1
|
Mazzocato Y, Perin S, Morales-Sanfrutos J, Romanyuk Z, Pluda S, Acquasaliente L, Borsato G, De Filippis V, Scarso A, Angelini A. A novel genetically-encoded bicyclic peptide inhibitor of human urokinase-type plasminogen activator with better cross-reactivity toward the murine orthologue. Bioorg Med Chem 2023; 95:117499. [PMID: 37879145 DOI: 10.1016/j.bmc.2023.117499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023]
Abstract
The inhibition of human urokinase-type plasminogen activator (huPA), a serine protease that plays an important role in pericellular proteolysis, is a promising strategy to decrease the invasive and metastatic activity of tumour cells. However, the generation of selective small molecule huPA inhibitors has proven to be challenging due to the high structural similarity of huPA to other paralogue serine proteases. Efforts to generate more specific therapies have led to the development of cyclic peptide-based inhibitors with much higher selectivity against huPA. While this latter property is desired, the sparing of the orthologue murine poses difficulties for the testing of the inhibitor in preclinical mouse model. In this work, we have applied a Darwinian evolution-based approach to identify phage-encoded bicyclic peptide inhibitors of huPA with better cross-reactivity towards murine uPA (muPA). The best selected bicyclic peptide (UK132) inhibited huPA and muPA with Ki values of 0.33 and 12.58 µM, respectively. The inhibition appears to be specific for uPA, as UK132 only weakly inhibits a panel of structurally similar serine proteases. Removal or substitution of the second loop with one not evolved in vitro led to monocyclic and bicyclic peptide analogues with lower potency than UK132. Moreover, swapping of 1,3,5-tris-(bromomethyl)-benzene with different small molecules not used in the phage selection, resulted in an 80-fold reduction of potency, revealing the important structural role of the branched cyclization linker. Further substitution of an arginine in UK132 to a lysine resulted in a bicyclic peptide UK140 with enhanced inhibitory potency against both huPA (Ki = 0.20 µM) and murine orthologue (Ki = 2.79 µM). By combining good specificity, nanomolar affinity and a low molecular mass, the bicyclic peptide inhibitor developed in this work may provide a novel human and murine cross-reactive lead for the development of a potent and selective anti-metastatic therapy.
Collapse
Affiliation(s)
- Ylenia Mazzocato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Stefano Perin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Julia Morales-Sanfrutos
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), C. de Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Zhanna Romanyuk
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Stefano Pluda
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; Fidia Farmaceutici S.p.A., Via Ponte della Fabbrica 3/A, Abano Terme 35031, Italy
| | - Laura Acquasaliente
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Giuseppe Borsato
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Vincenzo De Filippis
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Alessandro Scarso
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy; European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30123 Venice, Italy.
| |
Collapse
|
2
|
Yang K, Li Z, Chen Y, Yin F, Ji X, Zhou J, Li X, Zeng T, Fei C, Ren C, Wang Y, Fang L, Chen L, Zhang P, Mu L, Qian Y, Chen Y, Yin W. Na, K-ATPase α1 cooperates with its endogenous ligand to reprogram immune microenvironment of lung carcinoma and promotes immune escape. SCIENCE ADVANCES 2023; 9:eade5393. [PMID: 36763655 PMCID: PMC9916986 DOI: 10.1126/sciadv.ade5393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Dysregulated endocrine hormones (EHs) contribute to tumorigenesis, but how EHs affect the tumor immune microenvironment (TIM) and the immunotherapy of non-small cell lung cancer (NSCLC) is still unclear. Here, endogenous ouabain (EO), an adrenergic hormone, is elevated in patients with NSCLC and closely related to tumor pathological stage, metastasis, and survival. EO promotes the suppression of TIM in vivo by modulating the expression of immune checkpoint proteins, in which programmed cell death protein ligand 1 (PD-L1) plays a major role. EO increases PD-L1 transcription; however, the EO receptor Na- and K-dependent adenosine triphosphatase (Na, K-ATPase) α1 interacts with PD-L1 to trigger the endocytic degradation of PD-L1. This seemingly contradictory result led us to discover the mechanism whereby EO cooperates with Na, K-ATPase α1 to finely control PD-L1 expression and dampen tumoral immunity. In conclusion, the Na, K-ATPase α1/EO signaling facilitates immune escape in lung cancer, and manipulation of this signaling shows great promise in improving immunotherapy for lung adenocarcinoma.
Collapse
Affiliation(s)
- Kaiyong Yang
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zijian Li
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaojun Ji
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jiaqian Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xin Li
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Tao Zeng
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Chenghao Fei
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenchen Ren
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yulin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing 210093, China
| | - Lili Chen
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Pei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Liyan Mu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuxuan Qian
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yan Chen
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
El Salamouni NS, Buckley BJ, Ranson M, Kelso MJ, Yu H. Urokinase plasminogen activator as an anti-metastasis target: inhibitor design principles, recent amiloride derivatives, and issues with human/mouse species selectivity. Biophys Rev 2022; 14:277-301. [PMID: 35340592 PMCID: PMC8921380 DOI: 10.1007/s12551-021-00921-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/18/2021] [Indexed: 01/09/2023] Open
Abstract
The urokinase plasminogen activator (uPA) is a widely studied anticancer drug target with multiple classes of inhibitors reported to date. Many of these inhibitors contain amidine or guanidine groups, while others lacking these groups show improved oral bioavailability. Most of the X-ray co-crystal structures of small molecule uPA inhibitors show a key salt bridge with the side chain carboxylate of Asp189 in the S1 pocket of uPA. This review summarises the different classes of uPA inhibitors, their binding interactions and experimentally measured inhibitory potencies and highlights species selectivity issues with attention to recently described 6-substituted amiloride and 5‑N,N-(hexamethylene)amiloride (HMA) derivatives.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Benjamin J. Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Michael J. Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522 Australia
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| |
Collapse
|
4
|
S El Salamouni N, Buckley BJ, Jiang L, Huang M, Ranson M, Kelso MJ, Yu H. Disruption of Water Networks is the Cause of Human/Mouse Species Selectivity in Urokinase Plasminogen Activator (uPA) Inhibitors Derived from Hexamethylene Amiloride (HMA). J Med Chem 2021; 65:1933-1945. [PMID: 34898192 DOI: 10.1021/acs.jmedchem.1c01423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The urokinase plasminogen activator (uPA) plays a critical role in tumor cell invasion and migration and is a promising antimetastasis target. 6-Substituted analogues of 5-N,N-(hexamethylene)amiloride (HMA) are potent and selective uPA inhibitors that lack the diuretic and antikaliuretic properties of the parent drug amiloride. However, the compounds display pronounced selectivity for human over mouse uPA, thus confounding interpretation of data from human xenograft mouse models of cancer. Here, computational and experimental findings reveal that residue 99 is a key contributor to the observed species selectivity, whereby enthalpically unfavorable expulsion of a water molecule by the 5-N,N-hexamethylene ring occurs when residue 99 is Tyr (as in mouse uPA). Analogue 7 lacking the 5-N,N-hexamethylene ring maintained similar water networks when bound to human and mouse uPA and displayed reduced selectivity, thus supporting this conclusion. The study will guide further optimization of dual-potent human/mouse uPA inhibitors from the amiloride class as antimetastasis drugs.
