1
|
Wongsa C, Wongyikul P, Chokevittaya P, Nititammaluk A, Soe KK, Phinyo P, Bernstein JA, Thongngarm T. Subtype prevalence and treatment implication in adolescents and adults with mild-to-moderate asthma: Systematic review and meta-analysis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100366. [PMID: 39649686 PMCID: PMC11625304 DOI: 10.1016/j.jacig.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 12/11/2024]
Abstract
Background Inhaled corticosteroid (ICS)-containing regimens are the mainstay for treating asthma despite usually being ineffective in noneosinophilic asthma (NEA). Data on the prevalence of NEA versus eosinophilic asthma (EA) in mild-to-moderate asthma are limited. Objective We performed a systematic review of the prevalence of mild-to-moderate asthma in adolescents and adults using sputum inflammatory cell analysis and their responses to ICS. Methods We searched electronic databases (PubMed, Scopus, EMBASE, Cochrane) for studies in adolescents and adults with mild-to-moderate asthma. The primary outcome was the prevalence of asthma subtypes based on sputum inflammatory cell analysis, categorized into EA and NEA. The secondary outcome involved comparing asthma outcomes between different subtypes after ICS therapy. Certainty of evidence was reported for each pooled analysis. Results Eighteen studies involving 3,533 adolescents and adults with mild-to-moderate asthma were reviewed. The pooled prevalence (95% confidence interval) of NEA was estimated at 40.39% (27.54, 53.93) in patients with ICS naive with very low certainty of evidence. On reevaluating sputum cytology, the disease of approximately 20% to 30% of patients initially diagnosed as NEA transitioned to the EA subtype. EA patients showed significant improvements in asthma symptoms after ICS therapy: forced expiratory volume in 1 second (standardized mean difference, 0.79; 95% confidence interval, 0.30, 1.27), and airway hyperresponsiveness (standardized mean difference, 1.34; 95% confidence interval, 0.29, 2.40). NEA patients exhibited limited response. Conclusion A high proportion of adolescents and adults with mild-to-moderate asthma were identified with NEA subtype disease, which exhibited a poor response to ICS. A thorough diagnostic evaluation before initiating treatment should be integrated into clinical practice.Registered in PROSPERO (CRD42023484334).
Collapse
Affiliation(s)
- Chamard Wongsa
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pakpoom Wongyikul
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Biomedical Informatics and Clinical Epidemiology (BioCE), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piyaporn Chokevittaya
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Anapat Nititammaluk
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kay Khine Soe
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia, Melaka, Malaysia
| | - Phichayut Phinyo
- Center for Clinical Epidemiology and Clinical Statistics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Biomedical Informatics and Clinical Epidemiology (BioCE), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR), Chiang Mai University, Chiang Mai, Thailand
| | - Jonathan A. Bernstein
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Torpong Thongngarm
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Mailhot-Larouche S, Celis-Preciado C, Heaney LG, Couillard S. Identifying super-responders: A review of the road to asthma remission. Ann Allergy Asthma Immunol 2025; 134:31-45. [PMID: 39383944 DOI: 10.1016/j.anai.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
Asthma is a chronic respiratory disease marked by heterogeneity and variable clinical outcomes. Recent therapeutic advances have highlighted patients achieving optimal outcomes, termed "remission" or "super-response." This review evaluates the various definitions of these terms and explores how disease burden impedes the attainment of remission. We assessed multiple studies, including a recent systematic review and meta-analysis, on biologic treatments for asthma remission. Our review highlights that type 2 inflammation may be the strongest predictor of biologic response. Key comorbidities (eg, obesity and mood disorders) and behavioral factors (eg, poor adherence, improper inhalation technique, and smoking) were identified as dominant traits limiting remission. In addition, asthma burden and longer disease duration significantly restrict the potential for remission in patients with severe asthma under the current treatment paradigm. We review the potential for a "predict-and-prevent" approach, which focuses on early identification of high-risk patients with type 2 inflammation and aggressive treatment to improve long-term asthma outcomes. In conclusion, this scoping review highlights the following unmet needs in asthma remission: (1) a harmonized global definition, with better defined lung function parameters; (2) integration of nonbiologic therapies into remission strategies; and (3) a clinical trial of early biologic intervention in patients with remission-prone, very type 2-high, moderately severe asthma with clinical remission as a predefined primary end point.
Collapse
Affiliation(s)
- Samuel Mailhot-Larouche
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Carlos Celis-Preciado
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Liam G Heaney
- Centre for Experimental Medicine, Queen's University Belfast School of Medicine, Dentistry and Biomedical Sciences, Belfast, United Kingdom
| | - Simon Couillard
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
3
|
Pasha MA, Hopp RJ, Habib N, Tang DD. Biomarkers in asthma, potential for therapeutic intervention. J Asthma 2024; 61:1376-1391. [PMID: 38805392 DOI: 10.1080/02770903.2024.2361783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/26/2024] [Indexed: 05/30/2024]
Abstract
Asthma is a heterogeneous disease characterized by multiple phenotypes with varying risk factors and therapeutic responses. This Commentary describes research on biomarkers for T2-"high" and T2-"low" inflammation, a hallmark of the disease. Patients with asthma who exhibit an increase in airway T2 inflammation are classified as having T2-high asthma. In this endotype, Type 2 cytokines interleukins (IL)-4, IL-5, and IL-13, plus other inflammatory mediators, lead to increased eosinophilic inflammation and elevated fractional exhaled nitric oxide (FeNO). In contrast, T2-low asthma has no clear definition. Biomarkers are considered valuable tools as they can help identify various phenotypes and endotypes, as well as treatment response to standard treatment or potential therapeutic targets, particularly for biologics. As our knowledge of phenotypes and endotypes expands, biologics are increasingly integrated into treatment strategies for severe asthma. These treatments block specific inflammatory pathways or single mediators. While single or composite biomarkers may help to identify subsets of patients who might benefit from these treatments, only a few inflammatory biomarkers have been validated for clinical application. One example is sputum eosinophilia, a particularly useful biomarker, as it may suggest corticosteroid responsiveness or reflect non-compliance to inhaled corticosteroids. As knowledge develops, a meaningful goal would be to provide individualized care to patients with asthma.
Collapse
Affiliation(s)
- M Asghar Pasha
- Department of Medicine, Division of Allergy and Immunology, Albany Medical College, Albany, NY, USA
| | - Russell J Hopp
- Department of Pediatrics, University of NE Medical Center and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Nazia Habib
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Wang S, Zhao J, Xie J. Targeting Lipid Metabolism in Obese Asthma: Perspectives and Therapeutic Opportunities. Int Arch Allergy Immunol 2024:1-15. [PMID: 39427653 DOI: 10.1159/000540405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/15/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Obese asthma represents a unique phenotype of asthma characterized by severe symptoms, poor medication controls, increased frequency of exacerbations, and an overall diminished quality of life. Numerous factors, including the complex interactions between environment, mechanical processes, inflammatory responses, and metabolites disturbance, contribute to the onset of obese asthma. SUMMARY Notably, multiple metabolomics studies in the last several years have revealed the significant abnormalities in lipid metabolism among obese asthmatic patients. Several bioactive lipid messengers participate in the development of obese asthma has also been observed. Here, we present and discuss the latest advances regarding how bioactive lipid molecules contribute to the pathogenic process and mechanisms underlying obese asthma. The key roles of potentially significant effector cells and the pathways by which they respond to diverse lipid metabolites are also described. We finally summarize current lipid-related therapeutic options for the treatment of obese asthma and discuss their application prospects. KEY MESSAGES This review underscores the impacts of abnormal lipid metabolism in the etiopathogenesis of obese asthma and asks for further investigation to elucidate the intricate correlations among lipids, obesity, and asthma.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Zhao
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Suzukawa M, Ohta K, Sugimoto M, Ohshima N, Kobayashi N, Tashimo H, Tanimoto Y, Itano J, Kimura G, Takata S, Nakano T, Yamashita T, Ikegame S, Hyodo K, Abe M, Chibana K, Kamide Y, Sasaki K, Hashimoto H. Identification of exhaled volatile organic compounds that characterize asthma phenotypes: A J-VOCSA study. Allergol Int 2024; 73:524-531. [PMID: 38658257 DOI: 10.1016/j.alit.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/23/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Asthma is characterized by phenotypes of different clinical, demographic, and pathological characteristics. Identifying the profile of exhaled volatile organic compounds (VOCs) in asthma phenotypes may facilitate establishing biomarkers and understanding asthma background pathogenesis. This study aimed to identify exhaled VOCs that characterize severe asthma phenotypes among patients with asthma. METHODS This was a multicenter cross-sectional study of patients with severe asthma in Japan. Clinical data were obtained from medical records, and questionnaires were collected. Exhaled breath was sampled and subjected to thermal desorption gas chromatography-mass spectrometry (GC/MS). RESULTS Using the decision tree established in the previous nationwide asthma cohort study, 245 patients with asthma were divided into five phenotypes and subjected to exhaled VOC analysis with 50 healthy controls (HCs). GC/MS detected 243 VOCs in exhaled breath samples, and 142 frequently detected VOCs (50% of all samples) were used for statistical analyses. Cluster analysis assigning the groups with similar VOC profile patterns showed the highest similarities between phenotypes 3 and 4 (early-onset asthma phenotypes), followed by the similarities between phenotypes 1 and 2 (late-onset asthma phenotypes). Comparisons between phenotypes 1-5 and HC revealed 19 VOCs, in which only methanesulfonic anhydride showed p < 0.05 adjusted by false discovery rate (FDR). Comparison of these phenotypes yielded several VOCs showing different trends (p < 0.05); however, no VOCs showed p < 0.05 adjusted by FDR. CONCLUSIONS Exhaled VOC profiles may be useful for distinguishing asthma and asthma phenotypes; however, these findings need to be validated, and their pathological roles should be clarified.
Collapse
Affiliation(s)
- Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, Tokyo, Japan.
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan; Human Metabolome Technologies, Inc., Yamagata, Japan
| | - Nobuharu Ohshima
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Nobuyuki Kobayashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Tashimo
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Yasushi Tanimoto
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Junko Itano
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Goro Kimura
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Shohei Takata
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Takako Nakano
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Takafumi Yamashita
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Satoshi Ikegame
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Kentaro Hyodo
- National Hospital Organization Ibarakihigashi National Hospital, Ibaraki, Japan
| | - Masahiro Abe
- National Hospital Organization Ehime Medical Center, Ehime, Japan
| | - Kenji Chibana
- National Hospital Organization Okinawa National Hospital, Okinawa, Japan
| | - Yosuke Kamide
- National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Kazunori Sasaki
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan; Human Metabolome Technologies, Inc., Yamagata, Japan
| | - Hiroya Hashimoto
- National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| |
Collapse
|
6
|
Zahraei HN, Schleich F, Louis G, Gerday S, Sabbe M, Bougard N, Guissard F, Paulus V, Henket M, Petre B, Donneau AF, Louis R. Evidence for 2 clusters among patients with noneosinophilic asthma. Ann Allergy Asthma Immunol 2024; 133:57-63.e4. [PMID: 38499060 DOI: 10.1016/j.anai.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Although asthma is often seen as an eosinophilic disease associated with atopy, patients with noneosinophilic asthma represent a substantial part of the population with asthma. OBJECTIVE To apply an unsupervised clustering method in a cohort of 588 patients with noneosinophilic asthma (sputum eosinophils < 3%) recruited from an asthma clinic of a secondary care center. METHODS Our cluster analysis of the whole cohort identified 2 subgroups as cluster 1 (n = 417) and cluster 2 (n = 171). RESULTS Cluster 1 comprised a predominantly female group with late disease onset, a low proportion of atopy (24%), and a substantial smoking history (53%). In this cluster, treatment burden was low (<50% of inhaled corticosteroid users); asthma control and quality of life were poor, with median Asthma Control Test, Asthma Control Questionnaire, and Asthma Quality of Life scores of 16, 1.7, and 4.5, respectively, whereas lung function was preserved with a median postbronchodilation forced expiratory volume in 1 second of 93% predicted. Cluster 2 was a predominantly male group, almost exclusively comprising patients with atopy (99%) with early disease onset and a moderate treatment burden (median inhaled corticosteroids dose 800 µg/d equivalent beclomethasone). In cluster 2, asthma was partially controlled, with median Asthma Control Test and Asthma Control Questionnaire scores reaching 18 and 1.3, respectively, and lung function well preserved with a median postbronchodilation of 95% predicted. Although systemic and airway neutrophilic inflammation was the dominant pattern in cluster 1, cluster 2 essentially comprised paucigranulocytic asthma with moderately elevated fraction exhaled nitric oxide. CONCLUSION Noneosinophilic asthma splits into 2 clusters distinguishing by disease onset, atopic status, smoking history, systemic and airway inflammation, and disease control and quality of life.
