1
|
Aqil A, Li Y, Wang Z, Islam S, Russell M, Kallak TK, Saitou M, Gokcumen O, Masuda N. Switch-like Gene Expression Modulates Disease Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609537. [PMID: 39229158 PMCID: PMC11370615 DOI: 10.1101/2024.08.24.609537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A fundamental challenge in biomedicine is understanding the mechanisms predisposing individuals to disease. While previous research has suggested that switch-like gene expression is crucial in driving biological variation and disease susceptibility, a systematic analysis across multiple tissues is still lacking. By analyzing transcriptomes from 943 individuals across 27 tissues, we identified 1,013 switch-like genes. We found that only 31 (3.1%) of these genes exhibit switch-like behavior across all tissues. These universally switch-like genes appear to be genetically driven, with large exonic genomic structural variants explaining five (~18%) of them. The remaining switch-like genes exhibit tissue-specific expression patterns. Notably, tissue-specific switch-like genes tend to be switched on or off in unison within individuals, likely under the influence of tissue-specific master regulators, including hormonal signals. Among our most significant findings, we identified hundreds of concordantly switched-off genes in the stomach and vagina that are linked to gastric cancer (41-fold, p<10-4) and vaginal atrophy (44-fold, p<10-4), respectively. Experimental analysis of vaginal tissues revealed that low systemic levels of estrogen lead to a significant reduction in both the epithelial thickness and the expression of the switch-like gene ALOX12. We propose a model wherein the switching off of driver genes in basal and parabasal epithelium suppresses cell proliferation therein, leading to epithelial thinning and, therefore, vaginal atrophy. Our findings underscore the significant biomedical implications of switch-like gene expression and lay the groundwork for potential diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Alber Aqil
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Yanyan Li
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhiliang Wang
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | - Saiful Islam
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| | - Madison Russell
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Marie Saitou
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Omer Gokcumen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
- Institute for Artificial Intelligence and Data Science, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
2
|
Shakeel I, Ashraf A, Afzal M, Sohal SS, Islam A, Kazim SN, Hassan MI. The Molecular Blueprint for Chronic Obstructive Pulmonary Disease (COPD): A New Paradigm for Diagnosis and Therapeutics. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:2297559. [PMID: 38155869 PMCID: PMC10754640 DOI: 10.1155/2023/2297559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
The global prevalence of chronic obstructive pulmonary disease (COPD) has increased over the last decade and has emerged as the third leading cause of death worldwide. It is characterized by emphysema with prolonged airflow limitation. COPD patients are more susceptible to COVID-19 and increase the disease severity about four times. The most used drugs to treat it show numerous side effects, including immune suppression and infection. This review discusses a narrative opinion and critical review of COPD. We present different aspects of the disease, from cellular and inflammatory responses to cigarette smoking in COPD and signaling pathways. In addition, we highlighted various risk factors for developing COPD apart from smoking, like occupational exposure, pollutants, genetic factors, gender, etc. After the recent elucidation of the underlying inflammatory signaling pathways in COPD, new molecular targeted drug candidates for COPD are signal-transmitting substances. We further summarize recent developments in biomarker discovery for COPD and its implications for disease diagnosis. In addition, we discuss novel drug targets for COPD that could be explored for drug development and subsequent clinical management of cardiovascular disease and COVID-19, commonly associated with COPD. Our extensive analysis of COPD cause, etiology, diagnosis, and therapeutic will provide a better understanding of the disease and the development of effective therapeutic options. In-depth knowledge of the underlying mechanism will offer deeper insights into identifying novel molecular targets for developing potent therapeutics and biomarkers of disease diagnosis.
Collapse
Affiliation(s)
- Ilma Shakeel
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohammad Afzal
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, Tasmania 7248, Australia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
3
|
Sargent JD, Halenar M, Steinberg AW, Ozga J, Tang Z, Stanton CA, Paulin LM. Childhood Cigarette Smoking and Risk of Chronic Obstructive Pulmonary Disease in Older U.S. Adults. Am J Respir Crit Care Med 2023; 208:428-434. [PMID: 37348105 PMCID: PMC10449065 DOI: 10.1164/rccm.202303-0476oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 06/24/2023] Open
Abstract
Rationale: It is not certain the extent to which childhood smoking adds chronic obstructive pulmonary disease (COPD) risk independent of lifetime cigarette exposure. Objectives: We examined the association between age started smoking cigarettes regularly, current smoking status, smoking history, and risk of COPD. Methods: Cross-sectional survey of U.S. adults ⩾40 years old in the 2020 National Health Interview Survey. Respondents who were ever cigarette smokers were asked when they began smoking regularly. Multivariable analysis assessed self-report of COPD diagnosis as a function of age started smoking (<15 yr vs. ⩾15 yr) adjusting for current smoking, cigarette pack-years, and covariates. Measurements and Main Results: Overall, 7.1% reported that they had COPD, 2.6% for never-smokers compared with 23.1% and 11.6% for smoking onset <15 and ⩾15 years, respectively. Persons who began smoking regularly at <15 years of age had higher pack-years of smoking (median, 29 vs. 15, respectively), and higher smoking intensity (median, 20 cigarettes/d for <15 yr vs. 10 cigarettes/d for ⩾15 yr for current smokers). In the multivariable analysis, the relative risk for COPD among childhood smokers was 1.41 (95% confidence interval, 1.22-1.63) compared with later-onset smokers. Substituting smoking duration for pack-years confounded the association between current smoking and COPD but did not change the childhood smoking estimate. In a stratified analysis, higher risk for childhood smoking was found at all current smoking intensity levels. Conclusions: Among adults aged ⩾40 years, one-fifth of childhood smokers have COPD. Lifetime cigarette smoking explained some but not all of the higher risk. If replicated, this suggests a lung development window of enhanced vulnerability to cigarette smoking.
Collapse
Affiliation(s)
- James D. Sargent
- Department of Pediatrics and
- Department of Biomedical Data Sciences, Geisel School of Medicine, Hanover, New Hampshire
| | | | - Alexander W. Steinberg
- Section of Pulmonary and Critical Care, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | | | | | - Laura M. Paulin
- Section of Pulmonary and Critical Care, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
4
|
McEvoy CT, Le Souef PN, Martinez FD. The Role of Lung Function in Determining Which Children Develop Asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:677-683. [PMID: 36706985 PMCID: PMC10329781 DOI: 10.1016/j.jaip.2023.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Longitudinal studies have demonstrated that altered indices of airway function, assessed shortly after birth, are a risk factor for the subsequent development of wheezing illnesses and asthma, and that these indices predict airway size and airway wall thickness in adult life. Pre- and postnatal factors that directly alter early airway function, such as extreme prematurity and cigarette smoke, may continue to affect airway function and, hence, the risks for wheeze and asthma. Early airway function and an associated asthma risk may also be indirectly influenced by immune system responses, respiratory viruses, the airway microbiome, genetics, and epigenetics, especially if they affect airway epithelial dysfunction. Few if any interventions, apart from smoking avoidance, have been proven to alter the risks of developing asthma, but vitamin C supplementation to pregnant smokers may help decrease the effects of in utero smoke on offspring lung function. We conclude that airway size and the factors influencing this play an important role in determining the risk for asthma across the lifetime. Progress in asthma prevention is long overdue and this may benefit from carefully designed interventions in well-phenotyped longitudinal birth cohorts with early airway function assessments monitored through to adulthood.
Collapse
Affiliation(s)
- Cindy T McEvoy
- Department of Pediatrics, Papé Pediatric Research Institute, Oregon Health & Science University, Portland, Ore.
| | - Peter N Le Souef
- Department of Pediatrics, School of Medical School, University of Western Australia, Crawley, Western Australia, Australia; Department of Respiratory Medicine, Perth Children's Hospital, Nedlands, Western Australia, Australia
| | - Fernando D Martinez
- Asthma and Airway Disease Research Center and Department of Pediatrics, University of Arizona, Tucson, Ariz
| |
Collapse
|
5
|
Arjomandi M, Wong H, Tenney R, Holland N, Balmes JR. Effect of ozone on allergic airway inflammation. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:273-281. [PMID: 36643820 PMCID: PMC9838882 DOI: 10.1016/j.jacig.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background Exposure to ozone (O3) is associated with increased risk of exacerbations of asthma, but the underlying mechanisms are not well studied. Objective We sought to determine whether O3 exposure would enhance airway inflammatory responses to allergen and the GSTM1-null genotype would modulate this enhancement. Methods In a crossover design, 10 asthmatic participants (5 with GSTM1-null genotype) who had specific sensitization to Dermatophagoides pteronyssinus (DP) were exposed to 160 ppb O3 or filtered air (FA) control for 4 hours on 2 separate days at least 3 weeks apart. At 20 hours after exposure, endobronchial challenge with DP allergen, and sham normal saline (NS) instillation, were performed in separate bronchi. Six hours later, a second bronchoscopy was performed to collect bronchoalveolar lavage (BAL) from the DP- and NS-challenged segments for analyses of inflammatory biomarkers. Linear regression compared cell and cytokine responses across the 4 exposure groups (FA-NS, O3-NS, FA-DP, O3-DP). Effect modification by GSTM1 genotype was assessed in stratified regressions. Results BAL eosinophil counts were increased in segments challenged with DP compared to sham-challenged segments (P < .01). DP challenge compared to sham also caused a significant increase in BAL concentrations of the TH2 cytokines IL-4, IL-5, IL-10, and IL-13 (P < .03 for all comparisons). O3 exposure did not significantly affect BAL cells or cytokine after DP challenge. Compared to GSTM1-present participants, GSTM1-null participants had significantly lower eosinophil (P < .041) and IL-4 (P < .014) responses to DP challenge after O3 exposure. Conclusions While O3 did not cause a clear differential effect on airway inflammatory responses to allergen challenge, those responses did appear to be modulated by the antioxidant enzyme, GSTM1.
Collapse
Affiliation(s)
- Mehrdad Arjomandi
- Department of Medicine, University of California, San Francisco;,Medical Service, San Francisco Veterans Affairs Healthcare System, San Francisco
| | - Hofer Wong
- Department of Medicine, University of California, San Francisco
| | - Rachel Tenney
- Department of Medicine, University of California, San Francisco;,Medical Service, San Francisco Veterans Affairs Healthcare System, San Francisco
| | - Nina Holland
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| | - John R. Balmes
- Department of Medicine, University of California, San Francisco;,Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley
| |
Collapse
|
6
|
Dai X, Dharmage SC, Lodge CJ. Interactions between glutathione S-transferase genes and household air pollution on asthma and lung function. Front Mol Biosci 2022; 9:955193. [PMID: 36250015 PMCID: PMC9557149 DOI: 10.3389/fmolb.2022.955193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress is one of the main pathophysiological mechanisms for chronic respiratory disease. Glutathione S-transferase (GST) genes play important roles in antioxidant defences and may influence respiratory health. Although there is not consistent evidence that the three commonly studied genes of GSTM1, GSTT1 and GSTP1 are associated directly with respiratory outcomes, they seem to be related to disease susceptibility if exposure interactions are taken into account. Exposure to household air pollution may be particularly important in increasing lung oxidative stress. This review summarizes the relationships between GST genes, household air pollution and asthma and impaired lung function. Our findings support a role for GST polymorphisms in susceptibility to asthma and impaired lung function via oxidative stress pathways. Future research should additionally consider the role of gene-gene interactions, multiple environmental exposures, and gender in these complex associations, that are involved in maintaining antioxidant defences and lung health.
