1
|
Olatoke T, Zhang EY, Wagner A, He Q, Li S, Astreinidis A, McCormack FX, Xu Y, Yu JJ. STAT1 Promotes PD-L1 Activation and Tumor Growth in Lymphangioleiomyomatosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627871. [PMID: 39713456 PMCID: PMC11661278 DOI: 10.1101/2024.12.11.627871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Lymphangioleiomyomatosis (LAM) is a cystic lung disease that primarily affects women. LAM is caused by the invasion of metastatic smooth muscle-like cells into the lung parenchyma, leading to abnormal cell proliferation, lung remodeling and progressive respiratory failure. LAM cells have TSC gene mutations, which occur sporadically or in people with Tuberous Sclerosis Complex. Although it is known that hyperactivation of the mechanistic target of rapamycin complex 1 (mTORC1) due to TSC2 gene mutations contributes to aberrant cell growth in LAM lung, tumor origin and invasive mechanism remain unclear. To determine molecular drivers responsible for aberrant LAM cell growth, we performed integrative single-cell transcriptomic analysis and predicted that STAT1 interacts with Pre-B cell leukemia transcription factor (PBX1) to regulate LAM cell survival. Here, we show activation of STAT1 and STAT3 proteins in TSC2-deficient LAM models. Fludarabine, a potent STAT1 inhibitor, induced the death of TSC2-deficient cells, increased caspase-3 cleavage, and phosphorylation of necroptosis marker RIP1. Fludarabine treatment impeded lung colonization of TSC2-deficient cells and uterine tumor progression, associated with reduced percentage of PCNA-positive cells in vivo. Interestingly, IFN-γ treatment increased STAT1 phosphorylation and PD-L1 expression, indicating that STAT1 aids TSC2-deficient tumor cells in evading immune surveillance in LAM. Our findings indicate that STAT1 signaling is critical for LAM cell survival and could be targeted to treat LAM and other mTORC1 hyperactive tumors.
Collapse
Affiliation(s)
- Tasnim Olatoke
- Department of Pharmacology, Physiology and Neurobiology, University of Cincinnati; Cincinnati, OH 45267, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA
| | - Erik Y Zhang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA
| | - Andrew Wagner
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Quan He
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA
| | - Siru Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA
| | - Aristotelis Astreinidis
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA
| | - Yan Xu
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center; Cincinnati, OH 45229, USA
| | - Jane J Yu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of Cincinnati; Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Zhang X, Liu S, Yang L, Cheng C, Wang H, Hu D, Zhang X, Zhang M, Liu Y, Tian X, Zhang H, Xu KF. Omics research in lymphangioleiomyomatosis: status and challenges. Expert Rev Respir Med 2024; 18:805-814. [PMID: 39257348 DOI: 10.1080/17476348.2024.2403498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION Lymphangioleiomyomatosis (LAM) is a rare and progressive disorder that usually arises in the lung and almost exclusively affects women of childbearing age. In recent years, a number of molecules have been shown to be differentially expressed between patients with LAM and healthy control individuals, and some of these molecules, in addition to vascular endothelial growth factor D (VEGF-D), have the potential to be novel biomarkers. AREAS COVERED This review summarizes the recent advances in omics research, including genomics, transcriptomics, proteomics, and metabolomics, in LAM biomarker discovery. It also retrieves the literature on LAM biomarkers studied by omics techniques in the last 10 years using PubMed and other retrieval tools. EXPERT OPINION Further research on expanded sample sizes can be conducted to construct specific models to study the role of these molecules in the pathogenesis of LAM and clarify the underlying mechanisms involved. In the future, in terms of technology, the combination of various omics methods is expected to result in novel biomarker discovery.
Collapse
Affiliation(s)
- Xinhe Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Song Liu
- Center for bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine & Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Luning Yang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chongsheng Cheng
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hanghang Wang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Danjing Hu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxin Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Miaoyan Zhang
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yaping Liu
- Department of Genetics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongbing Zhang
- Department of Physiology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Kalvala AK, Silwal A, Patel B, Kasetti A, Shetty K, Cho JH, Lara G, Daugherity B, Diesler R, Pooladanda V, Rueda BR, Henske EP, Yu JJ, Markiewski M, Karbowniczek M. Extracellular vesicles regulate metastable phenotypes of lymphangioleiomyomatosis cells via shuttling ATP synthesis to pseudopodia and activation of integrin adhesion complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.611297. [PMID: 39314494 PMCID: PMC11419057 DOI: 10.1101/2024.09.09.611297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is metastatic sarcoma but mechanisms regulating LAM metastasis are unknown. Extracellular vesicle (EV) regulate cancer metastasis but their roles in LAM have not yet been investigated. Here, we report that EV biogenesis is increased in LAM and LAM EV cargo is enriched with lung tropic integrins, metalloproteinases, and cancer stem cell markers. LAM-EV increase LAM cell migration and invasion via the ITGα6/β1-c-Src-FAK-AKT axis. Metastable (hybrid) phenotypes of LAM metastasizing cells, pivotal for metastasis, are regulated by EV from primary tumor or metastasizing LAM cells via shuttling ATP synthesis to cell pseudopodia or activation of integrin adhesion complex, respectively. In mouse models of LAM, LAM-EV increase lung metastatic burden through mechanisms involving lung extracellular matrix remodeling. Collectively, these data provide evidence for the role of EV in promoting LAM lung metastasis and identify novel EV-dependent mechanisms regulating metastable phenotypes of tumor cells. Clinical impact of research is that it establishes LAM pathway as novel target for LAM therapy.
Collapse
|
4
|
Koc-Gunel S, Liu EC, Gautam LK, Calvert BA, Murthy S, Harriott NC, Nawroth JC, Zhou B, Krymskaya VP, Ryan AL. Targeting Fibroblast-Endothelial Interactions in LAM Pathogenesis: 3D Spheroid and Spatial Transcriptomic Insights for Therapeutic Innovation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.12.544372. [PMID: 37398026 PMCID: PMC10312665 DOI: 10.1101/2023.06.12.544372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a progressive lung disease with limited treatments, largely due to an incomplete understanding of its pathogenesis. Lymphatic endothelial cells (LECs) invade LAM cell clusters, which include HMB-45-positive epithelioid cells and smooth muscle α-actin-expressing LAM-associated fibroblasts (LAMFs). Recent evidence shows that LAMFs resemble cancer-associated fibroblasts, with LAMF-LEC interactions contributing to disease progression. To explore these mechanisms, we used spatial transcriptomics on LAM lung tissues and identified a gene cluster enriched in kinase signaling pathways linked to myofibroblasts and co-expressed with LEC markers. Kinase arrays revealed elevated PDGFR and FGFR in LAMFs. Using a 3D co-culture spheroid model of primary LAMFs and LECs, we observed increased invasion in LAMF-LEC spheroids compared to non-LAM fibroblasts. Treatment with sorafenib, a multikinase inhibitor, significantly reduced invasion, outperforming Rapamycin. We also confirmed TSC2-null AML cells as key VEGF-A secretors, which was suppressed by sorafenib in both AML cells and LAMFs. These findings highlight VEGF-A and bFGF as potential therapeutic targets and suggest multikinase inhibition as a promising strategy for LAM.
Collapse
Affiliation(s)
- Sinem Koc-Gunel
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Internal Medicine II, Infectious Diseases, University Hospital Frankfurt; Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Emily C. Liu
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Lalit K. Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Ben A. Calvert
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Shubha Murthy
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Noa C. Harriott
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| | - Janna C. Nawroth
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Helmholtz Pioneer Campus and Institute of Biological and Medical Imaging; Helmholtz Zentrum München, Neuherberg, Germany
| | - Beiyun Zhou
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
| | - Vera P. Krymskaya
- Division of Pulmonary and Critical Care Medicine, Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Amy L. Ryan
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California; Los Angeles, CA, USA
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa; Iowa City, IA, USA
| |
Collapse
|
5
|
Li R, Sone N, Gotoh S, Sun X, Hagood JS. Contemporary and emerging technologies for research in children's rare and interstitial lung disease. Pediatr Pulmonol 2024; 59:2349-2359. [PMID: 37204232 DOI: 10.1002/ppul.26490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Although recent decades have seen the identification, classification and discovery of the genetic basis of many children's interstitial and rare lung disease (chILD) disorders, detailed understanding of pathogenesis and specific therapies are still lacking for most of them. Fortunately, a revolution of technological advancements has created new opportunities to address these critical knowledge gaps. High-throughput sequencing has facilitated analysis of transcription of thousands of genes in thousands of single cells, creating tremendous breakthroughs in understanding normal and diseased cellular biology. Spatial techniques allow analysis of transcriptomes and proteomes at the subcellular level in the context of tissue architecture, in many cases even in formalin-fixed, paraffin-embedded specimens. Gene editing techniques allow creation of "humanized" animal models in a shorter time frame, for improved knowledge and preclinical therapeutic testing. Regenerative medicine approaches and bioengineering advancements facilitate the creation of patient-derived induced pluripotent stem cells and their differentiation into tissue-specific cell types which can be studied in multicellular "organoids" or "organ-on-a-chip" approaches. These technologies, singly and in combination, are already being applied to gain new biological insights into chILD disorders. The time is ripe to systematically apply these technologies to chILD, together with sophisticated data science approaches, to improve both biological understanding and disease-specific therapy.
Collapse
Affiliation(s)
- Rongbo Li
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - Naoyuki Sone
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Xin Sun
- Department of Pediatrics, Division of Respiratory Medicine, UC-San Diego, La Jolla, California, USA
| | - James S Hagood
- Department of Pediatrics, Pulmonology Division, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
6
|
Liu X, Zhang X, Liang J, Noble PW, Jiang D. Aging-Associated Molecular Changes in Human Alveolar Type I Cells. JOURNAL OF RESPIRATORY BIOLOGY AND TRANSLATIONAL MEDICINE 2024; 1:10012. [PMID: 39220636 PMCID: PMC11361087 DOI: 10.35534/jrbtm.2024.10012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human alveolar type I (AT1) cells are specialized epithelial cells that line the alveoli in the lungs where gas exchange occurs. The primary function of AT1 cells is not only to facilitate efficient gas exchange between the air and the blood in the lungs, but also to contribute to the structural integrity of the alveoli to maintain lung function and homeostasis. Aging has notable effects on the structure, function, and regenerative capacity of human AT1 cells. However, our understanding of the molecular mechanisms driving these age-related changes in AT1 cells remains limited. Leveraging a recent single-cell transcriptomics dataset we generated on healthy human lungs, we identified a series of significant molecular alterations in AT1 cells from aged lungs. Notably, the aged AT1 cells exhibited increased cellular senescence and chemokine gene expression, alongside diminished epithelial features such as decreases in cell junctions, endocytosis, and pulmonary matrisome gene expression. Gene set analyses also indicated that aged AT1 cells were resistant to apoptosis, a crucial mechanism for turnover and renewal of AT1 cells, thereby ensuring alveolar integrity and function. Further research on these alterations is imperative to fully elucidate the impact on AT1 cells and is indispensable for developing effective therapies to preserve lung function and promote healthy aging.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Franciosi AN, Gupta N, Murphy DJ, Wikenheiser-Brokamp KA, McCarthy C. Diffuse Cystic Lung Disease: A Clinical Guide to Recognition and Management. Chest 2024:S0012-3692(24)04923-7. [PMID: 39168181 DOI: 10.1016/j.chest.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024] Open
Abstract
TOPIC IMPORTANCE Diffuse cystic lung diseases (DCLDs) represent a group of pathophysiologically heterogeneous entities that share a common radiologic phenotype of multiple thin-walled pulmonary cysts. DCLDs differ from the typical fibroinflammatory interstitial lung diseases in their epidemiology, clinical presentation, molecular pathogenesis, and therapeutic approaches, making them worthy of a distinct classification. The importance of timely and accurate identification of DCLDs is heightened by the impact on patient management including recent discoveries of targeted therapeutic approaches for some disorders. REVIEW FINDINGS This article offers a practical framework for evaluating patients with DCLD, indicating the most appropriate and current diagnostic and management approaches. We focus on the DCLDs that are most likely to be encountered by practicing pulmonologists: lymphangioleiomyomatosis, pulmonary Langerhans cell histiocytosis, Birt-Hogg-Dubé syndrome, and lymphoid interstitial pneumonia. Chest CT scan is the most informative noninvasive diagnostic modality to identify DCLDs. Thereafter, instituting a structured approach to high-yield associated factors (eg, medical, social, and family history; renal and dermatologic findings) increases the likelihood of identifying DCLDs and achieving a diagnosis. SUMMARY Although the individual diseases that comprise the DCLD family are rare, taken together, DCLDs can be encountered more frequently in clinical practice than commonly perceived. An increased eagerness among general pulmonary physicians to recognize these entities, coupled with a practical and systematic clinical approach to examinations and investigations, is required to improve case findings, allow earlier intervention, and reduce morbidity and mortality.