Collapse
Affiliation(s)
- Halehsadat Nekoee Zahraei
- Biostatistics Unit, Department of Public Health, University of Liège, Liège, Belgium; Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | | | - Gilles Louis
- Department of Public Health, University of Liège, Liège, Belgium
| | - Sara Gerday
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | - Mare Sabbe
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | - Nicolas Bougard
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | | | - Virginie Paulus
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | - Monique Henket
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | - Benoit Petre
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium
| | | | - Renaud Louis
- Department of Pneumology, GIGA, University of Liège, Liège, Belgium.
| |
Collapse
|
7
|
Marchi E, Hinks TS, Richardson M, Khalfaoui L, Symon FA, Rajasekar P, Clifford R, Hargadon B, Austin CD, MacIsaac JL, Kobor MS, Siddiqui S, Mar JS, Arron JR, Choy DF, Bradding P. The effects of inhaled corticosteroids on healthy airways. Allergy 2024; 79:1831-1843. [PMID: 38686450 PMCID: PMC7616167 DOI: 10.1111/all.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND The effects of inhaled corticosteroids (ICS) on healthy airways are poorly defined. OBJECTIVES To delineate the effects of ICS on gene expression in healthy airways, without confounding caused by changes in disease-related genes and disease-related alterations in ICS responsiveness. METHODS Randomized open-label bronchoscopy study of high-dose ICS therapy in 30 healthy adult volunteers randomized 2:1 to (i) fluticasone propionate 500 mcg bd daily or (ii) no treatment, for 4 weeks. Laboratory staff were blinded to allocation. Biopsies and brushings were analysed by immunohistochemistry, bulk RNA sequencing, DNA methylation array and metagenomics. RESULTS ICS induced small between-group differences in blood and lamina propria eosinophil numbers, but not in other immunopathological features, blood neutrophils, FeNO, FEV1, microbiome or DNA methylation. ICS treatment upregulated 72 genes in brushings and 53 genes in biopsies, and downregulated 82 genes in brushings and 416 genes in biopsies. The most downregulated genes in both tissues were canonical markers of type-2 inflammation (FCER1A, CPA3, IL33, CLEC10A, SERPINB10 and CCR5), T cell-mediated adaptive immunity (TARP, TRBC1, TRBC2, PTPN22, TRAC, CD2, CD8A, HLA-DQB2, CD96, PTPN7), B-cell immunity (CD20, immunoglobulin heavy and light chains) and innate immunity, including CD48, Hobit, RANTES, Langerin and GFI1. An IL-17-dependent gene signature was not upregulated by ICS. CONCLUSIONS In healthy airways, 4-week ICS exposure reduces gene expression related to both innate and adaptive immunity, and reduces markers of type-2 inflammation. This implies that homeostasis in health involves tonic type-2 signalling in the airway mucosa, which is exquisitely sensitive to ICS.
Collapse
Affiliation(s)
- Emanuele Marchi
- NIHR Oxford Respiratory BRC and Respiratory Medicine Unit, Experimental Medicine, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Timothy S.C. Hinks
- NIHR Oxford Respiratory BRC and Respiratory Medicine Unit, Experimental Medicine, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK
| | - Matthew Richardson
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Latifa Khalfaoui
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Fiona A. Symon
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | - Poojitha Rajasekar
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine; Nottingham NIHR Biomedical Research Centre; and Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Rachel Clifford
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine; Nottingham NIHR Biomedical Research Centre; and Biodiscovery Institute, University Park, University of Nottingham, Nottingham, UK
| | - Beverley Hargadon
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | | | - Julia L. MacIsaac
- Edwin S.H. Leong Centre for Healthy Aging, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Edwin S.H. Leong Centre for Healthy Aging, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Salman Siddiqui
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| | | | | | | | - Peter Bradding
- Department of Respiratory Sciences, University of Leicester, Leicester Respiratory NIHR BRC, Glenfield Hospital, Leicester, UK
| |
Collapse
|
8
|
Olejnik AE, Kuźnar-Kamińska B. Association of Obesity and Severe Asthma in Adults. J Clin Med 2024; 13:3474. [PMID: 38930006 PMCID: PMC11204497 DOI: 10.3390/jcm13123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The incidence of obesity and asthma continues to enhance, significantly impacting global public health. Adipose tissue is an organ that secretes hormones and cytokines, causes meta-inflammation, and contributes to the intensification of bronchial hyperreactivity, oxidative stress, and consequently affects the different phenotypes of asthma in obese people. As body weight increases, the risk of severe asthma increases, as well as more frequent exacerbations requiring the use of glucocorticoids and hospitalization, which consequently leads to a deterioration of the quality of life. This review discusses the relationship between obesity and severe asthma, the underlying molecular mechanisms, changes in respiratory function tests in obese people, its impact on the occurrence of comorbidities, and consequently, a different response to conventional asthma treatment. The article also reviews research on possible future therapies for severe asthma. The manuscript is a narrative review of clinical trials in severe asthma and comorbid obesity. The articles were found in the PubMed database using the keywords asthma and obesity. Studies on severe asthma were then selected for inclusion in the article. The sections: 'The classification connected with asthma and obesity', 'Obesity-related changes in pulmonary functional tests', and 'Obesity and inflammation', include studies on subjects without asthma or non-severe asthma, which, according to the authors, familiarize the reader with the pathophysiology of obesity-related asthma.
Collapse
Affiliation(s)
- Aneta Elżbieta Olejnik
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland;
| | | |
Collapse
|
9
|
Covar R, Lazarus SC, Krishnan JA, Blake KV, Sorkness CA, Dyer AM, Lang JE, Lugogo NL, Mauger DT, Wechsler ME, Wenzel SE, Cardet JC, Castro M, Israel E, Phipatanakul W, King TS. Association of Sputum Eosinophilia With Easily Measured Type-2 Inflammatory Biomarkers in Untreated Mild Persistent Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2024; 12:960-969.e6. [PMID: 38097180 DOI: 10.1016/j.jaip.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/26/2023] [Accepted: 12/05/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND A multicenter clinical trial in patients with mild persistent asthma indicated that response to inhaled corticosteroids (ICS) is limited to those with sputum eosinophilia. However, testing for sputum eosinophilia is impractical in most clinical settings. OBJECTIVE We examined associations between sputum eosinophilia and type 2 inflammatory biomarkers in untreated mild persistent asthma. METHODS Induced sputum, blood eosinophil count (BEC), fractional exhaled nitric oxide (FeNO), and serum periostin were obtained twice during the 6-week run-in period in a clinical trial that enrolled patients 12 years and older with symptomatic, mild persistent asthma without controller therapy. The optimal threshold for each biomarker was based on achieving 80% or greater sensitivity. Performance of biomarkers (area under the receiver operating characteristics curve [AUC], range 0.0-1.0) in predicting sputum eosinophilia 2% or greater was determined; AUCs of 0.8 to 0.9 and more than 0.9 define excellent and outstanding discrimination, respectively. RESULTS Of 564 participants, 27% were sputum eosinophilic, 83% were atopic, 70% had BEC of 200/uL or higher or FeNO of 25 ppb or greater; 64% of participants without sputum eosinophilia had elevated BEC or FeNO. The AUCs for BEC, FeNO, and both together in predicting sputum eosinophilia were all below the threshold for excellent discrimination (AUC 0.75, 0.78, and 0.79, respectively). Periostin (in adults) had poor discrimination (AUC 0.59; P = .02). CONCLUSIONS In untreated mild persistent asthma, there is substantial discordance between sputum eosinophilia, BEC, and FeNO. Until prospective trials test the ability of alternative biomarkers to predict ICS response, BEC or FeNO phenotyping may be an option to consider ICS through a shared decision-making process with consideration of other clinical features.
Collapse
Affiliation(s)
- Ronina Covar
- Department of Pediatrics, National Jewish Health, Denver, Colo.
| | - Stephen C Lazarus
- Department of Medicine, University of California, San Francisco, Calif
| | - Jerry A Krishnan
- Departments of Medicine and Public Health, University of Illinois Chicago, Chicago, Ill
| | - Kathryn V Blake
- Center for Pharmacogenomics and Translational Research, Nemours Children's Health, Jacksonville, Fla
| | - Christine A Sorkness
- Department of Medicine and School of Pharmacy, University of Wisconsin, Madison, Wis
| | - Anne-Marie Dyer
- Department of Public Health Sciences, Pennsylvania State University, Hershey, Pa
| | - Jason E Lang
- Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Njira L Lugogo
- Department of Medicine, University of Michigan, Ann Arbor, Mich
| | - David T Mauger
- Department of Public Health Sciences, Pennsylvania State University, Hershey, Pa
| | | | - Sally E Wenzel
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pa
| | | | - Mario Castro
- Department of Medicine, University of Kansas School of Medicine, Kansas City, Kan
| | - Elliot Israel
- Department of Medicine, Harvard Medical School Brigham & Women's Hospital, Boston, Mass
| | | | - Tonya S King
- Department of Public Health Sciences, Pennsylvania State University, Hershey, Pa
| |
Collapse
|
10
|
Menzella F, Munari S, Corsi L, Tonin S, Cestaro W, Ballarin A, Floriani A, Dartora C, Senna G. Tezepelumab: patient selection and place in therapy in severe asthma. J Int Med Res 2024; 52:3000605241246740. [PMID: 38676539 PMCID: PMC11056094 DOI: 10.1177/03000605241246740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
Asthma is a disease characterised by heterogeneous and multifaceted airway inflammation. Despite the availability of effective treatments, a substantial percentage of patients with the type 2 (T2)-high, but mainly the T2-low, phenotype complain of persistent symptoms, airflow limitation, and poor response to treatments. Currently available biologicals target T2 cytokines, but no monoclonal antibodies or other specific therapeutic options are available for non-T2 asthma. However, targeted therapy against alarmins is radically changing this perspective. The development of alarmin-targeted therapies, of which tezepelumab (TZP) is the first example, may offer broad action on inflammatory pathways as well as an enhanced therapeutic effect on epithelial dysfunction. In this regard, TZP demonstrated positive results not only in patients with severe T2 asthma but also those with non-allergic, non-eosinophilic disease. Therefore, it is necessary to identify clinical features of patients who can benefit from an upstream targeted therapy such as anti-thymic stromal lymphopoietin. The aims of this narrative review are to understand the role of alarmins in asthma pathogenesis and epithelial dysfunction, examine the rationale underlying the indication of TZP treatment in severe asthma, summarise the results of clinical studies, and recognise the specific characteristics of patients potentially eligible for TZP treatment.
Collapse
Affiliation(s)
- Francesco Menzella
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Sara Munari
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Lorenzo Corsi
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Silvia Tonin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Walter Cestaro
- Pulmonology and Otolaryngology Multidisciplinary Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
- Otolaryngology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Andrea Ballarin
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Ariel Floriani
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Cristina Dartora
- Pulmonology Unit, S. Valentino Hospital, Montebelluna (TV), AULSS2 Marca Trevigiana, Italy
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona & AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
11
|
Jenkins CR. Mild asthma: Conundrums, complexities and the need to customize care. Respirology 2024; 29:94-104. [PMID: 38143421 DOI: 10.1111/resp.14646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 12/26/2023]
Abstract
Mild and moderate asthma cover a wide range of asthma presentations, phenotypes and symptom burden, and account for the majority of people with asthma worldwide. Mild asthma has been difficult to define because of its heterogeneity and wide spectrum of impact and outcomes, including being associated with severe exacerbations. Assessment of mild-moderate asthma is best made by combining asthma symptom control and exacerbation risk as the principle means by which to determine treatment needs. Incontrovertible evidence and guidelines support treatment initiation with anti-inflammatory medication, completely avoiding reliever-only treatment of mild asthma. Shared decision making with patients and a treatable traits approach will ensure that a holistic approach is taken to maximize patient outcomes. Most importantly, mild asthma should be regarded as a reversible, potentially curable condition, remaining in long-term remission through minimizing triggers and optimizing care.
Collapse
Affiliation(s)
- Christine R Jenkins
- Respiratory Medicine UNSW, Sydney and The George Institute for Global Health, The George Institute for Global Health, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Chow YH, Murphy RC, An D, Lai Y, Altemeier WA, Manicone AM, Hallstrand TS. Intravascular Leukocyte Labeling Refines the Distribution of Myeloid Cells in the Lung in Models of Allergen-induced Airway Inflammation. Immunohorizons 2023; 7:853-860. [PMID: 38099934 PMCID: PMC10759158 DOI: 10.4049/immunohorizons.2300059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Innate immune cell populations are critical in asthma with different functional characteristics based on tissue location, which has amplified the importance of characterizing the precise number and location of innate immune populations in murine models of asthma. In this study, we performed premortem intravascular (IV) labeling of leukocytes in mice in two models of asthma to differentiate innate immune cell populations within the IV compartment versus those residing in the lung tissue or airway lumen. We performed spectral flow cytometry analysis of the blood, suspensions of digested lung tissue, and bronchoalveolar lavage fluid. We discovered that IV labeled leukocytes do not contaminate analysis of bronchoalveolar lavage fluid but represent a significant proportion of cells in digested lung tissue. Exclusion of IV leukocytes significantly improved the accuracy of the assessments of myeloid cells in the lung tissue and provided important insights into ongoing trafficking in both eosinophilic and neutrophilic asthma models.
Collapse
Affiliation(s)
- Yu-Hua Chow
- Division of Pulmonary, Critical Care, and Sleep Medicine and Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Ryan C. Murphy
- Division of Pulmonary, Critical Care, and Sleep Medicine and Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Dowon An
- Division of Pulmonary, Critical Care, and Sleep Medicine and Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Ying Lai
- Division of Pulmonary, Critical Care, and Sleep Medicine and Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - William A. Altemeier
- Division of Pulmonary, Critical Care, and Sleep Medicine and Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Anne M. Manicone
- Division of Pulmonary, Critical Care, and Sleep Medicine and Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA 98109
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care, and Sleep Medicine and Center for Lung Biology, Department of Medicine, University of Washington, Seattle, WA 98109
| |
Collapse
|
13
|
Medeleanu MV, Qian YC, Moraes TJ, Subbarao P. Early-immune development in asthma: A review of the literature. Cell Immunol 2023; 393-394:104770. [PMID: 37837916 DOI: 10.1016/j.cellimm.2023.104770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/16/2023]
Abstract
This review presents a comprehensive examination of the various factors contributing to the immunopathogenesis of asthma from the prenatal to preschool period. We focus on the contributions of genetic and environmental components as well as the role of the nasal and gut microbiome on immune development. Predisposing genetic factors, including inherited genes associated with increased susceptibility to asthma, are discussed alongside environmental factors such as respiratory viruses and pollutant exposure, which can trigger or exacerbate asthma symptoms. Furthermore, the intricate interplay between the nasal and gut microbiome and the immune system is explored, emphasizing their influence on allergic immune development and response to environmental stimuli. This body of literature underscores the necessity of a comprehensive approach to comprehend and manage asthma, as it emphasizes the interactions of multiple factors in immune development and disease progression.
