. In this study, P-selectin-deficient (P-sel-/-) mice were used to test the hypothesis that lack of P-selectin would attenuate the recruitment of inflammatory cells to the site of inflammation, thereby modulating pain in a murine chronic neuropathic pain model. Nociceptive sensitization and the microenvironment of the peripheral injury site were studied in wild-type (P-sel+/+) and P-selectin-deficient (P-sel-/-) mice after partial sciatic nerve ligation (PSNL). Variables measured included myeloperoxidase (MPO) activity, several inflammatory cell infiltration profiles, cytokines, and endogenous opioid peptide expression in damaged nerves. Results indicate that behavioral hypersensitivity, MPO activity, and infiltration of neutrophils and macrophages were attenuated in P-sel-/- mice after PSNL. Proinflammatory cytokines, tumor necrosis factor α, and interleukin (IL)-6, were reduced in damaged nerves following PSNL; however, several antiinflammatory cytokines - IL-1Ra, IL-4, and IL-10 - were significantly increased in P-sel-/- mice. In addition, endogenous opioid peptides mRNA was significantly lower in P-sel-/- mice compared with P-sel +/+ mice. The current results demonstrated that the absence of P-selectin in mice leads to an altered microenvironment that attenuated behavioral hypersensitivity. The specific role of P-selectin could have been a result of decreased neutrophils, as well as the accumulation of macrophages at the site of injury, which may subsequently modulate the inflammatory cytokine expression and impact behavioral hypersensitivity within the injured nerve.
Collapse
Affiliation(s)
- Jiin-Tarng Liou
- Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Transgenic & Molecular Immunogenetics Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Department of Medicine, Chang Gung University, Linkou, Taiwan, ROC Department of Medical Research and Development, Chang Gung Memorial Hospital, Linkou, Taiwan, ROC Graduate Institutes of Clinical Medical Sciences, Chang Gung University, Linkou, Taiwan, ROC Department of Anesthesiology, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Abstract
Platelets and the lungs have an intimate relationship. Platelets are anucleate mammalian blood cells that continuously circulate through pulmonary vessels and that have major effector activities in hemostasis and inflammation. The lungs are reservoirs for megakaryocytes, the requisite precursor cell in thrombopoiesis, which is the intricate process by which platelets are generated. Platelets contribute to basal barrier integrity of the alveolar capillaries, which selectively restricts the transfer of water, proteins, and red blood cells out of the vessels. Platelets also contribute to pulmonary vascular repair. Although platelets bolster hemostatic and inflammatory defense of the healthy lung, experimental evidence and clinical evidence indicate that these blood cells are effectors of injury in a variety of pulmonary disorders and syndromes. Newly discovered biological capacities of platelets are being explored in the context of lung defense, disease, and remodeling.
Collapse
Affiliation(s)
- Andrew S. Weyrich
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112
- Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Guy A. Zimmerman
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84112
| |
Collapse
|
40
|
Pauling JD, O’Donnell VB, Mchugh NJ. The contribution of platelets to the pathogenesis of Raynaud's phenomenon and systemic sclerosis. Platelets 2012; 24:503-15. [DOI: 10.3109/09537104.2012.719090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Abstract
Ion channels are transmembrane proteins that play ubiquitous roles in cellular homeostasis and activation. In addition to their recognized role in the regulation of ionic permeability and thus membrane potential, some channel proteins possess intrinsic kinase activity, directly interact with integrins or are permeable to molecules up to ≈1000 Da. The small size and anuclear nature of the platelet has often hindered progress in understanding the role of specific ion channels in hemostasis, thrombosis and other platelet-dependent events. However, with the aid of transgenic mice and 'surrogate' patch clamp recordings from primary megakaryocytes, important unique contributions to platelet function have been identified for several classes of ion channel. Examples include ATP-gated P2X1 channels, Orai1 store-operated Ca2+ channels, voltage-gated Kv1.3 channels, AMPA and kainate glutamate receptors and connexin gap junction channels. Furthermore, evidence exists that some ion channels, such as NMDA glutamate receptors, contribute to megakaryocyte development. This review examines the evidence for expression of a range of ion channels in the platelet and its progenitor cell, and highlights the distinct roles that these proteins may play in health and disease.
