1
|
Zhang L, Wang Z, Li Y, Yang S, Chen W, Li Y, Tian K, Yuan Y, Bai X, Huang X. Macrocyclic Compounds with Diverse Skeletons from the Roots of Myrica nana and Their Spasmolytic Activity. JOURNAL OF NATURAL PRODUCTS 2025; 88:141-151. [PMID: 39725677 DOI: 10.1021/acs.jnatprod.4c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Six undescribed macrocyclic compounds, including diarylhexanoids (1 and 2), a diarylhexanoid glucoside (3), diarylheptanoids (4 and 5), and an aceroside (6), were isolated from the roots of Myrica nana Cheval., along with 11 known analogues (7-17). The structures were elucidated by spectroscopic analysis, as well as by calculated optical rotatory dispersion and derivatization reactions. Metabolites 1-3, with a rare macrocyclic diarylhexane skeleton, differ from the familiar macrocyclic diarylheptanoids. The spasmolytic activity of the isolated compounds was evaluated on acetylcholine-induced contraction of isolated rat ileum. All isolated compounds exhibited significant spasmolytic activities with an EC50 ranging from 1.4 to 5.1 μM. The spasmolytic mechanism of action of compound 1 could be related to the NO production, blockade of muscarinic receptors, K+ efflux, and cytosolic calcium reduction.
Collapse
Affiliation(s)
- Liyuan Zhang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Ziliang Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Yuxiao Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Shenghai Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Wenting Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Yanhong Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Kai Tian
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Yan Yuan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Xishan Bai
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| | - Xiangzhong Huang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming 650504, People's Republic of China
| |
Collapse
|
2
|
Moser JC, da Silva RDCV, Costa P, da Silva LM, Cassemiro NS, Gasparotto Junior A, Silva DB, de Souza P. Role of K + and Ca 2+ Channels in the Vasodilator Effects of Plectranthus barbatus (Brazilian Boldo) in Hypertensive Rats. Cardiovasc Ther 2023; 2023:9948707. [PMID: 38024105 PMCID: PMC10673663 DOI: 10.1155/2023/9948707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Plectranthus barbatus, popularly known as Brazilian boldo, is used in Brazilian folk medicine to treat cardiovascular disorders including hypertension. This study investigated the chemical profile by UFLC-DAD-MS and the relaxant effect by using an isolated organ bath of the hydroethanolic extract of P. barbatus (HEPB) leaves on the aorta of spontaneously hypertensive rats (SHR). A total of nineteen compounds were annotated from HEPB, and the main metabolite classes found were flavonoids, diterpenoids, cinnamic acid derivatives, and organic acids. The HEPB promoted an endothelium-dependent vasodilator effect (~100%; EC50 ~347.10 μg/mL). Incubation of L-NAME (a nonselective nitric oxide synthase inhibitor; EC50 ~417.20 μg/mL), ODQ (a selective inhibitor of the soluble guanylate cyclase enzyme; EC50 ~426.00 μg/mL), propranolol (a nonselective α-adrenergic receptor antagonist; EC50 ~448.90 μg/mL), or indomethacin (a nonselective cyclooxygenase enzyme inhibitor; EC50 ~398.70 μg/mL) could not significantly affect the relaxation evoked by HEPB. However, in the presence of atropine (a nonselective muscarinic receptor antagonist), there was a slight reduction in its vasorelaxant effect (EC50 ~476.40 μg/mL). The addition of tetraethylammonium (a blocker of Ca2+-activated K+ channels; EC50 ~611.60 μg/mL) or 4-aminopyridine (a voltage-dependent K+ channel blocker; EC50 ~380.50 μg/mL) significantly reduced the relaxation effect of the extract without the interference of glibenclamide (an ATP-sensitive K+ channel blocker; EC50 ~344.60 μg/mL) or barium chloride (an influx rectifying K+ channel blocker; EC50 ~360.80 μg/mL). The extract inhibited the contractile response against phenylephrine, CaCl2, KCl, or caffeine, similar to the results obtained with nifedipine (voltage-dependent calcium channel blocker). Together, the HEPB showed a vasorelaxant effect on the thoracic aorta of SHR, exclusively dependent on the endothelium with the participation of muscarinic receptors and K+ and Ca2+ channels.
