1
|
Nikolic VN, Popadic V, Jankovic SM, Govedarović N, Vujić S, Andjelković J, Stosic LS, Stevanović NČ, Zdravkovic M, Todorovic Z. The silent predictors: exploring galectin-3 and Irisin's tale in severe COVID-19. BMC Res Notes 2024; 17:324. [PMID: 39465409 PMCID: PMC11514771 DOI: 10.1186/s13104-024-06978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the roles of galectin-3 and irisin as biomarkers in predicting severe outcomes in COVID-19 patients. RESULTS We analyzed serum levels of galectin-3 and irisin in 59 patients with severe COVID-19 and 30 healthy controls. Elevated galectin-3 levels were associated with increased risks of mortality, need for intensive care, and severe acute respiratory distress syndrome. The optimal cut-off value for galectin-3 was 13.47 ng/ml, with a sensitivity of 72.7% and specificity of 76.6%. Irisin levels did not differ significantly between survivors and non-survivors at admission or on the 3rd day post-admission, but approached significance on the 7th day. These findings suggest that galectin-3 could be a valuable prognostic biomarker for severe COVID-19 outcomes, while irisin's role remains to be clarified in further studies.
Collapse
Affiliation(s)
- Valentina N Nikolic
- Department of Pharmacology with Toxicology, University of Nis Faculty of Medicine, Bul. dr Zorana Djindjica 81 Nis, Nis, 18000, Serbia.
| | - Višeslav Popadic
- University Hospital Medical Center, Bezanijska kosa, Belgrade, Serbia
| | - Slobodan M Jankovic
- Department of Pharmacology and Toxicology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nenad Govedarović
- Department of Internal Medicine, University of Nis Faculty of Medicine, Nis, Serbia
| | - Stevan Vujić
- University of Nis Faculty of Medicine, Nis, Serbia
| | | | | | | | - Marija Zdravkovic
- University Hospital Medical Center, Bezanijska kosa, Belgrade, Serbia
- Department of Internal Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoran Todorovic
- University Hospital Medical Center, Bezanijska kosa, Belgrade, Serbia
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Jia Q, Yang Y, Yao S, Chen X, Hu Z. Emerging Roles of Galectin-3 in Pulmonary Diseases. Lung 2024; 202:385-403. [PMID: 38850292 DOI: 10.1007/s00408-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
Galectin-3 is a multifunctional protein that is involved in various physiological and pathological events. Emerging evidence suggests that galectin-3 also plays a critical role in the pathogenesis of pulmonary diseases. Galectin-3 can be produced and secreted by various cell types in the lungs, and the overexpression of galectin-3 has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. Galectin-3 exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis in these pulmonary disorders, and genetic and pharmacologic modulation of galectin-3 has therapeutic effects on the treatment of pulmonary illnesses. In this review, we summarize the structure and function of galectin-3 and the underlying mechanisms of galectin-3 in pulmonary disease pathologies; we also discuss preclinical and clinical evidence regarding the therapeutic potential of galectin-3 inhibitors in these pulmonary disorders. Additionally, targeting galectin-3 may be a very promising therapeutic approach for the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
3
|
Portacci A, Iorillo I, Maselli L, Amendolara M, Quaranta VN, Dragonieri S, Carpagnano GE. The Role of Galectins in Asthma Pathophysiology: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:4271-4285. [PMID: 38785528 PMCID: PMC11119966 DOI: 10.3390/cimb46050260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
Galectins are a group of β-galactoside-binding proteins with several roles in immune response, cellular adhesion, and inflammation development. Current evidence suggest that these proteins could play a crucial role in many respiratory diseases such as pulmonary fibrosis, lung cancer, and respiratory infections. From this standpoint, an increasing body of evidence have recognized galectins as potential biomarkers involved in several aspects of asthma pathophysiology. Among them, galectin-3 (Gal-3), galectin-9 (Gal-9), and galectin-10 (Gal-10) are the most extensively studied in human and animal asthma models. These galectins can affect T helper 2 (Th2) and non-Th2 inflammation, mucus production, airway responsiveness, and bronchial remodeling. Nevertheless, while higher Gal-3 and Gal-9 concentrations are associated with a stronger degree of Th-2 phlogosis, Gal-10, which forms Charcot-Leyden Crystals (CLCs), correlates with sputum eosinophilic count, interleukin-5 (IL-5) production, and immunoglobulin E (IgE) secretion. Finally, several galectins have shown potential in clinical response monitoring after inhaled corticosteroids (ICS) and biologic therapies, confirming their potential role as reliable biomarkers in patients with asthma.
