1
|
Cekay M, Arndt PF, Franken JK, Wilhelm J, Pullamsetti SS, Roller FC, Sommer N, Askevold I, Lüdecke G, Langer C, Stein M, Zeppernick F, Tello K, Sibelius U, Grimminger F, Seeger W, Savai R, Eul B. Non-invasive surrogate markers of pulmonary hypertension are associated with poor survival in patients with cancer. BMJ Open Respir Res 2024; 11:e001916. [PMID: 39179271 PMCID: PMC11344493 DOI: 10.1136/bmjresp-2023-001916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/28/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide, and cardiopulmonary comorbidities may further adversely affect cancer prognosis. We recently described lung cancer-associated pulmonary hypertension (PH) as a new form of PH and comorbidity of lung cancer. While patients with lung cancer with PH had significantly reduced overall survival compared with patients without PH, the prevalence and impact of PH in other cancers remain unclear. METHODS In this retrospective, observational cohort study, we analysed the prevalence and impact of PH on clinical outcomes in 1184 patients with solid tumours other than lung cancer, that is, colorectal, head and neck, urological, breast or central nervous system tumours, using surrogate markers for PH determined by CT. RESULTS PH prevalence in this cohort was 10.98%. A Cox proportional hazard model revealed a significant reduction in the median survival time of patients with cancer with PH (837 vs 2074 days; p<0.001). However, there was no correlation between pulmonary metastases and PH. A subgroup analysis showed that PH was linked to decreased lung and cardiac function. Additionally, PH was associated with systemic arterial hypertension (p<0.001) and coronary artery disease (p=0.014), but not emphysema. CONCLUSIONS In this study, fewer patients with cancer had surrogate parameters for PH compared with previously published results among patients with lung cancer. Consequently, the prevalence of PH in other cancers might be lower compared with lung cancer; however, PH still has a negative impact on prognosis. Furthermore, our data does not provide evidence that lung metastases cause PH. Thus, our results support the idea that lung cancer-associated PH represents a new category of PH. Our results also highlight the importance of further studies in the field of cardio-oncology.
Collapse
Affiliation(s)
- Michael Cekay
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Philipp F Arndt
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Johanna K Franken
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Soni Savai Pullamsetti
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of CPI, Bad Nauheim, Germany
| | - Fritz C Roller
- Department of Radiology, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Natascha Sommer
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ingolf Askevold
- Department of General Surgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - Gerson Lüdecke
- Department of Urology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christine Langer
- Department of Otorhinolaryngology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Marco Stein
- Department of Neurosurgery, Justus-Liebig-University Giessen, Giessen, Germany
| | - Felix Zeppernick
- Institute of Gynecology and Obstetrics, Faculty of Medicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Khodr Tello
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ulf Sibelius
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of CPI, Bad Nauheim, Germany
| | - Rajkumar Savai
- Institute for Lung Health (ILH), Justus-Liebig-University Giessen, Giessen, Germany
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Member of the DZL, Member of CPI, Bad Nauheim, Germany
| | - Bastian Eul
- Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
2
|
Papaioannou I, Dritsoula A, Kang P, Baliga RS, Trinder SL, Cook E, Shiwen X, Hobbs AJ, Denton CP, Abraham DJ, Ponticos M. NKX2-5 regulates vessel remodeling in scleroderma-associated pulmonary arterial hypertension. JCI Insight 2024; 9:e164191. [PMID: 38652537 PMCID: PMC11141943 DOI: 10.1172/jci.insight.164191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
NKX2-5 is a member of the homeobox-containing transcription factors critical in regulating tissue differentiation in development. Here, we report a role for NKX2-5 in vascular smooth muscle cell phenotypic modulation in vitro and in vascular remodeling in vivo. NKX2-5 is upregulated in scleroderma patients with pulmonary arterial hypertension. Suppression of NKX2-5 expression in smooth muscle cells halted vascular smooth muscle proliferation and migration, enhanced contractility, and blocked the expression of extracellular matrix genes. Conversely, overexpression of NKX2-5 suppressed the expression of contractile genes (ACTA2, TAGLN, CNN1) and enhanced the expression of matrix genes (COL1) in vascular smooth muscle cells. In vivo, conditional deletion of NKX2-5 attenuated blood vessel remodeling and halted the progression to hypertension in a mouse chronic hypoxia model. This study revealed that signals related to injury such as serum and low confluence, which induce NKX2-5 expression in cultured cells, is potentiated by TGF-β and further enhanced by hypoxia. The effect of TGF-β was sensitive to ERK5 and PI3K inhibition. Our data suggest a pivotal role for NKX2-5 in the phenotypic modulation of smooth muscle cells during pathological vascular remodeling and provide proof of concept for therapeutic targeting of NKX2-5 in vasculopathies.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Cell Proliferation/genetics
- Disease Models, Animal
- Homeobox Protein Nkx-2.5/genetics
- Homeobox Protein Nkx-2.5/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Arterial Hypertension/metabolism
- Pulmonary Arterial Hypertension/genetics
- Pulmonary Arterial Hypertension/pathology
- Pulmonary Arterial Hypertension/etiology
- Scleroderma, Systemic/pathology
- Scleroderma, Systemic/complications
- Scleroderma, Systemic/metabolism
- Scleroderma, Systemic/genetics
- Transforming Growth Factor beta/metabolism
- Vascular Remodeling
Collapse
Affiliation(s)
- Ioannis Papaioannou
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Athina Dritsoula
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Ping Kang
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Reshma S. Baliga
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Sarah L. Trinder
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Emma Cook
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Xu Shiwen
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Adrian J. Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London, United Kingdom
| | - Christopher P. Denton
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - David J. Abraham
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| | - Markella Ponticos
- Division of Medicine, Department of Inflammation, University College London, Royal Free Campus, London, United Kingdom
| |
Collapse
|
3
|
Hu B, Zhang XX, Zhang T, Yu WC. Dissecting molecular mechanisms underlying ferroptosis in human umbilical cord mesenchymal stem cells: Role of cystathionine γ-lyase/hydrogen sulfide pathway. World J Stem Cells 2023; 15:1017-1034. [PMID: 38058959 PMCID: PMC10696191 DOI: 10.4252/wjsc.v15.i11.1017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/25/2023] [Accepted: 11/17/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell (MSC) delivery, which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension (PAH) therapy. Interestingly, the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway may contribute to mediating ferroptosis. However, the influence of the CSE/H2S pathway on ferroptosis in human umbilical cord MSCs (HUCMSCs) remains unclear. AIM To clarify whether the effect of HUCMSCs on vascular remodelling in PAH mice is affected by CSE/H2S pathway-mediated ferroptosis, and to investigate the functions of the CSE/H2S pathway in ferroptosis in HUCMSCs and the underlying mechanisms. METHODS Erastin and ferrostatin-1 (Fer-1) were used to induce and inhibit ferroptosis, respectively. HUCMSCs were transfected with a vector to overexpress or inhibit expression of CSE. A PAH mouse model was established using 4-wk-old male BALB/c nude mice under hypoxic conditions, and pulmonary pressure and vascular remodelling were measured. The survival of HUCMSCs after delivery was observed by in vivo bioluminescence imaging. Cell viability, iron accumulation, reactive oxygen species production, cystine uptake, and lipid peroxidation in HUCMSCs were tested. Ferroptosis-related proteins and S-sulfhydrated Kelch-like ECH-associating protein 1 (Keap1) were detected by western blot analysis. RESULTS In vivo, CSE overexpression improved cell survival after erastin-treated HUCMSC delivery in mice with hypoxia-induced PAH. In vitro, CSE overexpression improved H2S production and ferroptosis-related indexes, such as cell viability, iron level, reactive oxygen species production, cystine uptake, lipid peroxidation, mitochondrial membrane density, and ferroptosis-related protein expression, in erastin-treated HUCMSCs. In contrast, in vivo, CSE inhibition decreased cell survival after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling in PAH mice. In vitro, CSE inhibition decreased H2S levels and restored ferroptosis in Fer-1-treated HUCMSCs. Interestingly, upregulation of the CSE/H2S pathway induced Keap1 S-sulfhydration, which contributed to the inhibition of ferroptosis. CONCLUSION Regulation of the CSE/H2S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the suppressive effect on vascular remodelling in mice with hypoxia-induced PAH. Moreover, the protective effect of the CSE/H2S pathway against ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor erythroid 2-related factor 2 signalling. The present study may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.
Collapse
Affiliation(s)
- Bin Hu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| | - Xiang-Xi Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| | - Tao Zhang
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China
| | - Wan-Cheng Yu
- Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250062, Shandong Province, China.
| |
Collapse
|
4
|
Mathews AS, Paul A, Yu IS, McGahan C, Bhang E, Villa D, Gelmon K, Avina-Zubieta A, Gerrie AS, Lee U, Chia S, Woods RR, Loree JM. The clinical impact of COVID-19 on patients with cancer in British Columbia: An observational study. Heliyon 2022; 8:e12140. [PMID: 36506364 PMCID: PMC9726656 DOI: 10.1016/j.heliyon.2022.e12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/09/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Objective We evaluated survival outcomes for patients with cancer and COVID-19 in this population-based study. Methods A total of 631 patients who tested positive for severe acute respiratory syndrome coronavirus 2 and were seen at BC Cancer between 03/03/2020 and 01/21/2021 were included, of whom 506 had a diagnosis of cancer and PCR-confirmed positive test for coronavirus disease 2019. Patient clinical characteristics were retrospectively reviewed and the influence of demographic data, cancer diagnosis, comorbidities, and anticancer treatment(s) on survival following severe acute respiratory syndrome coronavirus 2 infection were analyzed. Results Age ≥65 years (Hazard Ratio [HR] 4.77, 95% Confidence Interval [CI] 2.72-8.35, P < 0.0001), those with Eastern Cooperative Oncology Group Performance Status ≥2 (HR 8.36, 95% CI 2.89-24.16, P < 0.0001), hypertension (HR 3.17, 95% CI 1.77-5.66, P < 0.0001), and metastatic/advanced stage (HR 3.70, 95% CI 1.77-7.73, P < 0.0001) were associated with worse coronavirus disease 2019 specific survival outcomes following severe acute respiratory syndrome coronavirus 2 infection. Patients with lung cancer had the highest 30-day COVID-19 specific mortality (25.0%), followed by genitourinary (18.1%), gastrointestinal (16.0%), and other cancer types (<10.0%). Patients with the highest 30-day coronavirus disease 2019 specific mortality according to treatment type were those on chemotherapy (23.0%), rituximab (22.2%), and immunotherapy (16.7%) while patients on hormonal treatments (2.2%) had better survival outcomes (P = 0.041) compared to those on other anticancer treatments. Conclusion This study provides further evidence that patients with cancer are at increased risk of mortality from coronavirus disease 2019 and emphasizes the need for vaccination.
Collapse
Affiliation(s)
- Angela S. Mathews
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ashley Paul
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Irene S. Yu
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Colleen McGahan
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
| | - Eric Bhang
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Diego Villa
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karen Gelmon
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Antonio Avina-Zubieta
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Arthritis Research Canada, 5591 No. 3 Road, Richmond, BC, V6X 2C7, Canada
| | - Alina S. Gerrie
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ursula Lee
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Stephen Chia
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ryan R. Woods
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Jonathan M. Loree
- BC Cancer Agency, 600 W 10th Ave, Vancouver, BC V5Z 4E6, Canada
- University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Corresponding author.