Collapse
Affiliation(s)
- Nehad S El Salamouni
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Benjamin J Buckley
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
| | - Longguang Jiang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fujian 350116, China
| | - Mingdong Huang
- National Joint Biomedical Engineering Research Centre on Photodynamic Technologies, Fuzhou University, Fujian 350116, China
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.,CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
| | - Michael J Kelso
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Haibo Yu
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.,Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
5
|
Mahmood N, Rabbani SA. Fibrinolytic System and Cancer: Diagnostic and Therapeutic Applications. Int J Mol Sci 2021; 22:ijms22094358. [PMID: 33921923 PMCID: PMC8122389 DOI: 10.3390/ijms22094358] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrinolysis is a crucial physiological process that helps to maintain a hemostatic balance by counteracting excessive thrombosis. The components of the fibrinolytic system are well established and are associated with a wide array of physiological and pathophysiological processes. The aberrant expression of several components, especially urokinase-type plasminogen activator (uPA), its cognate receptor uPAR, and plasminogen activator inhibitor-1 (PAI-1), has shown a direct correlation with increased tumor growth, invasiveness, and metastasis. As a result, targeting the fibrinolytic system has been of great interest in the field of cancer biology. Even though there is a plethora of encouraging preclinical evidence on the potential therapeutic benefits of targeting the key oncogenic components of the fibrinolytic system, none of them made it from “bench to bedside” due to a limited number of clinical trials on them. This review summarizes our existing understanding of the various diagnostic and therapeutic strategies targeting the fibrinolytic system during cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
| | - Shafaat A. Rabbani
- Department of Medicine, McGill University, Montréal, QC H4A3J1, Canada;
- Department of Medicine, McGill University Health Centre, Montréal, QC H4A3J1, Canada
- Correspondence:
| |
Collapse
|
6
|
Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:9-20. [PMID: 33442233 PMCID: PMC7797289 DOI: 10.2147/dddt.s285852] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
In cancer treatments, many natural and synthetic products have been examined; among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysregulated proteolytic activities can contribute to tumor development and metastasis, antagonization of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of early designs of these inhibitors disappeared after the introduction of next-generation agents, most of the proposed inhibitors did not pass the early stages of clinical trials due to their nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that modulate proteases more specifically and serve their programmed way of administration are highly appreciated. In this context, nanosized drug delivery systems have attracted much attention because preliminary studies have demonstrated that the therapeutic capacity of inhibitors has been improved significantly with encapsulated formulation as compared to their free forms. Here, we address this issue and discuss the current application and future clinical prospects of this potential combination towards targeted protease-based cancer therapy.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Cenk Daglioglu
- Biotechnology and Bioengineering Application and Research Center, Integrated Research Centers, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Fatma Necmiye Kaci
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Yakutiye, Erzurum 25050, Turkey
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, Lyon F-69622, France
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
7
|
NF-κB inhibitors in treatment and prevention of lung cancer. Biomed Pharmacother 2020; 130:110569. [PMID: 32750649 DOI: 10.1016/j.biopha.2020.110569] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/12/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022] Open
Abstract
Intracellular signalling pathways have provided excellent resource for drug development particularly in the development of cancer therapeutics. A wide variety of malignancies common in human exhibit aberrant NF-κB constitutive expression which results in tumorigenic processes and cancer survival in a variety of solid tumour, including pancreatic cancer, lung, cervical, prostate, breast and gastric carcinoma. Numerous evidences indicate that NF-κB signalling mechanism is mainly involved in the progression of several cancers which may intensify an enhanced knowledge on its role in disease particularly lung tumorigenesis. This has led to tremendous research in designing a variety of NF-κB antagonists with enhanced clinical applications through different approaches the most common being suppression of IκB kinase (IKK) beta activity. Many NF-κB inhibitors for lung cancer are now under clinical trials. Preliminary results of clinical trials for several of these agents include small-molecule inhibitors and monoclonal antibodies. A few combinatorial treatment therapies are currently under investigation in the clinics and have shown promise, particularly NF-κB inhibition associated with lung cancer.
Collapse
|
8
|
Lin H, Xu L, Yu S, Hong W, Huang M, Xu P. Therapeutics targeting the fibrinolytic system. Exp Mol Med 2020; 52:367-379. [PMID: 32152451 PMCID: PMC7156416 DOI: 10.1038/s12276-020-0397-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/08/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023] Open
Abstract
The function of the fibrinolytic system was first identified to dissolve fibrin to maintain vascular patency. Connections between the fibrinolytic system and many other physiological and pathological processes have been well established. Dysregulation of the fibrinolytic system is closely associated with multiple pathological conditions, including thrombosis, inflammation, cancer progression, and neuropathies. Thus, molecules in the fibrinolytic system are potent therapeutic and diagnostic targets. This review summarizes the currently used agents targeting this system and the development of novel therapeutic strategies in experimental studies. Future directions for the development of modulators of the fibrinolytic system are also discussed. The fibrinolytic system was originally identified to dissolve blood clots, and is shown to have important roles in other pathological processes, including cancer progression, inflammation, and thrombosis. Molecules or therapeutics targeting fibrinolytic system have been successfully used in the clinical treatments of cancer and thrombotic diseases. The clinical studies and experimental models targeting fibrinolytic system are reviewed by Haili Lin at Sanming First Hosipital, Mingdong Huang at Fuzhou University in China, and Peng Xu at A*STAR in Singapore to demonstrate fibrinolytic system as novel therapeutic targets. As an example, the inhibition of fibrinolytic system protein can be used to suppress cancer prolifieration and metastasis. This review also discusses the potential therapeutic effects of inhibitiors of fibrinolytic system on inflammatory disorders.
Collapse
Affiliation(s)
- Haili Lin
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Luning Xu
- Department of Pharmacy, Sanming First Hospital, 365000, Sanming, Fujian, People's Republic of China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, 350116, Fuzhou, Fujian, People's Republic of China.
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| |
Collapse
|
9
|
Wang D, Yang Y, Jiang L, Wang Y, Li J, Andreasen PA, Chen Z, Huang M, Xu P. Suppression of Tumor Growth and Metastases by Targeted Intervention in Urokinase Activity with Cyclic Peptides. J Med Chem 2019; 62:2172-2183. [PMID: 30707839 DOI: 10.1021/acs.jmedchem.8b01908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urokinase-type plasminogen activator (uPA) is a diagnostic marker for breast and prostate cancers recommended by American Society for Clinical Oncology and German Breast Cancer Society. Inhibition of uPA was proposed as an efficient strategy for cancer treatments. In this study, we report peptide-based uPA inhibitors with high potency and specificity comparable to monoclonal antibodies. We revealed the binding and inhibitory mechanisms by combining crystallography, molecular dynamic simulation, and other biophysical and biochemical approaches. Besides, we showed that our peptides efficiently inhibited the invasion of cancer cells via intervening with the processes of the degradation of extracellular matrices. Furthermore, our peptides significantly suppressed the tumor growth and the cancer metastases in tumor-bearing mice. This study demonstrates that these uPA peptides are highly potent anticancer agents and reveals the mechanistic insights of these uPA inhibitors, which can be useful for developing other serine protease inhibitors.
