1
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2024:S1933-0219(24)00106-5. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
2
|
Wang Y, Liu L. Immunological factors, important players in the development of asthma. BMC Immunol 2024; 25:50. [PMID: 39060923 PMCID: PMC11282818 DOI: 10.1186/s12865-024-00644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Asthma is a heterogeneous disease, and its development is the result of a combination of factors, including genetic factors, environmental factors, immune dysfunction and other factors. Its specific mechanism has not yet been fully investigated. With the improvement of disease models, research on the pathogenesis of asthma has made great progress. Immunological disorders play an important role in asthma. Previously, we thought that asthma was mainly caused by an imbalance between Th1 and Th2 immune responses, but this theory cannot fully explain the pathogenesis of asthma. Recent studies have shown that T-cell subsets such as Th1 cells, Th2 cells, Th17 cells, Tregs and their cytokines contribute to asthma through different mechanisms. For the purpose of the present study, asthma was classified into distinct phenotypes based on airway inflammatory cells, such as eosinophilic asthma, characterized by predominant eosinophil aggregates, and neutrophilic asthma, characterized by predominant neutrophil aggregates. This paper will examine the immune mechanisms underlying different types of asthma, and will utilize data from animal models and clinical studies targeting specific immune pathways to inform more precise treatments for this condition.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China
| | - Li Liu
- Department of Pediatric Respiratory, Children's Medical Center,The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Khokhar M, Purohit P. The emerging role of T helper 9 (Th9) cells in immunopathophysiology: A comprehensive review of their effects and responsiveness in various disease states. Int Rev Immunol 2024; 43:341-360. [PMID: 38864109 DOI: 10.1080/08830185.2024.2364586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Th9 cells, a subset of T-helper cells producing interleukin-9 (IL-9), play a vital role in the adaptive immune response and have diverse effects in different diseases. Regulated by transcription factors like PU.1 and IRF4, and cytokines such as IL-4 and TGF-β, Th9 cells drive tissue inflammation. This review focuses on their emerging role in immunopathophysiology. Th9 cells exhibit immune-mediated cancer cell destruction, showing promise in glioma and cervical cancer treatment. However, their role in breast and lung cancer is intricate, requiring a deeper understanding of pro- and anti-tumor aspects. Th9 cells, along with IL-9, foster T cell and immune cell proliferation, contributing to autoimmune disorders. They are implicated in psoriasis, atopic dermatitis, and infections. In allergic reactions and asthma, Th9 cells fuel pro-inflammatory responses. Targeting Foxo1 may regulate innate and adaptive immune responses, alleviating disease symptoms. This comprehensive review outlines Th9 cells' evolving immunopathophysiological role, emphasizing the necessity for further research to grasp their effects and potential therapeutic applications across diseases.
Collapse
Affiliation(s)
- Manoj Khokhar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| |
Collapse
|
4
|
Li H, Bradbury JA, Edin ML, Gruzdev A, Li H, Graves JP, DeGraff LM, Lih FB, Feng C, Wolf ER, Bortner CD, London SJ, Sparks MA, Coffman TM, Zeldin DC. TXA2 attenuates allergic lung inflammation through regulation of Th2, Th9, and Treg differentiation. J Clin Invest 2024; 134:e165689. [PMID: 38483511 PMCID: PMC11060738 DOI: 10.1172/jci165689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/12/2024] [Indexed: 05/02/2024] Open
Abstract
In lung, thromboxane A2 (TXA2) activates the TP receptor to induce proinflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased approximately 2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naive CD4+ T cell differentiation to Th9 cells and IL-9 production were inhibited dose-dependently by TXA2 in vitro. TP receptor-deficient mice had an approximately 2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared with wild-type mice. Naive CD4+ T cells from TP-deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared with CD4+ T cells from wild-type mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, proinflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.
Collapse
Affiliation(s)
- Hong Li
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - J. Alyce Bradbury
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Huiling Li
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Joan P. Graves
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Laura M. DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Fred B. Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Chiguang Feng
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Erin R. Wolf
- Department of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Carl D. Bortner
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Stephanie J. London
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| | - Matthew A. Sparks
- Department of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
| | - Thomas M. Coffman
- Department of Nephrology, Duke University Medical Center, Durham, North Carolina, USA
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences/NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Sadhu S, Dandotiya J, Dalal R, Khatri R, Mykytyn AZ, Batra A, Kaur M, Chandwaskar R, Singh V, Kamboj A, Srivastava M, Mani S, Asthana S, Samal S, Rizvi ZA, Salunke DB, Haagmans BL, Awasthi A. Fangchinoline inhibits SARS-CoV-2 and MERS-CoV entry. Antiviral Res 2023; 220:105743. [PMID: 37949319 DOI: 10.1016/j.antiviral.2023.105743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2, lead to mild to severe respiratory illness and resulted in 6.9 million deaths worldwide. Although vaccines are effective in preventing COVID-19, they may not be sufficient to protect immunocompromised individuals from this respiratory illness. Moreover, novel emerging variants of SARS-CoV-2 pose a risk of new COVID-19 waves. Therefore, identification of effective antivirals is critical in controlling SARS and other coronaviruses, such as MERS-CoV. We show that Fangchinoline (Fcn), a bisbenzylisoquinoline alkaloid, inhibits replication of SARS-CoV, SARS-CoV-2, and MERS-CoV in a range of in vitro assays, by blocking entry. Therapeutic use of Fcn inhibited viral loads in the lungs, and suppressed associated airway inflammation in hACE2. Tg mice and Syrian hamster infected with SARS-CoV-2. Combination of Fcn with remdesivir (RDV) or an anti-leprosy drug, Clofazimine, exhibited synergistic antiviral activity. Compared to Fcn, its synthetic derivative, MK-04-003, more effectively inhibited SARS-CoV-2 and its variants B.1.617.2 and BA.5 in mice. Taken together these data demonstrate that Fcn is a pan beta coronavirus inhibitor, which possibly can be used to combat novel emerging coronavirus diseases.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Jyotsna Dandotiya
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Rajdeep Dalal
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Ritika Khatri
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Anna Z Mykytyn
- Viroscience Department, Erasmus University Medical Center, Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center, Sophia Children's Hospital, Netherlands
| | - Aashima Batra
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Manpreet Kaur
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | | | - Virendra Singh
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Aarzoo Kamboj
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Mitul Srivastava
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Shailendra Mani
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Shailendra Asthana
- Computational Biophysics and CADD Group, Computational and Mathematical Biology Center (CMBC), Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sweety Samal
- Infection and Immunology Center, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India
| | - Deepak B Salunke
- Department of Chemistry and Centre for Advanced Studies, Panjab University, Chandigarh, India; National Interdisciplinary Centre of Vaccines, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh, India
| | - Bart L Haagmans
- Viroscience Department, Erasmus University Medical Center, Netherlands
| | - Amit Awasthi
- Center for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India; Immunology-Core Lab, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad 121001, Haryana, India.
| |
Collapse
|
6
|
Sadhu S, Dalal R, Dandotiya J, Binayke A, Singh V, Tripathy MR, Das V, Goswami S, Kumar S, Rizvi ZA, Awasthi A. IL-9 aggravates SARS-CoV-2 infection and exacerbates associated airway inflammation. Nat Commun 2023; 14:4060. [PMID: 37429848 DOI: 10.1038/s41467-023-39815-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
SARS-CoV-2 infection is known for causing broncho-alveolar inflammation. Interleukin 9 (IL-9) induces airway inflammation and bronchial hyper responsiveness in respiratory viral illnesses and allergic inflammation, however, IL-9 has not been assigned a pathologic role in COVID-19. Here we show, in a K18-hACE2 transgenic (ACE2.Tg) mouse model, that IL-9 contributes to and exacerbates viral spread and airway inflammation caused by SARS-CoV-2 infection. ACE2.Tg mice with CD4+ T cell-specific deficiency of the transcription factor Forkhead Box Protein O1 (Foxo1) produce significantly less IL-9 upon SARS-CoV-2 infection than the wild type controls and they are resistant to the severe inflammatory disease that characterises the control mice. Exogenous IL-9 increases airway inflammation in Foxo1-deficient mice, while IL-9 blockade reduces and suppresses airway inflammation in SARS-CoV-2 infection, providing further evidence for a Foxo1-Il-9 mediated Th cell-specific pathway playing a role in COVID-19. Collectively, our study provides mechanistic insight into an important inflammatory pathway in SARS-CoV-2 infection, and thus represents proof of principle for the development of host-directed therapeutics to mitigate disease severity.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Akshay Binayke
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Virendra Singh
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Manas Ranjan Tripathy
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Vinayaka Das
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Sandeep Goswami
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Shakti Kumar
- Centre for Human Microbiome and Anti-Microbial Resistance, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India.
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India.
| |
Collapse
|
7
|
Babayeva M, Tabynov K, Nurpeisov T, Fomin G, Renukaradhya GJ, Petrovsky N, Tabynov K. A recombinant Artemisia vulgaris pollen adjuvanted Art v 1 protein-based vaccine treats allergic rhinitis and bronchial asthma using pre- and co-seasonal ultrashort immunotherapy regimens in sensitized mice. Front Immunol 2022; 13:983621. [PMID: 36439113 PMCID: PMC9682083 DOI: 10.3389/fimmu.2022.983621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/24/2022] [Indexed: 06/23/2024] Open
Abstract
Allergic rhinitis is an important risk factor for bronchial asthma. Allergen-specific immunotherapy (ASIT) is the gold standard for treatment of allergic rhinitis, conjunctivitis, and asthma. A disadvantage of current ASIT methods is the length of therapy which requires numerous allergen administrations. The success of ASIT is determined by its schedule, which, depending on the vaccine and type of allergy, can be pre-seasonal (before the allergy season begins), combined pre/co-seasonal (during the allergy season) etc. The aim of the present study was to evaluate a vaccine based on recombinant Artemisia vulgaris pollen major Art v 1 protein formulated with ISA-51 adjuvant for therapy of allergic rhinitis and bronchial asthma in Artemisia-sensitized mice in an ultrashort (4 subcutaneous injections at weekly intervals) pre- and co-seasonal ASIT regimen. To simulate co-seasonal ASIT in mice, mice were regularly challenged with intranasal and nebulized Artemisia vulgaris pollen extract at the same time as receiving subcutaneous ASIT. For comparison, we used a previous Art v 1 protein vaccine formulated with SWE adjuvant, which in this study was modified by adding CpG oligonucleotide (Th1-biasing synthetic toll-like receptor 9 agonist), and a commercial vaccine containing a modified Artemisia vulgaris extract with aluminum hydroxide adjuvant. The therapeutic potential of Art v 1 based vaccine formulations with different ASIT regimens was evaluated in high and low (10 times lower) dose regimens. The ISA-51-adjuvanted vaccine formulations were the only ones among those studied in the ultrashort pre- and co-seasonal ASIT regimens to provide significant reduction in both signs of allergic rhinitis and bronchial asthma in sensitized mice (vs. positive control). In the ISA-51 adjuvanted group, immune response polarization toward Th1/Treg was observed in pre-seasonal ASIT, as reflected in a significant decrease in the serum level of total and Art v 1-specific IgE and increased ratios of allergen-specific IgG2a/IgG1 and IFN-γ/IL-4. The high dose SWE-CpG-adjuvanted vaccine had similar efficacy to the ISA-51 adjuvanted groups whereas the commercial vaccine showed significantly less effectiveness. The findings support further preclinical safety studies of the Art v 1-based vaccine formulated with ISA-51 adjuvant.