| |
Collapse
|
5
|
Liu B, Peng Y, Yi D, Machireddy N, Dong D, Ramirez K, Dai J, Vanderpool R, Zhu MM, Dai Z, Zhao YY. Endothelial PHD2 deficiency induces nitrative stress via suppression of caveolin-1 in pulmonary hypertension. Eur Respir J 2022; 60:2102643. [PMID: 35798360 PMCID: PMC9791795 DOI: 10.1183/13993003.02643-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Nitrative stress is a characteristic feature of the pathology of human pulmonary arterial hypertension. However, the role of nitrative stress in the pathogenesis of obliterative vascular remodelling and severe pulmonary arterial hypertension remains largely unclear. METHOD Our recently identified novel mouse model (Egln1Tie2Cre, Egln1 encoding prolyl hydroxylase 2 (PHD2)) has obliterative vascular remodelling and right heart failure, making it an excellent model to use in this study to examine the role of nitrative stress in obliterative vascular remodelling. RESULTS Nitrative stress was markedly elevated whereas endothelial caveolin-1 (Cav1) expression was suppressed in the lungs of Egln1Tie2Cre mice. Treatment with a superoxide dismutase mimetic, manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride or endothelial Nos3 knockdown using endothelial cell-targeted nanoparticle delivery of CRISPR-Cas9/guide RNA plasmid DNA inhibited obliterative pulmonary vascular remodelling and attenuated severe pulmonary hypertension in Egln1Tie2Cre mice. Genetic restoration of Cav1 expression in Egln1Tie2Cre mice normalised nitrative stress, reduced pulmonary hypertension and improved right heart function. CONCLUSION These data suggest that suppression of Cav1 expression secondary to PHD2 deficiency augments nitrative stress through endothelial nitric oxide synthase activation, which contributes to obliterative vascular remodelling and severe pulmonary hypertension. Thus, a reactive oxygen/nitrogen species scavenger might have therapeutic potential for the inhibition of obliterative vascular remodelling and severe pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Bin Liu
- Division of Pulmonary, Critical Care and Sleep, Dept of Internal Medicine, University of Arizona, Phoenix, AZ, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Yi Peng
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dan Yi
- Division of Pulmonary, Critical Care and Sleep, Dept of Internal Medicine, University of Arizona, Phoenix, AZ, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Narsa Machireddy
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daoyin Dong
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karina Ramirez
- Division of Pulmonary, Critical Care and Sleep, Dept of Internal Medicine, University of Arizona, Phoenix, AZ, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
| | - Jingbo Dai
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rebecca Vanderpool
- College of Medicine Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, USA
| | - Maggie M Zhu
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhiyu Dai
- Division of Pulmonary, Critical Care and Sleep, Dept of Internal Medicine, University of Arizona, Phoenix, AZ, USA
- Translational Cardiovascular Research Center, College of Medicine-Phoenix, University of Arizona, Phoenix, AZ, USA
- Zhiyu Dai and You-Yang Zhao contributed equally to this article as lead authors and supervised the work
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Section for Injury Repair and Regeneration Research, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Division of Critical Care, Dept of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Dept of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Dept of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Zhiyu Dai and You-Yang Zhao contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
6
|
De Bie FR, Avitabile CM, Joyeux L, Hedrick HL, Russo FM, Basurto D, Deprest J, Rintoul NE. Neonatal and fetal therapy of congenital diaphragmatic hernia-related pulmonary hypertension. Arch Dis Child Fetal Neonatal Ed 2022; 107:458-466. [PMID: 34952853 DOI: 10.1136/archdischild-2021-322617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023]
Abstract
Congenital diaphragmatic hernia (CDH) is a complex malformation characterised by a triad of pulmonary hypoplasia, pulmonary hypertension (PH) and cardiac ventricular dysfunction. Much of the mortality and morbidity in CDH is largely accounted for by PH, especially when persistent beyond the neonatal period and refractory to available treatment. Gentle ventilation, haemodynamic optimisation and pulmonary vasodilation constitute the foundations of neonatal treatment of CDH-related PH (CDH-PH). Moreover, early prenatal diagnosis, the ability to assess severity and the developmental nature of the condition generate the perfect rationale for fetal therapy. Shortcomings of currently available clinical therapies in combination with increased understanding of CDH pathophysiology have spurred experimental drug trials, exploring new therapeutic mechanisms to tackle CDH-PH. We herein discuss clinically available neonatal and fetal therapies specifically targeting CDH-PH and review the most promising experimental treatments and future research avenues.
Collapse
Affiliation(s)
- Felix R De Bie
- Department of Pediatric General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA .,My FetUZ, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Catherine M Avitabile
- Department of Pediatrics, Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Luc Joyeux
- My FetUZ, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Holly L Hedrick
- Department of Pediatric General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francesca M Russo
- My FetUZ, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium.,Department of Obstetrics and Gynaecology, KU Leuven University Hospitals Leuven, Leuven, Flanders, Belgium
| | - David Basurto
- My FetUZ, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium
| | - Jan Deprest
- My FetUZ, Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium, Katholieke Universiteit Leuven, Leuven, Flanders, Belgium.,Department of Obstetrics and Gynecology, Division Woman and Child, Fetal Medicine Unit, KU Leuven University Hospitals Leuven, Leuven, Flanders, Belgium
| | - Natalie E Rintoul
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Division of Neonatal Intensive Care, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Calvier L, Herz J, Hansmann G. Interplay of Low-Density Lipoprotein Receptors, LRPs, and Lipoproteins in Pulmonary Hypertension. JACC Basic Transl Sci 2022; 7:164-180. [PMID: 35257044 PMCID: PMC8897182 DOI: 10.1016/j.jacbts.2021.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022]
Abstract
The low-density lipoprotein receptor (LDLR) gene family includes LDLR, very LDLR, and LDL receptor-related proteins (LRPs) such as LRP1, LRP1b (aka LRP-DIT), LRP2 (aka megalin), LRP4, and LRP5/6, and LRP8 (aka ApoER2). LDLR family members constitute a class of closely related multifunctional, transmembrane receptors, with diverse functions, from embryonic development to cancer, lipid metabolism, and cardiovascular homeostasis. While LDLR family members have been studied extensively in the systemic circulation in the context of atherosclerosis, their roles in pulmonary arterial hypertension (PAH) are understudied and largely unknown. Endothelial dysfunction, tissue infiltration of monocytes, and proliferation of pulmonary artery smooth muscle cells are hallmarks of PAH, leading to vascular remodeling, obliteration, increased pulmonary vascular resistance, heart failure, and death. LDLR family members are entangled with the aforementioned detrimental processes by controlling many pathways that are dysregulated in PAH; these include lipid metabolism and oxidation, but also platelet-derived growth factor, transforming growth factor β1, Wnt, apolipoprotein E, bone morpohogenetic proteins, and peroxisome proliferator-activated receptor gamma. In this paper, we discuss the current knowledge on LDLR family members in PAH. We also review mechanisms and drugs discovered in biological contexts and diseases other than PAH that are likely very relevant in the hypertensive pulmonary vasculature and the future care of patients with PAH or other chronic, progressive, debilitating cardiovascular diseases.
Collapse
Key Words
- ApoE, apolipoprotein E
- Apoer2
- BMP
- BMPR, bone morphogenetic protein receptor
- BMPR2
- COPD, chronic obstructive pulmonary disease
- CTGF, connective tissue growth factor
- HDL, high-density lipoprotein
- KO, knockout
- LDL receptor related protein
- LDL, low-density lipoprotein
- LDLR
- LDLR, low-density lipoprotein receptor
- LRP
- LRP, low-density lipoprotein receptor–related protein
- LRP1
- LRP1B
- LRP2
- LRP4
- LRP5
- LRP6
- LRP8
- MEgf7
- Mesd, mesoderm development
- PAH
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PDGF
- PDGFR-β, platelet-derived growth factor receptor-β
- PH, pulmonary hypertension
- PPARγ
- PPARγ, peroxisome proliferator-activated receptor gamma
- PVD
- RV, right ventricle/ventricular
- RVHF
- RVSP, right ventricular systolic pressure
- TGF-β1
- TGF-β1, transforming growth factor β1
- TGFBR, transforming growth factor β1 receptor
- TNF, tumor necrosis factor receptor
- VLDLR
- VLDLR, very low density lipoprotein receptor
- VSMC, vascular smooth muscle cell
- Wnt
- apolipoprotein E receptor 2
- endothelial cell
- gp330
- low-density lipoprotein receptor
- mRNA, messenger RNA
- megalin
- monocyte
- multiple epidermal growth factor-like domains 7
- pulmonary arterial hypertension
- pulmonary vascular disease
- right ventricle heart failure
- smooth muscle cell
- very low density lipoprotein receptor
- β-catenin
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Lai YJ, Kao WWY, Yeh YH, Chen WJ, Chu PH. Lumican deficiency promotes pulmonary arterial remodeling. Transl Res 2021; 237:63-81. [PMID: 34091085 DOI: 10.1016/j.trsl.2021.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 11/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is caused by progressive extracellular matrix disorganization and increased pulmonary vascular cell proliferation. Lumican is a member of the small leucine-rich proteoglycan family that controls cell proliferation, and is a potential endogenous modulator of TGF-β signaling pathway. We show that the decreased lumican protein levels in pulmonary arterial smooth muscle cells (PASMCs) is related to the vascular remodeling and stiffening observed in PAH. The role of lumican in PASMC accumulation and activation in response to pulmonary vascular remodeling remains unclear and we hypothesized that the loss of lumican in PASMCs promotes the development of PAH. Our aim was to establish that lumican plays a pivotal role in modulating pathological vascular remodeling in humans using a rat model of monocrotaline-induced PAH and chronically hypoxic mice. We found that mice with a homozygous deletion of lumican (Lum-/-) showed severe pulmonary arterial remodeling and right ventricular hypertrophy in response to hypoxia, and these effects in mice with chronic hypoxia-induced pulmonary hypertension were successfully treated by the administration of a lumican C-terminal peptide (LumC13C-A, lumikine). We identified a mechanistic link by which lumican signaling prevents the activation of phosphorylated AKT, resulting in the suppression of PASMC proliferation. Lumican deficiency promotes pulmonary arterial remodeling. Administration of lumikine reverses the PAH pathogenesis caused by hypoxia-induced experimental PAH. Lumican is an antiproliferative target that functions to suppress pAKT activation during pathogenesis.
Collapse
Affiliation(s)
- Ying-Ju Lai
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan; Department of Respiratory Therapy, College of Medicine, Chang-Gung University, Tao-Yuan, Taiwan; Department of Respiratory Care, Chang-Gung University of Science and Technology, Chia-Yi, Taiwan.
| | - Winston W-Y Kao
- Department of Ophtalmology, University of Cincinnati, Cincinnati, Ohio
| | - Yung-Hsin Yeh
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Wei-Jan Chen
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Pao-Hsien Chu
- Cardiovascular Division, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan.
| |
Collapse
|
9
|
Novoyatleva T, Rai N, Kojonazarov B, Veeroju S, Ben-Batalla I, Caruso P, Shihan M, Presser N, Götz E, Lepper C, Herpel S, Manaud G, Perros F, Gall H, Ghofrani HA, Weissmann N, Grimminger F, Wharton J, Wilkins M, Upton PD, Loges S, Morrell NW, Seeger W, Schermuly RT. Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2. Commun Biol 2021; 4:1002. [PMID: 34429509 PMCID: PMC8385080 DOI: 10.1038/s42003-021-02531-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH), is a fatal disease characterized by a pseudo-malignant phenotype. We investigated the expression and the role of the receptor tyrosine kinase Axl in experimental (i.e., monocrotaline and Su5416/hypoxia treated rats) and clinical PAH. In vitro Axl inhibition by R428 and Axl knock-down inhibited growth factor-driven proliferation and migration of non-PAH and PAH PASMCs. Conversely, Axl overexpression conferred a growth advantage. Axl declined in PAECs of PAH patients. Axl blockage inhibited BMP9 signaling and increased PAEC apoptosis, while BMP9 induced Axl phosphorylation. Gas6 induced SMAD1/5/8 phosphorylation and ID1/ID2 increase were blunted by BMP signaling obstruction. Axl association with BMPR2 was facilitated by Gas6/BMP9 stimulation and diminished by R428. In vivo R428 aggravated right ventricular hypertrophy and dysfunction, abrogated BMPR2 signaling, elevated pulmonary endothelial cell apoptosis and loss. Together, Axl is a key regulator of endothelial BMPR2 signaling and potential determinant of PAH.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany.
| | - Nabham Rai
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Baktybek Kojonazarov
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Institute for Lung Health, Giessen, Germany
| | - Swathi Veeroju
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Isabel Ben-Batalla
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paola Caruso
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Mazen Shihan
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Nadine Presser
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Elsa Götz
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Carina Lepper
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Sebastian Herpel
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Grégoire Manaud
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Frédéric Perros
- Université Paris-Saclay, AP-HP, INSERM UMR_S 999, Service de Pneumologie et Soins Intensifs Respiratoires, Hôpital de Bicêtre, Le Kremlin Bicêtre, France
| | - Henning Gall
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - John Wharton
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Martin Wilkins
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, UK
| | - Paul D Upton
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with section Pneumology, Hubertus Wald University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ralph T Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany.
| |
Collapse
|
10
|
Meng L, Yuan W, Chi H, Han R, Zhang Y, Pan X, Meng J, Liu Y, Song J, Zhong J, Liu X. Genetic deletion of CMG2 exacerbates systemic-to-pulmonary shunt-induced pulmonary arterial hypertension. FASEB J 2021; 35:e21421. [PMID: 33749907 DOI: 10.1096/fj.202000299r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 12/30/2020] [Accepted: 01/21/2021] [Indexed: 11/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) secondary to congenital heart disease (CHD-PAH) with systemic-to-pulmonary shunt (SPS) is characterized by proliferative vascular remodeling. Capillary morphogenesis gene-2 (CMG2) plays a key role in cell proliferation and apoptosis. This study aimed to determine the role of CMG2 in the pathogenesis of SPS-induced PAH. CMG2 levels were significantly downregulated in pulmonary arterioles from patients with Eisenmenger syndrome and rats with SPS-induced PAH. CMG2 was highly expressed in several cells including human pulmonary arterial smooth muscle cells (HPASMCs). CMG2-/- rats exhibited more severe PAH and pulmonary vascular remodeling than wild-type rats when exposed to SPS for 8 weeks. Overexpression of CMG2 significantly inhibited proliferation and promoted apoptosis of HPASMCs, while knockdown of CMG2 promoted cell proliferation and inhibited cell apoptosis. Next-generation sequencing and subsequent validation results suggested that PI3K-AKT was the most prominent signaling pathway regulated by differentially expressed genes (DEGs) in CMG2-/- rat lungs. Our work identified a novel role for CMG2 in SPS-induced PAH based on the findings that CMG2 deficiency exacerbates SPS-induced vascular remodeling in the development of PAH, indicating that CMG2 might act as a potential target for the treatment of CHD-PAH.
