1
|
Daccò V, Rosazza C, Mariani A, Rizza C, Ingianni N, Nazzari E, Terlizzi V, Blasi FA, Alicandro G. Effectiveness and safety of elexacaftor/tezacaftor/ivacaftor treatment in children aged 6-11 years with cystic fibrosis in a real-world setting. Pediatr Pulmonol 2024; 59:2792-2799. [PMID: 38869349 DOI: 10.1002/ppul.27125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/24/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Elexacaftor-tezacaftor-ivacaftor (ETI) is a highly effective cystic fibrosis (CF) transmembrane conductance regulator (CFTR) modulating therapy for people with CF and at least one F508del variant. However, there is limited data about the safety and efficacy of this therapy in pediatric populations and in real-world settings. This study aimed at evaluating the effectiveness, tolerability, and safety of ETI in children with CF. METHODS This was a prospective observational study including all children aged 6-11 years who initiated ETI therapy between October 2022 and March 2023 at the Pediatric CF Center of Milan (Italy). Study outcomes included changes in sweat chloride concentration, FEV1, LCI2.5, body mass index (BMI), tolerance, and safety. Mean changes in study outcomes from baseline through 24 weeks were estimated using mixed-effects regression models. RESULTS The study included 34 children with CF (median age: 8.3 years). At Week 12, we observed an average decrease in LCI2.5 of 2.3 units (95% confidence interval [CI]: -3.1; -1.5). At Week 24, sweat chloride concentration decreased by 63 mEq/L (95% CI: -69; -58), FEV1 increased by 8.8 percentage point (95% CI: 3.7; 13.9) and BMI increased by 0.15 standard deviation scores (95% CI: 0.04; 0.25). Skin rashes appeared in 6 patients which spontaneously resolved within a few days. One month after treatment initiation, one patient experienced an elevation in liver function test results, which subsequently decreased during follow-up visits without necessitating discontinuation of therapy. CONCLUSIONS Our data indicate that ETI therapy is well tolerated by children with CF and is effective in improving signs of lung function abnormalities from early childhood.
Collapse
Affiliation(s)
- Valeria Daccò
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Rosazza
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Mariani
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carmela Rizza
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nicolò Ingianni
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erica Nazzari
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vito Terlizzi
- Department of Pediatric Medicine, Meyer Children's Hospital IRCCS, Cystic Fibrosis Regional Reference Center, Florence, Italy
| | - Francesco Arturo Blasi
- Medical Department, Respiratory Unit and Cystic Fibrosis Adult Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Pediatric Department, Cystic Fibrosis Pediatric Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
2
|
Frauchiger BS, Willers C, Cotting J, Kieninger E, Korten I, Casaulta C, Salem Y, Stranzinger E, Brabandt B, Usemann J, Regamey N, Kuhn A, Blanchon S, Rochat I, Bauman G, Müller-Suter D, Moeller A, Latzin P, Ramsey KA. Lung structural and functional impairments in young children with cystic fibrosis diagnosed following newborn screening - A nationwide observational study. J Cyst Fibros 2024; 23:910-917. [PMID: 38926017 DOI: 10.1016/j.jcf.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Non-invasive and sensitive clinical endpoints are needed to monitor onset and progression of early lung disease in children with cystic fibrosis (CF). We compared lung clearance index (LCI), FEV1, functional and structural lung magnetic resonance imaging (MRI) outcomes in Swiss children with CF diagnosed following newborn screening. METHODS Lung function (LCI, FEV1) and unsedated functional and structural lung MRI was performed in 79 clinically stable children with CF (3 - 8 years) and 75 age-matched healthy controls. Clinical information was collected throughout childhood. RESULTS LCI, ventilation and perfusion defects, and structural MRI scores were significantly higher in children with CF compared with controls, but FEV1 was not different between groups. Lung MRI outcomes correlated significantly with LCI (morphology score (r = 0.56, p < 0.001); ventilation defects (r = 0.43, p = 0.001); perfusion defects (r = 0.64, p < 0.001), but not with FEV1. Lung MRI outcomes were more sensitive to detect impairments in children with CF (abnormal ventilation and perfusion outcomes in 47 %, morphology score in 30 %) compared with lung function (abnormal LCI in 21 % and FEV1 in 4.8 %). Pulmonary exacerbations, respiratory hospitalizations, and increase in patient-reported cough was associated with higher LCI and higher structural and functional MRI outcomes. CONCLUSIONS The LCI and lung MRI outcomes non-invasively detect even mild early lung disease in young children with CF diagnosed following newborn screening. Pulmonary exacerbations and early respiratory symptoms were risk factors for structural and functional impairment in childhood.
Collapse
Affiliation(s)
- Bettina S Frauchiger
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Corin Willers
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Paediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | - Jasna Cotting
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Elisabeth Kieninger
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Insa Korten
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasmin Salem
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Enno Stranzinger
- Diagnostic, interventional and pediatric radiology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ben Brabandt
- Diagnostic, interventional and pediatric radiology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- Division of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Nicolas Regamey
- Department of Respiratory Medicine, Children's Hospital Luzern, Luzern, Switzerland
| | - Alena Kuhn
- Department of Paediatrics, Kantonsspital Aarau, Aarau, Switzerland
| | | | | | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland; Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | | | - Alexander Moeller
- Division of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Philipp Latzin
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathryn A Ramsey
- Pediatric Respiratory Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth WA Australia.
| |
Collapse
|
3
|
Shanthikumar S, Gower WA, Srinivasan S, Rayment JH, Robinson PD, Bracken J, Stone A, Das S, Barochia A, Charbek E, Tamae-Kakazu M, Reardon EE, Abts M, Blinman T, Calvo C, Cheng PC, Cole TS, Cooke KR, Davies SM, De A, Gross J, Mechinaud F, Sheshadri A, Siddaiah R, Teusink-Cross A, Towe CT, Walkup LL, Yanik GA, Bergeron A, Casey A, Deterding RR, Liptzin DR, Schultz KR, Iyer NP, Goldfarb S. Detection of Bronchiolitis Obliterans Syndrome after Pediatric Hematopoietic Stem Cell Transplantation: An Official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med 2024; 210:262-280. [PMID: 38889365 DOI: 10.1164/rccm.202406-1117st] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024] Open
Abstract
Background: Many children undergo allogeneic hematopoietic stem cell transplantation (HSCT) for the treatment of malignant and nonmalignant conditions. Unfortunately, pulmonary complications occur frequently post-HSCT, with bronchiolitis obliterans syndrome (BOS) being the most common noninfectious pulmonary complication. Current international guidelines contain conflicting recommendations regarding post-HSCT surveillance for BOS, and a recent NIH workshop highlighted the need for a standardized approach to post-HSCT monitoring. As such, this guideline provides an evidence-based approach to detection of post-HSCT BOS in children. Methods: A multinational, multidisciplinary panel of experts identified six questions regarding surveillance for, and evaluation of, post-HSCT BOS in children. A systematic review of the literature was undertaken to answer each question. The Grading of Recommendations, Assessment, Development, and Evaluation approach was used to rate the quality of evidence and the strength of recommendations. Results: The panel members considered the strength of each recommendation and evaluated the benefits and risks of applying the intervention. In formulating the recommendations, the panel considered patient and caregiver values, the cost of care, and feasibility. Recommendations addressing the role of screening pulmonary function testing and diagnostic tests in children with suspected post-HSCT BOS were made. Following a Delphi process, new diagnostic criteria for pediatric post-HSCT BOS were also proposed. Conclusions: This document provides an evidence-based approach to the detection of post-HSCT BOS in children while also highlighting considerations for the implementation of each recommendation. Further, the document describes important areas for future research.
Collapse
|
4
|
Shanthikumar S, Gower WA, Cooke KR, Bergeron A, Schultz KR, Barochia A, Tamae-Kakazu M, Charbek E, Reardon EE, Calvo C, Casey A, Cheng PC, Cole TS, Davies SM, Das S, De A, Deterding RR, Liptzin DR, Mechinaud F, Rayment JH, Robinson PD, Siddaiah R, Stone A, Srinivasin S, Towe CT, Yanik GA, Iyer NP, Goldfarb SB. Diagnosis of Post-Hematopoietic Stem Cell Transplantation Bronchiolitis Obliterans Syndrome in Children: Time for a Rethink? Transplant Cell Ther 2024; 30:760-769. [PMID: 38897861 PMCID: PMC11393806 DOI: 10.1016/j.jtct.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Hematopoietic stem cell transplantation (HSCT) is undertaken in children with the aim of curing a range of malignant and nonmalignant conditions. Unfortunately, pulmonary complications, especially bronchiolitis obliterans syndrome (BOS), are significant sources of morbidity and mortality post-HSCT. Currently, criteria developed by a National Institutes of Health (NIH) working group are used to diagnose BOS in children post-HSCT. Unfortunately, during the development of a recent American Thoracic Society (ATS) Clinical Practice Guideline on this topic, it became apparent that the NIH criteria have significant limitations in the pediatric population, leading to late diagnosis of BOS. Specific limitations include use of an outdated pulmonary function testing reference equation, a reliance on spirometry, use of a fixed forced expiratory volume in 1 second (FEV1) threshold, focus on obstructive defects defined by FEV1/vital capacity, and failure to acknowledge that BOS and infection can coexist. In this review, we summarize the evidence regarding the limitations of the current criteria. We also suggest potential evidence-based ideas for improving these criteria. Finally, we highlight a new proposed criteria for post-HSCT BOS in children that were developed by the authors of the recently published ATS clinical practice guideline, along with a pathway forward for improving timely diagnosis of BOS in children post-HSCT.
Collapse
Affiliation(s)
- Shivanthan Shanthikumar
- Respiratory and Sleep Medicine, Royal Children's Hospital, Melbourne, Australia; Respiratory Diseases, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia.
| | - William A Gower
- Division of Pulmonology, Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kenneth R Cooke
- Department of Oncology, Pediatric Blood and Marrow Transplantation Program, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Anne Bergeron
- Pneumology Department, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Kirk R Schultz
- Pediatric Hematology/Oncology/BMT, BC Children's Research Institute/UBC, Vancouver, British Columbia, Canada
| | - Amisha Barochia
- Laboratory of Asthma and Lung Inflammation, Critical Care Medicine and Pulmonary Branch, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximiliano Tamae-Kakazu
- Division of Pulmonary and Critical Care, Corewell Health, Grand Rapids, Michigan; Department of Medicine, Michigan State University College of Human Medicine, Michigan
| | - Edward Charbek
- Department of Internal Medicine, Saint Louis University, St Louis, Missouri
| | - Erin E Reardon
- Woodruff Health Sciences Center Library, Emory University, Atlanta, Georgia
| | - Charlotte Calvo
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, Paris Cité University, Paris, France; Human Immunology, Pathophysiology and Immunotherapy, INSERM UMR-976, Institut de Recherche Saint-Louis, Paris, France
| | - Alicia Casey
- Division of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Pi Chun Cheng
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Theresa S Cole
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Children's Cancer Centre, Royal Children's Hospital, Melbourne, Australia; Infection & immunity, Murdoch Children's Research Institute, Melbourne, Australia
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Shailendra Das
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Alive De
- Division of Pediatric Pulmonology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York
| | - Robin R Deterding
- Chief Pediatric Pulmonary and Sleep Medicine, University of Colorado and Children's Hospital Colorado, Aurora, Colorado
| | - Deborah R Liptzin
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Francoise Mechinaud
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, Paris Cité University, Paris, France
| | - Jonathan H Rayment
- Division of Respiratory Medicine, BC Children's Hospital, Vancouver, Canada; Department of Pediatrics, University of British Columbia, Vancouver, Canada
| | - Paul D Robinson
- Department of Respiratory Medicine, Queensland Children's Hospital, Queensland, Australia; Children's Health and Environment Program, Child Health Research Centre, University of Queensland, Queensland, Australia; Airway Physiology and Imaging Group, Woolcock Institute of Medical Research, New South Wales, Australia
| | - Roopa Siddaiah
- Division of Pulmonology, Department of Pediatrics, Penn State Health Children's Hospital, Hershey, Pennsylvania
| | - Anne Stone
- Division of Pediatric Pulmonology, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon
| | - Saumini Srinivasin
- Department of Pediatrics, University of Tennessee College of Medicine, Le Bonheur Children's Hospital, Memphis, Tennessee
| | - Christopher T Towe
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Pulmonary Medicine, Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Gregory A Yanik
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, Michigan
| | - Narayan P Iyer
- Division of Neonatology, Fetal and Neonatal Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Samuel B Goldfarb
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota; Division of Pulmonary Medicine, Masonic Children's Hospital, Minneapolis, Minnesota
| |
Collapse
|
5
|
Özsezen B, Yalçın E, Emiralioğlu N, Konşuk Ünlü H, Ademhan Tural D, Caka C, Sunman B, Doğru D, Özçelik U, Kiper N. The predictive role of lung clearance index on FEV 1 decline in cystic fibrosis. Turk J Pediatr 2024; 66:297-308. [PMID: 39024602 DOI: 10.24953/turkjpediatr.2024.4516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND The lung clearance index (LCI) is a sensitive lung function index that is used to detect early lung disease changes in children with cystic fibrosis (CF). This study aimed to define the predictive role of baseline LCI, along with other potential factors on the change in forced expiratory volume in one second (FEV1) during one-year follow-up in CF patients who had a percent predicted (pp) FEV1≥80. METHODS LCI was concurrently performed on 57 CF patients who had ppFEV1 ≥80 at month zero. The ppFEV1 decline was evaluated prospectively during the one year follow up. The primary outcome of ppFEV1 decline in the study group in one year was dichotomized according to the median value for the decline in ppFEV1, which was 3.7. The LCI value predicting ppFEV1 decline at the end of one year was calculated with receiver operating characteristic curve analysis. Regression analysis was performed. Furthermore, a decision tree was constructed using classification and regression tree methods to better define the potential effect of confounders on the ppFEV1 decline. RESULTS The LCI value for predicting ppFEV1 decline >3.7% at the end of one year was 8.2 (area under the curve: 0.80) Multivariable regression analysis showed that the absence of the F508del mutation in at least one allele, LCI >8.2 and initial FEV1 z-score were predictors of a ppFEV1 decline >3.7 (p<0.001). Factors altering ppFEV1 decline>3.7% at the end of one-year evaluated by decision trees were as follows: initial FEV1 z-score, type of CFTR mutation, LCI value and initial weight-for-age z-score. CONCLUSIONS LCI is sensitive for predicting ppFEV1 decline in patients with ppFEV1 ≥80 along with the initial FEV1-z-score and type of CFTR mutation.