Collapse
|
7
|
Dai X, Bui DS, Lodge C. Glutathione S-Transferase Gene Associations and Gene-Environment Interactions for Asthma. Curr Allergy Asthma Rep 2021; 21:31. [PMID: 33970355 DOI: 10.1007/s11882-021-01005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic inflammatory airway diseases. Airway oxidative stress is defined as an imbalance between oxidative and antioxidative processes in the airways. There is evidence that chronic damage caused by oxidative stress may be involved in asthmatic inflammation and reduced lung function. Given their biological antioxidant function, the antioxidant genes in the glutathione S-transferase (GST) family are believed to be associated with development and progression of asthma. This review aims to summarize evidence on the relationship between GST gene polymorphisms and asthma and interactions with environmental exposures. RECENT FINDINGS The current evidence on the association between GST genes and asthma is still weak or inconsistent. Failure to account for environmental exposures may explain the lack of consistency. It is highly likely that environmental exposures interact with GST genes involved in the antioxidant pathway. According to current knowledge, carriers of GSTM1(rs366631)/T1(rs17856199) null genotypes and GSTP1 Val105 (rs1695) genotypes are more susceptible to environmental oxidative exposures and have a higher risk of asthma. Some doubt remains regarding the presence or absence of interactions with different environmental exposures in different study scenarios. The GST-environment interaction may depend on exposure type, asthma phenotype or endotype, ethnics, and other complex gene-gene interaction. Future studies could be improved by defining precise asthma endotypes, involving multiple gene-gene interactions, and increasing sample size and power. Although there is evidence for an interaction between GST genes, and environmental exposures in relation to asthma, results are not concordant. Further investigations are needed to explore the reasons behind the inconsistency.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia.
| |
Collapse
|
8
|
van de Wetering C, Elko E, Berg M, Schiffers CHJ, Stylianidis V, van den Berge M, Nawijn MC, Wouters EFM, Janssen-Heininger YMW, Reynaert NL. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility? Redox Biol 2021; 43:101995. [PMID: 33979767 PMCID: PMC8131726 DOI: 10.1016/j.redox.2021.101995] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Our lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants. Some inhaled foreign chemical compounds are rapidly absorbed and processed by phase I and II enzyme systems critical in the detoxification of xenobiotics including the glutathione-conjugating enzymes Glutathione S-transferases (GSTs). GSTs, and in particular genetic variants of GSTs that alter their activities, have been found to be implicated in the susceptibility to and progression of these lung diseases. Beyond their roles in phase II metabolism, evidence suggests that GSTs are also important mediators of normal lung growth. Therefore, the contribution of GSTs to the development of lung diseases in adults may already start in utero, and continues through infancy, childhood, and adult life. GSTs are also known to scavenge oxidants and affect signaling pathways by protein-protein interaction. Moreover, GSTs regulate reversible oxidative post-translational modifications of proteins, known as protein S-glutathionylation. Therefore, GSTs display an array of functions that impact the pathogenesis of asthma and COPD. In this review we will provide an overview of the specific functions of each class of mammalian cytosolic GSTs. This is followed by a comprehensive analysis of their expression profiles in the lung in healthy subjects, as well as alterations that have been described in (epithelial cells of) asthmatics and COPD patients. Particular emphasis is placed on the emerging evidence of the regulatory properties of GSTs beyond detoxification and their contribution to (un)healthy lungs throughout life. By providing a more thorough understanding, tailored therapeutic strategies can be designed to affect specific functions of particular GSTs.
Collapse
Affiliation(s)
- Cheryl van de Wetering
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Evan Elko
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Marijn Berg
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Caspar H J Schiffers
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Vasili Stylianidis
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Maarten van den Berge
- Pulmonology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Martijn C Nawijn
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Johansson E, Martin LJ, He H, Chen X, Weirauch MT, Kroner JW, Khurana Hershey GK, Biagini JM. Second-hand smoke and NFE2L2 genotype interaction increases paediatric asthma risk and severity. Clin Exp Allergy 2021; 51:801-810. [PMID: 33382170 DOI: 10.1111/cea.13815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/16/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Second-hand smoke (SHS) exposure is associated with paediatric asthma, and oxidative stress is believed to play a role in mediating this association. The nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) is important for the defence against oxidative stress. OBJECTIVE To explore interactions between NFE2L2 genotype and SHS exposure in paediatric asthma risk. METHODS We used a genotyped subset of patients of European ancestry (N = 669, median age at enrolment = 6.8 years) enrolled in the clinical cohort Greater Cincinnati Pediatric Clinic Repository as the study population, and a population-based paediatric cohort (N = 791) to replicate our findings. History of asthma diagnosis was obtained from medical records, and SHS exposure was obtained from questionnaires. Four NFE2L2 tagging SNPs were included in the analysis, and interactions between SHS and NFE2L2 genotype were evaluated using logistic regression. RESULTS Three of the analysed SNPs, rs10183914, rs1806649 and rs2886161, interacted significantly with SHS exposure to increase asthma risk (p ≤ .02). The interaction was replicated in an independent cohort for rs10183914 (p = .04). Interactions between SHS exposure and NFE2L2 genotype were also associated with an increased risk of hospitalization (p = .016). In stratified analyses, NFE2L2 genotype was associated with daily asthma symptoms in children with SHS exposure (OR = 3.1; p = .048). No association was found in children without SHS exposure. Examination of publicly available chromatin immunoprecipitation followed by sequencing (ChIP-seq) data sets confirmed the presence of active histone marks and binding sites for particular transcription factors overlapping the coordinates for the significantly associated SNPs. CONCLUSIONS AND CLINICAL RELEVANCE Our study provides evidence that NFE2L2 genotype interacts with SHS exposure to affect both asthma risk and severity in children and identifies a population of children at increased risk of asthma development.
Collapse
Affiliation(s)
- Elisabet Johansson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa J Martin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hua He
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew T Weirauch
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - John W Kroner
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Gurjit K Khurana Hershey
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jocelyn M Biagini
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
10
|
Toppila-Salmi S, Luukkainen AT, Xu B, Lampi J, Auvinen J, Dhaygude K, Järvelin MR, Pekkanen J. Maternal smoking during pregnancy affects adult onset of asthma in offspring: a follow up from birth to age 46 years. Eur Respir J 2020; 55:13993003.01857-2019. [PMID: 32341110 DOI: 10.1183/13993003.01857-2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/04/2020] [Indexed: 01/17/2023]
Abstract
RATIONALE Environmental tobacco smoke (ETS) exposure increases asthma risk in children. There is limited knowledge of prenatal ETS for adult-onset asthma. OBJECTIVES To determine the association between prenatal ETS and adult onset asthma. MEASUREMENTS AND MAIN RESULTS The questionnaire and clinical data of 5200 people, free of physician-diagnosed asthma by 31 years of age, who were included in the Northern Finland Birth Cohort 1966 Study was used. The association of maternal smoking during the last 3 months of pregnancy with onset of physician-diagnosed asthma and with lung function in adult offspring was studied using adjusted multivariate regression analyses. The cumulative incidence of physician-diagnosed asthma between the ages of 31 and 46 years was 5.1% among men and 8.8% among women. Gestational smoke exposure was associated with adult-onset asthma among offspring (adjusted OR 1.54, 95% CI 1.04-2.29), namely among offspring who reported either past non-diagnosed asthma (OR 9.63, 95% CI 2.28-40.67) or past cough with wheeze (3.21, 95% CI 1.71-6.05). A significant association was detected between gestational smoke exposure and the offspring's forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC) ratio at 31 years of age. In offspring with the haplotype rs11702779-AA of RUNX1, gestational smoke exposure was associated with adult-onset asthma (5.53, 95% CI 2.11-14.52, adjusted p-value for interaction 0.10). CONCLUSION Maternal smoking during pregnancy is associated with the cumulative incidence of asthma in offspring between the ages of 31 and 46 years. The association was accentuated in offspring who at age 31, reported having past respiratory problems and/or who had haplotype rs11702779-AA. A reduction in FEV1/FVC ratio was also observed at age 31 years in offspring with gestational smoke exposure. These results could reflect the early vulnerability of offspring's airways to ETS and its putative long-term effects.
Collapse
Affiliation(s)
- Sanna Toppila-Salmi
- Medicum, Haartman Institute, University of Helsinki, Helsinki, Finland .,Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland
| | | | - Baizhuang Xu
- Environment Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Jussi Lampi
- Environment Health Unit, National Institute for Health and Welfare, Kuopio, Finland
| | - Juha Auvinen
- Center for Life Course Health Research, Oulu, Finland
| | - Kishor Dhaygude
- Medicum, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research, Oulu, Finland.,Imperial College London, London, UK
| | - Juha Pekkanen
- Environment Health Unit, National Institute for Health and Welfare, Kuopio, Finland.,Dep of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Idani E, Raji H, Maraghi E, Aghababaeian H, Madadizadeh F, Dastoorpoor M. Risk factors associated with asthma among adults in Khuzestan, southwest Iran. CLINICAL EPIDEMIOLOGY AND GLOBAL HEALTH 2020. [DOI: 10.1016/j.cegh.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Braun M, Klingelhöfer D, Oremek GM, Quarcoo D, Groneberg DA. Influence of Second-Hand Smoke and Prenatal Tobacco Smoke Exposure on Biomarkers, Genetics and Physiological Processes in Children-An Overview in Research Insights of the Last Few Years. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3212. [PMID: 32380770 PMCID: PMC7246681 DOI: 10.3390/ijerph17093212] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/16/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Children are commonly exposed to second-hand smoke (SHS) in the domestic environment or inside vehicles of smokers. Unfortunately, prenatal tobacco smoke (PTS) exposure is still common, too. SHS is hazardous to the health of smokers and non-smokers, but especially to that of children. SHS and PTS increase the risk for children to develop cancers and can trigger or worsen asthma and allergies, modulate the immune status, and is harmful to lung, heart and blood vessels. Smoking during pregnancy can cause pregnancy complications and poor birth outcomes as well as changes in the development of the foetus. Lately, some of the molecular and genetic mechanisms that cause adverse health effects in children have been identified. In this review, some of the current insights are discussed. In this regard, it has been found in children that SHS and PTS exposure is associated with changes in levels of enzymes, hormones, and expression of genes, micro RNAs, and proteins. PTS and SHS exposure are major elicitors of mechanisms of oxidative stress. Genetic predisposition can compound the health effects of PTS and SHS exposure. Epigenetic effects might influence in utero gene expression and disease susceptibility. Hence, the limitation of domestic and public exposure to SHS as well as PTS exposure has to be in the focus of policymakers and the public in order to save the health of children at an early age. Global substantial smoke-free policies, health communication campaigns, and behavioural interventions are useful and should be mandatory.