Collapse
Affiliation(s)
- Liukun Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Yuan
- Medical Research Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ruijuan Han
- Department of Cardiology, Baotou Central hospital, Inner Mongolia, China
| | - Yeping Zhang
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiangbin Pan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jian Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Liu
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiawei Song
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Liu
- Medical Research Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Heart Center & Beijing Key Laboratory of Hypertension Research, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Valentin S, Maurac A, Sitbon O, Beurnier A, Gomez E, Guillaumot A, Textoris L, Fay R, Savale L, Jaïs X, Montani D, Picard F, Mornex JF, Prevot G, Chabot F, Humbert M, Chaouat A. Outcomes of patients with decreased arterial oxyhaemoglobin saturation on pulmonary arterial hypertension drugs. Eur Respir J 2021; 58:13993003.04066-2020. [PMID: 33875491 DOI: 10.1183/13993003.04066-2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/22/2021] [Indexed: 11/05/2022]
Abstract
RATIONALE Drugs approved for the treatment of pulmonary arterial hypertension (PAH) improve long-term outcomes. These drugs have pulmonary vasodilator properties which may potentially cause a decrease in arterial oxyhaemoglobin saturation (SaO2) in some patients. OBJECTIVES The present retrospective study of the French PAH Registry aimed to describe clinical characteristics and outcomes of patients showing a ≥3% decrease in SaO2 while treated with PAH drugs. METHODS We reviewed 719 PAH patients. The exclusion criteria were PAH associated with congenital heart disease and PAH with overt features of venous/capillaries involvement. MAIN RESULTS One hundred and seventy-three (24%) patients had a ≥3% decrease in SaO2. At diagnosis, they were older, with a lower diffusion capacity for carbon monoxide and a shorter 6-minute walk distance, when compared to those who did not display a ≥3% decrease in SaO2. The percentage of patients meeting the ESC/ERS low risk criteria at re-evaluation was significantly lower in those with a ≥3% decrease in SaO2 and more patients started long-term oxygen therapy in this group (16% versus 5%, p<0.001). A≥3% decrease in SaO2 was associated with a poorer survival (Hazard Ratio 1.81:95% confidence interval 1.43-2.34; p<0.0001). In a multivariate Cox analysis, a ≥3% decrease in SaO2 was a prognostic factor independent of age at diagnosis and ESC/ERS risk stratification at follow-up. CONCLUSIONS When treated with PAH drugs, a large subset of patients experience a≥3% decrease in SaO2, which is associated with worst long-term outcomes and reduced survival.
Collapse
Affiliation(s)
- Simon Valentin
- Pôle des spécialités médicales/département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,Faculté de Médecine de Nancy, Inserm UMR_S1116, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Arnaud Maurac
- Pôle des spécialités médicales/département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Olivier Sitbon
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie et de Physiologie Respiratoire, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,Hôpital Marie-Lannelongue, INSERM UMR S 999, Le Plessis-Robinson, France
| | - Antoine Beurnier
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie et de Physiologie Respiratoire, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,Hôpital Marie-Lannelongue, INSERM UMR S 999, Le Plessis-Robinson, France
| | - Emmanuel Gomez
- Pôle des spécialités médicales/département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Anne Guillaumot
- Pôle des spécialités médicales/département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Laura Textoris
- Pôle des spécialités médicales/département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Renaud Fay
- Faculté de Médecine de Nancy, Inserm UMR_S1116, Université de Lorraine, Vandœuvre-lès-Nancy, France.,Clinical Investigation Center 1433, French Clinical Research Infrastructure Network Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists, CHRU de Nancy, Vandœuvre-lès-Nancy, France
| | - Laurent Savale
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie et de Physiologie Respiratoire, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,Hôpital Marie-Lannelongue, INSERM UMR S 999, Le Plessis-Robinson, France
| | - Xavier Jaïs
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie et de Physiologie Respiratoire, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,Hôpital Marie-Lannelongue, INSERM UMR S 999, Le Plessis-Robinson, France
| | - David Montani
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie et de Physiologie Respiratoire, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,Hôpital Marie-Lannelongue, INSERM UMR S 999, Le Plessis-Robinson, France
| | - François Picard
- Hôpital du Haut Lévêque, Service de Cardiologie, CHU de Bordeaux, Université de Bordeaux, Pessac, France
| | - Jean-François Mornex
- Service de Pneumologie, Hôpital Louis Pradel, Hospices Civils de Lyon, Lyon, France.,Université Lyon 1, UMR754, INRA, Université de Lyon, Lyon, France
| | - Grégoire Prevot
- Hôpital Larrey, Service de Pneumologie, CHU de Toulouse, Toulouse, France
| | - François Chabot
- Pôle des spécialités médicales/département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,Faculté de Médecine de Nancy, Inserm UMR_S1116, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Marc Humbert
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,Service de Pneumologie et de Physiologie Respiratoire, Hôpital Bicêtre, AP-HP, Le Kremlin-Bicêtre, France.,Hôpital Marie-Lannelongue, INSERM UMR S 999, Le Plessis-Robinson, France
| | - Ari Chaouat
- Pôle des spécialités médicales/département de pneumologie, CHRU de Nancy, Vandœuvre-lès-Nancy, France .,Faculté de Médecine de Nancy, Inserm UMR_S1116, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
12
|
Bortezomib Inhibits Hypoxia-Induced Proliferation by Suppressing Caveolin-1/SOCE/[Ca 2+] i Signaling Axis in Human PASMCs. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5551504. [PMID: 33928148 PMCID: PMC8049800 DOI: 10.1155/2021/5551504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/22/2021] [Accepted: 03/27/2021] [Indexed: 11/29/2022]
Abstract
Background Previous studies have demonstrated the ubiquitin-proteasome inhibitor bortezomib (BTZ) can effectively alleviate hypoxia-induced pulmonary hypertension (HPH) by suppressing the intracellular calcium homeostasis in pulmonary arterial smooth muscle cells (PASMCs). Further evaluation showed that the antiproliferation roles of BTZ are mainly mediated by inhibition of the intracellular calcium homeostasis. Caveolin-1 belongs to one of the key regulators of the intracellular calcium homeostasis in PASMCs, which can regulate the store-operated calcium entry (SOCE). However, the effects of BTZ on Caveolin-1 remain unclear. Methods Primarily cultured human PASMCs were used as the cell model. CCK-8 assay was performed to assess the PASMCs proliferation. Western blotting and real-time qPCR were used to detect the mRNA and protein expressions. Fura-2-based fluorescence imaging experiments were used to determine the intracellular calcium concentration ([Ca2+]i). The protein synthesis inhibitor cycloheximide (CHX) was utilized to determine the protein degradation process. Results Firstly, in cultured human PASMCs, treatment of BTZ for 24 or 60 hours significantly downregulates Caveolin-1 at both mRNA and protein levels. Secondly, in the presence CHX, BTZ treatment also leads to downregulated protein expression and fastened protein degradation of Caveolin-1, indicating that BTZ can promote the Caveolin-1 protein degradation, other than the BTZ on Caveolin-1 mRNA transcription. Then, BTZ significantly attenuates the hypoxia-elevated baseline [Ca2+]i, SOCE, and cell proliferation. Conclusion We firstly observed that the ubiquitin-proteasome inhibitor BTZ can inhibit the Caveolin-1 expression at both mRNA transcription and protein degradation processes, providing new mechanistic basis of BTZ on PASMC proliferation.
Collapse
|
13
|
Dignam JP, Scott TE, Kemp-Harper BK, Hobbs AJ. Animal models of pulmonary hypertension: Getting to the heart of the problem. Br J Pharmacol 2021; 179:811-837. [PMID: 33724447 DOI: 10.1111/bph.15444] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022] Open
Abstract
Despite recent therapeutic advances, pulmonary hypertension (PH) remains a fatal disease due to the development of right ventricular (RV) failure. At present, no treatments targeted at the right ventricle are available, and RV function is not widely considered in the preclinical assessment of new therapeutics. Several small animal models are used in the study of PH, including the classic models of exposure to either hypoxia or monocrotaline, newer combinational and genetic models, and pulmonary artery banding, a surgical model of pure RV pressure overload. These models reproduce selected features of the structural remodelling and functional decline seen in patients and have provided valuable insight into the pathophysiology of RV failure. However, significant reversal of remodelling and improvement in RV function remains a therapeutic obstacle. Emerging animal models will provide a deeper understanding of the mechanisms governing the transition from adaptive remodelling to a failing right ventricle, aiding the hunt for druggable molecular targets.
Collapse
Affiliation(s)
- Joshua P Dignam
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University Parkville Campus, Parkville, Victoria, Australia
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University Clayton Campus, Clayton, Victoria, Australia
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
14
|
Jin H, Jiao Y, Guo L, Ma Y, Zhao R, Li X, Shen L, Zhou Z, Kim SC, Liu J. Astragaloside IV blocks monocrotaline‑induced pulmonary arterial hypertension by improving inflammation and pulmonary artery remodeling. Int J Mol Med 2020; 47:595-606. [PMID: 33416126 PMCID: PMC7797426 DOI: 10.3892/ijmm.2020.4813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is associated with increased inflammation and abnormal vascular remodeling. Astragaloside IV (ASIV), a purified small molecular saponin contained in the well-know herb, Astragalus membranaceus, is known to exert anti-inflammatory and anti-proliferation effects. Thus, the present study investigated the possible therapeutic effects of ASIV on monocrotaline (MCT)-induced PAH. Rats were administered a single intraperitoneal injection of MCT (60 mg/kg), followed by treatment with ASIV at doses of 10 and 30 mg/kg once daily for 21 days. Subsequently, right ventricle systolic pressure, right ventricular hypertrophy and serum inflammatory cytokines, as well as pathological changes of the pulmonary arteries, were examined. The effects of ASIV on the hypoxia-induced proliferation and apoptotic resistance of human pulmonary artery smooth muscle cells (HPASMCs) and the dysfunction of human pulmonary artery endothelial cells (HPAECs) were evaluated. MCT elevated pulmonary artery pressure and promoted pulmonary artery structural remodeling and right ventricular hypertrophy in the rats, which were all attenuated by both doses of ASIV used. Additionally, ASIV prevented the increase in the TNF-α and IL-1β concentrations in serum, as well as their gene expression in lung tissues induced by MCT. In in vitro experiments, ASIV attenuated the hypoxia-induced proliferation and apoptotic resistance of HPASMCs. In addition, ASIV upregulated the protein expression of p27, p21, Bax, caspase-9 and caspase-3, whereas it downregulated HIF-1α, phospho-ERK and Bcl-2 protein expression in HPASMCs. Furthermore, in HPAECs, ASIV normalized the increased release of inflammatory cytokines and the increased protein levels of HIF-1α and VEGF induced by hypoxia. On the whole, these results indicate that ASIV attenuates MCT-induced PAH by improving inflammation, pulmonary artery endothelial cell dysfunction, pulmonary artery smooth muscle cell proliferation and resistance to apoptosis.
Collapse
Affiliation(s)
- Haifeng Jin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yu Jiao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Linna Guo
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Yong Ma
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Rongjie Zhao
- Department of Psychopharmacology, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Xuemei Li
- Experiment and Practice Training Center, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Zhongguang Zhou
- Basic Discipline of Chinese and Western Integrative Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang 150000, P.R. China
| | - Sang Chan Kim
- MRC‑GHF, College of Korean Medicine, Daegu Haany University, Gyeongsan, Gyeongsang 38610, Republic of Korea
| | - Jicheng Liu
- Qigihar Institute of Medical and Pharmaceutical Sciences, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
15
|
Zehendner CM, Valasarajan C, Werner A, Boeckel JN, Bischoff FC, John D, Weirick T, Glaser SF, Rossbach O, Jaé N, Demolli S, Khassafi F, Yuan K, de Jesus Perez VA, Michalik KM, Chen W, Seeger W, Guenther A, Wasnick RM, Uchida S, Zeiher AM, Dimmeler S, Pullamsetti SS. Long Noncoding RNA TYKRIL Plays a Role in Pulmonary Hypertension via the p53-mediated Regulation of PDGFRβ. Am J Respir Crit Care Med 2020; 202:1445-1457. [PMID: 32634060 PMCID: PMC7786813 DOI: 10.1164/rccm.201910-2041oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 07/06/2020] [Indexed: 01/07/2023] Open
Abstract
Rationale: Long noncoding RNAs (lncRNAs) are emerging as important regulators of diverse biological functions. Their role in pulmonary arterial hypertension (PAH) remains to be explored.Objectives: To elucidate the role of TYKRIL (tyrosine kinase receptor-inducing lncRNA) as a regulator of p53/ PDGFRβ (platelet-derived growth factor receptor β) signaling pathway and to investigate its role in PAH.Methods: Pericytes and pulmonary arterial smooth muscle cells exposed to hypoxia and derived from patients with idiopathic PAH were analyzed with RNA sequencing. TYKRIL knockdown was performed in above-mentioned human primary cells and in precision-cut lung slices derived from patients with PAH.Measurements and Main Results: Using RNA sequencing data, TYKRIL was identified to be consistently upregulated in pericytes and pulmonary arterial smooth muscles cells exposed to hypoxia and derived from patients with idiopathic PAH. TYKRIL knockdown reversed the proproliferative (n = 3) and antiapoptotic (n = 3) phenotype induced under hypoxic and idiopathic PAH conditions. Owing to the poor species conservation of TYKRIL, ex vivo studies were performed in precision-cut lung slices from patients with PAH. Knockdown of TYKRIL in precision-cut lung slices decreased the vascular remodeling (n = 5). The number of proliferating cell nuclear antigen-positive cells in the vessels was decreased and the number of terminal deoxynucleotide transferase-mediated dUTP nick end label-positive cells in the vessels was increased in the LNA (locked nucleic acid)-treated group compared with control. Expression of PDGFRβ, a key player in PAH, was found to strongly correlate with TYKRIL expression in the patient samples (n = 12), and TYKRIL knockdown decreased PDGFRβ expression (n = 3). From the transcription factor-screening array, it was observed that TYKRIL knockdown increased the p53 activity, a known repressor of PDGFRβ. RNA immunoprecipitation using various p53 mutants demonstrated that TYKRIL binds to the N-terminal of p53 (an important region for p300 interaction with p53). The proximity ligation assay revealed that TYKRIL interferes with the p53-p300 interaction (n = 3) and regulates p53 nuclear translocation.Conclusions: TYKRIL plays an important role in PAH by regulating the p53/PDGFRβ axis.