Collapse
Affiliation(s)
- Dong Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , No.19 (A) Yuquan Road , Shijingshan District, Beijing 100049 , China
| | - Yongshuai Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,University of Chinese Academy of Sciences , No.19 (A) Yuquan Road , Shijingshan District, Beijing 100049 , China.,College of Life Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Longguang Jiang
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Yu Wang
- College of Life Science , Fujian Agriculture and Forestry University , Fuzhou , Fujian 350002 , China
| | - Jinyu Li
- College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics , Aarhus University , Aarhus C 8000 , Denmark
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China.,College of Chemistry , Fuzhou University , Fuzhou , Fujian 350116 , China
| | - Peng Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , 155 West Yangqiao Road , Fuzhou , Fujian 350002 , China
| |
Collapse
|
10
|
Eden G, Archinti M, Arnaudova R, Andreotti G, Motta A, Furlan F, Citro V, Cubellis MV, Degryse B. D2A sequence of the urokinase receptor induces cell growth through αvβ3 integrin and EGFR. Cell Mol Life Sci 2018; 75:1889-1907. [PMID: 29184982 PMCID: PMC11105377 DOI: 10.1007/s00018-017-2718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
The urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvβ3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR. The mitogenic sequence of uPAR corresponds to the D2A motif present in domain 2. NMR analysis revealed that D2A synthetic peptide has a particular three-dimensional structure, which is atypical for short peptides. D2A peptide is as effective as EGF in promoting EGFR phosphorylation and cell proliferation that were inhibited by AG1478, a specific inhibitor of the tyrosine kinase activity of EGFR. Both D2A and EGF failed to induce proliferation of NR6-EGFR-K721A cells expressing a kinase-defective mutant of EGFR. Moreover, D2A peptide and EGF phosphorylate ERK demonstrating the involvement of the MAP kinase signalling pathway. Altogether, this study reveals the importance of sequence D2A of uPAR, and the interdependence of uPAR and EGFR.
Collapse
Affiliation(s)
- Gabriele Eden
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Medical Clinic V, Teaching Hospital Braunschweig, Salzdahlumer Straße 90, 38126, Brunswick, Germany
| | - Marco Archinti
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Ralitsa Arnaudova
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Andrea Motta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Federico Furlan
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- BoNetwork Programme, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Citro
- Dipartimento di Biologia, Università Federico II, Naples, Italy
| | | | - Bernard Degryse
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
11
|
Schuliga M, Grainge C, Westall G, Knight D. The fibrogenic actions of the coagulant and plasminogen activation systems in pulmonary fibrosis. Int J Biochem Cell Biol 2018; 97:108-117. [PMID: 29474926 DOI: 10.1016/j.biocel.2018.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/16/2018] [Accepted: 02/19/2018] [Indexed: 12/27/2022]
Abstract
Fibrosis causes irreversible damage to lung structure and function in restrictive lung diseases such as idiopathic pulmonary fibrosis (IPF). Extravascular coagulation involving fibrin formation in the intra-alveolar compartment is postulated to have a pivotal role in the development of pulmonary fibrosis, serving as a provisional matrix for migrating fibroblasts. Furthermore, proteases of the coagulation and plasminogen activation (plasminergic) systems that form and breakdown fibrin respectively directly contribute to pulmonary fibrosis. The coagulants, thrombin and factor Xa (FXa) evoke fibrogenic effects via cleavage of the N-terminus of protease-activated receptors (PARs). Whilst the formation and activity of plasmin, the principle plasminergic mediator is suppressed in the airspaces of patients with IPF, localized increases are likely to occur in the lung interstitium. Plasmin-evoked proteolytic activation of factor XII (FXII), matrix metalloproteases (MMPs) and latent, matrix-bound growth factors such as epidermal growth factor (EGF) indirectly implicate plasmin in pulmonary fibrosis. Another plasminergic protease, urokinase plasminogen activator (uPA) is associated with regions of fibrosis in the remodelled lung of IPF patients and elicits fibrogenic activity via binding its receptor (uPAR). Plasminogen activator inhibitor-1 (PAI-1) formed in the injured alveolar epithelium also contributes to pulmonary fibrosis in a manner that involves vitronectin binding. This review describes the mechanisms by which components of the two systems primarily involved in fibrin homeostasis contribute to interstitial fibrosis, with a particular focus on IPF. Selectively targeting the receptor-mediated mechanisms of coagulant and plasminergic proteases may limit pulmonary fibrosis, without the bleeding complications associated with conventional anti-coagulant and thrombolytic therapies.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.
| | - Christopher Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Glen Westall
- Allergy, Immunology and Respiratory Medicine, Alfred Hospital, Prahran, Victoria, Australia
| | - Darryl Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Canada
| |
Collapse
|
12
|
Ivanova T, Hardes K, Kallis S, Dahms SO, Than ME, Künzel S, Böttcher-Friebertshäuser E, Lindberg I, Jiao GS, Bartenschlager R, Steinmetzer T. Optimization of Substrate-Analogue Furin Inhibitors. ChemMedChem 2017; 12:1953-1968. [PMID: 29059503 DOI: 10.1002/cmdc.201700596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/19/2017] [Indexed: 12/21/2022]
Abstract
The proprotein convertase furin is a potential target for drug design, especially for the inhibition of furin-dependent virus replication. All effective synthetic furin inhibitors identified thus far are multibasic compounds; the highest potency was found for our previously developed inhibitor 4-(guanidinomethyl)phenylacetyl-Arg-Tle-Arg-4-amidinobenzylamide (MI-1148). An initial study in mice revealed a narrow therapeutic range for this tetrabasic compound, while significantly reduced toxicity was observed for some tribasic analogues. This suggests that the toxicity depends at least to some extent on the overall multibasic character of this inhibitor. Therefore, in a first approach, the C-terminal benzamidine of MI-1148 was replaced by less basic P1 residues. Despite decreased potency, a few compounds still inhibit furin in the low nanomolar range, but display negligible efficacy in cells. In a second approach, the P2 arginine was replaced by lysine; compared to MI-1148, this furin inhibitor has slightly decreased potency, but exhibits similar antiviral activity against West Nile and Dengue virus in cell culture and decreased toxicity in mice. These results provide a promising starting point for the development of efficacious and well-tolerated furin inhibitors.
