1
|
Xiong H, Zhang X, Sun J, Xue Y, Yu W, Mou S, Hsia KJ, Wan H, Wang P. Recent advances in biosensors detecting biomarkers from exhaled breath and saliva for respiratory disease diagnosis. Biosens Bioelectron 2025; 267:116820. [PMID: 39374569 DOI: 10.1016/j.bios.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
The global demand for rapid and non-invasive diagnostic methods for respiratory diseases has significantly intensified due to the wide spread of respiratory infectious diseases. Recent advancements in respiratory disease diagnosis through the analysis of exhaled breath and saliva has attracted great attention all over the world. Among various analytical methods, biosensors can offer non-invasive, efficient, and cost-effective diagnostic capabilities, emerging as promising tools in this area. This review intends to provide a comprehensive overview of various biosensors for the detection of respiratory disease related biomarkers in exhaled breath and saliva. Firstly, the characteristics of exhaled breath and saliva, including their generation, composition, and relevant biomarkers are introduced. Subsequently, the design and application of various biosensors for detecting these biomarkers are presented, along with the innovative materials employed as sensitive components. Different types of biosensors are reviewed, including electrochemical, optical, piezoelectric, semiconductor, and other novel biosensors. At last, the challenges, limitations, and future trends of these biosensors are discussed. It is anticipated that biosensors will play a significant role in respiratory disease diagnosis in the future.
Collapse
Affiliation(s)
- Hangming Xiong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weijie Yu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Shimeng Mou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - K Jimmy Hsia
- Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Picado C, Machado-Carvalho L, Roca-Ferrer J. Low Prostaglandin E 2 but High Prostaglandin D 2, a Paradoxical Dissociation in Arachidonic Acid Metabolism in Aspirin-Exacerbated Airway Disease: Role of Airway Epithelium. J Clin Med 2024; 13:7416. [PMID: 39685875 DOI: 10.3390/jcm13237416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/22/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
In patients with aspirin-exacerbated respiratory disease (AERD), there is disparate regulation of prostaglandin E2 (PGE2) and prostaglandin D2 (PGD2). Both prostanoids are synthesised by cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2). However, while the basal synthesis of PGE2 tends to decrease, that of PGD2 increases in patients with AERD. Furthermore, both behave differently in response to the inhibitory action of NSAIDs on COX-1: PGE2 levels decrease while PGD2 increases. Increased PGD2 release correlates with nasal, bronchial, and extra-pulmonary symptoms caused by aspirin in AERD. The proposed hypothesis establishes that the answer to this paradoxical dissociation can be found in the airway epithelium. This is based on the observation that reduced COX-2 mRNA and/or protein expression is associated with reduced PGE2 synthesis in cultured fibroblast and epithelial cells from AERD compared to patients with asthma who are aspirin-tolerant and healthy subjects. The low production of PGE2 by the airway epithelium in AERD results in an excessive release of alarmins (TSLP, IL-33), which in turn contributes to activating group 2 innate lymphoid cells (ILC2s) and PGD2 synthesis by mast cells and eosinophils. Aspirin, by further increasing the diminished PGE2 regulation capacity in AERD, leads to respiratory reactions associated with the surge in PGD2 from mast cells and eosinophils. In summary, the downregulation of COX-2 and the subsequent low production of PGE2 by airway cells account for the apparently paradoxical increased production of PGD2 by mast cells and eosinophils at the baseline and after aspirin provocation in patients with AERD. A better understanding of the role of the airway epithelium would contribute to elucidating the mechanism of AERD.
Collapse
Affiliation(s)
- César Picado
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08907 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Liliana Machado-Carvalho
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Center for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Jordi Roca-Ferrer
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, 08907 Barcelona, Spain
- Centro de Investigaciones en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
3
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024; 61:641-684. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Seyfinejad B, Nemutlu E, Taghizadieh A, Khoubnasabjafari M, Ozkan SA, Jouyban A. Biomarkers in exhaled breath condensate as fingerprints of asthma, chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap: a critical review. Biomark Med 2023; 17:811-837. [PMID: 38179966 DOI: 10.2217/bmm-2023-0420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD) and asthma-COPD overlap are the third leading cause of mortality around the world. They share some common features, which can lead to misdiagnosis. To properly manage these conditions, reliable markers for early and accurate diagnosis are needed. Over the past 20 years, many molecules have been investigated in the exhaled breath condensate to better understand inflammation pathways and mechanisms related to these disorders. Recently, more advanced techniques, such as sensitive metabolomic and proteomic profiling, have been used to obtain a more comprehensive understanding. This article reviews the use of targeted and untargeted metabolomic methodology to study asthma, COPD and asthma-COPD overlap.
Collapse
Affiliation(s)
- Behrouz Seyfinejad
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkiye
| | - Ali Taghizadieh
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Internal Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis & Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anesthesiology & Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sibel A Ozkan
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, 06560, Turkiye
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center & Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, PO Box 99138 Nicosia, North Cyprus, Mersin 10, Turkiye
| |
Collapse
|
5
|
Landa E, Javaid S, Vigandt E, Campos F, Mercado L. Aspirin-Exacerbated Respiratory Disease Requiring Desensitization Prior to Planned Percutaneous Catheterization Intervention. Cureus 2022; 14:e26686. [PMID: 35949785 PMCID: PMC9359106 DOI: 10.7759/cureus.26686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2022] [Indexed: 11/18/2022] Open
Abstract
Aspirin-exacerbated respiratory disease (AERD) consists of a triad of asthma, chronic rhinosinusitis with nasal polyposis, and a hypersensitivity reaction to aspirin consisting of nasal congestion and broncho-constriction. This disease presents a conundrum in cardiac patients undergoing percutaneous catheterization intervention (PCI) who might require stent deployment due to the need for aspirin as part of the dual antiplatelet therapy required if a stent is placed. Here, we present the case of a patient who underwent a coronary angiogram showing two-vessel disease but had to undergo aspirin desensitization first before planned PCI as he had a history of severe aspirin allergy in the past.
Collapse
|
6
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:ijms23031308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
7
|
Jurado-Escobar R, Doña I, Bogas-Herrera G, Pérez-Sánchez N, Salas M, Laguna JJ, Muñoz-Cano R, Mayorga C, Torres MJ, Cornejo-García JA. Platelet-Adherent Leukocytes Associated With Cutaneous Cross-Reactive Hypersensitivity to Nonsteroidal Anti-Inflammatory Drugs. Front Pharmacol 2021; 11:594427. [PMID: 33658935 PMCID: PMC7919189 DOI: 10.3389/fphar.2020.594427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/19/2020] [Indexed: 11/13/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most highly consumed drugs worldwide and the main triggers of drug hypersensitivity reactions. The most frequent reaction, named cross-reactive NSAID-hypersensitivity, is due to the pharmacological activity of these drugs by blocking the cyclooxygenase-1 enzyme. Such inhibition leads to cysteinyl-leukotriene synthesis, mainly LTE4, which are responsible for the reaction. Although the complete molecular picture of the underlying mechanisms remains elusive, the participation of platelet-adherent leukocytes (CD61+) and integrins have been described for NSAID-exacerbated respiratory disease (NERD). However, there is a lack of information concerning NSAID-induced urticaria/angioedema (NIUA), by far the most frequent clinical phenotype. Here we have evaluated the potential role of CD61+ leukocytes and integrins (CD18, CD11a, CD11b, and CD11c) in patients with NIUA, and included the other two phenotypes with cutaneous involvement, NSAID-exacerbated cutaneous disease (NECD) and blended reactions (simultaneous skin and airways involvement). A group NSAID-tolerant individuals was also included. During the acute phase of the reaction, the three clinical phenotypes showed increased frequencies of CD61+ neutrophils, eosinophils, and monocytes compared to controls, which correlated with urinary LTE4 levels. However, no correlation was found between these variables at basal state. Furthermore, increased expressions of CD18 and CD11a were found in the three CD61+ leukocytes subsets in NIUA, NECD and blended reactions during the acute phase when compared with CD61-leukocyte subpopulations. During the acute phase, CD61+ neutrophils, eosinophils and monocytes showed increased CD18 and CD11a expression when compared with CD61+ leukocytes at basal state. No differences were found when comparing controls and CD61+ leukocytes at basal state. Our results support the participation of platelet-adherent leukocytes and integrins in cutaneous cross-hypersensitivity to NSAIDs and provide a link between these cells and arachidonic acid metabolism. Our findings also suggest that these reactions do not involve a systemic imbalance in the frequency of CD61+ cells/integrin expression or levels of LTE4, which represents a substantial difference to NERD. Although further studies are needed, our results shed light on the molecular basis of cutaneous cross-reactive NSAID-hypersensitivity, providing potential targets for therapy through the inhibition of platelet-leukocyte interactions.
Collapse
Affiliation(s)
- Raquel Jurado-Escobar
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain.,Departamento de Medicina, Universidad de Málaga, Malaga, Spain
| | - Inmaculada Doña
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - María Salas
- Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - José J Laguna
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Allergy Unit, Allergo-Anaesthesia Unit, Hospital Central de la Cruz Roja, Faculty of Medicine, Alfonso X El Sabio University, Madrid, Spain
| | - Rosa Muñoz-Cano
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Allergy Section, Pneumology Department, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Malaga, Spain
| | - María J Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain.,Departamento de Medicina, Universidad de Málaga, Malaga, Spain.,Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Andalusian Center for Nanomedicine and Biotechnology-BIONAND, Malaga, Spain
| | - José A Cornejo-García
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Malaga, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Miyata J, Fukunaga K, Kawashima Y, Ohara O, Kawana A, Asano K, Arita M. Dysregulated metabolism of polyunsaturated fatty acids in eosinophilic allergic diseases. Prostaglandins Other Lipid Mediat 2020; 150:106477. [PMID: 32711128 DOI: 10.1016/j.prostaglandins.2020.106477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 01/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), represented by the omega-6 fatty acid arachidonic acid (AA) and omega-3 fatty acid docosahexaenoic acid (DHA), are essential components of the human body. PUFAs are converted enzymatically into bioactive lipid mediators, including AA-derived cysteinyl leukotrienes (cys-LTs) and lipoxins and DHA-derived protectins, which orchestrate a wide range of immunological responses. For instance, eosinophils possess the biosynthetic capacity of various lipid mediators through multiple enzymes, including 5-lipoxygenase and 15-lipoxygenase, and play central roles in the regulation of allergic diseases. Dysregulated metabolism of PUFAs is reported, especially in severe asthma, aspirin-exacerbated respiratory disease, and eosinophilic chronic rhinosinusitis (ECRS), which is characterized by the overproduction of cys-LTs and impaired synthesis of pro-resolving mediators. Recently, by performing a multi-omics analysis (lipidomics, proteomics, and transcriptomics), we demonstrated the metabolic derangement of eosinophils in inflamed tissues of patients with ECRS. This abnormality occurred subsequent to altered enzyme expression of gamma-glutamyl transferase-5. In this review, we summarize the previous findings of dysregulated PUFA metabolism in allergic diseases, and discuss future prospective therapeutic strategies for correcting this imbalance.