Collapse
Affiliation(s)
- Jeniffer Cristóvão Moser
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Rita de Cássia Vilhena da Silva
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Philipe Costa
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| | - Nadla Soares Cassemiro
- Laboratory of Natural Products and Mass Spectrometry, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, Mato Grosso do Sul, Brazil
| | - Denise Brentan Silva
- Laboratory of Natural Products and Mass Spectrometry, Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences, Nucleus of Chemical-Pharmaceutical Investigations, University of Vale do Itajaí, Itajaí, Brazil
| |
Collapse
|
3
|
Ye H, Wu J, Liang Z, Zhang Y, Huang Z. Protein S-Nitrosation: Biochemistry, Identification, Molecular Mechanisms, and Therapeutic Applications. J Med Chem 2022; 65:5902-5925. [PMID: 35412827 DOI: 10.1021/acs.jmedchem.1c02194] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein S-nitrosation (SNO), a posttranslational modification (PTM) of cysteine (Cys) residues elicited by nitric oxide (NO), regulates a wide range of protein functions. As a crucial form of redox-based signaling by NO, SNO contributes significantly to the modulation of physiological functions, and SNO imbalance is closely linked to pathophysiological processes. Site-specific identification of the SNO protein is critical for understanding the underlying molecular mechanisms of protein function regulation. Although careful verification is needed, SNO modification data containing numerous functional proteins are a potential research direction for druggable target identification and drug discovery. Undoubtedly, SNO-related research is meaningful not only for the development of NO donor drugs but also for classic target-based drug design. Herein, we provide a comprehensive summary of SNO, including its origin and transport, identification, function, and potential contribution to drug discovery. Importantly, we propose new views to develop novel therapies based on potential protein SNO-sourced targets.
Collapse
Affiliation(s)
- Hui Ye
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhuangzhuang Liang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009, P.R. China
| |
Collapse
|
4
|
Bae H, Kim T, Lim I. Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:25-36. [PMID: 34965993 PMCID: PMC8723981 DOI: 10.4196/kjpp.2022.26.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3- induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
5
|
Vasorelaxant-Mediated Antihypertensive Effect of the Leaf Aqueous Extract from Stephania abyssinica (Dillon & A. Rich) Walp (Menispermaceae) in Rat. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4730341. [PMID: 34660790 PMCID: PMC8519676 DOI: 10.1155/2021/4730341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 11/21/2022]
Abstract
Stephania abyssinica is a medicinal plant used in Cameroon alternative medicine to treat arterial hypertension (AHT). Previous in vitro studies demonstrated the endothelium nitric oxide-independent vasorelaxant property of the aqueous extract from Stephania abyssinica (AESA). But its effect on AHT is unknown. The present study was undertaken to explore other vasorelaxant mechanisms and to determine the antihypertensive effects of AESA in male Wistar rats. Phytochemical analysis of AESA was carried out using the liquid chromatography-mass spectrometry (LC-MS) method. The vasorelaxant effects of AESA (1-1000 μg/mL) were studied on rat isolated thoracic aorta rings, in the absence or presence of indomethacin (10 μM) or methylene blue (10 μM). The inhibitory effect of AESA on phenylephrine (PE, 10 μM) or KCl- (60 mM) induced contraction as well as the intracellular calcium release was also evaluated. The in vivo antihypertensive activity of AESA (43, 86, or 172 mg/kg/day) or captopril (20 mg/kg/day) administered orally was assessed in L-NAME- (40 mg/kg/day) treated rats. Blood pressure and heart rate (HR) were measured at the end of each week while serum or urinary nitric oxide (NO), creatinine, and glomerular filtration rate (GFR) were determined at the end of the 6 weeks of treatment, as well as histological analysis of the heart and the kidney. The LC-MS profiling of AESA identified 9 compounds including 7 alkaloids. AESA produced a concentration-dependent relaxation on contraction induced either by PE and KCl, which was significantly reduced in endothelium-denuded vessels, as well as in vessels pretreated with indomethacin and methylene blue. Moreover, AESA inhibited the intracellular Ca2+ release-induced contraction. In vivo, AESA reduced the AHT, heart rate (HR), and ventricular hypertrophy and increased serum NO, urine creatinine, and GFR. AESA also ameliorated heart and kidney lesions as compared to the L-NAME group. These findings supported the use of AESA as a potential antihypertensive drug.