Collapse
Affiliation(s)
- Maria V Medeleanu
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada
| | - Yu Chen Qian
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada
| | - Theo J Moraes
- Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada; Laboratory Medicine and Pathology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Canada; Division of Respiratory Medicine, Hospital for Sick Children, Canada
| | - Padmaja Subbarao
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Medicine, SickKids Research Institute, Hospital for Sick Children, Canada; Department of Paediatrics, Temerty Faculty of Medicine, University of Toronto, Canada; Division of Respiratory Medicine, Hospital for Sick Children, Canada; Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Canada.
| |
Collapse
|
14
|
Lee JH, Lee JH, Park SY, Koskela HO, Song WJ. Is fractional exhaled nitric oxide a treatable trait in chronic cough: a narrative review. J Thorac Dis 2023; 15:5844-5855. [PMID: 37969307 PMCID: PMC10636432 DOI: 10.21037/jtd-23-135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/24/2023] [Indexed: 11/17/2023]
Abstract
Background and Objective Current management of chronic cough is largely based on sequential therapeutic trials. The concept of treatable traits was first introduced for individualized treatment of chronic airway diseases; however, it has emerged as a potentially useful strategy in revising the management of chronic cough. This narrative review aimed to analyze the literature to determine if fractional exhaled nitric oxide (FeNO) is a treatable trait in chronic cough, compared to other type 2 biomarkers, and to summarize current knowledge and gaps in the clinical application. Methods An online electronic search was performed on PubMed, Web of Science, and Scopus of English-language literature with following keywords: cough, nitric oxide (NO), eosinophils, biomarker, and treatable trait. Relevance and eligibility of each article were assessed by one or more of the authors and a narrative review was composed. Key Content and Findings Eosinophilic or type 2 airway inflammation is a major treatable trait in patients with chronic cough. Induced sputum tests are regarded as the gold standard for defining inflammatory phenotype, however, technically demanding and cannot be widely applied in clinical practice. FeNO, a practical biomarker, has emerged as an alternative to induced sputum analyses. Mechanistic and clinical evidence indicated that FeNO had a potential for diagnostic utility and treatment response predictability. Conclusions FeNO measurement may help to identify patients with chronic cough that will benefit from corticosteroid treatment. Further studies are warranted to determine the diagnostic roles of FeNO in the management of patients with chronic cough.
Collapse
Affiliation(s)
- Ji-Ho Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Airway Sensation and Cough Research Laboratory, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - So-Young Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Heikki Olavi Koskela
- Unit for Medicine and Clinical Research, Pulmonary Division, Kuopio University Hospital, Kuopio, Finland
- School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Woo-Jung Song
- Department of Allergy and Clinical Immunology, Airway Sensation and Cough Research Laboratory, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
15
|
Oda T, Iwamoto H, Takeno S, Kawasumi T, Takemoto K, Nishida M, Chikuie N, Horibe Y, Yamaguchi K, Sakamoto S, Higaki N, Taruya T, Horimasu Y, Masuda T, Hamamoto T, Nakashima T, Ishino T, Ueda T, Fujitaka K, Hamada H, Hattori N. Exhaled Nitric Oxide and Olfactory Dysfunction in Patients with Asthma: Association with Chronic Rhinosinusitis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1776. [PMID: 37893494 PMCID: PMC10608782 DOI: 10.3390/medicina59101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023]
Abstract
Objectives: Olfactory dysfunction is a clinical sign that is important to detect with coexistent upper airway comorbidities in patients with asthma. This study aimed to investigate the etiology of olfactory dysfunction in patients with asthma and the relationship between fractional exhaled nitric oxide (FeNO) levels. Materials and Methods: This study included 47 asthma patients who were evaluated for olfactory dysfunction at Hiroshima University Hospital between 2012 and 2020. The etiologies of olfactory dysfunction were evaluated, and they were classified according to the FeNO levels of patients with asthma. Results: Olfactory dysfunction was observed in 30 patients with asthma, with chronic rhinosinusitis (77%) being the most prevalent etiology. Eosinophilic chronic rhinosinusitis (ECRS) was the most prevalent etiology of olfactory dysfunction in asthma patients with high FeNO levels (≥25 ppb), while non-eosinophilic chronic rhinosinusitis (NCRS) was the most prevalent etiology in asthma patients with low FeNO levels (<25 ppb). Additionally, the prevalence of ECRS was significantly higher in asthma patients with olfactory dysfunction and high FeNO levels (74%) than in those with either high FeNO levels or olfactory dysfunction and those with low FeNO levels and no olfactory dysfunction (12% and 9%, respectively). Conclusions: We found that ECRS was the predominant cause of olfactory dysfunction in patients with high FeNO levels, while NCRS was more common in those with low FeNO levels. The present study showed that both ECRS and NCRS are common etiologies of olfactory dysfunction in patients with asthma. Additionally, this study supports the link between upper and lower airway inflammation in patients with asthma complicated with olfactory dysfunction.
Collapse
Affiliation(s)
- Takashi Oda
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| | - Sachio Takeno
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Tomohiro Kawasumi
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Kota Takemoto
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Manabu Nishida
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Nobuyuki Chikuie
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Yuichiro Horibe
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| | - Naoko Higaki
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| | - Takayuki Taruya
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| | - Takao Hamamoto
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| | - Takashi Ishino
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Tsutomu Ueda
- Department of Otorhinolaryngology, Head & Neck Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (T.O.); (T.K.); (K.T.); (M.N.); (N.C.); (Y.H.); (T.T.); (T.H.); (T.I.); (T.U.)
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan; (H.I.); (K.Y.); (S.S.); (N.H.); (Y.H.); (T.M.); (T.N.); (K.F.); (N.H.)
| |
Collapse
|
16
|
Mosbech CH, Godtfredsen NS, Ulrik CS, Westergaard CG. Biomarker-guided withdrawal of inhaled corticosteroids in asthma patients with a non-T2 inflammatory phenotype - a randomized controlled trial study protocol. BMC Pulm Med 2023; 23:372. [PMID: 37794472 PMCID: PMC10552380 DOI: 10.1186/s12890-023-02679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Non-T2 asthma is characterized by the absence of elevated type 2 inflammatory biomarkers such as blood-eosinophils, total and allergen-specific Immunoglobulin E and Fractional exhaled Nitric Oxide (FeNO). According to guidelines, inhaled corticosteroids (ICS) are the cornerstone of asthma management. However, ICS treatment is associated with a risk of local side effects, including hoarseness and thrush, and long-term high-dose therapy may cause systemic adverse effects. Furthermore, whereas treatment with ICS is highly effective in T2 asthma, studies have shown a markedly reduced ICS efficacy in patients with a lower degree of T2 inflammation, thus posing a clinical challenge in this subgroup of patients. Hence, owing to the ICS dosage step-up approach in current clinical guidelines, patients with low T2 biomarkers are at risk of being exposed to high doses of ICS, and by that at risk of side effects. Thus, an ICS-treatment regime guided by biomarkers that reflects the inflammatory phenotype is warranted in order to reduce the corticosteroid burden in patients with non-T2 asthma. This study combines a panel of non-T2 inflammatory markers (low periostin, low blood-eosinophils, and low FeNO), to determine if this group of patients can maintain asthma control during ICS withdrawal. METHODS This is an ongoing prospective multicenter open-label randomized, controlled trial aiming to assess if ICS can be safely tapered in patients with non-T2 asthma. The patients are randomized 1:1 to either standard of care or an ICS tapering regimen (n = 55 in each group) where the initial ICS dose is reduced by 50% for 8 weeks followed by total ICS removal. The primary endpoint is change in asthma control questionnaire (ACQ) from baseline to post-tapered ICS. The secondary endpoints are time from baseline to drop-out caused by loss of asthma control, changes in serum-periostin, blood-eosinophils, FeNO, Forced Expiratory Volume in 1 s (FEV1) and in sputum-eosinophils. DISCUSSION This study aims to provide data on ICS tapering in non-T2 asthma patients and to contribute to a more individualized and corticosteroid-sparing treatment regime in this group of patients. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT03141424. Registration date: May 5th, 2017.
Collapse
Affiliation(s)
| | - Nina Skavlan Godtfredsen
- Department of Respiratory Medicine, Copenhagen University Hospital - Hvidovre, Kettegaard Allé 30, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Charlotte Suppli Ulrik
- Department of Respiratory Medicine, Copenhagen University Hospital - Hvidovre, Kettegaard Allé 30, Hvidovre, Denmark
- Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen, Denmark
| | - Christian Grabow Westergaard
- Department of Respiratory Medicine, Copenhagen University Hospital - Hvidovre, Kettegaard Allé 30, Hvidovre, Denmark
| |
Collapse
|
17
|
Guida G, Bertolini F, Carriero V, Levra S, Sprio AE, Sciolla M, Orpheu G, Arrigo E, Pizzimenti S, Ciprandi G, Ricciardolo FLM. Reliability of Total Serum IgE Levels to Define Type 2 High and Low Asthma Phenotypes. J Clin Med 2023; 12:5447. [PMID: 37685515 PMCID: PMC10488214 DOI: 10.3390/jcm12175447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/10/2023] Open
Abstract
Background: High total IgE levels are weak predictors of T2High and have been reported in nonallergic asthma. Therefore, the role of total serum IgE (IgE) in the T2High phenotype is still debated. Objective: This study investigated the reliability of stratifying asthmatics into IgEHigh and IgELow within the T2High and T2Low phenotypes. Methods: This cross-sectional single-center study investigated the association of clinical, functional, and bio-humoral parameters in a large asthmatic population stratified by IgE ≥ 100 kU/L, allergen sensitization, B-EOS ≥ 300/µL, and FENO ≥ 30 ppb. Results: Combining T2 biomarkers and IgE identifies (1) T2Low-IgELow (15.5%); (2) T2Low-IgEHigh (5.1%); (3) T2High-IgELow (33.6%); and T2High-IgEHigh (45.7%). T2Low-IgELow patients have more frequent cardiovascular and metabolic comorbidities, a higher prevalence of emphysema, and higher LAMA use than the two T2High subgroups. Higher exacerbation rates, rhinitis, and anxiety/depression syndrome characterize the T2Low-IgEHigh phenotype vs. the T2Low-IgELow phenotype. Within the T2High, low IgE was associated with female sex, obesity, and anxiety/depression. Conclusions: High IgE in T2Low patients is associated with a peculiar clinical phenotype, similar to T2High in terms of disease severity and nasal comorbidities, while retaining the T2Low features. IgE may represent an additional biomarker for clustering asthma in both T2High and T2Low phenotypes rather than a predictor of T2High asthma "per se".
Collapse
Affiliation(s)
- Giuseppe Guida
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (S.P.); (F.L.M.R.)
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Francesca Bertolini
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Vitina Carriero
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Stefano Levra
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Andrea Elio Sprio
- Department of Research, ASOMI College of Sciences, 19112 Marsa, Malta;
| | - Martina Sciolla
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Giulia Orpheu
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Elisa Arrigo
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
| | - Stefano Pizzimenti
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (S.P.); (F.L.M.R.)
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Fabio Luigi Massimo Ricciardolo
- Severe Asthma and Rare Lung Disease Unit, San Luigi Gonzaga University Hospital, Orbassano, 10043 Turin, Italy; (S.P.); (F.L.M.R.)
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, 10043 Turin, Italy; (F.B.); (V.C.); (S.L.); (M.S.); (G.O.); (E.A.)
- Institute of Translational Pharmacology, National Research Council (IFT-CNR), Section of Palermo, 90146 Palermo, Italy
| |
Collapse
|
18
|
Lommatzsch M, Criée CP, de Jong CCM, Gappa M, Geßner C, Gerstlauer M, Hämäläinen N, Haidl P, Hamelmann E, Horak F, Idzko M, Ignatov A, Koczulla AR, Korn S, Köhler M, Lex C, Meister J, Milger-Kneidinger K, Nowak D, Pfaar O, Pohl W, Preisser AM, Rabe KF, Riedler J, Schmidt O, Schreiber J, Schuster A, Schuhmann M, Spindler T, Taube C, Christian Virchow J, Vogelberg C, Vogelmeier CF, Wantke F, Windisch W, Worth H, Zacharasiewicz A, Buhl R. [Diagnosis and treatment of asthma: a guideline for respiratory specialists 2023 - published by the German Respiratory Society (DGP) e. V.]. Pneumologie 2023; 77:461-543. [PMID: 37406667 DOI: 10.1055/a-2070-2135] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The management of asthma has fundamentally changed during the past decades. The present guideline for the diagnosis and treatment of asthma was developed for respiratory specialists who need detailed and evidence-based information on the new diagnostic and therapeutic options in asthma. The guideline shows the new role of biomarkers, especially blood eosinophils and fractional exhaled NO (FeNO), in diagnostic algorithms of asthma. Of note, this guideline is the first worldwide to announce symptom prevention and asthma remission as the ultimate goals of asthma treatment, which can be achieved by using individually tailored, disease-modifying anti-asthmatic drugs such as inhaled steroids, allergen immunotherapy or biologics. In addition, the central role of the treatment of comorbidities is emphasized. Finally, the document addresses several challenges in asthma management, including asthma treatment during pregnancy, treatment of severe asthma or the diagnosis and treatment of work-related asthma.