Collapse
Affiliation(s)
- Teodora Ivanova
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Kornelia Hardes
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| | - Stephanie Kallis
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Sven O Dahms
- Protein Crystallography Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany.,Department of Molecular Biology, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Manuel E Than
- Protein Crystallography Group, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Sebastian Künzel
- Faculty of Engineering Sciences, Hochschule Ansbach, Residenzstraße 8, 91522, Ansbach, Germany
| | | | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland Medical School, Baltimore, MD, 21201, USA
| | - Guan-Sheng Jiao
- Department of Chemistry, Hawaii Biotech, Inc., Honolulu, HI, USA.,MedChem ShortCut LLC, Pearl City, HI, USA
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany.,German Center for Infection Research, Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120, Heidelberg, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University, Marbacher Weg 6, 35032, Marburg, Germany
| |
Collapse
|
13
|
Xu P, Andreasen PA, Huang M. Structural Principles in the Development of Cyclic Peptidic Enzyme Inhibitors. Int J Biol Sci 2017; 13:1222-1233. [PMID: 29104489 PMCID: PMC5666521 DOI: 10.7150/ijbs.21597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023] Open
Abstract
This review summarizes our studies in the development of small cyclic peptides for specifically modulating enzyme activity. Serine proteases share highly similar active sites but perform diverse physiological and pathological functions. From a phage-display peptide library, we isolated two mono-cyclic peptides, upain-1 (CSWRGLENHRMC) and mupain-1 (CPAYSRYLDC), which inhibit the activity of human and murine urokinase-type plasminogen activators (huPA and muPA) with Ki values in the micromolar or sub-micromolar range, respectively. The following affinity maturations significantly enhanced the potencies of the two peptides, 10-fold and >250-fold for upain-1 and mupain-1, respectively. The most potent muPA inhibitor has a potency (Ki = 2 nM) and specificity comparable to mono-clonal antibodies. Furthermore, we also found an unusual feature of mupain-1 that its inhibitory potency can be enhanced by increasing the flexibility, which challenges the traditional viewpoint that higher rigidity leading to higher affinity. Moreover, by changing a few key residues, we converted mupain-1 from a uPA inhibitor to inhibitors of other serine proteases, including plasma kallikrein (PK) and coagulation factor XIa (fXIa). PK and fXIa inhibitors showed Ki values in the low nanomolar range and high specificity. Our studies demonstrate the versatility of small cyclic peptides to engineer inhibitory potency against serine proteases and to provide a new strategy for generating peptide inhibitors of serine proteases.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China
| | - Peter A Andreasen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Mingdong Huang
- State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P.R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, P.R. China
| |
Collapse
|
14
|
Yamada Y, Kanayama S, Ito F, Kurita N, Kobayashi H. A novel peptide blocking cancer cell invasion by structure-based drug design. Biomed Rep 2017; 7:221-225. [PMID: 28819560 DOI: 10.3892/br.2017.957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/31/2017] [Indexed: 01/09/2023] Open
Abstract
The receptor for the urokinase-type plasminogen activator (uPA), uPAR, facilitates tumor cell invasion and metastasis by focusing on several ligands, including uPA, integrins and vitronectin. With computational prediction algorithms and structure-based drug design, we identified peptides containing the Gly-Lys-Gly-Glu-Gly-Glu-Gly-Lys-Gly sequence (peptide H1), which strongly interacts with uPAR. The aim of the present study was to investigate the effect of allosteric inhibition at the uPAR interface using a novel synthetic peptide and its function on ovarian cancer cell invasion. The molecular and functional mechanisms of H1 were determined by complementary biochemical and biological methods in the promyeloid U937 cell line as well as ovarian cancer cell lines, including serous carcinoma SKOV3 and clear cell carcinoma TOV21G. The effects of H1 treatment on cancer cell invasion were evaluated in vitro. H1 inhibited cancer cell invasion, without affecting cell viability, accompanied by the suppression of extracellular signal-regulated kinase (ERK)-1 phosphorylation and then matrix metalloproteinase (MMP)-9 expression. H1 failed to block the interaction of uPA-uPAR protein-protein interaction in cells, but antagonized the uPA function. H1 failed to disrupt the uPA-uPAR complex, but abolished the invasion of ovarian cancer cells at least through suppression of the ERK-MMP-9 signaling pathway. Further studies are needed to confirm our observations and to describe the underlying molecular mechanism.
Collapse
Affiliation(s)
- Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| | - Seiji Kanayama
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| | - Fuminori Ito
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| | - Noriyuki Kurita
- Department of Computer Science of Engineering, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan
| |
Collapse
|
15
|
Filtjens J, Keirsse J, Van Ammel E, Taveirne S, Van Acker A, Kerre T, Taghon T, Vandekerckhove B, Plum J, Van Ginderachter JA, Leclercq G. Expression of the inhibitory Ly49E receptor is not critically involved in the immune response against cutaneous, pulmonary or liver tumours. Sci Rep 2016; 6:30564. [PMID: 27469529 PMCID: PMC4965774 DOI: 10.1038/srep30564] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023] Open
Abstract
Natural killer (NK) lymphocytes are part of the innate immune system and are important in immune protection against tumourigenesis. NK cells display a broad repertoire of activating and inhibitory cell surface receptors that regulate NK cell activity. The Ly49 family of NK receptors is composed of several members that recognize major histocompatibility complex class I (MHC-I) or MHC-I-related molecules. Ly49E is a unique inhibitory member, being triggered by the non-MHC-I-related protein urokinase plasminogen activator (uPA) in contrast to the known MHC-I-triggering of the other inhibitory Ly49 receptors. Ly49E also has an uncommon expression pattern on NK cells, including high expression on liver DX5− NK cells. Furthermore, Ly49E is the only Ly49 member expressed by epidermal γδ T cells. As γδ T cells and/or NK cells have been shown to be involved in the regulation of cutaneous, pulmonary and liver malignancies, and as uPA is involved in tumourigenesis, we investigated the role of the inhibitory Ly49E receptor in the anti-tumour immune response. We demonstrate that, although Ly49E is highly expressed on epidermal γδ T cells and liver NK cells, this receptor does not play a major role in the control of skin tumour formation or in lung and liver tumour development.
Collapse
Affiliation(s)
- Jessica Filtjens
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Jiri Keirsse
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Els Van Ammel
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Sylvie Taveirne
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Aline Van Acker
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Tessa Kerre
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Tom Taghon
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | | | - Jean Plum
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Lab, VIB Inflammation Research Center, Ghent, Belgium.,Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Georges Leclercq
- Laboratory of Experimental Immunology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Gladysz R, Adriaenssens Y, De Winter H, Joossens J, Lambeir AM, Augustyns K, Van der Veken P. Discovery and SAR of Novel and Selective Inhibitors of Urokinase Plasminogen Activator (uPA) with an Imidazo[1,2-a]pyridine Scaffold. J Med Chem 2015; 58:9238-57. [DOI: 10.1021/acs.jmedchem.5b01171] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rafaela Gladysz
- Laboratory
of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| | - Yves Adriaenssens
- Laboratory
of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| | - Hans De Winter
- Laboratory
of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| | - Jurgen Joossens
- Laboratory
of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| | - Anne-Marie Lambeir
- Medical Biochemistry, Department
of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein
1, B-2610 Wilrijk, Antwerp, Belgium
| | - Koen Augustyns
- Laboratory
of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| | - Pieter Van der Veken
- Laboratory
of Medicinal Chemistry (UAMC), Department of Pharmaceutical Sciences, University of Antwerp (UA), Universiteitsplein 1, B-2610 Wilrijk, Antwerp, Belgium
| |
Collapse
|
17
|
WYGANOWSKA-ŞWIĄTKOWSKA MARZENA, JANKUN JERZY. Plasminogen activation system in oral cancer: Relevance in prognosis and therapy (Review). Int J Oncol 2015; 47:16-24. [DOI: 10.3892/ijo.2015.3021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/04/2015] [Indexed: 11/06/2022] Open
|
18
|
The inflammatory actions of coagulant and fibrinolytic proteases in disease. Mediators Inflamm 2015; 2015:437695. [PMID: 25878399 PMCID: PMC4387953 DOI: 10.1155/2015/437695] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/02/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Aside from their role in hemostasis, coagulant and fibrinolytic proteases are important mediators of inflammation in diseases such as asthma, atherosclerosis, rheumatoid arthritis, and cancer. The blood circulating zymogens of these proteases enter damaged tissue as a consequence of vascular leak or rupture to become activated and contribute to extravascular coagulation or fibrinolysis. The coagulants, factor Xa (FXa), factor VIIa (FVIIa), tissue factor, and thrombin, also evoke cell-mediated actions on structural cells (e.g., fibroblasts and smooth muscle cells) or inflammatory cells (e.g., macrophages) via the proteolytic activation of protease-activated receptors (PARs). Plasmin, the principle enzymatic mediator of fibrinolysis, also forms toll-like receptor-4 (TLR-4) activating fibrin degradation products (FDPs) and can release latent-matrix bound growth factors such as transforming growth factor-β (TGF-β). Furthermore, the proteases that convert plasminogen into plasmin (e.g., urokinase plasminogen activator) evoke plasmin-independent proinflammatory actions involving coreceptor activation. Selectively targeting the receptor-mediated actions of hemostatic proteases is a strategy that may be used to treat inflammatory disease without the bleeding complications of conventional anticoagulant therapies. The mechanisms by which proteases of the coagulant and fibrinolytic systems contribute to extravascular inflammation in disease will be considered in this review.