Collapse
|
6
|
Mughal A, Anto S, Sun C, O'Rourke ST. Apelin inhibits an endothelium-derived hyperpolarizing factor-like pathway in rat cerebral arteries. Peptides 2020; 132:170350. [PMID: 32579899 PMCID: PMC7484084 DOI: 10.1016/j.peptides.2020.170350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022]
Abstract
Apelin has complex vasomotor actions inasmuch as the peptide may cause either vasodilation or vasoconstriction depending on the vascular bed and experimental conditions. In cerebral arteries, apelin inhibits endothelium-dependent relaxations mediated by nitric oxide (NO); however, its effects on relaxation to other endothelium-derived substances (e.g. prostacyclin, endothelium-derived hyperpolarizing factors(s) (EDHF)) are unknown. The present study was designed to determine effects of apelin on endothelium-dependent relaxations that are independent of NO in rat cerebral arteries. In arterial rings contracted with 5-HT, A23187 caused endothelium-dependent relaxation that was unaffected by inhibitors of eNOS, guanylyl cyclase or cyclooxygenase, but was attenuated by MS-PPOH, a selective inhibitor of cytochrome P450 catalyzed synthesis of epoxyeicosatrienoic acids (EETs) and by 14,15-EE(Z)E, an EET-receptor antagonist. Apelin inhibited A23187-induced relaxation, as well as relaxations evoked by exogenous 11,12- and 14,15-EET. These effects of apelin were mimicked by the selective BKCa channel blocker, iberiotoxin. The APJ receptor antagonist, F13A abolished the effects of apelin on A23187-induced relaxations. Both 11,12- and 14,15-EET also increased BKCa channel current density in isolated cerebral artery smooth muscle cells, effects that were inhibited in a similar manner by apelin and iberiotoxin. These findings provide evidence that apelin impairs endothelium-dependent relaxation of cerebral arteries by inhibiting an NO-independent pathway (i.e. "EDHF-like") involving activation of smooth muscle cell BKCa channels by endothelium-derived EETs. Inhibition of such pathway may create an environment favoring vasoconstriction in cerebral arteries.
Collapse
Affiliation(s)
- Amreen Mughal
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Santo Anto
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
7
|
Antosova M, Mokra D, Pepucha L, Plevkova J, Buday T, Sterusky M, Bencova A. Physiology of nitric oxide in the respiratory system. Physiol Res 2018; 66:S159-S172. [PMID: 28937232 DOI: 10.33549/physiolres.933673] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitric oxide (NO) is an important endogenous neurotransmitter and mediator. It participates in regulation of physiological processes in different organ systems including airways. Therefore, it is important to clarify its role in the regulation of both airway and vascular smooth muscle, neurotransmission and neurotoxicity, mucus transport, lung development and in the. surfactant production. The bioactivity of NO is highly variable and depends on many factors: the presence and activity of NO-producing enzymes, activity of competitive enzymes (e.g. arginase), the amount of substrate for the NO production, the presence of reactive oxygen species and others. All of these can change NO primary physiological role into potentially harmful. The borderline between them is very fragile and in many cases not entirely clear. For this reason, the research focuses on a comprehensive understanding of NO synthesis and its metabolic pathways, genetic polymorphisms of NO synthesizing enzymes and related effects. Research is also motivated by frequent use of exhaled NO monitoring in the clinical manifestations of respiratory diseases. The review focuses on the latest knowledge about the production and function of this mediator and understanding the basic physiological processes in the airways.