Collapse
Affiliation(s)
- Andrea Portacci
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Ilaria Iorillo
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Leonardo Maselli
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Monica Amendolara
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | | | - Silvano Dragonieri
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| | - Giovanna Elisiana Carpagnano
- Institute of Respiratory Disease, Department of Translational Biomedicine and Neuroscience, University “Aldo Moro”, 70121 Bari, Italy; (I.I.); (L.M.); (M.A.); (S.D.); (G.E.C.)
| |
Collapse
|
4
|
Ding H, Lv J, Zhang XL, Xu Y, Zhang YH, Liu XW. Efficient O- and S-glycosylation with ortho-2,2-dimethoxycarbonylcyclopropylbenzyl thioglycoside donors by catalytic strain-release. Chem Sci 2024; 15:3711-3720. [PMID: 38455029 PMCID: PMC10915852 DOI: 10.1039/d3sc06619c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
We herein present a strain-release glycosylation method employing a rationally designed ortho-2,2-dimethoxycarbonylcyclopropylbenzyl (CCPB) thioglycoside donor. The donor is activated through the nucleophilic ring-opening of a remotely activable donor-acceptor cyclopropane (DAC) catalyzed by mild Sc(OTf)3. Our new glycosylation method efficiently synthesizes O-, N-, and S-glycosides, providing facile chemical access to the challenging S-glycosides. Because the activation conditions of conventional glycosyl donors and our CCPB thioglycoside are orthogonal, our novel donor is amenable to controlled one-pot glycosylation reactions with conventional donors for expeditious access to complex glycans. The strain-release glycosylation is applied to the assembly of a tetrasaccharide of O-polysaccharide of Escherichia coli O-33 in one pot and the synthesis of a 1,1'-S-linked glycoside oral galectin-3 (Gal-3) inhibitor, TD139, to demonstrate the versatility and effectiveness of the novel method for constructing both O- and S-glycosides.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Jian Lv
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Yu-Han Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China Qingdao Shandong 266003 China
| |
Collapse
|
5
|
Schuermans A, Truong B, Ardissino M, Bhukar R, Slob EAW, Nakao T, Dron JS, Small AM, Cho SMJ, Yu Z, Hornsby W, Antoine T, Lannery K, Postupaka D, Gray KJ, Yan Q, Butterworth AS, Burgess S, Wood MJ, Scott NS, Harrington CM, Sarma AA, Lau ES, Roh JD, Januzzi JL, Natarajan P, Honigberg MC. Genetic Associations of Circulating Cardiovascular Proteins With Gestational Hypertension and Preeclampsia. JAMA Cardiol 2024; 9:209-220. [PMID: 38170504 PMCID: PMC10765315 DOI: 10.1001/jamacardio.2023.4994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Importance Hypertensive disorders of pregnancy (HDPs), including gestational hypertension and preeclampsia, are important contributors to maternal morbidity and mortality worldwide. In addition, women with HDPs face an elevated long-term risk of cardiovascular disease. Objective To identify proteins in the circulation associated with HDPs. Design, Setting, and Participants Two-sample mendelian randomization (MR) tested the associations of genetic instruments for cardiovascular disease-related proteins with gestational hypertension and preeclampsia. In downstream analyses, a systematic review of observational data was conducted to evaluate the identified proteins' dynamics across gestation in hypertensive vs normotensive pregnancies, and phenome-wide MR analyses were performed to identify potential non-HDP-related effects associated with the prioritized proteins. Genetic association data for cardiovascular disease-related proteins were obtained from the Systematic and Combined Analysis of Olink Proteins (SCALLOP) consortium. Genetic association data for the HDPs were obtained from recent European-ancestry genome-wide association study meta-analyses for gestational hypertension and preeclampsia. Study data were analyzed October 2022 to October 2023. Exposures Genetic instruments for 90 candidate proteins implicated in cardiovascular diseases, constructed using cis-protein quantitative trait loci (cis-pQTLs). Main Outcomes and Measures Gestational hypertension and preeclampsia. Results Genetic association data for cardiovascular disease-related proteins were obtained from 21 758 participants from the SCALLOP consortium. Genetic association data for the HDPs were obtained from 393 238 female individuals (8636 cases and 384 602 controls) for gestational hypertension and 606 903 female individuals (16 032 cases and 590 871 controls) for preeclampsia. Seventy-five of 90 proteins (83.3%) had at least 1 valid cis-pQTL. Of those, 10 proteins (13.3%) were significantly associated with HDPs. Four were robust to sensitivity analyses for gestational hypertension (cluster of differentiation 40, eosinophil cationic protein [ECP], galectin 3, N-terminal pro-brain natriuretic peptide [NT-proBNP]), and 2 were robust for preeclampsia (cystatin B, heat shock protein 27 [HSP27]). Consistent with the MR findings, observational data revealed that lower NT-proBNP (0.76- to 0.88-fold difference vs no HDPs) and higher HSP27 (2.40-fold difference vs no HDPs) levels during the first trimester of pregnancy were associated with increased risk of HDPs, as were higher levels of ECP (1.60-fold difference vs no HDPs). Phenome-wide MR analyses identified 37 unique non-HDP-related protein-disease associations, suggesting potential on-target effects associated with interventions lowering HDP risk through the identified proteins. Conclusions and Relevance Study findings suggest genetic associations of 4 cardiovascular disease-related proteins with gestational hypertension and 2 associated with preeclampsia. Future studies are required to test the efficacy of targeting the corresponding pathways to reduce HDP risk.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Buu Truong
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Maddalena Ardissino
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rohan Bhukar
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Eric A. W. Slob
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Aeron M. Small
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - So Mi Jemma Cho
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhi Yu
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Tajmara Antoine
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kim Lannery
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Darina Postupaka
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kathryn J. Gray
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- BHF Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Malissa J. Wood
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Lee Health, Fort Myers, Florida
| | - Nandita S. Scott
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Colleen M. Harrington
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Amy A. Sarma
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Emily S. Lau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Jason D. Roh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - James L. Januzzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Baim Institute for Clinical Research, Boston, Massachusetts
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| |
Collapse
|
6
|
Elliott W, Tsung AJ, Guda MR, Velpula KK. Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme. Am J Cancer Res 2024; 14:774-795. [PMID: 38455415 PMCID: PMC10915327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor burden and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a repressed tumor burden.