Collapse
Affiliation(s)
- Beste Özsezen
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ebru Yalçın
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Nagehan Emiralioğlu
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | | | - Dilber Ademhan Tural
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Canan Caka
- Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Birce Sunman
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Deniz Doğru
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Ugur Özçelik
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| | - Nural Kiper
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
6
|
De Queiroz Andrade E, Sena CRDS, de Gouveia Belinelo P, Robinson PD, Blaxland A, Sly PD, Murphy VE, Gibson PG, Collison AM, Mattes J. In utero smoking exposure induces changes to lung clearance index and modifies risk of wheeze in infants. Pediatr Pulmonol 2024; 59:1686-1694. [PMID: 38501326 DOI: 10.1002/ppul.26975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/17/2024] [Accepted: 03/10/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Fetal exposure to tobacco smoking throughout pregnancy is associated with wheezing in infancy. We investigated the influence of in utero smoking exposure on lung ventilation homogeneity and the relationship between lung ventilation inhomogeneity at 7 weeks of age and wheezing in the first year of life. METHODS Maternal smoking was defined as self-reported smoking of tobacco or validated by exhaled (e)CO > 6 ppm. Lung function data from healthy infants (age 5-9 weeks) born to asthmatic mothers and parent-reported respiratory questionnaire data aged 12 months were collected in the Breathing for Life Trial (BLT) birth cohort. Tidal breathing analysis and SF6-based Multiple Breath Washout testing were performed in quiet sleep. Descriptive statistics and regression analysis were used to assess associations. RESULTS Data were collected on 423 participants. Infants born to women who self-reported smoking during pregnancy (n = 42) had higher lung clearance index (LCI) than those born to nonsmoking mothers (7.90 vs. 7.64; p = .030). Adjusted regression analyzes revealed interactions between self-reported smoking and LCI (RR: 1.98, 95% CI: 1.07-3.63, 0.028, for each unit increase in LCI) and between eCO > 6 ppm and LCI (RR: 2.25, 95% CI: 1.13-4.50, 0.022) for the risk of wheeze in the first year of life. CONCLUSION In utero tobacco smoke exposure induces lung ventilation inhomogeneities. Furthermore, an interaction between smoke exposure and lung ventilation inhomogeneities increases the risk of having a wheeze in the first year of life.
Collapse
Affiliation(s)
- Ediane De Queiroz Andrade
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Carla Rebeca Da Silva Sena
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Patricia de Gouveia Belinelo
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Anneliese Blaxland
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Vanessa E Murphy
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter G Gibson
- Priority Research Centre Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
- Respiratory & Sleep Medicine Department, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Adam M Collison
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
| | - Joerg Mattes
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
- Priority Research Centre GrowUpWell, Hunter Medical Research Institute, University of Newcastle, Newcastle, New South Wales, Australia
- Paediatric Respiratory & Sleep Medicine Department, John Hunter Children's Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
7
|
Gambazza S, Mariani A, Guarise R, Ferrari B, Carta F, Brivio A, Bizzarri S, Castellani C, Colombo C, Laquintana D. Short-term effects of positive expiratory pressure mask on ventilation inhomogeneity in children with cystic fibrosis: A randomized, sham-controlled crossover study. Pediatr Pulmonol 2024; 59:1354-1363. [PMID: 38362833 DOI: 10.1002/ppul.26915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/23/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Can physiotherapy with a positive expiratory pressure (PEP) mask improve peripheral ventilation inhomogeneity, a typical feature of children with cystic fibrosis (cwCF)? To answer this question, we used the nitrogen multiple-breath washout (N2MBW) test to measure diffusion-convection-dependent inhomogeneity arising within the intracinar compartment (Sacin*VT). METHODS For this randomized, sham-controlled crossover trial, two N2MBW tests were performed near the hospital discharge date: one before and the other after PEP mask therapy (1 min of breathing through a flow-dependent PEP device attached to a face mask, followed by three huffs and one cough repeated 10 times) by either a standard (10-15 cmH20) or a sham (<5 cmH20) procedure on two consecutive mornings. Deception entailed misinforming the subjects about the nature of the study; also the N2MBW operators were blinded to treatment allocation. Study outcomes were assessed with mixed-effect models. RESULTS The study sample was 19 cwCF (ten girls), aged 11.4 (2.7) years. The adjusted Sacin*VT mean difference between the standard and the sham procedure was -0.015 (90% confidence interval [CI]: -∞ to 0.025) L-1. There was no statistically significant difference in Scond*VT and lung clearance index between the two procedures: -0.005 (95% CI: -0.019 to 0.01) L-1 and 0.49 (95% CI: -0.05 to 1.03) turnovers, respectively. CONCLUSION Our findings do not support evidence for an immediate effect of PEP mask physiotherapy on Sacin*VT with pressure range 10-15 cmH20. Measurement with the N2MBW and the crossover design were found to be time-consuming and unsuitable for a short-term study of airway clearance techniques.
Collapse
Affiliation(s)
- Simone Gambazza
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Mariani
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Riccardo Guarise
- Cystic Fibrosis Centre, University Hospital of Verona, Verona, Italy
| | - Beatrice Ferrari
- Rehabilitation Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Federica Carta
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Brivio
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sofia Bizzarri
- Rehabilitation Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Chiara Castellani
- Rehabilitation Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Dario Laquintana
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Sena CRDS, Morten M, Collison AM, Shaar A, Andrade EDQ, Meredith J, Kepreotes E, Murphy VE, Sly PD, Whitehead B, Karmaus W, Gibson PG, Robinson PD, Mattes J. Bronchiolitis hospital admission in infancy is associated with later preschool ventilation inhomogeneity. Pediatr Pulmonol 2024; 59:632-641. [PMID: 38088225 DOI: 10.1002/ppul.26793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/08/2023] [Accepted: 11/25/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Rhinovirus (RV) positive bronchiolitis episodes in infancy confer a higher risk to develop asthma in later childhood with associated lung function impairments. We aimed to investigate the association between the type of virus causing a bronchiolitis hospitalization episode and lung ventilation inhomogeneities at preschool age. METHODS Infants hospitalized with a clinical diagnosis of moderate (ward admission) or severe (pediatric intensive care ward admission) bronchiolitis were prospectively followed-up at preschool age to assess nitrogen (N2 ) multiple breath washout (MBW). Lung clearance index (LCI), functional residual capacity (FRC), and concentration normalized phase III slope analysis (SnIII ) indices were reported from ≥2 technically acceptable trials. Differences between groups were calculated using logistic and linear regression and adjusted for confounders (sex, age at bronchiolitis admission, height at visit, maternal asthma, and doctor-diagnosed asthma, including interaction terms between the latter three). An interaction term was included in a regression model to test for an interaction between RV bronchiolitis severity and MBW parameters at preschool age. RESULTS One hundred and thirty-nine subjects attended preschool follow-up, of which 84 out of 103 (82%) performing MBW had technically acceptable data. Children with a history of RV positive bronchiolitis (n = 39) had increased LCI (adjusted β-coefficient [aβ] = 0.33, 95% confidence interval [CI] 0.02-0.65, p = 0.040) and conductive airways ventilation inhomogeneity [Scond ] (aβ = 0.016, CI 0.004-0.028, p = 0.011) when compared with those with a RV negative bronchiolitis history (n = 45). In addition, we found a statistical interaction between RV bronchiolitis and bronchiolitis severity strengthening the association with LCI (aβ = 0.93, CI 0.20-1.58, p = 0.006). CONCLUSION Children with a history of hospital admission for RV positive bronchiolitis in infancy might be at a higher risk of lung ventilation inhomogeneities at preschool age, arising from the peripheral conducting airways.
Collapse
Affiliation(s)
- Carla Rebeca Da Silva Sena
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
| | - Matthew Morten
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
| | - Adam M Collison
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
| | - Aida Shaar
- The Children's Hospital at Westmead, Department of Respiratory Medicine, Sydney, New South Wales, Australia
| | - Ediane de Queiroz Andrade
- University of Sydney, Discipline of Paediatrics and Child Health, Sydney, New South Wales, Australia
| | - Joseph Meredith
- John Hunter Children's Hospital, Department of Paediatric Respiratory & Sleep Medicine, Newcastle, New South Wales, Australia
| | - Elizabeth Kepreotes
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
- Far West Local Health District, NSW Local Health District, Broken Hill, New South Wales, Australia
| | - Vanessa E Murphy
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre Healthy Lungs, Newcastle, New South Wales, Australia
| | - Peter D Sly
- The University of Queensland, Child Health Research Centre, Brisbane, Queensland, Australia
| | - Bruce Whitehead
- John Hunter Children's Hospital, Department of Paediatric Respiratory & Sleep Medicine, Newcastle, New South Wales, Australia
| | - Wilfried Karmaus
- University of Memphis, School of Public Health, Memphis, Tennessee, USA
| | - Peter G Gibson
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre Healthy Lungs, Newcastle, New South Wales, Australia
| | - Paul D Robinson
- The Children's Hospital at Westmead, Department of Respiratory Medicine, Sydney, New South Wales, Australia
- University of Sydney, Discipline of Paediatrics and Child Health, Sydney, New South Wales, Australia
- Woolcock Medical Research Institute, Airway Imaging and Physiology Group, Sydney, New South Wales, Australia
| | - Joerg Mattes
- University of Newcastle, Hunter Medical Research Institute, Priority Research Centre GrowUpWell®, Newcastle, New South Wales, Australia
- John Hunter Children's Hospital, Department of Paediatric Respiratory & Sleep Medicine, Newcastle, New South Wales, Australia
| |
Collapse
|
9
|
Bruorton M, Donnelley M, Goddard T, O'Connor A, Parsons D, Phillips J, Carson-Chahhoud K, Tai A. Pilot study of paediatric regional lung function assessment via X-ray velocimetry (XV) imaging in children with normal lungs and in children with cystic fibrosis. BMJ Open 2024; 14:e080034. [PMID: 38316593 PMCID: PMC10860032 DOI: 10.1136/bmjopen-2023-080034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/07/2024] [Indexed: 02/07/2024] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a life-limiting autosomal recessive genetic condition. It is caused by mutations in the gene that encodes for a chloride and bicarbonate conducting transmembrane channel. X-ray velocimetry (XV) is a novel form of X-ray imaging that can generate lung ventilation data through the breathing cycle. XV technology has been validated in multiple animal models, including the β-ENaC mouse model of CF lung disease. It has since been assessed in early-phase clinical trials in adult human subjects; however, there is a paucity of data in the paediatric cohort, including in CF. The aim of this pilot study was to investigate the feasibility of performing a single-centre cohort study in paediatric patients with CF and in those with normal lungs to demonstrate the appropriateness of proceeding with further studies of XV in these cohorts. METHODS AND ANALYSIS This is a cross-sectional, single-centre, pilot study. It will recruit children aged 3-18 years to have XV lung imaging performed, as well as paired pulmonary function testing. The study will aim to recruit 20 children without CF with normal lungs and 20 children with CF. The primary outcome will be the feasibility of recruiting children and performing XV testing. Secondary outcomes will include comparisons between XV and current assessments of pulmonary function and structure. ETHICS AND DISSEMINATION This project has ethical approval granted by The Women's and Children's Hospital Human Research Ethics Committee (HREC ID 2021/HRE00396). Findings will be disseminated through peer-reviewed publication and conferences. TRIAL REGISTRATION NUMBER ACTRN12623000109606.
Collapse
Affiliation(s)
- Matthew Bruorton
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Martin Donnelley
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Thomas Goddard
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Antonia O'Connor
- Sleep Department, Sydney Children's Hospitals Network, Westmead, New South Wales, Australia
- University of New South Wales, Sydney, Sydney, Australia
| | - David Parsons
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Jessica Phillips
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Kristin Carson-Chahhoud
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| | - Andrew Tai
- Adelaide Medical School and The Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
- Respiratory and Sleep Department, Women's and Children's Health Network, North Adelaide, South Australia, Australia
| |
Collapse
|
10
|
Lopes Vieira J, Miskovic A, Abel F. Interpretation of pulmonary function tests in children. BJA Educ 2023; 23:425-431. [PMID: 37876760 PMCID: PMC10591135 DOI: 10.1016/j.bjae.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/05/2023] [Accepted: 07/20/2023] [Indexed: 10/26/2023] Open
Affiliation(s)
- J.F. Lopes Vieira
- Chelsea and Westminster Hospital, London, UK
- Greate Ormond Stree Hospital, London, UK
| | | | - F. Abel
- Greate Ormond Stree Hospital, London, UK
| |
Collapse
|
11
|
Bhakta NR, McGowan A, Ramsey KA, Borg B, Kivastik J, Knight SL, Sylvester K, Burgos F, Swenson ER, McCarthy K, Cooper BG, García-Río F, Skloot G, McCormack M, Mottram C, Irvin CG, Steenbruggen I, Coates AL, Kaminsky DA. European Respiratory Society/American Thoracic Society technical statement: standardisation of the measurement of lung volumes, 2023 update. Eur Respir J 2023; 62:2201519. [PMID: 37500112 DOI: 10.1183/13993003.01519-2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/16/2023] [Indexed: 07/29/2023]
Abstract
This document updates the 2005 European Respiratory Society (ERS) and American Thoracic Society (ATS) technical standard for the measurement of lung volumes. The 2005 document integrated the recommendations of an ATS/ERS task force with those from an earlier National Heart, Lung, and Blood Institute workshop that led to the publication of background papers between 1995 and 1999 and a consensus workshop report with more in-depth descriptions and discussion. Advancements in hardware and software, new research and emerging approaches have necessitated an update to the 2005 technical standard to guide laboratory directors, physiologists, operators, pulmonologists and manufacturers. Key updates include standardisation of linked spirometry, new equipment quality control and validation recommendations, generalisation of the multiple breath washout concept beyond nitrogen, a new acceptability and grading system with addition of example tracings, and a brief review of imaging and other new techniques to measure lung volumes. Future directions and key research questions are also noted.