Collapse
Affiliation(s)
- M Antosova
- Biomedical Center Martin, Division of Respirology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
SIGNIFICANCE The family of gasotransmitter molecules, nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), has emerged as an important mediator of numerous cellular signal transduction and pathophysiological responses. As such, these molecules have been reported to influence a diverse array of biochemical, molecular, and cell biology events often impacting one another. Recent Advances: Discrete regulation of gasotransmitter molecule formation, movement, and reaction is critical to their biological function. Due to the chemical nature of these molecules, they can move rapidly throughout cells and tissues acting on targets through reactions with metal groups, reactive chemical species, and protein amino acids. CRITICAL ISSUES Given the breadth and complexity of gasotransmitter reactions, this field of research is expanding into exciting, yet sometimes confusing, areas of study with significant promise for understanding health and disease. The precise amounts of tissue and cellular gasotransmitter levels and where they are formed, as well as how they react with molecular targets or themselves, all remain poorly understood. FUTURE DIRECTIONS Elucidation of specific molecular targets, characteristics of gasotransmitter molecule heterotypic interactions, and spatiotemporal formation and metabolism are all important to better understand their true pathophysiological importance in various organ systems. Antioxid. Redox Signal. 26, 936-960.
Collapse
Affiliation(s)
- Gopi K Kolluru
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Xinggui Shen
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Shuai Yuan
- 2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Christopher G Kevil
- 1 Department of Pathology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,2 Department of Cellular Biology and Anatomy, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana.,3 Department of Molecular and Cellular Physiology, LSU Health Sciences Center-Shreveport , Shreveport, Louisiana
| |
Collapse
|
9
|
Raffay TM, Dylag AM, Di Fiore JM, Smith LA, Einisman HJ, Li Y, Lakner MM, Khalil AM, MacFarlane PM, Martin RJ, Gaston B. S-Nitrosoglutathione Attenuates Airway Hyperresponsiveness in Murine Bronchopulmonary Dysplasia. Mol Pharmacol 2016; 90:418-26. [PMID: 27484068 PMCID: PMC5034690 DOI: 10.1124/mol.116.104125] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is characterized by lifelong obstructive lung disease and profound, refractory bronchospasm. It is observed among survivors of premature birth who have been treated with prolonged supplemental oxygen. Therapeutic options are limited. Using a neonatal mouse model of BPD, we show that hyperoxia increases activity and expression of a mediator of endogenous bronchoconstriction, S-nitrosoglutathione (GSNO) reductase. MicroRNA-342-3p, predicted in silico and shown in this study in vitro to suppress expression of GSNO reductase, was decreased in hyperoxia-exposed pups. Both pretreatment with aerosolized GSNO and inhibition of GSNO reductase attenuated airway hyperresponsiveness in vivo among juvenile and adult mice exposed to neonatal hyperoxia. Our data suggest that neonatal hyperoxia exposure causes detrimental effects on airway hyperreactivity through microRNA-342-3p-mediated upregulation of GSNO reductase expression. Furthermore, our data demonstrate that this adverse effect can be overcome by supplementing its substrate, GSNO, or by inhibiting the enzyme itself. Rates of BPD have not improved over the past two decades; nor have new therapies been developed. GSNO-based therapies are a novel treatment of the respiratory problems that patients with BPD experience.
Collapse
Affiliation(s)
- Thomas M Raffay
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew M Dylag
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Juliann M Di Fiore
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Laura A Smith
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Helly J Einisman
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Yuejin Li
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Mitchell M Lakner
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ahmad M Khalil
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter M MacFarlane
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Richard J Martin
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Benjamin Gaston
- Division of Neonatology (T.M.R., A.M.D., J.M.D.F., P.M.M., R.J.M.) and Division of Pediatric Pulmonology (L.A.S., H.J.E., Y.L., B.G.), Department of Pediatrics, Rainbow Babies and Children's Hospital, and Department of Pharmacology (M.M.L.) and Department of Genetics and Genome Sciences (A.M.K.), Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
10
|