Collapse
Affiliation(s)
- Meruert Babayeva
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
- Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan
| | - Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
- Preclinical Research Laboratory with Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan
- T&TvaX LLC, Almaty, Kazakhstan
| | - Tair Nurpeisov
- Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan
| | - Gleb Fomin
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University (OSU), Wooster, OH, United States
| | | | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
- T&TvaX LLC, Almaty, Kazakhstan
- Republican Allergy Center, Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| |
Collapse
|
8
|
Li Y, Lan F, Yang Y, Xu Y, Chen Y, Qin X, Lv Z, Wang W, Ying S, Zhang L. The absence of IL-9 reduces allergic airway inflammation by reducing ILC2, Th2 and mast cells in murine model of asthma. BMC Pulm Med 2022; 22:180. [PMID: 35524325 PMCID: PMC9074312 DOI: 10.1186/s12890-022-01976-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Allergic asthma is an allergic inflammatory disease of the airways, in which numerous cell types and cytokines have been shown to contribute to pathogenesis of the disease. Although increased expression of IL-9 has been shown to influence the activity of structural as well as eosinophils and mast cells in asthma, the influence of IL-9 on function of ILC2 and Th2 cells remains unclear. This study therefore aimed to elucidate the role of IL-9 on ILC2 and Th2 cells using a murine model of asthma. A murine model of asthma was established using wild type (WT) and IL-9-deficient (Il9−/−) transgenic mice sensitized to house dust mite (HDM). Bronchoalveolar lavage fluid (BALF) and lung tissues were collected, and analysed for inflammatory cells (eosinophils, mast cells, Th2 cells and ILC2 cells), histopathological changes, and several cytokines. HDM challenge significantly increased accumulation of ILC2 cells, Th2 cells and mast cells, as well as goblet cell hyperplasia, and the expression of cytokines IL-4, IL-5 and IL-13, but not IFN-γ, in WT mice compared to saline-challenged control group. In contrast, all pathological changes, including infiltration of ILC2 cells, Th2 cells and mast cells, were significantly attenuated in HDM-challenged Il9−/− mice. Furthermore, the number of Ki67+ILC2 cells, Ki67+Th2 cells and Ki67+mast cells were significantly reduced in the absence of IL-9 signalling. These data suggest that IL-9 promotes the proliferation and type 2 cytokine production of type 2 cells in the murine models of asthma, and therefore might be a potential therapeutic target for asthma treatment.
Collapse
Affiliation(s)
- Yan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, No. 17, HouGouHuTong, DongCheng District, Beijing, 100730, China
| | - Feng Lan
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, No. 17, HouGouHuTong, DongCheng District, Beijing, 100730, China
| | - Yiran Yang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yingjie Xu
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Yalin Chen
- Department of Thyroid Head and Neck Surgery, Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Xiaofeng Qin
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, 10 Xi Tou Tiao, You An Men Wai, Fengtai District, Beijing, 100069, China.
| | - Luo Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing Institute of Otorhinolaryngology, Key Laboratory of Otorhinolaryngology Head and Neck Surgery, Ministry of Education, Beijing Key Laboratory of Nasal Diseases, No. 17, HouGouHuTong, DongCheng District, Beijing, 100730, China.
| |
Collapse
|
9
|
Antunes GL, Silveira JS, Luft C, Greggio S, Venturin GT, Schmitz F, Biasibetti-Brendler H, Vuolo F, Dal-Pizzol F, da Costa JC, Wyse ATS, Pitrez PM, da Cunha AA. Airway inflammation induces anxiety-like behavior through neuroinflammatory, neurochemical, and neurometabolic changes in an allergic asthma model. Metab Brain Dis 2022; 37:911-926. [PMID: 35059965 DOI: 10.1007/s11011-022-00907-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
Allergic asthma is characterized by chronic airway inflammation and is constantly associated with anxiety disorder. Recent studies showed bidirectional interaction between the brain and the lung tissue. However, where and how the brain is affected in allergic asthma remains unclear. We aimed to investigate the neuroinflammatory, neurochemical, and neurometabolic alterations that lead to anxiety-like behavior in an experimental model of allergic asthma. Mice were submitted to an allergic asthma model induced by ovalbumin (OVA) and the control group received only Dulbecco's phosphate-buffered saline (DPBS). Our findings indicate that airway inflammation increases interleukin (IL) -9, IL-13, eotaxin, and IL-1β release and changes acetylcholinesterase (AChE) and Na+,K+-ATPase activities in the brain of mice. Furthermore, we demonstrate that a higher reactive oxygen species (ROS) formation and antioxidant defense alteration that leads to protein damage and mitochondrial dysfunction. Therefore, airway inflammation promotes a pro-inflammatory environment with an increase of BDNF expression in the brain of allergic asthma mice. These pro-inflammatory environments lead to an increase in glucose uptake in the limbic regions and to anxiety-like behavior that was observed through the elevated plus maze (EPM) test and downregulation of glucocorticoid receptor (GR). In conclusion, the present study revealed for the first time that airway inflammation induces neuroinflammatory, neurochemical, and neurometabolic changes within the brain that leads to anxiety-like behavior. Knowledge about mechanisms that lead to anxiety phenotype in asthma is a beneficial tool that can be used for the complete management and treatment of the disease.
Collapse
Affiliation(s)
- Géssica Luana Antunes
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil.
| | - Josiane Silva Silveira
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil
| | - Carolina Luft
- Infant Center, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), 6690 Ipiranga Ave., Porto Alegre, RS, 90619-900, Brazil
| | - Samuel Greggio
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Gianina Teribele Venturin
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Felipe Schmitz
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Helena Biasibetti-Brendler
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | - Francieli Vuolo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, UNESC, Criciúma, SC, Brazil
| | - Jaderson Costa da Costa
- Preclinical Research Center, Brain Institute - BraIns, Pontifical Catholic University of Rio Grande Do Sul, PUCRS, Porto Alegre, RS, Brazil
| | - Angela T S Wyse
- Laboratory of Neuroprotection and Metabolic Disease, Department of Biochemistry, Federal University of Rio Grande Do Sul, UFRGS, Porto Alegre, RS, Brazil
| | | | | |
Collapse
|
10
|
Jeong J, Lee HK. The Role of CD4 + T Cells and Microbiota in the Pathogenesis of Asthma. Int J Mol Sci 2021; 22:11822. [PMID: 34769255 PMCID: PMC8584410 DOI: 10.3390/ijms222111822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
11
|
Lyly A, Laulajainen-Hongisto A, Gevaert P, Kauppi P, Toppila-Salmi S. Monoclonal Antibodies and Airway Diseases. Int J Mol Sci 2020; 21:E9477. [PMID: 33322143 PMCID: PMC7763928 DOI: 10.3390/ijms21249477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies, biologics, are a relatively new treatment option for severe chronic airway diseases, asthma, allergic rhinitis, and chronic rhinosinusitis (CRS). In this review, we focus on the physiological and pathomechanisms of monoclonal antibodies, and we present recent study results regarding their use as a therapeutic option against severe airway diseases. Airway mucosa acts as a relative barrier, modulating antigenic stimulation and responding to environmental pathogen exposure with a specific, self-limited response. In severe asthma and/or CRS, genome-environmental interactions lead to dysbiosis, aggravated inflammation, and disease. In healthy conditions, single or combined type 1, 2, and 3 immunological response pathways are invoked, generating cytokine, chemokine, innate cellular and T helper (Th) responses to eliminate viruses, helminths, and extracellular bacteria/fungi, correspondingly. Although the pathomechanisms are not fully known, the majority of severe airway diseases are related to type 2 high inflammation. Type 2 cytokines interleukins (IL) 4, 5, and 13, are orchestrated by innate lymphoid cell (ILC) and Th subsets leading to eosinophilia, immunoglobulin E (IgE) responses, and permanently impaired airway damage. Monoclonal antibodies can bind or block key parts of these inflammatory pathways, resulting in less inflammation and improved disease control.
Collapse
Affiliation(s)
- Annina Lyly
- Inflammation Centre, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, P.O. Box 160, 00029 HUS Helsinki, Finland;
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, 00029 HUS Helsinki, Finland;
| | - Anu Laulajainen-Hongisto
- Department of Otorhinolaryngology—Head and Neck Surgery, Helsinki University Hospital, University of Helsinki, 00029 HUS Helsinki, Finland;
| | - Philippe Gevaert
- Department of Otorhinolaryngology, Upper Airway Research Laboratory, Ghent University Hospital, 9000 Ghent, Belgium;
| | - Paula Kauppi
- Heart and Lung Center, Pulmonary Department, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland;
| | - Sanna Toppila-Salmi
- Inflammation Centre, Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, P.O. Box 160, 00029 HUS Helsinki, Finland;
- Medicum, Haartman Institute, University of Helsinki, 00029 HUS Helsinki, Finland
| |
Collapse
|
12
|
IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol 2020; 21:37-48. [PMID: 32788707 DOI: 10.1038/s41577-020-0396-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
IL-9-producing CD4+ T cells have been considered to represent a distinct T helper cell (TH cell) subset owing to their unique developmental programme in vitro, their expression of distinct transcription factors (including PU.1) and their copious production of IL-9. It remains debatable whether these cells represent a truly unique TH cell subset in vivo, but they are closely related to the T helper 2 (TH2) cells that are detected in allergic diseases. In recent years, increasing evidence has also indicated that IL-9-producing T cells may have potent abilities in eradicating advanced tumours, particularly melanomas. Here, we review the latest literature on the development of IL-9-producing T cells and their functions in disease settings, with a particular focus on allergy and cancer. We also discuss recent ideas concerning the therapeutic targeting of these cells in patients with chronic allergic diseases and their potential use in cancer immunotherapy.
Collapse
|
13
|
Badolati I, Sverremark‐Ekström E, van der Heiden M. Th9 cells in allergic diseases: A role for the microbiota? Scand J Immunol 2020; 91:e12857. [PMID: 31811655 PMCID: PMC7154783 DOI: 10.1111/sji.12857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
Since their discovery about 10 years ago, Th9 cells have been increasingly linked to allergic pathologies. Within this review, we summarize the current knowledge on associations between Th9 cells and allergic diseases and acknowledge Th9 cells as important targets in future treatment of allergic diseases. However, until today, it is not fully understood how these Th9 cell responses are modulated. We describe current literature suggesting that these Th9 cell responses might be stimulated by microbial species such as Staphylococcus aureus and Candida albicans, while on the other hand, microbial and dietary compounds such as retinoic acid (RA), butyrate and vitamin D show suppressive capacity on allergy-related Th9 responses. By reviewing this recent research, we provide new insights into the modulating capacity of the microbiota on Th9 cell responses. Consequently, microbial and dietary factors may be used as innovative tools to target Th9 cells in the treatment of allergic diseases. However, further research is needed to elucidate the mechanisms behind these interactions in order to translate this knowledge into clinical allergy settings.