Collapse
Affiliation(s)
- Willie Elliott
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Department of Pediatrics, University of Illinois College of MedicinePeoria, IL, USA
| |
Collapse
|
7
|
Perez-Favila A, Garza-Veloz I, Hernandez-Marquez LDS, Gutierrez-Vela EF, Flores-Morales V, Martinez-Fierro ML. Antifibrotic Drugs against Idiopathic Pulmonary Fibrosis and Pulmonary Fibrosis Induced by COVID-19: Therapeutic Approaches and Potential Diagnostic Biomarkers. Int J Mol Sci 2024; 25:1562. [PMID: 38338840 PMCID: PMC10855955 DOI: 10.3390/ijms25031562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on the health and economy of the global population. Even after recovery from the disease, post-COVID-19 symptoms, such as pulmonary fibrosis, continue to be a concern. This narrative review aims to address pulmonary fibrosis (PF) from various perspectives, including the fibrotic mechanisms involved in idiopathic and COVID-19-induced pulmonary fibrosis. On the other hand, we also discuss the current therapeutic drugs in use, as well as those undergoing clinical or preclinical evaluation. Additionally, this article will address various biomarkers with usefulness for PF prediction, diagnosis, treatment, prognosis, and severity assessment in order to provide better treatment strategies for patients with this disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Margarita L. Martinez-Fierro
- Doctorado en Ciencias con Orientación en Medicina Molecular, Unidad Académica de Medicina Humana y CS, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (A.P.-F.); (I.G.-V.); (L.d.S.H.-M.); (E.F.G.-V.); (V.F.-M.)
| |
Collapse
|
8
|
Karamese M, Gumus A, Atalay E, Tutuncu EE. Assessment of the levels of some prognostic biomolecules (galectins, ACE2, SCUBE1/2/3) in COVID-19 patients. Future Microbiol 2023; 18:1329-1337. [PMID: 37910069 DOI: 10.2217/fmb-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 11/03/2023] Open
Abstract
Aim: Our aim was to investigate the differences between healthy people and COVID-19 patients in terms of some immunological biomolecules, especially including those related to the inflammation process. Materials & methods: A total of 180 participants (90 healthy controls and 90 COVID-19 patients) were included. The expression levels of eight different inflammation-related biomolecules were measured by the ELISA technique. Results: The mean levels of ACE2, ANG1-7, GAL3, GAL9, SCUBE1, SCUBE2 and SCUBE3 were elevated in COVID-19 patients when compared with healthy controls, while the mean level of GAL2 was lower in COVID-19 patients than controls. Conclusion: To understand the cytokine storm mechanism and related parameters, more detailed studies should be performed investigating more related biomolecules and related signaling pathways.
Collapse
Affiliation(s)
- Murat Karamese
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Abdullah Gumus
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Eray Atalay
- Department of Internal Medicine, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Emin E Tutuncu
- Department of Clinical Microbiology & Infectious Diseases, Etlik City Hospital, Ankara, 06100, Turkey
| |
Collapse
|
9
|
Nikitopoulou I, Vassiliou AG, Athanasiou N, Jahaj E, Akinosoglou K, Dimopoulou I, Orfanos SE, Dimakopoulou V, Schinas G, Tzouvelekis A, Aidinis V, Kotanidou A. Increased Levels of Galectin-3 in Critical COVID-19. Int J Mol Sci 2023; 24:15833. [PMID: 37958814 PMCID: PMC10650562 DOI: 10.3390/ijms242115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Severe COVID-19 is related to hyperinflammation and multiple organ injury, including respiratory failure, thus requiring intensive care unit (ICU) admission. Galectin-3, a carbohydrate-binding protein exhibiting pleiotropic effects, has been previously recognized to participate in inflammation, the immune response to infections and fibrosis. The aim of this study was to evaluate the relationship between galectin-3 and the clinical severity of COVID-19, as well as assess the prognostic accuracy of galectin-3 for the probability of ICU mortality. The study included 235 COVID-19 patients with active disease, treated in two different Greek hospitals in total. Our results showed that median galectin-3 serum levels on admission were significantly increased in critical COVID-19 patients (7.2 ng/mL), as compared to the median levels of patients with less severe disease (2.9 ng/mL, p = 0.003). Galectin-3 levels of the non-survivors hospitalized in the ICU were significantly higher than those of the survivors (median 9.1 ng/mL versus 5.8 ng/mL, p = 0.001). The prognostic accuracy of galectin-3 for the probability of ICU mortality was studied with a receiver operating characteristic (ROC) curve and a multivariate analysis further demonstrated that galectin-3 concentration at hospital admission could be assumed as an independent risk factor associated with ICU mortality. Our results were validated with galectin-3 measurements in a second patient cohort from a different Greek university hospital. Our results, apart from strongly confirming and advancing previous knowledge with two patient cohorts, explore the possibility of predicting ICU mortality, which could provide useful information to clinicians. Therefore, galectin-3 seems to establish its involvement in the prognosis of hospitalized COVID-19 patients, suggesting that it could serve as a promising biomarker in critical COVID-19.