Machado NT, Maciel PM, Alustau MC, Queiroz TM, Furtado FF, Assis VL, Veras RC, Araújo IG, Athayde-Filho PF, Medeiros IA. Nitric oxide as a target for the hypotensive and vasorelaxing effects induced by (Z)-ethyl 12-nitrooxy-octadec-9-enoate in rats. Eur J Pharm Sci 2014; 62:317-25. [DOI: 10.1016/j.ejps.2014.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/16/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
|
11
|
Vieira AB, Coelho LP, Insuela DBR, Carvalho VF, dos Santos MH, Silva PMR, Martins MA. Mangiferin prevents guinea pig tracheal contraction via activation of the nitric oxide-cyclic GMP pathway. PLoS One 2013; 8:e71759. [PMID: 23951240 PMCID: PMC3738528 DOI: 10.1371/journal.pone.0071759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/03/2013] [Indexed: 12/26/2022] Open
Abstract
Previous studies have described the antispasmodic effect of mangiferin, a natural glucoside xanthone (2-C-β-Dgluco-pyranosyl-1,3,6,7-tetrahydroxyxanthone) that is present in mango trees and other plants, but its mechanism of action remains unknown. The aim of this study was to examine the potential contribution of the nitric oxide-cyclic GMP pathway to the antispasmodic effect of mangiferin on isolated tracheal rings preparations. The functional effect of mangiferin on allergic and non-allergic contraction of guinea pig tracheal rings was assessed in conventional organ baths. Cultured tracheal rings were exposed to mangiferin or vehicle, and nitric oxide synthase (NOS) 3 and cyclic GMP (cGMP) levels were quantified using western blotting and enzyme immunoassays, respectively. Mangiferin (0.1–10 µM) inhibited tracheal contractions induced by distinct stimuli, such as allergen, histamine, 5-hydroxytryptamine or carbachol, in a concentration-dependent manner. Mangiferin also caused marked relaxation of tracheal rings that were precontracted by carbachol, suggesting that it has both anti-contraction and relaxant properties that are prevented by removing the epithelium. The effect of mangiferin was inhibited by the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME) (100 µM), and the soluble guanylate cyclase inhibitor, 1H-[1], [2], [4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 µM), but not the adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (SQ22536) (100 µM). The antispasmodic effect of mangiferin was also sensitive to K+ channel blockers, such as tetraethylammonium (TEA), glibenclamide and apamin. Furthermore, mangiferin inhibited Ca2+-induced contractions in K+ (60 mM)-depolarised tracheal rings preparations. In addition, mangiferin increased NOS3 protein levels and cGMP intracellular levels in cultured tracheal rings. Finally, mangiferin-induced increase in cGMP levels was abrogated by co-incubation with either ODQ or L-NAME. These data suggest that the antispasmodic effect of mangiferin is mediated by epithelium-nitric oxide- and cGMP-dependent mechanisms.
Collapse
Affiliation(s)
- Aline B. Vieira
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Luciana P. Coelho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Daniella B. R. Insuela
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Vinicius F. Carvalho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marcelo H. dos Santos
- Laboratory of Phytochemistry and Medicinal and Chemistry, Department of Pharmacy, Alfenas, Federal University of Alfenas, MG, Brazil
| | - Patricia MR. Silva
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Marco A. Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
12
|
Jing F, Liu M, Yang N, Liu Y, Li X, Li J. Relaxant effect of chloroquine in rat ileum: possible involvement of nitric oxide and BKCa. J Pharm Pharmacol 2013; 65:847-54. [DOI: 10.1111/jphp.12041] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/06/2013] [Indexed: 01/04/2023]
Abstract
Abstract
Objectives
Bitter perception has a particularly important role in host defence. However, to date, direct effects of bitter compounds on small intestinal motility have not been shown. This study investigated the effects of bitter compounds on the spontaneous contraction of longitudinal smooth muscle strips of rat ileum.
Methods
Isolated longitudinal smooth muscle strips of rat ileum were used for tension recording in vitro. Immunofluorescence staining was used to identify the localization of TAS2R10 receptors.
Key findings
The spontaneous contraction of rat ileum was decreased after chloroquine administration. Other bitter compounds, such as quinine, denatonium and saccharin, exhibited similar effects. Chloroquine-induced relaxation was not blocked by tetrodotoxin, but was partially reversed by the nitric oxide synthase inhibitor L-NAME or the large conductance Ca2+-activated K+ (BKCa) channel antagonist iberiotoxin. By surgically removing the small intestinal mucosa or bathing in Ca2+-free Krebs solution, the chloroquine-induced relaxation was largely attenuated. The immunofluorescence staining showed that TAS2R10 receptors were expressed in rat ileum.
Conclusions
The results indicate that bitter receptor agonists induce relaxation of longitudinal smooth muscle strips of rat ileum, which is mediated by nitric oxide and BKCa channels.