Collapse
Affiliation(s)
- Isabella Badolati
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Eva Sverremark‐Ekström
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| | - Marieke van der Heiden
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholmSweden
| |
Collapse
|
14
|
Du X, Li C, Wang W, Huang Q, Wang J, Tong Z, Huang K, Chen Y, Yuan H, Lv Z, Corrigan CJ, Wang W, Ying S. IL-33 induced airways inflammation is partially dependent on IL-9. Cell Immunol 2020; 352:104098. [PMID: 32241531 DOI: 10.1016/j.cellimm.2020.104098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
Asthma is an inflammatory disease of the airways and numerous cytokines contribute to this pathogenesis. It is shown that challenge of airways with IL-33 induces asthma-like pathological changes in mice, but the possible downstream cytokines in this process remain to be characterised. To explore this, we compared changes in the airways of wildtype (WT) and IL-9 deficient mice challenged with IL-33. In line with previous report, per-nasal challenge of WT mice with IL-33 significantly increased the responsiveness of the airways along with infiltration of inflammatory cells, goblet cell hyperplasia, collagen deposition and smooth muscle hypertrophy, and the expression of cytokines compared with control group. Surprisingly, all of these pathological changes were significantly attenuated in IL-9 deficient mice following identical IL-33 challenge. These data suggest that IL-9 is one downstream cytokine relevant to the effects of IL-33 in asthmatic airways and consequently a potential therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Xiaonan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chenduo Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Qiong Huang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
A 7-Amino Acid Peptide Mimic from Hepatitis C Virus Hypervariable Region 1 Inhibits Mouse Lung Th9 Cell Differentiation by Blocking CD81 Signaling during Allergic Lung Inflammation. J Immunol Res 2020; 2020:4184380. [PMID: 32258172 PMCID: PMC7109583 DOI: 10.1155/2020/4184380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/18/2019] [Accepted: 01/25/2020] [Indexed: 12/30/2022] Open
Abstract
T helper (Th) cells orchestrate allergic lung inflammation in asthma pathogenesis. Th9 is a novel Th cell subset that mainly produces IL-9, a potent proinflammatory cytokine in asthma. A 7-amino acid peptide (7P) of the hypervariable region 1 (HVR1) of hepatitis C virus has been identified as an important regulator in the type 2 cytokine (IL-4, IL-5, and IL-13) immune response. However, it is unknown whether 7P regulates Th9 cell differentiation during ovalbumin- (OVA-) induced allergic lung inflammation. To address this, we studied wild-type mice treated with 7P and a control peptide in an in vivo mouse model of OVA-induced allergic inflammation and an in vitro cell model of Th9 differentiation, using flow cytometry, cytokine assays, and quantitative PCR. The binding of 7P to CD81 on naïve CD4+ T cells during lung Th9 differentiation was determined using CD81 overexpression and siRNA knockdown analyses. Administration of 7P significantly reduced Th9 cell differentiation after OVA sensitization and exposure. 7P also inhibited Th9 cell differentiation from naïve and memory CD4+ T cells in vitro. Furthermore, 7P inhibited the differentiation of human Th9 cells with high CD81 expression from naïve CD4+ T cells by blocking CD81 signaling. CD81 siRNA significantly reduced Th9 cell differentiation from naïve CD4+ T cells in vitro. Interestingly, CD81 overexpression in human naïve CD4+ T cells also enhanced Th9 development in vitro. These data indicate that 7P may be a good candidate for reducing IL-9 production in asthma.
Collapse
|
16
|
Xu W, Tian K, Li X, Zhang S. IL-9 blockade attenuates inflammation in a murine model of methicillin-resistant Staphylococcus aureus pneumonia. Acta Biochim Biophys Sin (Shanghai) 2020; 52:133-140. [PMID: 31942919 DOI: 10.1093/abbs/gmz149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important etiology of pneumonia. Interleukin (IL)-9 is a T helper 9 (Th9) cytokine and participates in the pathogenesis of infectious diseases. Here, we investigated the role of IL-9 by using an MRSA pneumonia animal model. The BALB/c mice underwent nasal inhalation with an ST239 MRSA strain to establish the mouse model of MRSA pneumonia, and a subset of mice were intravenously injected with IL-9 neutralizing antibody or immunoglobulin (Ig) G. At 3 and 8 days postinfection, the peripheral blood, bronchioalveolar lavage fluid (BALF), and lung tissues were collected. The frequencies of Th9 cells and the levels of cytokines in peripheral blood, BALF, and lung tissues were determined by flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively. The colony counts of MRSA in BALF and lung tissue were detected. The lung pathological changes were examined using hematoxylin and eosin staining. Data from flow cytometry, qRT-PCR, and ELISA showed that MRSA-infected mice exhibited higher frequency of Th9 cells and higher IL-9 mRNA and protein levels in the peripheral blood, BALF, and lung tissues of mice. In contrast, the neutralization of IL-9 abrogated MRSA inoculation-induced Th9 cell generation and IL-9 production in BALF and lung tissues. Furthermore, bacterial counting and histological examination showed that the numbers of bacteria in BALF and lungs and the lung pathological scores induced by MRSA inoculation were attenuated by the neutralization of IL-9. Moreover, cell counting and ELISA results demonstrated that IL-9 neutralization diminished the MRSA inoculation-induced count of neutrophils and macrophages and levels of pro-inflammatory cytokines in BALF. Collectively, IL-9 neutralization attenuated inflammation of MRSA pneumonia by regulating Th9/IL-9 expression.
Collapse
Affiliation(s)
- Weihua Xu
- Emergency Department, Anhui Children's Hospital, Hefei 230051, China
| | - Keyin Tian
- Emergency Department, Anhui Children's Hospital, Hefei 230051, China
| | - Xiaoshuang Li
- Emergency Department, Anhui Children's Hospital, Hefei 230051, China
| | - Shihai Zhang
- Clinical Laboratory, Anhui Children's Hospital, Hefei 230051, China
| |
Collapse
|
17
|
Shamsdin SA, Alborzi A, Ghaderi A, Lankrani KB, Pouladfar GR. Significance of TC9 and TH9 in Helicobacter pylori-induced gastritis. Helicobacter 2020; 25:e12672. [PMID: 31803999 DOI: 10.1111/hel.12672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND H pylori plays a critical role in the development of stomach cancer, especially in people affected by the bacteria at an early stage of life. Th9 cells and IL-9 play major roles in immune responses against various infections. IL-9 is influential in chronic or acute inflammation of the mucosa. AIM This study seeks to investigate the possible functions of Tc9, Th9 cells, and IL-9 level in patients with inflammation due to H pylori infection. METHODS Eighty-three patients with dyspepsia symptoms and twenty normal subjects with no sign and symptoms of dyspepsia were recruited. Frequencies of T-cell subsets were determined by flow cytometry. Levels of cytokines IL-9 family in the sera and supernatants of antigen-activated PBMCs patients were measured by ELISA and flow cytometry. RESULTS The participants included 56 females and 47 males with a mean age of 39.2 ± 15.3 years. We assigned the infected group into peptic ulcer and gastritis (chronic active and chronic). Frequencies of Tc9, Th17, Tc17, Th17/9, and Tc17/9 increased significantly in the peptic ulcer, chronic active, and chronic gastritis, compared with the uninfected and healthy control groups. A significant increase was seen in IL-9, IL-4, and IL-23 in the chronic active gastritis. Further observed was a significant increase in IL-21 and a decrease in IL-10 in the infected groups. CONCLUSION The results revealed that increased Tc9, Th17/9, and Tc17/9 cells appear to be influential in the progression and severity of H pylori infection. Also, increased IL-9 and IL-4 levels and Tc9, Tc17/9, and Th17/9 were seen in chronic active gastritis patients. These findings may provide useful information for a therapeutic targeting of chronic active H pylori infections.
Collapse
Affiliation(s)
- Seyedeh Azra Shamsdin
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolvahab Alborzi
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, Shiraz University of Medical Science, Shiraz, Iran
| | - Kamran B Lankrani
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Health Policy Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Gholam Reza Pouladfar
- Clinical Microbiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Naqvi MAUH, Memon MA, Jamil T, Naqvi SZ, Aimulajiang K, Gadahi JA, Xu L, Song X, Li X, Yan R. Galectin Domain Containing Protein from Haemonchus contortus Modulates the Immune Functions of Goat PBMCs and Regulates CD4+ T-Helper Cells In Vitro. Biomolecules 2020; 10:E116. [PMID: 31936604 PMCID: PMC7022894 DOI: 10.3390/biom10010116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/05/2020] [Accepted: 01/05/2020] [Indexed: 02/08/2023] Open
Abstract
Galectins are glycan-binding proteins that are widely expressed and distributed in mammalian tissues as well as cells of innate and adaptive immune responses. CD4+ T-helper cells differentiate into effector subsets in response to cytokines. T helper 9 cells are one of the recently described subsets of effector T cells that are relatively new and less studied. In this study, galectin domain containing protein from Haemonchus contortus (Hc-GDC) was cloned, expressed in pET32a, and immunoblotting was performed. Localization of recombinant (r)Hc-GDC on outer and inner surface of H. contortus worm and binding with goat Peripheral Blood Mononuclear cells (PBMCs) were performed using immunofluorescence assay. Moreover, effects of rHc-GDC on proliferation, apoptosis, cell migration, and the nitric oxide production in goat PBMCs were evaluated. Furthermore, modulatory effects of rHc-GDC on production of Th1, Th2, and Th9 cells were evaluated by flowcytometry and on interferon gamma, interleukin (IL)-4 and IL-9 were evaluated by quantitative real-time polymerase chain reaction. The results demonstrated that rHc-GDC was successfully cloned, expressed in expression vector as well as in the gut surface of adult H. contortus worm and successful binding with PBMCs surface were observed. Immunoblotting results revealed that rHc-GDC is an important active protein of H. contortus excretory and secretory products. Moreover, the interaction of rHc-GDC with host cells increased the production of Th2, Th9 cells, IL4, IL-9, PBMC proliferation, nitric oxide, and cell migration. No effects of rHc-GDC were observed on PMBC apoptosis, production of Th1 cells, and secretions of IFN- and IL-10 cytokines. These findings indicate that recombinant GDC protein from H. contortus modulates the immune functions of goat PBMCs and has the potential to enhance protective immunity by inducing T helper-9-derived IL-9 in vitro.
Collapse
Affiliation(s)
- Muhammad Ali-ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Tahseen Jamil
- Sindh Agriculture University, Tandojam 70050, Sindh, Pakistan; (T.J.); (J.A.G.)
| | - Sana Zahra Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Kalibixiati Aimulajiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Javaid Ali Gadahi
- Sindh Agriculture University, Tandojam 70050, Sindh, Pakistan; (T.J.); (J.A.G.)