Collapse
Affiliation(s)
- M P Mahaut-Smith
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK.
| |
Collapse
|
42
|
Uysal P, Tuncel T, Olmez D, Babayigit A, Karaman O, Uzuner N. The role of mean platelet volume predicting acute exacerbations of cystic fibrosis in children. Ann Thorac Med 2012; 6:227-30. [PMID: 21977069 PMCID: PMC3183641 DOI: 10.4103/1817-1737.84778] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Accepted: 06/10/2011] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE: The aim of this study is to evaluate the relationship between acute exacerbations and the mean platelet volume (MPV) trend in children with cystic fibrosis (CF), to predict the exacerbations. METHODS: A total of 46 children with CF and 37 healthy children were enrolled in the study. White blood cell count (WBC), hemoglobin level, platelet count, mean platelet volume (MPV), and mean corpuscular volume (MCV) were retrospectively recorded. RESULTS: Our study population consisted of 25 (54.3%) males and 21 (45.7%) females with CF and 20 (54.0%) males and 17 (46.0%) females in the healthy control group. The mean age of the CF patients was 6.32 ± 4.9 years and that of the healthy subjects was 7.02 ± 3.15 years. In the acute exacerbation period of CF, the MPV values were lower and WBC and platelet counts were higher than those in the healthy controls (P = 0.00, P = 0.00, P = 0.00, respectively). Besides, in acute exacerbation, the MPV values were lower and the WBC count was higher than the values in the non-exacerbation period (P 0= 0.01, P = 0.00, respectively). In the non-exacerbation period MPV was lower and platelet count was higher when compared to healthy subjects (P = 0.02, P = 0.04, respectively). CONCLUSION: This study suggests that MPV might be used as a simple, cost effective, diagnostic, predictive indicator for platelet activation in pediatric CF patients related to chronic inflammation, which might be helpful to discriminate or estimate exacerbations.
Collapse
Affiliation(s)
- Pιnar Uysal
- Department of Pediatrics, Dokuz Eylul University Hospital, Division of Allergy, Inciralti, Izmir, Turkey
| | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Takemoto CM. Venous thromboembolism in cystic fibrosis. Pediatr Pulmonol 2012; 47:105-12. [PMID: 22006666 DOI: 10.1002/ppul.21566] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/13/2011] [Indexed: 01/13/2023]
Abstract
The incidence of venous thromboembolism (VTE) is increasing in the pediatric population. Individuals with cystic fibrosis (CF) have an increased risk of thrombosis due to central venous catheters (CVCs), as well as acquired thrombophilia secondary to inflammation, or deficiencies of anticoagulant proteins due to vitamin K deficiency and/or liver dysfunction. CVC-associated thrombosis commonly results in line occlusion, but may develop into serious life-threatening conditions such as deep venous thrombosis (DVT), superior vena cava syndrome or pulmonary embolism (PE). Post-thrombotic syndrome (PTS) may be a long complication. Local occlusion of the catheter tip may be managed with instillation of thrombolytics (such as tPA) within the lumen of the catheter; however, CVC-associated thrombosis involving the proximal veins is most often is treated with systemic anticoagulation. Initial treatment with heparin is a standard approach, but thrombolytic therapy, which may carry higher bleeding risks, should be considered for life and limb threatening episodes of VTE. Recommended duration of anticoagulation with low molecular weight heparin (LMWH) or warfarin ranges from 3 to 6 months for major removable thrombotic risks; longer anticoagulation is considered for recurrent thrombosis, major persistent thrombophilia, or the continued presence of a major risk factor such as a CVC. While CVCs are the most common risk for development of VTE in children, studies have not demonstrated a clear benefit with routine use of systemic thromboprophylaxis. The incidence and risk factors of VTE in CF patients will be reviewed and principles of diagnosis and management will be summarized.
Collapse
Affiliation(s)
- Clifford M Takemoto
- Division of Pediatric Hematology, The Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
45
|
Abstract
Nanostructured particulate materials are expected to revolutionize diagnostics and the delivery of therapeutics for healthcare. To date, chemistry-derived solutions have been the major focus in the design of materials to control interactions with biological systems. Only recently has control over a new set of physical parameters, including size, shape, and rigidity, been explored to optimize the biological response and the in vivo performance of nanoengineered delivery vectors. This Review highlights the methods used to manipulate the physical properties of particles and the relevance of these physical properties to cellular and circulatory interactions. Finally, the importance of future work to synergistically tailor both physical and chemical properties of particulate materials is discussed, with the aim of improving control over particle interactions in the biological domain.