Collapse
Affiliation(s)
- Jun Miyata
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan; Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan; Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan.
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Saitama, Japan.
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University, School of Medicine, Kanagawa, Japan.
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan; Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
9
|
Reference Ranges of 8-Isoprostane Concentrations in Exhaled Breath Condensate (EBC): A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21113822. [PMID: 32481492 PMCID: PMC7311981 DOI: 10.3390/ijms21113822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Isoprostanes are physiopathologic mediators of oxidative stress, resulting in lipid peroxidation. 8-isoprostane seems particularly useful for measuring oxidative stress damage. However, no reference range values are available for 8-isoprosante in exhaled breath condensate (EBC) of healthy adults, enabling its meaningful interpretation as a biomarker. We conducted this systematic review and meta-analysis according to the protocol following PROSPERO (CRD42020146623). After searching and analyzing the literature, we included 86 studies. After their qualitative synthesis and risk of bias assessment, 52 studies were included in meta-analysis. The latter focused on studies using immunological analytical methods and investigated how the concentrations of 8-isoprostane differ based on gender. We found that gender had no significant effect in 8-isoprostane concentration. Among other studied factors, such as individual characteristics and factors related to EBC collection, only the device used for EBC collection significantly affected measured 8-isoprostane concentrations. However, adjustment for the factors related to EBC collection, yielded uncertainty whether this effect is due to the device itself or to the other factors. Given this uncertainty, we estimated the reference range values of 8-isoprostane stratified by gender and EBC collection device. A better standardization of EBC collection seems necessary; as well more studies using chemical analytical methods to extend this investigation.
Collapse
|
10
|
Schmidt AJ, Borras E, Nguyen AP, Yeap D, Kenyon NJ, Davis CE. Portable exhaled breath condensate metabolomics for daily monitoring of adolescent asthma. J Breath Res 2020; 14:026001. [PMID: 31344695 DOI: 10.1088/1752-7163/ab35b5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Alexander J Schmidt
- Department of Mechanical and Aerospace Engineering, One Shields Avenue, University of California Davis, Davis, CA 95616, United States of America
| | | | | | | | | | | |
Collapse
|
11
|
Current state and future prospect of the therapeutic strategy targeting cysteinyl leukotriene metabolism in asthma. Respir Investig 2019; 57:534-543. [PMID: 31591069 DOI: 10.1016/j.resinv.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/12/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
Asthma is an allergic disorder with dominant type 2 airway inflammation, and its prevalence is increasing worldwide. Inhalation of corticosteroids is the primary treatment for asthma along with add-on drugs, including long-acting β2 agonists and/or cysteinyl leukotriene (cys-LT) receptor antagonists, in patients with poorly controlled asthma. Cys-LTs are composed of leukotriene C4 (LTC4), LTD4, and LTE4, which are enzymatically metabolized from arachidonic acid. These molecules act as inflammatory mediators through different types of high-affinity receptors, namely, CysLT1, CysLT2, and CysLT3 (also named as GPR99). CysLT1 antagonists possessing anti-inflammatory and bronchodilatory effects can be orally administered to patients with asthma. Recently, molecular biology-based studies have revealed the mechanism of inflammatory responses via other receptors, such as CysLT2 and CysLT3, as well as the importance of upstream inflammatory regulators, including type 2 cytokines (e.g., interleukins 4 and 5), in controlling cys-LT metabolism. These findings indicate the therapeutic potential of pharmacological agents targeting cys-LT metabolism-related receptors and enzymes, and antibody drugs neutralizing or antagonizing type 2 cytokines. This review focuses on the current state and future prospect of the therapeutic strategy targeting cys-LT metabolism.
Collapse
|
12
|
Rahimpour E, Khoubnasabjafari M, Jouyban-Gharamaleki V, Jouyban A. Non-volatile compounds in exhaled breath condensate: review of methodological aspects. Anal Bioanal Chem 2018; 410:6411-6440. [PMID: 30046867 DOI: 10.1007/s00216-018-1259-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
In contrast to bronchial and nasal lavages, the analysis of exhaled breath condensate (EBC) is a promising, simple, non-invasive, repeatable, and diagnostic method for studying the composition of airway lining fluid with the potential to assess lung inflammation, exacerbations, and disease severity, and to monitor the effectiveness of treatment regimens. Recent investigations have revealed the potential applications of EBC analysis in systemic diseases. In this review, we highlight the analytical studies conducted on non-volatile compounds/biomarkers in EBC. In contrast to other related articles, this review is classified on the basis of analytical techniques and includes almost all the applied methods and their methodological limitations for quantification of non-volatile compounds in EBC samples, providing a guideline for further researches. The studies were identified by searching the SCOPUS database with the keywords "biomarkers," "non-volatile compounds," "determination method," and "EBC."
Collapse
Affiliation(s)
- Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Jouyban-Gharamaleki
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolghasem Jouyban
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. .,Kimia Idea Pardaz Azarbayjan (KIPA) Science Based Company, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
van 't Erve TJ. Strategies to decrease oxidative stress biomarker levels in human medical conditions: A meta-analysis on 8-iso-prostaglandin F 2α. Redox Biol 2018; 17:284-296. [PMID: 29775960 PMCID: PMC6007822 DOI: 10.1016/j.redox.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
The widespread detection of elevated oxidative stress levels in many medical conditions has led to numerous efforts to design interventions to reduce its effects. Efforts have been wide-ranging, from dietary changes to administration of antioxidants, supplements, e.g., omega-3-fatty acids, and many medications. However, there is still no systemic assessment of the efficacy of treatments for oxidative stress reduction across a variety of medical conditions. The goal of this meta-analysis is, by combining multiple studies, to quantitate the change in the levels of the popular oxidative stress biomarker 8-iso-prostaglandin F2α (8-iso-PGF2α) after a variety of treatment strategies in human populations. Nearly 350 unique publications with 180 distinct strategies were included in the analysis. For each strategy, the difference between pre- or placebo and post-treatment levels calculated using Hedges' g value of effect. In general, administration of antibiotics, antihyperlipidemic agents, or changes in lifestyle (g = - 0.63, - 0.54, and 0.56) had the largest effect. Administration of supplements, antioxidants, or changes in diet (g = - 0.09, - 0.28, - 0.12) had small quantitative effects. To fully interpret the effectiveness of these treatments, comparisons to the increase in g value for each medical condition is required. For example, antioxidants in populations with coronary artery disease (CAD) reduce the 8-iso-PGF2α levels by g = - 0.34 ± 0.1, which is quantitatively considered a small effect. However, CAD populations, in comparison to healthy populations, have an increase in 8-iso-PGF2α levels by g = 0.38 ± 0.04; therefore, the overall reduction of 8-iso-PGF2α levels is ≈ 90% by this treatment in this specific medical condition. In conclusion, 8-iso-PGF2α levels can be reduced not only by antioxidants but by many other strategies. Not all strategies are equally effective at reducing 8-iso-PGF2α levels. In addition, the effectiveness of any strategy can be assessed only in relation to the medical condition investigated.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| |
Collapse
|
14
|
Kim SD, Cho KS. Samter's Triad: State of the Art. Clin Exp Otorhinolaryngol 2018; 11:71-80. [PMID: 29642688 PMCID: PMC5951071 DOI: 10.21053/ceo.2017.01606] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/13/2018] [Accepted: 01/14/2018] [Indexed: 01/01/2023] Open
Abstract
Samter’s triad (ST) is a well-known disease characterized by the triad of bronchial asthma, nasal polyps, and aspirin intolerance. Over the past few years, a rapid development in the knowledge of the pathogenesis and clinical characteristics of ST has happened. The aim of this paper is to review the recent investigations on the pathophysiological mechanisms and genetic background, diagnosis, and different therapeutic options of ST to advance our understanding of the mechanism and the therapeutic control of ST. As concern for ST increase, more application of aspirin desensitization will be required to manage this disease successfully. There is also a need for continued research efforts in pathophysiology, treatment, and possible prevention.
Collapse
Affiliation(s)
- Sung-Dong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - Kyu-Sup Cho
- Department of Otorhinolaryngology-Head and Neck Surgery and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| |
Collapse
|
15
|
Hill J, Burnett T, Katial R. Mechanisms of Benefit with Aspirin Therapy in Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am 2017; 36:735-747. [PMID: 27712767 DOI: 10.1016/j.iac.2016.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a clinical syndrome characterized by severe persistent asthma, hyperplastic eosinophilic sinusitis with nasal polyps, and an intolerance to aspirin and other NSAIDs that preferentially inhibit COX-1. For more than 30 years, aspirin desensitization has proven to be of significant long-term benefit in carefully selected patients with AERD. Despite this, the exact mechanisms behind the therapeutic effects of aspirin desensitization remain poorly understood. In this article, we review the current understanding of the mechanisms of aspirin desensitization and discuss future areas of investigation.