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Xiaokai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Xiangrui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| | - Ruofeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.-u.-H.N.); (M.A.M.); (S.Z.N.); (K.A.); (L.X.); (X.S.); (X.L.)
| |
Collapse
|
19
|
Sugimoto N, Suzukawa M, Nagase H, Koizumi Y, Ro S, Kobayashi K, Yoshihara H, Kojima Y, Kamiyama-Hara A, Hebisawa A, Ohta K. IL-9 Blockade Suppresses Silica-induced Lung Inflammation and Fibrosis in Mice. Am J Respir Cell Mol Biol 2019; 60:232-243. [PMID: 30240278 DOI: 10.1165/rcmb.2017-0287oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recapitulative animal models of idiopathic pulmonary fibrosis (IPF) and related diseases are lacking, which inhibits our ability to fully clarify the pathogenesis of these diseases. Although lung fibrosis in mouse models is often induced by bleomycin, silica-induced lung fibrosis is more sustainable and more progressive. Therefore, in this study, we sought to elucidate the mediator(s) responsible for the pathogenesis of lung fibrosis, through the use of a mouse model of silica-induced lung fibrosis. With a single nasal administration of 16 mg of silica, lung inflammation (assessed by elevated cellular components in the BAL fluids [BALFs]) and lung fibrosis (assessed by lung histology and lung hydroxyproline levels) were induced and sustained for as long as 24 weeks. Of the mediators measured in the BALFs, IL-9 was characteristically elevated gradually, and peaked at 24 weeks after silica administration. Treatment of silica-challenged mice with anti-IL-9-neutralizing antibody inhibited lung fibrosis, as assessed by lung hydroxyproline level, and suppressed the levels of major mediators, including IL-1β, IL-6, IL-12, CCL2, CXCL1, and TNF-α in BALFs. Moreover, human lung specimens from patients with IPF have shown high expression of IL-9 in alveolar macrophages, CD4-positive cells, and receptors for IL-9 in airway epithelial cells. Collectively, these data suggest that IL-9 plays an important role in the pathogenesis of lung fibrosis in diseases such as IPF.
Collapse
Affiliation(s)
- Naoya Sugimoto
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Maho Suzukawa
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Hiroyuki Nagase
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Yuta Koizumi
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Shoki Ro
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Konomi Kobayashi
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Hisanao Yoshihara
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Yasuhiro Kojima
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Asae Kamiyama-Hara
- 1 Division of Respiratory Medicine and Allergology, Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan; and
| | - Akira Hebisawa
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| | - Ken Ohta
- 2 National Hospital Organization Tokyo National Hospital, Tokyo, Japan
| |
Collapse
|
20
|
Resolution of allergic asthma. Semin Immunopathol 2019; 41:665-674. [PMID: 31705318 DOI: 10.1007/s00281-019-00770-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
Abstract
Allergic asthma is an inflammatory disease of the airways characterized by recurrent episodes of wheezing and bronchoconstriction. Chronic inflammation may finally lead to structural damage followed by airway remodeling. Various studies in recent years contributed to unravel important aspects of the immunopathogenesis of asthma and adapted new pharmaceutical developments. Here, I consider some novel insights into the immunopathogenesis of asthma and the protective and pathogenic roles of some innate and adaptive immune cells as well as the function of soluble mediators such as cytokines. Particular attention will be given to new concepts on resolution of chronic airway inflammation for prevention of airway structural damage.
Collapse
|
21
|
Zak M, Dengler HS, Rajapaksa NS. Inhaled Janus Kinase (JAK) inhibitors for the treatment of asthma. Bioorg Med Chem Lett 2019; 29:126658. [PMID: 31522830 DOI: 10.1016/j.bmcl.2019.126658] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 01/18/2023]
Abstract
Multiple asthma-relevant cytokines including IL-4, IL-5, IL-13, and TSLP depend upon JAKs for signaling. JAK inhibition may, therefore, offer a novel intervention strategy for patients with disease refractory to current standards of care. Multiple systemically delivered JAK inhibitors have been approved for human use or are under clinical evaluation in autoimmune diseases such as rheumatoid arthritis. However, the on-target side effect profiles of these agents are likely not tolerable for many asthmatic patients. Limiting JAK inhibition to the lung is expected to improve therapeutic index relative to systemic inhibition. Thus, inhaled JAK inhibitors with lung-restricted exposure are of high interest as potential treatments for asthma.
Collapse
Affiliation(s)
- Mark Zak
- Genentech Inc., Discovery Chemistry, 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Hart S Dengler
- Genentech Inc., Immunology Department, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Naomi S Rajapaksa
- Genentech Inc., Discovery Chemistry, 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
22
|
Abstract
PURPOSES OF REVIEW Th9 cells are recognized as a novel subset of effector T helper cells that preferentially produce IL-9. Here, we provide a current update on the reports related to the function of Th9 cells in allergic inflammatory diseases. RECENT FINDINGS The effector Th9 cells differentiating from naïve T helper cells have recently been identified. Because of accumulating findings of Th9 cells in many inflammatory diseases, including allergic diseases, diverse functions of Th9 cells in regulating immune responses have been suggested. Related reports indicate multiple sources of IL-9 besides Th9 cells and their association with the pathogenesis of allergic rhinitis, asthma, atopic dermatitis, contact dermatitis, and food allergy. More recently, elements of the epigenetic landscape involving in the regulation of IL-9 by Th9 cells have been identified to be the potential target for allergic inflammation. This review provides the most recent information about Th9 cells and their contribution in airway allergic disease, skin, and food allergy.
Collapse
Affiliation(s)
- Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12120, Thailand.
| |
Collapse
|
23
|
IL-4 together with IL-1β induces antitumor Th9 cell differentiation in the absence of TGF-β signaling. Nat Commun 2019; 10:1376. [PMID: 30914642 PMCID: PMC6435687 DOI: 10.1038/s41467-019-09401-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/28/2019] [Indexed: 12/21/2022] Open
Abstract
IL-9-producing CD4+ (Th9) cells are a subset of CD4+ T-helper cells that are endowed with powerful antitumor capacity. Both IL-4 and TGF-β have been reported to be indispensable for Th9 cell-priming and differentiation. Here we show, by contrast, that Th9 cell development can occur in the absence of TGF-β signaling. When TGF-β was replaced by IL-1β, the combination of IL-1β and IL-4 efficiently promoted IL-9-producing T cells (Th9IL-4+IL-1β). Th9IL-4+ IL-1β cells are phenotypically distinct T cells compared to classic Th9 cells (Th9IL-4+TGF-β) and other Th cells, and are enriched for IL-1 and NF-κB gene signatures. Inhibition of NF-κB but not TGF-β-signaling negates IL-9 production by Th9IL-4+IL-1β cells. Furthermore, when compared with classic Th9IL-4+TGF-β cells, Th9IL-4+IL-1β cells are less exhausted, exhibit cytotoxic T effector gene signature and tumor killing function, and exert a superior antitumor response in a mouse melanoma model. Our study thus describes an alternative pathway for Th9 cell differentiation and provides a potential avenue for antitumor therapies. CD4+ helper T cells producing IL-9 (Th9) have been implicated in anti-tumor immunity, with Th9 differentiation inducible in vitro via IL-4 and TGFβ treatment. Here the authors show that replacing TGFβ with IL-1β induces a distinct IL-9+ CD4+ population that have strong cytotoxic and anti-tumor activity in preclinical mouse models.
Collapse
|
24
|
Yazdani R, Shapoori S, Rezaeepoor M, Sanaei R, Ganjalikhani-Hakemi M, Azizi G, Rae W, Aghamohammadi A, Rezaei N. Features and roles of T helper 9 cells and interleukin 9 in immunological diseases. Allergol Immunopathol (Madr) 2019; 47:90-104. [PMID: 29703631 DOI: 10.1016/j.aller.2018.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/28/2018] [Accepted: 02/09/2018] [Indexed: 02/08/2023]
Abstract
T helper 9 (TH9) cells are considered as newly classified helper T cells that have an important role in the regulation of immune responses. Since these cells preferentially produce IL-9, these cells are termed TH9 cells. Recently, the role of TH9 and its signature cytokine (IL-9) has been investigated in a wide range of diseases, including autoimmunity, allergy, infections, cancer and immunodeficiency. Herein, we review the most recent data concerning TH9 cells and IL-9 as well as their roles in disease. These insights suggest that TH9 cells are a future target for therapeutic intervention.
Collapse
|
25
|
Matusiewicz K, Iwańczak B, Matusiewicz M. Th9 lymphocytes and functions of interleukin 9 with the focus on IBD pathology. Adv Med Sci 2018; 63:278-284. [PMID: 29567622 DOI: 10.1016/j.advms.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/11/2018] [Accepted: 03/02/2018] [Indexed: 01/12/2023]
Abstract
The work presents the newest knowledge on a new phenotype of T helper lymphocytes (Th9) and on Interleukin 9 (IL-9). Processes leading to transformation of naïve T lymphocyte into Th9 lymphocytes are presented, including the role of IL-4 and TGFβ signaling. Involvement of transcription factor network in production of IL-9 is described. Other cells capable of expressing IL-9 and secreting IL-9 are portrayed. Diversity of IL-9 effects caused by activation of IL-9 receptors on various types of cells is presented. Principal effects of the activation of IL-9 receptor on T-cells seem to be antiapoptotic and stimulatory which leads to enhanced defense against parasitic infection and cancer development but, from the other side, it perpetuate chronic inflammation in autoimmune diseases and allergic processes. In the last years the role of IL-9 in autoimmune diseases such as rheumatic diseases and inflammatory bowel disease gained importance since the increased expression of this cytokine has been observed in animal models of intestinal inflammation and in groups of patients with ulcerative colitis. It was also noted that neutralization of IL-9 in animal models of ulcerative colitis leads to amelioration of inflammatory process, what could have significance in the treatment of this disease in humans in the future.
Collapse
Affiliation(s)
- Krzysztof Matusiewicz
- Department and Clinic of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw, Poland.
| | - Barbara Iwańczak
- Department and Clinic of Pediatrics, Gastroenterology and Nutrition, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
26
|
Benevides L, Costa RS, Tavares LA, Russo M, Martins GA, da Silva LLP, Arruda LK, Cunha FQ, Carregaro V, Silva JS. B lymphocyte-induced maturation protein 1 controls T H9 cell development, IL-9 production, and allergic inflammation. J Allergy Clin Immunol 2018; 143:1119-1130.e3. [PMID: 30096391 DOI: 10.1016/j.jaci.2018.06.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 05/08/2018] [Accepted: 06/29/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp-1) has a key role in terminal differentiation in various T-cell subtypes. However, whether Blimp-1 regulates TH9 differentiation and its role in allergic inflammation are unknown. OBJECTIVE We aimed to investigate the role of Blimp-1 in TH9 differentiation and in the pathogenesis of allergic airway inflammation. METHODS In vitro TH9 differentiation, flow cytometry, ELISA, and real-time PCR were used to investigate the effects of Blimp-1 on TH9 polarization. T cell-specific Blimp-1-deficient mice, a model of allergic airway inflammation, and T-cell adoptive transfer to recombination-activating gene 1 (Rag-1)-/- mice were used to address the role of Blimp-1 in the pathogenesis of allergic inflammation. RESULTS We found that Blimp-1 regulates TH9 differentiation because deleting Blimp-1 increased IL-9 production in CD4+ T cells in vitro. In addition, we showed that in T cell-specific Blimp-1-deficient mice, deletion of Blimp-1 in T cells worsened airway disease, and this worsening was inhibited by IL-9 neutralization. In asthmatic patients CD4+ T cells in response to TGF-β plus IL-4 increased IL-9 expression and downregulated Blimp-1 expression compared with expression in healthy control subjects. Blimp-1 overexpression in human TH9 cells inhibited IL-9 expression. CONCLUSION Blimp-1 is a pivotal negative regulator of TH9 differentiation and controls allergic inflammation.