Collapse
Affiliation(s)
- Nirav R Bhakta
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Aisling McGowan
- Department of Respiratory and Sleep Diagnostics, Connolly Hospital, Dublin, Ireland
| | - Kathryn A Ramsey
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Brigitte Borg
- Respiratory Medicine, Alfred Health, Melbourne, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jana Kivastik
- Department of Physiology, University of Tartu, Tartu, Estonia
| | - Shandra Lee Knight
- Strauss Health Sciences Library, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karl Sylvester
- Cambridge Respiratory Physiology, Cambridge University Hospital, Cambridge, UK
- Respiratory Physiology, Royal Papworth Hospital, Cambridge, UK
| | - Felip Burgos
- Department of Pulmonary Medicine, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, CIBERES, Barcelona, Spain
| | - Erik R Swenson
- VA Puget Sound Health Care System, Seattle, WA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | - Kevin McCarthy
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Gwen Skloot
- Department of Respiratory Diseases, La Paz University Hospital IdiPAZ, Autonomous University of Madrid, CIBERES, Madrid, Spain
| | | | - Carl Mottram
- Pulmonary Function Laboratory, Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Irene Steenbruggen
- Department of Physiology and Biophysics, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Allan L Coates
- Pulmonary Function Department, Isala Hospital, Zwolle, The Netherlands
| | - David A Kaminsky
- Division of Respiratory Medicine, Dept of Pediatrics, Translational Research Institute, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Sandhu D, Redmond JL, Smith NMJ, Short C, Saunders CJ, Couper JH, Fullerton CJ, Richmond G, Talbot NP, Davies JC, Ritchie GAD, Robbins PA. Computed cardiopulmonography and the idealized lung clearance index, iLCI 2.5, in early-stage cystic fibrosis. J Appl Physiol (1985) 2023; 135:205-216. [PMID: 37262105 PMCID: PMC10393329 DOI: 10.1152/japplphysiol.00744.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/02/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
This study explored the use of computed cardiopulmonography (CCP) to assess lung function in early-stage cystic fibrosis (CF). CCP has two components. The first is a particularly accurate technique for measuring gas exchange. The second is a computational cardiopulmonary model where patient-specific parameters can be estimated from the measurements of gas exchange. Twenty-five participants (14 healthy controls, 11 early-stage CF) were studied with CCP. They were also studied with a standard clinical protocol to measure the lung clearance index (LCI2.5). Ventilation inhomogeneity, as quantified through CCP parameter σlnCl, was significantly greater (P < 0.005) in CF than in controls, and anatomical deadspace relative to predicted functional residual capacity (DS/FRCpred) was significantly more variable (P < 0.002). Participant-specific parameters were used with the CCP model to calculate idealized values for LCI2.5 (iLCI2.5) where extrapulmonary influences on the LCI2.5, such as breathing pattern, had all been standardized. Both LCI2.5 and iLCI2.5 distinguished clearly between CF and control participants. LCI2.5 values were mostly higher than iLCI2.5 values in a manner dependent on the participant's respiratory rate (r = 0.46, P < 0.05). The within-participant reproducibility for iLCI2.5 appeared better than for LCI2.5, but this did not reach statistical significance (F ratio = 2.2, P = 0.056). Both a sensitivity analysis on iLCI2.5 and a regression analysis on LCI2.5 revealed that these depended primarily on an interactive term between CCP parameters of the form σlnCL*(DS/FRC). In conclusion, the LCI2.5 (or iLCI2.5) probably reflects an amalgam of different underlying lung changes in early-stage CF that would require a multiparameter approach, such as potentially CCP, to resolve.NEW & NOTEWORTHY Computed cardiopulmonography is a new technique comprising a highly accurate sensor for measuring respiratory gas exchange coupled with a cardiopulmonary model that is used to identify a set of patient-specific characteristics of the lung. Here, we show that this technique can improve on a standard clinical approach for lung function testing in cystic fibrosis. Most particularly, an approach incorporating multiple model parameters can potentially separate different aspects of pathological change in this disease.
Collapse
Affiliation(s)
- Dominic Sandhu
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | | | | | - Christopher Short
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- European Cystic Fibrosis Society, Lung Clearance Index Core Facility, London, United Kingdom
| | - Clare J Saunders
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- European Cystic Fibrosis Society, Lung Clearance Index Core Facility, London, United Kingdom
| | - John H Couper
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Christopher J Fullerton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Graham Richmond
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Nick P Talbot
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Jane C Davies
- Royal Brompton and Harefield Hospitals, Guys and St Thomas' Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- European Cystic Fibrosis Society, Lung Clearance Index Core Facility, London, United Kingdom
| | - Grant A D Ritchie
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Pensabene M, Gambazza S, Carta F, Rocchi A, Lelii M, Madini B, Hassan V, Piotto M, Patria MF. Using electrical impedance tomography to characterize lung impairment of children with primary ciliary dyskinesia: A pilot cross-sectional study. Pediatr Pulmonol 2023; 58:1051-1058. [PMID: 36571235 DOI: 10.1002/ppul.26293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/02/2022] [Accepted: 12/18/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND In children with primary ciliary dyskinesia (PCD), measures more sensitive than spirometry are needed to characterize underlying pulmonary impairment. Electrical impedance tomography (EIT) is a promising noninvasive method for monitoring the distribution of lung ventilation, and it does not require patient collaboration. We aimed to provide an assessment of the feasibility and clinical usefulness of EIT in characterizing lung impairment in children with PCD, compared to spirometry and multiple breath nitrogen washout (MBWN2 ) test. METHODS Children and adolescents with PCD underwent MBWN2 test as first respiratory assessment, followed by EIT monitoring and spirometry during outpatient follow-up. RESULTS We included 12 out of 16 individuals regularly followed at our clinic. A total of 41.7% (5/12) showed abnormal forced expiratory volume in 1 s (FEV1 ), whereas 11/12 (91.7%) had abnormal ventilation inhomogeneity measured with MBWN2 test. Using EIT, the global inhomogeneity (GITOT ) index showed moderate to strong correlation with FEV1 (ρ = -0.55, 95% confidence interval [CI]: -0.87 to 0.02) and ranged from 37 to 44, with the highest inhomogeneity detected in the dorsal right quadrant. GITOT was moderately correlated with RV/TLC %predicted (ρ = 0.38, 95% CI: -0.17 to 0.74), while we detected a weak correlation between GITOT and lung clearance index (ρ = 0.29, 95% CI: -0.45 to 0.82). CONCLUSION EIT appears promising as a noninvasive technique to characterize ventilation distribution in children with PCD, thus providing a complementary assessment to static and dynamic lung function measures of PCD disease.
Collapse
Affiliation(s)
- Mariacarola Pensabene
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Gambazza
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Carta
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessia Rocchi
- Pediatric Emergency Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mara Lelii
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Madini
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Vittoria Hassan
- Pediatric Emergency Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marta Piotto
- Pediatric Emergency Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Francesca Patria
- Pediatric Highly Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
14
|
Nitsche C, Frauchiger BS, Thiele D, Oestreich MA, Husstedt BL, Grychtol RM, Maison N, Foth S, Meyer M, Jakobs N, Bahmer T, Hansen G, von Mutius E, Kopp M. Quality Control of Nitrogen Multiple Breath Washout in a Multicenter Pediatric Asthma Study. KLINISCHE PADIATRIE 2023; 235:66-74. [PMID: 36657454 DOI: 10.1055/a-1976-9232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Nitrogen multiple breath washout (N2MBW) is a lung function test increasingly used in small airway diseases. Quality criteria have not yet been globally implemented and time-consuming retrospective overreading is necessary. Little data has been published on children with recurrent wheeze or asthma from multicentered studies. METHODS Children with wheeze or asthma and healthy controls were included in the longitudinal All Age Asthma Cohort (ALLIANCE). To assess ventilation inhomogeneity, N2MBW tests were performed in five centers from 2013 until 2020. All N2MBW tests were centrally overread by one center. Multiple washout procedures (trials) at the visit concluded to one test occasion. Tests were accepted if trials were technically sound (started correctly, terminated correctly, no leak, regular breathing pattern) and repeatable within one test occasion. Signal misalignment was retrospectively corrected. Factors that may impact test quality were analyzed, such as experience level. RESULTS N2MBW tests of n=561 participants were analyzed leading to n=949 (68.3%) valid tests of n=1,390 in total. Inter-center test acceptability ranged from 27.6% to 77.8%. End-of-test criterion and leak were identified to be the most common reasons for rejection. Data loss and uncorrectable signal misalignment led to rejection of 58% of trials in one center. In preschool children, significant improvement of test acceptability was found longitudinally (χ2(8)=18.6; p=0.02). CONCLUSION N2MBW is feasible in a multicenter asthma study in children. However, the quality of this time-consuming procedure is dependent on experience level of staff in preschool children and still requires retrospective overreading for all age groups.
Collapse
Affiliation(s)
- Catharina Nitsche
- University Children's Hospital, Division of Paediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein Campus Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Bettina Sarah Frauchiger
- Department of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominik Thiele
- Institute for Medical Biometry and Statistics, University of Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Marc-Alexander Oestreich
- Department of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Berrit Liselotte Husstedt
- University Children's Hospital, Division of Paediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein Campus Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Ruth Margarethe Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL), Germany
| | - Nicole Maison
- Institute for Asthma- and Allergy Prevention (IAP), Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany.,Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Comprehensive Pneumology Center - Munich (CPC-M); Member of the German Center for Lung Research (DZL), Germany
| | - Svenja Foth
- University Children's Hospital Marburg, University of Marburg, Marburg, Germany.,Member of the German Center for Lung Research (DZL) , Universities of Giessen and Marburg Lung Center (UGMLC), Marburg, Germany
| | - Meike Meyer
- Department of Paediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nikolas Jakobs
- University Children's Hospital, Division of Paediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein Campus Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Thomas Bahmer
- Internal Medicine Department I, Pneumology, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany.,LungenClinic Grosshansdorf GmbH, Grosshansdorf, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH); Member of the German Center for Lung Research (DZL), Germany
| | - Erika von Mutius
- Institute for Asthma- and Allergy Prevention (IAP), Helmholtz Zentrum Munich, German Research Center for Environmental Health (GmbH), Munich, Germany.,Dr von Hauner Children's Hospital, Ludwig Maximilians University Munich, Munich, Germany.,Comprehensive Pneumology Center - Munich (CPC-M); Member of the German Center for Lung Research (DZL), Germany
| | - Matthias Kopp
- Department of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,University Children's Hospital, Division of Paediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein Campus Luebeck, Luebeck, Germany.,Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| |
Collapse
|
15
|
Sandvik RM, Lindblad A, Robinson PD, Nielsen KG, Gustafsson P. Turning lung clearance index on its head. Reference data for SF 6 multiple-breath washout derived ventilation distribution efficiency. J Appl Physiol (1985) 2023; 134:316-327. [PMID: 36548514 DOI: 10.1152/japplphysiol.00541.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cystic fibrosis (CF) lung disease is characterized by increased ventilation inhomogeneity (VI), as measured by multiple-breath washout (MBW). Lung clearance index (LCI) is the most reported VI outcome. This study aimed to evaluate historically published reference equations for sulfur hexafluoride (SF6) MBW outcomes, to data collected using updated commercial SF6MBW equipment, and to produce device-specific equations if necessary. SF6MBW was performed in 327 healthy children aged 0.1-18.4 yr [151 (46%) girls], 191 (58.4%) <3 yr. z-Scores were calculated from published reference equations (FRC and LCI) and multivariate linear regression was performed to produce device-specific reference equations. Due to increasing residual standard deviations with increasing LCI values, investigation of methods for improvement were investigated, based on the relationship between VI and dead space ventilation (VD/VT; dead space volume/tidal volume) in a cohort of 59 healthy children, 26 children with CF (n = 138 test occasions), and 49 adults with lung disease. Historical SF6MBW reference equations were unsuitable for EXHALYZER D data. In contrast to LCI and log10(LCI), 1/LCI (ventilation distribution efficiency; VDE) was linearly related to VD/VT, with z-scores linearly related to its absolute values. Reference equations were reported for VDE and log10(FRC). Significant predictors for VDE and log10(FRC), respectively, were log10(age) and sex, and log10(height), sex, and posture. VDE is potentially a better index of VI than LCI, particularly in more advanced CF lung disease and also for longitudinal monitoring. Further confirmatory clinical studies, particularly longitudinal imaging studies of structural or ventilatory changes, are warranted.NEW & NOTEWORTHY Lung clearance index (LCI) is the most used outcome from the multiple-breath washout test. As known for decades, the LCI is not linearly related to dead space ventilation, giving difficulties interpreting changes over time and in clinical trials. We present a new and improved outcome based on LCI, the ventilation distribution efficiency (VDE), which solves this problem by being linearly related to dead space ventilation. A pediatric age range reference equation for VDE is presented.
Collapse
Affiliation(s)
- Rikke Mulvad Sandvik
- Department of Paediatric and Adolescent Medicine, CF Centre Copenhagen, Danish Paediatric Pulmonary Service, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anders Lindblad
- Department of Pediatrics, Queen Silvia Children's Hospital, West Sweden CF Center, Gothenburg, Sweden
- The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
- The Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
- Airway Physiology and Imaging Group, The Woolcock Medical Research Institute, Sydney, New South Wales, Australia
| | - Kim G Nielsen
- Department of Paediatric and Adolescent Medicine, CF Centre Copenhagen, Danish Paediatric Pulmonary Service, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Per Gustafsson
- The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, General Hospital, Skövde, Sweden
| |
Collapse
|
16
|
Marczak H, Peradzyńska J, Lange J, Bogusławski S, Krenke K. Pulmonary function in children with persistent tachypnea of infancy. Pediatr Pulmonol 2023; 58:81-87. [PMID: 36177553 DOI: 10.1002/ppul.26162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Data on the prevalence and type of lung function impairment in preschool and school-aged children previously diagnosed with persistent tachypnea of infancy (PTI) are scarce. Therefore, this study aims to assess pulmonary function in this age group. METHODS Children diagnosed with PTI over 3 years old were admitted for follow-up visits and healthy controls were enrolled. The study group included children who were able to complete pulmonary function tests (PFTs). Medical history, physical examination, and pulmonary function (spirometry, body plethysmography, impulse oscillometry, nitrogen multiple breath washout test, diffusing capacity for carbon monoxide [DLCO ]) were assessed. RESULTS Thirty-seven children (26 boys, 11 girls; median age: 5.6 years) diagnosed with PTI and 37 healthy controls were recruited. Forced expiratory volume in 1 s and forced vital capacity were significantly lower (-1.12 vs. 0.48, p = 0.002 and -0.83 vs. 0.31, p = 0.009, respectively); respiratory resistance at 5 Hz (0.06 vs. -0.62, p = 0.003), resonant frequency (1.86 vs. 1.36, p = 0.04), residual volume (RV) (2.34 vs. -1.2, p < 0.0001), RV%TLC (total lung capacity) (2.63 vs. -0.72, p < 0.0001), and specific airway resistance (5.4 vs. 2.59, p = 0.04) were significantly higher in PTI patients as compared with controls (data were presented as median z-score). Air trapping was found in 60.0%, and abnormally high lung clearance index and DLCO were found in 73.3% and 90.9% of PTI patients, respectively. CONCLUSIONS This study demonstrated that lung function is affected in most children with PTI. PFTs showed that peripheral airways are the major zone of functional impairment.