Collapse
Affiliation(s)
- Jennifer Hill
- Adult Program, Division of Allergy and Immunology, National Jewish Health, University of Colorado, 1400 Jackson Street, K624, Denver, CO 80206, USA
| | - Trever Burnett
- Northwest Asthma and Allergy Center, 9725 3rd Avenue Northeast, Suite 500, Northgate Executive Center II, Seattle, WA 98115, USA
| | - Rohit Katial
- Division of Allergy and Immunology, National Jewish Health, University of Colorado, 1400 Jackson Street, K624, Denver, CO 80206, USA.
| |
Collapse
|
16
|
Walters KM, Simon RA, Woessner KM, Wineinger NE, White AA. Effect of misoprostol on patients with aspirin-exacerbated respiratory disease undergoing aspirin challenge and desensitization. Ann Allergy Asthma Immunol 2017; 119:71-76. [PMID: 28668243 DOI: 10.1016/j.anai.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/21/2017] [Accepted: 05/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) is an anti-inflammatory compound that inhibits 5-lipoxygenase activity. Diminished PGE2 regulation in aspirin-exacerbated respiratory disease (AERD) leads to respiratory reactions on cyclooxygenase 1 inhibition. In vitro studies have found that exogenous PGE2 stabilizes inflammatory mediator release. OBJECTIVE To examine whether misoprostol (oral prostaglandin E1 analogue) use during aspirin challenge and desensitization might decrease the severity of aspirin-induced symptoms and make desensitization safer for patients with AERD. METHODS Forty-five patients undergoing aspirin challenge and/or desensitization were randomized to misoprostol (n = 30) or placebo (n = 15) and compared with a group of historical controls (n = 31). Misoprostol (200 μg) was administered at 30 minutes, 90 minutes, and 4 hours after the first dose of nasal ketorolac. Measured end points included change in forced expiratory volume in 1 second (FEV1), peak nasal inspiratory flow rate (PNIF), number of treatments received for induced reactions, and adverse gastrointestinal effects. RESULTS A difference in FEV1 and PNIF reduction was detected between misoprostol and placebo (P = .03) and misoprostol and historical controls (P = .01), respectively, during nasal ketorolac challenge. No difference was detected among aspirin reactors. Among all reactors, no difference in magnitude was found for FEV1 (P = .13) or PNIF (P = .07) reduction across all 3 groups. Total treatment requirement was similar (P = .14). Patients receiving misoprostol were more likely to report adverse gastrointestinal effects (P = .02). CONCLUSION The addition of misoprostol to current aspirin challenge and/or desensitization protocols reveals no protective effect in reducing the intensity of nonsteroidal anti-inflammatory drug-induced symptoms and is not recommended based on the findings in this study.
Collapse
|
17
|
van 't Erve TJ, Kadiiska MB, London SJ, Mason RP. Classifying oxidative stress by F 2-isoprostane levels across human diseases: A meta-analysis. Redox Biol 2017; 12:582-599. [PMID: 28391180 PMCID: PMC5384299 DOI: 10.1016/j.redox.2017.03.024] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 02/07/2023] Open
Abstract
The notion that oxidative stress plays a role in virtually every human disease and environmental exposure has become ingrained in everyday knowledge. However, mounting evidence regarding the lack of specificity of biomarkers traditionally used as indicators of oxidative stress in human disease and exposures now necessitates re-evaluation. To prioritize these re-evaluations, published literature was comprehensively analyzed in a meta-analysis to quantitatively classify the levels of systemic oxidative damage across human disease and in response to environmental exposures. In this meta-analysis, the F2-isoprostane, 8-iso-PGF2α, was specifically chosen as the representative marker of oxidative damage. To combine published values across measurement methods and specimens, the standardized mean differences (Hedges’ g) in 8-iso-PGF2α levels between affected and control populations were calculated. The meta-analysis resulted in a classification of oxidative damage levels as measured by 8-iso-PGF2α across 50 human health outcomes and exposures from 242 distinct publications. Relatively small increases in 8-iso-PGF2α levels (g<0.8) were found in the following conditions: hypertension (g=0.4), metabolic syndrome (g=0.5), asthma (g=0.4), and tobacco smoking (g=0.7). In contrast, large increases in 8-iso-PGF2α levels were observed in pathologies of the kidney, e.g., chronic renal insufficiency (g=1.9), obstructive sleep apnoea (g=1.1), and pre-eclampsia (g=1.1), as well as respiratory tract disorders, e.g., cystic fibrosis (g=2.3). In conclusion, we have established a quantitative classification for the level of 8-iso-PGF2α generation in different human pathologies and exposures based on a comprehensive meta-analysis of published data. This analysis provides knowledge on the true involvement of oxidative damage across human health outcomes as well as utilizes past research to prioritize those conditions requiring further scrutiny on the mechanisms of biomarker generation. Oxidative damage is highly variable in human conditions as measured by F2-isoprostanes. Respiratory tract and urogenital diseases have the highest F2-isoprostanes. Cancer and cardiovascular diseases have surprisingly low F2-isoprostanes.
Collapse
Affiliation(s)
- Thomas J van 't Erve
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA.
| | - Maria B Kadiiska
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Stephanie J London
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| | - Ronald P Mason
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, 27709 NC, USA
| |
Collapse
|
18
|
Eosinophils and Mast Cells in Aspirin-Exacerbated Respiratory Disease. Immunol Allergy Clin North Am 2016; 36:719-734. [PMID: 27712766 DOI: 10.1016/j.iac.2016.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) involves overexpression of proinflammatory mediators, including 5-lipoxygenase and leukotriene C4 synthase (LTC4S), resulting in constitutive overproduction of cysteinyl leukotrienes. Mast cells and eosinophils have roles in mediating many of the observed effects. Increased levels of both interleukin-4 (IL-4) and interferon (IFN)-γ are present in the tissue of patients with AERD. Previous studies showed that IL-4 is primarily responsible for the upregulation of LTC4S by mast cells. Our studies show that IFN-γ, but not IL-4, drives this process in eosinophils. This article examines the overall role that eosinophils and mast cells contribute to the pathophysiology of AERD.
Collapse
|
19
|
Pan Y, Li S, Xie X, Li M. Association between thromboxane A2 receptor polymorphisms and asthma risk: A meta-analysis. J Asthma 2016; 53:576-82. [PMID: 27058349 DOI: 10.3109/02770903.2015.1126849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To determine whether there is an association between thromboxane A2 receptor (TBXA2R) gene polymorphisms (+924C/T and +795C/T) and asthma risk by conducting a meta-analysis. DATA SOURCES Pubmed, Embase, Chinese National Knowledge Infrastructure (CNKI) and Wanfang database were searched (updated May 1, 2015). STUDY SELECTIONS Articles evaluating the association between TBXA2R gene polymorphisms and asthma risk were selected. RESULTS A total of 7 studies on +924C/T polymorphism and 6 studies on +795C/T polymorphism were included in this meta-analysis. There was a significant association between TBXA2R +924C/T polymorphism and asthma risk in the recessive model (OR = 1.33, 95% CI = 1.01-1.75, P = 0.045). No significant association between +795C/T polymorphism and asthma risk in the overall population was demonstrated. In subgroup analyzes, significant association was observed in atopic asthma risk in the recessive model (OR = 1.43, 95% CI = 1.01-2.01, P = 0.043), but no significant association was found between TBXA2R +924C/T polymorphism and asthma risk in Asians (OR = 1.14, 95% CI = 0.80-1.63, P = 0.457). TBXA2R +795C/T polymorphism was associated with aspirin-intolerant asthma (AIA) risk when stratified by asthma subphenotype in the allelic model (OR = 1.30, 95% CI = 1.05-1.60, P = 0.014) and dominant model (OR = 1.50, 95% CI = 1.11-2.03, P = 0.008). CONCLUSION Our results suggested that TBXA2R +924C/T polymorphism is associated with asthma risk, and +795C/T polymorphism may be a risk factor for AIA. Larger-scale and well-designed studies are required to validate the association identified in the current meta-analysis.
Collapse
Affiliation(s)
- Yilin Pan
- a Department of Respiratory Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , China
| | - Shaojun Li
- a Department of Respiratory Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , China
| | - Xinming Xie
- a Department of Respiratory Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , China
| | - Manxiang Li
- a Department of Respiratory Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , China
| |
Collapse
|
20
|
Pham DL, Kim JH, Trinh THK, Park HS. What we know about nonsteroidal anti-inflammatory drug hypersensitivity. Korean J Intern Med 2016; 31:417-32. [PMID: 27030979 PMCID: PMC4855107 DOI: 10.3904/kjim.2016.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/05/2016] [Indexed: 02/07/2023] Open
Abstract
Nonsteroidal anti-inf lammatory drugs (NSAIDs) are widely prescribed for the treatment of inflammatory diseases, but their use is frequently related to hypersensitivity reactions. This review outlines our current knowledge of NSAID hypersensitivity (NHS) with regard to its pathogenic, molecular, and genetic mechanisms, as well as diagnosis and treatment. The presentation of NHS varies from a local (skin and/or airways) reaction to systemic reactions, including anaphylaxis. At the molecular level, NHS reactions can be classified as cross-reactive (mediated by cyclooxygenase inhibition) or selective (specific activation of immunoglobulin E antibodies or T cells). Genetic polymorphisms and epigenetic factors have been shown to be closely associated with NHS, and may be useful as predictive markers. To diagnose NHS, inhalation or oral challenge tests are applied, with the exclusion of any cross-reactive NSAIDs. For patients diagnosed with NHS, absolute avoidance of NSAIDs/aspirin is essential, and pharmacological treatment, including biologics, is often used to control their respiratory and cutaneous symptoms. Finally, desensitization is recommended only for selected patients with NHS. However, further research is required to develop new diagnostic methods and more effective treatments against NHS.