Collapse
Affiliation(s)
- Christoph M Zehendner
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- ZIM III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Chanil Valasarajan
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Astrid Werner
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- ZIM III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Jes-Niels Boeckel
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Florian C Bischoff
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- ZIM III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - David John
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Tyler Weirick
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Simone F Glaser
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Oliver Rossbach
- Department of Biology and Chemistry, Institute of Biochemistry, University of Giessen, Giessen, Germany
| | - Nicolas Jaé
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
| | - Shemsi Demolli
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
| | - Fatemeh Khassafi
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University, Stanford, California
| | | | | | - Wei Chen
- Laboratory for Novel Sequencing Technology, Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Max-Delbruck-Centre for Molecular Medicine, Berlin, Germany
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, China; and
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen, Germany
| | - Roxana M Wasnick
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen, Germany
| | - Shizuka Uchida
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Andreas M Zeiher
- ZIM III, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, and
- German Center for Cardiovascular Research, DZHK, Berlin, Germany
| | - Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen, Germany
| |
Collapse
|
16
|
He Y, Zuo C, Jia D, Bai P, Kong D, Chen D, Liu G, Li J, Wang Y, Chen G, Yan S, Xiao B, Zhang J, Piao L, Li Y, Deng Y, Li B, Roux PP, Andreasson KI, Breyer RM, Su Y, Wang J, Lyu A, Shen Y, Yu Y. Loss of DP1 Aggravates Vascular Remodeling in Pulmonary Arterial Hypertension via mTORC1 Signaling. Am J Respir Crit Care Med 2020; 201:1263-1276. [PMID: 31917615 DOI: 10.1164/rccm.201911-2137oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rationale: Vascular remodeling, including smooth muscle cell hypertrophy and proliferation, is the key pathological feature of pulmonary arterial hypertension (PAH). Prostaglandin I2 analogs (beraprost, iloprost, and treprostinil) are effective in the treatment of PAH. Of note, the clinically favorable effects of treprostinil in severe PAH may be attributable to concomitant activation of DP1 (D prostanoid receptor subtype 1).Objectives: To study the role of DP1 in the progression of PAH and its underlying mechanism.Methods: DP1 levels were examined in pulmonary arteries of patients and animals with PAH. Multiple genetic and pharmacologic approaches were used to investigate DP1-mediated signaling in PAH.Measurements and Main Results: DP1 expression was downregulated in hypoxia-treated pulmonary artery smooth muscle cells and in pulmonary arteries from rodent PAH models and patients with idiopathic PAH. DP1 deletion exacerbated pulmonary artery remodeling in hypoxia-induced PAH, whereas pharmacological activation or forced expression of the DP1 receptor had the opposite effect in different rodent models. DP1 deficiency promoted pulmonary artery smooth muscle cell hypertrophy and proliferation in response to hypoxia via induction of mTORC1 (mammalian target of rapamycin complex 1) activity. Rapamycin, an inhibitor of mTORC1, alleviated the hypoxia-induced exacerbation of PAH in DP1-knockout mice. DP1 activation facilitated raptor dissociation from mTORC1 and suppressed mTORC1 activity through PKA (protein kinase A)-dependent phosphorylation of raptor at Ser791. Moreover, treprostinil treatment blocked the progression of hypoxia-induced PAH in mice in part by targeting the DP1 receptor.Conclusions: DP1 activation attenuates hypoxia-induced pulmonary artery remodeling and PAH through PKA-mediated dissociation of raptor from mTORC1. These results suggest that the DP1 receptor may serve as a therapeutic target for the management of PAH.
Collapse
Affiliation(s)
- Yuhu He
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Caojian Zuo
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Shanghai General Hospital, and
| | - Daile Jia
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peiyuan Bai
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Di Chen
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guizhu Liu
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Juanjuan Li
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanyang Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guilin Chen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuai Yan
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Xiao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jian Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lingjuan Piao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Li
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yi Deng
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bin Li
- Orthopedic Institute, Soochow University, Jiangsu, China
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer and.,Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Katrin I Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee.,Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yunchao Su
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankang Lyu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yujun Shen
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Spaczyńska M, Rocha SF, Oliver E. Pharmacology of Pulmonary Arterial Hypertension: An Overview of Current and Emerging Therapies. ACS Pharmacol Transl Sci 2020; 3:598-612. [PMID: 32832865 DOI: 10.1021/acsptsci.0c00048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension is a rare and devastating disease characterized by an abnormal chronic increase in pulmonary arterial pressure above 20 mmHg at rest, with a poor prognosis if not treated. Currently, there is not a single fully effective therapy, even though a dozen of drugs have been developed in the last decades. Pulmonary arterial hypertension is a multifactorial disease, meaning that several molecular mechanisms are implicated in its pathology. The main molecular pathways regulating the pulmonary vasomotor tone-endothelin, nitric oxide, and prostacyclin-are the most biologically and therapeutically explored to date. However, drugs targeting these pathways have already found their limitations. In the last years, translational research and clinical trials have made a strong effort in suggesting and testing novel therapeutic strategies for this disease. These approaches involve targeting the main molecular pathways with novel drugs, drug repurposing for novel targets, and also using combinatorial therapies. In this review, we summarize current strategies and drugs targeting the endothelin, nitric oxide, and prostacyclin pathways, as well as, the emerging new drugs proposed to cope with vascular remodelling, metabolic switch, perivascular inflammation, epigenetic modifications, estrogen deregulation, serotonin, and other neurohumoral mechanisms characteristic of this disease. Nowadays, pulmonary arterial hypertension remains an incurable disease; however, the incoming new knowledge makes us believe that new promising therapies are coming to the clinical arena soon.
Collapse
Affiliation(s)
- Monika Spaczyńska
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Susana F Rocha
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, 28029, Spain.,Centro de Investigaciones Biomédicas en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, 28029, Spain
| |
Collapse
|
18
|
Advances in Targeted Therapy for Progressive Fibrosing Interstitial Lung Disease. Lung 2020; 198:597-608. [PMID: 32591895 DOI: 10.1007/s00408-020-00370-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/17/2020] [Indexed: 12/25/2022]
Abstract
Progressive fibrosing interstitial lung disease (PF-ILD) has been redefined as a new clinical syndrome that shares similar genetics, pathophysiology, and natural history to idiopathic pulmonary fibrosis (IPF). IPF is the most common form of idiopathic interstitial pneumonias, which is progressive in nature and is associated with significant mortality. Therapies targeting an inflammatory and/or immune response have not been consistently effective or well tolerated in patients with IPF. The two antifibrotic drugs approved for IPF treatment, nintedanib and pirfenidone, have been shown to reduce lung function decline in PF-ILD. Novel uses of antifibrotic therapy are emerging due to a paucity of evidence-based treatments for multiple ILD subtypes. In this review, we describe the current body of knowledge on antifibrotic therapy and immunomodulators in PF-ILD, drawing from experience in IPF where appropriate.
Collapse
|
19
|
Deng M, Su D, Xu S, Little PJ, Feng X, Tang L, Shen A. Metformin and Vascular Diseases: A Focused Review on Smooth Muscle Cell Function. Front Pharmacol 2020; 11:635. [PMID: 32457625 PMCID: PMC7227439 DOI: 10.3389/fphar.2020.00635] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022] Open
Abstract
Metformin has been used in diabetes for more than 60 years and has excellent safety in the therapy of human type 2 diabetes (T2D). There is growing evidence that the beneficial health effects of metformin are beyond its ability to improve glucose metabolism. Metformin not only reduces the incidence of cardiovascular diseases (CVD) in T2D patients, but also reduces the burden of atherosclerosis (AS) in pre-diabetes patients. Vascular smooth muscle cells (VSMCs) function is an important factor in determining the characteristics of the entire arterial vessel. Its excessive proliferation contributes to the etiology of several types of CVD, including AS, restenosis, and pulmonary hypertension. Current studies show that metformin has a beneficial effect on VSMCs function. Therefore, this review provides a timely overview of the role and molecular mechanisms by which metformin acts through VSMCs to protect CVD.
Collapse
Affiliation(s)
- Mingying Deng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dan Su
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suowen Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia.,Department of Pharmacy, Xinhua College of Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Feng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Liqin Tang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Aizong Shen
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Chen Y, Lu W, Yang K, Duan X, Li M, Chen X, Zhang J, Kuang M, Liu S, Wu X, Zou G, Liu C, Hong C, He W, Liao J, Hou C, Zhang Z, Zheng Q, Chen J, Zhang N, Tang H, Vanderpool RR, Desai AA, Rischard F, Black SM, Garcia JGN, Makino A, Yuan JXJ, Zhong N, Wang J. Tetramethylpyrazine: A promising drug for the treatment of pulmonary hypertension. Br J Pharmacol 2020; 177:2743-2764. [PMID: 31976548 DOI: 10.1111/bph.15000] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/28/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Tetramethylpyrazine (TMP) was originally isolated from the traditional Chinese herb ligusticum and the fermented Japanese food natto and has since been synthesized. TMP has a long history of beneficial effects in the treatment of many cardiovascular diseases. Here we have evaluated the therapeutic effects of TMP on pulmonary hypertension (PH) in animal models and in patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH). EXPERIMENTAL APPROACH Three well-defined models of PH -chronic hypoxia (10% O2 )-induced PH (HPH), monocrotaline-induced PH (MCT-PH) and Sugen 5416/hypoxia-induced PH (SuHx-PH) - were used in Sprague-Dawley rats, and assessed by echocardiography, along with haemodynamic and histological techniques. Primary cultures of rat distal pulmonary arterial smooth muscle cells (PASMCs) were used to study intracellular calcium levels. Western blots and RT-qPCR assays were also used. In the clinical cohort, patients with PAH or CTEPH were recruited. The effects of TMP were evaluated in all systems. KEY RESULTS TMP (100 mg·kg-1 ·day-1 ) prevented rats from developing experimental PH and ameliorated three models of established PH: HPH, MCT-PH and SuHx-PH. The therapeutic effects of TMP were accompanied by inhibition of intracellular calcium homeostasis in PASMCs. In a small cohort of patients with PAH or CTEPH, oral administration of TMP (100 mg, t.i.d. for 16 weeks) increased the 6-min walk distance and improved the 1-min heart rate recovery. CONCLUSION AND IMPLICATIONS Our results suggest that TMP is a novel and inexpensive medication for treatment of PH. Clinical trial is registered with www.chictr.org.cn (ChiCTR-IPR-14005379).
Collapse
Affiliation(s)
- Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xin Duan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengxi Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuqing Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meidan Kuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shiyun Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiongting Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guofa Zou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunli Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cheng Hong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jing Liao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zhe Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nuofu Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Rebecca R Vanderpool
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Ankit A Desai
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Franz Rischard
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Stephen M Black
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Joe G N Garcia
- Departments of Medicine and Physiology, The University of Arizona, Tucson, Arizona
| | - Ayako Makino
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Division of Pulmonary and Critical Care Medicine, The People's Hospital of Inner Mongolia, Huhhot, China.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
21
|
Abstract
Congenital diaphragmatic hernia (CDH) is a neonatal pathology in which intrathoracic herniation of abdominal viscera via diaphragmatic defect results in aberrant pulmonary and cardiovascular development. Despite decades of study and many advances in the diagnosis and treatment of CDH, morbidity and mortality remain high, largely due to pulmonary hypertension (PH), along with pulmonary hypoplasia and cardiac dysfunction. In patients with CDH, hypoplastic pulmonary vasculature and alterations in multiple molecular pathways lead to pathophysiologic pulmonary vasculopathy and, for severe CDH, sustained, elevated pulmonary arterial pressures. This review addresses the multiple anatomic and physiologic changes that underlie CDH-associated PH (CDH-PH), along with the multimodal treatment strategies that exist currently and future therapies currently under investigation.