Collapse
Affiliation(s)
- Honorata Marczak
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Peradzyńska
- Department of Epidemiology and Biostatistics, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Lange
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Stanisław Bogusławski
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
17
|
Gambazza S, Orenti A, Pizzamiglio G, Zolin A, Colombo C, Laquintana D, Ambrogi F. Association of Oxygen Therapy with the Natural Disease Progression of Cystic Fibrosis: A Multi-State Model of the European Cystic Fibrosis Society Patient Registry. Ther Clin Risk Manag 2023; 19:255-267. [PMID: 36935771 PMCID: PMC10022450 DOI: 10.2147/tcrm.s391476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/12/2023] [Indexed: 03/15/2023] Open
Abstract
Background Association between dependence on oxygen therapy (OT) and natural disease progression in people with cystic fibrosis (pwCF) has not been estimated yet. The aim of this study is to understand the prognosis for pwCF on OT, evaluating how the transition probabilities from being alive without lung transplantation (LTx) to LTx and to death, and from being alive after LTx to death change in pwCF with and without OT. Methods We used 2008-2017 data from the 35-country European CF Society Patient Registry. A multi-state model was fitted to assess the effects of individual risk factors on transition probabilities. Results We considered 48,343 pwCF aged from 6 to 50 years. OT (HR 5.78, 95% CI: 5.32-6.29) and abnormal FEV1 (HR 6.41, 95% CI: 5.28-7.79) were strongly associated with the probability of having LTx; chronic infection with Burkholderia cepacia complex (HR 3.19, 95% CI: 2.78-3.67), abnormal FEV1 (HR 5.00, 95% CI: 4.11-6.08) and the need for OT (HR 4.32, 95% CI: 3.93-4.76) showed the greatest association with the probability of dying without LTx. Once pwCF received LTx, OT (HR 1.75, 95% CI: 1.41-2.16) and abnormal FEV1 (HR 1.63, 95% CI: 1.18-2.25) were the main factors associated with the probability of dying. An association of gross national income with the probability of receiving LTx and with the probability of dying without LTx was also found. Conclusion Oxygen therapy is associated with poor survival in pwCF with and without LTx; harmonization of CF care throughout European countries and minimization of the onset of pulmonary gas exchange abnormalities using all available means remains of paramount importance.
Collapse
Affiliation(s)
- Simone Gambazza
- Healthcare Professions Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology “G. A. Maccacaro”, Università degli Studi di Milano, Milan, Italy
- Correspondence: Simone Gambazza, Healthcare Professions Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, Milan, 20122, Italy, Email
| | - Annalisa Orenti
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology “G. A. Maccacaro”, Università degli Studi di Milano, Milan, Italy
| | - Giovanna Pizzamiglio
- Cystic Fibrosis Center – Adult Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Zolin
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology “G. A. Maccacaro”, Università degli Studi di Milano, Milan, Italy
| | - Carla Colombo
- Cystic Fibrosis Center, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Dario Laquintana
- Healthcare Professions Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology “G. A. Maccacaro”, Università degli Studi di Milano, Milan, Italy
- Scientific Directorate, IRCCS Policlinico San Donato, San Donato Milanese, MI, Italy
| | | |
Collapse
|
18
|
Frauchiger BS, Ramsey KA, Usemann J, Kieninger E, Casaulta C, Sirtes D, Yammine S, Spycher B, Moeller A, Latzin P. Variability of clinically measured lung clearance index in children with cystic fibrosis. Pediatr Pulmonol 2023; 58:197-205. [PMID: 36251441 DOI: 10.1002/ppul.26180] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
RATIONALE The lung clearance index (LCI) is increasingly being used in the clinical surveillance of patients with cystic fibrosis (CF). However, there are limited data on long-term variability and physiologically relevant changes in LCI during routine clinical surveillance. OBJECTIVES To evaluate the long-term variability of LCI and propose a threshold for a physiologically relevant change. METHODS In children aged 4-18 years with CF, LCI was measured every 3 months as part of routine clinical surveillance during 2011-2020 in two centers. The variability of LCI during periods of clinical stability was assessed using mixed-effects models and was used to identify thresholds for physiologically relevant changes. RESULTS Repeated LCI measurements of acceptable quality (N = 858) were available in 100 patients with CF; for 74 patients, 399 visits at clinical stability were available. The variability of repeated LCI measurements over time expressed as the coefficient of variation (CV%) was 7.4%. The upper limit of normal (ULN) for relative changes in LCI between visits was 19%. CONCLUSION We report the variability of LCI in children and adolescents with CF during routine clinical surveillance. According to our data, a change in LCI beyond 19% may be considered physiologically relevant. These findings will help guide clinical decisions according to LCI changes.
Collapse
Affiliation(s)
- Bettina S Frauchiger
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathryn A Ramsey
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jakob Usemann
- Division of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland.,University Children's Hospital Basel (UKBB), Basel, Switzerland
| | - Elisabeth Kieninger
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Carmen Casaulta
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daniel Sirtes
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ben Spycher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Alexander Moeller
- Division of Respiratory Medicine and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Philipp Latzin
- Department of Pediatrics, Division of Pediatric Respiratory Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
19
|
Bowerman C, Ratjen F, Stanojevic S. Estimating the minimum sample size for interventional and observational studies using the lung clearance index as an endpoint✰. J Cyst Fibros 2022; 22:356-362. [PMID: 36402729 DOI: 10.1016/j.jcf.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/16/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND With the increasing availability of highly effective modulators for people living with cystic fibrosis (CF), there is a need to re-design research studies to reflect the changing epidemiology of the CF population. The lung clearance index (LCI), a sensitive physiological measure of lung function, may be ideally suited as an endpoint in the era of CF modulator therapies. In this study we describe study design considerations for implementing LCI into interventional and observational research. METHODS Simulations were used to estimate the required sample size to detect a range of treatment effects for interventional studies (including cross-over trials) and to track lung disease progression in observational studies. RESULTS Using published treatment effects to inform the design of prospective studies can lead to inefficient study designs. Large improvements in LCI for a few individuals can skew results and can influence interpretations of treatment effects. Adjusting for baseline LCI can help to improve the efficiency of a study. Compared to the forced expiratory volume in 1 second (FEV1), analysis using LCI as an endpoint requires as little as one third of the total sample size. CONCLUSIONS Planning of prospective studies that include LCI as an endpoint need to consider baseline LCI and disease severity of the study population; whereas interpretation of results needs to consider whether a few individuals skew the overall treatment effect.
Collapse
|
20
|
Giannakoulakos S, Gioulvanidou M, Kouidi E, Peftoulidou P, Kyrvasili SS, Savvidou P, Deligiannis A, Tsanakas J, Hatziagorou E. Physical Activity and Quality of Life among Patients with Cystic Fibrosis. CHILDREN (BASEL, SWITZERLAND) 2022; 9:1665. [PMID: 36360393 PMCID: PMC9688592 DOI: 10.3390/children9111665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 03/14/2024]
Abstract
BACKGROUND Physical activity (PA) improves exercise capacity, slows the decline in lung function, and enhances Quality of Life (QoL) in patients with cystic fibrosis (pwCF). OBJECTIVES The study aimed to evaluate PA and QoL among children with CF compared to healthy controls; the secondary aim was to assess the correlation between PA, QoL, and lung function (FEV1). METHODS Forty-five children and adolescents with CF and 45 age-matched controls completed two self-administered validated questionnaires: The Godin Leisure-Time Exercise Questionnaire (GLTEQ) and the DISABKIDS for QoL. Moreover, pwCF performed spirometry and multiple breath washout tests (MBW). In addition, weight, height, and BMI were recorded. The Godin Leisure-Time Exercise Questionnaire was used to evaluate physical activity; QOL was assessed using the DISABKIDS Questionnaire. The correlation of PA with QOL was assessed as well. RESULTS Mean age of the CF population was 13.22 (±4.6) years, mean BMI 19.58 (±4.1) kg/m2, mean FEV1% 91.15 ± 20.46%, and mean LCI 10.68 ± 4.08. 68% of the CF group were active, 27% were medium active, 5% were sedentary, while 83% of the control group were active and 17% were medium active. PwCF with higher PA scores showed significantly higher emotional health (r2: 0.414, p: 0.006) and total QOL score (r2: 0.372; p: 0.014). The PA score showed no significant correlation with FEV1% or LCI. CONCLUSIONS The children with CF showed satisfactory PA levels, which positively correlated to their QoL. More research is needed on the effect of increased levels of habitual physical activity to establish the decline in pulmonary function among pwCF.
Collapse
Affiliation(s)
| | - Maria Gioulvanidou
- Pediatric Respiratory Unit, 3rd Paediatric Clinic, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Evangelia Kouidi
- Sports Medicine Laboratory, Aristotle University of Thessaloniki, 57001 Thermi, Greece
| | - Pauline Peftoulidou
- Pediatric Respiratory Unit, 3rd Paediatric Clinic, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Syrmo Styliani Kyrvasili
- Pediatric Respiratory Unit, 3rd Paediatric Clinic, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Parthena Savvidou
- Pediatric Respiratory Unit, 3rd Paediatric Clinic, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Asterios Deligiannis
- Sports Medicine Laboratory, Aristotle University of Thessaloniki, 57001 Thermi, Greece
| | - John Tsanakas
- Pediatric Respiratory Unit, 3rd Paediatric Clinic, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| | - Elpis Hatziagorou
- Pediatric Respiratory Unit, 3rd Paediatric Clinic, Aristotle University of Thessaloniki, Hippokration General Hospital of Thessaloniki, 54642 Thessaloniki, Greece
| |
Collapse
|
21
|
Oestreich MA, Wyler F, Frauchiger BS, Latzin P, Ramsey KA. Breath detection algorithms affect multiple-breath washout outcomes in pre-school and school age children. PLoS One 2022; 17:e0275866. [PMID: 36240198 PMCID: PMC9565421 DOI: 10.1371/journal.pone.0275866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Background Accurate breath detection is essential for the computation of outcomes in the multiple-breath washout (MBW) technique. This is particularly important in young children, where irregular breathing is common, and the designation of inspirations and expirations can be challenging. Aim To investigate differences between a commercial and a novel breath-detection algorithm and to characterize effects on MBW outcomes in children. Methods We replicated the signal processing and algorithms used in Spiroware software (v3.3.1, Eco Medics AG). We developed a novel breath detection algorithm (custom) and compared it to Spiroware using 2,455 nitrogen (N2) and 325 sulfur hexafluoride (SF6) trials collected in infants, children, and adolescents. Results In 83% of N2 and 32% of SF6 trials, the Spiroware breath detection algorithm rejected breaths and did not use them for the calculation of MBW outcomes. Our custom breath detection algorithm determines inspirations and expirations based on flow reversal and corresponding CO2 elevations, and uses all breaths for data analysis. In trials with regular tidal breathing, there were no differences in outcomes between algorithms. However, in 10% of pre-school children tests the number of breaths detected differed by more than 10% and the commercial algorithm underestimated the lung clearance index by up to 21%. Conclusion Accurate breath detection is challenging in young children. As the MBW technique relies on the cumulative analysis of all washout breaths, the rejection of breaths should be limited. We provide an improved algorithm that accurately detects breaths based on both flow reversal and CO2 concentration.
Collapse
Affiliation(s)
- Marc-Alexander Oestreich
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Florian Wyler
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Bettina S. Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathryn A. Ramsey
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Going the Extra Mile: Why Clinical Research in Cystic Fibrosis Must Include Children. CHILDREN 2022; 9:children9071080. [PMID: 35884064 PMCID: PMC9323167 DOI: 10.3390/children9071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022]
Abstract
This is an exciting time for research and novel drug development in cystic fibrosis. However, rarely has the adage, “Children are not just little adults” been more relevant. This article is divided into two main sections. In the first, we explore why it is important to involve children in research. We discuss the potential benefits of understanding a disease and its treatment in children, and we highlight that children have the same legal and ethical right to evidence-based therapy as adults. Additionally, we discuss why extrapolation from adults may be inappropriate, for example, medication pharmacokinetics may be different in children, and there may be unpredictable adverse effects. In the second part, we discuss how to involve children and their families in research. We outline the importance and the complexities of selecting appropriate outcome measures, and we discuss the role co-design may have in improving the involvement of children. We highlight the importance of appropriate staffing and resourcing, and we outline some of the common challenges and possible solutions, including practical tips on obtaining consent/assent in children and adolescents. We conclude that it is unethical to simply rely on extrapolation from adult studies because research in young children is challenging and that research should be seen as a normal part of the paediatric therapeutic journey.