Collapse
Affiliation(s)
- Marek Lommatzsch
- Zentrum für Innere Medizin, Abt. für Pneumologie, Universitätsmedizin Rostock
| | | | - Carmen C M de Jong
- Abteilung für pädiatrische Pneumologie, Abteilung für Pädiatrie, Inselspital, Universitätsspital Bern
| | - Monika Gappa
- Klinik für Kinder und Jugendliche, Evangelisches Krankenhaus Düsseldorf
| | | | | | | | - Peter Haidl
- Abteilung für Pneumologie II, Fachkrankenhaus Kloster Grafschaft GmbH, Schmallenberg
| | - Eckard Hamelmann
- Kinder- und Jugendmedizin, Evangelisches Klinikum Bethel, Bielefeld
| | | | - Marco Idzko
- Abteilung für Pulmologie, Universitätsklinik für Innere Medizin II, Medizinische Universität Wien
| | - Atanas Ignatov
- Universitätsklinik für Frauenheilkunde, Geburtshilfe und Reproduktionsmedizin, Universitätsklinikum Magdeburg
| | - Andreas Rembert Koczulla
- Schön-Klinik Berchtesgadener Land, Berchtesgaden
- Klinik für Innere Medizin Schwerpunkt Pneumologie, Universitätsklinikum Marburg
| | - Stephanie Korn
- Pneumologie und Beatmungsmedizin, Thoraxklinik, Universitätsklinikum Heidelberg
| | - Michael Köhler
- Deutsche Patientenliga Atemwegserkrankungen, Gau-Bickelheim
| | - Christiane Lex
- Klinik für Kinder- und Jugendmedizin, Universitätsmedizin Göttingen
| | - Jochen Meister
- Klinik für Kinder- und Jugendmedizin, Helios Klinikum Aue
| | | | - Dennis Nowak
- Institut und Poliklinik für Arbeits-, Sozial- und Umweltmedizin, LMU München
| | - Oliver Pfaar
- Klinik für Hals-Nasen-Ohrenheilkunde, Kopf- und Hals-Chirurgie, Sektion für Rhinologie und Allergie, Universitätsklinikum Marburg, Philipps-Universität Marburg, Marburg
| | - Wolfgang Pohl
- Gesundheitszentrum Althietzing, Karl Landsteiner Institut für klinische und experimentelle Pneumologie, Wien
| | - Alexandra M Preisser
- Zentralinstitut für Arbeitsmedizin und Maritime Medizin, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Klaus F Rabe
- Pneumologie, LungenClinic Großhansdorf, UKSH Kiel
| | - Josef Riedler
- Abteilung für Kinder- und Jugendmedizin, Kardinal Schwarzenberg Klinikum Schwarzach
| | | | - Jens Schreiber
- Universitätsklinik für Pneumologie, Universitätsklinikum Magdeburg
| | - Antje Schuster
- Klinik für Allgemeine Pädiatrie, Neonatologie und Kinderkardiologie, Universitätsklinikum Düsseldorf
| | | | | | - Christian Taube
- Klinik für Pneumologie, Universitätsmedizin Essen-Ruhrlandklinik
| | | | - Christian Vogelberg
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, Dresden
| | | | | | - Wolfram Windisch
- Lungenklinik Köln-Merheim, Lehrstuhl für Pneumologie, Universität Witten/Herdecke
| | - Heinrich Worth
- Pneumologische & Kardiologische Gemeinschaftspraxis, Fürth
| | | | - Roland Buhl
- Klinik für Pneumologie, Zentrum für Thoraxerkrankungen, Universitätsmedizin Mainz
| |
Collapse
|
19
|
Viinanen A, Aakko J, Lassenius MI, Telg G, Nieminen K, Kaijala S, Lehtimäki L, Kankaanranta H. Type 2 Low Biomarker Stability and Exacerbations in Severe Uncontrolled Asthma. Biomolecules 2023; 13:1118. [PMID: 37509154 PMCID: PMC10377379 DOI: 10.3390/biom13071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
We investigated the stability of T2 low status, based on low levels of T2 biomarkers, and exacerbation rates in T2 low and non-T2 low asthma from clinical retrospective data of severe uncontrolled asthma patients. Knowledge of the T2 low biomarker profile is sparse and biomarker stability is uncharted. Secondary care patients with severe uncontrolled asthma and at least two blood eosinophil counts (BEC) and fractional exhaled nitric oxide (FeNO) measured for determination of type 2 inflammation status were evaluated from a follow-up period of 4 years. Patients were stratified into four groups: T2 low150 (n = 31; BEC < 150 cells/µL and FeNO < 25 ppb), non-T2 low150 (n = 138; BEC > 150 cells/µL and/or FeNO > 25 ppb), T2 low300 (n = 66; BEC < 300 cells/µL and FeNO < 25 ppb), and non-T2 low300 (n = 103; BEC > 300 cells/µL and/or FeNO > 25 ppb). Exacerbation rates requiring hospital care, stability of biomarker status, and cumulative OCS and ICS doses were assessed during follow-up. Among patients with severe uncontrolled asthma, 18% (n = 31) were identified as T2 low150, and 39% (n = 66) as T2 low300. In these groups, the low biomarker profile was stable in 55% (n = 11) and 72% (n = 33) of patients with follow-up measures. Exacerbation rates were different between the T2 low and non-T2 low groups: 19.7 [95% CI: 4.3-45.6] in T2 low150 vs. 8.4 [4.7-13.0] in non-T2 low150 per 100 patient-years. BEC and FeNO are useful biomarkers in identifying T2 low severe uncontrolled asthma, showing a stable follow-up biomarker profile in up to 72% of patients. Repeated monitoring of these biomarkers is essential in identifying and treating patients with T2 low asthma.
Collapse
Affiliation(s)
- Arja Viinanen
- Division of Medicine, Department of Pulmonary Diseases, Turku University Hospital, 20014 Turku, Finland
- Department of Pulmonary Diseases and Clinical Allergology, University of Turku, 20014 Turku, Finland
| | | | | | | | | | | | - Lauri Lehtimäki
- Allergy Centre, Tampere University Hospital, Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
| | - Hannu Kankaanranta
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 417 56 Gothenburg, Sweden
- Faculty of Medicine and Health Technology, Tampere University, 33014 Tampere, Finland
- Department of Respiratory Medicine, Seinäjoki Central Hospital, 60220 Seinäjoki, Finland
| |
Collapse
|
20
|
Wu D, Zhang X, Zimmerly KM, Wang R, Livingston A, Iwawaki T, Kumar A, Wu X, Mandell MA, Liu M, Yang XO. Unconventional Activation of IRE1 Enhances TH17 Responses and Promotes Neutrophilic Airway Inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547286. [PMID: 37461622 PMCID: PMC10349957 DOI: 10.1101/2023.06.30.547286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Treatment-refractory severe asthma manifests a neutrophilic phenotype associated with TH17 responses. Heightened unfolded protein responses (UPRs) are associated with the risk of asthma, including severe asthma. However, how UPRs participate in the deregulation of TH17 cells leading to this type of asthma remains elusive. In this study, we investigated the role of the UPR sensor IRE1 in TH17 cell function and neutrophilic airway inflammation. We found that IRE1 is induced in fungal asthma and is highly expressed in TH17 cells relative to naïve CD4+ T cells. Cytokine (e.g. IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by TH17 cells. Ern1 (encoding IRE1)-deficiency decreases the expression of ER stress factors and impairs the differentiation and cytokine secretion of TH17 cells. Genetic ablation of Ern1 leads to alleviated TH17 responses and airway neutrophilia in a Candida albicans asthma model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances TH17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPRmediated secretory function of TH17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in TH17-biased TH2-low asthma.
Collapse
Affiliation(s)
- Dandan Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Kourtney M. Zimmerly
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Ruoning Wang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Amanda Livingston
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX 77204, USA
| | - Xiang Wu
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
- Department of Parasitology, School of Basic Medical Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Michael A. Mandell
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Xuexian O. Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| |
Collapse
|
21
|
Hvidtfeldt M, Sverrild A, Pulga A, Frøssing L, Silberbrandt A, Hostrup M, Thomassen M, Sanden C, Clausson CM, Siddhuraj P, Bornesund D, Nieto-Fontarigo JJ, Uller L, Erjefält J, Porsbjerg C. Airway hyperresponsiveness reflects corticosteroid-sensitive mast cell involvement across asthma phenotypes. J Allergy Clin Immunol 2023; 152:107-116.e4. [PMID: 36907566 DOI: 10.1016/j.jaci.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Airway hyperresponsiveness is a hallmark of asthma across asthma phenotypes. Airway hyperresponsiveness to mannitol specifically relates to mast cell infiltration of the airways, suggesting inhaled corticosteroids to be effective in reducing the response to mannitol, despite low levels of type 2 inflammation. OBJECTIVE We sought to investigate the relationship between airway hyperresponsiveness and infiltrating mast cells, and the response to inhaled corticosteroid treatment. METHODS In 50 corticosteroid-free patients with airway hyperresponsiveness to mannitol, mucosal cryobiopsies were obtained before and after 6 weeks of daily treatment with 1600 μg of budesonide. Patients were stratified according to baseline fractional exhaled nitric oxide (Feno) with a cutoff of 25 parts per billion. RESULTS Airway hyperresponsiveness was comparable at baseline and improved equally with treatment in both patients with Feno-high and Feno-low asthma: doubling dose, 3.98 (95% CI, 2.49-6.38; P < .001) and 3.85 (95% CI, 2.51-5.91; P < .001), respectively. However, phenotypes and distribution of mast cells differed between the 2 groups. In patients with Feno-high asthma, airway hyperresponsiveness correlated with the density of chymase-high mast cells infiltrating the epithelial layer (ρ, -0.42; P = .04), and in those with Feno-low asthma, it correlated with the density in the airway smooth muscle (ρ, -0.51; P = .02). The improvement in airway hyperresponsiveness after inhaled corticosteroid treatment correlated with a reduction in mast cells, as well as in airway thymic stromal lymphopoietin and IL-33. CONCLUSIONS Airway hyperresponsiveness to mannitol is related to mast cell infiltration across asthma phenotypes, correlating with epithelial mast cells in patients with Feno-high asthma and with airway smooth muscle mast cells in patients with Feno-low asthma. Treatment with inhaled corticosteroids was effective in reducing airway hyperresponsiveness in both groups.
Collapse
Affiliation(s)
- Morten Hvidtfeldt
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark.
| | - Asger Sverrild
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark; Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Alexis Pulga
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - Laurits Frøssing
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Morten Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Martin Thomassen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jonas Erjefält
- Unit of Airway Inflammation, Lund University, Lund, Sweden
| | - Celeste Porsbjerg
- Respiratory Research Unit, Bispebjerg Hospital, Copenhagen, Denmark; Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
22
|
Mohan A, Lugogo NL. Mild asthma: Lessons learned and remaining questions. Respir Med 2023:107326. [PMID: 37328016 DOI: 10.1016/j.rmed.2023.107326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/19/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
Patients living with mild disease represent the largest proportion of asthma patients. There are significant challenges in proposing a definition that would best describe these patients, while also accurately identifying at-risk individuals. Current literature suggests considerable inflammatory and clinical heterogeneity within this group. Research has shown that these patients are at risk of poor control, exacerbations, lung function decline, and death. Despite conflicting data on its prevalence, eosinophilic inflammation appears to be a predictor of poorer outcomes in mild asthma. There is an immediate need to better understand phenotypic clusters in mild asthma. It is also important to understand factors that influence disease progression and remission, as it is evident that both vary in mild asthma. Guided by robust literature that supports inhaled corticosteroid-based strategies over short-acting beta-agonist (SABA) reliant regimens, the management of these patients has evolved considerably. Unfortunately, SABA use remains high in clinical practice despite strong advocacy from the Global Initiative for Asthma. Future mild asthma research should explore the role of biomarkers, develop prediction tools based on composite risk scores, and explore targeted therapies at least for at-risk individuals.
Collapse
Affiliation(s)
- Arjun Mohan
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.
| | - Njira L Lugogo
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Mohan A, Lugogo NL, Hanania NA, Reddel HK, Akuthota P, O’Byrne PM, Guilbert T, Papi A, Price D, Jenkins CR, Kraft M, Bacharier LB, Boulet LP, Yawn BP, Pleasants R, Lazarus SC, Beasley R, Gauvreau G, Israel E, Schneider-Futschik EK, Yorgancioglu A, Martinez F, Moore W, Sumino K. Questions in Mild Asthma: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2023; 207:e77-e96. [PMID: 37260227 PMCID: PMC10263130 DOI: 10.1164/rccm.202304-0642st] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023] Open
Abstract
Background: Patients with mild asthma are believed to represent the majority of patients with asthma. Disease-associated risks such as exacerbations, lung function decline, and death have been understudied in this patient population. There have been no prior efforts from major societies to describe research needs in mild asthma. Methods: A multidisciplinary, diverse group of 24 international experts reviewed the literature, identified knowledge gaps, and provided research recommendations relating to mild asthma definition, pathophysiology, and management across all age groups. Research needs were also investigated from a patient perspective, generated in conjunction with patients with asthma, caregivers, and stakeholders. Of note, this project is not a systematic review of the evidence and is not a clinical practice guideline. Results: There are multiple unmet needs in research on mild asthma driven by large knowledge gaps in all areas. Specifically, there is an immediate need for a robust mild asthma definition and an improved understanding of its pathophysiology and management strategies across all age groups. Future research must factor in patient perspectives. Conclusions: Despite significant advances in severe asthma, there remain innumerable research areas requiring urgent attention in mild asthma. An important first step is to determine a better definition that will accurately reflect the heterogeneity and risks noted in this group. This research statement highlights the topics of research that are of the highest priority. Furthermore, it firmly advocates the need for engagement with patient groups and for more support for research in this field.