Collapse
Affiliation(s)
- Duy Le Pham
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
| | - Ji-Hye Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Tu Hoang Kim Trinh
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
- Department of Biomedical Sciences, The Graduate School, Ajou University, Suwon, Korea
- Correspondence to Hae-Sim Park, M.D. Department of Allergy and Clinical Immunology, Ajou University Hospital, 164 World cup-ro, Yeongtong-gu, Suwon 16499, Korea Tel: +82-31-219-5150 Fax: +82-31-219-5154 E-mail:
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Severe asthma is a heterogeneous syndrome. Classification of asthma into phenotypes and endotypes can improve understanding and treatment of the disease. Identification and utilization of biomarkers, particularly those linked to T2 inflammation, can help group patients into phenotypes, predict those who will respond to a specific therapy, and assess the response to treatment. RECENT FINDINGS Biomarkers are present in sputum, exhaled breath, and blood of patients with asthma. These include sputum eosinophils and neutrophils, fractional excretion of nitric oxide, blood eosinophilia, IgE, and periostin. Many of these biomarkers are associated with eosinophilic inflammation propagated mainly by T2 cytokines such as IL-5 and IL-13, which are released from Th2 cells and Type 2 innate lymphoid cells. Biomarkers have been utilized in recent trials of novel biologic agents targeted at T2 inflammation and may contribute to the defining population who would respond to these therapies. SUMMARY Despite advances in the identification and utilization of asthma biomarkers, further studies are needed to better clarify the role of biomarkers, individually or in combination, in the diagnosis and treatment of severe asthma. Future therapeutic trials should include the use of biomarkers in their design, which may lead to a more personalized approach to therapy and improved outcomes.
Collapse
|
22
|
Katial RK, Martucci M, Burnett T, Faino A, Finkas L, Liu S, Alam R. Nonsteroidal anti-inflammatory-induced inhibition of signal transducer and activator of transcription 6 (STAT-6) phosphorylation in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2016; 138:579-85. [PMID: 26915678 DOI: 10.1016/j.jaci.2015.11.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/28/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aspirin desensitization provides long-term clinical benefits. The exact mechanisms of aspirin desensitization are not clearly understood. OBJECTIVE We sought to evaluate the effects of nonsteroidal anti-inflammatory drugs (NSAIDs) on T-cell activation of the IL-4 pathway in aspirin-sensitive patients with asthma and control subjects. METHODS A total of 11 aspirin-sensitive patients with asthma, 10 aspirin-tolerant patients with asthma, and 10 controls without asthma were studied. PBMCs were stimulated with an anti-CD3 antibody and IL-4 or IL-12, with and without the presence of NSAIDs. The expression of phosphorylated signal transducers and activators of transcription 6 (pSTAT6), phosphorylated signal transducers and activators of transcription 4, and IL-4 was detected in CD4 T cells by flow cytometry. RESULTS Stimulation with a combination of anti-CD3 and IL-4 induced pSTAT6 in CD4 T cells from all subjects. The induction of pSTAT6 was significantly higher in aspirin-sensitive patients with asthma than in controls subjects. The increase in pSTAT6 was inhibited in a dose-dependent manner by aspirin and indomethacin and minimally by sodium salicylate. This inhibition was strongest in aspirin-sensitive patients. Two-group comparisons showed significant differences in pSTAT6 inhibition by all concentrations of indomethacin and aspirin: between aspirin-sensitive and aspirin-tolerant groups and between aspirin-sensitive and control groups. No differences were found between aspirin-tolerant and control groups at all 3 concentrations. The inhibition of pSTAT6 was associated with reduced IL-4 expression. CONCLUSIONS NSAIDs inhibited signal transducers and activators of transcription 6 signaling in CD4 T cells. This inhibition was significantly higher in aspirin-sensitive patients than in aspirin-tolerant subjects and was associated with reduced expression of IL-4. These findings have implications for clinical benefits of aspirin desensitization in aspirin-sensitive patients with asthma.
Collapse
Affiliation(s)
| | | | | | | | | | - Sucai Liu
- National Jewish Health, Denver, Colo
| | | |
Collapse
|
23
|
Fajmut A, Emeršič T, Dobovišek A, Antić N, Schäfer D, Brumen M. Dynamic model of eicosanoid production with special reference to non-steroidal anti-inflammatory drug-triggered hypersensitivity. IET Syst Biol 2016; 9:204-15. [PMID: 26405144 DOI: 10.1049/iet-syb.2014.0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The authors developed a mathematical model of arachidonic acid (AA) degradation to prostaglandins (PGs) and leukotrienes (LTs), which are implicated in the processes of inflammation and hypersensitivity to non-steroidal anti-inflammatory drugs (NSAIDs). The model focuses on two PGs (PGE2 and PGD2) and one LT (LTC4), their % increases and their ratios. Results are compared with experimental studies obtained from non-asthmatics (NAs), and asthmatics tolerant (ATA) or intolerant (AIA) to aspirin. Simulations are carried out for predefined model populations NA, ATA and three AIA, based on the differences of two enzymes, PG E synthase and/or LTC4-synthase in two states, that is, no-inflammation and inflammation. Their model reveals that the model population with concomitant malfunctions in both enzymes is the most sensitive to NSAIDs, since the duration and the capacity for bronchoconstriction risk are highest after simulated oral dosing of indomethacin. Furthermore, inflammation prolongs the duration of the bronchoconstriction risk in all AIA model populations, and the sensitivity analysis reveals multiple possible scenarios leading to hypersensitivity, especially if inflammatory processes affect the expression of multiple enzymes of the AA metabolic pathway. Their model estimates the expected fold-changes in enzyme activities and gives valuable information for further targeted transcriptomic/proteomic and metabolomic studies.
Collapse
Affiliation(s)
- Aleš Fajmut
- Faculty of Health Sciences, University of Maribor, Žitna ulica 15, 2000 Maribor, Slovenia.
| | - Tadej Emeršič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Andrej Dobovišek
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Nataša Antić
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Dirk Schäfer
- Allergie und Intoleranzlabor, Medizinisch Klinik III, Friedrich-Alexander-Universität Erlangen-Nürnberg, Glückstraße 4a, 91054 Erlangen, Germany
| | - Milan Brumen
- Jožef Stefan Institute, Jamova ulica 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
24
|
Kong SK, Soo Kim B, Gi Uhm T, Soo Chang H, Sook Park J, Woo Park S, Park CS, Chung IY. Aspirin induces IL-4 production: augmented IL-4 production in aspirin-exacerbated respiratory disease. Exp Mol Med 2016; 48:e202. [PMID: 27534531 PMCID: PMC4686698 DOI: 10.1038/emm.2015.96] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/11/2015] [Indexed: 01/04/2023] Open
Abstract
Aspirin hypersensitivity is a hallmark of aspirin-exacerbated respiratory disease (AERD), a clinical syndrome characterized by the severe inflammation of the respiratory tract after ingestion of cyclooxygenase-1 inhibitors. We investigated the capacity of aspirin to induce interleukin-4 (IL-4) production in inflammatory cells relevant to AERD pathogenesis and examined the associated biochemical and molecular pathways. We also compared IL-4 production in peripheral blood mononuclear cells (PBMCs) from patients with AERD vs aspirin-tolerant asthma (ATA) upon exposure to aspirin. Aspirin induced IL-4 expression and activated the IL-4 promoter in a report assay. The capacity of aspirin to induce IL-4 expression correlated with its activity to activate mitogen-activated protein kinases, to form DNA-protein complexes on P elements in the IL-4 promoter and to synthesize nuclear factor of activated T cells, critical transcription factors for IL-4 transcription. Of clinical importance, aspirin upregulated IL-4 production twice as much in PBMCs from patients with AERD compared with PBMCs from patients with ATA. Our results suggest that IL-4 is an inflammatory component mediating intolerance reactions to aspirin, and thus is crucial for AERD pathogenesis.
Collapse
Affiliation(s)
- Su-Kang Kong
- Department of Bionano Technology, Hanyang University, Ansan, Republic of Korea
| | - Byung Soo Kim
- Department of Bionano Technology, Hanyang University, Ansan, Republic of Korea
| | - Tae Gi Uhm
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| | - Hun Soo Chang
- Soonchunhyang Medical Science Research Institute, College of Medicine, Soonchunhyang University, 22, Soonchunhyang-ro, Asan, Chungcheongnam-do, Republic of Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Sung Woo Park
- Division of Allergy and Respiratory, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, Republic of Korea
| | - Il Yup Chung
- Department of Bionano Technology, Hanyang University, Ansan, Republic of Korea
- Department of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
25
|
Steinke JW, Borish L. Factors driving the aspirin exacerbated respiratory disease phenotype. Am J Rhinol Allergy 2015; 29:35-40. [PMID: 25590316 DOI: 10.2500/ajra.2015.29.4123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is explained in part by overexpression of 5-lipoxygenase and leukotriene C4 synthase (LTC4S), resulting in constitutive overproduction of cysteinyl leukotrienes (CysLTs) and driving the surge in CysLT production that occurs with aspirin ingestion. Similarly, AERD is characterized by the overexpression of CysLT receptors. Increased levels of both interleukin (IL)-4 and interferon (IFN)-γ are present in the tissue of AERD subjects. Previous studies demonstrated that IL-4 is primarily responsible for the up-regulation of LTC4S by mast cells. METHODS Literature review. RESULTS Our previous studies demonstrated that IFN-γ, but not IL-4, drives this process in eosinophils. These published studies also extend to both IL-4 and IFN-γ the ability to up-regulate CysLT receptors. Prostaglandin E2 (PGE2) acts to prevent CysLT secretion by inhibiting mast cell and eosinophil activation. PGE2 concentrations are reduced in AERD, and our published studies confirm that this reflects diminished expression of cyclooxygenase (COX)-2. A process again that is driven by IL-4. Thus, IL-4 and IFN-γ together play an important pathogenic role in generating the phenotype of AERD. Finally, induction of LTC4S and CysLT1 receptors by IL-4 reflects in part the IL-4-mediated activation of signal transducer and activator of transcription 6 (STAT6). Our previous studies demonstrated that aspirin blocks trafficking of STAT6 into the nucleus and thereby prevents IL-4-mediated induction of these transcripts, thereby suggesting a modality by which aspirin desensitization could provide therapeutic benefit for AERD patients. CONCLUSION This review will examine the evidence supporting this model.