Collapse
Affiliation(s)
- Vikas S Gupta
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.233, Houston, TX 77030, USA
| | - Matthew T Harting
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.233, Houston, TX 77030, USA.
| |
Collapse
|
22
|
Pullamsetti SS, de Jesus Perez VA. EpiHope for the Treatment of Pulmonary Arterial Hypertension: Selective versus Nonselective BET Inhibition. Am J Respir Crit Care Med 2019; 200:1188-1190. [PMID: 31419389 PMCID: PMC6888659 DOI: 10.1164/rccm.201906-1235le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, member of the German Center for Lung ResearchBad Nauheim, Germany.,Justus Liebig UniversityGiessen, Germanyand
| | | |
Collapse
|
23
|
Legchenko E, Chouvarine P, Borchert P, Fernandez-Gonzalez A, Snay E, Meier M, Maegel L, Mitsialis SA, Rog-Zielinska EA, Kourembanas S, Jonigk D, Hansmann G. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Transl Med 2019; 10:10/438/eaao0303. [PMID: 29695452 DOI: 10.1126/scitranslmed.aao0303] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/18/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Right ventricular (RV) heart failure is the leading cause of death in pulmonary arterial hypertension (PAH). Peroxisome proliferator-activated receptor γ (PPARγ) acts as a vasoprotective metabolic regulator in smooth muscle and endothelial cells; however, its role in the heart is unclear. We report that deletion of PPARγ in cardiomyocytes leads to biventricular systolic dysfunction and intramyocellular lipid accumulation in mice. In the SU5416/hypoxia (SuHx) rat model, oral treatment with the PPARγ agonist pioglitazone completely reverses severe PAH and vascular remodeling and prevents RV failure. Failing RV cardiomyocytes exhibited mitochondrial disarray and increased intramyocellular lipids (lipotoxicity) in the SuHx heart, which was prevented by pioglitazone. Unbiased ventricular microRNA (miRNA) arrays, mRNA sequencing, and lipid metabolism studies revealed dysregulation of cardiac hypertrophy, fibrosis, myocardial contractility, fatty acid transport/oxidation (FAO), and transforming growth factor-β signaling in the failing RV. These epigenetic, transcriptional, and metabolic alterations were modulated by pioglitazone through miRNA/mRNA networks previously not associated with PAH/RV dysfunction. Consistently, pre-miR-197 and pre-miR-146b repressed genes that drive FAO (Cpt1b and Fabp4) in primary cardiomyocytes. We recapitulated our major pathogenic findings in human end-stage PAH: (i) in the pressure-overloaded failing RV (miR-197 and miR-146b up-regulated), (ii) in peripheral pulmonary arteries (miR-146b up-regulated, miR-133b down-regulated), and (iii) in plexiform vasculopathy (miR-133b up-regulated, miR-146b down-regulated). Together, PPARγ activation can normalize epigenetic and transcriptional regulation primarily related to disturbed lipid metabolism and mitochondrial morphology/function in the failing RV and the hypertensive pulmonary vasculature, representing a therapeutic approach for PAH and other cardiovascular/pulmonary diseases.
Collapse
Affiliation(s)
- Ekaterina Legchenko
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Philippe Chouvarine
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Paul Borchert
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| | - Angeles Fernandez-Gonzalez
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Erin Snay
- Division of Nuclear Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Martin Meier
- Small Animal Imaging Center, Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Lavinia Maegel
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,The German Center for Lung Research (Deutsches Zentrum für Lungenforschung DZL), Giessen, Germany
| | - S Alex Mitsialis
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center, Medical Center-University of Freiburg, and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stella Kourembanas
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover, Hannover, Germany.,The German Center for Lung Research (Deutsches Zentrum für Lungenforschung DZL), Giessen, Germany
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
24
|
Gessler T. lloprost delivered via the BREELIB TM nebulizer: a review of the clinical evidence for efficacy and safety. Ther Adv Respir Dis 2019; 13:1753466619835497. [PMID: 30874487 PMCID: PMC6421612 DOI: 10.1177/1753466619835497] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Inhaled iloprost is a well-established medication to treat pulmonary arterial hypertension (PAH), a serious and potentially fatal disease of the pulmonary resistance vessels. The therapeutic administration of iloprost requires six to nine inhalations per day, due to the short biological half-life of this prostacyclin analogue. The I-NebTM AADTM, introduced in 2006, is the most commonly used nebulizer for delivering iloprost, requiring at least 6.5 min for an inhaled dose of 5 µg. In order to reduce inhalation time, a portable nebulizer based on modern-device technology was developed. The acute safety and tolerability of rapid iloprost inhalation via the BREELIBTM nebulizer was assessed in a four-part clinical trial. In this review, I describe the rationale and features of the new nebulizer, with particular emphasis on the safety and tolerability profile of iloprost inhalation via BREELIBTM observed in the first clinical studies. Meanwhile, the BREELIBTM nebulizer is approved and available for inhaled iloprost therapy combining significantly reduced inhalation time with good tolerability. This new approach will certainly improve patient convenience and compliance, possibly resulting in broader acceptance and improved efficacy of iloprost aerosol therapy in PAH.
Collapse
Affiliation(s)
- Tobias Gessler
- Universities of Giessen and Marburg Lung Centre (UGMLC), German Centre for Lung Research (DZL), Department of Internal Medicine, Justus-Liebig-University Giessen, Klinikstraße 33, D-35392 Giessen, Germany
| |
Collapse
|
25
|
Sundd P, Kuebler WM. Smooth Muscle Cells: A Novel Site of P-Selectin Expression with Pathophysiological and Therapeutic Relevance in Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 199:1307-1309. [PMID: 30592637 PMCID: PMC6543715 DOI: 10.1164/rccm.201812-2242ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Prithu Sundd
- 1 Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute.,2 Division of Pulmonary, Allergy, and Critical Care Medicine University of Pittsburgh School of Medicine Pittsburgh, Pennsylvania
| | - Wolfgang M Kuebler
- 3 Institute of Physiology Charité-Universitätsmedizin Berlin Berlin, Germany.,4 Keenan Research Centre for Biomedical Science St. Michael's Hospital Toronto, Ontario, Canada.,5 Department of Surgery and.,6 Department of Physiology University of Toronto Toronto, Ontario, Canada
| |
Collapse
|
26
|
Rieg AD, Bünting NA, Cranen C, Suleiman S, Spillner JW, Schnöring H, Schröder T, von Stillfried S, Braunschweig T, Manley PW, Schälte G, Rossaint R, Uhlig S, Martin C. Tyrosine kinase inhibitors relax pulmonary arteries in human and murine precision-cut lung slices. Respir Res 2019; 20:111. [PMID: 31170998 PMCID: PMC6555704 DOI: 10.1186/s12931-019-1074-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 05/16/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) inhibit the platelet derived growth factor receptor (PDGFR) and gain increasing significance in the therapy of proliferative diseases, e.g. pulmonary arterial hypertension (PAH). Moreover, TKIs relax pulmonary vessels of rats and guinea pigs. So far, it is unknown, whether TKIs exert relaxation in human and murine pulmonary vessels. Thus, we studied the effects of TKIs and the PDGFR-agonist PDGF-BB in precision-cut lung slices (PCLS) from both species. METHODS The vascular effects of imatinib (mice/human) or nilotinib (human) were studied in Endothelin-1 (ET-1) pre-constricted pulmonary arteries (PAs) or veins (PVs) by videomicroscopy. Baseline initial vessel area (IVA) was defined as 100%. With regard to TKI-induced relaxation, K+-channel activation was studied in human PAs (PCLS) and imatinib/nilotinib-related changes of cAMP and cGMP were analysed in human PAs/PVs (ELISA). Finally, the contractile potency of PDGF-BB was explored in PCLS (mice/human). RESULTS Murine PCLS: Imatinib (10 μM) relaxed ET-1-pre-constricted PAs to 167% of IVA. Vice versa, 100 nM PDGF-BB contracted PAs to 60% of IVA and pre-treatment with imatinib or amlodipine prevented PDGF-BB-induced contraction. Murine PVs reacted only slightly to imatinib or PDGF-BB. Human PCLS: 100 μM imatinib or nilotinib relaxed ET-1-pre-constricted PAs to 166% or 145% of IVA, respectively, due to the activation of KATP-, BKCa2+- or Kv-channels. In PVs, imatinib exerted only slight relaxation and nilotinib had no effect. Imatinib and nilotinib increased cAMP in human PAs, but not in PVs. In addition, PDGF-BB contracted human PAs/PVs, which was prevented by imatinib. CONCLUSIONS TKIs relax pre-constricted PAs/PVs from both, mice and humans. In human PAs, the activation of K+-channels and the generation of cAMP are relevant for TKI-induced relaxation. Vice versa, PDGF-BB contracts PAs/PVs (human/mice) due to PDGFR. In murine PAs, PDGF-BB-induced contraction depends on intracellular calcium. So, PDGFR regulates the tone of PAs/PVs. Since TKIs combine relaxant and antiproliferative effects, they may be promising in therapy of PAH.
Collapse
Affiliation(s)
- Annette D Rieg
- Department of Anaesthesiology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany.
| | - Nina A Bünting
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Christian Cranen
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Jan W Spillner
- Department of Cardiac and Thoracic Surgery, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Heike Schnöring
- Department of Cardiac and Thoracic Surgery, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, Aachen, Germany
| | | | - Till Braunschweig
- Institute of Pathology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | | | - Gereon Schälte
- Department of Anaesthesiology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Rolf Rossaint
- Department of Anaesthesiology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany
| |
Collapse
|
27
|
Jo HH, Park MJ, Shin HS, Choi HY, Na JB, Choi DS, Choi HC, Lee SM, Lee GW, Lee SJ. Adverse effect of smoking on cross-sectional area of small pulmonary vessel and arterial stiffness in healthy smokers without COPD. THE CLINICAL RESPIRATORY JOURNAL 2019; 13:368-375. [PMID: 30916853 DOI: 10.1111/crj.13018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/22/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Because it induces systemic inflammation, smoking is a risk factor of atherosclerosis and pulmonary hypertension. The brachial-ankle pulse wave velocity (baPWV) and cross-sectional area (CSA) of small pulmonary vessels can be useful markers to assess early changes of arterial stiffness and pulmonary vascular alteration in smokers. OBJECTIVES This study aimed to explore association between the CSA of small pulmonary vessel and arterial stiffness in healthy male smokers. METHODS We enrolled 90 male non-smokers and 90 male smokers (age: 51.5 ± 9.7 years and 52.1 ± 7.9 years, respectively). All subjects underwent chest computed tomography (CT), pulmonary function test and baPWV measurement. We evaluated the total CSAs less than 5 mm2 using ImageJ software and divided by the total lung area (%CSA<5). We compared the association between baPWV and %CSA<5 in two groups as well as correlations among the amount of smoking, baPWV and %CSA<5. Multiple linear regression analysis using %CSA<5 as the dependent variable was also performed. RESULTS The mean baPWV and mean %CSA<5 were significantly different between the smokers and non-smokers. The pack-years was significantly correlated with %CSA<5 (r = -0.631, P < 0.001) and baPWV (r = 0.534, P < 0.001) in smokers. In multiple linear regression analysis, age, pack-years, FEV1 /FVC and baPWV were associated with %CSA<5, regardless of body mass index, blood pressure and heart rate. CONCLUSIONS There is a dose-response relationship between cigarette smoking and the CSA of small pulmonary vessels and arterial stiffness, respectively. Arterial stiffness, age, pack-years and mild airflow impairment are independent predictors of small pulmonary vascular destruction in smokers.