Collapse
|
19
|
Sachdeva M, Mito JK, Lee CL, Zhang M, Li Z, Dodd RD, Cason D, Luo L, Ma Y, Van Mater D, Gladdy R, Lev DC, Cardona DM, Kirsch DG. MicroRNA-182 drives metastasis of primary sarcomas by targeting multiple genes. J Clin Invest 2014; 124:4305-19. [PMID: 25180607 DOI: 10.1172/jci77116] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/25/2014] [Indexed: 12/22/2022] Open
Abstract
Metastasis causes most cancer deaths, but is incompletely understood. MicroRNAs can regulate metastasis, but it is not known whether a single miRNA can regulate metastasis in primary cancer models in vivo. We compared the expression of miRNAs in metastatic and nonmetastatic primary mouse sarcomas and found that microRNA-182 (miR-182) was markedly overexpressed in some tumors that metastasized to the lungs. By utilizing genetically engineered mice with either deletion of or overexpression of miR-182 in primary sarcomas, we discovered that deletion of miR-182 substantially decreased, while overexpression of miR-182 considerably increased, the rate of lung metastasis after amputation of the tumor-bearing limb. Additionally, deletion of miR-182 decreased circulating tumor cells (CTCs), while overexpression of miR-182 increased CTCs, suggesting that miR-182 regulates intravasation of cancer cells into the circulation. We identified 4 miR-182 targets that inhibit either the migration of tumor cells or the degradation of the extracellular matrix. Notably, restoration of any of these targets in isolation did not alter the metastatic potential of sarcoma cells injected orthotopically, but the simultaneous restoration of all 4 targets together substantially decreased the number of metastases. These results demonstrate that a single miRNA can regulate metastasis of primary tumors in vivo by coordinated regulation of multiple genes.
Collapse
|
20
|
Stewart AG, Xia YC, Harris T, Royce S, Hamilton JA, Schuliga M. Plasminogen-stimulated airway smooth muscle cell proliferation is mediated by urokinase and annexin A2, involving plasmin-activated cell signalling. Br J Pharmacol 2014; 170:1421-35. [PMID: 24111848 DOI: 10.1111/bph.12422] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/04/2013] [Accepted: 08/27/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The conversion of plasminogen into plasmin by interstitial urokinase plasminogen activator (uPA) is potentially important in asthma pathophysiology. In this study, the effect of uPA-mediated plasminogen activation on airway smooth muscle (ASM) cell proliferation was investigated. EXPERIMENTAL APPROACH Human ASM cells were incubated with plasminogen (0.5-50 μg·mL(-1) ) or plasmin (0.5-50 mU·mL(-1) ) in the presence of pharmacological inhibitors, including UK122, an inhibitor of uPA. Proliferation was assessed by increases in cell number or MTT reduction after 48 h incubation with plasmin(ogen), and by earlier increases in [(3) H]-thymidine incorporation and cyclin D1 expression. KEY RESULTS Plasminogen (5 μg·mL(-1) )-stimulated increases in cell proliferation were attenuated by UK122 (10 μM) or by transfection with uPA gene-specific siRNA. Exogenous plasmin (5 mU·mL(-1) ) also stimulated increases in cell proliferation. Inhibition of plasmin-stimulated ERK1/2 or PI3K/Akt signalling attenuated plasmin-stimulated increases in ASM proliferation. Furthermore, pharmacological inhibition of cell signalling mediated by the EGF receptor, a receptor trans-activated by plasmin, also reduced plasmin(ogen)-stimulated cell proliferation. Knock down of annexin A2, which has dual roles in both plasminogen activation and plasmin-signal transduction, also attenuated ASM cell proliferation following incubation with either plasminogen or plasmin. CONCLUSIONS AND IMPLICATIONS Plasminogen stimulates ASM cell proliferation in a manner mediated by uPA and involving multiple signalling pathways downstream of plasmin. Targeting mediators of plasminogen-evoked ASM responses, such as uPA or annexin A2, may be useful in the treatment of asthma.
Collapse
Affiliation(s)
- A G Stewart
- Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia; Lung Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Alkhouri H, Poppinga WJ, Tania NP, Ammit A, Schuliga M. Regulation of pulmonary inflammation by mesenchymal cells. Pulm Pharmacol Ther 2014; 29:156-65. [PMID: 24657485 DOI: 10.1016/j.pupt.2014.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 01/13/2023]
Abstract
Pulmonary inflammation and tissue remodelling are common elements of chronic respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pulmonary hypertension (PH). In disease, pulmonary mesenchymal cells not only contribute to tissue remodelling, but also have an important role in pulmonary inflammation. This review will describe the immunomodulatory functions of pulmonary mesenchymal cells, such as airway smooth muscle (ASM) cells and lung fibroblasts, in chronic respiratory disease. An important theme of the review is that pulmonary mesenchymal cells not only respond to inflammatory mediators, but also produce their own mediators, whether pro-inflammatory or pro-resolving, which influence the quantity and quality of the lung immune response. The notion that defective pro-inflammatory or pro-resolving signalling in these cells potentially contributes to disease progression is also discussed. Finally, the concept of specifically targeting pulmonary mesenchymal cell immunomodulatory function to improve therapeutic control of chronic respiratory disease is considered.
Collapse
Affiliation(s)
- Hatem Alkhouri
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Wilfred Jelco Poppinga
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands; University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Navessa Padma Tania
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute of Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands; University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Alaina Ammit
- Respiratory Research Group, Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Michael Schuliga
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia; Lung Health Research Centre, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
22
|
Schuliga M, Westall G, Xia Y, Stewart AG. The plasminogen activation system: new targets in lung inflammation and remodeling. Curr Opin Pharmacol 2013; 13:386-93. [PMID: 23735578 DOI: 10.1016/j.coph.2013.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 11/26/2022]
Abstract
The plasminogen activation system (PAS) and the plasmin it forms have dual roles in chronic respiratory diseases including asthma, chronic obstructive pulmonary disease and interstitial lung disease. Whilst plasmin-mediated airspace fibrinolysis is beneficial, interstitial plasmin contributes to lung dysfunction because of its pro-inflammatory and tissue remodeling activities. Recent studies highlight the potential of fibrinolytic agents, including small molecule inhibitors of plasminogen activator inhibitor-1 (PAI-1), as treatments for chronic respiratory disease. Current data also suggest that interstitial urokinase plasminogen activator is an important mediator of lung inflammation and remodeling. However, further preclinical characterization of uPA as a drug target for lung disease is required. Here we review the concept of selectively targeting the contributions of PAS to treat chronic respiratory disease.