Collapse
Affiliation(s)
- Alessandro N Franciosi
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Nishant Gupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH
| | - David J Murphy
- School of Medicine, University College Dublin, Dublin, Ireland; Department of Radiology, St. Vincent's University Hospital, Dublin, Ireland
| | - Kathryn A Wikenheiser-Brokamp
- Division of Pathology & Laboratory Medicine, Division of Pulmonary Medicine, and Perinatal Institute Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH
| | - Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Qiu D, Wang Z, Wang X, Wang Y, Wang W, Zhang Y. PMEL is a predictive biomarker for mTORC1 inhibitor treatment of renal angiomyolipoma in tuberous sclerosis complex patients. Heliyon 2024; 10:e34937. [PMID: 39170496 PMCID: PMC11336345 DOI: 10.1016/j.heliyon.2024.e34937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Background We aimed to demonstrate the function of premelanosome protein (PMEL) as a biomarker to predict the effectiveness of mammalian target of rapamycin complex 1 (mTORC1) inhibitor treatment in renal angiomyolipomas (RAMLs) in tuberous sclerosis complex (TSC) patients. Methods 95 whole blood samples from 49 patients diagnosed with TSC-RAMLs were collected. PMEL, N4BP2, and PCSK1N expression in the plasma samples were tested by quantitative sandwich ELISA. The target tumor volume assessed by maximum cross-sectional area (CSAmax) in CT scans. Correlation analysis was used to determine the relationship between PMEL expression and target tumors, as well as the tumor reduction rate. Results The tumor size of TSC-RAMLs positivity correlated with PMEL expression (r = 0.30, p = 0.036) and PCSK1N expression (r = 0.23, p = 0.027), but had no significant relationship with N4BP2 (r = 0.06, p = 0.89). The positive correlation between TSC-RAML tumor volume and PMEL expression still existed in TSC patients before (r = 0.30, p = 0.026) and after mTORC1 inhibitor treatment (r = 0.41, p = 0.0017), but the correlation between tumor volume and PCSK1N expression no longer existed. Further analysis found that PMEL expression negatively correlated with the reduction rate of TSC-RAMLs after mTORC1 inhibitor treatment (r = -0.50, p = 0.0022), both after 3 months (r = -0.47, p = 0.048) and 6 months of treatment (r = -0.52, p = 0.028). Conclusion PMEL expression positively correlated with the tumor size of TSC-RAMLs, and inversely with the reduction rate of TSC-RAMLs after mTORC1 inhibitor treatment, which may suggest that PMEL may serve as a predictive biomarker for the efficacy of mTORC1 inhibitor treatment.
Collapse
Affiliation(s)
- Dongxu Qiu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| |
Collapse
|
9
|
Liu X, Zhang X, Yao C, Liang J, Noble PW, Jiang D. Transcriptomics Analysis Identifies the Decline in the Alveolar Type II Stem Cell Niche in Aged Human Lungs. Am J Respir Cell Mol Biol 2024; 71:229-241. [PMID: 38635761 PMCID: PMC11299088 DOI: 10.1165/rcmb.2023-0363oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024] Open
Abstract
Aging poses a global public health challenge, which is linked to the rise of age-related lung diseases. The precise understanding of the molecular and genetic changes in the aging lung that elevate the risk of acute and chronic lung diseases remains incomplete. Alveolar type II (AT2) cells are stem cells that maintain epithelial homeostasis and repair the lung after injury. AT2 progenitor function decreases with aging. The maintenance of AT2 function requires niche support from other cell types, but little has been done to characterize alveolar alterations with aging in the AT2 niche. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged AT2 cells demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 (Activator Protein-1) transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in collagen and elastin transcription and a loss of support to epithelial cell stemness. The decline of the AT2 niche is further exacerbated by a dysregulated genetic program in macrophages and dysregulated communications between AT2 and macrophages in aged human lungs. These findings highlight the dysregulations observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.
Collapse
Affiliation(s)
- Xue Liu
- Department of Medicine and Women’s Guild Lung Institute and
| | - Xuexi Zhang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Changfu Yao
- Department of Medicine and Women’s Guild Lung Institute and
| | - Jiurong Liang
- Department of Medicine and Women’s Guild Lung Institute and
| | - Paul W. Noble
- Department of Medicine and Women’s Guild Lung Institute and
| | - Dianhua Jiang
- Department of Medicine and Women’s Guild Lung Institute and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
10
|
Wan M, Yu Q, Xu F, You LX, Liang X, Kang Ren K, Zhou J. Novel hypoxia-induced HIF-1αactivation in asthma pathogenesis. Respir Res 2024; 25:287. [PMID: 39061007 PMCID: PMC11282634 DOI: 10.1186/s12931-024-02869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Asthma's complexity, marked by airway inflammation and remodeling, is influenced by hypoxic conditions. This study focuses on the role of Hypoxia-Inducible Factor-1 Alpha (HIF-1α) and P53 ubiquitination in asthma exacerbation. METHODS High-throughput sequencing and bioinformatics were used to identify genes associated with asthma progression, with an emphasis on GO and KEGG pathway analyses. An asthma mouse model was developed, and airway smooth muscle cells (ASMCs) were isolated to create an in vitro hypoxia model. Cell viability, proliferation, migration, and apoptosis were assessed, along with ELISA and Hematoxylin and Eosin (H&E) staining. RESULTS A notable increase in HIF-1α was observed in both in vivo and in vitro asthma models. HIF-1α upregulation enhanced ASMCs' viability, proliferation, and migration, while reducing apoptosis, primarily via the promotion of P53 ubiquitination through MDM2. In vivo studies showed increased inflammatory cell infiltration and airway structural changes, which were mitigated by the inhibitor IDF-11,774. CONCLUSION The study highlights the critical role of the HIF-1α-MDM2-P53 axis in asthma, suggesting its potential as a target for therapeutic interventions. The findings indicate that modulating this pathway could offer new avenues for treating the complex respiratory disorder of asthma.
Collapse
Affiliation(s)
- Mengzhi Wan
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Qi Yu
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Fei Xu
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Lu Xia You
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Xiao Liang
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Kang Kang Ren
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China
| | - Jing Zhou
- Department of Respiratory Emergency and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, PR China.
| |
Collapse
|
11
|
Gibbons E, Taya M, Wu H, Lopa SH, Moss J, Henske EP, McCormack FX, Hammes SR. Glycoprotein non-metastatic melanoma protein B promotes tumor growth and is a biomarker for lymphangioleiomyomatosis. Endocr Relat Cancer 2024; 31:e230312. [PMID: 38614127 PMCID: PMC11103253 DOI: 10.1530/erc-23-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, progressive cystic lung disease affecting almost exclusively female-sexed individuals. The cysts represent regions of lung destruction caused by smooth muscle tumors containing mutations in one of the two tuberous sclerosis (TSC) genes. mTORC1 inhibition slows but does not stop LAM advancement. Furthermore, monitoring disease progression is hindered by insufficient biomarkers. Therefore, new treatment options and biomarkers are needed. LAM cells express melanocytic markers, including glycoprotein non-metastatic melanoma protein B (GPNMB). The function of GPNMB in LAM is currently unknown; however, GPNMB's unique cell surface expression on tumor versus benign cells makes GPNMB a potential therapeutic target, and persistent release of its extracellular ectodomain suggests potential as a serum biomarker. Here, we establish that GPNMB expression is dependent on mTORC1 signaling, and that GPNMB regulates TSC2-null tumor cell invasion in vitro. Further, we demonstrate that GPNMB enhances TSC2-null xenograft tumor growth in vivo, and that ectodomain release is required for this xenograft growth. We also show that GPNMB's ectodomain is released from the cell surface of TSC2-null cells by proteases ADAM10 and 17, and we identify the protease target sequence on GPNMB. Finally, we demonstrate that GPNMB's ectodomain is present at higher levels in LAM patient serum compared to healthy controls and that ectodomain levels decrease with mTORC1 inhibition, making it a potential LAM biomarker.
Collapse
Affiliation(s)
- Erin Gibbons
- Department of Microbiology and Immunology University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Manisha Taya
- Division of Hematology and Oncology, UT Southwestern, Dallas, TX 75390, USA
| | - Huixing Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Samia H Lopa
- Department of Biostatistics and Computational Biology, University of Rochester
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute (NHLBI), NIH, Bethesda, Maryland 20892, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Stephen R Hammes
- Department of Microbiology and Immunology University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
12
|
Ding Y, Bajpai AK, Wu F, Lu W, Xu L, Mao J, Li Q, Pan Q, Lu L, Wang X. 5-methylcytosine RNA modification regulators-based patterns and features of immune microenvironment in acute myeloid leukemia. Aging (Albany NY) 2024; 16:2340-2361. [PMID: 38277218 PMCID: PMC10911375 DOI: 10.18632/aging.205484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024]
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignant disease of the blood cell. The current therapies for AML are unsatisfactory and the molecular mechanisms underlying AML are unclear. 5-methylcytosine (m5C) is an important posttranscriptional modification of mRNA, and is involved in the regulation of mRNA stability, translation, and other aspects of RNA metabolism. However, based on our knowledge of published literature, the role of the m5C regulators has not been explored in AML till date. In this study, we clarified the expression and gene variants of m5C regulators in AML and found that most m5C regulators were differentially expressed and correlated with disease prognosis. We also found that the methylation status of certain m5C regulators (e.g., DNMT3A, DNMT3B) affects the survival of AML patients. Two m5C modification subtypes, and high- and low-risk subgroups identified based on the expression of m5C regulators showed significant differences in the prognosis as well as immune cell infiltration. In addition, most of the m5C regulators were found to be correlated with miRNA expression in AML, as well as IC50 values of many drugs. The miRNA and GSVA analysis were used to identify the different miRNAs and KEGG or hallmark pathways between high- and low-risk subgroups. We also built a prognostic model based on m5C regulators, which was validated by two GSE databases. To verify the reliability of our analysis and conclusions, qPCR was used to identify the expressions of m5C regulators between normal and AML. In summary, we comprehensively explored the molecular characteristics of m5C regulators and built a prognostic model in AML. We proposed new mechanistic insights into the role of m5C in multiple databases and clinical data, which may pave novel ways for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Yuhong Ding
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Cente, Memphis, TN 38163, USA
| | - Fengxia Wu
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Weihua Lu
- Department of Hematology and Oncology, The Branch Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Lin Xu
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Jiawei Mao
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Qiang Li
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Qi Pan
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics University of Tennessee Health Science Cente, Memphis, TN 38163, USA
| | - Xinfeng Wang
- Department of Hematology, The Affiliated Hospital of Nantong University, Jiangsu 226000, China
| |
Collapse
|
13
|
Russell NX, Burra K, Shah RM, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. Am J Physiol Lung Cell Mol Physiol 2023; 325:L788-L802. [PMID: 37873566 PMCID: PMC11068408 DOI: 10.1152/ajplung.00024.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/28/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023] Open
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wntless (Wls), a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulates the expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin-deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.NEW & NOTEWORTHY Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in noncontractile tissue and embryonic development has yet to be understood. In this study, we focused on the role of ion channels in the differentiation and patterning of the large airways of the developing respiratory tract. We identify a mechanism by which Wnt-beta-catenin signaling controls levels of ion channel-encoding genes to promote tracheal differentiation.
Collapse
Affiliation(s)
- Nicholas X Russell
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Ronak M Shah
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati Honors Program, Cincinnati, Ohio, United States
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Harshavardhana H Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
14
|
Kishi M, Hayashi T, Mitani K, Tsuboshima K, Kurihara M, Hosoya M, Sekimoto Y, Okura MK, Mitsuishi Y, Okada Y, Kanno J, Yao T, Takahashi K, Seyama K. Clinicopathological Impacts of Expression of Neuronal Markers in Lymphangioleiomyomatosis. Am J Surg Pathol 2023; 47:1252-1260. [PMID: 37599567 DOI: 10.1097/pas.0000000000002113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a tuberous sclerosis complex (TSC)-associated tumor, characterized by the expression of neural crest lineages including neuronal markers. Neural crest cells can differentiate into multiple cell types that contribute to tissues associated with TSC-related tumors, and TSC-related tumors could be specifically associated with distinct neural crest subtypes. This study aimed to clarify the clinicopathological effects of expression of neuronal markers in LAM. Lung tissues from 40 patients with LAM (of whom 13, 1, and 26 had undergone lung transplantation, lobectomy, and partial lung resection, respectively) were immunohistochemically analyzed. All patients were women, and their median age was 36 years (range: 24-62 y). All patients who underwent lung transplantation or lobectomy were classified as LAM histologic score (LHS)-3, whereas those who underwent partial lung resection were classified as LHS-1. LAM cells expressed peripherin (65%), and neuron-specific βIII-tubulin (43%). A comparison of the early (LHS-1) and advanced (LHS-3) stages of LAM revealed that neuron-specific βIII-tubulin was significantly expressed in the early stage of LAM ( P = 0.0009). Neuron-specific βIII-tubulin-positive LAM was associated with younger age ( P < 0.0001), the coexistence of renal angiomyolipoma ( P = 0.027), and the absence of retroperitoneal LAM ( P = 0.045). Furthermore, based on the expression levels of immunohistochemical markers in LAM, 2 distinct clusters with different expression levels of neuronal markers were observed. Approximately 40% to 60% of patients with LAM expressed neuron-specific βIII-tubulin and peripherin. Neuronal expression may be associated with disease severity.