Collapse
Affiliation(s)
- John W Steinke
- Asthma and Allergic Disease Center, University of Virginia Health System, Charlottesville, VA, USA
| | | |
Collapse
|
26
|
Mastalerz L, Januszek R, Kaszuba M, Wójcik K, Celejewska-Wójcik N, Gielicz A, Plutecka H, Oleś K, Stręk P, Sanak M. Aspirin provocation increases 8-iso-PGE2 in exhaled breath condensate of aspirin-hypersensitive asthmatics. Prostaglandins Other Lipid Mediat 2015. [PMID: 26209241 DOI: 10.1016/j.prostaglandins.2015.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Isoprostanes are bioactive compounds formed by non-enzymatic oxidation of polyunsaturated fatty acids, mostly arachidonic, and markers of free radical generation during inflammation. In aspirin exacerbated respiratory disease (AERD), asthmatic symptoms are precipitated by ingestion of non-steroid anti-inflammatory drugs capable for pharmacologic inhibition of cyclooxygenase-1 isoenzyme. We investigated whether aspirin-provoked bronchoconstriction is accompanied by changes of isoprostanes in exhaled breath condensate (EBC). METHODS EBC was collected from 28 AERD subjects and 25 aspirin-tolerant asthmatics before and after inhalatory aspirin challenge. Concentrations of 8-iso-PGF2α, 8-iso-PGE2, and prostaglandin E2 were measured using gas chromatography/mass spectrometry. Leukotriene E4 was measured by immunoassay in urine samples collected before and after the challenge. RESULTS Before the challenge, exhaled 8-iso-PGF2α, 8-iso-PGE2, and PGE2 levels did not differ between the study groups. 8-iso-PGE2 level increased in AERD group only (p=0.014) as a result of the aspirin challenge. Urinary LTE4 was elevated in AERD, both in baseline and post-challenge samples. Post-challenge airways 8-iso-PGE2 correlated positively with urinary LTE4 level (p=0.046), whereas it correlated negatively with the provocative dose of aspirin (p=0.027). CONCLUSION A significant increase of exhaled 8-iso-PGE2 after inhalatory challenge with aspirin was selective and not present for the other isoprostane measured. This is a novel finding in AERD, suggesting that inhibition of cyclooxygenase may elicit 8-iso-PGE2 production in a specific mechanism, contributing to bronchoconstriction and systemic overproduction of cysteinyl leukotrienes.
Collapse
Affiliation(s)
- Lucyna Mastalerz
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Rafał Januszek
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Marek Kaszuba
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Krzysztof Wójcik
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Natalia Celejewska-Wójcik
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Anna Gielicz
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Hanna Plutecka
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland
| | - Krzysztof Oleś
- Department of Otolaryngology, Jagiellonian University School of Medicine, Śniadeckich 2, 31-531 Kraków, Poland
| | - Paweł Stręk
- Department of Otolaryngology, Jagiellonian University School of Medicine, Śniadeckich 2, 31-531 Kraków, Poland
| | - Marek Sanak
- Department of Medicine, Jagiellonian University School of Medicine, Skawińska 8, 31-066 Kraków, Poland.
| |
Collapse
|
27
|
Simon RA, Dazy KM, Waldram JD. Update on aspirin desensitization for chronic rhinosinusitis with polyps in aspirin-exacerbated respiratory disease (AERD). Curr Allergy Asthma Rep 2015; 15:508. [PMID: 25663486 DOI: 10.1007/s11882-014-0508-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aspirin-exacerbated respiratory disease (AERD) is a clinical condition which results in adverse upper and lower respiratory symptoms, particularly rhinitis, conjunctivitis, bronchospasm, and/or laryngospasm, following exposure to cyclooxygenase-1 (COX-1) inhibiting drugs, namely aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs). A provocative aspirin challenge is the gold standard for diagnosis of AERD. Aspirin desensitization and continuous aspirin therapy has been highly efficacious in those patients with suboptimal control of their disease on current available pharmacotherapy or those with other underlying conditions (i.e., cardiovascular disease) who may require frequent treatment with aspirin or NSAIDs. This review article focuses on aspirin desensitization and the management of patients with AERD with a particular emphasis on outcomes in those patients with chronic rhinosinusitis and nasal polyposis.
Collapse
Affiliation(s)
- Ronald A Simon
- Division of Allergy, Asthma and Immunology, Scripps Clinic, 3811 Valley Centre Drive, San Diego, CA, 92130, USA,
| | | | | |
Collapse
|
28
|
Nakamura T, Maeda S, Horiguchi K, Maehara T, Aritake K, Choi BI, Iwakura Y, Urade Y, Murata T. PGD2 deficiency exacerbates food antigen-induced mast cell hyperplasia. Nat Commun 2015; 6:7514. [DOI: 10.1038/ncomms8514] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/15/2015] [Indexed: 01/11/2023] Open
|
29
|
Kacprzak D, Pawliczak R. Does aspirin-induced oxidative stress cause asthma exacerbation? Arch Med Sci 2015; 11:494-504. [PMID: 26170841 PMCID: PMC4495142 DOI: 10.5114/aoms.2014.41960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/15/2013] [Accepted: 07/10/2013] [Indexed: 12/13/2022] Open
Abstract
Aspirin-induced asthma (AIA) is a distinct clinical syndrome characterized by severe asthma exacerbations after ingestion of aspirin or other non-steroidal anti-inflammatory drugs. The exact pathomechanism of AIA remains unknown, though ongoing research has shed some light. Recently, more and more attention has been focused on the role of aspirin in the induction of oxidative stress, especially in cancer cell systems. However, it has not excluded the similar action of aspirin in other inflammatory disorders such as asthma. Moreover, increased levels of 8-isoprostanes, reliable biomarkers of oxidative stress in expired breath condensate in steroid-naïve patients with AIA compared to AIA patients treated with steroids and healthy volunteers, has been observed. This review is an attempt to cover aspirin-induced oxidative stress action in AIA and to suggest a possible related pathomechanism.
Collapse
Affiliation(s)
- Dorota Kacprzak
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Allergology, Immunology and Dermatology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
30
|
Exhaled Breath Condensate: Technical and Diagnostic Aspects. ScientificWorldJournal 2015; 2015:435160. [PMID: 26106641 PMCID: PMC4461795 DOI: 10.1155/2015/435160] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/21/2015] [Indexed: 01/18/2023] Open
Abstract
Purpose. The aim of this study was to evaluate the 30-year progress of research on exhaled breath condensate in a disease-based approach. Methods. We searched PubMed/Medline, ScienceDirect, and Google Scholar using the following keywords: exhaled breath condensate (EBC), biomarkers, pH, asthma, gastroesophageal reflux (GERD), smoking, COPD, lung cancer, NSCLC, mechanical ventilation, cystic fibrosis, pulmonary arterial hypertension (PAH), idiopathic pulmonary fibrosis, interstitial lung diseases, obstructive sleep apnea (OSA), and drugs. Results. We found 12600 related articles in total in Google Scholar, 1807 in ScienceDirect, and 1081 in PubMed/Medline, published from 1980 to October 2014. 228 original investigation and review articles were eligible. Conclusions. There is rapidly increasing number of innovative articles, covering all the areas of modern respiratory medicine and expanding EBC potential clinical applications to other fields of internal medicine. However, the majority of published papers represent the results of small-scale studies and thus current knowledge must be further evaluated in large cohorts. In regard to the potential clinical use of EBC-analysis, several limitations must be pointed out, including poor reproducibility of biomarkers and absence of large surveys towards determination of reference-normal values. In conclusion, contemporary EBC-analysis is an intriguing achievement, but still in early stage when it comes to its application in clinical practice.
Collapse
|
31
|
Radulovic M, Bauman WA, Wecht JM, LaFountaine M, Kahn N, Hobson J, Singh K, Renzi C, Yen C, Schilero GJ. Biomarkers of inflammation in persons with chronic tetraplegia. J Breath Res 2015; 9:036001. [PMID: 25971935 DOI: 10.1088/1752-7155/9/3/036001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In addition to lung volume restriction, individuals with chronic tetraplegia exhibit reduced airway caliber and bronchodilator responsiveness similar to persons with asthma. In asthma, airflow obstruction is closely linked to airway inflammation. Conversely, little is known regarding the airway inflammatory response in tetraplegia. To compare levels of biomarkers of inflammation in exhaled breath condensate (EBC) and serum in subjects with chronic tetraplegia, mild asthma, and able-bodied controls.Prospective, observational pilot study. Thirty-four subjects participated: tetraplegia (n = 12), asthma (n = 12), controls (n = 10). Biomarkers in EBC [8-isoprostane (8-IP), leukotriene B4 (LT-B4), prostaglandin E2 (PG-E2), tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6)] and serum (8-IP, LT-B4, TNF-α, IL-6) were determined using commercially available EIA kits (Cayman Chemical Company, Ann Arbor, MI). Separate, one-way ANOVA with Bonferroni's post-hoc analyses were performed to determine group differences in demographic and dependent variables [EBC and serum biomarkers, fractional exhaled nitric oxide (FeNO), pulmonary function parameters, and specific airway conductance (sGaw)]. The tetraplegia group had significantly elevated 8-IP levels in EBC compared to the asthma (68 ± 38 versus 21 ± 13 pg ml(-1); p < 0.001) and control groups (22 ± 13 pg ml(-1); p < 0.01), respectively. FeNO levels were significantly elevated in the asthma compared to the control group (26 ± 18 versus 11 ± 4 ppb; p < 0.05), and trended higher than levels in the tetraplegia group (15 ± 6; p = 0.08). Levels of serum biomarkers did not differ significantly among groups. Through analysis of EBC, levels of 8-IP were significantly elevated compared to levels found in individuals with mild asthma and healthy controls. Further studies are needed to extend upon these preliminary findings that suggest the presence of airway inflammation in subjects with chronic tetraplegia, and how this relates to pulmonary dysfunction in this population.