Collapse
Affiliation(s)
- Luciana Benevides
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Renata Sesti Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Lucas Alves Tavares
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Momtchilo Russo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo
| | - Gislâine A Martins
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute and Department of Medicine and Biomedical Science, Cedars-Sinai Medical Center (CSMC), Los Angeles, Calif
| | - Luis Lamberti P da Silva
- Department of Cellular and Molecular Biology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - L Karla Arruda
- Department of Clinical Medicine, Clinical Hospital of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - Vanessa Carregaro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School University of São Paulo, Ribeirão Preto, Brazil; Fiocruz-Bi-Institutional Translational Medicine Platform, Ribeirão Preto, Brazil.
| |
Collapse
|
27
|
Geng W, Zhang W, Ma J. IL-9 exhibits elevated expression in osteonecrosis of femoral head patients and promotes cartilage degradation through activation of JAK-STAT signaling in vitro. Int Immunopharmacol 2018; 60:228-234. [DOI: 10.1016/j.intimp.2018.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 01/06/2023]
|
28
|
Shohan M, Elahi S, Shirzad H, Rafieian-Kopaei M, Bagheri N, Soltani E. Th9 Cells: Probable players in ulcerative colitis pathogenesis. Int Rev Immunol 2018; 37:192-205. [PMID: 29672174 DOI: 10.1080/08830185.2018.1457659] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
T lymphocytes represent an important part of adaptive immune system undertaking different functions to regulate immune responses. CD4+ T cells are the most important activator cells in inflammatory conditions. Depending on the type of induced cells and inflamed sites, expression and activity of different subtypes of helper T cells are changed. Recent studies have confirmed the existence of a new subset of helper T lymphocytes called Th9. Naive T cells can differentiate into Th9 subtypes if they are exposed simultaneously by interleukin (IL) 4 and transforming growth factor β and also secondary activation of a complicated network of transcription factors such as interferon regulatory factor 4 (IRF4) and Smads which are essential for adequate induction of this phenotype. Th9 cells specifically produce interleukin 9 and their probable roles in promoting intestinal inflammation are being investigated in human subjects and experimental models of ulcerative colitis (UC). Recently, infiltration of Th9 cells, overexpression of IL-9, and certain genes associated with Th9 differentiation have been demonstrated in inflammatory microenvironment of UC. Intestinal oversecretion of IL-9 protein is likely to break down epithelial barriers and compromise tolerance to certain commensal microorganisms which leads to inflammation. Th9 pathogenicity has not yet been adequately explored in UC and they are far from being considered as inflammatory cells in this milieu, therefore precise understanding the role of these newly identified cells in particular their potential role in gut pathogenesis may enable us to develop novel therapeutic approaches for inflammatory bowel disease. So, this article tries to discuss the latest knowledge on the above-mentioned field.
Collapse
Affiliation(s)
- Mojtaba Shohan
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Shokrollah Elahi
- b Department of Dentistry , Department of Medical Microbiology and Immunology , Faculty of Medicine and Dentistry, University of Alberta , Edmonton , Alberta , Canada
| | - Hedayatollah Shirzad
- c Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Mahmoud Rafieian-Kopaei
- d Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Nader Bagheri
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| | - Emad Soltani
- a Department of Microbiology and Immunology , Faculty of Medicine, Shahrekord University of Medical Sciences , Shahrekord , Iran
| |
Collapse
|
29
|
Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, Hanania NA, Nair P. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy 2017; 47:161-175. [PMID: 28036144 DOI: 10.1111/cea.12880] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Asthma is a complex respiratory disorder characterized by marked heterogeneity in individual patient disease triggers and response to therapy. Several asthma phenotypes have now been identified, each defined by a unique interaction between genetic and environmental factors, including inflammatory, clinical and trigger-related phenotypes. Endotypes further describe the functional or pathophysiologic mechanisms underlying the patient's disease. type 2-driven asthma is an emerging nomenclature for a common subtype of asthma and is characterized by the release of signature cytokines IL-4, IL-5 and IL-13 from cells of both the innate and adaptive immune systems. A number of well-recognized biomarkers have been linked to mechanisms involved in type 2 airway inflammation, including fractional exhaled nitric oxide, serum IgE, periostin, and blood and sputum eosinophils. These type 2 cytokines are targets for pharmaceutical intervention, and a number of therapeutic options are under clinical investigation for the management of patients with uncontrolled severe asthma. Anticipating and understanding the heterogeneity of asthma and subsequent improved characterization of different phenotypes and endotypes must guide the selection of treatment to meet individual patients' needs.
Collapse
Affiliation(s)
- D Robinson
- Department of Respiratory Medicine, Severe Asthma Service, UCLH NHS Trust, London, UK
| | - M Humbert
- Service de Pneumologie, Hôpital Bicêtre, Assistance Publique Hôpitaux de Paris, University Paris-Sud, Université Paris-Saclay, INSERM U999, Le Kremlin-Bicêtre, France
| | - R Buhl
- Pulmonary Department, Mainz University Hospital, Mainz, Germany
| | - A A Cruz
- ProAR-Center of Excellence in Asthma, Federal University of Bahia School of Medicine, Salvador, Brazil
| | - H Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - S Korom
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - N A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - P Nair
- Division of Respirology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
30
|
Otani IM, Nadeau KC. Biologic Therapies for Immunoglobulin E-mediated Food Allergy and Eosinophilic Esophagitis. Immunol Allergy Clin North Am 2017; 37:369-396. [PMID: 28366483 DOI: 10.1016/j.iac.2017.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunoglobulin (Ig) E-mediated food allergy and eosinophilic esophagitis (EoE) are chronic, allergen-mediated disorders characterized by an aberrant TH2 immune response. The development and investigation of biologics for the treatment of IgE-mediated food allergy and eosinophilic esophagitis have provided further insight into the pathophysiology and management of these disorders. This article provides an overview of biologic therapies that are being investigated or have potential as treatments for IgE-mediated food allergy and eosinophilic esophagitis. Identification of EoE phenotypes that are responsive to biologics and investigation of biologics combined with other therapies may help elucidate a role for biologics in EoE.
Collapse
Affiliation(s)
- Iris M Otani
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA.
| | - Kari C Nadeau
- Department of Medicine, Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
31
|
Gu ZW, Wang YX, Cao ZW. Neutralization of interleukin-9 ameliorates symptoms of allergic rhinitis by reducing Th2, Th9, and Th17 responses and increasing the Treg response in a murine model. Oncotarget 2017; 8:14314-14324. [PMID: 28187441 PMCID: PMC5362408 DOI: 10.18632/oncotarget.15177] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 01/23/2017] [Indexed: 12/30/2022] Open
Abstract
A novel independent Th-cell subset, characterized by high expression of interleukin (IL)-9, has been recognized as the "Th9" subset. Although Th9 cells are important in many diseases, their contribution to allergic rhinitis (AR) remains unclear. We therefore first determined whether Th9 cells were present in a mouse model of AR. We then investigated the their involvement in the distribution of CD4+ T-cell subsets and the symptoms of AR by treating mice with anti-IL-9 antibodies (Abs). Anti-IL-9 Abs were administered intranasally during rechallenge of ovalbumin (OVA)-induced AR in BALB/c mice. We measured nasal rubbing motion, sneezing and eosinophils, as well as the Th1 (Th1 cell percentage, Ifn-γ mRNA/protein, T-bet mRNA), Th2 (Th2 cell percentage, Il-4 mRNA/protein, Gata3 mRNA), Th9 (Th9 cell percentages Il-9 mRNA/protein, PU.1 and Irf4 mRNA), Th17 (Th17 cell percentage, Il-17 mRNA/protein, Rorγt mRNA), and Treg (Treg cell percentage, Foxp3 mRNA) responses in the nasal mucosa. Treatment with anti-IL-9 Abs markedly reduced nasal rubbing, sneezing, eosinophil infiltration, and Th2, Th9, and Th17 responses, and increased the Treg response. Our findings emphasize the importance of IL-9/Th9 in the pathogenesis of AR, and suggest that anti-IL-9 Ab treatment may be an effective therapeutic strategy for AR.
Collapse
Affiliation(s)
- Zhao Wei Gu
- Department of Otorhinolaryngology, China Medical University affiliated Shengjing Hospital, Shenyang, Liaoning, China
| | - Yun Xiu Wang
- Hematological Laboratory, China Medical University Affiliated Shengjing Hospital, Shenyang, Liaoning, China
| | - Zhi Wei Cao
- Department of Otorhinolaryngology, China Medical University affiliated Shengjing Hospital, Shenyang, Liaoning, China
| |
Collapse
|
32
|
Chen H, Zhang L, Wang P, Su H, Wang W, Chu Z, Zhang L, Zhang X, Zhao Y. mTORC2 controls Th9 polarization and allergic airway inflammation. Allergy 2017; 72:1510-1520. [PMID: 28273354 DOI: 10.1111/all.13152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND T helper type 9 (Th9) cells, a subpopulation of CD4+ T cells, play a critical role in the pathogenesis of allergic airway inflammation. However, it remains unknown whether mTORC2 regulates Th9 differentiation or function during allergic inflammation. METHODS T-cell-specific Rictor-deficient mice, a mouse model of allergic airway inflammation induced by ovalbumin (OVA) sensitization and a mouse model of adoptive transfer of induced Th9 cells, were used to address the roles of mTORC2 in the pathogenesis of allergic airway inflammation. The in vitro Th9 induction, multiple colors flow cytometry, real-time PCR, and Western blots were used to investigate the molecular effects of mTORC2 in Th9 induction. RESULTS The differentiation of naïve CD4+ T cells into Th9 cells was significantly diminished in the absence of Rictor, the core component of mTORC2. Using a mouse model of allergic airway inflammation induced by OVA sensitization, T-cell-specific Rictor-deficient mice show much less severe allergic airway inflammation characterized by decreased pathological alterations and fibrosis of the lungs, which was accompanied with reduced Th9 differentiation and infiltration. Importantly, the isolated Rictor-deficient Th9 cells mediate less severe allergic pathogenesis upon adoptive transfer. Rictor deficiency impairs Th9 cell differentiation by reducing IRF4 expression rather than affecting Foxo1/Foxo3a transcriptional activity, which is likely due to decreased Akt and/or STAT6 activation. CONCLUSIONS These findings uncover a novel role of mTORC2 in Th9 cell differentiation and may have important implications for therapeutic intervention of allergic diseases.