Collapse
Affiliation(s)
- Fangmiao Jing
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Ming Liu
- Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Ning Yang
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Yinglu Liu
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Xiaoyu Li
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| | - Jingxin Li
- Department of Physiology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
13
|
Pacheco DDF, Pacheco CMDF, Duarte IDG. Peripheral antinociception induced by δ-opioid receptors activation, but not μ- or κ-, is mediated by Ca²⁺-activated Cl⁻ channels. Eur J Pharmacol 2011; 674:255-9. [PMID: 22134006 DOI: 10.1016/j.ejphar.2011.11.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/03/2011] [Accepted: 11/10/2011] [Indexed: 10/14/2022]
Abstract
Studies have demonstrated that the L-arginine/NO/cGMP pathway and the potassium and calcium channels are involved in the mechanisms underlying opioid receptor activation. As additional pathways may participate in the observed antinociceptive effects following opioid exposure, the aim of our study was to determine whether Ca(2+)-activated Cl(-) channels (CaCCs) are involved in peripheral antinociception induced by μ-, δ- and κ-opioid receptor activation. Hyperalgesia was induced by intraplantar injection of prostaglandin E(2) (PGE(2), 2 μg). Nociceptive thresholds to pressure (grams) were measured using an algesimetric apparatus 3h following injection. The μ-opioid receptor agonist morphine (200 μg), δ-opioid receptor agonist (+)-4-[(alphaR)-alpha-((2S,5R)-4-Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80, 80 μg), κ-opioid receptor agonist bremazocine (50 μg), CaCCs blocker niflumic acid (8-64 μg), CaCCs blocker 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB, 32-128 μg), nitric oxide donor sodium nitroprusside (SNP, 500 μg) and cGMP exogenous analogs dibutyryl cGMP (db-cGMP, 100 μg) were also administered into the paw. The CaCCs blocker niflumic acid and NPPB partially reversed the peripheral antinociception induced by exposure to the SNC80 in a dose-dependent manner. In contrast, niflumic acid did not modify the antinociceptive effect observed following exposure to morphine or bremazocine. Additionally, the peripheral antinociception induced by the NO donor SNP or by db-cGMP was not inhibited by niflumic acid. These results provide evidence for the involvement of CaCCs in the peripheral antinociception induced by SNC80. CaCCs activation does not appear to be involved when μ- and κ-opioid receptors are activated. In addition, we did not observe a link between CaCCs and the L-arginine/NO/GMPc pathway.
Collapse
Affiliation(s)
- Daniela da Fonseca Pacheco
- Department of Pharmacology, Institute of Biological Sciences, UFMG, Av. Antônio Carlos, 6627, CEP: 31.270.100, Belo Horizonte, Brazil
| | | | | |
Collapse
|
14
|
Foster MW, Yang Z, Potts EN, Michael Foster W, Que LG. S-nitrosoglutathione supplementation to ovalbumin-sensitized and -challenged mice ameliorates methacholine-induced bronchoconstriction. Am J Physiol Lung Cell Mol Physiol 2011; 301:L739-44. [PMID: 21784966 PMCID: PMC3213990 DOI: 10.1152/ajplung.00134.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S-nitrosoglutathione (GSNO) is an endogenous bronchodilator present in micromolar concentrations in airway lining fluid. Airway GSNO levels decrease in severe respiratory failure and asthma, which is attributable to increased metabolism by GSNO reductase (GSNOR). Indeed, we have found that GSNOR expression and activity correlate inversely with lung S-nitrosothiol (SNO) content and airway hyperresponsiveness (AHR) to methacholine (MCh) challenge in humans with asthmatic phenotypes (Que LG, Yang Z, Stamler JS, Lugogo NL, Kraft M. Am J Respir Crit Care Med 180: 226-231, 2009). Accordingly, we hypothesized that local aerosol delivery of GSNO could ameliorate AHR and inflammation in the ovalbumin-sensitized and -challenged (OVA) mouse model of allergic asthma. Anesthetized, paralyzed, and tracheotomized 6-wk-old male control and OVA C57BL/6 mice were administered a single 15-s treatment of 0-100 mM GSNO. Five minutes later, airway resistance to MCh was measured and SNOs were quantified in bronchoalveolar lavage (BAL). Duration of protection was evaluated following nose-only exposure to 10 mM GSNO for 10 min followed by measurements of airway resistance, inflammatory cells, and cytokines and chemokines at up to 4 h later. Acute delivery of GSNO aerosol protected OVA mice from MCh-induced AHR, with no benefit seen above 20 mM GSNO. The antibronchoconstrictive effects of GSNO aerosol delivered via nose cone were sustained for at least 4 h. However, administration of GSNO did not alter total BAL cell counts or cell differentials and had modest effects on cytokine and chemokine levels. In conclusion, in the OVA mouse model of allergic asthma, aerosolized GSNO has rapid and sustained antibronchoconstrictive effects but does not substantially alter airway inflammation.