Collapse
Affiliation(s)
- Markus Braun
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University Frankfurt, D-60590 Frankfurt, Germany; (D.K.); (G.M.O.); (D.Q.); (D.A.G.)
| | | | | | | | | |
Collapse
|
13
|
Yang SI, Kim HB, Kim HC, Lee SY, Kang MJ, Cho HJ, Yoon J, Jung S, Lee E, Yang HJ, Ahn K, Kim KW, Shin YH, Suh DI, Hong SJ. Particulate matter at third trimester and respiratory infection in infants, modified by GSTM1. Pediatr Pulmonol 2020; 55:245-253. [PMID: 31746563 DOI: 10.1002/ppul.24575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/08/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To investigate the association between particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5 ) exposure during each trimester of pregnancy and development of lower respiratory tract infections (LRTIs) during the first 3 years of life and whether GSTM1 gene polymorphisms modify these effects. METHODS This study included 1,180 mother-child pairs from the Cohort for Childhood Origin of Asthma and allergic diseases. The PM2.5 levels during pregnancy were estimated by residential address using land-use regression models based on a national monitoring system. A diagnosis of LRTIs was based on a parental report of a physician's diagnosis. Real-time polymerase chain reaction was used for GSTM1 genotyping. RESULTS Higher PM2.5 exposure during the third trimester was associated with LRTIs at 1 year of age (aRR, 1.06; 95% CI, 1.00-1.13). This result did not change after adjusting for PM2.5 exposures during the first and second trimesters (aRR, 1.06; 95% CI, 0.99-1.13). This association was significant after adjusting for PM2.5 exposures during first year of age (aRR, 1.08; 95% CI, 1.02-1.15) and exposures to NO2 and ozone at the third trimester (aRR, 1.07; 95% CI, 1.00-1.16). In addition, PM2.5 exposure during the third trimester increased the risk of LRTIs at 1 year of age in cases with the GSTM1 null genotype (aRR, 1.26; 95% CI, 1.01-1.57; P for interaction .20). CONCLUSION Higher PM2.5 exposure during the third trimester of pregnancy may increase the susceptibility to LRTIs at 1 year of age. This effect is modified by GSTM1 gene polymorphisms.
Collapse
Affiliation(s)
- Song-I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, South Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Jin Kang
- Department of Pediatrics, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun-Ju Cho
- Department of Pediatrics, International St Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Sejong Hospital, Incheon, South Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, South Korea
| | - Hyeon-Jong Yang
- Department of Pediatrics, Soonchunhyang University School of Medicine, Seoul, South Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyung Won Kim
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Youn Ho Shin
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, South Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Wu CC, Hsu TY, Chang JC, Ou CY, Kuo HC, Liu CA, Wang CL, Chuang H, Chen CP, Yang KD. Paternal Tobacco Smoke Correlated to Offspring Asthma and Prenatal Epigenetic Programming. Front Genet 2019; 10:471. [PMID: 31214241 PMCID: PMC6554446 DOI: 10.3389/fgene.2019.00471] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Rationale: Little is known about effects of paternal tobacco smoke (PTS) on the offspring's asthma and its prenatal epigenetic programming. Objective: To investigate whether PTS exposure was associated with the offspring's asthma and correlated to epigenetic CG methylation of potential tobacco-related immune genes: LMO2, GSTM1 or/and IL-10 genes. Measurements and Main Results: In a birth cohort of 1,629 newborns, we measured exposure rates of PTS (23%) and maternal tobacco smoke (MTS, 0.2%), cord blood DNA methylation, infant respiratory tract infection, childhood DNA methylation, and childhood allergic diseases. Infants with prenatal PTS exposure had a significantly higher risk of asthma by the age of 6 than those without (p = 0.026). The PTS exposure doses at 0, <20, and ≧20 cigarettes per day were significantly associated with the trend of childhood asthma and the increase of LMO2-E148 (p = 0.006), and IL10_P325 (p = 0.008) CG methylation. The combination of higher CG methylation levels of LMO2_E148, IL10_P325, and GSTM1_P266 corresponded to the highest risk of asthma by 43.48%, compared to other combinations (16.67-23.08%) in the 3-way multi-factor dimensionality reduction (MDR) analysis. The LMO2_P794 and GSTM1_P266 CG methylation levels at age 0 were significantly correlated to those at age of 6. Conclusions: Prenatal PTS exposure increases CG methylation contents of immune genes, such as LMO2 and IL-10, which significantly retained from newborn stage to 6 years of age and correlated to development of childhood asthma. Modulation of the LMO2 and IL-10 CG methylation and/or their gene expression may provide a regimen for early prevention of PTS-associated childhood asthma. Descriptor number: 1.10 Asthma Mediators. Scientific Knowledge on the Subject: It has been better known that maternal tobacco smoke (MTS) has an impact on the offspring's asthma via epigenetic modification. Little is known about effects of paternal tobacco smoke (PTS) on the offspring's asthma and its prenatal epigenetic programming. What This Study Adds to the Field: Prenatal tobacco smoke (PTS) can program epigenetic modifications in certain genes, such as LMO2 and IL-10, and that these modifications are correlated to childhood asthma development. The higher the PTS exposure dose the higher the CG methylation levels are found. The combination of higher CG methylation levels of LMO2_E148, IL10_P325 and GSTM1_P266 corresponded to the highest risk of asthma. Measuring the DNA methylation levels of certain genes might help to predict high-risk populations for childhood asthma and provide a potential target to prevent the development of childhood asthma.
Collapse
Affiliation(s)
- Chih-Chiang Wu
- Department of Pediatrics, Po-Zen Hospital, Kaohsiung, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jen-Chieh Chang
- Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Yu Ou
- Department of Obstetrics, Po-Zen Hospital, Kaohsiung, Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-An Liu
- Department of Pediatrics, Po-Zen Hospital, Kaohsiung, Taiwan
| | - Chih-Lu Wang
- Department of Pediatrics, Po-Zen Hospital, Kaohsiung, Taiwan
| | - Hau Chuang
- Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Kuender D Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan.,Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
15
|
Elshaer NS, Foda NM, Kassem HS, Ayaad MW, Meleis DS. Bronchial asthma among workers in Alexandria and its association with occupation, eosinophil count, total serum immunoglobulin E antibodies, and glutathione S-transferase genes polymorphism. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2011.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Noha S. Elshaer
- Community Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| | - Nermine M.T. Foda
- Community Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| | - Heba S. Kassem
- Pathology Department, Clinical Genomics Center, Faculty of Medicine, Alexandria University, Egypt
| | - Mona W. Ayaad
- Clinical Pathology Department, Faculty of Medicine, Alexandria University, Egypt
| | - Dorreya S. Meleis
- Community Medicine Department, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
16
|
Rychlik KA, Sillé FCM. Environmental exposures during pregnancy: Mechanistic effects on immunity. Birth Defects Res 2019; 111:178-196. [PMID: 30708400 DOI: 10.1002/bdr2.1469] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
In human studies, it is well established that exposures during embryonic and fetal development periods can influence immune health. Coupled with genetic predisposition, these exposures can alter lifetime chronic and infectious disease trajectory, and, ultimately, life expectancy. Fortunately, as research advances, mechanisms governing long-term effects of prenatal exposures are coming to light and providing the opportunity for intervention and risk reduction. For instance, human association studies have provided a foundation for the association of prenatal exposure to particulate matter with early immunosuppression and later allergic disease in the offspring. Only recently, the mechanisms mediating this response have been revealed and there is much we have yet to discover. Although cellular immune response is understood for many exposure scenarios, molecular pathways are still unidentified. This review will provide commentary and synthesis of the current literature regarding environmental exposures during pregnancy and mechanisms determining immune outcomes. Shared mechanistic features and current gaps in the state of the science are identified and discussed. To such purpose, we address exposures by their immune effect type: immunosuppression, autoimmunity, inflammation and tissue damage, hypersensitivity, and general immunomodulation.
Collapse
Affiliation(s)
- Kristal A Rychlik
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Fenna C M Sillé
- Department of Environmental Health and Engineering, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
17
|
Kannan S, Perzanowski MS, Ganguri HB, Acevedo-Garcia D, Acosta LM, Spatcher M, Divjan A, Chew GL. Complex relationships between vitamin D and allergic sensitization among Puerto Rican 2-year-old children. Ann Allergy Asthma Immunol 2019; 120:84-89. [PMID: 29273135 DOI: 10.1016/j.anai.2017.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/25/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the United States, Puerto Ricans have a higher prevalence of asthma than other Latino ethnicities. Low vitamin D levels for children living in northern climates could be a factor. OBJECTIVE To assess serum 25-hydroxyvitamin D [25(OH)D] distributions (a marker of vitamin D) and associations among vitamin D, allergic sensitization, early wheeze, and home/demographic factors. METHODS Puerto Rican infants born in New York City, with a maternal history of atopy, were enrolled in a birth cohort. Blood was collected at age 2 years (n = 154; 82 males and 72 females). Serum 25(OH)D and immunoglobulin E (IgE) (indoor allergen-specific and total) were determined using immunoassays. Home/demographic characteristics and respiratory symptoms were assessed by questionnaire. RESULTS The median concentration of 25(OH)D was 22.6 ng/mL; 32% were at risk of deficiency or inadequacy (<12 or 12-19 ng/mL). Serum 25(OH)D levels were lower in the heating (a surrogate for less sun exposure in colder months) compared with nonheating (26.1 vs 22.7 ng/mL, P = .02) season, but were not associated with allergen-specific IgE levels or with level of acculturation (measured by maternal birthplace). However, low 25(OH)D levels (below median) were associated with high total IgE >100 IU/mL (P = .01). Also, 25(OH)D concentrations differed between children who attended daycare and those who did not (21.8 vs 24.5 ng/mL; t test, P = .02). Serum 25(OH)D was not associated with wheeze or asthma by 2 years of age (P = .43). CONCLUSION Vitamin D deficiency, possibly linked with allergic pathways, may partially explain the trajectory for disproportionate asthma burden among Puerto Ricans, especially those born and raised in colder climates.
Collapse
Affiliation(s)
- Srimathi Kannan
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts; Department of Food and Nutrition, Southern Illinois University, Carbondale, Illinois.
| | - Matthew S Perzanowski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Harish B Ganguri
- Department of Computer Science, Southern Illinois University, Carbondale, Illinois; Kronsys, Inc, Raleigh, North Carolina
| | - Dolores Acevedo-Garcia
- The Heller School for Social Policy and Management, Brandeis University, Waltham, Massachusetts
| | - Luis M Acosta
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Molly Spatcher
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, Massachusetts; Eye and Lasik Center, Greenfield, Massachusetts
| | - Adnan Divjan
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Ginger L Chew
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
18
|
Morales E, Duffy D. Genetics and Gene-Environment Interactions in Childhood and Adult Onset Asthma. Front Pediatr 2019; 7:499. [PMID: 31921716 PMCID: PMC6918916 DOI: 10.3389/fped.2019.00499] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
Asthma is a heterogeneous disease that results from the complex interaction between genetic factors and environmental exposures that occur at critical periods throughout life. It seems plausible to regard childhood-onset and adult-onset asthma as different entities, each with a different pathophysiology, trajectory, and outcome. This review provides an overview about the role of genetics and gene-environment interactions in these two conditions. Looking at the genetic overlap between childhood and adult onset disease gives one window into whether there is a correlation, as well as to mechanism. A second window is offered by the genetics of the relationship between each type of asthma and other phenotypes e.g., obesity, chronic obstructive pulmonary disease (COPD), atopy, vitamin D levels, and inflammatory and immune status; and third, the genetic-specific responses to the many environmental exposures that influence risk throughout life, and particularly those that occur during early-life development. These represent a large number of possible combinations of genetic and environmental factors, at least 150 known genetic loci vs. tobacco smoke, outdoor air pollutants, indoor exposures, farming environment, and microbial exposures. Considering time of asthma onset extends the two-dimensional problem of gene-environment interactions to a three-dimensional problem, since identified gene-environment interactions seldom replicate for childhood and adult asthma, which suggests that asthma susceptibility to environmental exposures may biologically differ from early life to adulthood as a result of different pathways and mechanisms of the disease.