Collapse
Affiliation(s)
- Michael Schuliga
- Department of Pharmacol, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | |
Collapse
|
23
|
Roomi MW, Kalinovsky T, Niedzwiecki A, Rath M. Modulation of u-PA, MMPs and their inhibitors by a novel nutrient mixture in human lung cancer and mesothelioma cell lines. Int J Oncol 2013; 42:1883-9. [PMID: 23563849 PMCID: PMC3699578 DOI: 10.3892/ijo.2013.1880] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/21/2013] [Indexed: 11/23/2022] Open
Abstract
Lung cancer, the most prevalent cancer worldwide and malignant mesothelioma are highly aggressive tumors that are characterized by high levels of matrix metalloproteinase (MMP)-2 and -9 secretion. Proteases play a key role in tumor cell invasion and metastasis by digesting the basement membrane and ECM components. Strong clinical and experimental evidence demonstrates association of elevated levels of u-PA and MMPs with cancer progression, metastasis and shortened patient survival. MMP activities are regulated by specific tissue inhibitors of metalloproteinases (TIMPS). Our main objective was to study the effect of a nutrient mixture (NM) on the activity of u-PA, MMPs and TIMPs on human lung and malignant mesothelioma (MM) cell lines. Human lung cancer (A-549 and Calu-3) and malignant mesothelioma (MSTO-211H) cell lines were cultured in their respective media and treated at confluence with NM at 0, 50, 100, 250, 500 and 1000 μg/ml. Analysis of u-PA activity was carried out by fibrin zymography, MMPs by gelatinase zymography and TIMPs by reverse zymography. Both lung cancer cell lines expressed u-PA, which was inhibited by NM in a dose-dependent manner. However, no bands corresponding to u-PA were detected for the MSTO-211H MM cell line. On gelatinase zymography, A-549 cells showed one band corresponding to MMP-2 and induction of MMP-9 with PMA (100 ng/ml) treatment. MSTO-211H showed two bands, an intense band corresponding to MMP-2 and a faint band corresponding to MMP-9; MMP-9 was enhanced significantly with PMA treatment. NM inhibited their expression in both cell lines in a dose-dependent manner. Calu-3 showed no MMP-2 or MMP-9 expression. Activity of TIMPs was upregulated by NM in all cancer cell lines in a dose-dependent manner. Analysis revealed a positive correlation between u-PA and MMPs and a negative correlation between u-PA/MMPs and TIMPs. These findings suggest the therapeutic potential of NM in the treatment of lung and mesothelioma cancers.
Collapse
|
24
|
Powerful inhibition of in-vivo growth of experimental hepatic cancers by bombesin/gastrin-releasing peptide antagonist RC-3940-II. Anticancer Drugs 2013; 23:906-13. [PMID: 22926257 DOI: 10.1097/cad.0b013e328354bd25] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatic carcinoma is a major health problem worldwide. Its incidence is increasing in Western countries and there is currently no effective systemic therapy against it. Targeted treatment modalities developed in the past few years have provided very limited success. Development of new treatment strategies is therefore essential. We investigated the effects of bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC-3940-II on experimental human liver cancers in nude mice. SK-Hep-1 and Hep-G2 cancers transplanted subcutaneously into nude mice were treated daily with 10 or 20 µg of RC-3940-II. Tumor growth was monitored for 50-184 days in five experiments. Tumor gene expression was analyzed with PCR array and protein expression by immunoblotting. Characteristics of BN/GRP receptors in the tumors were analyzed by binding assays. Effects of RC-3940-II on cell proliferation were investigated in vitro. RC-3940-II inhibited the growth of SK-Hep-1 cancers in nude mice by 65-98%, with total regression in 9 of 36 tumors in three experiments. The BN/GRP antagonist inhibited the growth of Hep-G2 cancers as well by 73-82% in two experiments, being effective even on originally large tumors. Gene expression analysis showed an increase in several angiogenesis inhibitors and decrease in proangiogenic genes after RC-3940-II treatment. Receptor assays demonstrated high-affinity binding sites for BN/GRP in both tumor lines. BN/GRP antagonist RC-3940-II powerfully inhibits growth of SK-Hep-1 and Hep-G2 cancers in nude mice. Its effect may be linked to changes in expression of those cancer genes important in angiogenesis, invasion, and metastasis. RC-3940-II may be considered for further investigations in treatment of liver cancers.
Collapse
|
25
|
Ben J, Jin G, Zhang Y, Ma B, Bai H, Chen J, Zhang H, Gong Q, Zhou X, Zhang H, Qian L, Zhu X, Li X, Yang Q, Hu Z, Xu Y, Shen H, Chen Q. Class A Scavenger Receptor Deficiency Exacerbates Lung Tumorigenesis by Cultivating a Procarcinogenic Microenvironment in Humans and Mice. Am J Respir Crit Care Med 2012; 186:763-72. [DOI: 10.1164/rccm.201204-0592oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Lou D, Wang B, Wang Y, Cao Y. Selective killing of cancer stem cells by a novel dual-targeting strategy. Med Hypotheses 2012; 79:430-2. [DOI: 10.1016/j.mehy.2012.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 05/31/2012] [Accepted: 06/20/2012] [Indexed: 01/14/2023]
|
27
|
Corrales L, Ajona D, Rafail S, Lasarte JJ, Riezu-Boj JI, Lambris JD, Rouzaut A, Pajares MJ, Montuenga LM, Pio R. Anaphylatoxin C5a creates a favorable microenvironment for lung cancer progression. THE JOURNAL OF IMMUNOLOGY 2012; 189:4674-83. [PMID: 23028051 DOI: 10.4049/jimmunol.1201654] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The complement system contributes to various immune and inflammatory diseases, including cancer. In this study, we investigated the capacity of lung cancer cells to activate complement and characterized the consequences of complement activation on tumor progression. We focused our study on the production and role of the anaphylatoxin C5a, a potent immune mediator generated after complement activation. We first measured the capacity of lung cancer cell lines to deposit C5 and release C5a. C5 deposition, after incubation with normal human serum, was higher in lung cancer cell lines than in nonmalignant bronchial epithelial cells. Notably, lung malignant cells produced complement C5a even in the absence of serum. We also found a significant increase of C5a in plasma from patients with non-small cell lung cancer, suggesting that the local production of C5a is followed by its systemic diffusion. The contribution of C5a to lung cancer growth in vivo was evaluated in the Lewis lung cancer model. Syngeneic tumors of 3LL cells grew slower in mice treated with an antagonist of the C5a receptor. C5a did not modify 3LL cell proliferation in vitro but induced endothelial cell chemotaxis and blood-vessels formation. C5a also contributed to the immunosuppressive microenvironment required for tumor growth. In particular, blockade of C5a receptor significantly reduced myeloid-derived suppressor cells and immunomodulators ARG1, CTLA-4, IL-6, IL-10, LAG3, and PDL1 (B7H1). In conclusion, lung cancer cells have the capacity to generate C5a, a molecule that creates a favorable tumor microenvironment for lung cancer progression.