Collapse
Affiliation(s)
- Matthew W Foster
- Division of Pulmonary, Allergy and Critical Care Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
15
|
Edwards G, Félétou M, Weston AH. Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch 2010; 459:863-79. [PMID: 20383718 DOI: 10.1007/s00424-010-0817-1] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/29/2022]
Abstract
The term endothelium-derived hyperpolarising factor (EDHF) was introduced in 1987 to describe the hypothetical factor responsible for myocyte hyperpolarisations not associated with nitric oxide (EDRF) or prostacyclin. Two broad categories of EDHF response exist. The classical EDHF pathway is blocked by apamin plus TRAM-34 but not by apamin plus iberiotoxin and is associated with endothelial cell hyperpolarisation. This follows an increase in intracellular [Ca(2+)] and the opening of endothelial SK(Ca) and IK(Ca) channels preferentially located in caveolae and in endothelial cell projections through the internal elastic lamina, respectively. In some vessels, endothelial hyperpolarisations are transmitted to myocytes through myoendothelial gap junctions without involving any EDHF. In others, the K(+) that effluxes through SK(Ca) activates myocytic and endothelial Ba(2+)-sensitive K(IR) channels leading to myocyte hyperpolarisation. K(+) effluxing through IK(Ca) activates ouabain-sensitive Na(+)/K(+)-ATPases generating further myocyte hyperpolarisation. For the classical pathway, the hyperpolarising "factor" involved is the K(+) that effluxes through endothelial K(Ca) channels. During vessel contraction, K(+) efflux through activated myocyte BK(Ca) channels generates intravascular K(+) clouds. These compromise activation of Na(+)/K(+)-ATPases and K(IR) channels by endothelium-derived K(+) and increase the importance of gap junctional electrical coupling in myocyte hyperpolarisations. The second category of EDHF pathway does not require endothelial hyperpolarisation. It involves the endothelial release of factors that include NO, HNO, H(2)O(2) and vasoactive peptides as well as prostacyclin and epoxyeicosatrienoic acids. These hyperpolarise myocytes by opening various populations of myocyte potassium channels, but predominantly BK(Ca) and/or K(ATP), which are sensitive to blockade by iberiotoxin or glibenclamide, respectively.
Collapse
Affiliation(s)
- Gillian Edwards
- Faculty of Life Sciences, University of Manchester, CTF Building, 46 Grafton St, Manchester, M13 9NT, UK
| | | | | |
Collapse
|
16
|
Félétou M. Calcium-activated potassium channels and endothelial dysfunction: therapeutic options? Br J Pharmacol 2009; 156:545-62. [PMID: 19187341 DOI: 10.1111/j.1476-5381.2009.00052.x] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The three subtypes of calcium-activated potassium channels (K(Ca)) of large, intermediate and small conductance (BK(Ca), IK(Ca) and SK(Ca)) are present in the vascular wall. In healthy arteries, BK(Ca) channels are preferentially expressed in vascular smooth muscle cells, while IK(Ca) and SK(Ca) are preferentially located in endothelial cells. The activation of endothelial IK(Ca) and SK(Ca) contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na(+)/K(+)-ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H(2)O(2)) hyperpolarize and relax the underlying smooth muscle cells by activating BK(Ca). In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BK(Ca). Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle K(Ca) could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IK(Ca) may prevent restenosis and that of BK(Ca) channels sepsis-dependent hypotension.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France.