Collapse
Affiliation(s)
- Ioanna Nikitopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Alice G. Vassiliou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Nikolaos Athanasiou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Karolina Akinosoglou
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Stylianos E. Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| | - Vasiliki Dimakopoulou
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Georgios Schinas
- Division of Internal Medicine, University General Hospital of Patras, 26504 Patras, Greece; (K.A.); (V.D.); (G.S.)
| | - Argyrios Tzouvelekis
- Department of Respiratory Medicine, University General Hospital of Patras, 26504 Patras, Greece;
| | - Vassilis Aidinis
- Institute of Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece;
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, Evangelismos Hospital, 10676 Athens, Greece; (I.N.); (A.G.V.); (N.A.); (E.J.); (I.D.); (S.E.O.)
| |
Collapse
|
10
|
Zhou Z, Feng Z, Sun X, Wang Y, Dou G. The Role of Galectin-3 in Retinal Degeneration and Other Ocular Diseases: A Potential Novel Biomarker and Therapeutic Target. Int J Mol Sci 2023; 24:15516. [PMID: 37958500 PMCID: PMC10649114 DOI: 10.3390/ijms242115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Galectin-3 is the most studied member of the Galectin family, with a large range of mediation in biological activities such as cell growth, proliferation, apoptosis, differentiation, cell adhesion, and tissue repair, as well as in pathological processes such as inflammation, tissue fibrosis, and angiogenesis. As is known to all, inflammation, aberrant cell apoptosis, and neovascularization are the main pathophysiological processes in retinal degeneration and many ocular diseases. Therefore, the review aims to conclude the role of Gal3 in the retinal degeneration of various diseases as well as the occurrence and development of the diseases and discuss its molecular mechanisms according to research in systemic diseases. At the same time, we summarized the predictive role of Gal3 as a biomarker and the clinical application of its inhibitors to discuss the possibility of Gal3 as a novel target for the treatment of ocular diseases.
Collapse
Affiliation(s)
| | | | | | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| |
Collapse
|
11
|
Shahbaz S, Bozorgmehr N, Lu J, Osman M, Sligl W, Tyrrell DL, Elahi S. Analysis of SARS-CoV-2 isolates, namely the Wuhan strain, Delta variant, and Omicron variant, identifies differential immune profiles. Microbiol Spectr 2023; 11:e0125623. [PMID: 37676005 PMCID: PMC10581158 DOI: 10.1128/spectrum.01256-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
There is an urgent need to better understand the impact of different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on immune response and disease dynamics to facilitate better intervention strategies. Here, we show that SARS-CoV-2 variants differentially affect host immune responses. The magnitude and quantity of cytokines and chemokines were comparable in those infected with the Wuhan strain and the Delta variant. However, individuals infected with the Omicron variant had significantly lower levels of these mediators. We also found an elevation of plasma galectins (Gal-3, Gal-8, and Gal-9) in infected individuals, in particular, in those with the original strain. Soluble galectins exert a proinflammatory role in COVID-19 pathogenesis. This was illustrated by their correlation with the plasma levels of sCD14, sCD163, enhanced TNF-α/IL-6 secretion, and increased SARS-CoV-2 infectivity in vitro. Moreover, we observed enhanced CD4+ and CD8+ T cell activation in Wuhan strain-infected individuals. Surprisingly, there was a more pronounced T cell activation in those infected with the Omicron in comparison to the Delta variant. In line with T cell activation status, we observed a more pronounced expansion of T cells expressing different co-inhibitory receptors in patients infected with the Wuhan strain, followed by the Omicron and Delta variants. Individuals infected with the Wuhan strain or the Omicron variant had a similar pattern of plasma soluble immune checkpoints. Our results imply that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant. Our results provide a novel insight into the differential impact of SARS-CoV-2 variants on host immunity. IMPORTANCE There is a need to better understand how different SARS-CoV-2 variants influence the immune system and disease dynamics to facilitate the development of better vaccines and therapies. We compared immune responses in 140 SARS-CoV-2-infected individuals with the Wuhan strain, the Delta variant, or the Omicron variant. All these patients were admitted to the intensive care unit and were SARS-CoV-2 vaccination naïve. We found that SARS-CoV-2 variants differentially affect the host immune response. This was done by measuring soluble biomarkers in their plasma and examining different immune cells. Overall, we found that the magnitude of cytokine storm in individuals infected with the Wuhan strain or the Delta variant was greater than in those infected with the Omicron variant. In light of enhanced cytokine release syndrome in individuals infected with the Wuhan strain or the Delta variant, we believe that a milder innate immune response might be beneficial and protective in those infected with the Omicron variant.