Collapse
Affiliation(s)
- Eva Morales
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - David Duffy
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
19
|
Turner S, Francis B, Wani N, Vijverberg S, Pino-Yanes M, Mukhopadhyay S, Tavendale R, Palmer C, Burchard EG, Merid SK, Melén E, Maitland-van der Zee AH, The Pharmacogenomics In Childhood Asthma Consortium OBO. Variants in genes coding for glutathione S-transferases and asthma outcomes in children. Pharmacogenomics 2018; 19:707-713. [PMID: 29785881 DOI: 10.2217/pgs-2018-0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our hypothesis was that children with mutations in genes coding for glutathione S-transferases (GST) have worse asthma outcomes compared with children with active type genotype. Data were collected in five populations. The rs1695 single nucleotide polymorphism (GSTP1) was determined in all cohorts (3692 children) and GSTM1 and GSTT1 null genotype were determined in three cohorts (2362 children). GSTT1 null (but not other genotypes) was associated with a minor increased risk for asthma attack and there were no significant associations between GST genotypes and asthma severity. Interactions between GST genotypes and SHS exposure or asthma severity with the study outcomes were nonsignificant. We find no convincing evidence that the GST genotypes studied are related to asthma outcomes.
Collapse
Affiliation(s)
| | - Ben Francis
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Nuha Wani
- Child Health, University of Aberdeen, UK
| | - Susanne Vijverberg
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology & Clinical Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | - Maria Pino-Yanes
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Somnath Mukhopadhyay
- Academic Department of Paediatrics, Royal Alexandra Children's Hospital, Brighton & Sussex Medical School, Brighton, UK.,Population Pharmacogenetics Group, University of Dundee, UK
| | | | - Colin Palmer
- Population Pharmacogenetics Group, University of Dundee, UK
| | - Esteban G Burchard
- Department of Bioengineering & Therapeutic Sciences & Medicine, University of California, San Francisco, CA, USA.,Center for Genes, Environment & Health, University of California, San Francisco, CA, USA
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Sachs' Children's Hospital, Södersjukhuset, Stockholm, Sweden
| | - Anke H Maitland-van der Zee
- Department of Respiratory Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology & Clinical Pharmacology, University of Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
20
|
Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1033. [PMID: 29883409 PMCID: PMC5982072 DOI: 10.3390/ijerph15051033] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Many studies have been undertaken to reveal how tobacco smoke skews immune responses contributing to the development of chronic obstructive pulmonary disease (COPD) and other lung diseases. Recently, environmental tobacco smoke (ETS) has been linked with asthma and allergic diseases in children. This review presents the most actual knowledge on exact molecular mechanisms responsible for the skewed inflammatory profile that aggravates inflammation, promotes infections, induces tissue damage, and may promote the development of allergy in individuals exposed to ETS. We demonstrate how the imbalance between oxidants and antioxidants resulting from exposure to tobacco smoke leads to oxidative stress, increased mucosal inflammation, and increased expression of inflammatory cytokines (such as interleukin (IL)-8, IL-6 and tumor necrosis factor α ([TNF]-α). Direct cellular effects of ETS on epithelial cells results in increased permeability, mucus overproduction, impaired mucociliary clearance, increased release of proinflammatory cytokines and chemokines, enhanced recruitment of macrophages and neutrophils and disturbed lymphocyte balance towards Th2. The plethora of presented phenomena fully justifies a restrictive policy aiming at limiting the domestic and public exposure to ETS.
Collapse
Affiliation(s)
- Agnieszka Strzelak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksandra Ratajczak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksander Adamiec
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| |
Collapse
|
21
|
Dai X, Bowatte G, Lowe AJ, Matheson MC, Gurrin LC, Burgess JA, Dharmage SC, Lodge CJ. Do Glutathione S-Transferase Genes Modify the Link between Indoor Air Pollution and Asthma, Allergies, and Lung Function? A Systematic Review. Curr Allergy Asthma Rep 2018; 18:20. [PMID: 29557517 DOI: 10.1007/s11882-018-0771-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW Glutathione S-transferase (GST) genes are involved in oxidative stress management and may modify the impact of indoor air pollution. We aimed to assess the influence of GST genes on the relationship between indoor air pollution and allergy/lung function. RECENT FINDINGS Our systematic review identified 22 eligible studies, with 15 supporting a gene-environment interaction. Carriers of GSTM1/T1 null and GSTP1 val genotypes were more susceptible to indoor air pollution exposures, having a higher risk of asthma and lung function deficits. However, findings differed in terms of risk alleles and specific exposures. High-exposure heterogeneity precluded meta-analysis. We found evidence that respiratory effects of indoor air pollution depend on the individual's GST profile. This may help explain the inconsistent associations found when gene-environment interactions are not considered. Future studies should aim to improve the accuracy of pollution assessment and investigate this finding in different populations.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Melanie C Matheson
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Lyle C Gurrin
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - John A Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia.,Murdoch Childrens Research Institute, Melbourne, Australia
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Level 3 207 Bouverie Street, Melbourne, 3010, Australia. .,Murdoch Childrens Research Institute, Melbourne, Australia.
| |
Collapse
|
22
|
Balmes JR. AJRCCM: 100-Year Anniversary. Clearing the Air: Indoors, Outdoors, and At Work. Am J Respir Crit Care Med 2017; 195:1100-1103. [PMID: 28459315 DOI: 10.1164/rccm.201701-0152ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- John R Balmes
- 1 Division of Occupational and Environmental Medicine University of California, San Francisco San Francisco, California and.,2 Division of Environmental Health Sciences University of California, Berkeley Berkeley, California
| |
Collapse
|
23
|
Thompson O. Gene-Environment Interaction in the Intergenerational Transmission of Asthma. HEALTH ECONOMICS 2017; 26:1337-1352. [PMID: 27633404 DOI: 10.1002/hec.3401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 07/05/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
Researchers have found strong linkages between parent and child health, but the mechanisms underlying intergenerational health transmission are not well understood. This paper investigates how the importance of genetic health transmission mechanisms varies by environmental conditions in the case of pediatric asthma, the single most common chronic health condition among American children. Using a sample that includes approximately 2000 adoptees and a large number of similar biological families, I find that the relative importance of genetic transmission differs strongly by socioeconomic status (SES). In high SES families, parent-child asthma associations are approximately 75% weaker among adoptees than biological children, suggesting a dominant role for genetic transmission. In lower SES families, parent-child asthma associations are virtually identical across biological and adoptive children, suggesting a negligible role for genetic transmission. A potential interpretation of this difference is that as environmental conditions affecting asthma improve among higher SES children, an increasingly large share of asthma variation is due to genetics. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Owen Thompson
- University of Wisconsin Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
24
|
Environmental tobacco smoke exposure and EGFR and ALK alterations in never smokers' lung cancer. Results from the LCRINS study. Cancer Lett 2017; 411:130-135. [PMID: 28987389 DOI: 10.1016/j.canlet.2017.09.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 01/02/2023]
Abstract
Environmental tobacco smoke (ETS) exposure is a main risk factor of lung cancer in never smokers. Epidermal Growth Factor Receptor (EGFR) mutations and ALK translocations are more frequent in never smokers' lung cancer than in ever-smokers. We performed a multicenter case-control study to assess if ETS exposure is associated with the presence of EGFR mutations and its types and if ALK translocations were related with ETS exposure. All patients were never smokers and had confirmed lung cancer diagnosis. ETS exposure during childhood showed a negative association on the probability of EGRF mutation though not significant. Exposure during adulthood, at home or at workplace, did not show any association with EGFR mutation. The mutation type L858R seemed the most associated with a lower probability of EGFR alterations for ETS exposure at home in adult life. There is no apparent association between ETS exposure and ALK translocation. These results might suggest that ETS exposure during childhood or at home in adult life could influence the EGFR mutations profile in lung cancer in never smokers, reducing the probability of presenting EFGR mutation.
Collapse
|
25
|
Yilmaz O, Turkeli A, Onur E, Bilge S, Yuksel H. Secondhand tobacco smoke and severity in wheezing children: Nasal oxidant stress and inflammation. J Asthma 2017; 55:477-482. [PMID: 28881145 DOI: 10.1080/02770903.2017.1350970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Prenatal and postnatal smoke exposures are associated with many lung diseases in children due to impaired lung function, increased inflammation, and oxidative stress. We aimed to determine the influence of secondhand tobacco smoke exposure on the levels of nasal glutathione, IL-8, IL-17, MMP-9, and TIMP-1, as well as serum surfactant protein-D (SP-D) in wheezy children. METHODS We enrolled 150 children with recurrent wheezing and recorded wheezing characteristics at enrollment. We measured the levels of serum cotinine, SP-D, nasal glutathione, IL-8, IL-17, MMP-9, and TIMP-1. Serum cotinine levels between 3 and 12 ng/mL, and above 12 ng/mL were defined as lower and higher level secondhand tobacco smoke exposure, respectively. The ANOVA test, Pearson's correlation analysis and multivariate analysis with a linear regression test were used for the statistical analysis. RESULTS Ninety-one children had been exposed to lower level secondhand tobacco smoke, while 24 children were exposed to higher level secondhand tobacco smoke. Thirty-five children were not exposed to cigarette smoke. Wheezing symptom scores were higher in exposed children (p = 0.03). Levels of other biomarkers showed no significant difference. CONCLUSIONS Secondhand tobacco smoke exposure is associated with more severe respiratory symptoms in wheezing children. However, levels of nasal or serum inflammatory markers fail to explain this association, either because of different mechanical factors in the process or due to low levels of the biomarkers especially in nasal secretions.
Collapse
Affiliation(s)
- Ozge Yilmaz
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| | - Ahmet Turkeli
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| | - Ece Onur
- b Department of Biochemistry , Celal Bayar University Medical Faculty , Manisa , Turkey
| | - Sema Bilge
- b Department of Biochemistry , Celal Bayar University Medical Faculty , Manisa , Turkey
| | - Hasan Yuksel
- a Department of Pediatric Allergy and Pulmonology , Celal Bayar University Medical Faculty , Manisa , Turkey
| |
Collapse
|
26
|
McEvoy CT, Milner KF, Scherman AJ, Schilling DG, Tiller CJ, Vuylsteke B, Shorey-Kendrick LE, Spindel ER, Schuff R, Mitchell J, Peters D, Metz J, Haas D, Jackson K, Tepper RS, Morris CD. Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function (VCSIP): Rationale, design, and methods of a randomized, controlled trial of vitamin C supplementation in pregnancy for the primary prevention of effects of in utero tobacco smoke exposure on infant lung function and respiratory health. Contemp Clin Trials 2017; 58:66-77. [PMID: 28495620 PMCID: PMC5696784 DOI: 10.1016/j.cct.2017.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/23/2017] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
Abstract
Despite strong anti-smoking efforts, at least 12% of American women cannot quit smoking when pregnant resulting in >450,000 smoke-exposed infants born yearly. Smoking during pregnancy is the largest preventable cause of childhood respiratory illness including wheezing and asthma. Recent studies have shown a protective effect of vitamin C supplementation on the lung function of offspring exposed to in utero smoke in a non-human primate model and an initial human trial. Vitamin C to Decrease the Effects of Smoking in Pregnancy on Infant Lung Function (VCSIP) is a randomized, double-blind, placebo-controlled trial to evaluate pulmonary function at 3months of age in infants delivered to pregnant smokers randomized to 500mg/day of vitamin C versus placebo during pregnancy. Secondary aims evaluate the incidence of wheezing through 12months and pulmonary function testing at 12months of age. Women are randomized between 13 and 23weeks gestation from clinical sites in Portland, Oregon at Oregon Health & Science University and PeaceHealth Southwest Medical Center and in Indianapolis, Indiana at Indiana University and Wishard Hospital. Vitamin C supplementation occurs from randomization to delivery. Monthly contact with participants and monitoring of medical records is performed to document medication adherence, changes in smoking and medical history, and adverse events. Pulmonary function testing of offspring occurs at 3 and 12months of age and incidence of wheezing and respiratory illness through 12months is captured via at least quarterly questionnaires. Ancillary studies are investigating the impact of vitamin C on placental blood flow and DNA methylation.