Collapse
Affiliation(s)
- Hwang Hee Jo
- Departmet of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Mi Jung Park
- Departmet of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hwa Seon Shin
- Departmet of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Hye Young Choi
- Departmet of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jae Boem Na
- Departmet of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Dae Seob Choi
- Departmet of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Ho Cheol Choi
- Departmet of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sang Min Lee
- Departmet of Radiology, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Gyeong-Won Lee
- Division of Hematology-Oncology, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Seung Jun Lee
- Division of Pulmonology, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| |
Collapse
|
28
|
Novoyatleva T, Kojonazarov B, Owczarek A, Veeroju S, Rai N, Henneke I, Böhm M, Grimminger F, Ghofrani HA, Seeger W, Weissmann N, Schermuly RT. Evidence for the Fucoidan/P-Selectin Axis as a Therapeutic Target in Hypoxia-induced Pulmonary Hypertension. Am J Respir Crit Care Med 2019; 199:1407-1420. [PMID: 30557519 DOI: 10.1164/rccm.201806-1170oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Pulmonary arterial hypertension (PAH) is characterized by vascular remodeling and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). Fucoidan, a polysaccharidic ligand of the adhesion molecule P-selectin, exhibits antiproliferative properties. The effects of the fucoidan/P-selectin axis on vascular remodeling and pulmonary hypertension (PH) after hypoxia remain unexplored. Objectives: We aimed to evaluate the therapeutic potential of targeting the fucoidan/P-selectin axis in PH. Methods: Mice with PH induced by chronic hypoxia (35 d) were given either fucoidan (from Fucus vesiculosus) or anti-P-selectin antibody (Rb40.34) during Days 21-35. Right ventricular (RV) function was determined by echocardiography. Vascular morphometry was assessed by immunohistochemistry. Human and experimental PH lungs and PASMCs were used for assessment of P-selectin expression and function. Measurements and Main Results: Fucoidan attenuated chronic hypoxia-induced PH in mice, reducing pulmonary vascular remodeling and restoring RV function. In vitro, fucoidan inhibited hypoxia and growth factor-stimulated PASMC proliferation and migration. Chronic hypoxia caused an upregulation of P-selectin in the medial layer of the small pulmonary arteries. P-selectin was persistently upregulated in PASMCs of human and hypoxia-induced experimental PH. HIF-1α (hypoxia-inducible factor 1α) directly bound to the P-selectin promoter and transcriptionally activated P-selectin in hypoxia. P-selectin blockage resulted in a marked reduction of PASMC proliferation in vitro. Blockage of P-selectin by administration of anti-P-selectin Rb40.34 antibody and P-selectin-deficient mice improved vascular remodeling and restored RV function. Conclusions: Fucoidan is a potent natural adjuvant that represents a promising therapeutic approach for PH. Our data indicate a previously unrecognized role of P-selectin in the proliferative response of PASMCs associated with PH.
Collapse
Affiliation(s)
- Tatyana Novoyatleva
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Baktybek Kojonazarov
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Andreas Owczarek
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Swathi Veeroju
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Nabham Rai
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Ingrid Henneke
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Mario Böhm
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Friedrich Grimminger
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Hossein A Ghofrani
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Werner Seeger
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
- 2 Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Norbert Weissmann
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| | - Ralph T Schermuly
- 1 Universities of Giessen and Marburg Lung Center, Department of Internal Medicine, Member of the German Center for Lung Research, Justus Liebig University Giessen, Giessen, Germany; and
| |
Collapse
|
29
|
Zhao J, Yang M, Wu X, Yang Z, Jia P, Sun Y, Li G, Xie L, Liu B, Liu H. Effects of paclitaxel intervention on pulmonary vascular remodeling in rats with pulmonary hypertension. Exp Ther Med 2019; 17:1163-1170. [PMID: 30679989 PMCID: PMC6327549 DOI: 10.3892/etm.2018.7045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effects of paclitaxel (PTX), at a non-cytotoxic concentration, on pulmonary vascular remodeling (PVR) in rats with pulmonary hypertension (PAH), and to explore the mechanisms underlying the PTX-mediated reversal of PVR in PAH. A total of 36 rats were divided into control group (n=12), model group (n=12) receiving a subcutaneous injection of monocrotaline (60 mg/kg) in the back on day 7 following left pneumonectomy and PTX group (n=12) with PTX (2 mg/kg) injection via the caudal vein 3 weeks following establishing the model. The degree of PVR among all groups, as well as the expression levels of Ki67, p27Kip1 and cyclin B1, were compared. The mean pulmonary artery pressure, right ventricular hypertrophy index [right ventricle/(left ventricle + septum) ratio] and the thickness of the pulmonary arterial tunica media in the model group were 58.34±2.01 mmHg, 0.64±0.046 and 65.3±3.3%, respectively, which were significantly higher when compared with 23.30±1.14 mmHg, 0.32±0.028 and 16.2±1.3% in the control group, respectively (P<0.01). The mean pulmonary artery pressure, right ventricular hypertrophy index and thickness of the pulmonary arterial tunica media in the PTX group were 42.35±1.53 mmHg, 0.44±0.029 and 40.5±2.6%, respectively, which were significantly lower when compared with the model group (P<0.01). Compared with the control group, the expression levels of Ki67 and cyclin B1 in the model group were significantly increased (P<0.01), while p27Kip1 expression was significantly reduced (P<0.01). Following PTX intervention, the expression levels of Ki67 and cyclin B1 were significantly reduced when compared with the model group (P<0.01), while p27Kip1 expression was significantly increased (P<0.01). The results of the present study suggest that PTX, administered at a non-cytotoxic concentration, may reduce PAH in rats, and prevent the effects of PVR in PAH. These effects of PTX may be associated with increased expression of p27Kip1 and decreased expression of cyclin B1.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meifang Yang
- School of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xindan Wu
- Department of Pediatrics, Chengdu Women and Children's Central Hospital, Chengdu, Sichuan 610091, P.R. China
| | - Zhangya Yang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Peng Jia
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuqin Sun
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Xie
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Bin Liu
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hanmin Liu
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
30
|
Hoeper MM, Benza RL, Corris P, de Perrot M, Fadel E, Keogh AM, Kühn C, Savale L, Klepetko W. Intensive care, right ventricular support and lung transplantation in patients with pulmonary hypertension. Eur Respir J 2019; 53:13993003.01906-2018. [PMID: 30545979 PMCID: PMC6351385 DOI: 10.1183/13993003.01906-2018] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022]
Abstract
Intensive care of patients with pulmonary hypertension (PH) and right-sided heart failure includes treatment of factors causing or contributing to heart failure, careful fluid management, and strategies to reduce ventricular afterload and improve cardiac function. Extracorporeal membrane oxygenation (ECMO) should be considered in distinct situations, especially in candidates for lung transplantation (bridge to transplant) or, occasionally, in patients with a reversible cause of right-sided heart failure (bridge to recovery). ECMO should not be used in patients with end-stage disease without a realistic chance for recovery or for transplantation. For patients with refractory disease, lung transplantation remains an important treatment option. Patients should be referred to a transplant centre when they remain in an intermediate- or high-risk category despite receiving optimised pulmonary arterial hypertension therapy. Meticulous peri-operative management including the intra-operative and post-operative use of ECMO effectively prevents graft failure. In experienced centres, the 1-year survival rates after lung transplantation for PH now exceed 90%.
Collapse
Affiliation(s)
- Marius M Hoeper
- Dept of Respiratory Medicine, Hannover Medical School and Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Raymond L Benza
- The Cardiovascular Institute, Allegheny General Hospital, Pittsburgh, PA, USA
| | - Paul Corris
- Institute of Cellular Medicine, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, University of Toronto, Toronto, ON, Canada
| | - Elie Fadel
- Dept of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Hôpital Marie Lannelongue and Université Paris-Sud, Paris, France
| | - Anne M Keogh
- Heart Transplant Unit, St Vincent's Public Hospital, Darlinghurst, Australia.,University of New South Wales, Sydney, Australia
| | - Christian Kühn
- Dept of Cardiothoracic, Vascular and Transplantation Surgery, Hannover Medical School and Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Laurent Savale
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France.,AP-HP, Service de Pneumologie, Département Hospitalo-Universitaire (DHU) Thorax Innovation (TORINO), Hôpital Bicêtre, Le Kremlin-Bicêtre, France.,INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Walter Klepetko
- Dept of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
张 丹, 何 大, 李 典, 唐 波, 胡 东, 郭 文, 王 璋, 沈 炼, 魏 光. [Cancer stem-like cell-derived exosomes promotes the proliferation and invasion of human umbilical cord blood-derived mesenchymal stem cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1440-1447. [PMID: 30613011 PMCID: PMC6744204 DOI: 10.12122/j.issn.1673-4254.2018.12.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of Piwil2-induced cancer stem-like cell (Piwil2-iCSC)-derived exosomes on the proliferation,migration and invasion of human umbilical cord blood-derived mesenchymal stem cells (hucMSCs). METHODS Piwil2-iCSC-derived exosomes were isolated by ultracentrifugation and identified using transmission electron microscopy,nanoparticle tracking analysis and Western blotting.Exosome uptake assay was used to identify the pathway that Piwil2-iCSCderived exosomes utilized.HucMSCs were divided into control group,PBS intervention group and exosome intervention group,and CCK-8 assay,wound healing assay,Transwell assay,Western blotting and cell karyotype analysis were used to observe the proliferation,migration,invasion,expression levels of MMP2 and MMP9 proteins,and chromosome structure of hucMSCs. RESULTS The diameter of Piwil2-iCSC-derived exosomes ranged from 50 nm to 100 nm,and most of them were oval or spherical capsules rich in CD9,CD63 and Piwil2 proteins.Exosomal uptake assay showed that the exosomes executed theirs functions after entering the cells.Compared with the control cells and PBS-treated cells,hucMSCs treated with the exosomes showed significantly increased number of proliferating cells (P<0.05) with accelerated healing rate (P<0.05 at 24 h;P<0.01 at 48 h),increased invasive cells (P<0.01),enhanced protein expressions of MMP2(P<0.05 vs PBS group;P<0.01 vs control group) and MMP9(P<0.05),but their karyotype still remained 46XY without any abnormalities. CONCLUSIONS Piwil2-iCSC-derived exosomes can promote the proliferation,migration and invasion but does not cause cancer-like heterogeneity changes in hucMSCs.
Collapse
Affiliation(s)
- 丹 张
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 大维 何
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 典 李
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 波 唐
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 东 胡
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 文浩 郭
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 璋 王
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 炼桔 沈
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| | - 光辉 魏
- />重庆医科大学附属儿童医院泌尿外科//儿童泌尿生殖发育与组织工程重庆市重点实验室//儿童发育疾病研究教育部重点实验室//儿童发育重大疾病国家国际科技合作基地//儿科学重庆市重点实验室,重庆 400014ZHANG Dan, HE Dawei, LI Dian, TANG Bo, HU Dong, GUO Wenhao, WANG Zhang, SHEN Lianju, WEI Guanghui Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders; Chongqing Key Laboratory of Pediatrics Chongqing, 400014, China
| |
Collapse
|
32
|
Uaprasert N, Satitthummanid S, Akkawat B, Sutcharitchan P, Rojnuckarin P. Vascular and hemostatic alterations associated with pulmonary hypertension in β-thalassemia hemoglobin E patients receiving regular transfusion and iron chelation. Thromb Res 2018; 174:104-112. [PMID: 30584959 DOI: 10.1016/j.thromres.2018.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/18/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Pulmonary hypertension (PH) is the commonest cardiac complication in β-thalassemia intermedia, including β-thalassemia/hemoglobin E (β-thal/HbE), and is strongly associated with splenectomy. We aimed to define the prevalence and comprehensively explore mechanisms of PH in β-thal/HbE patients receiving regular transfusion and iron chelation, which were reported to alleviate PH. MATERIALS AND METHODS β-Thal/HbE patients receiving regular transfusion and iron chelation over one year were enrolled. Patients at risk for PH were defined by tricuspid-regurgitant-jet-velocity (TRV) ≥ 2.5 m/s. Laboratory and echocardiographic variables were compared with healthy controls. RESULTS There were 68 β-thal/HbE, including 31 (45.6%) splenectomized patients, and 38 controls included for analysis. PH was detected in 29 β-thal/HbE (42.6%). β-Thal/HbE with PH had a significant reduction in nitric oxide metabolites (NOx) but elevations in thrombin-antithrombin (TAT) complex, soluble thrombomodulin (sTM), endothelin-1 (ET-1) and flow-mediated dilation (FMD) values compared to those without PH (all, p < 0.05). TRV was significantly correlated with NOx, TAT, sTM, ET-1 and FMD values (r = -0.514, r = 0.281, r = 0.313, r = 0.245 and r = -0.474; all p < 0.05). Erythropoietic activity, serum ferritin, circulating total tissue factor (TF) antigen, microparticle-associated TF activity, microparticle's procoagulant activity and soluble p-selectin levels were not different between PH and non-PH subgroups. Notably, there were no significant associations between splenectomy and PH. CONCLUSIONS PH remains prevalent in β-thal/HbE patients receiving long-term transfusion and iron chelation. PH is not associated with splenectomy status but correlated with NO depletion, TF-independent hypercoagulability and endothelial perturbation.
Collapse
Affiliation(s)
- Noppacharn Uaprasert
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand.
| | - Sudarat Satitthummanid
- Division of Cardiology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and Cardiac Center, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Benjaporn Akkawat
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Pranee Sutcharitchan
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Ponlapat Rojnuckarin
- Division of Hematology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| |
Collapse
|
33
|
Gessler T. Inhalation of repurposed drugs to treat pulmonary hypertension. Adv Drug Deliv Rev 2018; 133:34-44. [PMID: 29886070 DOI: 10.1016/j.addr.2018.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/10/2018] [Accepted: 06/06/2018] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare, but severe and life-threatening disease characterized by vasoconstriction and remodeling of the pulmonary arterioles, leading to progressive increase in pulmonary vascular resistance and ultimately to right-heart failure. In the last two decades, significant progress in treatment of PAH has been made, with currently 12 drugs approved for targeted therapy. Among these, the stable prostacyclin analogues iloprost and treprostinil have been repurposed for inhalation. The paper highlights the development of the two drugs emphasizing the rationale and advantages of the inhalative approach. Despite substantial advances in the specific, mainly vasodilatory PAH therapy, disease progression is mostly inevitable and mortality remains unacceptably high. Thus, introduction of new drugs targeting the cancer-like remodeling of the diseased pulmonary arteries is urgently needed. Inhalation offers pulmonary selectivity and will hopefully pioneer the repurposing of novel highly potent drugs for effective aerosol therapy of PAH.