Collapse
Affiliation(s)
- James P Best
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
46
|
|
47
|
Baldissera L, Monteiro PF, de Mello GC, Morganti RP, Antunes E. Platelet adhesion and intracellular calcium levels in antigen-challenged rats. Pulm Pharmacol Ther 2010; 23:327-33. [PMID: 20307679 DOI: 10.1016/j.pupt.2010.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/24/2010] [Accepted: 03/13/2010] [Indexed: 12/19/2022]
Abstract
There is considerable evidence that platelet activation occurs in allergic airways diseases. In this study we aimed to investigate platelet adhesion to immobilized fibrinogen and intracellular calcium levels in a rat model of allergic inflammation. Male Wistar rats were challenged with ovalbumin (OVA). At 30 min to 24h after OVA-challenge, assays of platelet adhesion to immobilized fibrinogen and intracellular calcium levels using fura 2-AM loaded platelets were performed. The serum levels of IgE were approximately 5-fold greater in OVA-sensitized rats. A marked eosinophil influx in bronchoalveolar lavage (BAL) fluid of OVA-challenged rats at 24h after OVA-challenge was also seen. OVA-challenge resulted in a marked thrombocytopenia, as observed within 12h after OVA-challenge. The agonists ADP (0.5-50 microM) and thrombin (30-100 mU/ml) concentration-dependently increased platelet adhesion to immobilized fibrinogen. At an early time after OVA-challenge (30 min), platelets exhibited greater platelet adhesion compared with the non-sensitized group, whereas at a late time (24h) they exhibited lower platelet adhesion to both agonists. Moreover, at 30 min after OVA-challenge, intracellular calcium levels to ADP (20 microM) and thrombin (100 mU/ml)-activated platelets were greater compared with non-challenged rats. As opposed, at 24h after OVA challenge, a lower intracellular calcium level to ADP- and thrombin-activated platelets was observed. In conclusion, OVA-challenge in rats promotes a biphasic response in platelet adhesion consisting of an increased adhesion and intracellular calcium levels at an early phase (30 min), which progress to a reduction in adhesion and intracellular calcium levels at a late time (24h) after antigen challenge.
Collapse
Affiliation(s)
- Lineu Baldissera
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, PO BOX 6111, Campinas, São Paulo 13084-971, Brazil
| | | | | | | | | |
Collapse
|
48
|
Sturm A, Hebestreit H, Koenig C, Walter U, Grossmann R. Platelet proinflammatory activity in clinically stable patients with CF starts in early childhood. J Cyst Fibros 2010; 9:179-86. [PMID: 20153702 DOI: 10.1016/j.jcf.2009.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND Early onset chronic inflammation is present in CF. Platelets may contribute to inflammation by cytokine release and interaction with leukocytes. METHODS Parameters of platelet proinflammatory function (soluble CD62P, soluble CD40L, the percentage of platelet-leukocyte aggregates, platelet CD62P) and platelet procoagulatory function (PAC-1-binding to activated integrin alpha(IIb)beta(3) and expression of integrin alpha(IIb)beta(3)=CD41a) were measured in patients and controls. RESULTS Levels of sCD62P, sCD40L were increased in CF irrespective of age and activity of inflammation. The number of platelet-leukocyte aggregates was elevated in older CF patients. PAC-1-binding to platelets decreased with growing activity of inflammation. Exocytosis of CD41a upon platelet activation was reduced. CONCLUSION In CF, platelet proinflammatory activity is increased at very young age already and might promote inflammation and tissue damage. On the other hand, platelets seem to downregulate the activation of their most important integrin (alpha(IIb)beta(3)) for clot formation.
Collapse
|
49
|
|
50
|
Adult cystic fibrosis patients with and without infective exacerbations and their factor XII levels. Blood Coagul Fibrinolysis 2009; 20:400-2. [DOI: 10.1097/mbc.0b013e3283249ac6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|