Collapse
Affiliation(s)
- Cindy T McEvoy
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA.
| | - Kristin F Milner
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Ashley J Scherman
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Diane G Schilling
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Christina J Tiller
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brittany Vuylsteke
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | | | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Robert Schuff
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Julie Mitchell
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| | - Dawn Peters
- Oregon Health & Science University-Portland State University, School of Public Health, Portland, OR, USA
| | - Jill Metz
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA
| | - David Haas
- Department of Obstetrics and Gynecology, University of Indiana, Indianapolis, IN, USA
| | - Keith Jackson
- PeaceHealth Southwest Medical Center, Vancouver, WA, USA
| | - Robert S Tepper
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cynthia D Morris
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
27
|
Abstract
PURPOSE OF THE REVIEW The availability of the Children's Health Exposure Assessment Resource funded by the National Institute of Environmental Health Sciences provides new opportunities for exploring the role of tobacco smoke exposure in causing harm to children. RECENT FINDINGS Children of smokers are exposed to nicotine and other harmful tobacco smoke chemicals in utero as well as in their environment. This passive exposure to tobacco smoke has a variety of negative effects on children. In-utero exposure to tobacco smoke causes poor birth outcomes and influences lung, cardiovascular, and brain development, placing children at increased risk of a number of adverse health outcomes later in life, such as obesity, behavioral problems, and cardiovascular disease. Furthermore, most smokers start in their adolescence, an age of increased nicotine addiction risk. Biomarkers of tobacco exposure helps clarify the role tobacco chemicals play in influencing health both in childhood and beyond. Although electronic cigarettes (e-cigarettes) appear to be a nicotine delivery device of reduced harm, it appears to be a gateway to the use of combustible cigarette smoking in adolescents. SUMMARY Pediatric researchers interested in elucidating the role of tobacco smoke exposure in adverse outcomes in children should incorporate biomarkers of tobacco exposure in their studies.
Collapse
|
28
|
|
29
|
Tam E, Miike R, Labrenz S, Sutton AJ, Elias T, Davis J, Chen YL, Tantisira K, Dockery D, Avol E. Volcanic air pollution over the Island of Hawai'i: Emissions, dispersal, and composition. Association with respiratory symptoms and lung function in Hawai'i Island school children. ENVIRONMENT INTERNATIONAL 2016; 92-93:543-52. [PMID: 27197039 PMCID: PMC4905765 DOI: 10.1016/j.envint.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Kilauea Volcano on the Island of Hawai'i has erupted continuously since 1983, releasing approximately 300-12000metrictons per day of sulfur dioxide (SO2). SO2 interacts with water vapor to produce an acidic haze known locally as "vog". The combination of wind speed and direction, inversion layer height, and local terrain lead to heterogeneous and variable distribution of vog over the island, allowing study of respiratory effects associated with chronic vog exposure. OBJECTIVES We characterized the distribution and composition of vog over the Island of Hawai'i, and tested the hypotheses that chronic vog exposure (SO2 and acid) is associated with increased asthma prevalence, respiratory symptoms, and reduced pulmonary function in Hawai'i Island schoolchildren. METHODS We compiled data of volcanic emissions, wind speed, and wind direction over Hawai'i Island since 1992. Community-based researchers then measured 2- to 4-week integrated concentrations of SO2 and fine particulate mass and acidity in 4 exposure zones, from 2002 to 2005, when volcanic SO2 emissions averaged 1600metrictons per day. Concurrently, community researchers recruited schoolchildren in the 4th and 5th grades of 25 schools in the 4 vog exposure zones, to assess determinants of lung health, respiratory symptoms, and asthma prevalence. RESULTS Environmental data suggested 4 different vog exposure zones with SO2, PM2.5, and particulate acid concentrations (mean±s.d.) as follows: 1) Low (0.3±0.2ppb, 2.5±1.2μg/m(3), 0.6±1.1nmolH+/m(3)), 2) Intermittent (1.6±1.8ppb, 2.8±1.5μg/m(3), 4.0±6.6nmolH+/m(3)), 3) Frequent (10.1±5.2ppb, 4.8±1.9μg/m(3), 4.3±6.7nmolH+/m(3)), and 4) Acid (1.2±0.4ppb, 7.2±2.3μg/m(3), 25.3±17.9nmolH+/m(3)). Participants (1957) in the 4 zones differed in race, prematurity, maternal smoking during pregnancy, environmental tobacco smoke exposure, presence of mold in the home, and physician-diagnosed asthma. Multivariable analysis showed an association between Acid vog exposure and cough and strongly suggested an association with FEV1/FVC <0.8, but not with diagnosis of asthma, or chronic persistent wheeze or bronchitis in the last 12months. CONCLUSIONS Hawai'i Island's volcanic air pollution can be very acidic, but contains few co-contaminants originating from anthropogenic sources of air pollution. Chronic exposure to acid vog is associated with increased cough and possibly with reduced FEV1/FVC, but not with asthma or bronchitis. Further study is needed to better understand how volcanic air pollution interacts with host and environmental factors to affect respiratory symptoms, lung function, and lung growth, and to determine acute effects of episodes of increased emissions.
Collapse
Affiliation(s)
- Elizabeth Tam
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA.
| | - Rei Miike
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA
| | - Susan Labrenz
- Department of Medicine, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA
| | - A Jeff Sutton
- United States Geological Survey, Hawaiian Volcano Observatory, Hawai'i National Park, HI, USA
| | - Tamar Elias
- United States Geological Survey, Hawaiian Volcano Observatory, Hawai'i National Park, HI, USA
| | - James Davis
- Office of Biostatistics and Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, USA
| | - Yi-Leng Chen
- Department of Atmospheric Sciences, School of Ocean and Earth Science Technology, University of Hawai'i, Honolulu, HI, USA
| | - Kelan Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas Dockery
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Edward Avol
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
30
|
Zacharasiewicz A. Maternal smoking in pregnancy and its influence on childhood asthma. ERJ Open Res 2016; 2:00042-2016. [PMID: 27730206 PMCID: PMC5034599 DOI: 10.1183/23120541.00042-2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Accepted: 06/05/2016] [Indexed: 12/16/2022] Open
Abstract
Maternal smoking in pregnancy (MSP) is a large modifiable risk factor for pregnancy related mortality and morbidity and also the most important known modifiable risk factor for asthma. This review summarises the effects of MSP throughout infancy, childhood and adolescence with regards to asthma (development and severity). Firstly, the direct damage caused by nicotine on fetal lung development, fetal growth and neuronal differentiation is discussed, as well as the indirect effects of nicotine on placental functioning. Secondly, the effects of MSP on later immune functioning resulting in increased infection rate are summarised and details are given on the effects of MSP modulating airway hyperreactivity, reducing lung function and therefore increasing asthma morbidity. Furthermore, epigenetic effects are increasingly being recognised. These can also result in transgenerational detrimental effects induced by cigarette smoke. In summary, the causal relationship between MSP and asthma development is well documented and presents a major health problem for generations to come. The high prevalence of MSP is alarming and epigenetic effects of nicotine on immune functioning potentiate this danger. A considerable part of the increase in asthma prevalence worldwide is due to MSP.
Collapse
Affiliation(s)
- Angela Zacharasiewicz
- Dept of Pediatrics and Adolescent Medicine, Teaching Hospital Wilhelminenspital of the Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Brown TA, Holian A, Pinkerton KE, Lee JW, Cho YH. Early life exposure to environmental tobacco smoke alters immune response to asbestos via a shift in inflammatory phenotype resulting in increased disease development. Inhal Toxicol 2016; 28:349-56. [PMID: 27138493 DOI: 10.1080/08958378.2016.1175526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Asbestos in combination with tobacco smoke exposure reportedly leads to more severe physiological consequences than asbestos alone; limited data also show an increased disease risk due to environmental tobacco smoke (ETS) exposure. Environmental influences during gestation and early lung development can result in physiological changes that alter risk for disease development throughout an individual's lifetime. Therefore, maternal lifestyle may impact the ability of offspring to subsequently respond to environmental insults and alter overall disease susceptibility. In this study, we examined the effects of exposure to ETS in utero and during early postnatal development on asbestos-related inflammation and disease in adulthood. ETS exposure in utero appeared to shift inflammation towards a Th2 phenotype, via suppression of Th1 inflammatory cytokine production. This effect was further pronounced in mice exposed to ETS in utero and during early postnatal development. In utero ETS exposure led to increased collagen deposition, a marker of fibrotic disease, when the offspring was later exposed to asbestos, which was further increased with additional ETS exposure during early postnatal development. These data suggest that ETS exposure in utero alters the immune responses and leads to greater disease development after asbestos exposure, which is further exacerbated when exposure to ETS continues during early postnatal development.
Collapse
Affiliation(s)
- Traci Ann Brown
- a Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana , Missoula , MT , USA and
| | - Andrij Holian
- a Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana , Missoula , MT , USA and
| | - Kent E Pinkerton
- b Center for Health and the Environment, University of California , Davis , CA , USA
| | - Joong Won Lee
- a Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana , Missoula , MT , USA and
| | - Yoon Hee Cho
- a Center for Environmental Health Sciences, Biomedical and Pharmaceutical Sciences, University of Montana , Missoula , MT , USA and
| |
Collapse
|
32
|
Stiegel MA, Pleil JD, Sobus JR, Madden MC. Inflammatory Cytokines and White Blood Cell Counts Response to Environmental Levels of Diesel Exhaust and Ozone Inhalation Exposures. PLoS One 2016; 11:e0152458. [PMID: 27058360 PMCID: PMC4825980 DOI: 10.1371/journal.pone.0152458] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/15/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiological observations of urban inhalation exposures to diesel exhaust (DE) and ozone (O3) have shown pre-clinical cardiopulmonary responses in humans. Identifying the key biological mechanisms that initiate these health bioindicators is difficult due to variability in environmental exposure in time and from person to person. Previously, environmentally controlled human exposure chambers have been used to study DE and O3 dose-response patterns separately, but investigation of co-exposures has not been performed under controlled conditions. Because a mixture is a more realistic exposure scenario for the general public, in this study we investigate the relationships of urban levels of urban-level DE exposure (300 μg/m3), O3 (0.3 ppm), DE + O3 co-exposure, and innate immune system responses. Fifteen healthy human volunteers were studied for changes in ten inflammatory cytokines (interleukins 1β, 2, 4, 5, 8, 10, 12p70 and 13, IFN-γ, and TNF-α) and counts of three white blood cell types (lymphocytes, monocytes, and neutrophils) following controlled exposures to DE, O3, and DE+O3. The results show subtle cytokines responses to the diesel-only and ozone-only exposures, and that a more complex (possibly synergistic) relationship exists in the combination of these two exposures with suppression of IL-5, IL-12p70, IFN-γ, and TNF-α that persists up to 22-hours for IFN-γ and TNF-α. The white blood cell differential counts showed significant monocyte and lymphocyte decreases and neutrophil increases following the DE + O3 exposure; lymphocytes and neutrophils changes also persist for at least 22-hours. Because human studies must be conducted under strict safety protocols at environmental levels, these effects are subtle and are generally only seen with detailed statistical analysis. This study indicates that the observed associations between environmental exposures and cardiopulmonary effects are possibly mediated by inflammatory response mechanisms.