Collapse
Affiliation(s)
- Monami Kishi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- The Study Group for Pneumothorax and Cystic Lung Diseases, Setagaya-Ku, Tokyo, Japan
| | - Keiko Mitani
- The Study Group for Pneumothorax and Cystic Lung Diseases, Setagaya-Ku, Tokyo, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kenji Tsuboshima
- The Study Group for Pneumothorax and Cystic Lung Diseases, Setagaya-Ku, Tokyo, Japan
- Pneumothorax Research Center and Division of Thoracic Surgery, Nissan Tamagawa Hospital, Tokyo, Japan
| | - Masatoshi Kurihara
- The Study Group for Pneumothorax and Cystic Lung Diseases, Setagaya-Ku, Tokyo, Japan
- Pneumothorax Research Center and Division of Thoracic Surgery, Nissan Tamagawa Hospital, Tokyo, Japan
| | - Masaki Hosoya
- Department of Medical Oncology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yasuhito Sekimoto
- The Study Group for Pneumothorax and Cystic Lung Diseases, Setagaya-Ku, Tokyo, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Makiko K Okura
- The Study Group for Pneumothorax and Cystic Lung Diseases, Setagaya-Ku, Tokyo, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoichiro Mitsuishi
- The Study Group for Pneumothorax and Cystic Lung Diseases, Setagaya-Ku, Tokyo, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Jun Kanno
- Department of Pathology, Nissan Tamagawa Hospital, Tokyo, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kuniaki Seyama
- The Study Group for Pneumothorax and Cystic Lung Diseases, Setagaya-Ku, Tokyo, Japan
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
15
|
Evans JF, McCormack FX, Sonenberg N, Krymskaya VP. Lost in translation: a neglected mTOR target for lymphangioleiomyomatosis. Eur Respir Rev 2023; 32:230100. [PMID: 37758276 PMCID: PMC10523142 DOI: 10.1183/16000617.0100-2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/24/2023] [Indexed: 09/30/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a cystic lung disease of women resulting from mutations in tuberous sclerosis complex (TSC) genes that suppress the mammalian target of rapamycin complex 1 (mTORC1) pathway. mTORC1 activation enhances a plethora of anabolic cellular functions, mainly via the activation of mRNA translation through stimulation of ribosomal protein S6 kinase (S6K1)/ribosomal protein S6 (S6) and eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/eukaryotic translation initiation factor 4E (eIF4E). Rapamycin (sirolimus), an allosteric inhibitor of mTORC1, stabilises lung function in many but not all LAM patients and, upon cessation of the drug, disease progression resumes. At clinically tolerable concentrations, rapamycin potently inhibits the ribosomal S6K1/S6 translation ribosome biogenesis and elongation axis, but not the translation 4E-BP1/eIF4E initiation axis. In this mini-review, we propose that inhibition of mTORC1-driven translation initiation is an obvious but underappreciated therapeutic strategy in LAM, TSC and other mTORC1-driven diseases.
Collapse
Affiliation(s)
- Jilly F Evans
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Vera P Krymskaya
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
16
|
Gibbons E, Minor BMN, Hammes SR. Lymphangioleiomyomatosis: where endocrinology, immunology and tumor biology meet. Endocr Relat Cancer 2023; 30:e230102. [PMID: 37410387 PMCID: PMC10529736 DOI: 10.1530/erc-23-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Abstract Lymphangioleiomyomatosis (LAM) is a cystic lung disease found almost exclusively in genetic females and caused by small clusters of smooth muscle cell tumors containing mutations in one of the two tuberous sclerosis genes (TSC1 or TSC2). Significant advances over the past 2-3 decades have allowed researchers and clinicians to more clearly understand the pathophysiology of LAM, and therefore better diagnose and treat patients with this disease. Despite substantial progress, only one proven treatment for LAM is used in practice: mechanistic target of rapamycin complex 1 (mTORC1) inhibition with medications such as sirolimus. While mTORC1 inhibition effectively slows LAM progression in many patients, it is not curative, is not effective in all patients, and can be associated with significant side effects. Furthermore, the presence of established and accurate biomarkers to follow LAM progression is limited. That said, discovering additional diagnostic and treatment options for LAM is paramount. This review will describe recent advances in LAM research, centering on the origin and nature of the LAM cell, the role of estrogen in LAM progression, the significance of melanocytic marker expression in LAM cells, and the potential roles of the microenvironment in promoting LAM tumor growth. By appreciating these processes in more detail, researchers and caregivers may be afforded novel approaches to aid in the treatment of patients with LAM.
Collapse
Affiliation(s)
- Erin Gibbons
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Briaunna M. N. Minor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
17
|
Pietrobon A, Yockell‐Lelièvre J, Melong N, Smith LJ, Delaney SP, Azzam N, Xue C, Merwin N, Lian E, Camacho‐Magallanes A, Doré C, Musso G, Julian LM, Kristof AS, Tam RY, Berman JN, Shoichet MS, Stanford WL. Tissue-Engineered Disease Modeling of Lymphangioleiomyomatosis Exposes a Therapeutic Vulnerability to HDAC Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302611. [PMID: 37400371 PMCID: PMC10502849 DOI: 10.1002/advs.202302611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/13/2023] [Indexed: 07/05/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease involving cystic lung destruction by invasive LAM cells. These cells harbor loss-of-function mutations in TSC2, conferring hyperactive mTORC1 signaling. Here, tissue engineering tools are employed to model LAM and identify new therapeutic candidates. Biomimetic hydrogel culture of LAM cells is found to recapitulate the molecular and phenotypic characteristics of human disease more faithfully than culture on plastic. A 3D drug screen is conducted, identifying histone deacetylase (HDAC) inhibitors as anti-invasive agents that are also selectively cytotoxic toward TSC2-/- cells. The anti-invasive effects of HDAC inhibitors are independent of genotype, while selective cell death is mTORC1-dependent and mediated by apoptosis. Genotype-selective cytotoxicity is seen exclusively in hydrogel culture due to potentiated differential mTORC1 signaling, a feature that is abrogated in cell culture on plastic. Importantly, HDAC inhibitors block invasion and selectively eradicate LAM cells in vivo in zebrafish xenografts. These findings demonstrate that tissue-engineered disease modeling exposes a physiologically relevant therapeutic vulnerability that would be otherwise missed by conventional culture on plastic. This work substantiates HDAC inhibitors as possible therapeutic candidates for the treatment of patients with LAM and requires further study.
Collapse
Affiliation(s)
- Adam Pietrobon
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Julien Yockell‐Lelièvre
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Nicole Melong
- Department of PediatricsCHEO Research InstituteOttawaK1H 5B2Canada
| | - Laura J. Smith
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoM5S 3G9Canada
- The Donnelly Centre for Cellular and Biomolecular ResearchTorontoM5S 3E1Canada
| | - Sean P. Delaney
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Nadine Azzam
- Department of PediatricsCHEO Research InstituteOttawaK1H 5B2Canada
| | - Chang Xue
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoM5S 3G9Canada
- The Donnelly Centre for Cellular and Biomolecular ResearchTorontoM5S 3E1Canada
| | | | - Eric Lian
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Alberto Camacho‐Magallanes
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| | - Carole Doré
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
| | | | - Lisa M. Julian
- Centre for Cell BiologyDevelopmentand DiseaseDepartment of Biological SciencesSimon Fraser UniversityBurnabyV5A 1S6Canada
| | - Arnold S. Kristof
- Meakins‐Christie Laboratories and Translational Research in Respiratory Diseases ProgramResearch Institute of the McGill University Health CentreFaculty of MedicineDepartments of Medicine and Critical CareMontrealH4A 3J1Canada
| | - Roger Y. Tam
- Centre for Biologics EvaluationBiologic and Radiopharmaceutical Drugs DirectorateHealth CanadaOttawaK1Y 4X2Canada
| | - Jason N. Berman
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Department of PediatricsCHEO Research InstituteOttawaK1H 5B2Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering and Applied ChemistryUniversity of TorontoTorontoM5S 3E5Canada
- Institute for Biomaterials and Biomedical EngineeringUniversity of TorontoTorontoM5S 3G9Canada
- The Donnelly Centre for Cellular and Biomolecular ResearchTorontoM5S 3E1Canada
- Department of ChemistryUniversity of TorontoTorontoM5S 3H6Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell ResearchRegenerative Medicine ProgramOttawa Hospital Research InstituteOttawaK1Y 4E9Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaK1N 6N5Canada
- Ottawa Institute of Systems BiologyOttawaK1H 8M5Canada
| |
Collapse
|
18
|
Russell NX, Burra K, Shah R, Bottasso-Arias N, Mohanakrishnan M, Snowball J, Ediga HH, Madala SK, Sinner D. Wnt signaling regulates ion channel expression to promote smooth muscle and cartilage formation in developing mouse trachea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523309. [PMID: 36711918 PMCID: PMC9882072 DOI: 10.1101/2023.01.10.523309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Ion channels play critical roles in the physiology and function of the nervous system and contractile tissue; however, their role in non-contractile tissue and embryonic development has yet to be understood. Tracheobronchomalacia (TBM) and complete tracheal rings (CTR) are disorders affecting the muscle and cartilage of the trachea and bronchi, whose etiology remains poorly understood. We demonstrated that trachealis muscle organization and polarity are disrupted after epithelial ablation of Wls, a cargo receptor critical for the Wnt signaling pathway, in developing trachea. The phenotype resembles the anomalous trachealis muscle observed after deletion of ion channel encoding genes in developing mouse trachea. We sought to investigate whether and how the deletion of Wls affects ion channels during tracheal development. We hypothesize that Wnt signaling influences the expression of ion channels to promote trachealis muscle cell assembly and patterning. Deleting Wls in developing trachea causes differential regulation of genes mediating actin binding, cytoskeleton organization, and potassium ion channel activity. Wnt signaling regulated expression of Kcnj13, Kcnd3, Kcnj8, and Abcc9 as demonstrated by in vitro studies and in vivo analysis in Wnt5a and β-catenin deficient tracheas. Pharmacological inhibition of potassium ion channels and Wnt signaling impaired contractility of developing trachealis smooth muscle and formation of cartilaginous mesenchymal condensation. Thus, in mice, epithelial-induced Wnt/β-catenin signaling mediates trachealis muscle and cartilage development via modulation of ion channel expression, promoting trachealis muscle architecture, contractility, and cartilaginous extracellular matrix. In turn, ion channel activity may influence tracheal morphogenesis underlying TBM and CTR.
Collapse
Affiliation(s)
- Nicholas X. Russell
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - Kaulini Burra
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: Nationwide Children’s Hospital Columbus OH
| | - Ronak Shah
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program Current Affiliation: Renaissance School of Medicine at Stony Brook University
| | - Natalia Bottasso-Arias
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center
| | - Megha Mohanakrishnan
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati Honors Program
| | - John Snowball
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center. Current affiliation: P&G Cincinnati, OH
| | - Harshavardhana H. Ediga
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine
| | - Debora Sinner
- Neonatology and Pulmonary Biology Perinatal Institute. Cincinnati Children’s Hospital Medical Center and University of Cincinnati, College of Medicine
| |
Collapse
|
19
|
Guo M, Morley MP, Jiang C, Wu Y, Li G, Du Y, Zhao S, Wagner A, Cakar AC, Kouril M, Jin K, Gaddis N, Kitzmiller JA, Stewart K, Basil MC, Lin SM, Ying Y, Babu A, Wikenheiser-Brokamp KA, Mun KS, Naren AP, Clair G, Adkins JN, Pryhuber GS, Misra RS, Aronow BJ, Tickle TL, Salomonis N, Sun X, Morrisey EE, Whitsett JA, Xu Y. Guided construction of single cell reference for human and mouse lung. Nat Commun 2023; 14:4566. [PMID: 37516747 PMCID: PMC10387117 DOI: 10.1038/s41467-023-40173-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/13/2023] [Indexed: 07/31/2023] Open
Abstract
Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs.