Collapse
Affiliation(s)
- Miroslav Radulovic
- Rehabilitation Research and Development Center of Excellence for the Medical Consequences of Spinal Cord Injury, The James J. Peters VA Medical Center, Bronx, NY 10468, USA. Medical Service, The James J. Peters VA Medical Center, Bronx, NY 10468, USA. Department of Medicine, The Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
9α,11β-PGF2, a Prostaglandin D2 Metabolite, as a Marker of Mast Cell Activation in Bee Venom-Allergic Patients. Arch Immunol Ther Exp (Warsz) 2015; 63:317-25. [PMID: 25763689 PMCID: PMC4499103 DOI: 10.1007/s00005-015-0334-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
Abstract
Mast cell (MC) mediators, among them prostaglandin D2 (PGD2) and 9α,11β-PGF2, PGD2’s metabolite, play a key role in allergic reactions, including bee venom anaphylaxis (BVA). Assessment of these mediators has never been performed in BVA. The aim of the study was to assess the activation of MC during in vivo provocation with bee venom (BV) and to measure PGD2 and 9α,11β-PGF2 in the course of an allergen challenge. The second aim was to determine if assessment of these mediators could be useful for predicting adverse events during venom immunotherapy (VIT). In 16 BV-VIT patients and 12 healthy subjects, levels of PGD2 and 9α,11β-PGF2 were assessed during BV provocation by means of the skin chamber method. Chamber fluids, collected at 5 and 15 min, were analyzed for both mediators by gas chromatography mass spectrometry negative ion chemical ionization. BVA in comparison to non-allergic patients had a significantly higher ratio of 9α,11β-PGF2 in allergen-challenged chambers to 9α,11β-PGF2 in allergen-free chambers after 15 min of provocation (p = 0.039). Allergen challenge resulted in a significant increase of 9α,11β-PGF2 levels between 5 and 15 min after provocation only in BVA patients (p < 0.05). Analysis of log-transformed PGD2 levels showed significant difference between changes in PGD2 concentration between BVA and healthy subjects. No study patient developed adverse reactions during. 9α,11β-PGF2 is actively generated during the early allergic response to BV. Skin chamber seems to be a promising, non-invasive and safe model of in vivo allergen provocation in BV-allergic patients. High or low levels of both mediators do not predict occurrence of adverse events during VIT.
Collapse
|
33
|
Muñoz X, Bustamante V, Lopez-Campos JL, Cruz MJ, Barreiro E. Usefulness of noninvasive methods for the study of bronchial inflammation in the control of patients with asthma. Int Arch Allergy Immunol 2015; 166:1-12. [PMID: 25765083 DOI: 10.1159/000371849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bronchial asthma is one of the most prevalent respiratory conditions. Although it is defined as an inflammatory disease, the current guidelines for both diagnosis and follow-up of patients are based only on clinical and lung function parameters. Current research is focused on finding markers that can accurately predict future risk, and on assessing the ability of these markers to guide medical treatment and thus improve prognosis. The use of noninvasive methods to study airway inflammation is gaining increasing support. The study of eosinophils in induced sputum has proved useful for the diagnosis of asthma; however, its clinical implementation is complex. Some studies have shown that the measurement of exhaled nitric oxide (FeNO) may also be useful to establish disease phenotypes and improve control. Others have found that the measurement of pH and certain markers of oxidative stress, cytokines and prostanoids in exhaled breath condensate (EBC) may also be useful as well as the measurement of the temperature of exhaled breath and the analysis of volatile organic compounds (VOCs). In conclusion, since asthma is an inflammatory disease, it seems appropriate to try to control it through the study of airway inflammation using noninvasive methods. In this regard, the analysis of induced sputum cells has proved very useful, although the clinical implementation of this technique seems difficult. Other techniques such as temperature measurement, the analysis of FeNO, the analysis of the VOCs in exhaled breath, or the study of certain biomarkers in EBC require further study in order to determine their clinical applicability.
Collapse
Affiliation(s)
- Xavier Muñoz
- Pulmonology Service, Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | | | | | | |
Collapse
|
34
|
Liu M, Yokomizo T. The role of leukotrienes in allergic diseases. Allergol Int 2015; 64:17-26. [PMID: 25572555 DOI: 10.1016/j.alit.2014.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Abstract
Leukotrienes (LTs), both LTB4 and the cysteinyl LTs (CysLTs) LTC4, LTD4 and LTE4, are implicated in a wide variety of inflammatory disorders. These lipid mediators are generated from arachidonic acid via multistep enzymatic reactions through which arachidonic acid is liberated from membrane phospholipids through the action of phospholipase A2. LTB4 and CysLTs exert their biological effects by binding to cognate receptors, which belong to the G protein-coupled receptor superfamily. LTB4 is widely considered to be a potent chemoattractant for most subsets of leukocytes, whereas CysLTs are potent bronchoconstrictors that have effects on airway remodeling. LTs play a central role in the pathogenesis of asthma and many other inflammatory diseases. This review will provide an update on the synthesis, biological function, and relevance of LTs to the pathobiology of allergic diseases, and examine the current and future therapeutic prospects of LT modifiers.
Collapse
Affiliation(s)
- Min Liu
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan; Department of Respiratory Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
35
|
Ciebiada M, Górski P, Antczak A. Evaluation of eicosanoids in nasal lavage as biomarkers of inflammation in patients with allergic rhinitis. Arch Med Sci 2014; 10:1123-8. [PMID: 25624848 PMCID: PMC4296063 DOI: 10.5114/aoms.2015.47655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/08/2013] [Accepted: 05/30/2013] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Cysteinyl leukotrienes (cys-LTs), 8-isoprostane and prostaglandin E2 (PGE2) constitute fundamental mediators in allergic inflammation; therefore we wanted to determine the utility of PGE2, 8-isoprostane and cys-LT levels in nasal lavage as biomarkers of allergic inflammation. MATERIAL AND METHODS Twenty-one patients with allergic rhinitis (AR) were included on the basis of a positive history of AR symptoms and positive results of skin prick tests to grass pollen allergens. The main exclusion criteria were: uncontrolled asthma, nasal polyps, respiratory infection, tuberculosis, neoplastic and autoimmune diseases, current smoking and immunotherapy. Both outside the pollen season and at the height of the pollen season, total nasal symptom score (TNS-4) was evaluated and the levels of cys-LTs, 8-isoprostane and PGE2 were measured in nasal lavage fluid (NALF). RESULTS Natural allergen stimulation resulted in a significant increase of TNS-4 (p < 0.001) and nasal eosinophilia (p < 0.001). The concentration of PGE2 dominated in the NALF outside the pollen season and decreased significantly at the height of natural exposure (p < 0.01). In contrast, lower baseline concentrations of cys-LTs and 8-isoprostane increased significantly upon allergen stimulation (p < 0.05). There was a significant correlation between mean concentration of PGE2 and eosinophil number in NALF (r = 0.67, p = 0.0439). CONCLUSIONS The NALF concentrations of cys-LTs and 8-isoprostane change simultaneously with TNS-4 and nasal eosinophilia. However, due to the lack of any significant correlation, their utility as markers of allergic rhinitis should be warily considered. The decrease of PGE2 concentration in NALF which correlated with nasal eosinophilia may participate in escalation of allergic inflammation and needs further evaluation.
Collapse
Affiliation(s)
- Maciej Ciebiada
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| | - Paweł Górski
- Department of Pneumonology and Allergy, Medical University of Lodz, Lodz, Poland
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
36
|
Woessner KM, White AA. Evidence-based approach to aspirin desensitization in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2014; 133:286-7.e1-9. [PMID: 24369807 DOI: 10.1016/j.jaci.2013.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/15/2013] [Accepted: 11/18/2013] [Indexed: 10/25/2022]
Affiliation(s)
- Katharine M Woessner
- Division of Allergy, Asthma and Immunology, Scripps Clinic Medical Group, San Diego, Calif.
| | - Andrew A White
- Division of Allergy, Asthma and Immunology, Scripps Clinic Medical Group, San Diego, Calif
| |
Collapse
|
37
|
Variants of CEP68 gene are associated with acute urticaria/angioedema induced by multiple non-steroidal anti-inflammatory drugs. PLoS One 2014; 9:e90966. [PMID: 24618698 PMCID: PMC3949706 DOI: 10.1371/journal.pone.0090966] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/06/2014] [Indexed: 01/18/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most consumed drugs worldwide because of their efficacy and utility in the treatment of pain and inflammatory diseases. However, they are also responsible for an important number of adverse effects including hypersensitivity reactions. The most important group of these reactions is triggered by non-immunological, pharmacological mechanisms catalogued under the denomination of cross-intolerance (CRI), with acute urticaria/angioedema induced by multiple NSAIDs (MNSAID-UA) the most frequently associated clinical entity. A recent genome-wide association study identified the gene encoding the centrosomal protein of 68 KDa (CEP68) as the major locus associated with aspirin intolerance susceptibility in asthmatics. In this study, we aimed to assess the role of this locus in susceptibility to CRI to NSAIDs by examining 53 common gene variants in a total of 635 patients that were classified as MNSAID-UA (n = 399), airway exacerbations (n = 110) or blended pattern (n = 126), and 425 controls. We found in the MNSAID-UA group a number of variants (17) associated (lowest p-value = 1.13×10−6), including the non-synonymous Gly74Ser variant (rs7572857) previously associated with aspirin intolerance susceptibility in asthmatics. Although not being significant in the context of multiple testing, eight of these variants were also associated with exacerbated respiratory disease or blended reactions. Our results suggest that CEP68 gene variants may play an important role in MNSAID-UA susceptibility and, despite the different regulatory mechanisms involved depending on the specific affected organ, in the development of hypersensitivity reactions to NSAIDs.