Collapse
Affiliation(s)
- Matthew A. Stiegel
- Duke University Medical Center, Department of Occupational and Environmental Safety, Division of Occupational Hygiene and Safety, Durham, North Carolina, United States of America
| | - Joachim D. Pleil
- United States Environmental Protection Agency, National Exposure Research Lab, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina, United States of America
| | - Jon R. Sobus
- United States Environmental Protection Agency, National Exposure Research Lab, Human Exposure and Atmospheric Sciences Division, Research Triangle Park, North Carolina, United States of America
| | - Michael C. Madden
- United States Environmental Protection Agency, National Health and Environmental Effects Research Lab, Environmental Public Health Division, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
33
|
An Efficient Approach to Screening Epigenome-Wide Data. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2615348. [PMID: 27034928 PMCID: PMC4808532 DOI: 10.1155/2016/2615348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 02/11/2016] [Indexed: 11/17/2022]
Abstract
Screening cytosine-phosphate-guanine dinucleotide (CpG) DNA methylation sites in association with some covariate(s) is desired due to high dimensionality. We incorporate surrogate variable analyses (SVAs) into (ordinary or robust) linear regressions and utilize training and testing samples for nested validation to screen CpG sites. SVA is to account for variations in the methylation not explained by the specified covariate(s) and adjust for confounding effects. To make it easier to users, this screening method is built into a user-friendly R package, ttScreening, with efficient algorithms implemented. Various simulations were implemented to examine the robustness and sensitivity of the method compared to the classical approaches controlling for multiple testing: the false discovery rates-based (FDR-based) and the Bonferroni-based methods. The proposed approach in general performs better and has the potential to control both types I and II errors. We applied ttScreening to 383,998 CpG sites in association with maternal smoking, one of the leading factors for cancer risk.
Collapse
|
34
|
Gibbs K, Collaco JM, McGrath-Morrow SA. Impact of Tobacco Smoke and Nicotine Exposure on Lung Development. Chest 2016; 149:552-561. [PMID: 26502117 DOI: 10.1378/chest.15-1858] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/29/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022] Open
Abstract
Tobacco smoke and nicotine exposure during prenatal and postnatal life can impair lung development, alter the immune response to viral infections, and increase the prevalence of wheezing during childhood. The following review examines recent discoveries in the fields of lung development and tobacco and nicotine exposure, emphasizing studies published within the last 5 years. In utero tobacco and nicotine exposure remains common, occurring in approximately 10% of pregnancies within the United States. Exposed neonates are at increased risk for diminished lung function, altered central and peripheral respiratory chemoreception, and increased asthma symptoms throughout childhood. Recently, genomic and epigenetic risk factors, such as alterations in DNA methylation, have been identified that may influence the risk for long-term disease. This review examines the impact of prenatal tobacco and nicotine exposure on lung development with a particular focus on nicotinic acetylcholine receptors. In addition, this review examines the role of prenatal and postnatal tobacco smoke and nicotine exposure and its association with augmenting infection risk, skewing the immune response toward a T-helper type 2 bias and increasing risk for developing an allergic phenotype and asthmalike symptoms during childhood. Finally, this review outlines the respiratory morbidities associated with childhood secondhand smoke and nicotine exposure and examines genetic and epigenetic modifiers that may influence respiratory health in infants and children exposed to in utero or postnatal tobacco smoke.
Collapse
Affiliation(s)
- Kevin Gibbs
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD
| | - Sharon A McGrath-Morrow
- Eudowood Division of Pediatric Respiratory Sciences, Department of Pediatrics, Johns Hopkins Medical Institutions, Baltimore, MD.
| |
Collapse
|
35
|
Affiliation(s)
- Young Yoo
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
- Environmental Health Center, Korea University Anam Hospital, Seoul, Korea
- Allergy Immunology Center, Korea University, Seoul, Korea
| |
Collapse
|
36
|
Lee SY, Kim BS, Kwon SO, Oh SY, Shin HL, Jung YH, Lee E, Yang SI, Kim HY, Seo JH, Kim HB, Kwon JW, Lee HR, Hong SJ. Modification of additive effect between vitamins and ETS on childhood asthma risk according to GSTP1 polymorphism: a cross -sectional study. BMC Pulm Med 2015; 15:125. [PMID: 26490046 PMCID: PMC4618939 DOI: 10.1186/s12890-015-0093-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Background Asthma is characterized by airway inflammation, and bronchial airways are particularly susceptible to oxidant-induced tissue damage. Objective To investigate the effect of dietary antioxidant intake and environmental tobacco smoke (ETS) on the risk of childhood asthma according to genotypes susceptible to airway diseases. Methods This cross-sectional study included 1124 elementary school children aged 7–12 years old. Asthma symptoms and smoking history were measured using the International Study of Asthma and Allergies in Childhood (ISAAC) questionnaire. Intake of vitamin A (including retinol and β-carotene), C, and E was measured by a semi-quantitative food frequency questionnaire (FFQ). GSTP1 polymorphisms were genotyped from peripheral blood samples. Results ETS was significantly associated with presence of asthma symptoms (adjusted odds ratio [aOR], 2.48; 95 % confidence interval [CI], 1.29–4.76) and diagnosis (aOR, 1.91; 95 % CI, 1.19–3.06). Dietary antioxidant intake was not associated with asthma symptoms, although ETS plus low vitamin A intake showed a significant positive association with asthma diagnosis (aOR, 2.23; 95 % CI, 1.10–4.54). Children with AA at nucleotide 1695 in GSTP1 who had been exposed to ETS and a low vitamin A intake have an increased risk of asthma diagnosis (aOR, 4.44; 95 % CI,1.58–12.52) compared with children who had not been exposed to the two risk factors. However, ETS exposure and low vitamin A intake did not significantly increase odds of asthma diagnosis in children with AG or GG genotypes. Conclusion Low vitamin A intake and ETS exposure may increase oxidative stress and thereby risk for childhood asthma. These relationships may be modified by gene susceptibility alleles of GSTP1. Electronic supplementary material The online version of this article (doi:10.1186/s12890-015-0093-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- So-Yeon Lee
- Department of Pediatrics, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 39, Gwanpyeong-ro 138 beon-gil, Dongan-gu, Anyang, Gyeonggido, 431-828, South Korea.
| | - Bong-Seong Kim
- Department of Pediatrics, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, South Korea.
| | - Sung-Ok Kwon
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, South Korea.
| | - Se-Young Oh
- Department of Food and Nutrition, College of Human Ecology, Kyung Hee University, Seoul, South Korea.
| | - Hye Lim Shin
- Research Center for Standardization of Allergic Diseases, Asan Institute for Life Sciences, University of Ulsan College of Medicine, Seoul, South Korea.
| | - Young-Ho Jung
- Department of Pediatrics, CHA Bundang Medical Center, CHA University School of Medicine, Yatap-dong Bundang-gu, Seongnam, Gyeonggido, 463-712, South Korea.
| | - Eun Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| | - Song-I Yang
- Department of Pediatrics, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 39, Gwanpyeong-ro 138 beon-gil, Dongan-gu, Anyang, Gyeonggido, 431-828, South Korea.
| | - Hyung Young Kim
- Department of Pediatrics, Kosin University Gospel Hospital, Busan, South Korea.
| | - Ju-Hee Seo
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, South Korea.
| | - Hyo-Bin Kim
- Department of Pediatrics, Sanggye Paik Hospital, Inje University College of Medicine, Seoul, South Korea.
| | - Ji-Won Kwon
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - Hae-Ran Lee
- Department of Pediatrics, Hallym Sacred Heart Hospital, Hallym University College of Medicine, 39, Gwanpyeong-ro 138 beon-gil, Dongan-gu, Anyang, Gyeonggido, 431-828, South Korea.
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 138-736, South Korea.
| |
Collapse
|
37
|
Affiliation(s)
- D B Peden
- Center for Environmental Medicine, Asthma and Lung Biology & Department of Pediatrics, The School of Medicine, The University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
38
|
Larkin EK, Hartert TV. Genes associated with RSV lower respiratory tract infection and asthma: the application of genetic epidemiological methods to understand causality. Future Virol 2015; 10:883-897. [PMID: 26478738 DOI: 10.2217/fvl.15.55] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infants with respiratory syncytial virus (RSV) lower respiratory tract infections (LRIs) are at increased risk for childhood asthma. The objectives of this article are to review the genes associated with both RSV LRI and asthma, review analytic approaches to assessing shared genetic risk and propose a future perspective on how these approaches can help us to understand the role of infant RSV infection as both an important risk factor for asthma and marker of shared genetic etiology between the two conditions. The review of shared genes and thus pathways associated with severity of response to RSV infection and asthma risk can help us to understand mechanisms of disease and ultimately propose new and novel targets for primary prevention of both diseases.
Collapse
Affiliation(s)
- Emma K Larkin
- Department of Medicine, Division of Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tina V Hartert
- Department of Medicine, Division of Allergy, Pulmonary & Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
39
|
Yang SI, Kim BJ, Lee SY, Kim HB, Lee CM, Yu J, Kang MJ, Yu HS, Lee E, Jung YH, Kim HY, Seo JH, Kwon JW, Song DJ, Jang G, Kim WK, Shim JY, Lee SY, Yang HJ, Suh DI, Hong SA, Choi KY, Shin YH, Ahn K, Kim KW, Kim EJ, Hong SJ. Prenatal Particulate Matter/Tobacco Smoke Increases Infants' Respiratory Infections: COCOA Study. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:573-82. [PMID: 26333704 PMCID: PMC4605930 DOI: 10.4168/aair.2015.7.6.573] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/23/2015] [Accepted: 05/04/2015] [Indexed: 12/27/2022]
Abstract
Purpose To investigate whether prenatal exposure to indoor fine particulate matter (PM2.5) and environmental tobacco smoke (ETS) affects susceptibility to respiratory tract infections (RTIs) in infancy, to compare their effects between prenatal and postnatal exposure, and to determine whether genetic factors modify these environmental effects. Methods The study population consisted of 307 birth cohort infants. A diagnosis of RTIs was based on parental report of a physician's diagnosis. Indoor PM2.5 and ETS levels were measured during pregnancy and infancy. TaqMan was used for genotyping of nuclear factor erythroid 2-related factor (Nrf2) (rs6726395), glutathione-S-transferase-pi (GSTP) 1 (rs1695), and glutathione-S-transferase-mu (GSTM) 1. Microarrays were used for genome-wide methylation analysis. Results Prenatal exposure to indoor PM2.5 increased the susceptibility of lower RTIs (LRTIs) in infancy (adjusted odds ratio [aOR]=2.11). In terms of combined exposure to both indoor PM2.5 and ETS, prenatal exposure to both pollutants increased susceptibility to LRTIs (aOR=6.56); however, this association was not found for postnatal exposure. The Nrf2 GG (aOR=23.69), GSTM1 null (aOR=8.18), and GSTP1 AG or GG (aOR=7.37) genotypes increased the combined LRTIs-promoting effects of prenatal exposure to the 2 indoor pollutants. Such effects of prenatal indoor PM2.5 and ETS exposure were not found for upper RTIs. Conclusions Prenatal exposure to both indoor PM2.5 and ETS may increase susceptibility to LRTIs. This effect can be modified by polymorphisms in reactive oxygen species-related genes.