Collapse
Affiliation(s)
- Minzhe Guo
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
| | - Michael P Morley
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cheng Jiang
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yixin Wu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Yina Du
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Shuyang Zhao
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Andrew Wagner
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Adnan Cihan Cakar
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Michal Kouril
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | | | - Joseph A Kitzmiller
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Kathleen Stewart
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Susan M Lin
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yun Ying
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Apoorva Babu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kathryn A Wikenheiser-Brokamp
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Kyu Shik Mun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Anjaparavanda P Naren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joshua N Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Gloria S Pryhuber
- Department of Pediatrics Division of Neonatology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ravi S Misra
- Department of Pediatrics Division of Neonatology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Bruce J Aronow
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Timothy L Tickle
- Data Sciences Platform, The Broad Institute, Cambridge, MA, 02142, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Xin Sun
- Department of Pediatrics, University of California at San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Department of Biological Sciences, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn-CHOP Lung Biology Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffrey A Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA
| | - Yan Xu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, 3230 Eden Avenue, Cincinnati, OH, 45267, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
20
|
Wang L, Rossi RM, Chen X, Chen J, Runyon J, Chawla M, Miller D, Forney C, Lynch A, Zhang X, Kong F, Jacobsson B, Kottyan LC, Weirauch MT, Zhang G, Muglia LJ. A functional mechanism for a non-coding variant near AGTR2 associated with risk for preterm birth. BMC Med 2023; 21:258. [PMID: 37455310 PMCID: PMC10351137 DOI: 10.1186/s12916-023-02973-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Preterm birth (PTB), defined as delivery before 37 gestational weeks, imposes significant public health burdens. A recent maternal genome-wide association study of spontaneous PTB identified a noncoding locus near the angiotensin II receptor type 2 (AGTR2) gene. Genotype-Tissue Expression data revealed that alleles associated with decreased AGTR2 expression in the uterus were linked to an increased risk of PTB and shortened gestational duration. We hypothesized that a causative variant in this locus modifies AGTR2 expression by altering transcription factor (TF) binding. METHODS To investigate this hypothesis, we performed bioinformatics analyses and functional characterizations at the implicated locus. Potential causal single nucleotide polymorphisms (SNPs) were prioritized, and allele-dependent binding of TFs was predicted. Reporter assays were employed to assess the enhancer activity of the top PTB-associated non-coding variant, rs7889204, and its impact on TF binding. RESULTS Our analyses revealed that rs7889204, a top PTB-associated non-coding genetic variant is one of the strongest eQTLs for the AGTR2 gene in uterine tissue samples. We observed differential binding of CEBPB (CCAAT enhancer binding protein beta) and HOXA10 (homeobox A10) to the alleles of rs7889204. Reporter assays demonstrated decreased enhancer activity for the rs7889204 risk "C" allele. CONCLUSION Collectively, these results demonstrate that decreased AGTR2 expression caused by reduced transcription factor binding increases the risk for PTB and suggest that enhancing AGTR2 activity may be a preventative measure in reducing PTB risk.
Collapse
Affiliation(s)
- Li Wang
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA.
- Present Address: Department of Biology, Xavier University, OH, Cincinnati, USA.
| | - Robert M Rossi
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiaoting Chen
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jing Chen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jilian Runyon
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mehak Chawla
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Arthur Lynch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xuzhe Zhang
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Fansheng Kong
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Louis J Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
21
|
Pietrobon A, Stanford WL. Tuberous Sclerosis Complex Kidney Lesion Pathogenesis: A Developmental Perspective. J Am Soc Nephrol 2023; 34:1135-1149. [PMID: 37060140 PMCID: PMC10356159 DOI: 10.1681/asn.0000000000000146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
The phenotypic diversity of tuberous sclerosis complex (TSC) kidney pathology is enigmatic. Despite a well-established monogenic etiology, an incomplete understanding of lesion pathogenesis persists. In this review, we explore the question: How do TSC kidney lesions arise? We appraise literature findings in the context of mutational timing and cell-of-origin. Through a developmental lens, we integrate the critical results from clinical studies, human specimens, and genetic animal models. We also review novel insights gleaned from emerging organoid and single-cell sequencing technologies. We present a new model of pathogenesis which posits a phenotypic continuum, whereby lesions arise by mutagenesis during development from variably timed second-hit events. This model can serve as a conceptual framework for testing hypotheses of TSC lesion pathogenesis, both in the kidney and in other affected tissues.
Collapse
Affiliation(s)
- Adam Pietrobon
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Liu X, Zhang X, Yao C, Liang J, Noble PW, Jiang D. A transcriptional cell atlas identifies the decline in the AT2 niche in aged human lungs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545378. [PMID: 37398304 PMCID: PMC10312782 DOI: 10.1101/2023.06.16.545378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Aging poses a global public health challenge, associated with molecular and physiological changes in the lungs. It increases susceptibility to acute and chronic lung diseases, yet the underlying molecular and cellular drivers in aged populations are not fully appreciated. To systematically profile the genetic changes associated with age, we present a single-cell transcriptional atlas comprising nearly half a million cells from the healthy lungs of human subjects spanning various ages, sexes, and smoking statuses. Most annotated cell lineages in aged lungs exhibit dysregulated genetic programs. Specifically, the aged alveolar epithelial cells, including both alveolar type II (AT2) and type I (AT1) cells, demonstrate loss of epithelial identities, heightened inflammaging characterized by increased expression of AP-1 transcription factor and chemokine genes, and significantly increased cellular senescence. Furthermore, the aged mesenchymal cells display a remarkable decrease in Collagen and Elastin transcription. The decline of the AT2 niche is further exacerbated by a weakened endothelial cell phenotype and a dysregulated genetic program in macrophages. These findings highlight the dysregulation observed in both AT2 stem cells and their supportive niche cells, potentially contributing to the increased susceptibility of aged populations to lung diseases.
Collapse
|
23
|
Sikkema L, Ramírez-Suástegui C, Strobl DC, Gillett TE, Zappia L, Madissoon E, Markov NS, Zaragosi LE, Ji Y, Ansari M, Arguel MJ, Apperloo L, Banchero M, Bécavin C, Berg M, Chichelnitskiy E, Chung MI, Collin A, Gay ACA, Gote-Schniering J, Hooshiar Kashani B, Inecik K, Jain M, Kapellos TS, Kole TM, Leroy S, Mayr CH, Oliver AJ, von Papen M, Peter L, Taylor CJ, Walzthoeni T, Xu C, Bui LT, De Donno C, Dony L, Faiz A, Guo M, Gutierrez AJ, Heumos L, Huang N, Ibarra IL, Jackson ND, Kadur Lakshminarasimha Murthy P, Lotfollahi M, Tabib T, Talavera-López C, Travaglini KJ, Wilbrey-Clark A, Worlock KB, Yoshida M, van den Berge M, Bossé Y, Desai TJ, Eickelberg O, Kaminski N, Krasnow MA, Lafyatis R, Nikolic MZ, Powell JE, Rajagopal J, Rojas M, Rozenblatt-Rosen O, Seibold MA, Sheppard D, Shepherd DP, Sin DD, Timens W, Tsankov AM, Whitsett J, Xu Y, Banovich NE, Barbry P, Duong TE, Falk CS, Meyer KB, Kropski JA, Pe'er D, Schiller HB, Tata PR, Schultze JL, Teichmann SA, Misharin AV, Nawijn MC, Luecken MD, Theis FJ. An integrated cell atlas of the lung in health and disease. Nat Med 2023; 29:1563-1577. [PMID: 37291214 PMCID: PMC10287567 DOI: 10.1038/s41591-023-02327-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2023] [Indexed: 06/10/2023]
Abstract
Single-cell technologies have transformed our understanding of human tissues. Yet, studies typically capture only a limited number of donors and disagree on cell type definitions. Integrating many single-cell datasets can address these limitations of individual studies and capture the variability present in the population. Here we present the integrated Human Lung Cell Atlas (HLCA), combining 49 datasets of the human respiratory system into a single atlas spanning over 2.4 million cells from 486 individuals. The HLCA presents a consensus cell type re-annotation with matching marker genes, including annotations of rare and previously undescribed cell types. Leveraging the number and diversity of individuals in the HLCA, we identify gene modules that are associated with demographic covariates such as age, sex and body mass index, as well as gene modules changing expression along the proximal-to-distal axis of the bronchial tree. Mapping new data to the HLCA enables rapid data annotation and interpretation. Using the HLCA as a reference for the study of disease, we identify shared cell states across multiple lung diseases, including SPP1+ profibrotic monocyte-derived macrophages in COVID-19, pulmonary fibrosis and lung carcinoma. Overall, the HLCA serves as an example for the development and use of large-scale, cross-dataset organ atlases within the Human Cell Atlas.
Collapse
Grants
- P50 AR080612 NIAMS NIH HHS
- R01 HL153375 NHLBI NIH HHS
- R01 HL127349 NHLBI NIH HHS
- U54 HL165443 NHLBI NIH HHS
- P01 HL107202 NHLBI NIH HHS
- U01 HL148856 NHLBI NIH HHS
- R21 HL156124 NHLBI NIH HHS
- U54 AG075931 NIA NIH HHS
- Wellcome Trust
- R01 HL146557 NHLBI NIH HHS
- R01 HL123766 NHLBI NIH HHS
- U01 HL148861 NHLBI NIH HHS
- R01 HL141852 NHLBI NIH HHS
- R01 ES034350 NIEHS NIH HHS
- UL1 TR001863 NCATS NIH HHS
- R01 HL126176 NHLBI NIH HHS
- R21 HL161760 NHLBI NIH HHS
- R01 HL145372 NHLBI NIH HHS
- P01 AG049665 NIA NIH HHS
- K12 HD105271 NICHD NIH HHS
- U19 AI135964 NIAID NIH HHS
- P30 CA008748 NCI NIH HHS
- R01 HL142568 NHLBI NIH HHS
- R01 HL153312 NHLBI NIH HHS
- U54 AG079754 NIA NIH HHS
- R56 HL157632 NHLBI NIH HHS
- R01 HL158139 NHLBI NIH HHS
- R01 HL135156 NHLBI NIH HHS
- R01 HL153045 NHLBI NIH HHS
- U54 HL145608 NHLBI NIH HHS
- P50 AR060780 NIAMS NIH HHS
- R01 HL128439 NHLBI NIH HHS
- R01 HL146519 NHLBI NIH HHS
- R01 HL117004 NHLBI NIH HHS
- R01 HL068702 NHLBI NIH HHS
- U01 HL145567 NHLBI NIH HHS
- P01 HL132821 NHLBI NIH HHS
- MR/R015635/1 Medical Research Council
- R01 MD010443 NIMHD NIH HHS
- Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0” NIH 1U54HL145608-01 CZIF2022-007488 from the Chan Zuckerberg Initiative Foundation CZIF2022-007488 from the Chan Zuckerberg Initiative Foundation
- ESPOD fellowship of EMBL-EBI and Sanger Institute
- 3IA Cote d’Azur PhD program
- The Ministry of Economic Affairs and Climate Policy by means of the PPP
- EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- Joachim Herz Stiftung (Joachim Herz Foundation)
- P50 AR060780-06A1
- University College London, Birkbeck MRC Doctoral Training Programme
- Jikei University School of Medicine (Jikei University)
- 5R01HL14254903, 4UH3CA25513503
- R01HL127349, R01HL141852, U01HL145567 and CZI
- MRC Clinician Scientist Fellowship (MR/W00111X/1)
- Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0” 2R01HL068702
- R01 HL135156, R01 MD010443, R01 HL128439, P01 HL132821, P01 HL107202, R01 HL117004, and DOD Grant W81WH-16-2-0018
- HL142568 and HL14507 from the NHLBI
- Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0”, 2R01HL068702
- Wellcome (WT211276/Z/18/Z) Sanger core grant WT206194 CZIF2022-007488 from the Chan Zuckerberg Initiative Foundation
- R21HL156124, R56HL157632, and R21HL161760
- CZI, 5U01HL148856
- CZI, 5U01HL148856, R01 HL153045
- U.S. Department of Defense (United States Department of Defense)
- The National Institute of Health R01HL145372
- Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
- Conseil Départemental des Alpes Maritimes
- Inserm Cross-cutting Scientific Program HuDeCA 2018, ANR SAHARRA (ANR-19-CE14–0027), ANR-19-P3IA-0002–3IA, the National Infrastructure France Génomique (ANR-10-INBS-09-03), PPIA 4D-OMICS (21-ESRE-0052), and the Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0”.