Collapse
Affiliation(s)
- Leticia Corrales
- Division of Oncology, Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Almholt K, Juncker-Jensen A, Lærum OD, Johnsen M, Rømer J, Lund LR. Spontaneous metastasis in congenic mice with transgenic breast cancer is unaffected by plasminogen gene ablation. Clin Exp Metastasis 2012; 30:277-88. [PMID: 22996753 DOI: 10.1007/s10585-012-9534-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 09/12/2012] [Indexed: 11/25/2022]
Abstract
Plasminogen (Plg) plays a central role in tissue remodeling during ontogeny, development, and in pathological tissue remodeling following physical injury, inflammation and cancer. Plg/plasmin is, however, not critical for these processes, as they all occur to a varying extent in its absence, suggesting that there is a functional redundancy with other proteases. To explore this functional overlap in the transgenic MMTV-PyMT breast cancer metastasis model, we have combined Plg deficiency and a pharmacological metalloprotease inhibitor, which is known to reduce metastasis in this model, and has been shown to synergistically inhibit other tissue remodeling events in Plg-deficient mice. While metalloprotease inhibition dramatically reduced metastasis, we found no effect of Plg deficiency on metastasis, either independently or in combination with metalloprotease inhibition. We further show that Plg gene deficiency is of no significant consequence in this metastasis model, when analyzed in two different congenic strains: the FVB strain, and a F1 hybrid of the FVB and C57BL/6J strains. We suggest that the extensive backcrossing performed prior to our studies has eliminated the confounding effect of a known polymorphic metastasis modifier gene region located adjacent to the Plg gene.
Collapse
Affiliation(s)
- Kasper Almholt
- Finsen Laboratory, Rigshospitalet, Copenhagen Biocenter, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
29
|
Jing Y, Kovacs K, Kurisetty V, Jiang Z, Tsinoremas N, Merchan JR. Role of plasminogen activator inhibitor-1 in urokinase's paradoxical in vivo tumor suppressing or promoting effects. Mol Cancer Res 2012; 10:1271-81. [PMID: 22912336 DOI: 10.1158/1541-7786.mcr-12-0145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tumor proteases and inhibitors have been associated with paradoxical effects on tumor progression in preclinical and clinical settings. We previously reported that urokinase (uPA) overexpression delays tumor progression in mammary cancer. This study aimed to determine the role of plasminogen activator inhibitor-1 (PAI-1) on uPA's paradoxical in vivo effects. Using syngeneic murine models, we found that stable uPA overexpression promoted in vivo growth of colon tumors (MC-38) naturally expressing high PAI-1, whereas growth inhibition was observed in renal tumors (RENCA) expressing lower PAI-1 levels. In murine mammary carcinoma (4T1), uPA overexpression shifted the uPA/PAI-1 balance in favor of the protease, resulting in significantly reduced tumor growth and metastases in vivo. Conversely, increased tumor progression was observed in stable PAI-1 overexpressing 4T1 tumors as compared with uPA-overexpressing and control tumors. These effects were associated with downregulation of metastases promoting genes in uPA-overexpressing tumors, such as metalloproteinases, CXCL-1, c-Fos, integrin α-5, VEGF-A, PDGF-α, and IL-1β. In PAI-1-overexpressing tumors, many of the above genes were upregulated. PAI-1 overexpressing tumors had increased total and new tumor microvessels, and increased tumor cell proliferation, whereas the opposite effects were found in uPA-overexpressing tumors. Finally, PAI-1 downregulation led to significant inhibition of 4T1 tumor growth and metastases in vivo. In conclusion, uPA's dual effects on tumor progression occur in the context of its interactions with endogenous PAI-1 expression. Our studies uncover novel mechanisms of in vivo tumor control by modulation of the balance between tumor proteases and inhibitors, which may be exploited therapeutically.
Collapse
Affiliation(s)
- Yuqi Jing
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
30
|
The liberated domain I of urokinase plasminogen activator receptor - a new tumour marker in small cell lung cancer. APMIS 2012; 121:189-96. [DOI: 10.1111/j.1600-0463.2012.02955.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 06/29/2012] [Indexed: 12/31/2022]
|
31
|
Wang F, Eric Knabe W, Li L, Jo I, Mani T, Roehm H, Oh K, Li J, Khanna M, Meroueh SO. Design, synthesis, biochemical studies, cellular characterization, and structure-based computational studies of small molecules targeting the urokinase receptor. Bioorg Med Chem 2012; 20:4760-73. [PMID: 22771232 DOI: 10.1016/j.bmc.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/25/2012] [Accepted: 06/01/2012] [Indexed: 11/26/2022]
Abstract
The urokinase receptor (uPAR) serves as a docking site to the serine protease urokinase-type plasminogen activator (uPA) to promote extracellular matrix (ECM) degradation and tumor invasion and metastasis. Previously, we had reported a small molecule inhibitor of the uPAR·uPA interaction that emerged from structure-based virtual screening. Here, we measure the affinity of a large number of derivatives from commercial sources. Synthesis of additional compounds was carried out to probe the role of various groups on the parent compound. Extensive structure-based computational studies suggested a binding mode for these compounds that led to a structure-activity relationship study. Cellular studies in non-small cell lung cancer (NSCLC) cell lines that include A549, H460 and H1299 showed that compounds blocked invasion, migration and adhesion. The effects on invasion of active compounds were consistent with their inhibition of uPA and MMP proteolytic activity. These compounds showed weak cytotoxicity consistent with the confined role of uPAR to metastasis.
Collapse
Affiliation(s)
- Fang Wang
- Indiana University, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Angelini A, Cendron L, Chen S, Touati J, Winter G, Zanotti G, Heinis C. Bicyclic peptide inhibitor reveals large contact interface with a protease target. ACS Chem Biol 2012; 7:817-21. [PMID: 22304751 DOI: 10.1021/cb200478t] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From a large combinatorial library of chemically constrained bicyclic peptides we isolated a selective and potent (K(i) = 53 nM) inhibitor of human urokinase-type plasminogen activator (uPA) and crystallized the complex. This revealed an extended structure of the peptide with both peptide loops engaging the target to form a large interaction surface of 701 Å(2) with multiple hydrogen bonds and complementary charge interactions, explaining the high affinity and specificity of the inhibitor. The interface resembles that between two proteins and suggests that these constrained peptides have the potential to act as small protein mimics.