Collapse
|
38
|
Thompson MD, Cole DEC, Capra V, Siminovitch KA, Rovati GE, Burnham WM, Rana BK. Pharmacogenetics of the G protein-coupled receptors. Methods Mol Biol 2014; 1175:189-242. [PMID: 25150871 DOI: 10.1007/978-1-4939-0956-8_9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pharmacogenetics investigates the influence of genetic variants on physiological phenotypes related to drug response and disease, while pharmacogenomics takes a genome-wide approach to advancing this knowledge. Both play an important role in identifying responders and nonresponders to medication, avoiding adverse drug reactions, and optimizing drug dose for the individual. G protein-coupled receptors (GPCRs) are the primary target of therapeutic drugs and have been the focus of these studies. With the advance of genomic technologies, there has been a substantial increase in the inventory of naturally occurring rare and common GPCR variants. These variants include single-nucleotide polymorphisms and insertion or deletions that have potential to alter GPCR expression of function. In vivo and in vitro studies have determined functional roles for many GPCR variants, but genetic association studies that define the physiological impact of the majority of these common variants are still limited. Despite the breadth of pharmacogenetic data available, GPCR variants have not been included in drug labeling and are only occasionally considered in optimizing clinical use of GPCR-targeted agents. In this chapter, pharmacogenetic and genomic studies on GPCR variants are reviewed with respect to a subset of GPCR systems, including the adrenergic, calcium sensing, cysteinyl leukotriene, cannabinoid CB1 and CB2 receptors, and the de-orphanized receptors such as GPR55. The nature of the disruption to receptor function is discussed with respect to regulation of gene expression, expression on the cell surface (affected by receptor trafficking, dimerization, desensitization/downregulation), or perturbation of receptor function (altered ligand binding, G protein coupling, constitutive activity). The large body of experimental data generated on structure and function relationships and receptor-ligand interactions are being harnessed for the in silico functional prediction of naturally occurring GPCR variants. We provide information on online resources dedicated to GPCRs and present applications of publically available computational tools for pharmacogenetic studies of GPCRs. As the breadth of GPCR pharmacogenomic data becomes clearer, the opportunity for routine assessment of GPCR variants to predict disease risk, drug response, and potential adverse drug effects will become possible.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Severe asthma has been increasingly recognized as a heterogenous disease with varied clinical characteristics and pathophysiological processes. Patients with severe asthma suffer significant impairment in their daily life and impose a substantial burden on health care resources. The recent work of consortia groups has led to an improved definition of severe asthma as well as better characterization of the patients with severe disease. Different approaches, including unbiased cluster analyses, have been utilized to identify severe asthma phenotypes (subgroups) defined by their clinical characteristics and immune processes. Recognition of severe asthma phenotypes has assisted the development of targeted therapies by identifying patients more likely to respond to the specific agent. In this article, we discuss the evolution of our understanding of severe asthma and review the currently available therapies and promising drugs in development. In addition, we examine the role of bronchoscopy in severe asthma and the emerging evidence regarding bronchial thermoplasty.
Collapse
|
40
|
Kubáň P, Foret F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal Chim Acta 2013; 805:1-18. [DOI: 10.1016/j.aca.2013.07.049] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 07/16/2013] [Accepted: 07/20/2013] [Indexed: 12/31/2022]
|
41
|
Abstract
Aspirin-exacerbated respiratory disease is a clinical syndrome characterized by severe, persistent asthma, hyperplastic eosinophilic sinusitis with nasal polyps, and reactions to aspirin and other nonsteroidal antiinflammatory drugs that preferentially inhibit cyclooxygenase 1. The mechanisms behind the therapeutic effects of aspirin desensitization remain poorly understood. Recent studies suggest that the clinical benefits may occur through direct inhibition of tyrosine kinases and the signal transducer and activator of transcription 6 signaling pathway, which results in inhibition of interleukin 4 production. In this article, the current understanding of the mechanisms of aspirin desensitization is reviewed and future areas of investigation are discussed.
Collapse
Affiliation(s)
- Trever Burnett
- Department of Allergy and Immunology, National Jewish Medical and Research Center, University of Colorado, Denver, CO 80206, USA
| | | | | |
Collapse
|
42
|
Cysteinyl leukotriene levels correlate with 8-isoprostane levels in exhaled breath condensates of atopic and healthy children. Pediatr Res 2013; 74:584-91. [PMID: 24153334 DOI: 10.1038/pr.2013.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/03/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cysteinyl leukotrienes are important mediators of airway inflammation, whereas 8-isoprostane is a biomarker of oxidative stress. This study evaluated the distributions of cysteinyl leukotriene and 8-isoprostane concentrations in exhaled breath condensates (EBCs) of children. The relationship between cysteinyl leukotriene and 8-isoprostane concentrations in the EBCs was also evaluated. METHODS The EBCs were collected from 34 children with allergic respiratory diseases and 24 healthy children. All recruited children underwent pulmonary function testing every season. The severity of allergic respiratory diseases and medication status were assessed every month in children with allergic respiratory diseases. RESULTS The EBC cysteinyl leukotriene and 8-isoprostane levels were higher in children with asthma and allergic rhinitis than in those with asthma only and healthy children. In asthmatic children, cysteinyl leukotriene and 8-isoprostane levels peaked in the summer. All children showed a clear association between EBC cysteinyl leukotriene and EBC 8-isoprostane levels. CONCLUSION The cysteinyl leukotriene and 8-isoprostane concentrations in the EBCs of children significantly varied by season. Oxidative stress correlated with airway inflammation in children.
Collapse
|
43
|
Cornejo-García JA, Liou LB, Blanca-López N, Doña I, Chen CH, Chou YC, Chuang HP, Wu JY, Chen YT, Plaza-Serón MDC, Mayorga C, Guéant-Rodríguez RM, Lin SC, Torres MJ, Campo P, Rondón C, Laguna JJ, Fernández J, Guéant JL, Canto G, Blanca M, Lee MTM. Genome-wide association study in NSAID-induced acute urticaria/angioedema in Spanish and Han Chinese populations. Pharmacogenomics 2013; 14:1857-69. [PMID: 24236485 DOI: 10.2217/pgs.13.166] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM Acute urticaria/angioedema (AUA) induced by cross-intolerance to NSAIDs is the most frequent clinical entity in hypersensitivity reactions to drugs. In this work, we conducted a genome-wide association study in Spanish and Han Chinese patients suffering from NSAID-induced AUA. MATERIALS & METHODS A whole-genome scan was performed on a total of 232 cases (112 Spanish and 120 Han Chinese) with NSAID-induced AUA and 225 unrelated controls (124 Spanish and 101 Han Chinese). RESULTS Although no polymorphism reached genome-wide significance, we obtained suggestive associations for three clusters in the Spanish group (RIMS1, BICC1 and RAD51L 1) and one region in the Han Chinese population (ABI3BP). Five regions showed suggestive associations after meta-analysis: HLF, RAD51L1, COL24A1, GalNAc-T13 and FBXL7. A majority of these genes are related to Ca(2+), cAMP and/or P53 signaling pathways. CONCLUSION The associations described were different from those related to the metabolism of arachidonic acid and could provide new mechanisms underlying NSAID-induced AUA.
Collapse
|
44
|
Misso NLA, Thompson PJ. Oxidative stress and antioxidant deficiencies in asthma: potential modification by diet. Redox Rep 2013; 10:247-55. [PMID: 16354413 DOI: 10.1179/135100005x70233] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The lungs of asthmatic patients are exposed to oxidative stress due to the generation of reactive oxygen and nitrogen species as a consequence of chronic airway inflammation. Increased concentrations of NO*, H2O2 and 8-isoprostane have been measured in exhaled breath and induced sputum of asthmatic patients. O2*-, NO*, and halides interact to form highly reactive species such as peroxynitrite and HOBr, which in turn cause nitration and bromination of protein tyrosine residues. Oxidative stress may also reduce glutathione levels and cause inactivation of antioxidant enzymes such as superoxide dismutase, with a consequent increase in apoptosis, shedding of airway epithelial cells and airway remodelling. The oxidant/antioxidant equilibrium in asthmatic patients may be further perturbed by low dietary intakes of the antioxidant vitamins C and E, selenium and flavonoids, with a consequent lowering of the concentrations of these and other non-dietary antioxidants such as bilirubin and albumin in plasma and airway epithelial lining fluid. Although supplementation with vitamins C and E appears to offer protection against the adverse effects of ozone, recent randomised, placebo-controlled trials of vitamin C or E supplements for patients with mild asthma have not shown significant benefits over standard therapy. However, genetic variation in glutathione S-transferase may influence the susceptibility of asthmatic individuals to oxidative stress and the extent to which they are likely to benefit from antioxidant supplementation. Long-term prospective trials are required to determine whether modification of dietary intake will benefit asthma patients and reduce the socio-economic burden of asthma in the community.
Collapse
Affiliation(s)
- Neil L A Misso
- Asthma & Allergy Research Institute (Inc) and Centre for Asthma, Allergy & Respiratory Research, The University of Western Australia, Perth, Australia.
| | | |
Collapse
|
45
|
Glowacka E, Jedynak-Wasowicz U, Sanak M, Lis G. Exhaled eicosanoid profiles in children with atopic asthma and healthy controls. Pediatr Pulmonol 2013; 48:324-35. [PMID: 22782807 DOI: 10.1002/ppul.22615] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 05/26/2012] [Indexed: 01/09/2023]
Abstract
RATIONALE Chronic endobronchial inflammation is a hallmark of pediatric asthma and involves the arachidonic acid pathway. Its non-volatile metabolites can be quantified in the exhaled breath condensate (EBC), and single substances have been studied as non-invasive biomarkers for the diagnosis and monitoring of children with asthma. The aim of this study was to compare the content and profile of a wider range of eicosanoids in the EBC between patients and a control group. MATERIALS AND METHODS EBC was sampled from 33 children (aged 12.4 ± 3.1 years) with stable atopic asthma (26 on inhaled steroid treatment) and 25 healthy controls (11.8 ± 3.2 years). Validated high performance liquid chromatography coupled with a tandem mass spectrometry platform (HPLC-MS2 ) was used to measure 13 different compounds. In addition, exhaled nitric oxide levels (FeNO) were measured and bronchial hyperresponsiveness (BHR) was assessed by an exercise challenge test in all subjects. An analytical approach was used for multivariate regression modeling of disease status using the most relevant variables. RESULTS The levels of PGEM (P < 0.001), PGD2 (P < 0.001), 6keto-PGF1α (P = 0.03), LTC4 (P < 0.001), trans-LTC4 (P = 0.04), and 5HETE (P = 0.02) were significantly higher in asthmatics compared to healthy children, while 11-dehydro TXB2 was significantly less abundant (P = 0.02). The eicosanoids asthma classification ratio (EACR) was computed as the logistic regression function using four variables: PGEM, PGD2, LTC4, and 5HETE. This composite parameter discriminated asthmatic from healthy children better than FEV1, FeNO, or BHR. CONCLUSION Complementary measurements of PGEM, PGD2, LTC4, and 5HETE in small-volume EBC samples are feasible by HPLC-MS2 and showed a specific profile in our study population. EACR should be evaluated further in the context of diagnosing and monitoring childhood asthma.