Collapse
Affiliation(s)
- H. Chen
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - L. Zhang
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - P. Wang
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - H. Su
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - W. Wang
- Department of Urology; Beijing Chaoyang Hospital; Capital Medical University; Chaoyang District Beijing China
| | - Z. Chu
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| | - L. Zhang
- Key Laboratory of Human Diseases Comparative Medicine; Ministry of Health; Beijing China
- Institute of Laboratory Animal Science; Key Laboratory of Human Diseases Comparative Medicine; Ministry of Health; Beijing China
- Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences and Peking Union Medical College; Beijing China
| | - X. Zhang
- Department of Urology; Beijing Chaoyang Hospital; Capital Medical University; Chaoyang District Beijing China
| | - Y. Zhao
- Transplantation Biology Research Division; State Key Laboratory of Membrane Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
33
|
Phosphatase wild-type p53-induced phosphatase 1 controls the development of T H9 cells and allergic airway inflammation. J Allergy Clin Immunol 2017; 141:2168-2181. [PMID: 28732646 DOI: 10.1016/j.jaci.2017.06.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 06/02/2017] [Accepted: 06/20/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Allergic asthma is one of the most common diseases worldwide, resulting in a burden of diseases. No available therapeutic regimens can cure asthma thus far. OBJECTIVE We sought to identify new molecular targets for TH9 cell-mediated allergic airway inflammation. METHODS Wild-type p53-induced phosphatase 1 (Wip1) gene knockout mice, Wip1 inhibitor-treated mice, and ovalbumin-induced allergic airway inflammation mouse models were used to characterize the roles of Wip1 in allergic airway inflammation. The induction of TH cell subsets in vitro, real-time PCR, immunoblots, luciferase assays, and chromatin immunoprecipitation assays were used to determine the regulatory pathways of Wip1 in TH9 differentiation. RESULTS Here we demonstrate that Wip1-deficient mice are less prone to allergic airway inflammation, as indicated by the decreased pathologic alterations in lungs. Short-term treatment with a Wip1-specific inhibitor significantly ameliorates allergic inflammation progression. Intriguingly, Wip1 selectively impaired TH9 but not TH1, TH2, and TH17 cell differentiation. Biochemical assays show that Wip1 deficiency increases c-Jun/c-Fos activity in a c-Jun N-terminal kinase-dependent manner and that c-Jun/c-Fos directly binds to Il9 promoter and inhibits Il9 transcription. CONCLUSION Wip1 controls TH9 cell development through regulating c-Jun/c-Fos activity on the Il9 promoter and is important for the pathogenesis of allergic airway inflammation. These findings shed light on the previously unrecognized roles of Wip1 in TH9 cell differentiation. The inhibitory effects of a Wip1 inhibitor on the pathogenesis of allergic airway inflammation can have important implications for clinical application of Wip1 inhibitors in allergy therapies.
Collapse
|
34
|
Buelow BJ, Rohlfing M, Jung F, Douglas GJ, Grayson MH. POL7085 or anti-CCL28 treatment inhibits development of post-paramyxoviral airway disease. Immun Inflamm Dis 2017; 5:98-108. [PMID: 28474501 PMCID: PMC5418136 DOI: 10.1002/iid3.147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Asthma is major health burden throughout the world, and there are no therapies that have been shown to be able to prevent the development of disease. A severe respiratory paramyxoviral infection early in life has been demonstrated to greatly increase the risk of developing asthma. We have a mouse model of a severe respiratory paramyxoviral infection (Sendai virus, SeV) that mimics human disease, and requires early expression of the cytokine CCL28 to drive the development of post-viral airway disease. The known receptors for CCL28 are CCR3 and CCR10. However, it is not known if blockade of these receptors will prevent the development of post-viral airway disease. The objective of this study was to determine if treatment with a protein epitope mimetic antagonist of CCR10, POL7085, will provide sufficient protection against the development of post-viral airway disease. METHODS C57BL6 mice were inoculated with SeV or UV inactivated SeV. From day 3-19 post inoculation (PI), mice were subcutaneously administered daily POL7085 or saline, or every other day anti-CCL28 mAb. On days 8, 10, and 12 PI bronchoalveolar cytokines, serum IgE, and lung cellular constituents were measured. At day 21 PI airway hyper-reactivity to methacholine and mucous cell metaplasia was measured. RESULTS Treatment with either anti-CCL28 or POL7085 significantly reduced development of airway hyper-reactivity and mucous cell metaplasia following SeV infection. The prevention of post-viral airway disease was associated with early reductions in innate immune cells, but did not appear to be due to a reduction in IL-13 or IgE. CONCLUSIONS Blockade of CCL28 or CCR10 during an acute severe respiratory paramyxoviral infection is sufficient to prevent the development of post-viral airway disease. However, the mechanism of action is unclear and requires further exploration.
Collapse
|
35
|
Reciprocal regulation of the Il9 locus by counteracting activities of transcription factors IRF1 and IRF4. Nat Commun 2017; 8:15366. [PMID: 28497800 PMCID: PMC5437292 DOI: 10.1038/ncomms15366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/24/2017] [Indexed: 02/06/2023] Open
Abstract
The T helper 9 (Th9) cell transcriptional network is formed by an equilibrium of signals induced by cytokines and antigen presentation. Here we show that, within this network, two interferon regulatory factors (IRF), IRF1 and IRF4, display opposing effects on Th9 differentiation. IRF4 dose-dependently promotes, whereas IRF1 inhibits, IL-9 production. Likewise, IRF1 inhibits IL-9 production by human Th9 cells. IRF1 counteracts IRF4-driven Il9 promoter activity, and IRF1 and IRF4 have opposing function on activating histone modifications, thus modulating RNA polymerase II recruitment. IRF1 occupancy correlates with decreased IRF4 abundance, suggesting an IRF1-IRF4-binding competition at the Il9 locus. Furthermore, IRF1 shapes Th9 cells with an interferon/Th1 gene signature. Consistently, IRF1 restricts the IL-9-dependent pathogenicity of Th9 cells in a mouse model of allergic asthma. Thus our study reveals that the molecular ratio between IRF4 and IRF1 balances Th9 fate, thus providing new possibilities for manipulation of Th9 differentiation. IFN-γ signalling inhibits production of IL-9, the defining cytokine of the Th9 cell subset. Here the authors show that IFN-γ does this by driving IRF1 to compete with IRF4 for Il9 promoter binding and skewing these cells towards a Th1 phenotype, an effect that reduces asthmatic inflammation in mice.
Collapse
|
36
|
Gong F, Pan YH, Huang X, Zhu HY, Jiang DL. From bench to bedside: Therapeutic potential of interleukin-9 in the treatment of asthma. Exp Ther Med 2017; 13:389-394. [PMID: 28352305 DOI: 10.3892/etm.2017.4024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/28/2016] [Indexed: 11/05/2022] Open
Abstract
Initially identified as a T cell and mast cell growth factor, interleukin (IL)-9 has long been recognized as an important mediator of asthma. Recently, accumulating results from transgenic mice demonstrated that systemic or lung-specific overexpression of IL-9 caused asthma-associated symptoms. Moreover, anti-mIL-9 antibody (Ab) blocking treatment alleviated disease in animal models of asthma. In light of the large quantity of data from the murine models, MEDI-528, a humanized anti-IL-9 monoclonal Ab has been produced to assess the activity of IL-9 on human asthma. In order to ascertain whether it is a successful translation from bench to bedside, the biological features of IL-9 were evaluated and up-to-date information regarding the role of IL-9 in different experimental murine models and human asthma were summarized.
Collapse
Affiliation(s)
- Fang Gong
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Yu-Hong Pan
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Xuan Huang
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Hua-Yan Zhu
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| | - Dong-Lin Jiang
- Department of Respiratory Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, Jiangsu 214041, P.R. China
| |
Collapse
|
37
|
Koch S, Sopel N, Finotto S. Th9 and other IL-9-producing cells in allergic asthma. Semin Immunopathol 2016; 39:55-68. [PMID: 27858144 DOI: 10.1007/s00281-016-0601-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022]
Abstract
Allergic asthma is a worldwide increasing chronic disease of the airways which affects more than 300 million people. It is associated with increased IgE, mast cell activation, airway hyperresponsiveness (AHR), mucus overproduction and remodeling of the airways. Previously, this pathological trait has been associated with T helper type 2 (Th2) cells. Recently, different CD4+ T cell subsets (Th17, Th9) as well as cells of innate immunity, like mast cells and innate lymphoid cells type 2 (ILC2s), which are all capable of producing the rediscovered cytokine IL-9, are known to contribute to this disease. Regarding Th9 cells, it is known that naïve T cells develop into IL-9-producing cells in the presence of interleukin-4 (IL-4) and transforming growth factor beta (TGFβ). Downstream of IL-4, several transcription factors like signal transducer and activator of transcription 6 (STAT6), interferon regulatory factor 4 (IRF4), GATA binding protein 3 (GATA3), basic leucine zipper transcription factor, ATF-like (BATF) and nuclear factor of activated T cells (NFAT) are activated. Additionally, the transcription factor PU.1, which is downstream of TGFβ signaling, also seems to be crucial in the development of Th9 cells. IL-9 is a pleiotropic cytokine that influences various distinct functions of different target cells such as T cells, B cells, mast cells and airway epithelial cells by activating STAT1, STAT3 and STAT5. Because of its pleiotropic functions, IL-9 has been demonstrated to be involved in several diseases, such as cancer, autoimmunity and other pathogen-mediated immune-regulated diseases. In this review, we focus on the role of Th9 and IL-9-producing cells in allergic asthma.
Collapse
Affiliation(s)
- Sonja Koch
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052, Erlangen, Germany
| | - Nina Sopel
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, 91052, Erlangen, Germany.
| |
Collapse
|
38
|
Reuter S, Maxeiner J, Meyer-Martin H, Michel A, Baars P, Bopp T, Waisman A, Reissig S, Wehler TC, Schild H, Taube C, Stassen M, Becker M. Cylindromatosis (Cyld) gene mutation in T cells promotes the development of an IL-9-dependent allergic phenotype in experimental asthma. Cell Immunol 2016; 308:27-34. [PMID: 27372382 DOI: 10.1016/j.cellimm.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022]
Abstract
Cylindromatosis (CYLD) is a ubiquitously expressed deubiquitinating enzyme which removes activating ubiquitin residues from important signaling molecules of the NF-κB pathway. In CYLDex7/8 transgenic mice, a naturally occurring short isoform (sCYLD) is overexpressed in the absence of full length CYLD, leading to excessive NF-κB activity. Herein, we investigated the impact of the CYLDex7/8 mutation selectively in T cells on the development of experimental allergic airway disease induced by sensitization and challenge with ovalbumin. Compared with their wildtype littermates, mice bearing the T cell-specific mutation (CD4+CYLDex7/8) display stronger eosinophilia and mucus production in the lungs and higher IgE serum levels. The reason for these observations is excessive production of T cell-derived IL-9, a cytokine to whom allergy-promoting properties were ascribed. Consequently, blockade of IL-9 in CD4+CYLDex7/8 mice alleviates the development of disease symptoms. Thus, by polarization of the T cell cytokine response, sCYLD can favor the development of allergic airway disease.