- Wellcome Trust (Wellcome)
- Sanger core grant WT206194 Chan Zuckerberg Initiative, LLC Seed Network grant (CZF2019-002438) “Lung Cell Atlas 1.0” CZIF2022-007488 from the Chan Zuckerberg Initiative Foundation
- Doris Duke Charitable Foundation (DDCF)
- The National Institute of Health R01HL145372 Department of Defense W81XWH-19-1-0416
- The National Institute of Health R01HL146557 and R01HL153375 and funds from Chan Zuckerberg Initiative - Human Lung Cell Atlas-pilot award
- 1U54HL145608-01
- CZI Deep Visual Proteomics
- 1U54HL145608-01, U01HL148861-03
- 1) the Chan Zuckerberg Initiative, LLC Seed Network grant CZF2019-002438 “Lung Cell Atlas 1.0”; 2) R01 HL153312; 3) U19 AI135964; 4) P01 AG049665
- Netherlands Lung Foundation project nos. 5.1.14.020 and 4.1.18.226, LLC Seed Network grant CZF2019-002438 “Lung Cell Atlas 1.0”
- grant number 2019-002438 from the Chan Zuckerberg Foundation, by the Helmholtz Association’s Initiative and Networking Fund through Helmholtz AI [ZT-I-PF-5-01] and by the Bavarian Ministry of Science and the Arts in the framework of the Bavarian Research Association “ForInter” (Interaction of human brain cells)
- 1 U01 HL14555-01, R01 HL123766-04
- NIH U54 AG075931, 5R01 HL146519
Collapse
Affiliation(s)
- Lisa Sikkema
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Ciro Ramírez-Suástegui
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Daniel C Strobl
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Tessa E Gillett
- Experimental Pulmonary and Inflammatory Research, Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Luke Zappia
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Mathematics, Technical University of Munich, Garching, Germany
| | | | - Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Laure-Emmanuelle Zaragosi
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
| | - Yuge Ji
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Meshal Ansari
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
| | - Leonie Apperloo
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin Banchero
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Christophe Bécavin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
| | - Marijn Berg
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Mei-I Chung
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Antoine Collin
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
- 3IA Côte d'Azur, Nice, France
| | - Aurore C A Gay
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Janine Gote-Schniering
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | - Baharak Hooshiar Kashani
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | - Kemal Inecik
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Manu Jain
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Theodore S Kapellos
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Tessa M Kole
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sylvie Leroy
- Pulmonology Department, Fédération Hospitalo-Universitaire OncoAge, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, Nice, France
| | - Christoph H Mayr
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | | | | | - Lance Peter
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Chase J Taylor
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Chuan Xu
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Linh T Bui
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Carlo De Donno
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Leander Dony
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Department of Translational Psychiatry, Max Planck Institute of Psychiatry and International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Alen Faiz
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- School of Life Sciences, Respiratory Bioinformatics and Molecular Biology, University of Technology Sydney, Sydney, Australia
| | - Minzhe Guo
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, US
| | | | - Lukas Heumos
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | - Ni Huang
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Ignacio L Ibarra
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Nathan D Jackson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
| | - Preetish Kadur Lakshminarasimha Murthy
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Pharmacology and Regenerative Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Mohammad Lotfollahi
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carlos Talavera-López
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, Klinikum der Lüdwig-Maximilians-Universität, Munich, Germany
| | - Kyle J Travaglini
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Kaylee B Worlock
- Department of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Masahiro Yoshida
- Department of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - Tushar J Desai
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Oliver Eickelberg
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Mark A Krasnow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marko Z Nikolic
- Department of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Joseph E Powell
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Mauricio Rojas
- Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Cellular and Tissue Genomics, Genentech, South San Francisco, CA, USA
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, USA
- Department of Pediatrics, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Dean Sheppard
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Douglas P Shepherd
- Department of Physics and Center for Biological Physics, Arizona State University, Tempe, AZ, USA
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wim Timens
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey Whitsett
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yan Xu
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and Centre National de la Recherche Scientifique, Valbonne, France
- 3IA Côte d'Azur, Nice, France
| | - Thu Elizabeth Duong
- Department of Pediatrics, Division of Respiratory Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Christine S Falk
- Institute for Transplant Immunology, Hannover Medical School, Hannover, Germany
| | | | - Jonathan A Kropski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Dana Pe'er
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herbert B Schiller
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany
| | | | - Joachim L Schultze
- Department of Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen and University of Bonn, Bonn, Germany
| | - Sara A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martijn C Nawijn
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Malte D Luecken
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- Institute of Lung Health and Immunity (a member of the German Center for Lung Research) and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Center Munich, Munich, Germany.
| | - Fabian J Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- TUM School of Life Sciences, Technical University of Munich, Munich, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| |
Collapse
|
24
|
Perez MF, Yurieva M, Poddutoori S, Mortensen EM, Crotty Alexander LE, Williams A. Transcriptomic responses in the blood and sputum of cigarette smokers compared to e-cigarette vapers. Respir Res 2023; 24:134. [PMID: 37208747 PMCID: PMC10196320 DOI: 10.1186/s12931-023-02438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/27/2023] [Indexed: 05/21/2023] Open
Abstract
RATIONALE Electronic (e)-cigarettes are popular among youth and cigarette smokers attempting to quit. Studies to date have focused on the utility of e-cigarettes as a smoking cessation tool, but the biological effects are largely unknown. OBJECTIVES To identify transcriptomic differences in the blood and sputum of e-cigarette users compared to conventional cigarettes smokers and healthy controls and describe biological pathways affected by these tobacco products. METHODS Cross-sectional analysis of whole blood and sputum RNA-sequencing data from 8 smokers, 9 e-cigarette users (e-cigs) and 4 controls. Weighted gene co-network analysis (WGCNA) identified gene module associations. Ingenuity Pathway Analysis (IPA) identified canonical pathways associated with tobacco products. MAIN RESULTS In blood, a three-group comparison showed 16 differentially expressed genes (DEGs); pair-wise comparison showed 7 DEGs between e-cigs and controls, 35 DEGs between smokers and controls, and 13 DEGs between smokers and e-cigs. In sputum, 438 DEGs were in the three-group comparison. In pair-wise comparisons, there were 2 DEGs between e-cigs and controls, 270 DEGs between smokers and controls, and 468 DEGs between smokers and e-cigs. Only 2 genes in the smokers vs. control comparison overlapped between blood and sputum. Most gene modules identified through WGCNA associated with tobacco product exposures also were associated with cotinine and exhaled CO levels. IPA showed more canonical pathways altered by conventional cigarette smoking than by e-cigarette use. CONCLUSION Cigarette smoking and e-cigarette use led to transcriptomic changes in both blood and sputum. However, conventional cigarettes induced much stronger transcriptomic responses in both compartments.
Collapse
Affiliation(s)
- Mario F Perez
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Eric M Mortensen
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Laura E Crotty Alexander
- Division of Pulmonary Critical Care, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Adam Williams
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Yang B, Moss J. Cell survival pathways targeted in rare lung disease affecting women. SCIENCE ADVANCES 2023; 9:eadi1215. [PMID: 37163598 PMCID: PMC10171799 DOI: 10.1126/sciadv.adi1215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Novel drug targets are identified in lymphangioleiomyomatosis (LAM), a rare disease in women. These targets focus on uterine transcription factors necessary for LAM cell survival.
Collapse
Affiliation(s)
- Bennett Yang
- Pulmonary Branch, Laboratory of Translational Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 6D05, 9000 Rockville Pike, Bethesda, MD 20892-1590, USA
| | - Joel Moss
- Pulmonary Branch, Laboratory of Translational Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Building 10, Room 6D05, 9000 Rockville Pike, Bethesda, MD 20892-1590, USA
| |
Collapse
|
26
|
Olatoke T, Wagner A, Astrinidis A, Zhang EY, Guo M, Zhang AG, Mattam U, Kopras EJ, Gupta N, Smith EP, Karbowniczek M, Markiewski MM, Wikenheiser-Brokamp KA, Whitsett JA, McCormack FX, Xu Y, Yu JJ. Single-cell multiomic analysis identifies a HOX-PBX gene network regulating the survival of lymphangioleiomyomatosis cells. SCIENCE ADVANCES 2023; 9:eadf8549. [PMID: 37163604 PMCID: PMC10171823 DOI: 10.1126/sciadv.adf8549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/07/2023] [Indexed: 05/12/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, progressive lung disease that predominantly affects women. LAM cells carry TSC1/TSC2 mutations, causing mTORC1 hyperactivation and uncontrolled cell growth. mTORC1 inhibitors stabilize lung function; however, sustained efficacy requires long-term administration, and some patients fail to tolerate or respond to therapy. Although the genetic basis of LAM is known, mechanisms underlying LAM pathogenesis remain elusive. We integrated single-cell RNA sequencing and single-nuclei ATAC-seq of LAM lungs to construct a gene regulatory network controlling the transcriptional program of LAM cells. We identified activation of uterine-specific HOX-PBX transcriptional programs in pulmonary LAMCORE cells as regulators of cell survival depending upon HOXD11-PBX1 dimerization. Accordingly, blockage of HOXD11-PBX1 dimerization by HXR9 suppressed LAM cell survival in vitro and in vivo. PBX1 regulated STAT1/3, increased the expression of antiapoptotic genes, and promoted LAM cell survival in vitro. The HOX-PBX gene network provides promising targets for treatment of LAM/TSC mTORC1-hyperactive cancers.
Collapse
Affiliation(s)
- Tasnim Olatoke
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Andrew Wagner
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Aristotelis Astrinidis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Erik Y. Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Minzhe Guo
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alan G. Zhang
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Ushodaya Mattam
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Elizabeth J. Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Eric P. Smith
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine, Perinatal Institute, Division of Pulmonary Biology, Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jeffrey A. Whitsett
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Francis X. McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yan Xu
- Division of Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jane J. Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
27
|
Astrinidis A, Li C, Zhang EY, Zhao X, Zhao S, Guo M, Olatoke T, Mattam U, Huang R, Zhang AG, Pitstick L, Kopras EJ, Gupta N, Jandarov R, Smith EP, Fugate E, Lindquist D, Markiewski MM, Karbowniczek M, Wikenheiser-Brokamp KA, Setchell KDR, McCormack FX, Xu Y, Yu JJ. Upregulation of acid ceramidase contributes to tumor progression in tuberous sclerosis complex. JCI Insight 2023; 8:e166850. [PMID: 36927688 PMCID: PMC10243802 DOI: 10.1172/jci.insight.166850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is characterized by multisystem, low-grade neoplasia involving the lung, kidneys, brain, and heart. Lymphangioleiomyomatosis (LAM) is a progressive pulmonary disease affecting almost exclusively women. TSC and LAM are both caused by mutations in TSC1 and TSC2 that result in mTORC1 hyperactivation. Here, we report that single-cell RNA sequencing of LAM lungs identified activation of genes in the sphingolipid biosynthesis pathway. Accordingly, the expression of acid ceramidase (ASAH1) and dihydroceramide desaturase (DEGS1), key enzymes controlling sphingolipid and ceramide metabolism, was significantly increased in TSC2-null cells. TSC2 negatively regulated the biosynthesis of tumorigenic sphingolipids, and suppression of ASAH1 by shRNA or the inhibitor ARN14976 (17a) resulted in markedly decreased TSC2-null cell viability. In vivo, 17a significantly decreased the growth of TSC2-null cell-derived mouse xenografts and short-term lung colonization by TSC2-null cells. Combined rapamycin and 17a treatment synergistically inhibited renal cystadenoma growth in Tsc2+/- mice, consistent with increased ASAH1 expression and activity being rapamycin insensitive. Collectively, the present study identifies rapamycin-insensitive ASAH1 upregulation in TSC2-null cells and tumors and provides evidence that targeting aberrant sphingolipid biosynthesis pathways has potential therapeutic value in mechanistic target of rapamycin complex 1-hyperactive neoplasms, including TSC and LAM.
Collapse
Affiliation(s)
- Aristotelis Astrinidis
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Chenggang Li
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Erik Y. Zhang
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Xueheng Zhao
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Shuyang Zhao
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Minzhe Guo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tasnim Olatoke
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Ushodaya Mattam
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Rong Huang
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Alan G. Zhang
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Lori Pitstick
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth J. Kopras
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nishant Gupta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Roman Jandarov
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Eric P. Smith
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth Fugate
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Diana Lindquist
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Maciej M. Markiewski
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Magdalena Karbowniczek
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, Texas, USA
| | - Kathryn A. Wikenheiser-Brokamp
- Division of Pathology and Laboratory Medicine; Division of Pulmonary Medicine; and Division of Pulmonary Biology, Section of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kenneth D. R. Setchell
- Clinical Mass Spectrometry Laboratory, Division of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Francis X. McCormack
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yan Xu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Divisions of Pulmonary Biology and Biomedical Informatics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jane J. Yu
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
28
|
Gupta N, Zhang B, Zhou Y, McCormack FX, Ingledue R, Robbins N, Kopras EJ, McMahan S, Singla A, Swigris J, Cole AG, Holz MK. Safety and Efficacy of Combined Resveratrol and Sirolimus in Lymphangioleiomyomatosis. Chest 2023; 163:1144-1155. [PMID: 36642366 PMCID: PMC10206511 DOI: 10.1016/j.chest.2023.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND A critical need exists to develop remission-inducing therapies for lymphangioleiomyomatosis. RESEARCH QUESTION Is the addition of resveratrol safe and more efficacious than sirolimus alone in patients with lymphangioleiomyomatosis? STUDY DESIGN AND METHODS We conducted a phase 2, dose-escalating, open-label trial of resveratrol in patients with lymphangioleiomyomatosis receiving a stable regimen of sirolimus. Resveratrol was started at 250 mg/d and escalated every 8 weeks to maximum dose of 1,000 mg/d over 24 weeks. The primary outcome was ≥ 42% decline in serum vascular endothelial growth factor D (VEGF-D) levels on combined therapy compared with baseline VEGF-D levels on sirolimus. Secondary objectives included an assessment of the safety profile and the effect on lung function and health-related quality of life (HRQOL). Longitudinal change in outcome measures was assessed using linear mixed models. Adverse effects were tabulated using the National Cancer Institute's Common Terminology Criteria for Adverse Events version 4. RESULTS Twenty-five patients with lymphangioleiomyomatosis with a median age of 51 years were enrolled. Pulmonary function parameters at study inclusion were: FEV1: median absolute, 1.72 L; 64% predicted; FVC: median absolute, 2.99 L; 96% predicted; and diffusing capacity of the lungs for carbon monoxide: median absolute, 14.68 mL/mm Hg/min; 37% predicted. The median serum VEGF-D value at baseline was 617 pg/mL. Patients entered the study with a median sirolimus dose of 2 mg/d with median trough level of 6.3 ng/mL. Despite some GI side effects, the addition of resveratrol was well tolerated. Although the primary outcome was not met, a statistically significant reduction in serum VEGF-D levels and improvement in HRQOL during the study was found. INTERPRETATION The addition of resveratrol was safe and well tolerated in patients with lymphangioleiomyomatosis taking sirolimus and was associated with modest improvement in HRQOL. Larger controlled trials of this combination might be warranted to assess definitively the usefulness of resveratrol as an additive therapy in lymphangioleiomyomatosis. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT03253913; URL: www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
- Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH; Medical Service, Veterans Affairs Medical Center, Cincinnati, OH.