Collapse
|
34
|
Inchiosa MA. Anti-tumor activity of phenoxybenzamine and its inhibition of histone deacetylases. PLoS One 2018; 13:e0198514. [PMID: 29897996 PMCID: PMC5999115 DOI: 10.1371/journal.pone.0198514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
The principal finding from this study was the recognition that the α-adrenergic antagonist, phenoxybenzamine, possesses histone deacetylase inhibitory activity. Phenoxybenzamine is approved by the United States Food and Drug Administration for the treatment of hypertensive crises associated with tumors of the adrenal medulla, pheochromocytomas. It has several "off label" indications relative to its capacity to relax vascular smooth muscle and smooth muscle of the urogenital tract. The drug also has a long history of apparent efficacy in ameliorating, and perhaps reversing, the severe symptoms of neuropathic pain syndromes. Our interest in this feature of the drug relates to the fact that certain types of neuropathic pain, in particular complex regional pain syndrome, demonstrate a proliferative nature, with the capacity to spread from an injured limb, for example, to a non-injured limb and perhaps to essentially the entire body. Sensory neuronal sprouting in the spinal cord has been observed under conditions where there is a high sensory input from painful stimuli. Searches of gene expression signatures in the BroadBuild02 Molecular Signature Database using their connectivity map software suggested that phenoxybenzamine may have histone deacetylase inhibitory activity. Studies by others have reported inhibitory effects of phenoxybenzamine on growth, invasion and migration of human tumor cell cultures and, in one study, inhibition of tumor expansion in animal experiments. Inhibitory effects on human tumor cell cultures are also reported in the present study. Phenoxybenzamine was also found to have histone deacetylase inhibitory activity; histone deacetylase isoforms 5, 6, and 9 were the most sensitive to inhibition by phenoxybenzamine. The importance of elevated levels of these isoforms as biomarkers of poor prognosis in human malignant disease, and the recognized suppression of tumor growth that may accrue from their inhibition, opens consideration of possible translation of phenoxybenzamine to new clinical applications. This might be facilitated by the fact that phenoxybenzamine is already an approved drug entity. There appears to be no previous report of the activity of phenoxybenzamine as a histone deacetylase inhibitor.
Collapse
Affiliation(s)
- Mario A. Inchiosa
- Departments of Pharmacology and Anesthesiology, New York Medical College, Valhalla, New York, United States of America
| |
Collapse
|
35
|
Pullamsetti SS, Kojonazarov B, Storn S, Gall H, Salazar Y, Wolf J, Weigert A, El-Nikhely N, Ghofrani HA, Krombach GA, Fink L, Gattenlöhner S, Rapp UR, Schermuly RT, Grimminger F, Seeger W, Savai R. Lung cancer–associated pulmonary hypertension: Role of microenvironmental inflammation based on tumor cell–immune cell cross-talk. Sci Transl Med 2017; 9. [DOI: 10.1126/scitranslmed.aai9048] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Lung cancer–associated pulmonary hypertension is associated with microenvironmental inflammation caused by tumor cell–immune cell cross-talk.
Collapse
Affiliation(s)
- Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Baktybek Kojonazarov
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Samantha Storn
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Henning Gall
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Ylia Salazar
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Janine Wolf
- Department of Radiology, UGMLC, member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt 60438, Germany
| | - Nefertiti El-Nikhely
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Hossein Ardeschir Ghofrani
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
- Department of Medicine, Imperial College, London SW7 2AZ, UK
| | - Gabriele A. Krombach
- Department of Radiology, UGMLC, member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Ludger Fink
- Institute of Pathology and Cytology, Wetzlar 35578, Germany
| | - Stefan Gattenlöhner
- Department of Pathology, UGMLC, member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Ulf R. Rapp
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Department of Lung Development and Remodeling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
36
|
de Mendonça L, Felix NS, Blanco NG, Da Silva JS, Ferreira TP, Abreu SC, Cruz FF, Rocha N, Silva PM, Martins V, Capelozzi VL, Zapata-Sudo G, Rocco PRM, Silva PL. Mesenchymal stromal cell therapy reduces lung inflammation and vascular remodeling and improves hemodynamics in experimental pulmonary arterial hypertension. Stem Cell Res Ther 2017; 8:220. [PMID: 28974252 PMCID: PMC5627397 DOI: 10.1186/s13287-017-0669-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/29/2017] [Accepted: 09/12/2017] [Indexed: 12/30/2022] Open
Abstract
Background Experimental research has reported beneficial effects of mesenchymal stromal cell (MSC) therapy in pulmonary arterial hypertension (PAH). However, these studies either were based on prophylactic protocols or assessed basic remodeling features without evaluating possible mechanisms. We analyzed the effects of MSC therapy on lung vascular remodeling and hemodynamics and its possible mechanisms of action in monocrotaline (MCT)-induced PAH. Methods Twenty-eight Wistar rats were randomly divided into two groups. In the PAH group, animals received MCT 60 mg/kg intraperitoneally, while a control group received saline (SAL) instead. On day 14, both groups were further randomized to receive 105 adipose-derived MSCs or SAL intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP) and the gene expression of mediators associated with apoptosis, inflammation, fibrosis, Smad-1 levels, cell proliferation, and endothelial–mesenchymal transition were determined. In addition, lung histology (smooth muscle cell proliferation and plexiform-like injuries), CD68+ and CD163+ macrophages, and plasma levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) were evaluated. Results In the PAH group, adipose-derived MSCs, compared to SAL, reduced mean RVSP (29 ± 1 vs 39 ± 2 mmHg, p < 0.001), lung tissue collagen fiber content, smooth muscle cell proliferation, CD68+ macrophages, interleukin-6 expression, and the antiapoptotic mediators Bcl-2 and survivin. Conversely, expression of the proapoptotic mediator procaspase-3 and plasma VEGF increased, with no changes in PDGF. In the pulmonary artery, MSCs dampened the endothelial–mesenchymal transition. Conclusion In MCT-induced PAH, MSC therapy reduced lung vascular remodeling, thus improving hemodynamics. These beneficial effects were associated with increased levels of proapoptotic markers, mesenchymal-to-endothelial transition, reduced cell proliferation markers, and inflammation due to a shift away from the M1 phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0669-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucas de Mendonça
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Nathane S Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Natália G Blanco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Jaqueline S Da Silva
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiana P Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute-Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Soraia C Abreu
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Nazareth Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Physiology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Patrícia M Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute-Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Vanessa Martins
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Histomorphometry and Lung Genomics, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Vera L Capelozzi
- Laboratory of Histomorphometry and Lung Genomics, University of São Paulo Faculty of Medicine, São Paulo, SP, Brazil
| | - Gizele Zapata-Sudo
- Laboratory of Cardiovascular Pharmacology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
37
|
Dabral S, Pullamsetti SS. Vascular Stiffness and Mechanotransduction: Back in the Limelight. Am J Respir Crit Care Med 2017; 196:527-530. [DOI: 10.1164/rccm.201611-2254le] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Swati Dabral
- Max Planck Institute for Heart and Lung ResearchBad Nauheim, Germanyand
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung ResearchBad Nauheim, Germanyand
- Justus-Liebig UniversityGiessen, Germany
| |
Collapse
|
38
|
Abstract
Congenital diaphragmatic hernia (CDH) is a complex entity wherein a diaphragmatic defect allows intrathoracic herniation of intra-abdominal contents and both pulmonary parenchymal and vascular development are stifled. Pulmonary pathology and pathophysiology, including pulmonary hypoplasia and pulmonary hypertension, are hallmarks of CDH and are associated with disease severity. Pulmonary hypertension (PH) is sustained, supranormal pulmonary arterial pressure, and among patients with CDH (CDH-PH), is driven by hypoplastic pulmonary vasculature, including alterations at the molecular, cellular, and tissue levels, along with pathophysiologic pulmonary vasoreactivity. This review addresses the basic mechanisms, altered anatomy, definition, diagnosis, and management of CDH-PH. Further, emerging therapies targeting CDH-PH and PH are explored.
Collapse
Affiliation(s)
- Matthew T Harting
- Department of Pediatric Surgery, McGovern Medical School at the University of Texas Health Science Center at Houston and Children's Memorial Hermann Hospital, 6431 Fannin St, MSB 5.233, Houston, Texas 77030.
| |
Collapse
|
39
|
Pullamsetti SS, Savai R, Seeger W, Goncharova EA. Translational Advances in the Field of Pulmonary Hypertension. From Cancer Biology to New Pulmonary Arterial Hypertension Therapeutics. Targeting Cell Growth and Proliferation Signaling Hubs. Am J Respir Crit Care Med 2017; 195:425-437. [PMID: 27627135 PMCID: PMC5803657 DOI: 10.1164/rccm.201606-1226pp] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/08/2016] [Indexed: 12/21/2022] Open
Affiliation(s)
- Soni Savai Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Rajkumar Savai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Werner Seeger
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
- Department of Internal Medicine, Universities of Giessen and Marburg Lung Center, member of the DZL, Giessen, Germany
- Justus Liebig University, Giessen, Germany; and
| | - Elena A. Goncharova
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Pullamsetti SS, Perros F, Chelladurai P, Yuan J, Stenmark K. Transcription factors, transcriptional coregulators, and epigenetic modulation in the control of pulmonary vascular cell phenotype: therapeutic implications for pulmonary hypertension (2015 Grover Conference series). Pulm Circ 2017; 6:448-464. [PMID: 28090287 DOI: 10.1086/688908] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a complex and multifactorial disease involving genetic, epigenetic, and environmental factors. Numerous stimuli and pathological conditions facilitate severe vascular remodeling in PH by activation of a complex cascade of signaling pathways involving vascular cell proliferation, differentiation, and inflammation. Multiple signaling cascades modulate the activity of certain sequence-specific DNA-binding transcription factors (TFs) and coregulators that are critical for the transcriptional regulation of gene expression that facilitates PH-associated vascular cell phenotypes, as demonstrated by several studies summarized in this review. Past studies have largely focused on the role of the genetic component in the development of PH, while the presence of epigenetic alterations such as microRNAs, DNA methylation, histone levels, and histone deacetylases in PH is now also receiving increasing attention. Epigenetic regulation of chromatin structure is also recognized to influence gene expression in development or disease states. Therefore, a complete understanding of the mechanisms involved in altered gene expression in diseased cells is vital for the design of novel therapeutic strategies. Recent technological advances in DNA sequencing will provide a comprehensive improvement in our understanding of mechanisms involved in the development of PH. This review summarizes current concepts in TF and epigenetic control of cell phenotype in pulmonary vascular disease and discusses the current issues and possibilities in employing potential epigenetic or TF-based therapies for achieving complete reversal of PH.
Collapse
Affiliation(s)
- Soni S Pullamsetti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany; Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), member of the DZL, Justus-Liebig University, Giessen, Germany
| | - Frédéric Perros
- Université Paris-Sud; and Institut national de la santé et de la recherche médicale (Inserm) Unité Mixte de Recherche (UMR_S) 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France
| | - Prakash Chelladurai
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Jason Yuan
- University of Arizona, Tucson, Arizona, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, Department of Medicine and Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
41
|
Brock M, Schuoler C, Leuenberger C, Bühlmann C, Haider TJ, Vogel J, Ulrich S, Gassmann M, Kohler M, Huber LC. Analysis of hypoxia-induced noncoding RNAs reveals metastasis-associated lung adenocarcinoma transcript 1 as an important regulator of vascular smooth muscle cell proliferation. Exp Biol Med (Maywood) 2017; 242:487-496. [PMID: 28056547 DOI: 10.1177/1535370216685434] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Vascular remodeling, a pathogenic hallmark in pulmonary hypertension, is mainly driven by a dysbalance between proliferation and apoptosis of human pulmonary artery smooth muscle cells. It has previously been shown that microRNAs are involved in the pathogenesis of pulmonary hypertension. However, the role of long noncoding RNAs has not been evaluated. long noncoding RNA expression was quantified in human pulmonary artery smooth muscle cells using PCR arrays and quantitative PCR. Knockdown of genes was performed by transfection of siRNA or GapmeR. Proliferation and migration were measured using BrdU incorporation and wound healing assays. The mouse model of hypoxia-induced PH was used to determine the physiological meaning of identified long noncoding RNAs. The expression of 84 selected long noncoding RNAs was assessed in hypoxic human pulmonary artery smooth muscle cells and the levels of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) were significantly increased. Depletion of hypoxia-inducible factor 1α abolished the hypoxia-induced upregulation of metastasis-associated lung adenocarcinoma transcript 1 expression. Silencing of MALAT1 significantly decreased proliferation and migration of human pulmonary artery smooth muscle cells. In vivo, MALAT1 expression was significantly increased in lungs of hypoxic mice. Of note, targeting of MALAT1 by GapmeR ameliorated heart hypertrophy in mice with pulmonary hypertension. This is the first report on functional characterization of MALAT1 in the pulmonary vasculature. Our data provide evidence that MALAT1 expression is significantly increased by hypoxia, probably by hypoxia-inducible factor 1α. Intervention experiments confirmed that MALAT1 regulates the proliferative phenotype of smooth muscle cells and silencing of MALAT1 reduced heart hypertrophy in mice with pulmonary hypertension. These data indicate a potential role of MALAT1 in the pathogenesis of pulmonary hypertension. Impact statement Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA that mediates several biological processes. In the context of vascular biology, MALAT1 has been shown to be inducible by hypoxia and to control cell proliferation. These processes are of major importance for the pathophysiology of hypoxia-induced pulmonary hypertension (PH). Until now, the physiological role of MALAT1 in PH remains unclear. By using smooth muscle cells and by employing an established PH mouse model, we provide evidence that hypoxia induces MALAT1 expression. Moreover, depletion of MALAT1 inhibited migration and proliferation of smooth muscle cells, probably by the induction of cyclin-dependent kinase inhibitors. Of note, MALAT1 was significantly increased in mice exposed to hypoxia and silencing of MALAT1 ameliorated heart hypertrophy in mice with hypoxia-induced PH. Since vascular remodeling and right heart failure as a consequence of pulmonary pressure overload is a major problem in PH, these data have implications for our pathogenetic understanding.