Collapse
|
24
|
Zahraei HN, Schleich F, Gerday S, Guissard F, Paulus V, Henket M, Moermans C, Donneau AF, Louis R. A clustering analysis of eosinophilic asthmatics: Two clusters with sharp differences in atopic status and disease severity. Clin Exp Allergy 2023. [PMID: 37246256 DOI: 10.1111/cea.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Halehsadat Nekoee Zahraei
- Biostatistics Unit, Department of Public Health, University of Liège, Liege, Belgium
- Department of Pneumology, GIGA, University of Liège, Liege, Belgium
| | | | - Sara Gerday
- Department of Pneumology, GIGA, University of Liège, Liege, Belgium
| | | | - Virginie Paulus
- Department of Pneumology, GIGA, University of Liège, Liege, Belgium
| | - Monique Henket
- Department of Pneumology, GIGA, University of Liège, Liege, Belgium
| | | | | | - Renaud Louis
- Department of Pneumology, GIGA, University of Liège, Liege, Belgium
| |
Collapse
|
25
|
Tota M, Łacwik J, Laska J, Sędek Ł, Gomułka K. The Role of Eosinophil-Derived Neurotoxin and Vascular Endothelial Growth Factor in the Pathogenesis of Eosinophilic Asthma. Cells 2023; 12:cells12091326. [PMID: 37174726 PMCID: PMC10177218 DOI: 10.3390/cells12091326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/23/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Asthma is a chronic complex pulmonary disease characterized by airway inflammation, remodeling, and hyperresponsiveness. Vascular endothelial growth factor (VEGF) and eosinophil-derived neurotoxin (EDN) are two significant mediators involved in the pathophysiology of asthma. In asthma, VEGF and EDN levels are elevated and correlate with disease severity and airway hyperresponsiveness. Diversity in VEGF polymorphisms results in the variability of responses to glucocorticosteroids and leukotriene antagonist treatment. Targeting VEGF and eosinophils is a promising therapeutic approach for asthma. We identified lichochalcone A, bevacizumab, azithromycin (AZT), vitamin D, diosmetin, epigallocatechin gallate, IGFBP-3, Neovastat (AE-941), endostatin, PEDF, and melatonin as putative add-on drugs in asthma with anti-VEGF properties. Further studies and clinical trials are needed to evaluate the efficacy of those drugs. AZT reduces the exacerbation rate and may be considered in adults with persistent symptomatic asthma. However, the long-term effects of AZT on community microbial resistance require further investigation. Vitamin D supplementation may enhance corticosteroid responsiveness. Herein, anti-eosinophil drugs are reviewed. Among them are, e.g., anti-IL-5 (mepolizumab, reslizumab, and benralizumab), anti-IL-13 (lebrikizumab and tralokinumab), anti-IL-4 and anti-IL-13 (dupilumab), and anti-IgE (omalizumab) drugs. EDN over peripheral blood eosinophil count is recommended to monitor the asthma control status and to assess the efficacy of anti-IL-5 therapy in asthma.
Collapse
Affiliation(s)
- Maciej Tota
- Student Scientific Group of Adult Allergology, Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| | - Julia Łacwik
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Julia Laska
- Student Scientific Group of Microbiology and Immunology, Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Łukasz Sędek
- Department of Microbiology and Immunology, Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland
| |
Collapse
|
26
|
Frøssing L, Klein DK, Hvidtfeldt M, Obling N, Telg G, Erjefält JS, Bodtger U, Porsbjerg C. Distribution of type 2 biomarkers and association with severity, clinical characteristics and comorbidities in the BREATHE real-life asthma population. ERJ Open Res 2023; 9:00483-2022. [PMID: 36949964 PMCID: PMC10026007 DOI: 10.1183/23120541.00483-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Background Type 2 (T2) high asthma is recognised as a heterogenous entity consisting of several endotypes; however, the prevalence and distribution of the T2 biomarkers in the general asthma population, across asthma severity, and across compartments is largely unknown. The objective of the present study was to describe expression and overlaps of airway and systemic T2 biomarkers in a clinically representative asthma population. Methods Patients with asthma from the real-life BREATHE cohort referred to a specialist centre were included and grouped according to T2 biomarkers: blood and sputum eosinophilia (≥0.3×109 cells·L-1 and 3% respectively), total IgE (≥150 U·mL-1), and fractional exhaled nitric oxide (≥25 ppb). Results Patients with mild-to-moderate asthma were younger (41 versus 49 years, p<0.001), had lower body mass index (25.9 versus 28.0 kg·m-2, p=0.002) and less atopy (47% versus 58%, p=0.05), higher forced expiratory volume in 1 s (3.2 versus 2.8 L, p<0.001) and forced vital capacity (4.3 versus 3.9 L, p<0.001) compared with patients with severe asthma, who had higher blood (0.22×109 versus 0.17×109 cells·L-1, p=0.01) and sputum (3.0% versus 1.5%, p=0.01) eosinophils. Co-expression of all T2 biomarkers was a particular characteristic of severe asthma (p<0.001). In patients with eosinophilia, sputum eosinophilia without blood eosinophilia was present in 45% of patients with mild-to-moderate asthma and 35% with severe asthma. Conclusion Severe asthma is more commonly associated with activation of several T2 pathways, indicating that treatments targeting severe asthma may need to act more broadly on T2 inflammatory pathways. Implementation of airway inflammometry in clinical care is of paramount importance, as the best treatable trait is otherwise is overlooked in a large proportion of patients irrespective of disease severity.
Collapse
Affiliation(s)
- Laurits Frøssing
- Respiratory Research Unit, Dept of Respiratory Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
- Contributed equally
- Corresponding author: Laurits Frøssing ()
| | - Ditte K. Klein
- Respiratory Research Unit, Dept of Respiratory Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
- Contributed equally
| | - Morten Hvidtfeldt
- Respiratory Research Unit, Dept of Respiratory Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Nicolai Obling
- Respiratory Research Unit PLUZ, Dept of Respiratory Medicine, Zealand University Hospital, Naestved, Denmark
| | | | | | - Uffe Bodtger
- Respiratory Research Unit PLUZ, Dept of Respiratory Medicine, Zealand University Hospital, Naestved, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Celeste Porsbjerg
- Respiratory Research Unit, Dept of Respiratory Medicine, Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| |
Collapse
|
27
|
McDowell PJ, Busby J, Heaney LG. Asthma Exacerbations in Severe Asthma: Why Systemic Corticosteroids May not Always Be the Best Treatment Option. CURRENT TREATMENT OPTIONS IN ALLERGY 2023. [DOI: 10.1007/s40521-023-00330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Abstract
Purpose
Advances in the management of severe, eosinophilic asthma have improved, but asthma exacerbations continue to occur. This review aims to look at the evidence we have about why exacerbations may occur; their phenotype and why oral corticosteroids may not always be the best treatment option for all exacerbation of symptoms in individuals with severe asthma.
Recent findings
Studies dating back to the 1990s showed that asthma exacerbations across the spectrum of asthma severity were of different inflammatory endotypes. In addition, there is a wealth of evidence suggesting that eosinophilic inflammation is very responsive to corticosteroid therapy, but that non-eosinophilic inflammation is less so. Two recent UK-based studies have undertaken systematic phenotyping of exacerbations in severe asthma and have shown that there are a significant minority of exacerbation events with an increase in asthma symptoms, fall in lung function, but without evidence of raised T2 biomarkers.
Summary
The evidence to date would suggest that T2 biomarker low asthma exacerbations do not benefit from the administration of oral corticosteroids; in fact, the effect of the oral corticosteroids is harmful. However, there is a paucity of data to answer this question directly. Further research is needed to assess the evolution of non-T2 exacerbations not treated with OCS in a randomised, placebo-controlled, manner.
Collapse
|
28
|
Kere M, Klevebro S, Hernandez-Pacheco N, Ödling M, Ekström S, Mogensen I, Janson C, Palmberg L, van Hage M, Georgelis A, Bergström A, Kull I, Melén E, Björkander S. Exploring proteomic plasma biomarkers in eosinophilic and neutrophilic asthma. Clin Exp Allergy 2023; 53:186-197. [PMID: 36104952 DOI: 10.1111/cea.14229] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Few biomarkers identify eosinophilic and neutrophilic asthma beyond cell concentrations in blood or sputum. Finding novel biomarkers for asthma endotypes could give insight about disease mechanisms and guide tailored treatment. Our aim was to investigate clinical characteristics and inflammation-related plasma proteins in relation to blood eosinophil and neutrophil concentrations in subjects with and without asthma. METHODS We included 24-26-year-old subjects (n = 2063) from the Swedish population-based cohort BAMSE. Subjects with asthma (n = 239) and without asthma (n = 1824) were subdivided based on blood eosinophil and neutrophil concentrations (cut-offs 0.3 × 109 /L and 5.0 × 109 /L, respectively). We measured the levels of 92 plasma proteins using Olink Proseek Multiplex Inflammation Panel Assay. Group statistics tests were used to analyse the data, as well as adjusted multiple logistic regression models. RESULTS Among subjects with asthma, 21.8% had eosinophilic asthma and 20.5% neutrophilic asthma. Eosinophilic asthma, but not neutrophilic asthma, was associated with a distinct clinical phenotype with, for example, higher proportions of eczema and sensitization. Most plasma proteins that associated with high eosinophil and/or neutrophil blood concentrations in subjects with asthma showed similar associations in subjects without asthma. However, out of these proteins, MMP10 levels were associated with eosinophilic asthma and were significantly higher as compared to controls with high eosinophilic concentration, while CCL4 levels associated with high neutrophil concentration only in subjects with asthma. CONCLUSIONS Eosinophilic asthma was associated with a clear clinical phenotype. With our definitions, we identified MMP10 as a possible plasma biomarker for eosinophilic asthma and CCL4 was linked to neutrophilic asthma. These proteins should be evaluated further in clinical settings and using sputum granulocytes to define the asthma endotypes.
Collapse
Affiliation(s)
- Maura Kere
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Susanna Klevebro
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Natalia Hernandez-Pacheco
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Maria Ödling
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Ekström
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ida Mogensen
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Lena Palmberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Karolinska University Hospital, Stockholm, Sweden
| | - Antonios Georgelis
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergström
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.,Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Inger Kull
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Sophia Björkander
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
29
|
Aegerter H, Lambrecht BN. The Pathology of Asthma: What Is Obstructing Our View? ANNUAL REVIEW OF PATHOLOGY 2023; 18:387-409. [PMID: 36270294 DOI: 10.1146/annurev-pathol-042220-015902] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite the advent of sophisticated and efficient new biologics to treat inflammation in asthma, the disease persists. Even following treatment, many patients still experience the well-known symptoms of wheezing, shortness of breath, and coughing. What are we missing? Here we examine the evidence that mucus plugs contribute to a substantial portion of disease, not only by physically obstructing the airways but also by perpetuating inflammation. In this way, mucus plugs may act as an immunogenic stimulus even in the absence of allergen or with the use of current therapeutics. The alterations of several parameters of mucus biology, driven by type 2 inflammation, result in sticky and tenacious sputum, which represents a potent threat, first due to the difficulties in expectoration and second by acting as a platform for viral, bacterial, or fungal colonization that allows exacerbations. Therefore, in this way, mucus plugs are an overlooked but critical feature of asthmatic airway disease.
Collapse
Affiliation(s)
- Helena Aegerter
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Gvalani A, Athavale A, Gupta D. Biomarkers in severe asthma: Identifying the treatable trait. Lung India 2023; 40:59-67. [PMID: 36695260 PMCID: PMC9894287 DOI: 10.4103/lungindia.lungindia_271_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/24/2022] [Accepted: 08/08/2022] [Indexed: 01/01/2023] Open
Abstract
Asthma is a chronic condition of bronchial hyper-reactivity associated with inflammation ranges from mild to severe form. It affects 1 - 18% of the population globally and it is estimated that > 300million people in the world have asthma. Of this 5 - 10% have severe asthma. while the proportion of patients suffering from severe are smaller, the morbidity and mortality are higher in this group. With the advances in our understanding of the pathophysiology of asthma there is a need to understand the role of various biomarkers. We live in an era of precision medicine and today there is a clear unmet need to understand targeted therapies. This review aims to raise awareness to the available biomarkers used in clinical practice in India and their role in predicting response to targeted therapies.