Collapse
|
23
|
Koucký V, Komárek A, Pohunek P. Repeatability of lung clearance index in infants with cystic fibrosis and recurrent wheeze. Pediatr Pulmonol 2022; 57:1608-1617. [PMID: 35419996 DOI: 10.1002/ppul.25921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES To describe the short- and medium-term repeatability of lung clearance index at 2.5% (LCI2.5 ) in infants and calculate the number of patients needed to enroll in a study (N) using LCI2.5 as a primary outcome. METHODS An 8-month follow-up observational study was employed for assessing short-term [coefficient of repeatability (CR) and intraclass correlation (ICC)] and medium-term repeatability (Bland-Altman method) of LCI2.5 in infants with cystic fibrosis (CF) or recurrent wheeze (RW) measured by the nitrogen multiple-breath washout test (N2 -MBW). Using these variability data, the N to reach 90% test power at the level of statistical significance (0.05) was calculated. RESULTS Forty infants with CF and 21 with RW were enrolled. Initial N2 -MBW testing was successful in 33 and 17 patients, respectively. Follow-up data were available for 23 and 11 infants, respectively. Short-term repeatability of LCI2.5 was high (CR = 1.10 and 1.04 in CF and RW patients, respectively; ICC = 0.88 and 0.83 in CF and RW patients, respectively). The between-subject standard deviation was <13% of the actual LCI2.5 value. In clinically stable patients, LCI2.5 did not significantly change during the 8-month follow-up. Mean LCI2.5 change was -0.08 (1% of baseline) in CF and -0.05 (0.6%) in RW, with 95% limits of agreement being (-1.70; 1.53) in CF and (-1.51; 1.40) in RW patients. N = 23 infants if both intragroup differences of LCI2.5 and minimal difference to be detected would be 2.0. CONCLUSION N2 -MBW may be a reproducible tool with reasonable test power to detect differences in infant studies.
Collapse
Affiliation(s)
- Václav Koucký
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Arnošt Komárek
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Petr Pohunek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
24
|
Frauchiger BS, Oestreich MA, Wyler F, Monney N, Willers C, Yammine S, Latzin P. Do clinimetric properties of LCI change after correction of signal processing? Pediatr Pulmonol 2022; 57:1180-1187. [PMID: 35182057 PMCID: PMC9314934 DOI: 10.1002/ppul.25865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The recently described sensor-crosstalk error in the multiple-breath washout (MBW) device Exhalyzer D (Eco Medics AG) could highly influence clinimetric properties and the current interpretation of MBW results. This study reanalyzes MBW data from clinical routine in the corrected software version Spiroware® 3.3.1 and evaluates the effect on outcomes. METHODS We included nitrogen-MBW data from healthy children and children with cystic fibrosis (CF) from previously published trials and ongoing cohort studies. We specifically compared lung clearance index (LCI) analyzed in Spiroware 3.2.1 and 3.3.1 with regard to (i) feasibility, (ii) repeatability, and (iii) validity as outcome parameters in children with CF. RESULTS (i) All previously collected measurements could be reanalyzed and resulted in unchanged feasibility in Spiroware 3.3.1. (ii) Short- and midterm repeatability of LCI was similar in both software versions. (iii) Clinical validity of LCI remained similar in Spiroware 3.3.1; however, this resulted in lower values. Discrimination between health and disease was comparable between both software versions. The increase in LCI over time was less pronounced with 0.16 LCI units/year (95% confidence interval [CI] 0.08; 0.24) versus 0.30 LCI units/year (95% CI 0.21; 0.38) in 3.2.1. Response to intervention in children receiving CF transmembrane conductance-modulator therapy resulted in a comparable improvement in LCI, in both Spiroware versions. CONCLUSION Our study confirms that clinimetric properties of LCI remain unaffected after correction for the cross-sensitivity error in Spiroware software.
Collapse
Affiliation(s)
- Bettina S Frauchiger
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marc-Alexander Oestreich
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Florian Wyler
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nathalie Monney
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Corin Willers
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Division of Paediatric Respiratory Medicine and Allergology, Department of Paediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
25
|
Chawes B, Elenius V. Pulmonary function testing for the diagnosis of asthma in preschool children. Curr Opin Allergy Clin Immunol 2022; 22:101-106. [DOI: 10.1097/aci.0000000000000815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Ardura-Garcia C, Abellan A, Cuevas-Ocaña S, Freitag N, Lam YT, Makrinioti H, Slaats M, Storti M, Williams EE, Dassios T, Duijts L, Ersu RH, Fustik S, Morty RE, Proesmans M, Schramm D, Saglani S, Moeller A, Pijnenburg MW. ERS International Congress 2021: highlights from the Paediatric Assembly. ERJ Open Res 2022; 8:00643-2021. [PMID: 35615416 PMCID: PMC9125040 DOI: 10.1183/23120541.00643-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/02/2022] [Indexed: 11/26/2022] Open
Abstract
In this review, Early Career Members of the European Respiratory Society (ERS) and the Chairs of the ERS Assembly 7: Paediatrics present the highlights in paediatric respiratory medicine from the ERS International Congress 2021. The eight scientific Groups of this Assembly cover respiratory physiology and sleep, asthma and allergy, cystic fibrosis (CF), respiratory infection and immunology, neonatology and intensive care, respiratory epidemiology, bronchology, and lung and airway development. We here describe new developments in lung function testing and sleep-disordered breathing diagnosis, early life exposures affecting pulmonary function in children and effect of COVID-19 on sleep and lung function. In paediatric asthma, we present the important role of the exposome in asthma development, and how biologics can provide better outcomes. We discuss new methods to assess distal airways in children with CF, as some details remain blind when using the lung clearance index. Moreover, we summarise the new ERS guidelines for bronchiectasis management in children and adolescents. We present interventions to reduce morbidity and monitor pulmonary function in newborns at risk of bronchopulmonary dysplasia and long-term chronic respiratory morbidity of this disease. In respiratory epidemiology, we characterise primary ciliary dyskinesia, identify early life determinants of respiratory health and describe the effect of COVID-19 preventive measures on respiratory symptoms. Also, we describe the epidemiology of interstitial lung diseases, possible consequences of tracheomalacia and a classification of diffuse alveolar haemorrhage in children. Finally, we highlight that the characterisation of genes and pathways involved in the development of a disease is essential to identify new biomarkers and therapeutic targets.
Collapse
Affiliation(s)
| | - Alicia Abellan
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sara Cuevas-Ocaña
- Nottingham Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nadine Freitag
- Dept of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Yin Ting Lam
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Heidi Makrinioti
- West Middlesex University Hospital, Chelsea and Westminster Foundation Trust, London, UK
| | - Monique Slaats
- Dept of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Matteo Storti
- Dept of Chemical and Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Emma E. Williams
- Dept of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Theodore Dassios
- Dept of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Neonatal Intensive Care Centre, King's College Hospital NHS Foundation Trust, London, UK
| | - Liesbeth Duijts
- Dept of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Neonatology, Dept of Pediatrics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Refika H. Ersu
- Division of Respirology, University of Ottawa Children's Hospital of Eastern Ontario, Ottawa, Canada
| | - Stojka Fustik
- University Children's Hospital, Skopje, North Macedonia
| | - Rory E. Morty
- Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Dept of Translational Pulmonology and the Translational Lung Research Center Heidelberg, University Hospital Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Marijke Proesmans
- Division Woman and Child, Dept of Paediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Schramm
- Dept of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sejal Saglani
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Alexander Moeller
- Division of Paediatric Pulmonology, University Children's Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marielle W. Pijnenburg
- Dept of Paediatrics, Division of Paediatric Respiratory Medicine and Allergology, Sophia Children's Hospital, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
27
|
Gambazza S, Ambrogi F, Carta F, Moroni L, Russo M, Brivio A, Colombo C. Lung clearance index to characterize clinical phenotypes of children and adolescents with cystic fibrosis. BMC Pulm Med 2022; 22:122. [PMID: 35365111 PMCID: PMC8976307 DOI: 10.1186/s12890-022-01903-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/11/2022] [Indexed: 12/31/2022] Open
Abstract
Background Lung clearance index (LCI) is accepted as an early marker of lung disease in cystic fibrosis (CF), however the utility of LCI to identify subgroups of CF disease in the paediatric age group has never been explored. The aim of the study was to characterize phenotypes of children with CF using LCI as a marker of ventilation inhomogeneity and to investigate whether these phenotypes distinguished patients based on time to pulmonary exacerbation (PE).
Methods Data were collected on patients with CF aged < 18 years old, attending the CF Center of Milan during outpatient follow-up visits between October 2014 and September 2019. Cluster analysis using agglomerative nesting hierarchical method was performed to generate distinct phenotypes. Time-to-recurrent event analysis investigated association of phenotypes with PE. Results We collected 313 multiple breath washout tests on 125 children aged 5.5–16.8 years. Cluster analysis identified two divergent phenotypes in children and adolescents of same age, presenting with almost normal FEV1 but with substantial difference in markers of ventilation inhomogeneity (mean LCI difference of 3.4, 95% Confidence Interval [CI] 2.6–4.2). A less severe phenotype was associated with a lower risk of PE relapse (Hazard Ratio 0.45, 95% CI 0.34–0.62). Conclusions LCI is useful in clinical practice to characterize distinct phenotypes of children and adolescents with mild/normal FEV1. A less severe phenotype translates into a lower risk of PE relapse. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-01903-5.
Collapse
Affiliation(s)
- Simone Gambazza
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology "G. A. Maccacaro", University of Milan, Milan, Italy. .,Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology "G. A. Maccacaro", University of Milan, Milan, Italy
| | - Federica Carta
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Moroni
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Russo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Brivio
- Healthcare Professions Department, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
28
|
Sandvik RM, Gustafsson PM, Lindblad A, Buchvald F, Olesen HV, Olsen JH, Skov M, Schmidt MN, Thellefsen MR, Robinson PD, Rubak S, Pressler T, Nielsen KG. Contemporary N 2 and SF 6 multiple breath washout in infants and toddlers with cystic fibrosis. Pediatr Pulmonol 2022; 57:945-955. [PMID: 35029068 DOI: 10.1002/ppul.25830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/20/2021] [Accepted: 01/12/2022] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Multiple breath washout (MBW) is used for early detection of cystic fibrosis (CF) lung disease, with SF6 MBW commonly viewed as the reference method. The use of N2 MBW in infants and toddlers has been questioned for technical and physiological reasons, but a new correction of the N2 signal has minimized the technical part. The present study aimed to assess the remaining differences and the contributing mechanisms for the differences between SF6 and N2 MBW,corrected-such as tidal volume reduction during N2 washout with pure O2 . METHOD This was a longitudinal multicenter cohort study. SF6 MBW and N2 MBW were performed prospectively at three CF centers in the same visits on 154 test occasions across 62 children with CF (mean age: 22.7 months). Offline analysis using identical algorithms to the commercially available program provided outcomes of N2,original and N2,corrected for comparison with SF6 MBW. RESULTS Mean functional residual capacity, FRCN2,corrected was 14.3% lower than FRCN2, original , and 1.0% different from FRCSF6 . Lung clearance index, LCIN2,corrected was 25.2% lower than LCIN2,original , and 7.3% higher than LCISF6 . Mean (SD) tidal volume decreased significantly during N2 MBWcorrected , compared to SF6 MBW (-13.1 ml [-30.7; 4.6], p < 0.0001, equal to -12.0% [-25.7; 1.73]), but this tidal volume reduction did not correlate to the differences between LCIN2,corrected and LCISF6 . The absolute differences in LCI increased significantly with higher LCISF6 (0.63/LCISF6 ) and (0.23/LCISF6 ), respectively, for N2,original and N2,corrected , but the relative differences were stable across disease severity for N2,corrected , but not for N2,original . CONCLUSION Only minor residual differences between FRCN2,corrected and FRCSF6 remained to show that the two methods measure gas volumes very similar in this age range. Small differences in LCI were found. Tidal volume reduction during N2 MBW did not affect differences. The corrected N2 MBW can now be used with confidence in young children with CF, although not interchangeably with SF6 .
Collapse
Affiliation(s)
- Rikke M Sandvik
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Per M Gustafsson
- Department of Paediatrics, Central Hospital, Skövde, Sweden.,Institute of Clinical Science, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindblad
- Institute of Clinical Science, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Pediatrics, CF Center, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Frederik Buchvald
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hanne V Olesen
- Department of Paediatrics and Adolescent Medicine, Danish Center of Pediatric Pulmonology and Allergology, Cystic Fibrosis Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen H Olsen
- Department of Paediatrics and Adolescent Medicine, Danish Center of Pediatric Pulmonology and Allergology, Cystic Fibrosis Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Marianne Skov
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Marika N Schmidt
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette R Thellefsen
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Sune Rubak
- Department of Paediatrics and Adolescent Medicine, Danish Center of Pediatric Pulmonology and Allergology, Cystic Fibrosis Centre Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Tacjana Pressler
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kim G Nielsen
- Danish Paediatric Pulmonary Service, CF Centre Copenhagen, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Rayment JH, Sandoval RA, Roden JP, Schultz KR. Multiple breath washout testing to identify pulmonary chronic graft versus host disease in children after haematopoietic stem cell transplantation. Transplant Cell Ther 2022; 28:328.e1-328.e7. [DOI: 10.1016/j.jtct.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
30
|
Marpole R, Ohn M, O'Dea CA, von Ungern-Sternberg BS. Clinical utility of preoperative pulmonary function testing in pediatrics. Paediatr Anaesth 2022; 32:191-201. [PMID: 34875135 DOI: 10.1111/pan.14356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022]
Abstract
Perioperative respiratory adverse events pose a significant risk in pediatric anesthesia, and identifying these risks is vital. Traditionally, this is assessed using history and examination. However, the perioperative risk is multifactorial, and children with complex medical backgrounds such as chronic lung disease or obesity may benefit from additional objective preoperative pulmonary function tests. This article summarizes the utility of available pulmonary function assessment tools as preoperative tests in improving post-anesthetic outcomes. Currently, there is no evidence to support or discourage any pulmonary function assessment as a routine preoperative test for children undergoing anesthesia. In addition, there is uncertainty about which patients with the known or suspected respiratory disease require preoperative pulmonary function tests, what time period prior to surgery these are required, and whether spirometry or more sophisticated tests are indicated. Therefore, the need for any test should be based on information obtained from the history and examination, the child's age, and the complexity of the surgery.