| | - Bin Zhang
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Yuan Zhou
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH
| | - Francis X McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH; Medical Service, Veterans Affairs Medical Center, Cincinnati, OH
| | - Rebecca Ingledue
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH
| | - Nathan Robbins
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Elizabeth J Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH
| | - Susan McMahan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH
| | - Abhishek Singla
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH
| | - Jeffrey Swigris
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Adam G Cole
- Division of Pulmonary and Critical Care Medicine, Lexington VA Medical Center, Lexington, KY; Department of Medicine, University of Kentucky College of Medicine, Lexington, KY
| | - Marina K Holz
- Department of Cell Biology and Anatomy, New York Medical College, New York, NY
| |
Collapse
|
29
|
Koslow M, Lynch DA, Cool CD, Groshong SD, Downey GP. Lymphangioleiomyomatosis and Other Cystic Lung Diseases. Immunol Allergy Clin North Am 2023; 43:359-377. [PMID: 37055093 PMCID: PMC10863428 DOI: 10.1016/j.iac.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Cysts and cavities in the lung are commonly encountered on chest imaging. It is necessary to distinguish thin-walled lung cysts (≤2 mm) from cavities and characterize their distribution as focal or multifocal versus diffuse. Focal cavitary lesions are often caused by inflammatory, infectious, or neoplastic processes in contrast to diffuse cystic lung diseases. An algorithmic approach to diffuse cystic lung disease can help narrow the differential diagnosis, and additional testing such as skin biopsy, serum biomarkers, and genetic testing can be confirmatory. An accurate diagnosis is essential for the management and disease surveillance of extrapulmonary complications.
Collapse
Affiliation(s)
- Matthew Koslow
- Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA; Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.
| | - David A Lynch
- Department of Radiology, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado School of Medicine Anschutz Medical Campus, 13001 E 17th Pl, Aurora, CO 80045, USA; Division of Pathology, Department of Medicine, National Jewish Health, Denver, CO, USA
| | - Steve D Groshong
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA
| | - Gregory P Downey
- Department of Medicine, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA; Department of Pediatrics, National Jewish Health; Department of Immunology and Genomic Medicine, National Jewish Health
| |
Collapse
|
30
|
Gupta N, McCarthy C. Recommendations for the diagnosis and management of LAM: Looking towards the future. Respir Med Res 2023; 83:101016. [PMID: 37087907 DOI: 10.1016/j.resmer.2023.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Nishant Gupta
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA; Medical Service, Veterans Affairs Medical Center, Cincinnati, OH, USA.
| | - Cormac McCarthy
- Department of Respiratory Medicine, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
31
|
Minor BMN, LeMoine D, Seger C, Gibbons E, Koudouovoh J, Taya M, Kurtz D, Xu Y, Hammes SR. Estradiol Augments Tumor-Induced Neutrophil Production to Promote Tumor Cell Actions in Lymphangioleiomyomatosis Models. Endocrinology 2023; 164:bqad061. [PMID: 37042477 PMCID: PMC10164661 DOI: 10.1210/endocr/bqad061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 04/13/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease caused by smooth muscle cell-like tumors containing tuberous sclerosis (TSC) gene mutations and found almost exclusively in females. Patient studies suggest LAM progression is estrogen dependent, an observation supported by in vivo mouse models. However, in vitro data using TSC-null cell lines demonstrate modest estradiol (E2) responses, suggesting E2 effects in vivo may involve pathways independent of direct tumor stimulation. We previously reported tumor-dependent neutrophil expansion and promotion of TSC2-null tumor growth in an E2-sensitive LAM mouse model. We therefore hypothesized that E2 stimulates tumor growth in part by promoting neutrophil production. Here we report that E2-enhanced lung colonization of TSC2-null cells is indeed dependent on neutrophils. We demonstrate that E2 induces granulopoiesis via estrogen receptor α in male and female bone marrow cultures. With our novel TSC2-null mouse myometrial cell line, we show that factors released from these cells drive E2-sensitive neutrophil production. Last, we analyzed single-cell RNA sequencing data from LAM patients and demonstrate the presence of tumor-activated neutrophils. Our data suggest a powerful positive feedback loop whereby E2 and tumor factors induce neutrophil expansion, which in turn intensifies tumor growth and production of neutrophil-stimulating factors, resulting in continued TSC2-null tumor growth.
Collapse
Affiliation(s)
- Briaunna M N Minor
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dana LeMoine
- Division of Comparative Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christina Seger
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Erin Gibbons
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jules Koudouovoh
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Manisha Taya
- Division of Hematology and Oncology, Department of Internal Medicine, UTSW Medical Center, Dallas, TX 75390, USA
| | - Daniel Kurtz
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yan Xu
- Divisions of Pulmonary Biology & Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
32
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
33
|
Abstract
The human lung cellular portfolio, traditionally characterized by cellular morphology and individual markers, is highly diverse, with over 40 cell types and a complex branching structure highly adapted for agile airflow and gas exchange. While constant during adulthood, lung cellular content changes in response to exposure, injury, and infection. Some changes are temporary, but others are persistent, leading to structural changes and progressive lung disease. The recent advance of single-cell profiling technologies allows an unprecedented level of detail and scale to cellular measurements, leading to the rise of comprehensive cell atlas styles of reporting. In this review, we chronical the rise of cell atlases and explore their contributions to human lung biology in health and disease.
Collapse
Affiliation(s)
- Taylor S Adams
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| | - Arnaud Marlier
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA;
| |
Collapse
|
34
|
Revilla-López E, Ruiz de Miguel V, López-Meseguer M, Berastegui C, Boada-Pérez M, Mendoza-Valderrey A, Arjona-Peris M, Zapata-Ortega M, Monforte V, Bravo C, Roman A, Gómez-Ollés S, Sáez-Giménez B. Lymphangioleiomyomatosis: Searching for potential biomarkers. Front Med (Lausanne) 2023; 10:1079317. [PMID: 36817769 PMCID: PMC9931739 DOI: 10.3389/fmed.2023.1079317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background Vascular endothelial growth factor-D (VEGF-D) is the most commonly used biomarker for diagnosing lymphangioleiomyomatosis (LAM). However, lung biopsy is often necessary as well; therefore, defining new biomarkers for LAM is crucial. The aim of this study was to describe the diagnostic accuracy of a variety of biomarkers. Methods We assessed 13 analytes in serum related to extracellular matrix remodeling, lymphatic involvement and angiogenesis in a cohort of patients with LAM, comparing them with patients with other cystic lung diseases (OCLD) and healthy women. A scoring method based on the cut-point of each VEGF-D and metalloproteinase-2 (MMP-2) was used to evaluate the diagnostic performance of the marker combination. Results A total of 97 subjects were recruited: 59 (61%) LAM patients, 18 (19%) OCLD patients, and 20 (20%) healthy female controls. MMP-2 was the only extracellular matrix remodeling biomarker able to differentiate LAM patients from OCLD and healthy patients. Serum MMP-2 was higher in LAM patients [median 578 (465-832) ng/ml] than in patients with OCLD and healthy controls [medians 360 (314-546) and 427 (365-513) ng/ml, respectively (p < 0.0001)]. The area under ROC curve (AUC) of MMP-2 was 0.785 and that of VEGF-D 0.815 (p = 0.6214). The sensitivity/specificity profiles of each biomarker (54/92% for MMP-2, 59/95% for VEGF-D) yielded a composite score (-6.36 + 0.0059 × VEGF-D + 0.0069 × MMP-2) with higher accuracy than each component alone (AUC 0.88 and sensitivity/specificity 79/87%). Conclusion Combining MMP-2 and VEGF-D may increase diagnostic accuracy for LAM.
Collapse
Affiliation(s)
- Eva Revilla-López
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Manuel López-Meseguer
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Cristina Berastegui
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | | | | | - Marta Arjona-Peris
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Marta Zapata-Ortega
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Victor Monforte
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Bravo
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Roman
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Gómez-Ollés
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain,Department of Pulmonology, Vall d’Hebron Institut de Recerca, Barcelona, Spain,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain,*Correspondence: Susana Gómez-Ollés,
| | - Berta Sáez-Giménez
- Lung Transplant Program, Department of Pulmonology, Hospital Universitari Vall d’Hebron, Barcelona, Spain,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
35
|
Kundu N, Holz MK. Lymphangioleiomyomatosis: a metastatic lung disease. Am J Physiol Cell Physiol 2023; 324:C320-C326. [PMID: 36571446 PMCID: PMC9886342 DOI: 10.1152/ajpcell.00202.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare disease affecting women, caused by somatic mutations in the TSC1 or TSC2 genes, and driven by estrogen. Similar to many cancers, it is metastatic, primarily to the lung. Despite its monogenetic nature, like many cancers, LAM is a heterogeneous disease. The cellular constituents of LAM are very diverse, including mesenchymal, epithelial, endothelial, and immune cells. LAM is characterized by dysregulation of many cell signaling pathways, distinct populations of LAM cells, and a rich microenvironment, in which the immune system appears to play an important role. This review delineates the heterogeneity of LAM and focuses on the metastatic features of LAM, the deregulated signaling mechanisms and the tumor microenvironment. Understanding the tumor-host interaction in LAM may provide insights into the development of new therapeutic strategies, which could be combinatorial or superlative to Sirolimus, the current U.S. Food and Drug Administration-approved treatment.
Collapse
Affiliation(s)
- Nandini Kundu
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
| | - Marina K Holz
- Department of Cell Biology and Anatomy, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
- Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, New York Medical College, Valhalla, New York
| |
Collapse
|
36
|
Du Y, Guo M, Wu Y, Wagner A, Perl AK, Wikenheiser-Brokamp K, Yu J, Gupta N, Kopras E, Krymskaya V, Obraztsova K, Tang Y, Kwiatkowski D, Henske EP, McCormack F, Xu Y. Lymphangioleiomyomatosis (LAM) Cell Atlas. Thorax 2023; 78:85-87. [PMID: 36599466 PMCID: PMC10280816 DOI: 10.1136/thoraxjnl-2022-218772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare lung disease of women, causing cystic remodelling of the lung and progressive respiratory failure. The cellular composition, microenvironment and cellular interactions within the LAM lesion remain unclear. To facilitate data sharing and collaborative LAM research, we performed an integrative analysis of single-cell data compiled from lung, uterus and kidney of patients with LAM from three research centres and developed an LAM Cell Atlas (LCA) Web-Portal. The LCA offers a variety of interactive options for investigators to search, visualise and reanalyse comprehensive single-cell multiomics data sets to reveal dysregulated genetic programmes at transcriptomic, epigenomic and cell-cell connectome levels.
Collapse
Affiliation(s)
- Yina Du
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Minzhe Guo
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yixin Wu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrew Wagner
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Anne Karina Perl
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Kathryn Wikenheiser-Brokamp
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jane Yu
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nishant Gupta
- University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elizabeth Kopras
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vera Krymskaya
- Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Kseniya Obraztsova
- Division of Pulmonary, Allergy, and Critical Care Medicine, Lung Biology Institute, Perelman School of Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yan Tang
- Division of Pulmonary and Critical Care Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - David Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Francis McCormack
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Yan Xu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
37
|
Warrior K, Dilling DF. Lung transplantation for lymphangioleiomyomatosis. J Heart Lung Transplant 2023; 42:40-52. [PMID: 36334961 DOI: 10.1016/j.healun.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/25/2022] [Accepted: 09/27/2022] [Indexed: 12/23/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare cystic lung disease, associated with respiratory symptoms of dyspnea and spontaneous pneumothorax, along with various extra-thoracic manifestations. Often a progressive disease, albeit slowly, patients can develop chronic and severe respiratory failure and require supplemental oxygen. Lung transplantation (LTX) can offer improved duration and quality of life for patients with end-stage lung disease due to LAM. There are several unique considerations for LTX in LAM patients, and disease-specific complications of LAM prior to LTX can affect management decisions. Furthermore, there are several possible post-transplant issues specific to LAM. In this review, we discuss evaluation and management, disease-specific complications (both pre- and post-transplant), and outcomes for LAM patients undergoing lung transplantation.