Collapse
Affiliation(s)
- Aanchal Gvalani
- Medical Affairs, GlaxoSmithKline, Mumbai, Maharashtra, India
| | - Amita Athavale
- Department of Pulmonary Medicine and EPRC, Seth GS Medical College and KEM Hospital, Mumbai, Maharashtra, India
| | - Disha Gupta
- Medical Affairs, GlaxoSmithKline, Mumbai, Maharashtra, India
| |
Collapse
|
31
|
Hizawa N. The understanding of asthma pathogenesis in the era of precision medicine. Allergol Int 2023; 72:3-10. [PMID: 36195530 DOI: 10.1016/j.alit.2022.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Asthma is a syndrome with extremely diverse clinical phenotypes in which the onset, severity, and response to treatment are defined by the complex interplay of many genetic and environmental factors. Environmental factors epigenetically affect gene expression, and the disease is driven by a multidimensional dynamic network involving RNA and protein molecules derived from gene expression, as well as various metabolic products. In other words, specific pathophysiological mechanisms or endotypes are dynamic networks that arise in response to individual genotypes and the various environmental factors to which individuals have been exposed since before birth, such as diet, infection, air pollution, smoking, antibiotic use, and the bacterial flora of the intestinal tract, skin, and lungs. A key feature of asthma genome scans is their potential to reveal the molecular pathways that lead to pathogenesis. Endotypes that drive the disease have a significant impact on the phenotypes of asthma patients, including their drug responsiveness. Understanding endotypes will lead to not only the implementation of therapies that are tailored to the specific molecular network(s) underlying the patient's condition, but also to the development of therapeutic strategies that target individual endotypes, as well as to precision health, which will enable the prediction of disease onset with high accuracy from an early stage and the implementation of preventive strategies based on endotypes. Understanding of endotypes will pave the way for the practice of precision medicine in asthma care, moving away from 'one-size-fits-all' medicine and population-based prevention approaches that do not take individuals' susceptibility into account.
Collapse
Affiliation(s)
- Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
32
|
Khalfaoui L, Pabelick CM. Airway smooth muscle in contractility and remodeling of asthma: potential drug target mechanisms. Expert Opin Ther Targets 2023; 27:19-29. [PMID: 36744401 DOI: 10.1080/14728222.2023.2177533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Asthma is characterized by enhanced airway contractility and remodeling where airway smooth muscle (ASM) plays a key role, modulated by inflammation. Understanding the mechanisms by which ASM contributes to these features of asthma is essential for the development of novel asthma therapies. AREAS COVERED Inflammation in asthma contributes to a multitude of changes within ASM including enhanced airway contractility, proliferation, and fibrosis. Altered intracellular calcium ([Ca2+]i) regulation or Ca2+ sensitization contributes to airway hyperreactivity. Increased airway wall thickness from ASM proliferation and fibrosis contributes to structural changes seen with asthma. EXPERT OPINION ASM plays a significant role in multiple features of asthma. Increased ASM contractility contributes to hyperresponsiveness, while altered ASM proliferation and extracellular matrix production promote airway remodeling both influenced by inflammation of asthma and conversely even influencing the local inflammatory milieu. While standard therapies such as corticosteroids or biologics target inflammation, cytokines, or their receptors to alleviate asthma symptoms, these approaches do not address the underlying contribution of ASM to hyperresponsiveness and particularly remodeling. Therefore, novel therapies for asthma need to target abnormal contractility mechanisms in ASM and/or the contribution of ASM to remodeling, particularly in asthmatics resistant to current therapies.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA
| | - Christina M Pabelick
- Departments of Anesthesiology & Perioperative Medicine Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Abstract
Eosinophils are important effector cells in airway inflammation, as pleiotropy and heterogeneity can be linked to various pathophysiologies in asthma and chronic obstructive pulmonary disease (COPD). Sputum eosinophils can reflect the heterogeneity of airway inflammation, and owing to their traits, blood eosinophils can be a surrogate and potential biomarker for managing both conditions. Blood eosinophils are activated via the stimulation of type 2 cytokines, such as interleukin (IL)-5, IL-4/13, granulocyte-macrophage colony-stimulating factor, IL-33, and thymic stromal lymphopoietin. There is sufficient evidence to support the relationship between the blood eosinophil count and clinical outcomes, including pulmonary function decline, exacerbations, all-cause mortality, and treatment response to inhaled corticosteroids and biologics. Thus, there is growing interest in the use of blood eosinophils for the management of these diseases. Compiling recent evidence, we herein review the significance of measuring blood eosinophils in asthma and COPD.
Collapse
Affiliation(s)
- Tsunahiko Hirano
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Japan
| | - Kazuto Matsunaga
- Department of Respiratory Medicine and Infectious Disease, Graduate School of Medicine, Yamaguchi University, Japan
| |
Collapse
|
34
|
Lantto J, Suojalehto H, Lindström I. Long-Term Outcome of Occupational Asthma From Irritants and Low-Molecular-Weight Sensitizers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 11:1224-1232.e2. [PMID: 36572181 DOI: 10.1016/j.jaip.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The short-term asthma outcome of irritant-induced asthma (IIA) is poorer than that of low-molecular-weight (LMW) sensitizer-induced occupational asthma (OA). OBJECTIVES To evaluate the long-term asthma outcome of IIA and LMW-induced OA and to determine which baseline features are associated with a poor long-term outcome. METHODS This follow-up questionnaire study assessed 43 patients diagnosed with IIA and 43 patients with LMW-induced OA at the Finnish Institute of Occupational Health in 2004-2018. The baseline results were analyzed to detect features associated with uncontrolled asthma (Asthma Control Test [ACT] score of ≤19, or ≥2 exacerbations or ≥1 serious exacerbation within 1 year) at follow-up. RESULTS The median interval since OA diagnosis was 6.3 years (interquartile range [IQR]: 4.4-11.3 years). Uncontrolled asthma was more frequent with IIA than with LMW-induced OA (58% vs 40%, adjusted odds ratio [OR]: 3.60, 95% confidence interval [CI]: 1.20-10.81). Poor symptom control was the main factor for this difference (median [IQR] ACT score of 18 [15-22] vs 21 [18-23], P = .036, respectively). Among all participants, older age (OR: 1.08 per year, 95% CI: 1.02-1.15), a fractional exhaled nitric oxide (FeNO) value <20 ppb (OR: 5.08, 95% CI: 1.45-17.80), and uncontrolled asthma at baseline (OR: 3.94, 95% CI: 1.31-11.88) were associated with uncontrolled asthma at follow-up. CONCLUSIONS Long-term asthma control of IIA appears to be inferior to that of LMW-induced OA. Older age, a low FeNO value, and uncontrolled asthma at baseline might indicate a worse long-term outcome among those with IIA and LMW-induced OA.
Collapse
Affiliation(s)
- Jussi Lantto
- Doctoral Programme in Clinical Research, University of Helsinki, Finland; Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland.
| | - Hille Suojalehto
- Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland
| | - Irmeli Lindström
- Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland
| |
Collapse
|
35
|
Zhao N, Suissa S, Ernst P. Beta-agonist Use and Increased Asthma Mortality: Reality or Fiction? Arch Bronconeumol 2022:S0300-2896(22)00669-X. [PMID: 36609110 DOI: 10.1016/j.arbres.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Nan Zhao
- Department of Medicine, Pulmonary Division, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Samy Suissa
- Department of Medicine, McGill University, Montreal, Quebec, Canada; Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Department of Epidemiology, Biostatistics, and Medicine, McGill University, Montreal, Canada
| | - Pierre Ernst
- Department of Medicine, Pulmonary Division, Jewish General Hospital, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada; Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Department of Epidemiology, Biostatistics, and Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
36
|
Curto E, Mateus-Medina ÉF, Crespo-Lessmann A, Osuna-Gómez R, Ujaldón-Miró C, García-Moral A, Galván-Blasco P, Soto-Retes L, Ramos-Barbón D, Plaza V. Identification of Two Eosinophil Subsets in Induced Sputum from Patients with Allergic Asthma According to CD15 and CD66b Expression. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13400. [PMID: 36293979 PMCID: PMC9602830 DOI: 10.3390/ijerph192013400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Two subsets of eosinophils have been described: resident eosinophils with homeostatic functions (rEOS) in healthy subjects and in patients with nonallergic eosinophilic asthma, and inflammatory eosinophils (iEOS) in blood and lung samples from patients with allergic asthma. We explored if it would be possible to identify different subsets of eosinophils using flow cytometry and the gating strategy applied to induced sputum. We conducted an observational cross-sectional single-center study of 62 patients with persistent allergic asthma. Inflammatory cells from induced sputum samples were counted by light microscopy and flow cytometry, and cytokine levels in the supernatant were determined. Two subsets of eosinophils were defined that we call E1 (CD66b-high and CD15-high) and E2 (CD66b-low and CD15-low). Of the 62 patients, 24 were eosinophilic, 18 mixed, 10 paucigranulocytic, and 10 neutrophilic. E1 predominated over E2 in the eosinophilic and mixed patients (20.86% vs. 6.27% and 14.42% vs. 4.31%, respectively), while E1 and E2 were similar for neutrophilic and paucigranulocytic patients. E1 correlated with IL-5, fractional exhaled nitric oxide, and blood eosinophils. While eosinophil subsets have been identified for asthma in blood, we have shown that they can also be identified in induced sputum.
Collapse
Affiliation(s)
- Elena Curto
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Éder F. Mateus-Medina
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Astrid Crespo-Lessmann
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Rubén Osuna-Gómez
- Inflammatory Diseases Unit, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Cristina Ujaldón-Miró
- Cellular Immunotherapy and Gene Therapy Group (GITG), Oncology, Hematology and Transplantation Laboratory, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Alba García-Moral
- Pediatric Allergy Unit, Pediatric Allergy Section, Pediatric Pneumology and Cystic Fibrosis, Pediatrics Service, Hospital Universitari Vall d’Hebron, 08041 Barcelona, Spain
| | - Paula Galván-Blasco
- Allergology Section, Department of Internal Medicine, Hospital Universitari Vall d’Hebron, 08041 Barcelona, Spain
| | - Lorena Soto-Retes
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - David Ramos-Barbón
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| | - Vicente Plaza
- Asthma Unit, Respiratory and Allergy Department, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Department of Medicine, Universitat Autònoma de Barcelona, 08041 Barcelona, Spain
| |
Collapse
|
37
|
Guida G, Bagnasco D, Carriero V, Bertolini F, Ricciardolo FLM, Nicola S, Brussino L, Nappi E, Paoletti G, Canonica GW, Heffler E. Critical evaluation of asthma biomarkers in clinical practice. Front Med (Lausanne) 2022; 9:969243. [PMID: 36300189 PMCID: PMC9588982 DOI: 10.3389/fmed.2022.969243] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The advent of personalized medicine has revolutionized the whole approach to the management of asthma, representing the essential basis for future developments. The cornerstones of personalized medicine are the highest precision in diagnosis, individualized prediction of disease evolution, and patient-tailored treatment. To this aim, enormous efforts have been established to discover biomarkers able to predict patients' phenotypes according to clinical, functional, and bio-humoral traits. Biomarkers are objectively measured characteristics used as indicators of biological or pathogenic processes or clinical responses to specific therapeutic interventions. The diagnosis of type-2 asthma, prediction of response to type-2 targeted treatments, and evaluation of the risk of exacerbation and lung function impairment have been associated with biomarkers detectable either in peripheral blood or in airway samples. The surrogate nature of serum biomarkers, set up to be less invasive than sputum analysis or bronchial biopsies, has shown several limits concerning their clinical applicability. Routinely used biomarkers, like peripheral eosinophilia, total IgE, or exhaled nitric oxide, result, even when combined, to be not completely satisfactory in segregating different type-2 asthma phenotypes, particularly in the context of severe asthma where the choice among different biologics is compelling. Moreover, the type-2 low fraction of patients is not only an orphan of biological treatments but is at risk of being misdiagnosed due to the low negative predictive value of type-2 high biomarkers. Sputum inflammatory cell analysis, considered the highest specific biomarker in discriminating eosinophilic inflammation in asthma, and therefore elected as the gold standard in clinical trials and research models, demonstrated many limits in clinical applicability. Many factors may influence the measure of these biomarkers, such as corticosteroid intake, comorbidities, and environmental exposures or habits. Not least, biomarkers variability over time is a confounding factor leading to wrong clinical choices. In this narrative review, we try to explore many aspects concerning the role of routinely used biomarkers in asthma, applying a critical view over the "state of the art" and contemporarily offering an overview of the most recent evidence in this field.
Collapse
Affiliation(s)
- Giuseppe Guida
- Severe Asthma and Rare Lung Disease Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, Department of Internal Medicine (DIMI), University of Genoa, Genoa, Italy
| | - Vitina Carriero
- Severe Asthma and Rare Lung Disease Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Francesca Bertolini
- Severe Asthma and Rare Lung Disease Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Fabio Luigi Massimo Ricciardolo
- Severe Asthma and Rare Lung Disease Unit, Department of Clinical and Biological Sciences, San Luigi Gonzaga University Hospital, University of Torino, Turin, Italy
| | - Stefania Nicola
- Allergy and Immunology, AO Mauriziano Hospital, University of Turin, Turin, Italy
| | - Luisa Brussino
- Allergy and Immunology, AO Mauriziano Hospital, University of Turin, Turin, Italy
| | - Emanuele Nappi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giovanni Paoletti
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giorgio Walter Canonica
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Enrico Heffler
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
38
|
Khalfaoui L, Symon FA, Couillard S, Hargadon B, Chaudhuri R, Bicknell S, Mansur AH, Shrimanker R, Hinks TC, Pavord ID, Fowler SJ, Brown V, McGarvey LP, Heaney LG, Austin CD, Howarth PH, Arron JR, Choy DF, Bradding P. Airway remodelling rather than cellular infiltration characterizes both type2 cytokine biomarker-high and -low severe asthma. Allergy 2022; 77:2974-2986. [PMID: 35579040 PMCID: PMC9790286 DOI: 10.1111/all.15376] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/31/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The most recognizable phenotype of severe asthma comprises people who are blood eosinophil and FeNO-high, driven by type 2 (T2) cytokine biology, which responds to targeted biological therapies. However, in many people with severe asthma, these T2 biomarkers are suppressed but poorly controlled asthma persists. The mechanisms driving asthma in the absence of T2 biology are poorly understood. OBJECTIVES To explore airway pathology in T2 biomarker-high and -low severe asthma. METHODS T2 biomarker-high severe asthma (T2-high, n = 17) was compared with biomarker-intermediate (T2-intermediate, n = 21) and biomarker-low (T2-low, n = 20) severe asthma and healthy controls (n = 28). Bronchoscopy samples were processed for immunohistochemistry, and sputum for cytokines, PGD2 and LTE4 measurements. RESULTS Tissue eosinophil, neutrophil and mast cell counts were similar across severe asthma phenotypes and not increased when compared to healthy controls. In contrast, the remodelling features of airway smooth muscle mass and MUC5AC expression were increased in all asthma groups compared with health, but similar across asthma subgroups. Submucosal glands were increased in T2-intermediate and T2-low asthma. In spite of similar tissue cellular inflammation, sputum IL-4, IL-5 and CCL26 were increased in T2-high versus T2-low asthma, and several further T2-associated cytokines, PGD2 and LTE4 , were increased in T2-high and T2-intermediate asthma compared with healthy controls. CONCLUSIONS Eosinophilic tissue inflammation within proximal airways is suppressed in T2 biomarker-high and T2-low severe asthma, but inflammatory and structural cell activation is present, with sputum T2-associated cytokines highest in T2 biomarker-high patients. Airway remodelling persists and may be important for residual disease expression beyond eosinophilic exacerbations. Registered at ClincialTrials.gov: NCT02883530.