Collapse
Affiliation(s)
- Rachael Marpole
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Division of Paediatrics, School of Medical, University of Western Australia, Crawley, WA, Australia
| | - Mon Ohn
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia.,Division of Paediatrics, School of Medical, University of Western Australia, Crawley, WA, Australia.,Perioperative Medicine Team, Telethon Kids Institute, Nedlands, WA, Australia
| | - Christopher A O'Dea
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA, Australia
| | - Britta S von Ungern-Sternberg
- Perioperative Medicine Team, Telethon Kids Institute, Nedlands, WA, Australia.,Division of Emergency Medicine, Anaesthesia and Pain Medicine, School of Medical, University of Western Australia, Crawley, WA, Australia.,Department of Anaesthesia and Pain Management, Perth Children's Hospital, Nedlands, WA, Australia
| |
Collapse
|
31
|
Stanojevic S, Bowerman C, Robinson P. Multiple breath washout: measuring early manifestations of lung pathology. Breathe (Sheff) 2022; 17:210016. [PMID: 35035543 PMCID: PMC8753656 DOI: 10.1183/20734735.0016-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022] Open
Abstract
The multiple breath washout (MBW) test measures the efficiency of gas mixing in the lungs and has gained significant interest over the past 20 years. MBW outcomes detect early lung function impairment and peripheral airway pathology, through its main outcome measure lung clearance index (LCI). LCI measures the number of lung turnovers required to washout an inert tracer gas. MBW is performed during normal (tidal) breathing, making it particularly suitable for young children or those who have trouble performing forced manoeuvres. Additionally, research in chronic respiratory disease populations has shown that MBW can detect acute clinically relevant changes before conventional lung function tests, such as spirometry, thus enabling early intervention. The development of technical standards for MBW and commercial devices have allowed MBW to be implemented in clinical research and potentially routine clinical practice. Although studies have summarised clinimetric properties of MBW indices, additional research is required to establish the clinical utility of MBW and, if possible, shorten testing time. Sensitive, feasible measures of early lung function decline will play an important role in early intervention for people living with respiratory diseases. Educational aim To describe the multiple breath washout test, its applications to lung pathology and respiratory disease, as well as directions for future research.
Collapse
Affiliation(s)
- Sanja Stanojevic
- Dept of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | - Cole Bowerman
- Dept of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | - Paul Robinson
- Dept of Respiratory Medicine, Children's Hospital at Westmead, Sydney, Australia.,The Children's Hospital at Westmead Clinical School, The University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
Chaya S, Zar HJ, Gray DM. Lung Function in Preschool Children in Low and Middle Income Countries: An Under-Represented Potential Tool to Strengthen Child Health. Front Pediatr 2022; 10:908607. [PMID: 35769219 PMCID: PMC9234953 DOI: 10.3389/fped.2022.908607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The burden of respiratory disease is high in low-middle income countries (LMIC). Pulmonary function tests are useful as an objective measure of lung health and to track progression. Spirometry is the commonest test, but its use is limited in preschool children. Other lung function methods have been developed but their use in LMIC has not been well described. AIM To review the use of preschool lung function testing in children in LMIC, with particular reference to feasibility and clinical applications. METHODS Electronic databases "PubMed", "Scopus"," Web of Science", and "EBSCO host" were searched for publications in low and middle income countries on preschool lung function testing, including spirometry, fractional exhaled nitric oxide (FeNO), oscillometry, interrupter technique, tidal breathing and multiple breath washout (MBW), from 1 January 2011 to 31 January 2022. Papers in English were included and those including only children ≥6 years were excluded. RESULT A total of 61 papers from LMIC in Asia, South America, Africa, Eurasia or the Middle East were included. Of these, 40 included spirometry, 7 FeNO, 15 oscillometry, 2 interrupter technique, and 2 tidal breathing. The papers covered test feasibility (19/61), clinical application (46/61) or epidemiological studies (13/61). Lung function testing was successful in preschool children from LMIC. Spirometry was the most technically demanding and success gradually increased with age. CONCLUSION Preschool lung function testing is under-represented in LMIC for the burden of respiratory disease. These tests have the potential to strengthen respiratory care in LMIC, however access needs to be improved.
Collapse
Affiliation(s)
- Shaakira Chaya
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Diane M Gray
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital and SA-MRC Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
33
|
Gambazza S, Mariani A, Brivio A, Carta F, Blardone C, Lisiero S, Russo M, Colombo C. Time Free From Hospitalization in Children and Adolescents With Cystic Fibrosis: Findings From FEV 1, Lung Clearance Index and Peak Work Rate. Front Pediatr 2022; 10:926248. [PMID: 35813385 PMCID: PMC9257036 DOI: 10.3389/fped.2022.926248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND An exercise test combined with a multiple breath washout nitrogen test (MBWN2) may offer a comprehensive clinical evaluation of cystic fibrosis (CF) disease in children with normal spirometry. The purpose of the present study is to explore whether information derived from spirometry, MBWN2, and exercise tests can help the CF multidisciplinary team to characterize time free from hospitalization due to pulmonary exacerbation (PE) in a cohort of pediatric patients with CF. METHODS This prospective observational study was carried out at the Lombardia Region Reference Center for Cystic Fibrosis in Milano, Italy. In 2015, we consecutively enrolled children and adolescents aged <18 years with spirometry, MBWN2, and Godfrey exercise test performed during an outpatient visit. RESULTS Over a median follow-up time of 2.2 years (interquartile range [IQR], 2.01; 3.18), 28 patients aged between 13.0 and 17.4 years were included. When lung functions were outside the normal range, 50% of patients were hospitalized 4 months after the outpatient visit, and their response to exercise was abnormal (100%). Half of the individuals with normal forced expiratory volume in the first second (FEV1) and abnormal lung clearance index (LCI) experienced the first hospital admission 9 months after the clinic visit, and 84.2% presented an abnormal response to exercise. Conversely, 15.8% had abnormal exercise responses when lung functions were considered normal, with half of the adolescents hospitalized at 11 months. CONCLUSION Maintaining ventilation homogeneity, along with a normal ability to sustain intense work, may have a positive impact on the burden of CF disease, here conceived as time free from hospitalization due to PE.
Collapse
Affiliation(s)
- Simone Gambazza
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Healthcare Professions Department, Milan, Italy
| | - Alessandra Mariani
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Healthcare Professions Department, Milan, Italy.,Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Cystic Fibrosis Centre of Milan, Milan, Italy
| | - Anna Brivio
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Healthcare Professions Department, Milan, Italy.,Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Cystic Fibrosis Centre of Milan, Milan, Italy
| | - Federica Carta
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Healthcare Professions Department, Milan, Italy.,Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Cystic Fibrosis Centre of Milan, Milan, Italy
| | - Chiara Blardone
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Healthcare Professions Department, Milan, Italy.,Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Cystic Fibrosis Centre of Milan, Milan, Italy
| | - Saba Lisiero
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Healthcare Professions Department, Milan, Italy.,Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Cystic Fibrosis Centre of Milan, Milan, Italy
| | - Maria Russo
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Cystic Fibrosis Centre of Milan, Milan, Italy
| | - Carla Colombo
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico Milano, Healthcare Professions Department, Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
34
|
Safavi S, Dai R, Breton VL, Emmerson MN, Kowalik K, Lu Z, Lou W, Dubeau A, DeLorenzo S, Azad MB, Becker AB, Mandhane PJ, Turvey SE, Gustafsson P, Lefebvre DL, Sears MR, Moraes TJ, Subbarao P. Lung clearance index predicts persistence of preschool wheeze. Pediatr Allergy Immunol 2022; 33:e13713. [PMID: 34875116 DOI: 10.1111/pai.13713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The lung clearance index (LCI) is a measure of pulmonary function. Variable feasibility (50->80%) in preschool children has been reported. There are limited studies exploring its relationship to respiratory symptoms and how it predicts persistent wheeze. We aimed to assess the association with respiratory symptoms in preschool-aged children with LCI and determine its utility in predicting persistent wheeze. METHODS LCI was measured in a subcohort of the CHILD Cohort Study at age 3 years using SF6 multiple breath washout test mass spectrometry. Respiratory symptom phenotypes at age 3 were derived from children's respiratory symptoms reported by their parents. Responses were used to categorize children into 4 symptom groups: recurrent wheeze (3RW), recurrent cough (3RC), infrequent symptoms (IS), and no current symptoms (NCS). At age 5 years, these children were seen by a specialist clinician and assessed for persistent wheeze (PW). RESULTS At age 3 years, 69% (234/340) had feasible LCI. Excluding two children with missing data, 232 participants were categorized as follows: 33 (14%) 3RW; 28 (12%) 3RC; 17 (7%) IS; and 154 (66%) NCS. LCI z-score at age 3 years was highest in children with 3RW compared to 3RC (mean (SD): 1.14 (1.56) vs. 0.09 (0.95), p < .01), IS (mean (SD): -0.14 (0.59), p < .01), and NCS (mean (SD): -0.08 (1.06), p < .01). LCI z-score at age 3 was predictive of persistent wheeze at age 5 (PW) (AUROC: 0.87). CONCLUSIONS LCI at age 3 was strongly associated with recurrent wheeze at age 3, and predictive of its persistence to age 5.
Collapse
Affiliation(s)
- Shahideh Safavi
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada
| | - Ruixue Dai
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada
| | - Vanessa L Breton
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada
| | - Melanie N Emmerson
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada
| | - Krzysztof Kowalik
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Zihang Lu
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Wendy Lou
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Aimée Dubeau
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada
| | - Stephanie DeLorenzo
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Piush J Mandhane
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart E Turvey
- Department of Pediatrics, Child & Family Research Institute, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Per Gustafsson
- Department of Pediatrics, Central Hospital, Skövde, Sweden
| | - Diana L Lefebvre
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Malcolm R Sears
- Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Theo J Moraes
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada
| | - Padmaja Subbarao
- Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children & Research Institute, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
Bokov P, Gerardin M, Le Clainche L, Houdouin V, Delclaux C. Impulse oscillometry indices to detect an abnormal lung clearance index in childhood cystic fibrosis. Pediatr Pulmonol 2021; 56:3752-3757. [PMID: 34449977 DOI: 10.1002/ppul.25649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 11/08/2022]
Abstract
The objective of our cross-sectional study was to assess the relationships between indices of multiple breath washout (MBW) and impulse oscillometry system (IOS) in cystic fibrosis in forty consecutive children (median age 8.1 years) in stable conditions and to evaluate whether cut-off values of IOS indices may help to avoid MBW, which is time-consuming. IOS measurements took a median duration of 3 min, while MBW measurements took a median duration of 49 min. Lung Clearance Index (LCI2.5% ) depicted significant linear correlations with z-scores of R5Hz, R5-20Hz, X5Hz, AX, and Fres (r2 = 0.27 to 0.51). Receiver-operator characteristic curves were constructed and showed that the best compromise was obtained with the z-score of Fres, with a cut-off value of -1.37 that had a sensitivity of 0.966, a specificity of 0.636, and a negative predictive value of 0.875. This z-score is useful for excluding increased LCI2.5% when below -1.37 using the reference set of Gochicoa et al. In conclusion, IOS measurement is easily and rapidly obtained in children and may be clinically useful for excluding increased LCI2.5% , thus allowing the time-consuming MBW test to be avoided.
Collapse
Affiliation(s)
- Plamen Bokov
- Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique-Centre du Sommeil, INSERM NeuroDiderot, Paris, France
| | - Michele Gerardin
- AP-HP, Hôpital Robert Debré, Service de Pneumopédiatrie, Centre de Ressources et de Compétences de la Mucoviscidose, Paris, France
| | - Laurence Le Clainche
- AP-HP, Hôpital Robert Debré, Service de Pneumopédiatrie, Centre de Ressources et de Compétences de la Mucoviscidose, Paris, France
| | - Véronique Houdouin
- AP-HP, Hôpital Robert Debré, Service de Pneumopédiatrie, Centre de Ressources et de Compétences de la Mucoviscidose, INSERM UMR S 976, Paris, France
| | - Christophe Delclaux
- Université de Paris, AP-HP, Hôpital Robert Debré, Service de Physiologie Pédiatrique-Centre du Sommeil, INSERM NeuroDiderot, Paris, France
| |
Collapse
|
36
|
Wawszczak M, Kulus M, Peradzyńska J. Peripheral airways involvement in children with asthma exacerbation. CLINICAL RESPIRATORY JOURNAL 2021; 16:97-104. [PMID: 34676678 PMCID: PMC9060097 DOI: 10.1111/crj.13456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Objective The literature provides some evidence of peripheral airways key role in the pathogenesis of asthma. However, the extent to which lung periphery including acinar zone contribute to asthma activity and control in pediatric population is unclear. Therefore, the aim of the study was to estimate peripheral airways involvement in children with asthma exacerbation and stable asthma simultaneously via different pulmonary function tests. Methods Children with asthma exacerbation (n = 20) and stable asthma (n = 22) performed spirometry, body plethysmography, exhaled nitric oxide, impulse oscillometry (IOS), and multiple‐breath washout (MBW). Results Peripheral airway's function indexes were increased in children with asthma, particularly in group with asthma exacerbation when compared with stable asthma group. The prevalence of abnormal results was significantly higher in asthma exacerbation. All children with asthma exacerbation had conductive ventilation inhomogeneity; 76% had acinar ventilation inhomogeneity. According to IOS measurements, resistance and reactance were within normal range, but other IOS parameters were significantly higher in children with asthma exacerbation compared with stable asthma group. The 36% of children with acute asthma had air trapping. Conclusion Significant involvement of peripheral airways was observed in children with asthma, particularly in asthma exacerbation, which determine lung periphery as important additional target for therapy and provide new insights into pathophysiological process of pediatric asthma.