Collapse
Affiliation(s)
- Alessandro Angelini
- Institute
of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Laura Cendron
- Department of Biological Chemistry, University of Padua, Viale G. Colombo 3, 35131 Padua,
Italy
- Venetian Institute of Molecular Medicine (VIMM), Via Giuseppe Orus 2, 35129
Padua, Italy
| | - Shiyu Chen
- Institute
of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jeremy Touati
- Institute
of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Greg Winter
- Laboratory of
Molecular Biology, Medical Research Council, Hills Road, Cambridge CB2
0QH, U.K
| | - Giuseppe Zanotti
- Department of Biological Chemistry, University of Padua, Viale G. Colombo 3, 35131 Padua,
Italy
- Venetian Institute of Molecular Medicine (VIMM), Via Giuseppe Orus 2, 35129
Padua, Italy
| | - Christian Heinis
- Institute
of Chemical Sciences
and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
33
|
Provost JJ, Rastedt D, Canine J, Ngyuen T, Haak A, Kutz C, Berthelsen N, Slusser A, Anderson K, Dorsam G, Wallert MA. Urokinase plasminogen activator receptor induced non-small cell lung cancer invasion and metastasis requires NHE1 transporter expression and transport activity. Cell Oncol (Dordr) 2012; 35:95-110. [PMID: 22290545 DOI: 10.1007/s13402-011-0068-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2011] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND: Non-small cell lung cancers (NSLC) are aggressive cancers that are insensitive to chemotherapies and accounts for nearly 33% of all cancer deaths in the United States. Two hallmarks of cancer that allow cells to invade and metastasize are sustained proliferation and enhanced motility. In this study we investigate the relationship between urokinase plasminogen activator (uPA)/uPA receptor (uPAR) signaling and Na(+)/H(+) exchanger isoform 1 (NHE1) expression and activity. METHODS AND RESULTS: The addition of 10nM uPA increased the carcinogenic potential of three NSCLC cell lines, NCI-H358, NCI-H460, and NCI-H1299. This included an increase in the rate of cell proliferation 1.6 to 1.9 fold; an increase in the percentage of cells displaying stress fibers 3.05 to 3.17 fold; and an increase in anchorage-independent growth from 1.64 to 2.0 fold. In each of these cases the increase was blocked when the experiments were performed with NHE1 inhibited by 10 μM EIPA (ethylisopropyl amiloride). To further evaluate the role of uPA/uPAR and NHE1 in tumor progression we assessed signaling events using full-length uPA compared to the uPA amino terminal fragment (ATF). Comparing uPA and ATF signaling in H460 cells, we found that both uPA and ATF increased stress fiber formation approximately 2 fold, while uPA increased matrix metalloproteinase 9 (MMP9) activity 5.44 fold compared to 2.81 fold for ATF. To expand this signaling study, two new cell lines were generated, one with reduced NHE1 expression (H460 NHE1 K/D) and one with reduced uPAR expression (H460 uPAR K/D). Using the K/D cell lines we found that neither uPA nor ATF could stimulate stress fiber formation or MMP9 activity in cells with dramatically decreased NHE1 or uPAR expression. Finally, using in vivo tumor formation studies in athymic mice we found that when mice were injected with H460 cells 80% of mice formed tumors with an average volume of 390 mm(3). This was compared to 20% of H460 uPAR K/D injected mice forming tumors with an average volume of 15 mm(3) and 10% of H460 NHE1 K/D injected mice forming tumors with an average volume of 5 mm(3). CONCLUSION: Taken together, these data demonstrate that uPA/uPAR-mediated tumor progression and metastasis requires NHE1 in NSCLC cells and suggests a potential therapeutic approach to blocking cancer progression.
Collapse
Affiliation(s)
- J J Provost
- Department of Chemistry, Minnesota State University Moorhead, 407 Hagen Hall, Moorhead, MN, 56563, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Batra S, Balamayooran G, Sahoo MK. Nuclear factor-κB: a key regulator in health and disease of lungs. Arch Immunol Ther Exp (Warsz) 2011; 59:335-51. [PMID: 21786215 PMCID: PMC7079756 DOI: 10.1007/s00005-011-0136-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 03/02/2011] [Indexed: 12/27/2022]
Abstract
Rel/NF-κB transcription factors play a key role in modulating the response of immunoregulatory genes including cytokines and chemokines, cell adhesion molecules, acute phase proteins, and anti-microbial peptides. Furthermore, an array of genes important for angiogenesis, tumor invasion and metastasis is also regulated by nuclear factor-κB (NF-κB). Close association of NF-κB with inflammation and tumorigenesis makes it an attractive target for basic research as well as for pharmaceutical industries. Studies involving various animal and cellular models have revealed the importance of NF-κB in pathobiology of lung diseases. This review (a) describes structures, activities, and regulation of NF-κB family members; (b) provides information which implicates NF-κB in pathogenesis of pulmonary inflammation and cancer; and (c) discusses information about available synthetic and natural compounds which target NF-κB or specific components of NF-κB signal transduction pathway and which may provide the foundation for development of effective therapy for lung inflammation and bronchogenic carcinomas.
Collapse
Affiliation(s)
- Sanjay Batra
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, 70803, USA.
| | | | | |
Collapse
|
35
|
Halmos B, Powell CA. Update in lung cancer and oncological disorders 2010. Am J Respir Crit Care Med 2011; 184:297-302. [PMID: 21804121 PMCID: PMC3175537 DOI: 10.1164/rccm.201103-0370up] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/04/2011] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Charles A. Powell
- Division of Pulmonary and Critical Care Medicine, Columbia University Medical Center, New York, New York
| |
Collapse
|
36
|
Schmitt M, Harbeck N, Brünner N, Jänicke F, Meisner C, Mühlenweg B, Jansen H, Dorn J, Nitz U, Kantelhardt EJ, Thomssen C. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2011; 11:617-34. [PMID: 21745015 DOI: 10.1586/erm.11.47] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Clinical research on cancer biomarkers is essential in understanding recent discoveries in cancer biology and heterogeneity of the cancer disease. However, there are only a few examples of clinically useful studies that have identified cancer biomarkers with clinical benefit. Urokinase-type plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor type 1 (PAI-1) are two of the few tumor tissue-associated cancer biomarkers that have been evaluated successfully and extensively in many preclinical and clinical studies for their clinical utility. Most of the studies have been conducted in early breast cancer to demonstrate the prognostic and predictive value for this malignancy. As a result of these investigations, uPA and PAI-1 have reached the highest level of clinical evidence, level of evidence 1. This article sheds light on the current status of major clinical Phase II and III breast cancer therapy trials (Chemo-N0, NNBC-3 and Plan B), and introduces ongoing clinical trials targeting uPA in advanced cancers of the breast and pancreas, employing synthetic small-size drugs to counteract uPA activity (WX-UK1, Mesupron(®)). The therapeutic effect of a uPA-derived small-size synthetic peptide (Å6) is tested in advanced ovarian cancer patients.
Collapse
Affiliation(s)
- Manfred Schmitt
- Clinical Research Unit, Department of Obstetrics and Gynecology (Frauenklinik), Klinikum rechts der Isar of the Technical University of Munich, Ismaninger Strasse 22, D-81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The coagulation and fibrinolytic systems contribute to malignancy by increasing angiogenesis, tumor growth, tumor invasion, and tumor metastasis. Oncogenic transformation increases the expression of tissue factor (TF) that results in local generation of coagulation proteases and activation of protease-activated receptor (PAR)-1 and PAR-2. We compared the PAR-dependent expression of urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI)-1 in 2 murine mammary adencocarcinoma cell lines: metastatic 4T1 cells and nonmetastatic 67NR cells. 4T1 cells expressed TF, PAR-1 and PAR-2 whereas 67NR cells expressed TF and PAR-1. We also silenced PAR-1 or PAR-2 expression in the 4T1 cells. We discovered 2 distinct mechanisms for PAR-dependent expression of uPA and PAI-1. First, we found that factor Xa or thrombin activation of PAR-1 led to a rapid release of stored intracellular uPA into the culture supernatant. Second, thrombin transactivation of a PAR-1/PAR-2 complex resulted in increases in PAI-1 mRNA and protein expression. Cells lacking PAR-2 failed to express PAI-1 in response to thrombin and factor Xa did not activate the PAR-1/PAR-2 complex. Our results reveal how PAR-1 and PAR-2 on tumor cells mediate crosstalk between coagulation and fibrinolysis.
Collapse
|