Collapse
Affiliation(s)
- Latifa Khalfaoui
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield HospitalUniversity of LeicesterLeicesterUK
| | - Fiona A. Symon
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield HospitalUniversity of LeicesterLeicesterUK
| | - Simon Couillard
- NIHR Oxford Respiratory BRC, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Beverley Hargadon
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield HospitalUniversity of LeicesterLeicesterUK
| | - Rekha Chaudhuri
- Gartnavel General Hospital, Glasgow, and Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Steve Bicknell
- Gartnavel General Hospital, Glasgow, and Institute of Infection, Immunity and InflammationUniversity of GlasgowGlasgowUK
| | - Adel H. Mansur
- University of Birmingham and Heartlands HospitalUniversity Hospitals Birmingham NHS Foundation TrustBirminghamUK
| | - Rahul Shrimanker
- NIHR Oxford Respiratory BRC, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Timothy S. C. Hinks
- NIHR Oxford Respiratory BRC, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Ian D. Pavord
- NIHR Oxford Respiratory BRC, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Stephen J. Fowler
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre and NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation TrustUniversity of ManchesterManchesterUK
| | - Vanessa Brown
- Wellcome‐Wolfson‐ Centre for Experimental MedicineQueen's University Belfast School of Medicine Dentistry and Biomedical SciencesBelfastUK
| | - Lorcan P. McGarvey
- Wellcome‐Wolfson‐ Centre for Experimental MedicineQueen's University Belfast School of Medicine Dentistry and Biomedical SciencesBelfastUK
| | - Liam G. Heaney
- Wellcome‐Wolfson‐ Centre for Experimental MedicineQueen's University Belfast School of Medicine Dentistry and Biomedical SciencesBelfastUK
| | | | - Peter H. Howarth
- School of Clinical and Experimental Sciences, NIHR Southampton Biomedical Research CentreUniversity of SouthamptonSouthamptonUK
| | | | | | - Peter Bradding
- Department of Respiratory Sciences, Leicester Respiratory NIHR BRC, Glenfield HospitalUniversity of LeicesterLeicesterUK
| |
Collapse
|
39
|
Mohan A, Lugogo NL. Phenotyping, Precision Medicine, and Asthma. Semin Respir Crit Care Med 2022; 43:739-751. [PMID: 36220058 DOI: 10.1055/s-0042-1750130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The traditional one-size-fits all approach based on asthma severity is archaic. Asthma is a heterogenous syndrome rather than a single disease entity. Studies evaluating observable characteristics called phenotypes have elucidated this heterogeneity. Asthma clusters demonstrate overlapping features, are generally stable over time and are reproducible. What the identification of clusters may have failed to do, is move the needle of precision medicine meaningfully in asthma. This may be related to the lack of a straightforward and clinically meaningful way to apply what we have learned about asthma clusters. Clusters are based on both clinical factors and biomarkers. The use of biomarkers is slowly gaining popularity, but phenotyping based on biomarkers is generally greatly underutilized even in subspecialty care. Biomarkers are more often used to evaluate type 2 (T2) inflammatory signatures and eosinophils (sputum and blood), fractional exhaled nitric oxide (FeNO) and serum total and specific immunoglobulin (Ig) E reliably characterize the underlying inflammatory pathways. Biomarkers perform variably and clinicians must be familiar with their advantages and disadvantages to accurately apply them in clinical care. In addition, it is increasingly clear that clinical features are critical in understanding not only phenotypic characterization but in predicting response to therapy and future risk of poor outcomes. Strategies for asthma management will need to leverage our knowledge of biomarkers and clinical features to create composite scores and risk prediction tools that are clinically applicable. Despite significant progress, many questions remain, and more work is required to accurately identify non-T2 biomarkers. Adoption of phenotyping and more consistent use of biomarkers is needed, and we should continue to encourage this incorporation into practice.
Collapse
Affiliation(s)
- Arjun Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Njira L Lugogo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Brown MA, Jabeen M, Bharj G, Hinks TSC. Non-typeable Haemophilus influenzae airways infection: the next treatable trait in asthma? Eur Respir Rev 2022; 31:220008. [PMID: 36130784 PMCID: PMC9724834 DOI: 10.1183/16000617.0008-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/04/2022] [Indexed: 11/05/2022] Open
Abstract
Asthma is a complex, heterogeneous condition that affects over 350 million people globally. It is characterised by bronchial hyperreactivity and airways inflammation. A subset display marked airway neutrophilia, associated with worse lung function, higher morbidity and poor response to treatment. In these individuals, recent metagenomic studies have identified persistent bacterial infection, particularly with non-encapsulated strains of the Gram-negative bacterium Haemophilus influenzae. Here we review knowledge of non-typeable H. influenzae (NTHi) in the microbiology of asthma, the immune consequences of mucosal NTHi infection, various immune evasion mechanisms, and the clinical implications of NTHi infection for phenotyping and targeted therapies in neutrophilic asthma. Airway neutrophilia is associated with production of neutrophil chemokines and proinflammatory cytokines in the airways, including interleukin (IL)-1β, IL-6, IL-8, IL-12, IL-17A and tumour necrosis factor. NTHi adheres to and invades the lower respiratory tract epithelium, inducing the NLR family pyrin domain containing 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasomes. NTHi reduces expression of tight-junction proteins, impairing epithelial integrity, and can persist intracellularly. NTHi interacts with rhinoviruses synergistically via upregulation of intracellular cell adhesion molecule 1 and promotion of a neutrophilic environment, to which NTHi is adapted. We highlight the clinical relevance of this emerging pathogen and its relevance for the efficacy of long-term macrolide therapy in airways diseases, we identify important unanswered questions and we propose future directions for research.
Collapse
Affiliation(s)
- Mary Ashley Brown
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Maisha Jabeen
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| | - Gurpreet Bharj
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
- Mammalian Genetics Unit, MRC Harwell Institute, Oxford, UK
| | - Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR) Oxford Biomedical Research Centre (BRC), Experimental Medicine Division, Nuffield Dept of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Current Understanding of Asthma Pathogenesis and Biomarkers. Cells 2022; 11:cells11172764. [PMID: 36078171 PMCID: PMC9454904 DOI: 10.3390/cells11172764] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Asthma is a heterogeneous lung disease with variable phenotypes (clinical presentations) and distinctive endotypes (mechanisms). Over the last decade, considerable efforts have been made to dissect the cellular and molecular mechanisms of asthma. Aberrant T helper type 2 (Th2) inflammation is the most important pathological process for asthma, which is mediated by Th2 cytokines, such as interleukin (IL)-5, IL-4, and IL-13. Approximately 50% of mild-to-moderate asthma and a large portion of severe asthma is induced by Th2-dependent inflammation. Th2-low asthma can be mediated by non-Th2 cytokines, including IL-17 and tumor necrosis factor-α. There is emerging evidence to demonstrate that inflammation-independent processes also contribute to asthma pathogenesis. Protein kinases, adapter protein, microRNAs, ORMDL3, and gasdermin B are newly identified molecules that drive asthma progression, independent of inflammation. Eosinophils, IgE, fractional exhaled nitric oxide, and periostin are practical biomarkers for Th2-high asthma. Sputum neutrophils are easily used to diagnose Th2-low asthma. Despite progress, more studies are needed to delineate complex endotypes of asthma and to identify new and practical biomarkers for better diagnosis, classification, and treatment.
Collapse
|
42
|
Abdo M, Pedersen F, Kirsten AM, Veith V, Biller H, Trinkmann F, von Mutius E, Kopp M, Hansen G, Rabe KF, Bahmer T, Watz H. Longitudinal Impact of Sputum Inflammatory Phenotypes on Small Airway Dysfunction and Disease Outcomes in Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1545-1553.e2. [PMID: 35257957 DOI: 10.1016/j.jaip.2022.02.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Little is known about the relationship between airway inflammatory phenotypes and some important asthma features such as small airway dysfunction (SAD). OBJECTIVE To describe the longitudinal impact of airway inflammatory phenotypes on SAD and asthma outcomes. METHODS We measured eosinophil and neutrophil counts in induced sputum at baseline and 1 year later to stratify 197 adult patients with asthma into 4 inflammatory phenotypes. We conducted a comprehensive assessment of lung function using spirometry, body plethysmography, impulse oscillometry, and inert gas single and multiple breath washouts. We compared lung function, asthma severity, exacerbation frequency, and symptom control between the phenotypes. We studied the longitudinal impact of persistent sputum inflammatory phenotypes and the change of sputum cell counts on lung function. RESULTS Patients were stratified into eosinophilic (23%, n = 45), neutrophilic (33%, n = 62), mixed granulocytic (22%, n = 43), and paucigranulocytic (24%, n = 47) phenotypes. Patients with eosinophilic and mixed granulocytic asthma had higher rates of airflow obstruction and severe exacerbation as well as poorer symptom control than patients with paucigranulocytic asthma. All SAD measures were worse in patients with eosinophilic and mixed asthma than in those with paucigranulocytic asthma (all P values <.05). Eosinophilic asthma also indicated worse distal airflow obstruction, increased ventilation inhomogeneity (all P values <.05), and higher tendency for severe exacerbation (P = .07) than neutrophilic asthma. Longitudinally, persistent mixed granulocytic asthma was associated with the worst follow-up measures of SAD compared with persistent neutrophilic, persistent paucigranulocytic, or nonpersistent asthma phenotypes. In patients with stable forced expiratory volume in 1 second (FEV1), the mean increase in small airway resistance (R5-20) was greater in patients with persistent mixed granulocytic asthma (+103%) than in patients with persistent neutrophilic (+26%), P = .040, or persistent paucigranulocytic asthma (-41%), P = .028. Multivariate models adjusted for confounders and treatment with inhaled or oral corticosteroids or antieosinophilic biologics indicated that the change of sputum eosinophil rather than neutrophil counts is an independent predictor for the longitudinal change in FEV1, forced expiratory flow at 25% to 75% of forced vital capacity, specific effective airway resistance, residual lung volume, and lung clearance index. CONCLUSIONS In asthma, airway eosinophilic inflammation is the main driver of lung function impairment and poor disease outcomes, which might also be aggravated by the coexistence of airway neutrophilia to confer a severe mixed granulocytic asthma phenotype. Persistent airway eosinophilia might be associated with dynamic SAD even in patients with stable FEV1.
Collapse
Affiliation(s)
- Mustafa Abdo
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany.
| | - Frauke Pedersen
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany; Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Anne-Marie Kirsten
- Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Vera Veith
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Heike Biller
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Frederik Trinkmann
- Department of Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany; Department of Biomedical Informatics, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilians University of Munich, Comprehensive Pneumology Center Munich, German Center for Lung Research (DZL), and Institute of Asthma and Allergy Prevention, Helmholtz Centre, Munich, Germany
| | - Matthias Kopp
- Department of Pediatric Respiratory Medicine, Inselspital, University Children's Hospital of Bern, University of Bern, Bern, Switzerland; Division of Pediatric Pneumology & Allergology, University Hospital Schleswig-Holstein-Campus Luebeck, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Luebeck, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Klaus F Rabe
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | - Thomas Bahmer
- LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany; Department for Internal Medicine I, University Hospital Schleswig-Holstein-Campus Kiel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Kiel, Germany
| | - Henrik Watz
- Pulmonary Research Institute at the LungenClinic Grosshansdorf, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Grosshansdorf, Germany
| | | |
Collapse
|
43
|
Lantto J, Suojalehto H, Karvala K, Remes J, Soini S, Suuronen K, Lindström I. Clinical Characteristics of Irritant-Induced Occupational Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1554-1561.e7. [PMID: 35259533 DOI: 10.1016/j.jaip.2022.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Work is a substantial contributing factor of adult-onset asthma. A subtype of occupational asthma (OA) is caused by irritant agents, but knowledge of the clinical outcomes of irritant-induced asthma (IIA) is incomplete. OBJECTIVES To evaluate whether the clinical picture of IIA differs from that of sensitizer-induced OA. METHODS This retrospective study analyzed acute and subacute IIA patients diagnosed in an occupational medicine clinic during 2004 to 2018. Sixty-nine patients fulfilled the inclusion criteria, and their characteristics were analyzed at the time of the diagnosis and 6 months later. The results were compared with those of 2 subgroups of sensitizer-induced OA: 69 high-molecular-weight (HMW) and 89 low-molecular-weight (LMW) agent-induced OA patients. RESULTS Six months after the diagnosis, 30% of the patients with IIA needed daily short-acting β-agonists (SABA), 68% were treated with Global Initiative for Asthma, 2020 report (GINA) step 4-5 medication, and 24% of the patients had asthma exacerbation after the first appointment. IIA depicted inferiority to LMW-induced OA in daily need for SABA (odds ratio [OR]: 3.80, 95% confidence interval [CI]: 1.38-10.46), treatment with GINA step 4-5 medication (OR: 2.22, 95% CI: 1.08-4.57), and exacerbation (OR: 3.85, 95% CI: 1.35-11.04). IIA showed poorer results than HMW-induced OA in the latter 2 of these features (OR: 2.49, 95% CI: 1.07-5.79 and OR: 6.29, 95% CI: 1.53-25.83, respectively). CONCLUSIONS Six months after the OA diagnosis, a significant proportion of the patients with IIA remain symptomatic and the majority of these patients use asthma medications extensively suggesting uncontrolled asthma. The short-term outcomes of IIA appear poorer than that of sensitizer-induced OA.