Collapse
Affiliation(s)
- Sebastian Reuter
- III. Medical Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Div. of Experimental Asthma Research, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Joachim Maxeiner
- Asthma Core Facility, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Helen Meyer-Martin
- III. Medical Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Anastasija Michel
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Pamela Baars
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Tobias Bopp
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Sonja Reissig
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Thomas C Wehler
- Department of Internal Medicine V - Pulmonology, Allergology and Respiratory Critical Care Medicine, Saarland University Medical Center, Homburg, Germany
| | - Hansjörg Schild
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany
| | - Christian Taube
- III. Medical Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Asthma Core Facility, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Dept. of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Stassen
- Asthma Core Facility, Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany.
| | - Marc Becker
- Institute for Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Germany; Institute of Pathology, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
39
|
Histone Deacetylase SIRT1 Negatively Regulates the Differentiation of Interleukin-9-Producing CD4 + T Cells. Immunity 2016; 44:1337-49. [DOI: 10.1016/j.immuni.2016.05.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/14/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022]
|
40
|
Abdul-Wahid A, Cydzik M, Prodeus A, Alwash M, Stanojcic M, Thompson M, Huang EHB, Shively JE, Gray-Owen SD, Gariépy J. Induction of antigen-specific TH9 immunity accompanied by mast cell activation blocks tumor cell engraftment. Int J Cancer 2016; 139:841-53. [DOI: 10.1002/ijc.30121] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/09/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Aws Abdul-Wahid
- Department of Medical Biophysics; University of Toronto; Toronto ON Canada
- Physical Sciences; Sunnybrook Research Institute; Toronto ON CANADA
| | - Marzena Cydzik
- Physical Sciences; Sunnybrook Research Institute; Toronto ON CANADA
| | - Aaron Prodeus
- Department of Medical Biophysics; University of Toronto; Toronto ON Canada
- Physical Sciences; Sunnybrook Research Institute; Toronto ON CANADA
| | - Mays Alwash
- Physical Sciences; Sunnybrook Research Institute; Toronto ON CANADA
- Department of Pharmaceutical Sciences; University of Toronto; Toronto ON Canada
| | - Mile Stanojcic
- Division of Plastic Surgery Department of Surgery; University of Toronto; ON Canada
| | - Megan Thompson
- Physical Sciences; Sunnybrook Research Institute; Toronto ON CANADA
| | - Eric H.-B. Huang
- Physical Sciences; Sunnybrook Research Institute; Toronto ON CANADA
| | - John E. Shively
- Department of Immunology; Beckman Research Institute; City of Hope, Duarte CA
| | - Scott D. Gray-Owen
- Department of Molecular Genetics; University of Toronto; Toronto ON Canada
| | - Jean Gariépy
- Department of Medical Biophysics; University of Toronto; Toronto ON Canada
- Physical Sciences; Sunnybrook Research Institute; Toronto ON CANADA
- Department of Pharmaceutical Sciences; University of Toronto; Toronto ON Canada
| |
Collapse
|
41
|
Neurath MF, Finotto S. IL-9 signaling as key driver of chronic inflammation in mucosal immunity. Cytokine Growth Factor Rev 2016; 29:93-9. [PMID: 26976761 DOI: 10.1016/j.cytogfr.2016.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 12/24/2022]
Abstract
Recent studies have highlighted a crucial regulatory role of the cytokine IL-9 in driving immune responses in chronic inflammatory and autoimmune diseases at mucosal surfaces. IL-9 activates various types of immune and non-immune cells carrying the membrane bound IL-9R. IL-9 signaling plays a pivotal role in controlling the differentiation and activation of these cells by inducing the Jak/STAT pathway. In particular, IL-9 induces activation of T helper cells and affects the function of various tissue resident cells such as mast cells and epithelial cells in the mucosa. Importantly, recent findings suggest that blockade of IL-9 signaling is effective in treating experimental models of autoimmune and chronic inflammatory diseases such as inflammatory bowel diseases, allergic disorders such as food allergy and asthma. Thus, blockade of IL-9 and IL-9R signaling emerges as potentially novel approach for therapy of inflammatory diseases in the mucosal immune system.
Collapse
Affiliation(s)
- Markus F Neurath
- 1st Department of Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054 Erlangen, Germany.
| | - Susetta Finotto
- Department of Molecular Pulmonology, Friedrich-Alexander University of Erlangen-Nürnberg, D-91054 Erlangen, Germany
| |
Collapse
|
42
|
Itk is required for Th9 differentiation via TCR-mediated induction of IL-2 and IRF4. Nat Commun 2016; 7:10857. [PMID: 26936133 PMCID: PMC4782063 DOI: 10.1038/ncomms10857] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Th9 cells produce interleukin (IL)-9, a cytokine implicated in allergic asthma and autoimmunity. Here we show that Itk, a mediator of T cell receptor signalling required for Th2 immune responses and the development of asthma, is a positive regulator of Th9 differentiation. In a model of allergic lung disease, Itk-deficient mice show reduced pulmonary inflammation and IL-9 production by T cells and innate lymphoid type 2 cells (ILC2), despite normal early induction of ILC2s. In vitro, Itk(-/-) CD4(+) T cells do not produce IL-9 and have reduced levels of IRF4 (Interferon Regulator Factor 4), a critical transcription factor for effector T cell function. Both IL-9 and IRF4 expression are rescued by either IL-2 or constitutively active STAT5, but not NFATc1. STAT5 binds the Irf4 promoter, demonstrating one mechanism by which IL-2 rescues weakly activated T cells. Itk inhibition also reduces IL-9 expression by human T cells, implicating ITK as a key regulator of Th9 induction.
Collapse
|
43
|
Kundu-Raychaudhuri S, Abria C, Raychaudhuri SP. IL-9, a local growth factor for synovial T cells in inflammatory arthritis. Cytokine 2016; 79:45-51. [PMID: 26751012 DOI: 10.1016/j.cyto.2015.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/27/2015] [Accepted: 12/28/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The regulatory role of the Th9 cells along with its signature cytokine IL-9 in human immune system and its aberrant activation in autoimmune diseases is currently under investigation. We are reporting the functional significance of IL-9 in the pathogenesis of autoimmune inflammatory arthritis. METHODS CD3(+) T cells were obtained from peripheral blood (PB) and synovial fluid (SF) of psoriatic arthritis (PsA), rheumatoid arthritis (RA), and osteoarthritis (OA) patients. MTT, FACS based CFSE dilution assay and apoptosis assay (Annexin-V) were performed to determine the pro-growth/survival effect of human recombinant IL-9 on activated CD3(+) T cells. Immunoblots were performed to determine the signaling proteins responsible for the progrowth/survival effect of IL-9. RESULTS SF of PsA and RA was enriched with IL-9 producing CD3(+) T cells compared to the SF in OA. IL-9 level measured by ELISA was significantly elevated in PsA and RA patients compared to SF in OA (<.001). Activated T cells of PsA and RA had higher levels of IL-9 receptors. IL-9 promoted proliferation and survival of the CD3(+) T cells of PB and SF of PsA and RA and compared to untreated (media) controls (p<.005, t-test). IL-9 induced proliferation of T cells was dependent on PI3K/Akt/mTOR signaling pathway. CONCLUSION IL-9 is functionally active, and is a pro-growth/survival factor for the localized pathologic T cells in the synovium of inflammatory arthritis. The pro-growth/survival effect is mediated by the activation of mTOR kinase cascade. To our knowledge, this is the first report of a functional role of IL-9 in human autoimmune arthritis.
Collapse
Affiliation(s)
| | | | - Siba P Raychaudhuri
- VA Medical Center Sacramento, CA, USA; Division of Rheumatology, Allergy & Clinical Immunology, University of California School of Medicine, Davis, CA, USA.
| |
Collapse
|
44
|
Nakatsukasa H, Zhang D, Maruyama T, Chen H, Cui K, Ishikawa M, Deng L, Zanvit P, Tu E, Jin W, Abbatiello B, Goldberg N, Chen Q, Sun L, Zhao K, Chen W. The DNA-binding inhibitor Id3 regulates IL-9 production in CD4(+) T cells. Nat Immunol 2015; 16:1077-84. [PMID: 26322481 PMCID: PMC5935106 DOI: 10.1038/ni.3252] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/16/2015] [Indexed: 02/05/2023]
Abstract
The molecular mechanisms by which signaling via transforming growth factor-β (TGF-β) and interleukin 4 (IL-4) control the differentiation of CD4(+) IL-9-producing helper T cells (TH9 cells) remain incompletely understood. We found here that the DNA-binding inhibitor Id3 regulated TH9 differentiation, as deletion of Id3 increased IL-9 production from CD4(+) T cells. Mechanistically, TGF-β1 and IL-4 downregulated Id3 expression, and this process required the kinase TAK1. A reduction in Id3 expression enhanced binding of the transcription factors E2A and GATA-3 to the Il9 promoter region, which promoted Il9 transcription. Notably, Id3-mediated control of TH9 differentiation regulated anti-tumor immunity in an experimental melanoma-bearing model in vivo and also in human CD4(+) T cells in vitro. Thus, our study reveals a previously unrecognized TAK1-Id3-E2A-GATA-3 pathway that regulates TH9 differentiation.
Collapse
Affiliation(s)
- Hiroko Nakatsukasa
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Dunfang Zhang
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Takashi Maruyama
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Hua Chen
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kairong Cui
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Masaki Ishikawa
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Deng
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter Zanvit
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Tu
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenwen Jin
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Brittany Abbatiello
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Nathan Goldberg
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lingyun Sun
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Keji Zhao
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - WanJun Chen
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
45
|
Richard AC, Tan C, Hawley ET, Gomez-Rodriguez J, Goswami R, Yang XP, Cruz AC, Penumetcha P, Hayes ET, Pelletier M, Gabay O, Walsh M, Ferdinand JR, Keane-Myers A, Choi Y, O'Shea JJ, Al-Shamkhani A, Kaplan MH, Gery I, Siegel RM, Meylan F. The TNF-family ligand TL1A and its receptor DR3 promote T cell-mediated allergic immunopathology by enhancing differentiation and pathogenicity of IL-9-producing T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:3567-82. [PMID: 25786692 PMCID: PMC5112176 DOI: 10.4049/jimmunol.1401220] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
The TNF family cytokine TL1A (Tnfsf15) costimulates T cells and type 2 innate lymphocytes (ILC2) through its receptor DR3 (Tnfrsf25). DR3-deficient mice have reduced T cell accumulation at the site of inflammation and reduced ILC2-dependent immune responses in a number of models of autoimmune and allergic diseases. In allergic lung disease models, immunopathology and local Th2 and ILC2 accumulation is reduced in DR3-deficient mice despite normal systemic priming of Th2 responses and generation of T cells secreting IL-13 and IL-4, prompting the question of whether TL1A promotes the development of other T cell subsets that secrete cytokines to drive allergic disease. In this study, we find that TL1A potently promotes generation of murine T cells producing IL-9 (Th9) by signaling through DR3 in a cell-intrinsic manner. TL1A enhances Th9 differentiation through an IL-2 and STAT5-dependent mechanism, unlike the TNF-family member OX40, which promotes Th9 through IL-4 and STAT6. Th9 differentiated in the presence of TL1A are more pathogenic, and endogenous TL1A signaling through DR3 on T cells is required for maximal pathology and IL-9 production in allergic lung inflammation. Taken together, these data identify TL1A-DR3 interactions as a novel pathway that promotes Th9 differentiation and pathogenicity. TL1A may be a potential therapeutic target in diseases dependent on IL-9.