Collapse
Affiliation(s)
- Shima Shahbaz
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Najmeh Bozorgmehr
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mohammed Osman
- Division of Rheumatology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, Alberta, Canada
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Division of Foundational Sciences, School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta, Canada
- Women and Children Health Research Institute (WCHRI), University of Alberta, Edmonton, Alberta, Canada
- Glycomics Institute of Alberta, University of Alberta, Edmonton, Alberta, Canada
- Alberta Transplant Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Bouffette S, Botez I, De Ceuninck F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol Sci 2023; 44:519-531. [PMID: 37391294 DOI: 10.1016/j.tips.2023.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Galectin (Gal)-3 is a β-galactoside-binding lectin emerging as a key player in cardiac, hepatic, renal, and pulmonary fibrosis and inflammation, respiratory infections caused by COVID-19, and neuroinflammatory disorders. Here, we review recent information highlighting Gal-3 as a relevant therapeutic target in these specific disease conditions. While a causal link was difficult to establish until now, we discuss how recent strategic breakthroughs allowed us to identify new-generation Gal-3 inhibitors with improved potency, selectivity, and bioavailability, and report their usefulness as valuable tools for proof-of-concept studies in various preclinical models of the aforementioned diseases, with emphasis on those actually in clinical stages. We also address critical views and suggestions intended to expand the therapeutic opportunities provided by this complex target.
Collapse
Affiliation(s)
- Selena Bouffette
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France; Université Paris-Saclay, Inserm, Inflammation Microbiome and Immunosurveillance, Orsay, France
| | - Iuliana Botez
- Servier, Drug Design Small Molecules Unit, Servier R&D Center, Gif-sur-Yvette, France
| | - Frédéric De Ceuninck
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Zhao F, Tallarek AC, Wang Y, Xie Y, Diemert A, Lu-Culligan A, Vijayakumar P, Kittmann E, Urbschat C, Bayo J, Arck PC, Farhadian SF, Dveksler GS, Garcia MG, Blois SM. A unique maternal and placental galectin signature upon SARS-CoV-2 infection suggests galectin-1 as a key alarmin at the maternal-fetal interface. Front Immunol 2023; 14:1196395. [PMID: 37475853 PMCID: PMC10354452 DOI: 10.3389/fimmu.2023.1196395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic imposed a risk of infection and disease in pregnant women and neonates. Successful pregnancy requires a fine-tuned regulation of the maternal immune system to accommodate the growing fetus and to protect the mother from infection. Galectins, a family of β-galactoside-binding proteins, modulate immune and inflammatory processes and have been recognized as critical factors in reproductive orchestration, including maternal immune adaptation in pregnancy. Pregnancy-specific glycoprotein 1 (PSG1) is a recently identified gal-1 ligand at the maternal-fetal interface, which may facilitate a successful pregnancy. Several studies suggest that galectins are involved in the immune response in SARS-CoV-2-infected patients. However, the galectins and PSG1 signature upon SARS-CoV-2 infection and vaccination during pregnancy remain unclear. In the present study, we examined the maternal circulating levels of galectins (gal-1, gal-3, gal-7, and gal-9) and PSG1 in pregnant women infected with SARS-CoV-2 before vaccination or uninfected women who were vaccinated against SARS-CoV-2 and correlated their expression with different pregnancy parameters. SARS-CoV-2 infection or vaccination during pregnancy provoked an increase in maternal gal-1 circulating levels. On the other hand, levels of PSG1 were only augmented upon SARS-CoV-2 infection. A healthy pregnancy is associated with a positive correlation between gal-1 concentrations and gal-3 or gal-9; however, no correlation was observed between these lectins during SARS-CoV-2 infection. Transcriptome analysis of the placenta showed that gal-1, gal-3, and several PSG and glycoenzymes responsible for the synthesis of gal-1-binding glycotopes (such as linkage-specific N-acetyl-glucosaminyltransferases (MGATs)) are upregulated in pregnant women infected with SARS-CoV-2. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies the SARS-CoV-2 infection and vaccination in pregnancy, and they highlight a potentially significant role for gal-1 as a key pregnancy protective alarmin during virus infection.
Collapse
Affiliation(s)
- Fangqi Zhao
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Christin Tallarek
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiru Wang
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yiran Xie
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Diemert
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alice Lu-Culligan
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, United States
| | - Pavithra Vijayakumar
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, United States
| | - Enrico Kittmann
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Urbschat
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Austral, Buenos Aires, Argentina
| | - Petra C. Arck
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Shelli F. Farhadian
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Gabriela S. Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mariana G. Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M. Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
14
|
Mackinnon AC, Tonev D, Jacoby B, Pinzani M, Slack RJ. Galectin-3: therapeutic targeting in liver disease. Expert Opin Ther Targets 2023; 27:779-791. [PMID: 37705214 DOI: 10.1080/14728222.2023.2258280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION The rising incidence of liver diseases is a worldwide healthcare concern. However, the therapeutic options to manage chronic inflammation and fibrosis, the processes at the basis of morbidity and mortality of liver diseases, are very limited. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. Several Gal-3 inhibitors are currently in clinical development. AREAS COVERED This review describes our current understanding of the role of Gal-3 in chronic liver diseases, with special emphasis on fibrosis. Also, we review therapeutic advances based on Gal-3 inhibition, describing drug properties and their current status in clinical research. EXPERT OPINION Currently, the known effects of Gal-3 point to a direct activation of the NLRP3 inflammasome leading to its activation in liver macrophages and activated macrophages play a key role in tissue fibrogenesis. However, more research is needed to elucidate the role of Gal-3 in the different activation pathways, dissecting the intracellular and extracellular mechanisms of Gal-3, and its role in pathogenesis. Gal-3 could be a target for early therapy of numerous hepatic diseases and, given the lack of therapeutic options for liver fibrosis, there is a strong pharmacologic potential for Gal-3-based therapies.