Collapse
Affiliation(s)
- Song I Yang
- Department of Pediatrics, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Byoung Ju Kim
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - So Yeon Lee
- Department of Pediatrics, Hallym Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Hyo Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Cheol Min Lee
- Institute of Environmental and Industrial Medicine, Hanyang University, Seoul, Korea
| | - Jinho Yu
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Mi Jin Kang
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Sung Yu
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Ho Jung
- Department of Pediatrics, Bundang CHA Medical Center, CHA University School of Medicine, Seongnam, Korea
| | - Hyung Young Kim
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Ju Hee Seo
- Department of Pediatrics, Korea Cancer Center Hospital, Seoul, Korea
| | - Ji Won Kwon
- Department of Pediatrics, Seoul National University Bundang Hospital, Seungnam, Korea
| | - Dae Jin Song
- Department of Pediatrics, College of Medicine, Korea University, Seoul, Korea
| | - Gwangcheon Jang
- Department of Pediatrics, National Health Insurance Corporation Ilsan Hospital, Goyang, Korea
| | - Woo Kyung Kim
- Department of Pediatrics and the Allergy and Respiratory Research Laboratory, Inje University Seoul Paik Hospital, Seoul, Korea
| | - Jung Yeon Shim
- Department of Pediatrics, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Young Lee
- Department of Pediatrics, Ajou University School of Medicine, Suwon, Korea
| | - Hyeon Jong Yang
- Department of Pediatrics, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Seo Ah Hong
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Kil Yong Choi
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Youn Ho Shin
- Department of Pediatrics, Gangnam CHA Medical Center, CHA University College of Medicine, Seoul, Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Jin Kim
- Division of Allergy and Chronic Respiratory diseases, Center for of Biomedical Sciences, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Osong, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | | |
Collapse
|
40
|
Abstract
Chronic obstructive pulmonary disease is mainly a smoking-related disorder and affects millions of people worldwide, with a large effect on individual patients and society as a whole. Although the disease becomes clinically apparent around the age of 40-50 years, its origins can begin very early in life. Different risk factors in very early life--ie, in utero and during early childhood--drive the development of clinically apparent chronic obstructive pulmonary disease in later life. In discussions of which risk factors drive chronic obstructive pulmonary disease, it is important to realise that the disease is very heterogeneous and at present is largely diagnosed by lung function only. In this Review, we will discuss the evidence for risk factors for the various phenotypes of chronic obstructive pulmonary disease during different stages of life.
Collapse
Affiliation(s)
- Dirkje S Postma
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Andrew Bush
- National Heart and Lung Institute, Imperial College, London, UK
| | - Maarten van den Berge
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
41
|
Chen Z, Salam MT, Eckel SP, Breton CV, Gilliland FD. Chronic effects of air pollution on respiratory health in Southern California children: findings from the Southern California Children's Health Study. J Thorac Dis 2015; 7:46-58. [PMID: 25694817 DOI: 10.3978/j.issn.2072-1439.2014.12.20] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/20/2014] [Indexed: 01/05/2023]
Abstract
Outdoor air pollution is one of the leading contributors to adverse respiratory health outcomes in urban areas around the world. Children are highly sensitive to the adverse effects of air pollution due to their rapidly growing lungs, incomplete immune and metabolic functions, patterns of ventilation and high levels of outdoor activity. The Children's Health Study (CHS) is a continuing series of longitudinal studies that first began in 1993 and has focused on demonstrating the chronic impacts of air pollution on respiratory illnesses from early childhood through adolescence. A large body of evidence from the CHS has documented that exposures to both regional ambient air and traffic-related pollutants are associated with increased asthma prevalence, new-onset asthma, risk of bronchitis and wheezing, deficits of lung function growth, and airway inflammation. These associations may be modulated by key genes involved in oxidative-nitrosative stress pathways via gene-environment interactions. Despite successful efforts to reduce pollution over the past 40 years, air pollution at the current levels still brings many challenges to public health. To further ameliorate adverse health effects attributable to air pollution, many more toxic pollutants may require regulation and control of motor vehicle emissions and other combustion sources may need to be strengthened. Individual interventions based on personal susceptibility may be needed to protect children's health while control measures are being implemented.
Collapse
Affiliation(s)
- Zhanghua Chen
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Muhammad T Salam
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Sandrah P Eckel
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Carrie V Breton
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| | - Frank D Gilliland
- 1 Department of Preventive Medicine, Division of Environmental Health, 2 Department of Preventive Medicine, Division of Biostatistics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90032, USA
| |
Collapse
|
42
|
Li YF, Lin CC, Tai CK. Interaction of intercellular adhesion molecule 1 (ICAM1) polymorphisms and environmental tobacco smoke on childhood asthma. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 11:6504-16. [PMID: 25003170 PMCID: PMC4078592 DOI: 10.3390/ijerph110606504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Asthma is a chronic disease that is particularly common in children. The association between polymorphisms of the gene encoding intercellular adhesion molecule 1 (ICAM1) and gene-environment interactions with childhood asthma has not been fully investigated. A cross-sectional study was undertaken to investigate these associations among children in Taiwan. The effects of two functional single-nucleotide polymorphisms (SNPs) of ICAM1, rs5491 (K56M) and rs5498 (K469E), and exposure to environmental tobacco smoke (ETS) were studied. Two hundred and eighteen asthmatic and 877 nonasthmatic children were recruited from elementary schools. It was found that the genetic effect of each SNP was modified by the other SNP and by exposure to ETS. The risk of asthma was higher for children carrying the rs5491 AT or TT genotypes and the rs5498 GG genotype (odds ratio = 1.68, 95% confidence interval 1.09–2.59) than for those with the rs5491 AA and rs5498 AA or AG genotypes (the reference group). The risk for the other two combinations of genotypes did not differ significantly from that of the reference group (p of interaction = 0.0063). The two studied ICAM1 SNPs were associated with childhood asthma among children exposed to ETS, but not among those without ETS exposure (p of interaction = 0.05 and 0.01 for rs5491 and rs5498, respectively). Both ICAM1 and ETS, and interactions between these two factors are likely to be involved in the development of asthma in childhood.
Collapse
Affiliation(s)
- Yu-Fen Li
- Institute of Biostatistics, China Medical University, 91 Hsieh-Shih Rd., Taichung 404, Taiwan; E-Mail:
| | - Che-Chen Lin
- Department of Public Health, China Medical University, 91 Hsieh-Shih Rd., Taichung 404, Taiwan; E-Mail:
| | - Chien-Kuo Tai
- Department of Life Science, National Chung Cheng University, 168 University Rd., Min-Hsiung Township, Chia-Yi County 621, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-5-272-0411 (ext. 66508); Fax: +886-5-272-2871
| |
Collapse
|
43
|
Polosukhin VV, Polosukhin IV, Hoskins A, Han W, Abdolrasulnia R, Blackwell TS, Dworski R. Glutathione S-transferase M1 modulates allergen-induced NF-κB activation in asthmatic airway epithelium. Allergy 2014; 69:1666-72. [PMID: 25118837 DOI: 10.1111/all.12506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND Glutathione S-transferase M1 (GSTM1) is a phase II enzyme and regulator of inflammatory signaling in airway epithelial cells. We have found upregulation of neutrophilic airway inflammation in atopic asthmatics expressing GSTM1 gene (GSTM1+) compared to GSTM1null asthmatics. We hypothesized that GSTM1 modulates NF-κB activation in bronchial epithelium in atopic asthmatics. We determined regulation of allergen-induced NF-κB activation in bronchial epithelium by GSTM1 in human atopic asthmatics in vivo. METHODS Endobronchial biopsies and bronchoalveolar lavage fluid samples were collected from 13 GSTM1+ and 12 GSTM1null human atopic asthmatics at baseline and 24 h after segmental allergen challenge. A quantitative analysis of NF-κB activation in airway epithelium was accomplished using a polyclonal antibody against the phosphorylated p65 component of NF-κB. Elastase-positive neutrophils in the bronchial wall were quantified. RESULTS Postallergen neutrophilia in airway subepithelium and epithelial lining fluid was greater in GSTM1+ compared to GSTM1null asthmatics. Airway eosinophilia was similar in GSTM1+ and GSTM1null asthmatics. Allergen-provoked NF-κB induction in bronchial epithelium was significantly greater in GSTM1+ compared to GSTM1null asthmatics. Activation of NF-κB activation in airway epithelial cells correlated with interleukin-8 concentrations and absolute neutrophil numbers in bronchoalveolar lavage fluid in GSTM1+ but not GSTM1null asthmatics. CONCLUSIONS Allergen-induced neutrophilic airway inflammation in GSTM1+ asthmatics is associated with NF-κB activation in airway epithelial cells in vivo. These novel data provide a potential mechanism of the genomic link between GSTM1 polymorphism and airway neutrophilia in atopic asthma.
Collapse
Affiliation(s)
- V. V. Polosukhin
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - I. V. Polosukhin
- The Vanderbilt Center for Science Outreach; Research Experience for High School Students; Nashville TN USA
| | - A. Hoskins
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - W. Han
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - R. Abdolrasulnia
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - T. S. Blackwell
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| | - R. Dworski
- Division of Allergy; Pulmonary and Critical Care Medicine; Department of Medicine; Vanderbilt University School of Medicine; Nashville TN USA
| |
Collapse
|
44
|
Dixit P, Awasthi S, Agarwal S. Association of interleukin genes polymorphism with asthma susceptibility in Indian children: a case-control study. Ann Hum Biol 2014; 42:552-9. [PMID: 25402004 DOI: 10.3109/03014460.2014.977347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Interleukins (IL) 4 and 13 genes and their receptors (R) are the key cytokines which amplify inflammatory reactions in asthma. OBJECTIVE This study aimed to investigate the association of IL 4, 4 R, 13 and 13 R genes polymorphism with asthma in Indian children. METHODS In this hospital-based case-control study, included were children aged 1-15 years recruited as diagnosed cases of bronchial asthma, according to EPR 2007 and excluded were subjects with other respiratory diseases. Children with no present or past history of asthma were enrolled as controls. Spirometry was done in cases age ≥ 6 years. Gene-gene interaction was evaluated using binary logistic regression. RESULTS From October 2010 to July 2013, 275 cases and 275 controls were recruited. Gene-gene interactions between C1112T in IL 13 and Ile50Val in IL 4 R gene polymorphisms were found to be statistically significant (OR = 2.37, 95% CI = 1.04-5.42, p = 0.040). Individuals with CT and GG genotype of C1112T in IL 13 and Ile50Val in IL 4 R were at twice the risk for the development of asthma compared to individuals with both non-risk genotypes. CONCLUSION The data suggests that gene-gene interactions between IL 13 and IL 4 R genes may play an important role in asthma among Indian children.