Collapse
Affiliation(s)
- Matthias Brock
- 1 Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich CH-8091, Switzerland
| | - Claudio Schuoler
- 1 Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich CH-8091, Switzerland.,2 Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland
| | - Caroline Leuenberger
- 1 Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich CH-8091, Switzerland
| | - Carlo Bühlmann
- 1 Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich CH-8091, Switzerland
| | - Thomas J Haider
- 2 Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland.,3 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich CH-8057, Switzerland
| | - Johannes Vogel
- 2 Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland.,3 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich CH-8057, Switzerland
| | - Silvia Ulrich
- 1 Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich CH-8091, Switzerland
| | - Max Gassmann
- 2 Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich CH-8057, Switzerland.,3 Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich CH-8057, Switzerland
| | - Malcolm Kohler
- 1 Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich CH-8091, Switzerland
| | - Lars C Huber
- 1 Division of Pulmonology, University Hospital Zurich, University of Zurich, Zurich CH-8091, Switzerland
| |
Collapse
|
42
|
Howlett BM, Coleman GC, Hoffman RH, Lustig MR, King JG, Marsland DW. Selected Disorders of the Respiratory System. Fam Med 2017. [PMCID: PMC7121868 DOI: 10.1007/978-3-319-04414-9_93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Respiration and gas exchange require coordination between the chest wall, lungs, central nervous system, and pulmonary circulation. A disruption within any one of these systems or a change in the relationship between systems can result in impairments of ventilation, perfusion, or gas exchange. These disruptions can result in debilitating acute and chronic respiratory disorders. This chapter discusses the etiology, epidemiology, clinical presentation, diagnostic criteria, management, and notable public health implications of respiratory system disorders not addressed in prior chapters. Topic areas covered include acute respiratory distress syndrome (ARDS), pulmonary hypertension, pneumothorax, pleural effusion, interstitial lung disease, bronchiectasis, atelectasis, and pulmonary sarcoidosis.
Collapse
|
43
|
BMPRII influences the response of pulmonary microvascular endothelial cells to inflammatory mediators. Pflugers Arch 2016; 468:1969-1983. [PMID: 27816994 DOI: 10.1007/s00424-016-1899-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
Abstract
Mutations in the bone morphogenetic protein receptor (BMPR2) gene have been observed in 70 % of patients with heritable pulmonary arterial hypertension (HPAH) and in 11-40 % with idiopathic PAH (IPAH). However, carriers of a BMPR2 mutation have only 20 % risk of developing PAH. Since inflammatory mediators are increased and predict survival in PAH, they could act as a second hit inducing the development of pulmonary hypertension in BMPR2 mutation carriers. Our specific aim was to determine whether inflammatory mediators could contribute to pulmonary vascular cell dysfunction in PAH patients with and without a BMPR2 mutation. Pulmonary microvascular endothelial cells (PMEC) and arterial smooth muscle cells (PASMC) were isolated from lung parenchyma of transplanted PAH patients, carriers of a BMPR2 mutation or not, and from lobectomy patients or lung donors. The effects of CRP and TNFα on mitogenic activity, adhesiveness capacity, and expression of adhesion molecules were investigated in PMECs and PASMCs. PMECs from BMPR2 mutation carriers induced an increase in PASMC mitogenic activity; moreover, endothelin-1 secretion by PMECs from carriers was higher than by PMECs from non-carriers. Recruitment of monocytes by PMECs isolated from carriers was higher compared to PMECs from non-carriers and from controls, with an elevated ICAM-1 expression. CRP increased adhesion of monocytes to PMECs in carriers and non-carriers, and TNFα only in carriers. PMEC from BMPR2 mutation carriers have enhanced adhesiveness for monocytes in response to inflammatory mediators, suggesting that BMPR2 mutation could generate susceptibility to an inflammatory insult in PAH.
Collapse
|
44
|
Hansen T, Galougahi KK, Celermajer D, Rasko N, Tang O, Bubb KJ, Figtree G. Oxidative and nitrosative signalling in pulmonary arterial hypertension — Implications for development of novel therapies. Pharmacol Ther 2016; 165:50-62. [DOI: 10.1016/j.pharmthera.2016.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
45
|
Gamen E, Seeger W, Pullamsetti SS. The emerging role of epigenetics in pulmonary hypertension. Eur Respir J 2016; 48:903-17. [PMID: 27492834 DOI: 10.1183/13993003.01714-2015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 05/26/2016] [Indexed: 02/06/2023]
Abstract
Epigenetics is usually defined as the study of changes in phenotype and gene expression not related to sequence alterations, but rather the chemical modifications of DNA and of its associated chromatin proteins. These modifications can be acquired de novo, being inherited, and represent the way in which genome and environment interact. Recent evidence points to the involvement of epigenetic changes in the pathogenesis of pulmonary hypertension, as they can partly explain how environmental and lifestyle factors can impose susceptibility to pulmonary hypertension and can explain the phenotypic alteration and maintenance of the disease state.In this article, we review the epigenetic regulatory mechanisms that are mediated by DNA methylation, the post-translational modifications of histone tails and noncoding RNAs in the pathogenesis of pulmonary hypertension. Furthermore, pharmacological interventions aimed at epigenetic regulators/modifiers and their outcomes in different cellular and preclinical rodent models are discussed. Lastly, the remaining challenges and future directions in which to explore epigenetic-based therapies in pulmonary hypertension are discussed.
Collapse
Affiliation(s)
- Elisabetta Gamen
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany
| | - Werner Seeger
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany University of Giessen Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| | - Soni Savai Pullamsetti
- Max-Planck-Institute for Heart and Lung Research, Dept of Lung Development and Remodelling, member of the German Center for Lung Research (DZL), Bad Nauheim, Germany University of Giessen Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Justus-Liebig University, Giessen, Germany
| |
Collapse
|
46
|
Sasagawa S, Nishimura Y, Sawada H, Zhang E, Okabe S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Mitani Y, Maruyama K, Tanaka T. Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension. Front Pharmacol 2016; 7:142. [PMID: 27375481 PMCID: PMC4894905 DOI: 10.3389/fphar.2016.00142] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a heterogeneous disorder associated with a progressive increase in pulmonary artery resistance and pressure. Although various therapies have been developed, the 5-year survival rate of PAH patients remains low. There is thus an important need to identify novel genes that are commonly dysregulated in PAH of various etiologies and could be used as biomarkers and/or therapeutic targets. In this study, we performed comparative transcriptome analysis of five mammalian PAH datasets downloaded from a public database. We identified 228 differentially expressed genes (DEGs) from a rat PAH model caused by inhibition of vascular endothelial growth factor receptor under hypoxic conditions, 379 DEGs from a mouse PAH model associated with systemic sclerosis, 850 DEGs from a mouse PAH model associated with schistosomiasis, 1598 DEGs from one cohort of human PAH patients, and 4260 DEGs from a second cohort of human PAH patients. Gene-by-gene comparison identified four genes that were differentially upregulated or downregulated in parallel in all five sets of DEGs. Expression of coiled-coil domain containing 80 (CCDC80) and anterior gradient two genes was significantly increased in the five datasets, whereas expression of SMAD family member six and granzyme A was significantly decreased. Weighted gene co-expression network analysis revealed a connection between CCDC80 and collagen type I alpha 1 (COL1A1) expression. To validate the function of CCDC80 in vivo, we knocked out ccdc80 in zebrafish using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. In vivo imaging of zebrafish expressing a fluorescent protein in endothelial cells showed that ccdc80 deletion significantly increased the diameter of the ventral artery, a vessel supplying blood to the gills. We also demonstrated that expression of col1a1 and endothelin-1 mRNA was significantly decreased in the ccdc80-knockout zebrafish. Finally, we examined Ccdc80 immunoreactivity in a rat PAHmodel and found increased expression in the hypertrophied media and adventitia of the pre-acinar pulmonary arteries (PAs) and in the thickened intima, media, and adventitia of the obstructed intra-acinar PAs. These results suggest that increased expression of CCDC80 may be involved in the pathogenesis of PAH, potentially by modulating the expression of endothelin-1 and COL1A1.
Collapse
Affiliation(s)
- Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan
| |
Collapse
|
47
|
Del Papa N, Zaccara E. From mechanisms of action to therapeutic application: A review on current therapeutic approaches and future directions in systemic sclerosis. Best Pract Res Clin Rheumatol 2016; 29:756-69. [PMID: 27107511 DOI: 10.1016/j.berh.2016.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/01/2016] [Indexed: 01/08/2023]
Abstract
Systemic sclerosis (SSc) is one of the most complex connective tissue diseases. Although the pathogenesis of SSc still remains elusive, it is generally accepted that initial vascular injury due to autoimmunity might result in the constitutive activation of fibroblasts and fibrosis. All of these three processes interact and affect one another resulting in a polymorphous spectrum of clinical and pathologic manifestations of SSc. The disease pleomorphism poses numerous difficulties in defining the ideal outcomes to be used in clinical trials. Despite significant progress over the past decades, the clinical management of patients with SSc remains a challenge. Novel therapies are currently being tested in the treatment of SSc and have the potential for modifying the disease process and improving the clinical outcomes. However, the evaluation of the studies is still difficult, due to either the small size of included patients or the different types and phases of the scleroderma disease under scrutiny.
Collapse
Affiliation(s)
- Nicoletta Del Papa
- U.O.C. Day Hospital Reumatologia, Dip. Reumatologia, Ospedale G. Pini, Milan, Italy.
| | - Eleonora Zaccara
- U.O.C. Day Hospital Reumatologia, Dip. Reumatologia, Ospedale G. Pini, Milan, Italy
| |
Collapse
|
48
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
The role of tyrosine kinase inhibitor "Lapatinib" in pulmonary hypertension. Pulm Pharmacol Ther 2016; 37:81-4. [PMID: 26965087 DOI: 10.1016/j.pupt.2016.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/01/2016] [Accepted: 03/06/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Pulmonary Arterial Hypertension (PAH) and cancer share growth factor and protein kinase signaling pathways that result in smooth muscle cell proliferation and vasculopathy. There is little known about the impact of Lapatinib on the pulmonary vasculature. After reporting a case of Lapatinib-induced PAH we investigated the association of Lapatinib with the development of PAH in our institution. METHODS We reviewed charts for all patients treated with Lapatinib at our institution between 2008 and 2013. Patients who had undergone 2D-echocardiogram both prior to and after treatment were included in the analysis. Increase in Pulmonary artery systolic pressure (PASP) was assessed. Patients were also evaluated in terms of risk factors for non-Group 1 PAH. RESULTS A total of 27 patients were found to have 2-D echo done before and after starting treatment with Lapatinib. Six patients were found to have significant increase in their PASP after starting treatment. Right heart catheterization before and after stopping the medication was available in three patient, confirming the diagnosis of PAH with complete resolution after stopping the medication. The median pre-treatment and post treatment PASP in those 6 patients was 29 mmHg and 65.5 mmHg respectively (N = 6; p = 0.027). CONCLUSION Lapatinib might be associated with the development of PAH. PASP should be evaluated in patients who become short of breath while on treatment, and stopping the drug in cases where no other reasons are identified could be associated with reversibility of the elevated pulmonary artery pressure.
Collapse
|
50
|
Goncharova EA, Gladwin MT, Kawut SM. Update in Pulmonary Vascular Diseases 2014. Am J Respir Crit Care Med 2015; 192:544-50. [PMID: 26561677 DOI: 10.1164/rccm.201504-0829up] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|