Collapse
Affiliation(s)
| | - Dimitar Tonev
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| | - Brian Jacoby
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| | - Massimo Pinzani
- Institute for Liver and Digestive Health, University College London, London, UK
| | - Robert J Slack
- Galecto Biotech AB, Cobis Science Park, Copenhagen, Denmark
| |
Collapse
|
15
|
Stojanovic BS, Stojanovic B, Milovanovic J, Arsenijević A, Dimitrijevic Stojanovic M, Arsenijevic N, Milovanovic M. The Pivotal Role of Galectin-3 in Viral Infection: A Multifaceted Player in Host-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24119617. [PMID: 37298569 DOI: 10.3390/ijms24119617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Galectin-3 (Gal-3), a beta-galactoside-binding lectin, plays a pivotal role in various cellular processes, including immune responses, inflammation, and cancer progression. This comprehensive review aims to elucidate the multifaceted functions of Gal-3, starting with its crucial involvement in viral entry through facilitating viral attachment and catalyzing internalization. Furthermore, Gal-3 assumes significant roles in modulating immune responses, encompassing the activation and recruitment of immune cells, regulation of immune signaling pathways, and orchestration of cellular processes such as apoptosis and autophagy. The impact of Gal-3 extends to the viral life cycle, encompassing critical phases such as replication, assembly, and release. Notably, Gal-3 also contributes to viral pathogenesis, demonstrating involvement in tissue damage, inflammation, and viral persistence and latency elements. A detailed examination of specific viral diseases, including SARS-CoV-2, HIV, and influenza A, underscores the intricate role of Gal-3 in modulating immune responses and facilitating viral adherence and entry. Moreover, the potential of Gal-3 as a biomarker for disease severity, particularly in COVID-19, is considered. Gaining further insight into the mechanisms and roles of Gal-3 in these infections could pave the way for the development of innovative treatment and prevention options for a wide range of viral diseases.
Collapse
Affiliation(s)
- Bojana S Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathophysiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Bojan Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Histology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Aleksandar Arsenijević
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Milica Dimitrijevic Stojanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
16
|
Grewal T, Buechler C. Adipokines as Diagnostic and Prognostic Markers for the Severity of COVID-19. Biomedicines 2023; 11:1302. [PMID: 37238973 PMCID: PMC10215701 DOI: 10.3390/biomedicines11051302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Accumulating evidence implicates obesity as a risk factor for increased severity of disease outcomes in patients infected with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Obesity is associated with adipose tissue dysfunction, which not only predisposes individuals to metabolic complications, but also substantially contributes to low-grade systemic inflammation, altered immune cell composition, and compromised immune function. This seems to impact the susceptibility and outcome of diseases caused by viruses, as obese people appear more vulnerable to developing infections and they recover later from infectious diseases than normal-weight individuals. Based on these findings, increased efforts to identify suitable diagnostic and prognostic markers in obese Coronavirus disease 2019 (COVID-19) patients to predict disease outcomes have been made. This includes the analysis of cytokines secreted from adipose tissues (adipokines), which have multiple regulatory functions in the body; for instance, modulating insulin sensitivity, blood pressure, lipid metabolism, appetite, and fertility. Most relevant in the context of viral infections, adipokines also influence the immune cell number, with consequences for overall immune cell activity and function. Hence, the analysis of the circulating levels of diverse adipokines in patients infected with SARS-CoV-2 have been considered to reveal diagnostic and prognostic COVID-19 markers. This review article summarizes the findings aimed to correlate the circulating levels of adipokines with progression and disease outcomes of COVID-19. Several studies provided insights on chemerin, adiponectin, leptin, resistin, and galectin-3 levels in SARS-CoV-2-infected patients, while limited information is yet available on the adipokines apelin and visfatin in COVID-19. Altogether, current evidence points at circulating galectin-3 and resistin levels being of diagnostic and prognostic value in COVID-19 disease.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany
| |
Collapse
|
17
|
Puccini M, Jakobs K, Reinshagen L, Friebel J, Schencke PA, Ghanbari E, Landmesser U, Haghikia A, Kränkel N, Rauch U. Galectin-3 as a Marker for Increased Thrombogenicity in COVID-19. Int J Mol Sci 2023; 24:ijms24097683. [PMID: 37175392 PMCID: PMC10178107 DOI: 10.3390/ijms24097683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Galectin-3 is a beta-galactoside-binding lectin involved in inflammation and lung fibrosis and postulated to enhance thrombosis. In COVID-19, it is considered to be a prognostic marker of severity. The aim of this study was to evaluate whether galectin-3 is associated with thrombogenicity in COVID-19. Patients with moderate-to-severe COVID-19 (COVpos; n = 55) and patients with acute respiratory diseases, but without COVID-19 (COVneg; n = 35), were included in the study. We measured the amount of galectin-3, as well as other platelet and coagulation markers, and correlated galectin-3 levels with these markers of thrombogenicity and with the SOFA Score values. We found that galectin-3 levels, as well as von Willebrand Factor (vWF), antithrombin and tissue plasminogen activator levels, were higher in the COVpos than they were in the COVneg cohort. Galectin-3 correlated positively with vWF, antithrombin and D-dimer in the COVpos cohort, but not in the COVneg cohort. Moreover, galactin-3 correlated also with clinical disease severity, as measured by the SOFA Score. In patients with acute respiratory diseases, galectin-3 can be considered as a marker not only for disease severity, but also for increased hypercoagulability. Whether galectin-3 might be a useful therapeutic target in COVID-19 needs to be assessed in future studies.