Collapse
Affiliation(s)
- Maria Wawszczak
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kulus
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Joanna Peradzyńska
- Department of Epidemiology and Biostatistics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
37
|
Robinson PD, Jensen R, Seeto RA, Stanojevic S, Saunders C, Short C, Davies JC, Ratjen F. Impact of cross-sensitivity error correction on representative nitrogen-based multiple breath washout data from clinical trials. J Cyst Fibros 2021; 21:e204-e207. [PMID: 34526221 DOI: 10.1016/j.jcf.2021.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Paul D Robinson
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Respiratory Medicine, Locked Bag 4001, Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Sydney Medical School, University of Sydney, Australia.
| | - Renee Jensen
- Translational Medicine, Division of Respiratory Medicine, Sellers Chair of Cystic Fibrosis, Hospital for Sick Children, 555 University Avenue, Toronto Ontario M5G 1 × 8, Canada
| | - Ryan A Seeto
- Translational Medicine, Division of Respiratory Medicine, Sellers Chair of Cystic Fibrosis, Hospital for Sick Children, 555 University Avenue, Toronto Ontario M5G 1 × 8, Canada
| | - Sanja Stanojevic
- Dept of Community Health and Epidemiology, Dalhousie University, Halifax, Canada
| | - Clare Saunders
- National Heart and Lung Institute, Imperial College London, United Kingdom; Royal Brompton Hospital, Guys & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Christopher Short
- National Heart and Lung Institute, Imperial College London, United Kingdom; Royal Brompton Hospital, Guys & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, United Kingdom; Royal Brompton Hospital, Guys & St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Felix Ratjen
- Translational Medicine, Division of Respiratory Medicine, Sellers Chair of Cystic Fibrosis, Hospital for Sick Children, 555 University Avenue, Toronto Ontario M5G 1 × 8, Canada; University of Toronto, Toronto, Canada.
| |
Collapse
|
38
|
Early surveillance of infants and preschool children with cystic fibrosis. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Gray DM, Owusu SK, van der Zalm MM. Chronic lung disease in children: disease focused use of lung function. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Horsley AR, Belcher J, Bayfield K, Bianco B, Cunningham S, Fullwood C, Jones A, Shawcross A, Smith JA, Maitra A, Gilchrist FJ. Longitudinal assessment of lung clearance index to monitor disease progression in children and adults with cystic fibrosis. Thorax 2021; 77:357-363. [PMID: 34301741 PMCID: PMC8938654 DOI: 10.1136/thoraxjnl-2021-216928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/05/2021] [Indexed: 12/02/2022]
Abstract
Background Lung clearance index (LCI) is a valuable research tool in cystic fibrosis (CF) but clinical application has been limited by technical challenges and uncertainty about how to interpret longitudinal change. In order to help inform clinical practice, this study aimed to assess feasibility, repeatability and longitudinal LCI change in children and adults with CF with predominantly mild baseline disease. Methods Prospective, 3-year, multicentre, observational study of repeated LCI measurement at time of clinical review in patients with CF >5 years, delivered using a rapid wash-in system. Results 112 patients completed at least one LCI assessment and 98 (90%) were still under follow-up at study end. The median (IQR) age was 14.7 (8.6–22.2) years and the mean (SD) FEV1 z-score was −1.2 (1.3). Of 81 subjects with normal FEV1 (>−2 z-scores), 63% had raised LCI (indicating worse lung function). For repeat stable measurements within 6 months, the mean (limits of agreement) change in LCI was 0.9% (−18.8% to 20.7%). A latent class growth model analysis identified four discrete clusters with high accuracy, differentiated by baseline LCI and FEV1. Baseline LCI was the strongest factor associated with longitudinal change. The median total test time was under 19 min. Conclusions Most patients with CF with well-preserved lung function show stable LCI over time. Cluster behaviours can be identified and baseline LCI is a risk factor for future progression. These results support the use of LCI in clinical practice in identifying patients at risk of lung function decline.
Collapse
Affiliation(s)
- Alex R Horsley
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Biology, Medicine and Health, Manchester, UK .,Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - Katie Bayfield
- Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Brooke Bianco
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Steve Cunningham
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Catherine Fullwood
- Statistics, Research and Innovation, Manchester University NHS Foundation Trust, Manchester, UK.,MAHSC Centre for Biostatistics, University of Manchester, Manchester, UK
| | - Andrew Jones
- Manchester Adult Cystic Fibrosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Anna Shawcross
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jaclyn A Smith
- Division of Infection, Immunity and Respiratory Medicine, The University of Manchester Faculty of Biology, Medicine and Health, Manchester, UK
| | - Anirban Maitra
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Francis J Gilchrist
- Academic Department of Child Health, University Hospitals of North Midlands NHS Trust, Stoke-on-Trent, UK.,Institute of Applied Clinical Sciences, Keele University, Keele, UK
| |
Collapse
|
41
|
Stahl M, Steinke E, Graeber SY, Joachim C, Seitz C, Kauczor HU, Eichinger M, Hämmerling S, Sommerburg O, Wielpütz MO, Mall MA. Magnetic Resonance Imaging Detects Progression of Lung Disease and Impact of Newborn Screening in Preschool Children with Cystic Fibrosis. Am J Respir Crit Care Med 2021; 204:943-953. [PMID: 34283704 DOI: 10.1164/rccm.202102-0278oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Previous cross-sectional studies demonstrated that chest magnetic resonance imaging (MRI) is sensitive to detect early lung disease in infants and preschool children with cystic fibrosis (CF) without radiation exposure. However, the ability of MRI to detect progression of lung disease and the impact of early diagnosis in preschool children with CF remains unknown. OBJECTIVES To investigate the potential of MRI to detect progression of early lung disease and impact of early diagnosis by CF newborn screening (NBS) in preschool children with CF. METHODS Annual MRI was performed from diagnosis over four years in a cohort of 96 preschool children with CF (age 0-4 yr) that were concurrently diagnosed based on NBS (n=28) or clinical symptoms (n=68). MRI scans were evaluated using a dedicated morphofunctional score and the relationship between longitudinal MRI scores and respiratory symptoms, pulmonary exacerbations, upper airway microbiology and mode of diagnosis were determined. MEASUREMENTS AND MAIN RESULTS The MRI global score increased in the total cohort of children with CF during preschool years (P<0.001) which was associated with cough, pulmonary exacerbations (P<0.0001), and detection of Staphylococcus aureus and Haemophilus influenzae (P<0.05). MRI-defined abnormalities in lung morphology, especially airway wall thickening/bronchiectasis, were lower in NBS compared to clinically diagnosed children with CF throughout the observation period (P<0.01). CONCLUSIONS MRI detected progression of early lung disease and benefits of early diagnosis by NBS in preschool children with CF. These findings support MRI as sensitive outcome measure for diagnostic monitoring and early intervention trials in preschool children with CF.
Collapse
Affiliation(s)
- Mirjam Stahl
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany.,University of Heidelberg, Department of Translational Pulmonology, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Eva Steinke
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,University of Heidelberg, Department of Translational Pulmonology, Heidelberg, Germany.,University of Heidelberg, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Simon Y Graeber
- Charite Universitatsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany.,University of Heidelberg, Department of Translational Pulmonology, Heidelberg, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Cornelia Joachim
- University of Heidelberg, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Christoph Seitz
- University of Heidelberg, 9144, Department of Pediatrics, Division of Neonatology, Heidelberg, Germany.,Pediatric Practice , Medical Biometrics Advisor, Bad Saulgau, Germany
| | - Hans-Ulrich Kauczor
- University of Heidelberg, 9144, Department of Translational Pulmonology, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,University of Heidelberg, 9144, Department of Diagnostic and Interventional Radiology, Heidelberg, Germany
| | - Monika Eichinger
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,University of Heidelberg, Department of Diagnostic and Interventional Radiology, Heidelberg, Germany.,Thoraxklinik at University Hospital Heidelberg, Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Heidelberg, Germany
| | - Susanne Hämmerling
- University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany
| | - Olaf Sommerburg
- University of Heidelberg, 9144, Department of Translational Pulmonology, Heidelberg, Germany.,University of Heidelberg, 9144, Department of Pediatrics, Division of Pediatric Pulmonology and Allergy and Cystic Fibrosis Center, Heidelberg, Germany.,German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany
| | - Mark O Wielpütz
- German Center for Lung Research (DZL), Translational Lung Research Center Heidelberg (TLRC), Heidelberg, Germany.,University of Heidelberg, 9144, Department of Diagnostic and Interventional Radiology, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Department of Radiology, Heidelberg, Germany
| | - Marcus A Mall
- Charité Universitätsmedizin Berlin, 14903, Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Berlin, Germany.,German Center for Lung Research (DZL), associated partner site, Berlin, Germany.,University of Heidelberg, Department of Translational Pulmonology, Heidelberg, Germany.,Berlin Institute of Health (BIH), Berlin, Germany;
| |
Collapse
|
42
|
Stanojevic S, Davis SD, Perrem L, Shaw M, Retsch-Bogart G, Davis M, Jensen R, Clem CC, Isaac SM, Guido J, Jara S, France L, McDonald N, Solomon M, Sweezey N, Grasemann H, Waters V, Sanders DB, Ratjen FA. Determinants of lung disease progression measured by lung clearance index in children with cystic fibrosis. Eur Respir J 2021; 58:13993003.03380-2020. [PMID: 33542049 DOI: 10.1183/13993003.03380-2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023]
Abstract
The lung clearance index (LCI) measured by the multiple breath washout (MBW) test is sensitive to early lung disease in children with cystic fibrosis. While LCI worsens during the preschool years in cystic fibrosis, there is limited evidence to clarify whether this continues during the early school age years, and whether the trajectory of disease progression as measured by LCI is modifiable.A cohort of children (healthy and cystic fibrosis) previously studied for 12 months as preschoolers were followed during school age (5-10 years). LCI was measured every 3 months for a period of 24 months using the Exhalyzer D MBW nitrogen washout device. Linear mixed effects regression was used to model changes in LCI over time.A total of 582 MBW measurements in 48 healthy subjects and 845 measurements in 64 cystic fibrosis subjects were available. The majority of children with cystic fibrosis had elevated LCI at the first preschool and first school age visits (57.8% (37 out of 64)), whereas all but six had normal forced expiratory volume in 1 s (FEV1) values at the first school age visit. During school age years, the course of disease was stable (-0.02 units·year-1 (95% CI -0.14-0.10). LCI measured during preschool years, as well as the rate of LCI change during this time period, were important determinants of LCI and FEV1, at school age.Preschool LCI was a major determinant of school age LCI; these findings further support that the preschool years are critical for early intervention strategies.
Collapse
Affiliation(s)
- Sanja Stanojevic
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Dept of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada
| | - Stephanie D Davis
- Dept of Pediatrics; Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, UNC Children's, Chapel Hill, NC, USA
| | - Lucy Perrem
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Michelle Shaw
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - George Retsch-Bogart
- Dept of Pediatrics; Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, UNC Children's, Chapel Hill, NC, USA
| | - Miriam Davis
- Dept of Pediatrics; Division of Pediatric Pulmonology, University of North Carolina at Chapel Hill, UNC Children's, Chapel Hill, NC, USA
| | - Renee Jensen
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Charles C Clem
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Dept of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah M Isaac
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Julia Guido
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Sylvia Jara
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Dept of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lisa France
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Dept of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nancy McDonald
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada
| | - Melinda Solomon
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Neil Sweezey
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Valerie Waters
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Division of Infectious Diseases, Hospital for Sick Children, Toronto, ON, Canada
| | - D B Sanders
- Division of Pediatric Pulmonology, Allergy and Sleep Medicine, Dept of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Felix A Ratjen
- Translational Medicine, Research Institute, Hospital for Sick Children, Toronto, ON, Canada.,Division of Respiratory Medicine, Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
43
|
Frauchiger BS, Binggeli S, Yammine S, Spycher B, Krüger L, Ramsey KA, Latzin P. Longitudinal course of clinical lung clearance index in children with cystic fibrosis. Eur Respir J 2021; 58:13993003.02686-2020. [PMID: 33361098 DOI: 10.1183/13993003.02686-2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND Although the lung clearance index (LCI) is a sensitive marker of small airway disease in individuals with cystic fibrosis (CF), less is known about longitudinal changes in LCI during routine clinical surveillance. Here, our objectives were to describe the longitudinal course of LCI in children with CF during routine clinical surveillance and assess influencing factors. METHODS Children with CF aged 3-18 years performed LCI measurements every 3 months as part of routine clinical care between 2011 and 2018. We recorded clinical data at every visit. We used a multilevel mixed effect model to determine changes in LCI over time and identify clinical factors that influence LCI course. RESULTS We collected LCI measurements from 1204 visits (3603 trials) in 78 participants, of which 907 visits had acceptable LCI data. The average unadjusted increase in LCI for the entire population was 0.29 (95% CI 0.20-0.38) LCI units·year-1. The increase in LCI was more pronounced in adolescence (0.41 (95% CI 0.27-0.54) LCI units·year-1). Colonisation with either Pseudomonas aeruginosa or Aspergillus fumigatus, pulmonary exacerbations, CF-related diabetes and bronchopulmonary aspergillosis were associated with a higher increase in LCI over time. Adjusting for clinical risk factors reduced the increase in LCI over time to 0.24 (95% CI 0.16-0.33) LCI units·year-1. CONCLUSIONS LCI measured during routine clinical surveillance is associated with underlying disease progression in children with CF. An increased change in LCI over time should prompt further diagnostic intervention.
Collapse
Affiliation(s)
- Bettina S Frauchiger
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Severin Binggeli
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sophie Yammine
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ben Spycher
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Linn Krüger
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kathryn A Ramsey
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,These authors contributed equally
| | - Philipp Latzin
- Pediatric Respiratory Medicine, Dept of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,These authors contributed equally
| |
Collapse
|
44
|
Sandvik R, Gustafsson PM, Lindblad A, Robinson PD, Nielsen K. Improved agreement between N 2 and SF 6 multiple-breath washout in healthy infants and toddlers with improved EXHALYZER D sensor performance. J Appl Physiol (1985) 2021; 131:107-118. [PMID: 34043468 DOI: 10.1152/japplphysiol.00129.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent studies indicate limited utility of nitrogen multiple-breath washout (N2MBW) in infancy and advocate for using sulfur hexafluoride (SF6) MBW in this age-group. Modern N2MBW systems, such as EXHALYZER D (ECO MEDICS AG, Duernten, Switzerland), use O2 and CO2 sensors to calculate N2 concentrations (in principle, N2% = 100 - CO2% - O2%). High O2 and CO2 concentrations have now been shown to significantly suppress signal output from the other sensor, raising apparent N2 concentrations. We examined whether improved EXHALYZER D N2 signal, accomplished after thorough examination of this CO2 and O2 interaction on gas sensors and its correction, leads to better agreement between N2MBW and SF6MBW in healthy infants and toddlers. Within the same session, 52 healthy children aged 1-36 mo [mean = 1.30 (SD = 0.72) yr] completed SF6MBW and N2MBW recordings (EXHALYZER D, SPIROWARE version 3.2.1) during supine quiet sleep. SF6 and N2 SPIROWARE files were reanalyzed offline with in-house software using identical algorithms as in SPIROWARE with or without application of the new correction factors for N2MBW provided by ECO MEDICS AG. Applying the improved N2 signal significantly reduced mean [95% confidence interval (CI)] differences between N2MBW and SF6MBW recorded functional residual capacity (FRC) and lung clearance index (LCI): for FRC, from 26.1 (21.0, 31.2) mL, P < 0.0001, to 1.18 (-2.3, 4.5) mL, P = 0.5, and for LCI, from 1.86 (1.68, 2.02), P < 0.001, to 0.44 (0.33, 0.55), P < 0.001. Correction of N2 signal for CO2 and O2 interactions on gas sensors resulted in markedly closer agreement between N2MBW and SF6MBW outcomes in healthy infants and toddlers.NEW & NOTEWORTHY Modern nitrogen multiple-breath washout (N2MBW) systems such as EXHALYZER D use O2 and CO2 sensors to calculate N2 concentrations. New corrections for interactions between high O2 and CO2 concentrations on the gas sensors now provide accurate N2 signals. The correct N2 signal led to much improved agreement between N2MBW and sulfur hexafluoride (SF6) MBW functional residual capacity (FRC) and lung clearance index (LCI) in 52 sleeping healthy infants and toddlers, suggesting a role for N2MBW in this age-group.