Collapse
Affiliation(s)
- Arianne C Richard
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Cuiyan Tan
- Experimental Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Eric T Hawley
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Julio Gomez-Rodriguez
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ritobrata Goswami
- Department of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Xiang-Ping Yang
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Pallavi Penumetcha
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Erika T Hayes
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Martin Pelletier
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Odile Gabay
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Matthew Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - John R Ferdinand
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892; Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; and
| | - Andrea Keane-Myers
- Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, MD 21702
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19102
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Aymen Al-Shamkhani
- Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, United Kingdom; and
| | - Mark H Kaplan
- Department of Pediatrics and Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Igal Gery
- Experimental Immunology Section, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892;
| | - Françoise Meylan
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
46
|
Zhang W, Tang T, Nie D, Wen S, Jia C, Zhu Z, Xia N, Nie S, Zhou S, Jiao J, Dong W, Lv B, Xu T, Sun B, Lu Y, Li Y, Cheng L, Liao Y, Cheng X. IL-9 aggravates the development of atherosclerosis in ApoE-/- mice. Cardiovasc Res 2015; 106:453-64. [PMID: 25784693 DOI: 10.1093/cvr/cvv110] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/07/2015] [Indexed: 12/30/2022] Open
Abstract
AIMS Recently, interleukin (IL)-9 was found to be involved in the pathogenesis of many inflammatory diseases. Here, we tested whether IL-9 was related to atherosclerosis and investigated the underlying mechanisms. METHODS AND RESULTS IL-9R was expressed in mouse aortic endothelial cells (MAECs) and aortic tissues, and IL-9 levels were elevated in plasma and aortic arches in Apolipoprotein E-deficient (ApoE-/-) mice. ApoE-/- mice fed a western diet for 10 weeks were administered recombinant mouse IL-9 (rIL-9) or anti-IL-9 neutralizing monoclonal antibody (mAb). Mice treated with rIL-9 developed markedly larger plaques in both the aorta and aortic root. Immunohistochemical studies demonstrated increases in both vascular endothelial adhesion molecule-1 (VCAM-1) expression and the infiltration of inflammatory cells, including T cells and macrophages, in plaques. However, treatment with the anti-IL-9 mAb caused the opposite effect. The administration of rIL-9 did not affect the splenic T cell or peripheral monocyte subsets. Meanwhile, IL-9 induced VCAM-1 expression in MAECs mainly via a STAT3-dependent pathway, consequently increasing monocyte-endothelial adhesion. Moreover, treatment with anti-VCAM-1 mAb partially abrogated the IL-9-induced increase in plaque area. In addition, CD4(+)IL-9(+) T cells and IL-9 were increased in patients with acute coronary syndrome, and the levels of IL-9 in culture supernatants and soluble VCAM-1 (sVCAM-1) in plasma were significantly positively correlated in the enrolled patients. CONCLUSION Our results demonstrated that IL-9 exerted pro-atherosclerotic effects in ApoE-/- mice at least partially by inducing VCAM-1 expression, which mediated inflammatory cell infiltration into atherosclerotic lesions.
Collapse
Affiliation(s)
- Wencai Zhang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Tingting Tang
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Daan Nie
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Shuang Wen
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Chenping Jia
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Zhengfeng Zhu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Ni Xia
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Shaofang Nie
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Sufeng Zhou
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Jiao Jiao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Wenyong Dong
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Bingjie Lv
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Tongjie Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bing Sun
- Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuzhi Lu
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Yuanyuan Li
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Longxian Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Yuhua Liao
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| | - Xiang Cheng
- Laboratory of Cardiovascular Immunology, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430022, China
| |
Collapse
|
47
|
Hong CH, Chang KL, Wang HJ, Yu HS, Lee CH. IL-9 induces IL-8 production via STIM1 activation and ERK phosphorylation in epidermal keratinocytes: A plausible mechanism of IL-9R in atopic dermatitis. J Dermatol Sci 2015; 78:206-14. [PMID: 25840641 DOI: 10.1016/j.jdermsci.2015.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND IL-9 and its receptor play important roles in the pathogenesis of asthma. Its role in atopic dermatitis (AD) was examined in just a few studies, including nucleotide polymorphisms, increased transcriptional levels of IL-9 and IL-9R in diseased skin, and an association of blood IL-9 levels with clinical severity. OBJECTIVE Little was known about the pathophysiological regulation of IL-9/IL-9R in AD skin. We asked whether IL-9R was expressed in epidermal keratinocytes; if so, what the functional outcome, cytokine production, and signaling pathway of IL-9/IL-9R in keratinocytes are. METHODS We measured and compared the expression of IL-9R in skin from AD patients and controls by immunofluorescence. We also performed in vitro studies on the IL-9-treated primary keratinocytes, including flow cytometry for IL-9R expressions, Western blotting for mTOR, S6K, ERK, p38, and STAT3 activations, ELISA for cytokine levels, and immunofluorescence for STIM1. RESULTS We found that IL-9R was indeed expressed in keratinocytes but not in fibroblasts. Its expression in keratinocytes was enhanced by IL-4 but not by TGF-beta1. IL-9 induced a moderate production of IL-8 but not CXCL16, CCL22, TSLP, nor IL-33. IL-9 induced formation of STIM1-puncta. IL-9 induced ERK phosphorylation both dose- and time-dependently, but not mTOR, S6K, p38, or STAT3. Pretreatment with U0126 (ERK inhibitor) but not rapamycin (mTOR inhibitor) abrogated the IL-9-mediated IL-8 production. Blockage of STIM1 with BTP2 or SKF96265 abrogated ERK phosphorylation and IL-8 production induced by IL-9. CONCLUSION This study represents the first to show the regulation of the IL-9-STIM1-ERK-IL-8 axis in keratinocyte, and how the axis might play an important role in the pathophysiology of AD.
Collapse
Affiliation(s)
- Chien-Hui Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Dermatology, National Yang-Ming University College of Medicine, Taipei, Taiwan
| | - Kee-Lung Chang
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Jen Wang
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University, Kaohsiung, Taiwan; National Environmental Health Research Center, National Health Research Institute, Miao-Li, Taiwan.
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Department of Dermatology, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
48
|
Expression of interleukin-9 and its upstream stimulating factors in rats with ischemic stroke. Neurol Sci 2015; 36:913-20. [PMID: 25652434 DOI: 10.1007/s10072-015-2096-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/25/2015] [Indexed: 01/08/2023]
Abstract
To investigate the temporal expressions of IL-9 and its related cytokines after middle cerebral artery occlusion in rats. IL-9 and its related cytokines in ischemia brain and blood were tested after rats were subjected to transient focal ischemia. Comparing with sham-operated group, the levels of IL-4, TGF-β, PU.1, IRF4, OX40, NIK, RelB-p52 and IL-9 in experimental groups were significantly higher after middle cerebral artery occlusion. The results showed that expressions of IL-9 and its upstream stimulating factors increased in experimental stroke, and whether they play a role or just a secondary change is awaiting further research.
Collapse
|
49
|
Hoppenot D, Malakauskas K, Lavinskienė S, Bajoriūnienė I, Kalinauskaitė V, Sakalauskas R. Peripheral blood Th9 cells and eosinophil apoptosis in asthma patients. MEDICINA-LITHUANIA 2015; 51:10-7. [PMID: 25744770 DOI: 10.1016/j.medici.2015.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 01/15/2015] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND OBJECTIVE Th9 cells producing interleukin (IL) 9 are novel subset of CD4+ T helper cells, which might contribute to airway inflammation in asthma. Moreover, the effect of IL-9 on eosinophils is still not fully understood. Study aim was to evaluate peripheral blood Th9 cells and eosinophil apoptosis in allergic asthma patients. MATERIALS AND METHODS Eighteen patients with allergic asthma and fourteen patients with allergic rhinitis were examined. Control group included sixteen healthy subjects. Allergic asthma and rhinitis patients did not use corticosteroids and antihistamines at least for 1 week. Peripheral blood eosinophils and CD4(+) cells were isolated by high density gradient centrifugation and magnetic separation. Th9 cells and apoptotic eosinophils were estimated by flow cytometer. Serum IL-9 and IL-5 concentration were determined by ELISA. RESULTS Peripheral blood Th9 cells percentage was increased in allergic asthma group compared with allergic rhinitis and control group (0.74%±0.32% vs. 0.19%±0.10% and 0.15%±0.08%, respectively, P<0.05). The same tendency was observed for IL-9 (P<0.01). Percentage of peripheral blood apoptotic eosinophils was decreased in allergic asthma and allergic rhinitis groups compared with control group (P<0.05). IL-9 concentration correlated with percentage of Th9 cells (r=0.64, P<0.05) and negatively with percentage of apoptotic eosinophils in allergic asthma group (r=-0.58, P<0.05). Negative correlation was found between apoptotic eosinophils count and IL-5 concentration in allergic asthma group (r=-0.76, P<0.05). CONCLUSIONS Patients with allergic asthma demonstrate increased peripheral blood Th9 cells count and serum IL-9, while eosinophil apoptosis is inversely related to IL-9 concentration.
Collapse
Affiliation(s)
- Deimantė Hoppenot
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| | - Kęstutis Malakauskas
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Simona Lavinskienė
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Ieva Bajoriūnienė
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Virginija Kalinauskaitė
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Raimundas Sakalauskas
- Department of Pulmonology and Immunology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
50
|
Yao X, Kong Q, Xie X, Wang J, Li N, Liu Y, Sun B, Li Y, Wang G, Li W, Qu S, Zhao H, Wang D, Liu X, Zhang Y, Mu L, Li H. Neutralization of interleukin-9 ameliorates symptoms of experimental autoimmune myasthenia gravis in rats by decreasing effector T cells and altering humoral responses. Immunology 2014; 143:396-405. [PMID: 24850614 DOI: 10.1111/imm.12322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 05/01/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022] Open
Abstract
Interleukin-9 (IL-9) was initially thought to be a type 2 T helper (Th2)-associated cytokine involved in the regulation of autoimmune responses by affecting multiple cell types. However, it was recently shown that IL-9-producing CD4+ T cells represent a discrete subset of Th cells, designated Th9 cells. Although Th9 cells have been shown to be important in many diseases, their roles in myasthenia gravis (MG) are unclear. The aim of this study was to determine whether IL-9 and Th9 cells promote the progression of experimental autoimmune myasthenia gravis (EAMG). The results showed that the percentage of Th9 cells changed during the progression of EAMG, accompanied by an up-regulation of IL-9. Blocking IL-9 activity with antibodies against IL-9 inhibited EAMG-associated pathology in rats and reduced serum anti-acetylcholine receptor IgG levels. Neutralization of IL-9 altered the Th subset distribution in EAMG, reducing the number of Th1 cells and increasing the number of regulatory T cells. Administration of an anti-IL-9 antibody may represent an effective therapeutic strategy for MG-associated pathologies or other T-cell- or B-cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Xiuhua Yao
- Department of Neurobiology, Provincial Key Laboratory of Neurobiology, Harbin Medical University, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|