Collapse
Affiliation(s)
- Marianna Puccini
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Kai Jakobs
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Leander Reinshagen
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Julian Friebel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Philipp-Alexander Schencke
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Emily Ghanbari
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Arash Haghikia
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| | - Nicolle Kränkel
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| | - Ursula Rauch
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, 12203 Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10178 Berlin, Germany
| |
Collapse
|
18
|
Aslanis V, Slack RJ, MacKinnon AC, McClinton C, Tantawi S, Gravelle L, Nilsson UJ, Leffler H, Brooks A, Khindri SK, Marshall RP, Pedersen A, Schambye H, Zetterberg F. Safety and pharmacokinetics of GB1211, an oral galectin-3 inhibitor: a single- and multiple-dose first-in-human study in healthy participants. Cancer Chemother Pharmacol 2023; 91:267-280. [PMID: 36914828 PMCID: PMC10010643 DOI: 10.1007/s00280-023-04513-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE Galectin-3, a β-galactoside-binding lectin, plays a key role in several cellular pathways involved in chronic inflammation, heart disease and cancer. GB1211 is an orally bioavailable galectin-3 inhibitor, developed to be systemically active. We report safety and pharmacokinetics (PK) of GB1211 in healthy participants. METHODS This phase 1, double-blind, placebo-controlled, first-in-human study (NCT03809052) included a single ascending-dose phase (with a food-effect cohort) where participants across seven sequential cohorts were randomized 3:1 to receive oral GB1211 (5, 20, 50, 100, 200 or 400 mg) or placebo. In the multiple ascending-dose phase, participants received 50 or 100 mg GB1211 or placebo twice daily for 10 days. All doses were administered in the fasted state except in the food-effect cohort where doses were given 30 min after a high-fat meal. RESULTS All 78 participants received at least one GB1211 dose (n = 58) or placebo (n = 20) and completed the study. No safety concerns were identified. Following single and multiple oral doses under fasted conditions, maximum GB1211 plasma concentrations were reached at 1.75-4 h (median) post-dose; mean half-life was 11-16 h. There was a ~ twofold GB1211 accumulation in plasma with multiple dosing, with steady-state reached within 3 days; 30% of the administered dose was excreted in urine as unchanged drug. Absorption in the fed state was delayed by 2 h but systemic exposure was unaffected. CONCLUSION GB1211 was well tolerated, rapidly absorbed, and displayed favorable PK, indicating a potential to treat multiple disease types. These findings support further clinical development of GB1211. CLINICAL TRIAL REGISTRATION The study was registered with ClinicalTrials.gov (identifier: NCT03809052).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ulf J Nilsson
- Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Hakon Leffler
- Department of Laboratory Medicine, Lund University, 22100, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Bai AD, Jiang Y, Nguyen DL, Lo CKL, Stefanova I, Guo K, Wang F, Zhang C, Sayeau K, Garg A, Loeb M. Comparison of Preprint Postings of Randomized Clinical Trials on COVID-19 and Corresponding Published Journal Articles: A Systematic Review. JAMA Netw Open 2023; 6:e2253301. [PMID: 36705921 DOI: 10.1001/jamanetworkopen.2022.53301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
IMPORTANCE Randomized clinical trials (RCTs) on COVID-19 are increasingly being posted as preprints before publication in a scientific, peer-reviewed journal. OBJECTIVE To assess time to journal publication for COVID-19 RCT preprints and to compare differences between pairs of preprints and corresponding journal articles. EVIDENCE REVIEW This systematic review used a meta-epidemiologic approach to conduct a literature search using the World Health Organization COVID-19 database and Embase to identify preprints published between January 1 and December 31, 2021. This review included RCTs with human participants and research questions regarding the treatment or prevention of COVID-19. For each preprint, a literature search was done to locate the corresponding journal article. Two independent reviewers read the full text, extracted data, and assessed risk of bias using the Cochrane Risk of Bias 2 tool. Time to publication was analyzed using a Cox proportional hazards regression model. Differences between preprint and journal article pairs in terms of outcomes, analyses, results, or conclusions were described. Statistical analysis was performed on October 17, 2022. FINDINGS This study included 152 preprints. As of October 1, 2022, 119 of 152 preprints (78.3%) had been published in journals. The median time to publication was 186 days (range, 17-407 days). In a multivariable model, larger sample size and low risk of bias were associated with journal publication. With a sample size of less than 200 as the reference, sample sizes of 201 to 1000 and greater than 1000 had hazard ratios (HRs) of 1.23 (95% CI, 0.80-1.91) and 2.19 (95% CI, 1.36-3.53) for publication, respectively. With high risk of bias as the reference, medium-risk articles with some concerns for bias had an HR of 1.77 (95% CI, 1.02-3.09); those with a low risk of bias had an HR of 3.01 (95% CI, 1.71-5.30). Of the 119 published preprints, there were differences in terms of outcomes, analyses, results, or conclusions in 65 studies (54.6%). The main conclusion in the preprint contradicted the conclusion in the journal article for 2 studies (1.7%). CONCLUSIONS AND RELEVANCE These findings suggest that there is a substantial time lag from preprint posting to journal publication. Preprints with smaller sample sizes and high risk of bias were less likely to be published. Finally, although differences in terms of outcomes, analyses, results, or conclusions were observed for preprint and journal article pairs in most studies, the main conclusion remained consistent for the majority of studies.