Collapse
Affiliation(s)
- Pratibha Dixit
- a Department of Pediatrics and Translational Medicine Unit , King George's Medical University , Lucknow , India and
| | - Shally Awasthi
- a Department of Pediatrics and Translational Medicine Unit , King George's Medical University , Lucknow , India and
| | - Sarita Agarwal
- b Department of Genetics , Sanjay Gandhi Post Graduate Institute of Medical Sciences , Lucknow , India
| |
Collapse
|
45
|
Underner M, Perriot J, Peiffer G, Meurice JC. [Influence of tobacco smoking on the risk of developing asthma]. Rev Mal Respir 2014; 32:110-37. [PMID: 25765119 DOI: 10.1016/j.rmr.2014.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/25/2014] [Indexed: 02/05/2023]
Abstract
The aim of this general review is to investigate the influence of active and passive smoking on the development of asthma in children and adults. Passive smoking during and after pregnancy facilitates the onset of childhood asthma and wheezing. In particular, smoking during pregnancy is associated with the occurrence of wheezing prior to the age of 4 years. In contrast, the results of studies on the relationship between parental smoking in the post-natal period and the onset of asthma or wheezing are discordant. Exposure to passive smoking during childhood facilitates the occurrence of asthma in adulthood. In adults and adolescents, active smoking appears to be a factor favoring the development of asthma. On the other hand, non-smoking adult subjects without history of asthma exposed to passive smoking have a risk of asthma. The pathophysiological mechanisms by which tobacco smoke is the cause of asthma are still poorly known. Smoking cessation is an essential component in the management of asthmatic subjects who smoke, facilitating the control of the disease.
Collapse
Affiliation(s)
- M Underner
- Unité de tabacologie, service de pneumologie, centre de lutte antituberculeuse (CLAT 86), CHU de Poitiers, 86000 Poitiers, France.
| | - J Perriot
- Dispensaire Émile-Roux, centre de lutte antituberculeuse (CLAT 63), 63100 Clermont-Ferrand, France
| | - G Peiffer
- Service de pneumologie, CHR Metz-Thionville, 57038 Metz, France
| | - J-C Meurice
- Unité de tabacologie, service de pneumologie, centre de lutte antituberculeuse (CLAT 86), CHU de Poitiers, 86000 Poitiers, France
| |
Collapse
|
46
|
Gender-dependent effect of GSTM1 genotype on childhood asthma associated with prenatal tobacco smoke exposure. BIOMED RESEARCH INTERNATIONAL 2014; 2014:769452. [PMID: 25328891 PMCID: PMC4189933 DOI: 10.1155/2014/769452] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/19/2014] [Indexed: 02/03/2023]
Abstract
It remains unclear whether the GSTM1 genotype interacts with tobacco smoke exposure (TSE) in asthma development. This study aimed to investigate the interactions among GSTM1 genotype, gender, and prenatal TSE with regard to childhood asthma development. In a longitudinal birth cohort in Taiwan, 756 newborns completed a 6-year follow-up, and 591 children with DNA samples available for GSTM1 genotyping were included in the study, and the interactive influences of gender-GSTM1 genotyping-prenatal TSE on childhood asthma development were analyzed. Among these 591 children, 138 (23.4%) had physician-diagnosed asthma at 6 years of age, and 347 (58.7%) were null-GSTM1. Prenatal TSE significantly increased the prevalence of childhood asthma in null-GSTM1 children relative to those with positive GSTM1. Further analysis showed that prenatal TSE significantly increased the risk of childhood asthma in girls with null-GSTM1. Furthermore, among the children without prenatal TSE, girls with null-GSTM1 had a significantly lower risk of developing childhood asthma and a lower total IgE level at 6 years of age than those with positive GSTM1. This study demonstrates that the GSTM1 null genotype presents a protective effect against asthma development in girls, but the risk of asthma development increases significantly under prenatal TSE.
Collapse
|
47
|
Galanter JM, Gignoux CR, Torgerson DG, Roth LA, Eng C, Oh SS, Nguyen EA, Drake KA, Huntsman S, Hu D, Sen S, Davis A, Farber HJ, Avila PC, Brigino-Buenaventura E, LeNoir MA, Meade K, Serebrisky D, Borrell LN, Rodríguez-Cintrón W, Estrada AM, Mendoza KS, Winkler CA, Klitz W, Romieu I, London SJ, Gilliland F, Martinez F, Bustamante C, Williams LK, Kumar R, Rodríguez-Santana JR, Burchard EG. Genome-wide association study and admixture mapping identify different asthma-associated loci in Latinos: the Genes-environments & Admixture in Latino Americans study. J Allergy Clin Immunol 2014; 134:295-305. [PMID: 24406073 PMCID: PMC4085159 DOI: 10.1016/j.jaci.2013.08.055] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Asthma is a complex disease with both genetic and environmental causes. Genome-wide association studies of asthma have mostly involved European populations, and replication of positive associations has been inconsistent. OBJECTIVE We sought to identify asthma-associated genes in a large Latino population with genome-wide association analysis and admixture mapping. METHODS Latino children with asthma (n = 1893) and healthy control subjects (n = 1881) were recruited from 5 sites in the United States: Puerto Rico, New York, Chicago, Houston, and the San Francisco Bay Area. Subjects were genotyped on an Affymetrix World Array IV chip. We performed genome-wide association and admixture mapping to identify asthma-associated loci. RESULTS We identified a significant association between ancestry and asthma at 6p21 (lowest P value: rs2523924, P < 5 × 10(-6)). This association replicates in a meta-analysis of the EVE Asthma Consortium (P = .01). Fine mapping of the region in this study and the EVE Asthma Consortium suggests an association between PSORS1C1 and asthma. We confirmed the strong allelic association between SNPs in the 17q21 region and asthma in Latinos (IKZF3, lowest P value: rs90792, odds ratio, 0.67; 95% CI, 0.61-0.75; P = 6 × 10(-13)) and replicated associations in several genes that had previously been associated with asthma in genome-wide association studies. CONCLUSIONS Admixture mapping and genome-wide association are complementary techniques that provide evidence for multiple asthma-associated loci in Latinos. Admixture mapping identifies a novel locus on 6p21 that replicates in a meta-analysis of several Latino populations, whereas genome-wide association confirms the previously identified locus on 17q21.
Collapse
Affiliation(s)
- Joshua M Galanter
- Department of Medicine, University of California, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif.
| | - Christopher R Gignoux
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Dara G Torgerson
- Department of Medicine, University of California, San Francisco, Calif
| | - Lindsey A Roth
- Department of Medicine, University of California, San Francisco, Calif
| | - Celeste Eng
- Department of Medicine, University of California, San Francisco, Calif
| | - Sam S Oh
- Department of Medicine, University of California, San Francisco, Calif
| | | | - Katherine A Drake
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| | - Scott Huntsman
- Department of Medicine, University of California, San Francisco, Calif
| | - Donglei Hu
- Department of Medicine, University of California, San Francisco, Calif
| | - Saunak Sen
- Department of Epidemiology & Biostatistics, University of California, San Francisco, Calif
| | - Adam Davis
- Children's Hospital and Research Center Oakland, Oakland, Calif
| | - Harold J Farber
- Department of Pediatrics, Section of Pulmonology, Baylor College of Medicine and Texas Children's Hospital, Houston, Tex
| | - Pedro C Avila
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Ill
| | | | | | - Kelley Meade
- Children's Hospital and Research Center Oakland, Oakland, Calif
| | | | - Luisa N Borrell
- Department of Health Sciences, Graduate Program in Public Health, Lehman College, City University of New York, Bronx, NY
| | | | | | | | - Cheryl A Winkler
- Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, Md
| | - William Klitz
- School of Public Health, University of California, Berkeley, Calif
| | | | - Stephanie J London
- National Institute of Environmental Health Sciences, National Institutes of Health, Dept of Health and Human Services, Research Triangle Park, NC
| | - Frank Gilliland
- Department of Preventive Medicine, University of Southern California, Los Angeles, Calif
| | | | | | - L Keoki Williams
- Department of Internal Medicine, Henry Ford Health System, Detroit, Mich
| | - Rajesh Kumar
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill
| | | | - Esteban G Burchard
- Department of Medicine, University of California, San Francisco, Calif; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Calif
| |
Collapse
|
48
|
Propp P, Becker A. Prevention of asthma: where are we in the 21st century? Expert Rev Clin Immunol 2014; 9:1267-78. [PMID: 24215414 DOI: 10.1586/1744666x.2013.858601] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Asthma is the most common chronic disease of childhood and, in the latter part of the 20th century, reached epidemic proportions. Asthma is generally believed to result from gene-environment interactions. There is consensus that a 'window of opportunity' exists during pregnancy and early in life when environmental factors may influence its development. We review multiple environmental, biologic and sociologic factors that may be important in the development of asthma. Meta-analyses of studies have demonstrated that multifaceted interventions are required in order to develop asthma prevention. Multifaceted allergen reduction studies have shown clinical benefits. Asthma represents a dysfunctional interaction with our genes and the environment to which they are exposed, especially in fetal and early infant life. The increasing prevalence of asthma also may be an indication of increased population risk for the development of other chronic non-communicable autoimmune diseases. This review will focus on the factors which may be important in the primary prevention of asthma. Better understanding of the complex gene-environment interactions involved in the development of asthma will provide insight into personalized interventions for asthma prevention.
Collapse
Affiliation(s)
- Phaedra Propp
- The Manitoba Institute of Child Health, Winnipeg, MB R3E 3P4, Canada
| | | |
Collapse
|
49
|
The impact of tobacco smoke exposure on wheezing and overweight in 4-6-year-old children. BIOMED RESEARCH INTERNATIONAL 2014; 2014:240757. [PMID: 25110663 PMCID: PMC4109218 DOI: 10.1155/2014/240757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/08/2014] [Accepted: 06/24/2014] [Indexed: 11/17/2022]
Abstract
Aim. To investigate the association between maternal smoking during pregnancy, second-hand tobacco smoke (STS) exposure, education level, and preschool children's wheezing and overweight. Methods. This cohort study used data of the KANC cohort—1,489 4–6-year-old children from Kaunas city, Lithuania. Multivariate logistic regression was employed to study the influence of prenatal and postnatal STS exposure on the prevalence of wheezing and overweight, controlling for potential confounders. Results. Children exposed to maternal smoking during pregnancy had a slightly increased prevalence of wheezing and overweight. Postnatal exposure to STS was associated with a statistically significantly increased risk of wheezing and overweight in children born to mothers with lower education levels (OR 2.12; 95% CI 1.04–4.35 and 3.57; 95% CI 1.76–7.21, accordingly). Conclusions. The present study findings suggest that both maternal smoking during pregnancy and STS increase the risk of childhood wheezing and overweight, whereas lower maternal education might have a synergetic effect. Targeted interventions must to take this into account and address household smoking.
Collapse
|
50
|
Kim BJ, Lee SY, Kim HB, Lee E, Hong SJ. Environmental changes, microbiota, and allergic diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:389-400. [PMID: 25228995 PMCID: PMC4161679 DOI: 10.4168/aair.2014.6.5.389] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/12/2013] [Indexed: 12/26/2022]
Abstract
During the last few decades, the prevalence of allergic disease has increased dramatically. The development of allergic diseases has been attributed to complex interactions between environmental factors and genetic factors. Of the many possible environmental factors, most research has focused on the most commonly encountered environmental factors, such as air pollution and environmental microbiota in combination with climate change. There is increasing evidence that such environmental factors play a critical role in the regulation of the immune response that is associated with allergic diseases, especially in genetically susceptible individuals. This review deals with not only these environmental factors and genetic factors but also their interactions in the development of allergic diseases. It will also emphasize the need for early interventions that can prevent the development of allergic diseases in susceptible populations and how these interventions can be identified.
Collapse
Affiliation(s)
- Byoung-Ju Kim
- Department of Pediatrics, Inje University Haeundae Paik Hospital, Busan, Korea
| | - So-Yeon Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, University of Hallym College of Medicine, Anyang, Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Eun Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, University of Ulsan College of Medicine, Seoul, Korea. ; Research Center for Standardization of Allergic Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, University of Ulsan College of Medicine, Seoul, Korea. ; Research Center for Standardization of Allergic Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|