Collapse
Affiliation(s)
- Edyta Glowacka
- University Children Hospital, Kraków, ul. Wielicka, Poland
| | | | | | | |
Collapse
|
46
|
Liang Y, Yeligar SM, Brown LAS. Exhaled breath condensate: a promising source for biomarkers of lung disease. ScientificWorldJournal 2012; 2012:217518. [PMID: 23365513 PMCID: PMC3539342 DOI: 10.1100/2012/217518] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 11/25/2012] [Indexed: 12/26/2022] Open
Abstract
Exhaled breath condensate (EBC) has been increasingly studied as a noninvasive research method for sampling the alveolar and airway space and is recognized as a promising source of biomarkers of lung diseases. Substances measured in EBC include oxidative stress and inflammatory mediators, such as arachidonic acid derivatives, reactive oxygen/nitrogen species, reduced and oxidized glutathione, and inflammatory cytokines. Although EBC has great potential as a source of biomarkers in many lung diseases, the low concentrations of compounds within the EBC present challenges in sample collection and analysis. Although EBC is viewed as a noninvasive method for sampling airway lining fluid (ALF), validation is necessary to confirm that EBC truly represents the ALF. Likewise, a dilution factor for the EBC is needed in order to compare across subjects and determine changes in the ALF. The aims of this paper are to address the characteristics of EBC; strategies to standardize EBC sample collection and review available analytical techniques for EBC analysis.
Collapse
Affiliation(s)
- Yan Liang
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
| | - Samantha M. Yeligar
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
- Department of Medicine, Atlanta Veterans' Affairs and Emory University Medical Centers, Decatur, GA 30033, USA
| | - Lou Ann S. Brown
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Emory University and Emory+Children's Healthcare of Atlanta Center for Developmental Lung Biology, Atlanta, GA 30322, USA
| |
Collapse
|
47
|
Narayanankutty A, Reséndiz-Hernández JM, Falfán-Valencia R, Teran LM. Biochemical pathogenesis of aspirin exacerbated respiratory disease (AERD). Clin Biochem 2012; 46:566-78. [PMID: 23246457 DOI: 10.1016/j.clinbiochem.2012.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/14/2012] [Accepted: 12/04/2012] [Indexed: 12/30/2022]
Abstract
Aspirin exacerbated respiratory disease (AERD) is a distinct clinical entity characterized by eosinophilic rhinosinusitis, asthma and often nasal polyposis. Exposure to aspirin or other nonsteroid anti-inflammatory drugs (NSAIDs) exacerbates bronchospasms with asthma and rhinitis. Disease progression suggests a skewing towards TH2 type cellular response along with moderate to severe eosinophil and mast cell infiltration. Alterations in upper and lower airway cellular milieu with abnormalities in eicosanoid metabolism and altered eicosanoid receptor expression are the key features underlying AERD pathogenesis. Dysregulation of arachidonic acid (AA) metabolism, notably reduced prostaglandin E2 (PGE2) synthesis compared to their aspirin tolerant counterpart and relatively increased PGD2 production, a TH2/eosinophil chemoattractant are reported in AERD. Underproduced PGE2 is metabolized by overexpression of 15 prostaglandin dehydrogenase (15-PGDH) to inactive products further reducing PGE2 at real time. This relives the inhibitory effect of PGE2 on 5-lipoxygenase (5-LOX) resulting in overproduction of cysteinyl leukotrienes (CysLTs). Diminished formation of CysLT antagonists called lipoxins (LXs) also augments CysLTs responsiveness. Occasional intake of NSAIDs favors even more 5-LOX product formation, further narrowing the bronchoconstrictive bottle neck, resulting in acute asthmatic exacerbations along with increased mucus production. This review focuses on abnormalities in biochemical and molecular mechanisms in eicosanoid biosynthesis, eicosanoid receptor dysregulation and associated polymorphisms with special reference to arachidonic acid metabolism in AERD.
Collapse
Affiliation(s)
- Arun Narayanankutty
- Department of Immunoallergy and Asthma, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Calzada de Tlalpan 4502, Col. Sección XVI, Delegación Tlalpan, C.P. 14080, Mexico.
| | | | | | | |
Collapse
|
48
|
Genetics of hypersensitivity to aspirin and nonsteroidal anti-inflammatory drugs. Immunol Allergy Clin North Am 2012; 33:177-94. [PMID: 23639707 DOI: 10.1016/j.iac.2012.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Various hypersensitivity reactions have been reported with aspirin and nonsteroidal anti-inflammatory drugs. Hypersensitivity can occur regardless of a chemical drug structure or its therapeutic potency. Allergic conditions include aspirin-exacerbated respiratory disease (AERD or aspirin-induced asthma), aspirin-induced urticaria/angioedema (AIU), and anaphylaxis. Several genetic studies on aspirin hypersensitivity have been performed to discover the genetic predisposition to aspirin hypersensitivity and to gain insight into the phenotypic diversity. This article updates data on the genetic mechanisms that govern AERD and AIU and summarizes recent findings on the molecular genetic mechanism of aspirin hypersensitivity.
Collapse
|
49
|
Stamatiou R, Paraskeva E, Gourgoulianis K, Molyvdas PA, Hatziefthimiou A. Cytokines and growth factors promote airway smooth muscle cell proliferation. ISRN INFLAMMATION 2012; 2012:731472. [PMID: 24049651 PMCID: PMC3767366 DOI: 10.5402/2012/731472] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/29/2012] [Indexed: 11/23/2022]
Abstract
Chronic airway diseases, such as asthma or chronic obstructive pulmonary disease, are characterized by the presence in the airways of inflammation factors, growth factors and cytokines, which promote airway wall remodelling. The aim of this study was to investigate the effect of cytokines and growth factors on airway smooth muscle cell (ASMC) proliferation, phenotype and responsiveness. Incubation of serum starved human bronchial ASMCs with TNF- α , TGF, bFGF, and PDGF, but not IL-1 β , increased methyl-[(3)H]thymidine incorporation and cell number, mediated by the PI3K and MAPK signalling pathways. Regarding rabbit tracheal ASMC proliferation, TNF- α , IL-1 β , TGF, and PDGF increased methyl-[(3)H]thymidine incorporation in a PI3K- and MAPK-dependent manner. bFGF increased both methyl-[(3)H]thymidine incorporation and cell number. Moreover, incubation with TGF, bFGF and PDGF appears to drive human ASMCs towards a synthetic phenotype, as shown by the reduction of the percentage of cells expressing SM- α actin. In addition, the responsiveness of epithelium-denuded rabbit tracheal strips to carbachol was not significantly altered after 3-day treatment with bFGF. In conclusion, all the tested cytokines and growth factors increased ASMC proliferation to a different degree, depending on the specific cell type, with bronchial ASMCs being more prone to proliferation than tracheal ASMCs.
Collapse
Affiliation(s)
- R Stamatiou
- Department of Physiology, Faculty of Medicine, University of Thessaly, Biopolis, 41110 Larissa, Greece
| | | | | | | | | |
Collapse
|
50
|
Piotrowski WJ, Majewski S, Marczak J, Kurmanowska Z, Górski P, Antczak A. Exhaled breath 8-isoprostane as a marker of asthma severity. Arch Med Sci 2012; 8:515-20. [PMID: 22852009 PMCID: PMC3400897 DOI: 10.5114/aoms.2012.28639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/23/2010] [Accepted: 01/12/2011] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Oxidative stress is a non-specific feature of airway inflammation in asthmatics. 8-Isoprostane (8-IP), a prostaglandin-F(2α) isomer, is a relatively new marker of oxidative stress and may be measured in exhaled breath condensate (EBC) of patients with asthma. This research study aimed to evaluate the usefulness of EBC 8-IP as a marker of severity and control of severe adult asthma. MATERIAL AND METHODS Twenty-seven severe, never-smoking asthmatics were studied. According to positive or negative reversibility testing, this group was subdivided into reversible and irreversible asthma groups. All participants were observed for 8 weeks during which they completed daily diary observations including day and night symptoms, number of awakenings, peak expiratory flow (PEF) variability, daily rescue medication usage and oral steroids consumption. They attended the clinic 3 times and on these occasions spirometry assessments, EBC collection and asthma control tests (ACT) were done. Two control groups were included: 11 healthy never-smokers and 16 newly diagnosed and never-treated, non-smoking mild asthmatics. RESULTS There were no statistically significant differences between severe asthma and healthy control or never-treated asthma groups in concentrations of EBC 8-IP (median and interquartile range: 4.67; 2.50-27.92 vs. 6.93; 2.5-12.98 vs. 3.80; 2.50-10.73, respectively). No correlations were found between EBC 8-IP and asthma control parameters, such as ACT results, night and day symptoms, consumption of rescue medication, percentage of days free of oral steroids, PEF diurnal variation, lung function test results, forced expiratory volume in the 1 s reversibility, and markers of systemic inflammation. CONCLUSIONS Our study results suggest that EBC 8-IP measurements are not useful for asthma monitoring.
Collapse
|