Collapse
Affiliation(s)
- Anthony D Bai
- Division of Infectious Diseases, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yunbo Jiang
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - David L Nguyen
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Carson K L Lo
- Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Kevin Guo
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Frank Wang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cindy Zhang
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kyle Sayeau
- Mental Health and Addictions Care Program, Kingston Health Sciences Centre, Kingston, Ontario, Canada
| | - Akhil Garg
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Mark Loeb
- Division of Infectious Diseases, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Division of Medical Microbiology, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Zhan K, Wang L, Lin H, Fang X, Jia H, Ma X. Novel inflammatory biomarkers in the prognosis of COVID-19. Ther Adv Respir Dis 2023; 17:17534666231199679. [PMID: 37727063 PMCID: PMC10515606 DOI: 10.1177/17534666231199679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The central role of inflammatory progression in the development of Coronavirus disease 2019 (COVID-19), especially in severe cases, is indisputable. However, the role of some novel inflammatory biomarkers in the prognosis of COVID-19 remains controversial. OBJECTIVE To assess the effect of some novel inflammatory biomarkers in the occurrence and prognosis of COVID-19. METHODS We systematically retrieved the studies related to COVID-19 and the inflammatory biomarkers of interest. The data of each biomarker in different groups were extracted, then were categorized and pooled. The standardized mean difference was chosen as an effect size measure to compare the difference between groups. RESULTS A total of 90 studies with 12,059 participants were included in this study. We found higher levels of endocan, PTX3, suPAR, sRAGE, galectin-3, and monocyte distribution width (MDW) in the COVID-19 positive groups compared to the COVID-19 negative groups. No significant differences for suPAR and galectin-3 were detected between the severe group and mild/moderate group of COVID-19. In addition, the deaths usually had higher levels of PTX3, sCD14-ST, suPAR, and MDW at admission compared to the survivors. Furthermore, patients with higher levels of endocan, galectin-3, sCD14-ST, suPAR, and MDW usually developed poorer comprehensive clinical prognoses. CONCLUSIONS In summary, this meta-analysis provides the most up-to-date and comprehensive evidence for the role of the mentioned novel inflammatory biomarkers in the prognosis of COVID-19, especially in evaluating death and other poor prognoses, with most biomarkers showing a better discriminatory ability.
Collapse
Affiliation(s)
- Kegang Zhan
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
- College of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Luhan Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Lin
- West China School of Clinical Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Fang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Jia
- College of Public Health, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiangyu Ma
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
21
|
Behnoush AH, Khalaji A, Alemohammad SY, Kalantari A, Cannavo A, Dimitroff CJ. Galectins can serve as biomarkers in COVID-19: A comprehensive systematic review and meta-analysis. Front Immunol 2023; 14:1127247. [PMID: 36923399 PMCID: PMC10009778 DOI: 10.3389/fimmu.2023.1127247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Background Galectins are an eleven-member class of lectins in humans that function as immune response mediators and aberrancies in their expression are commonly associated with immunological diseases. Several studies have focused on galectins as they may represent an important biomarker and a therapeutic target in the fight against COVID-19. This systematic review and meta-analysis examined the usefulness of clinical assessment of circulating galectin levels in patients with COVID-19. Methods International databases including PubMed, Scopus, Web of Science, and Embase were systematically used as data sources for our analyses. The random-effect model was implemented to calculate the standardized mean difference (SMD) and a 95% confidence interval (CI). Results A total of 18 studies, comprising 2,765 individuals, were identified and used in our analyses. We found that Gal-3 is the most widely investigated galectin in COVID-19. Three studies reported significantly higher Gal-1 levels in COVID-19 patients. Meta-analysis revealed that patients with COVID-19 had statistically higher levels of Gal-3 compared with healthy controls (SMD 0.53, 95% CI 0.10 to 0.96, P=0.02). However, there was no significant difference between severe and non-severe cases (SMD 0.45, 95% CI -0.17 to 1.07, P=0.15). While one study supports lower levels of Gal-8 in COVID-19, Gal-9 was measured to be higher in patients and more severe cases. Conclusion Our study supports Gal-3 as a valuable non-invasive biomarker for the diagnosis and/or prognosis of COVID-19. Moreover, based on the evidence provided here, more studies are needed to confirm a similar diagnostic and prognostic role for Gal-1, -8, and -9.
Collapse
Affiliation(s)
- Amir Hossein Behnoush
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Yasaman Alemohammad
- Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States
| | - Amirali Kalantari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Alessandro Cannavo
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Charles J Dimitroff
- Department of Translational Medicine, Translational Glycobiology Institute at Florida International University, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|