Collapse
Affiliation(s)
- Krishnan Warrior
- Division of Pulmonary and Critical Care, Loyola University Chicago, Stritch School of Medicine, Maywood, IL
| | - Daniel F Dilling
- Division of Pulmonary and Critical Care, Loyola University Chicago, Stritch School of Medicine, Maywood, IL.
| |
Collapse
|
38
|
Wang Z, Liu X, Wang W, Xu J, Sun H, Wei J, Yu Y, Zhao Y, Wang X, Liao Z, Sun W, Jia L, Zhang Y. UPLC-MS based integrated plasma proteomic and metabolomic profiling of TSC-RAML and its relationship with everolimus treatment. Front Mol Biosci 2023; 10:1000248. [PMID: 36891236 PMCID: PMC9986496 DOI: 10.3389/fmolb.2023.1000248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Aim: To profile the plasma proteomics and metabolomics of patients with renal cysts, sporadic angiomyolipoma (S-AML) and tuberous sclerosis complex related angiomyolipoma (TSC-RAML) before and after everolimus treatment, and to find potential diagnostic and prognostic biomarkers as well as reveal the underlying mechanism of TSC tumorigenesis. Materials and Methods: We retrospectively measured the plasma proteins and metabolites from November 2016 to November 2017 in a cohort of pre-treatment and post-treatment TSC-RAML patients and compared them with renal cyst and S-AML patients by ultra-performance liquid chromatography-mass spectrometer (UPLC-MS). The tumor reduction rates of TSC-RAML were assessed and correlated with the plasma protein and metabolite levels. In addition, functional analysis based on differentially expressed molecules was performed to reveal the underlying mechanisms. Results: Eighty-five patients with one hundred and ten plasma samples were enrolled in our study. Multiple proteins and metabolites, such as pre-melanosome protein (PMEL) and S-adenosylmethionine (SAM), demonstrated both diagnostic and prognostic effects. Functional analysis revealed many dysregulated pathways, including angiogenesis synthesis, smooth muscle proliferation and migration, amino acid metabolism and glycerophospholipid metabolism. Conclusion: The plasma proteomics and metabolomics pattern of TSC-RAML was clearly different from that of other renal tumors, and the differentially expressed plasma molecules could be used as prognostic and diagnostic biomarkers. The dysregulated pathways, such as angiogenesis and amino acid metabolism, may shed new light on the treatment of TSC-RAML.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Liu
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiyu Xu
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Haidan Sun
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wei
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yuncui Yu
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhangcheng Liao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wei Sun
- School of Basic Medical College, Core facility of instrument, Institution of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Lulu Jia
- Clinical Research Center, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
39
|
Zhang H, Hu Z, Wang S, Wu K, Yang Q, Song X. Clinical features and outcomes of male patients with lymphangioleiomyomatosis: A review. Medicine (Baltimore) 2022; 101:e32492. [PMID: 36596036 PMCID: PMC9803497 DOI: 10.1097/md.0000000000032492] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lymphangioleiomyomatosis (LAM) is a rare disease involving multiple systems, which is divided into sporadic LAM (S-LAM) and tuberous sclerosis complex-LAM, mostly affecting women who are in childbearing age stage. Data on male patients are limited and scattered. Therefore, it is necessary to conduct a systematic review to investigate the clinical features, diagnosis, treatment, and outcomes of LAM in male. METHODS We performed a literature review by searching for all the published reported cases of LAM in male during the past 35 years (April 1986-October 2021). RESULTS 36 male patients described in 26 references were included in this article. The median age of onset was 34 years (interquartile range: 1-79). The most common initial manifestations were cough, dyspnea, respite, and hemoptysis, with pulmonary complications such as pneumothorax and chylothorax. Five patients (13.9%) were asymptomatic at admission. Nearly half of the 36 male patients had thin-walled air-filled cysts that were visible throughout both lungs. Considering the abovementioned atypical clinical features, misdiagnosis was committed in 8 patients (22.2%). In addition, patients with tuberous sclerosis complex lymphangioleiomyomatosis often have no pulmonary manifestations at onset but present multiple extrapulmonary manifestations and have higher rates of renal angiomyolipomas than patients with S-LAM (P < 0.01). Eventually, 4 patients with S-LAM eventually died. CONCLUSION Physicians should increase the awareness of LAM in male. Early monitoring of various systems should be recommended to ensure early management and active follow-up. Tuberous sclerosis complex patients should immediately be tracked for the onset of LAM disease to improve prognosis.
Collapse
Affiliation(s)
- Haoyu Zhang
- Department of Respiratory and Critical Care Medicine, the first College of Clinical Medicine science, China Three Gorges University, Yichang, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital., Wuhan, Hubei, China
| | - Zhigang Hu
- Department of Respiratory and Critical Care Medicine, the first College of Clinical Medicine science, China Three Gorges University, Yichang, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital., Wuhan, Hubei, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kanhao Wu
- Department of Respiratory and Critical Care Medicine, the first College of Clinical Medicine science, China Three Gorges University, Yichang, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital., Wuhan, Hubei, China
| | - Qiaoyu Yang
- Department of Respiratory and Critical Care Medicine, the first College of Clinical Medicine science, China Three Gorges University, Yichang, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital., Wuhan, Hubei, China
| | - Xinyu Song
- Department of Respiratory and Critical Care Medicine, the first College of Clinical Medicine science, China Three Gorges University, Yichang, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Yichang Central People’s Hospital., Wuhan, Hubei, China
- * Correspondence: Xinyu Song, Department of Respiratory and Critical Care Medicine, the first College of Clinical Medicine science, Three Gorges University, NO. 183 Yiling Road, Yichang 443003. People’s Republic of China (e-mail: )
| |
Collapse
|
40
|
Yu JJ, Goncharova EA. mTOR Signaling Network in Cell Biology and Human Disease. Int J Mol Sci 2022; 23:ijms232416142. [PMID: 36555783 PMCID: PMC9787689 DOI: 10.3390/ijms232416142] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a serine/threonine protein kinase that regulates multiple processes, including gene transcription, protein synthesis, ribosome biogenesis, autophagy, cell metabolism, and cell growth [...].
Collapse
Affiliation(s)
- Jane J. Yu
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Elena A. Goncharova
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Lung Center, School of Medicine, University of California Davis, Davis, CA 95616, USA
- Correspondence: ; Tel.: 530-752-9405
| |
Collapse
|
41
|
Huang J, Xu W, Liu P, Liu Y, Shen C, Liu S, Wang Y, Wang J, Zhang T, He Y, Cheng C, Yang L, Zhang W, Tian X, Xu KF. Gene mutations in sporadic lymphangioleiomyomatosis and genotype–phenotype correlation analysis. BMC Pulm Med 2022; 22:354. [PMID: 36117164 PMCID: PMC9482747 DOI: 10.1186/s12890-022-02154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background Sporadic lymphangioleiomyomatosis (S-LAM) is a rare neoplasm with heterogeneous clinical features that is conventionally considered to be related to TSC2. This study serves to elucidate the mutation landscape and potential correlation between S-LAM genomic profiles and clinical phenotypes. Methods Genomic profiles of 22 S-LAM patients were obtained by sequencing genomic DNA and cell-free DNA from various specimens using an NGS (next-generation sequencing)-based tumor-driver gene panel. Detected mutations were summarized. Symptoms, serum vascular endothelial growth factor D (VEGF-D) values, pulmonary function, and six-minute walk distance (6MWD) were compared among groups with different TSC2 status and genotypes to analyze genotype–phenotype correlations. Results 67 Variants in 43 genes were detected, with a TSC2 mutation detection rate of 68.2%. The TSC2 detection rate was similar in specimens obtained either through transbronchial lung biopsy (TBLB) or surgical lung biopsy (70.0% vs. 69.2%, p > 0.05). A novel mutation in VEZF1 (c.A659G) was detected in four participants and may represent a mild disease state. TSC2 mutation was significantly related to a shorter 6MWD (p < 0.05), and a higher percentage of VEGF-D over 800 pg/mL (p < 0.05); stop-gain mutation was significantly related to a higher prevalence of pneumothorax. Conclusions Tumor-driver mutations in genes other than TSC2 may have a role in S-LAM, and TBLB specimens are practical alternatives for genomic analysis. TSC2 mutation detectability and types are related to the disease severity and phenotypes of S-LAM. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02154-0.
Collapse
|
42
|
Shaw BM, Kopras E, Gupta N. Menstrual Cycle-related Respiratory Symptom Variability in Patients with Lymphangioleiomyomatosis. Ann Am Thorac Soc 2022; 19:1619-1621. [PMID: 35649208 DOI: 10.1513/annalsats.202202-144rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Nishant Gupta
- University of Cincinnati Cincinnati, Ohio
- Medical Service, Veterans Affairs Medical Center Cincinnati, Ohio
| |
Collapse
|
43
|
Tang Y, Kwiatkowski DJ, Henske EP. Midkine expression by stem-like tumor cells drives persistence to mTOR inhibition and an immune-suppressive microenvironment. Nat Commun 2022; 13:5018. [PMID: 36028490 PMCID: PMC9418323 DOI: 10.1038/s41467-022-32673-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Abstract
mTORC1 is hyperactive in multiple cancer types1,2. Here, we performed integrative analysis of single cell transcriptomic profiling, paired T cell receptor (TCR) sequencing, and spatial transcriptomic profiling on Tuberous Sclerosis Complex (TSC) associated tumors with mTORC1 hyperactivity, and identified a stem-like tumor cell state (SLS) linked to T cell dysfunction via tumor-modulated immunosuppressive macrophages. Rapamycin and its derivatives (rapalogs) are the primary treatments for TSC tumors, and the stem-like tumor cells showed rapamycin resistance in vitro, reminiscent of the cytostatic effects of these drugs in patients. The pro-angiogenic factor midkine (MDK) was highly expressed by the SLS population, and associated with enrichment of endothelial cells in SLS-dominant samples. Inhibition of MDK showed synergistic benefit with rapamycin in reducing the growth of TSC cell lines in vitro and in vivo. In aggregate, this study suggests an autocrine rapamycin resistance mechanism and a paracrine tumor survival mechanism via immune suppression adopted by the stem-like state tumor cells with mTORC1 hyperactivity.
Collapse
Affiliation(s)
- Yan Tang
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - David J Kwiatkowski
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Kirkpatrick JD, Soleimany AP, Dudani JS, Liu HJ, Lam HC, Priolo C, Henske EP, Bhatia SN. Protease activity sensors enable real-time treatment response monitoring in lymphangioleiomyomatosis. Eur Respir J 2022; 59:2100664. [PMID: 34561286 PMCID: PMC9030069 DOI: 10.1183/13993003.00664-2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/14/2021] [Indexed: 11/14/2022]
Abstract
BACKGROUND Biomarkers of disease progression and treatment response are urgently needed for patients with lymphangioleiomyomatosis (LAM). Activity-based nanosensors, an emerging biosensor class, detect dysregulated proteases in vivo and release a reporter to provide a urinary readout of disease. Because proteases are dysregulated in LAM and may directly contribute to lung function decline, activity-based nanosensors may enable quantitative, real-time monitoring of LAM progression and treatment response. We aimed to assess the diagnostic utility of activity-based nanosensors in a pre-clinical model of pulmonary LAM. METHODS Tsc2-null cells were injected intravenously into female nude mice to establish a mouse model of pulmonary LAM. A library of 14 activity-based nanosensors, designed to detect proteases across multiple catalytic classes, was administered into the lungs of LAM mice and healthy controls, urine was collected, and mass spectrometry was performed to measure nanosensor cleavage products. Mice were then treated with rapamycin and monitored with activity-based nanosensors. Machine learning was performed to distinguish diseased from healthy and treated from untreated mice. RESULTS Multiple activity-based nanosensors (PP03 (cleaved by metallo, aspartic and cysteine proteases), padjusted<0.0001; PP10 (cleaved by serine, aspartic and cysteine proteases), padjusted=0.017)) were differentially cleaved in diseased and healthy lungs, enabling strong classification with a machine learning model (area under the curve (AUC) 0.95 from healthy). Within 2 days after rapamycin initiation, we observed normalisation of PP03 and PP10 cleavage, and machine learning enabled accurate classification of treatment response (AUC 0.94 from untreated). CONCLUSIONS Activity-based nanosensors enable noninvasive, real-time monitoring of disease burden and treatment response in a pre-clinical model of LAM.
Collapse
Affiliation(s)
- Jesse D Kirkpatrick
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ava P Soleimany
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Harvard University, Boston, MA, USA
- Microsoft Research New England, Cambridge, MA, USA
| | - Jaideep S Dudani
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dept of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Heng-Jia Liu
- Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hilaire C Lam
- Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Carmen Priolo
- Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Dept of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- E.P. Henske and S.N. Bhatia co-supervised the study
| | - Sangeeta N Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Dept of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dept of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Wyss Institute at Harvard, Boston, MA, USA
- E.P. Henske and S.N. Bhatia co-supervised the study
| |
Collapse
|
45
|
Shrestha S, Lamattina A, Pacheco-Rodriguez G, Ng J, Liu X, Sonawane A, Imani J, Qiu W, Kosmas K, Louis P, Hentschel A, Steagall WK, Onishi R, Christou H, Henske EP, Glass K, Perrella MA, Moss J, Tantisira K, El-Chemaly S. ETV2 regulates PARP-1 binding protein to induce ER stress-mediated death in tuberin-deficient cells. Life Sci Alliance 2022; 5:5/5/e202201369. [PMID: 35181635 PMCID: PMC8860090 DOI: 10.26508/lsa.202201369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare progressive disease, characterized by mutations in the tuberous sclerosis complex genes (TSC1 or TSC2) and hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1). Here, we report that E26 transformation-specific (ETS) variant transcription factor 2 (ETV2) is a critical regulator of Tsc2-deficient cell survival. ETV2 nuclear localization in Tsc2-deficient cells is mTORC1-independent and is enhanced by spleen tyrosine kinase (Syk) inhibition. In the nucleus, ETV2 transcriptionally regulates poly(ADP-ribose) polymerase 1 binding protein (PARPBP) mRNA and protein expression, partially reversing the observed down-regulation of PARPBP expression induced by mTORC1 blockade during treatment with both Syk and mTORC1 inhibitors. In addition, silencing Etv2 or Parpbp in Tsc2-deficient cells induced ER stress and increased cell death in vitro and in vivo. We also found ETV2 expression in human cells with loss of heterozygosity for TSC2, lending support to the translational relevance of our findings. In conclusion, we report a novel ETV2 signaling axis unique to Syk inhibition that promotes a cytocidal response in Tsc2-deficient cells and therefore maybe a potential alternative therapeutic target in LAM.