Collapse
Affiliation(s)
- Jussi Lantto
- Doctoral Program in Clinical Research, University of Helsinki, Helsinki, Finland; Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland.
| | - Hille Suojalehto
- Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland
| | - Kirsi Karvala
- Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland; Varma Mutual Pension Insurance Company, Consultant Physicians, Helsinki, Finland
| | - Jouko Remes
- Finnish Institute of Occupational Health, Occupational Medicine, Oulu, Finland
| | - Satu Soini
- Finnish Institute of Occupational Health, Occupational Medicine, Oulu, Finland
| | - Katri Suuronen
- Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland
| | - Irmeli Lindström
- Finnish Institute of Occupational Health, Occupational Medicine, Helsinki, Finland
| |
Collapse
|
44
|
Paucigranulocytic Asthma: Potential Pathogenetic Mechanisms, Clinical Features and Therapeutic Management. J Pers Med 2022; 12:jpm12050850. [PMID: 35629272 PMCID: PMC9145917 DOI: 10.3390/jpm12050850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Asthma is a heterogeneous disease usually characterized by chronic airway inflammation, in which several phenotypes have been described, related to the age of onset, symptoms, inflammatory characteristics and treatment response. The identification of the inflammatory phenotype in asthma is very useful, since it allows for both the recognition of the asthmatic triggering factor as well as the optimization of treatment The paucigranulocytic phenotype of asthma (PGA) is characterized by sputum eosinophil levels <1−3% and sputum neutrophil levels < 60%. The precise characteristics and the pathobiology of PGA are not fully understood, and, in some cases, it seems to represent a previous eosinophilic phenotype with a good response to anti-inflammatory treatment. However, many patients with PGA remain uncontrolled and experience asthmatic symptoms and exacerbations, irrespective of the low grade of airway inflammation. This observation leads to the hypothesis that PGA might also be either a special phenotype driven by different kinds of cells, such as macrophages or mast cells, or a non-inflammatory phenotype with a low grade of eosinophilic inflammation. In this review, we aim to describe the special characteristics of PGA and the potential therapeutic interventions that could be offered to these patients.
Collapse
|
45
|
Saunders RM, Biddle M, Amrani Y, Brightling CE. Stressed out - The role of oxidative stress in airway smooth muscle dysfunction in asthma and COPD. Free Radic Biol Med 2022; 185:97-119. [PMID: 35472411 DOI: 10.1016/j.freeradbiomed.2022.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
The airway smooth muscle (ASM) surrounding the airways is dysfunctional in both asthma and chronic obstructive pulmonary disease (COPD), exhibiting; increased contraction, increased mass, increased inflammatory mediator release and decreased corticosteroid responsiveness. Due to this dysfunction, ASM is a key contributor to symptoms in patients that remain symptomatic despite optimal provision of currently available treatments. There is a significant body of research investigating the effects of oxidative stress/ROS on ASM behaviour, falling into the following categories; cigarette smoke and associated compounds, air pollutants, aero-allergens, asthma and COPD relevant mediators, and the anti-oxidant Nrf2/HO-1 signalling pathway. However, despite a number of recent reviews addressing the role of oxidative stress/ROS in asthma and COPD, the potential contribution of oxidative stress/ROS-related ASM dysfunction to asthma and COPD pathophysiology has not been comprehensively reviewed. We provide a thorough review of studies that have used primary airway, bronchial or tracheal smooth muscle cells to investigate the role of oxidative stress/ROS in ASM dysfunction and consider how they could contribute to the pathophysiology of asthma and COPD. We summarise the current state of play with regards to clinical trials/development of agents targeting oxidative stress and associated limitations, and the adverse effects of oxidative stress on the efficacy of current therapies, with reference to ASM related studies where appropriate. We also identify limitations in the current knowledge of the role of oxidative stress/ROS in ASM dysfunction and identify areas for future research.
Collapse
Affiliation(s)
- Ruth M Saunders
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK.
| | - Michael Biddle
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Yassine Amrani
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Christopher E Brightling
- The Institute for Lung Health, NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
46
|
Meteran H, Tønnesen LL, Sivapalan P, Ingebrigtsen TS, Jensen JUS. Recent developments in the management of severe asthma. Breathe (Sheff) 2022; 18:210178. [PMID: 36338257 PMCID: PMC9584584 DOI: 10.1183/20734735.0178-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
Fevipiprant is unlikely to be implemented as a future treatment for severe asthma, while tezepelumab may be a future treatment option for patients with severe asthma with and without eosinophilic inflammationhttps://bit.ly/3KE1BH4
Collapse
|
47
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
48
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
49
|
Rønnow SR, Sand JMB, Staunstrup LM, Bahmer T, Wegmann M, Lunding L, Burgess J, Rabe K, Sorensen GL, Fuchs O, Mutius EV, Hansen G, Kopp MV, Karsdal M, Leeming DJ, Weckmann M. A serological biomarker of type I collagen degradation is related to a more severe, high neutrophilic, obese asthma subtype. Asthma Res Pract 2022; 8:2. [PMID: 35418159 PMCID: PMC9006548 DOI: 10.1186/s40733-022-00084-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/28/2022] [Indexed: 11/11/2022] Open
Abstract
Background Asthma is a heterogeneous disease; therefore, biomarkers that can assist in the identification of subtypes and direct therapy are highly desirable. Asthma is a chronic inflammatory disease that leads to changes in the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) degradation causing fragments of type I collagen that is released into circulation. Objective Here, we asked if MMP-generated type I collagen (C1M) was associated with subtypes of asthma. Methods C1M was serologically assessed at baseline in the adult participants of the All Age Asthma study (ALLIANCE) (n = 233), and in The Prospective Epidemiological Risk Factor study (PERF) (n = 283). In addition, C1M was assessed in mice sensitized to ovalbumin (OVA) and challenged with OVA aerosol. C1M was evaluated in mice with and without acute neutrophilic inflammation provoked by poly(cytidylic-inosinic) acid and mice treated with CP17, a peptide inhibiting neutrophil accumulation. Results Serum C1M was significantly increased in asthmatics compared to healthy controls (p = 0.0005). We found the increased C1M levels in asthmatics were related to blood neutrophil and body mass index (BMI) in the ALLIANCE cohort, which was validated in the PERF cohort. When patients were stratified into obese (BMI > 30) asthmatics with high neutrophil levels and uncontrolled asthma, this group had a significant increase in C1M compared to normal-weight (BMI < 25) asthmatics with low neutrophil levels and controlled asthma (p = 0.0277). C1M was significantly elevated in OVA mice with acute neutrophilic inflammation compared to controls (P = 0.0002) and decreased in mice treated with an inhibitor of neutrophil infiltration (p = 0.047). Conclusion & clinical relevance C1M holds the potential to identify a subtype of asthma that relates to severity, obesity, and high neutrophils. These data suggest that C1M is linked to a subtype of overall inflammation, not only derived from the lung. The link between C1M and neutrophils were further validated in in vivo model. Trial registration (ALLIANCE, NCT02419274). Supplementary information The online version contains supplementary material available at 10.1186/s40733-022-00084-6.
Collapse
Affiliation(s)
| | | | - Line Mærsk Staunstrup
- Nordic Bioscience A/S, Herlev, Denmark.,University of Southern Denmark, The Faculty of Health Science, Odense, Denmark
| | - Thomas Bahmer
- University of Copenhagen, Health, Copenhagen, Denmark.,LungenClinic Grosshansdorf GmbH, Großhansdorf, Germany
| | - Michael Wegmann
- University of Copenhagen, Health, Copenhagen, Denmark.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Lars Lunding
- University of Copenhagen, Health, Copenhagen, Denmark.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Großhansdorf, Germany
| | - Janette Burgess
- Division of Asthma Mouse Model, Priority Area Asthma & Allergy, Leibniz-Center for Medicine and Biosciences Borstel, Borstel, Germany
| | - Klaus Rabe
- University of Copenhagen, Health, Copenhagen, Denmark.,LungenClinic Grosshansdorf GmbH, Großhansdorf, Germany
| | - Grith Lykke Sorensen
- Department of Pathology and Medical Biology, Medical Biology Section, University Medical Center, Groningen, The Netherlands
| | - Oliver Fuchs
- University Childrens Hospital, Inselspital Bern, Bern, Switzerland
| | - Erika V Mutius
- Dr. von Hauner Children's Hospital, University Hospital Munich, Munich, Germany.,Comprehensive Pneumology Center Munich (CPC-M), Munich, Germany
| | - Gesine Hansen
- University Childrens Hospital, Department of Pediatric Pneumology, Allergology and Neonatology Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover, Germany
| | - Matthias Volkmar Kopp
- LungenClinic Grosshansdorf GmbH, Großhansdorf, Germany.,Division of Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Campus Centrum Lübeck, Lübeck, Germany
| | | | | | - Markus Weckmann
- Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Großhansdorf, Germany.,Division of Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, Campus Centrum Lübeck, Lübeck, Germany
| | | |
Collapse
|
50
|
Ramphul M, Welsh KG, May RD, Ghebre MA, Rapley L, Cohen ES, Herath A, Monteiro W, Rousseau K, Thornton DJ, Brightling CE, Gaillard EA. Sputum biomarkers during acute severe asthma attacks in children-a case-control study. Acta Paediatr 2022; 111:620-627. [PMID: 34773288 DOI: 10.1111/apa.16186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/13/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022]
Abstract
AIM To study sputum mediator profiles pattern in children with acute severe asthma, compared with stable asthma and healthy controls. The mechanisms of acute severe asthma attacks, such as biomarkers cascades and immunological responses, are poorly understood. METHODS We conducted a prospective observational case-control study of children aged 5 to 17 years, who presented to hospital with an asthma attack. Children with stable asthma were recruited during outpatient asthma clinic visits. Control children without an asthma diagnosis were recruited from surgical wards. Sputum mediator profiles were measured, and sputum leukocyte differential cell counts were generated. RESULTS Sputum data were available in 48 children (acute asthma; n = 18, stable asthma; n = 17, healthy controls; n = 13). Acute-phase biomarkers and neutrophil attractants such as IL-6 and its receptor, IL-8 and cytokines linked with bacterial signals, including TNF-R1 and TNF-R2, were elevated in asthma attacks versus stable asthma and healthy controls. T-cell attractant cytokines, associated with viral infections, such as CCL-5, CXCL-10 and CXCL-11, and CXCL-9 (secreted from eosinophils after a viral trigger) were also raised. CONCLUSION Mediator profiles consistent with bacterial and viral respiratory infections, and T2 inflammation markers co-exist in the sputum of children with acute severe asthma attacks.
Collapse
Affiliation(s)
- Manisha Ramphul
- Department of Paediatric Respiratory Medicine Leicester Children’s HospitalLeicester Royal Infirmary Leicester UK
| | - Kathryn G. Welsh
- Department of Paediatric Respiratory Medicine Leicester Children’s HospitalLeicester Royal Infirmary Leicester UK
- Department of Respiratory Sciences Institute for Lung Health, Leicester NIHR Biomedical Research CentreUniversity of Leicester Leicester UK
| | - Richard D. May
- Bioscience Asthma, Research and Early Development Respiratory & Immunology, BioPharmaceuticals R&DAstraZeneca Cambridge UK
| | | | - Laura Rapley
- Bioscience Asthma, Research and Early Development Respiratory & Immunology, BioPharmaceuticals R&DAstraZeneca Cambridge UK
| | - Emma Suzanne Cohen
- Bioscience Asthma, Research and Early Development Respiratory & Immunology, BioPharmaceuticals R&DAstraZeneca Cambridge UK
| | - Athula Herath
- Bioscience Asthma, Research and Early Development Respiratory & Immunology, BioPharmaceuticals R&DAstraZeneca Cambridge UK
| | - William Monteiro
- Department of Respiratory Sciences Institute for Lung Health, Leicester NIHR Biomedical Research CentreUniversity of Leicester Leicester UK
| | - Karine Rousseau
- Faculty of Biology, Medicine and Health University of Manchester Manchester UK
| | - David J. Thornton
- Faculty of Biology, Medicine and Health University of Manchester Manchester UK
| | - Christopher E. Brightling
- Department of Respiratory Sciences Institute for Lung Health, Leicester NIHR Biomedical Research CentreUniversity of Leicester Leicester UK
| | - Erol A. Gaillard
- Department of Paediatric Respiratory Medicine Leicester Children’s HospitalLeicester Royal Infirmary Leicester UK
- Department of Respiratory Sciences Institute for Lung Health, Leicester NIHR Biomedical Research CentreUniversity of Leicester Leicester UK
| |
Collapse
|