Collapse
Affiliation(s)
- Rikke Sandvik
- Danish Paediatric Pulmonary Service, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Per M Gustafsson
- Department of Paediatrics, Central Hospital, Skövde, Sweden.,Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindblad
- Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Gothenburg CF Centre, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Westmead, New South Wales, Australia.,The Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kim Nielsen
- Danish Paediatric Pulmonary Service, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Comparison of Multiple Breath Washout and Spirometry in Children with Primary Ciliary Dyskinesia and Cystic Fibrosis and Healthy Controls. Ann Am Thorac Soc 2021; 17:1085-1093. [PMID: 32603187 DOI: 10.1513/annalsats.201905-375oc] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rationale: In cystic fibrosis (CF), the lung clearance index (LCI), derived from multiple breath washout (MBW), is more sensitive in detecting early lung disease than FEV1; MBW has been less thoroughly evaluated in young patients with primary ciliary dyskinesia (PCD).Objectives: Our objectives were 1) to evaluate the sensitivity of MBW and spirometry for the detection of mild lung disease in young children with PCD and CF compared with healthy control (HC) subjects and 2) to compare patterns of airway obstruction between disease populations.Methods: We used a multicenter, single-visit, observational study in children with PCD and CF with a forced expiratory volume in 1 second (FEV1) greater than 60% predicted and HC subjects, ages 3-12 years. Nitrogen MBW and spirometry were performed and overread for acceptability. χ2 and Kruskall-Wallis tests compared demographics and lung function measures between groups, linear regression evaluated the effect of disease state, and Spearman's rank correlation coefficient compared the LCI and spirometric measurements.Results: Twenty-five children with PCD, 49 children with CF, and 80 HC children were enrolled, among whom 17 children with PCD (68%), 36 children with CF (73%), and 53 (66%) HC children performed both acceptable spirometry and MBW; these children made up the analytic cohort. The median age was 9.0 years (interquartile range [IQR], 6.8-11.1). The LCI was abnormal (more than 7.8) in 10 of 17 (59%) patients with PCD and 21 of 36 (58%) patients with CF, whereas FEV1 was abnormal in three of 17 (18%) patients with PCD and six of 36 (17%) patients with CF. The LCI was significantly elevated in patients with PCD and CF compared with HC subjects (ratio of geometric mean vs. HC: PCD 1.27; 95% confidence interval [CI], 1.15-1.39; and CF 1.24; 95% CI, 1.15-1.33]). Children with PCD had lower midexpiratory-phase forced expiratory flow % predicted compared with children with CF (62% [IQR, 50-78%] vs. 85% [IQR, 68-99%]; P = 0.05). LCI did not correlate with FEV1.Conclusions: The LCI is more sensitive than FEV1 in detecting lung disease in young patients with PCD, similar to CF. LCI holds promise as a sensitive endpoint for the assessment of early PCD lung disease.
Collapse
|
46
|
Bayfield KJ, Douglas TA, Rosenow T, Davies JC, Elborn SJ, Mall M, Paproki A, Ratjen F, Sly PD, Smyth AR, Stick S, Wainwright CE, Robinson PD. Time to get serious about the detection and monitoring of early lung disease in cystic fibrosis. Thorax 2021; 76:1255-1265. [PMID: 33927017 DOI: 10.1136/thoraxjnl-2020-216085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/24/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022]
Abstract
Structural and functional defects within the lungs of children with cystic fibrosis (CF) are detectable soon after birth and progress throughout preschool years often without overt clinical signs or symptoms. By school age, most children have structural changes such as bronchiectasis or gas trapping/hypoperfusion and lung function abnormalities that persist into later life. Despite improved survival, gains in forced expiratory volume in one second (FEV1) achieved across successive birth cohorts during childhood have plateaued, and rates of FEV1 decline in adolescence and adulthood have not slowed. This suggests that interventions aimed at preventing lung disease should be targeted to mild disease and commence in early life. Spirometry-based classifications of 'normal' (FEV1≥90% predicted) and 'mild lung disease' (FEV1 70%-89% predicted) are inappropriate, given the failure of spirometry to detect significant structural or functional abnormalities shown by more sensitive imaging and lung function techniques. The state and readiness of two imaging (CT and MRI) and two functional (multiple breath washout and oscillometry) tools for the detection and monitoring of early lung disease in children and adults with CF are discussed in this article.Prospective research programmes and technological advances in these techniques mean that well-designed interventional trials in early lung disease, particularly in young children and infants, are possible. Age appropriate, randomised controlled trials are critical to determine the safety, efficacy and best use of new therapies in young children. Regulatory bodies continue to approve medications in young children based on safety data alone and extrapolation of efficacy results from older age groups. Harnessing the complementary information from structural and functional tools, with measures of inflammation and infection, will significantly advance our understanding of early CF lung disease pathophysiology and responses to therapy. Defining clinical utility for these novel techniques will require effective collaboration across multiple disciplines to address important remaining research questions. Future impact on existing management burden for patients with CF and their family must be considered, assessed and minimised.To address the possible role of these techniques in early lung disease, a meeting of international leaders and experts in the field was convened in August 2019 at the Australiasian Cystic Fibrosis Conference. The meeting entitiled 'Shaping imaging and functional testing for early disease detection of lung disease in Cystic Fibrosis', was attended by representatives across the range of disciplines involved in modern CF care. This document summarises the proceedings, key priorities and important research questions highlighted.
Collapse
Affiliation(s)
- Katie J Bayfield
- Department of Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Tonia A Douglas
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Tim Rosenow
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, Australia
| | - Jane C Davies
- National Heart and Lung Institute, Imperial College London, London, UK.,Department of Paediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Stuart J Elborn
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Marcus Mall
- Department of Pediatric Pulmonology, Immunology, and Critical Care Medicine, Charité Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Department of Translational Pulmonology, German Center for Lung Research, Berlin, Germany
| | - Anthony Paproki
- The Australian e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia
| | - Felix Ratjen
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,University of Toronto, Toronto, Ontario, Canada
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queenland, Herston, Queensland, Australia
| | - Alan R Smyth
- Division of Child Health, Obstetrics & Gynaecology. School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, UK
| | - Stephen Stick
- Telethon Kids Institute, The University of Western Australia, Perth, Western Australia, Australia.,Centre for Child Health Research, The University of Western Australia, Perth, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia
| | - Claire E Wainwright
- Department of Respiratory and Sleep Medicine, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Westmead, New South Wales, Australia .,Airway Physiology and Imaging Group, Woolcock Institute of Medical Research, Glebe, New South Wales, Australia.,The Discipline of Paediatrics and Child Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
47
|
Bayfield KJ, Shaar A, Robinson PD. Further considerations on normative data for multiple breath washout outcomes. Eur Respir J 2021; 57:57/4/2004536. [PMID: 33888535 DOI: 10.1183/13993003.04536-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/11/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Katie J Bayfield
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia
| | - Aida Shaar
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia
| | - Paul D Robinson
- Dept of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, Australia
| |
Collapse
|
48
|
Mondéjar-López P, Horsley A, Ratjen F, Bertolo S, de Vicente H, Asensio de la Cruz Ò. A multimodal approach to detect and monitor early lung disease in cystic fibrosis. Expert Rev Respir Med 2021; 15:761-772. [PMID: 33843417 DOI: 10.1080/17476348.2021.1908131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: In the early stages, lung involvement in cystic fibrosis (CF) can be silent, with disease progression occurring in the absence of clinical symptoms. Irreversible airway damage is present in the early stages of disease; however, reliable biomarkers of early damage due to inflammation and infection that are universally applicable in day-to-day patient management have yet to be identified.Areas covered: At present, the main methods of detecting and monitoring early lung disease in CF are the lung clearance index (LCI), computed tomography (CT), and magnetic resonance imaging (MRI). LCI can be used to detect patients who may require more intense monitoring, identify exacerbations, and monitor responses to new interventions. High-resolution CT detects structural alterations in the lungs of CF patients with the best resolution of current imaging techniques. MRI is a radiation-free imaging alternative that provides both morphological and functional information. The role of MRI for short-term follow-up and pulmonary exacerbations is currently being investigated.Expert opinion: The roles of LCI and MRI are expected to expand considerably over the next few years. Meanwhile, closer collaboration between pulmonology and radiology specialties is an important goal toward improving care and optimizing outcomes in young patients with CF.
Collapse
Affiliation(s)
- Pedro Mondéjar-López
- Pediatric Pulmonologist, Pediatric Pulmonology and Cystic Fibrosis Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Alexander Horsley
- Honorary Consultant, Respiratory Research Group, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, UK
| | - Felix Ratjen
- Head, Division of Respiratory Medicine, Department of Pediatrics, Translational Medicine, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Silvia Bertolo
- Radiologist, Department of Radiology, Ca'Foncello Regional Hospital, Treviso, Italy
| | | | - Òscar Asensio de la Cruz
- Pediatric Pulmonologist, Pediatric Unit, University Hospital Parc Taulí de Sabadell, Sabadell, Spain
| |
Collapse
|
49
|
Terlizzi V, Amato F, Castellani C, Ferrari B, Galietta LJV, Castaldo G, Taccetti G. Ex vivo model predicted in vivo efficacy of CFTR modulator therapy in a child with rare genotype. Mol Genet Genomic Med 2021; 9:e1656. [PMID: 33713579 PMCID: PMC8123755 DOI: 10.1002/mgg3.1656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/15/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND New drugs that target the basic defect in cystic fibrosis (CF) patients may now be used in a large number of patients carrying responsive mutations. Nevertheless, further research is needed to extend the benefit of these treatments to patients with rare mutations that are still uncharacterized in vitro and that are not included in clinical trials. For this purpose, ex vivo models are necessary to preliminary assessing the effect of CFTR modulators in these cases. METHOD We report the clinical effectiveness of lumacaftor/ivacaftor therapy prescribed to a CF child with a rare genetic profile (p.Phe508del/p.Gly970Asp) after testing the drug on nasal epithelial cells. We observed a significant drop of the sweat chloride value, as of the lung clearance index. A longer follow-up period is needed to define the effects of therapy on pancreatic status, although an increase of the fecal elastase values was found. CONCLUSION Drug response obtained on nasal epithelial cells correlates with changes in vivo therapeutic endpoints and can be a predictor of clinical efficacy of novel drugs especially in pediatric patients.
Collapse
Affiliation(s)
- Vito Terlizzi
- Cystic Fibrosis Regional Reference Center,Department of Paediatric MedicineAnna Meyer Children's UniversityFlorenceItaly
| | - Felice Amato
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico II
- CEINGE – Advanced BiotechnologiesNaplesItaly
| | - Chiara Castellani
- Cystic Fibrosis Regional Reference Center,Department of Paediatric MedicineAnna Meyer Children's UniversityFlorenceItaly
| | - Beatrice Ferrari
- Cystic Fibrosis Regional Reference Center,Department of Paediatric MedicineAnna Meyer Children's UniversityFlorenceItaly
| | - Luis J. V. Galietta
- Telethon Institute of Genetics and Medicine (TIGEMPozzuoliItaly)
- Department of Translational Medical SciencesUniversity of Naples Federico IINapoliItaly
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical BiotechnologyUniversity of Naples Federico II
- CEINGE – Advanced BiotechnologiesNaplesItaly
| | - Giovanni Taccetti
- Cystic Fibrosis Regional Reference Center,Department of Paediatric MedicineAnna Meyer Children's UniversityFlorenceItaly
| |
Collapse
|
50
|
Elenius V, Chawes B, Malmberg PL, Adamiec A, Ruszczyński M, Feleszko W, Jartti T. Lung function testing and inflammation markers for wheezing preschool children: A systematic review for the EAACI Clinical Practice Recommendations on Diagnostics of Preschool Wheeze. Pediatr Allergy Immunol 2021; 32:501-513. [PMID: 33222297 DOI: 10.1111/pai.13418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/06/2020] [Accepted: 11/13/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Preschool wheeze is highly prevalent; 30%-50% of children have wheezed at least once before age six. Wheezing is not a disorder; it is a symptom of obstruction in the airways, and it is essential to identify the correct diagnosis behind this symptom. An increasing number of studies provide evidence for novel diagnostic tools for monitoring and predicting asthma in the pediatric population. Several techniques are available to measure airway obstruction and airway inflammation, including spirometry, impulse oscillometry, whole-body plethysmography, bronchial hyperresponsiveness test, multiple breath washout test, measurements of exhaled NO, and analyses of various other biomarkers. METHODS We systematically reviewed all the existing techniques available for measuring lung function and airway inflammation in preschool children to assess their potential and clinical value in the routine diagnostics and monitoring of airway obstruction. RESULTS If applicable, measuring FEV1 using spirometry is considered useful. For those unable to perform spirometry, whole-body plethysmography and IOS may be useful. Bronchial reversibility to beta2-agonist and hyperresponsiveness test with running exercise challenge may improve the sensitivity of these tests. CONCLUSIONS The difficulty of measuring lung function and the lack of large randomized controlled trials makes it difficult to establish guidelines for monitoring asthma in preschool children.
Collapse
Affiliation(s)
- Varpu Elenius
- Department of Pediatrics, Turku University Hospital and Turku University, Turku, Finland
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Pekka L Malmberg
- The Skin and Allergy Hospital, University of Helsinki, Helsinki, Finland
| | - Aleksander Adamiec
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland.,Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Marek Ruszczyński
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Feleszko
- Department of Pediatric Pneumology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Tuomas Jartti
- Department of Pediatrics, University of Oulu and Oulu University Hospital, Oulu, Finland
| | | |
Collapse
|