Collapse
Affiliation(s)
- Shikshya Shrestha
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anthony Lamattina
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Gustavo Pacheco-Rodriguez
- Division of Intramural Research, Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Julie Ng
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abhijeet Sonawane
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
| | - Jewel Imani
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kosmas Kosmas
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pierce Louis
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Hentschel
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wendy K Steagall
- Division of Intramural Research, Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rieko Onishi
- Division of Intramural Research, Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Helen Christou
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Perrella
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joel Moss
- Division of Intramural Research, Pulmonary Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kelan Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Division of Pediatric Pulmonary and Critical Care Medicine, University of California San Diego, La Jolla, CA, USA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
46
|
Clements D, Miller S, Babaei-Jadidi R, Adam M, Potter SS, Johnson SR. Cross talk between LAM cells and fibroblasts may influence alveolar epithelial cell behavior in lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol 2022; 322:L283-L293. [PMID: 34936509 DOI: 10.1152/ajplung.00351.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a female-specific cystic lung disease in which tuberous sclerosis complex 2 (TSC2)-deficient LAM cells, LAM-associated fibroblasts (LAFs), and other cell types infiltrate the lungs. LAM lesions can be associated with type II alveolar epithelial (AT2) cells. We hypothesized that the behavior of AT2 cells in LAM is influenced locally by LAFs. We tested this hypothesis in the patient samples and in vitro. In human LAM lung, nodular AT2 cells show enhanced proliferation when compared with parenchymal AT2 cells, demonstrated by increased Ki67 expression. Furthermore, nodular AT2 cells express proteins associated with epithelial activation in other disease states including matrix metalloproteinase 7, and fibroblast growth factor 7 (FGF7). In vitro, LAF-conditioned medium is mitogenic and positively chemotactic for epithelial cells, increases the rate of epithelial repair, and protects against apoptosis. In vitro, LAM patient-derived TSC2 null cells cocultured with LAFs upregulate LAF expression of the epithelial chemokine and mitogen FGF7, a potential mediator of fibroblast-epithelial cross talk, in a mechanistic target of rapamycin (mTOR)-dependent manner. In a novel in vitro model of LAM, ex vivo cultured LAM lung-derived microtissues promote both epithelial migration and adhesion. Our findings suggest that AT2 cells in LAM display a proliferative, activated phenotype and fibroblast accumulation following LAM cell infiltration into the parenchyma contributes to this change in AT2 cell behavior. Fibroblast-derived FGF7 may contribute to the cross talk between LAFs and hyperplastic epithelium in vivo, but does not appear to be the main driver of the effects of LAFs on epithelial cells in vitro.
Collapse
Affiliation(s)
- Debbie Clements
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Suzanne Miller
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Roya Babaei-Jadidi
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, Ohio
| | - Simon R Johnson
- Translational Medical Sciences, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
- NIHR Biomedical Research Centre, University of Nottingham, Nottingham, United Kingdom
- National Centre for Lymphangioleiomyomatosis, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| |
Collapse
|
47
|
McCarthy C, Gupta N, Johnson SR, Yu JJ, McCormack FX. Lymphangioleiomyomatosis: pathogenesis, clinical features, diagnosis, and management. THE LANCET. RESPIRATORY MEDICINE 2021; 9:1313-1327. [PMID: 34461049 DOI: 10.1016/s2213-2600(21)00228-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023]
Abstract
Lymphangioleiomyomatosis (LAM) is a slowly progressive, low-grade, metastasising neoplasm of women, characterised by infiltration of the lung parenchyma with abnormal smooth muscle-like cells, resulting in cystic lung destruction. The invading cell in LAM arises from an unknown source and harbours mutations in tuberous sclerosis complex (TSC) genes that result in constitutive activation of the mechanistic target of rapamycin (mTOR) pathway, dysregulated cellular proliferation, and a programme of frustrated lymphangiogenesis, culminating in disordered lung remodelling and respiratory failure. Over the past two decades, all facets of LAM basic and clinical science have seen important advances, including improved understanding of molecular mechanisms, novel diagnostic and prognostic biomarkers, effective treatment strategies, and comprehensive clinical practice guidelines. Further research is needed to better understand the natural history of LAM; develop more powerful diagnostic, prognostic, and predictive biomarkers; optimise the use of inhibitors of mTOR complex 1 in the treatment of LAM; and explore novel approaches to the development of remission-inducing therapies.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Respiratory Medicine, St Vincent's University Hospital, University College Dublin, Dublin, Ireland.
| | - Nishant Gupta
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Simon R Johnson
- Division of Respiratory Medicine, University of Nottingham, NIHR Respiratory Biomedical Research Centre, Nottingham, UK
| | - Jane J Yu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Francis X McCormack
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
48
|
Espín R, Baiges A, Blommaert E, Herranz C, Roman A, Saez B, Ancochea J, Valenzuela C, Ussetti P, Laporta R, Rodríguez-Portal JA, van Moorsel CHM, van der Vis JJ, Quanjel MJR, Villar-Piqué A, Diaz-Lucena D, Llorens F, Casanova Á, Molina-Molina M, Plass M, Mateo F, Moss J, Pujana MA. Heterogeneity and Cancer-Related Features in Lymphangioleiomyomatosis Cells and Tissue. Mol Cancer Res 2021; 19:1840-1853. [PMID: 34312290 PMCID: PMC8568632 DOI: 10.1158/1541-7786.mcr-21-0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, low-grade metastasizing disease characterized by cystic lung destruction. LAM can exhibit extensive heterogeneity at the molecular, cellular, and tissue levels. However, the molecular similarities and differences among LAM cells and tissue, and their connection to cancer features are not fully understood. By integrating complementary gene and protein LAM signatures, and single-cell and bulk tissue transcriptome profiles, we show sources of disease heterogeneity, and how they correspond to cancer molecular portraits. Subsets of LAM diseased cells differ with respect to gene expression profiles related to hormones, metabolism, proliferation, and stemness. Phenotypic diseased cell differences are identified by evaluating lumican (LUM) proteoglycan and YB1 transcription factor expression in LAM lung lesions. The RUNX1 and IRF1 transcription factors are predicted to regulate LAM cell signatures, and both regulators are expressed in LAM lung lesions, with differences between spindle-like and epithelioid LAM cells. The cancer single-cell transcriptome profiles most similar to those of LAM cells include a breast cancer mesenchymal cell model and lines derived from pleural mesotheliomas. Heterogeneity is also found in LAM lung tissue, where it is mainly determined by immune system factors. Variable expression of the multifunctional innate immunity protein LCN2 is linked to disease heterogeneity. This protein is found to be more abundant in blood plasma from LAM patients than from healthy women. IMPLICATIONS: This study identifies LAM molecular and cellular features, master regulators, cancer similarities, and potential causes of disease heterogeneity.
Collapse
Affiliation(s)
- Roderic Espín
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Eline Blommaert
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Carmen Herranz
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Antonio Roman
- Lung Transplant Unit, Pneumology Service, Lymphangioleiomyomatosis Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - Berta Saez
- Lung Transplant Unit, Pneumology Service, Lymphangioleiomyomatosis Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - Julio Ancochea
- Pneumology Service, University Hospital La Princesa, La Princesa Research Institute (IIS-IP), Madrid, Spain
| | - Claudia Valenzuela
- Pneumology Service, University Hospital La Princesa, La Princesa Research Institute (IIS-IP), Madrid, Spain
| | - Piedad Ussetti
- Pneumology Service, University Hospital Clínica Puerta del Hierro, Majadahonda, Madrid, Spain
| | - Rosalía Laporta
- Pneumology Service, University Hospital Clínica Puerta del Hierro, Majadahonda, Madrid, Spain
| | - José A Rodríguez-Portal
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBiS), Seville, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Coline H M van Moorsel
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Joanne J van der Vis
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Marian J R Quanjel
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Anna Villar-Piqué
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniela Diaz-Lucena
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Franc Llorens
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Álvaro Casanova
- Pneumology Service, University Hospital of Henares, University Francisco de Vitoria, Coslada, Madrid, Spain
| | - María Molina-Molina
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Interstitial Lung Disease Unit, Department of Respiratory Medicine, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Mireya Plass
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain.
| |
Collapse
|
49
|
Farré X, Espín R, Baiges A, Blommaert E, Kim W, Giannikou K, Herranz C, Román A, Sáez B, Casanova Á, Ancochea J, Valenzuela C, Ussetti P, Laporta R, Rodríguez-Portal JA, van Moorsel CH, van der Vis JJ, Quanjel MJ, Tena-Garitaonaindia M, Sánchez de Medina F, Mateo F, Molina-Molina M, Won S, Kwiatkowski DJ, de Cid R, Pujana MA. Evidence for shared genetic risk factors between lymphangioleiomyomatosis and pulmonary function. ERJ Open Res 2021; 8:00375-2021. [PMID: 35083324 PMCID: PMC8784893 DOI: 10.1183/23120541.00375-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
IntroductionLymphangioleiomyomatosis (LAM) is a rare low-grade metastasising disease characterised by cystic lung destruction. The genetic basis of LAM remains incompletely determined, and the disease cell-of-origin is uncertain. We analysed the possibility of a shared genetic basis between LAM and cancer, and LAM and pulmonary function.MethodsThe results of genome-wide association studies of LAM, 17 cancer types and spirometry measures (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC ratio and peak expiratory flow (PEF)) were analysed for genetic correlations, shared genetic variants and causality. Genomic and transcriptomic data were examined, and immunodetection assays were performed to evaluate pleiotropic genes.ResultsThere were no significant overall genetic correlations between LAM and cancer, but LAM correlated negatively with FVC and PEF, and a trend in the same direction was observed for FEV1. 22 shared genetic variants were uncovered between LAM and pulmonary function, while seven shared variants were identified between LAM and cancer. The LAM-pulmonary function shared genetics identified four pleiotropic genes previously recognised in LAM single-cell transcriptomes: ADAM12, BNC2, NR2F2 and SP5. We had previously associated NR2F2 variants with LAM, and we identified its functional partner NR3C1 as another pleotropic factor. NR3C1 expression was confirmed in LAM lung lesions. Another candidate pleiotropic factor, CNTN2, was found more abundant in plasma of LAM patients than that of healthy women.ConclusionsThis study suggests the existence of a common genetic aetiology between LAM and pulmonary function.
Collapse
|
50
|
Interleukin-6 mediates PSAT1 expression and serine metabolism in TSC2-deficient cells. Proc Natl Acad Sci U S A 2021; 118:2101268118. [PMID: 34544857 DOI: 10.1073/pnas.2101268118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 01/31/2023] Open
Abstract
Tuberous sclerosis complex (TSC) and lymphangioleiomyomatosis (LAM) are caused by aberrant mechanistic Target of Rapamycin Complex 1 (mTORC1) activation due to loss of either TSC1 or TSC2 Cytokine profiling of TSC2-deficient LAM patient-derived cells revealed striking up-regulation of Interleukin-6 (IL-6). LAM patient plasma contained increased circulating IL-6 compared with healthy controls, and TSC2-deficient cells showed up-regulation of IL-6 transcription and secretion compared to wild-type cells. IL-6 blockade repressed the proliferation and migration of TSC2-deficient cells and reduced oxygen consumption and extracellular acidification. U-13C glucose tracing revealed that IL-6 knockout reduced 3-phosphoserine and serine production in TSC2-deficient cells, implicating IL-6 in de novo serine metabolism. IL-6 knockout reduced expression of phosphoserine aminotransferase 1 (PSAT1), an essential enzyme in serine biosynthesis. Importantly, recombinant IL-6 treatment rescued PSAT1 expression in the TSC2-deficient, IL-6 knockout clones selectively and had no effect on wild-type cells. Treatment with anti-IL-6 (αIL-6) antibody similarly reduced cell proliferation and migration and reduced renal tumors in Tsc2 +/- mice while reducing PSAT1 expression. These data reveal a mechanism through which IL-6 regulates serine biosynthesis, with potential relevance to the therapy of tumors with mTORC1 hyperactivity.
Collapse
|