| |
Collapse
|
17
|
Coelho LP, Serra MF, Pires ALDA, Cordeiro RSB, Rodrigues e Silva PM, dos Santos MH, Martins MA. 7-Epiclusianone, a tetraprenylated benzophenone, relaxes airway smooth muscle through activation of the nitric oxide-cGMP pathway. J Pharmacol Exp Ther 2008; 327:206-14. [PMID: 18591220 DOI: 10.1124/jpet.108.138032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was undertaken to investigate the putative mechanism(s) underlying the antispasmodic effect of 7-epiclusianone, a naturally occurring compound isolated from the plant Garcinia brasiliensis. Guinea pig tracheal rings were mounted in tissue baths filled with Krebs' solution, and the contractile response to distinct stimuli was measured in the presence or absence of 7-epiclusianone. We also tested the effect of 7-epiclusianone on methacholine-evoked airways obstruction in BALB/c mice using barometric plethysmography. 7-Epiclusianone (10 microM) inhibited epithelium-intact tracheal ring contraction induced by allergen, histamine, 5-hydroxytryptamine, or carbachol challenge. The relaxation effect was abrogated by epithelium removal, the presence of nitric-oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) (100 microM), or soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) (10 microM). 7-Epiclusianone (1-100 microM) induced a dose-dependent increase in the intracellular cGMP levels of cultured tracheal rings. The relaxation effect of 7-epiclusianone was also inhibited by K(+) channel blockers tetraethylammonium (10 microM), glibenclamide (1 microM), or apamin (1 microM), but not by 9-(tetrahydro-2'-furyl)adenine (SQ22,536) (100 microM), an adenylate cyclase inhibitor. In epithelium-intact tracheal rings, 7-epiclusianone also inhibited Ca(2+)-induced contractions in K(+) (60 mM)-depolarized preparations, but it seemed ineffective in assays in which epithelium-denuded tracheal ring preparations were used. Oral administration of 7-epiclusinone (25-100 mg/kg) dose-dependently inhibited airway obstruction triggered by aerosolized methacholine (6-25 mg/ml), in a mechanism sensitive to L-NAME (20 mg/kg). In conclusion, the relaxation effect of 7-epiclusinone seems to be mediated by epithelium-, nitric oxide-, and cGMP-dependent mechanisms. Furthermore, oral administration of 7-epiclusianone reduces episodes of bronchial obstruction, warranting further research on this compound regarding a putative application in asthma therapy.
Collapse
Affiliation(s)
- Luciana Pontes Coelho
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
18
|
Beckmann N, Cannet C, Karmouty-Quintana H, Tigani B, Zurbruegg S, Blé FX, Crémillieux Y, Trifilieff A. Lung MRI for experimental drug research. Eur J Radiol 2007; 64:381-96. [PMID: 17931813 DOI: 10.1016/j.ejrad.2007.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 07/31/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
Current techniques to evaluate the efficacy of potential treatments for airways diseases in preclinical models are generally invasive and terminal. In the past few years, the flexibility of magnetic resonance imaging (MRI) to obtain anatomical and functional information of the lung has been explored with the scope of developing a non-invasive approach for the routine testing of drugs in models of airways diseases in small rodents. With MRI, the disease progression can be followed in the same animal. Thus, a significant reduction in the number of animals used for experimentation is achieved, as well as minimal interference with their well-being and physiological status. In addition, under certain circumstances the duration of the observation period after disease onset can be shortened since the technique is able to detect changes before these are reflected in parameters of inflammation determined using invasive procedures. The objective of this article is to briefly address MRI techniques that are being used in experimental lung research, with special emphasis on applications. Following an introduction on proton techniques and MRI of hyperpolarized gases, the attention is shifted to the MRI analysis of several aspects of lung disease models, including inflammation, ventilation, emphysema, fibrosis and sensory nerve activation. The next subject concerns the use of MRI in pharmacological studies within the context of experimental lung research. A final discussion points towards advantages and limitations of MRI in this area.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies, Novartis Institutes for BioMedical Research, Lichtstr. 35, WSJ-386.2.09, CH-4002 Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Qi H, Zheng X, Qin X, Dou D, Xu H, Raj JU, Gao Y. Protein kinase G regulates the basal tension and plays a major role in nitrovasodilator-induced relaxation of porcine coronary veins. Br J Pharmacol 2007; 152:1060-9. [PMID: 17891157 PMCID: PMC2095098 DOI: 10.1038/sj.bjp.0707479] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Coronary venous activity is modulated by endogenous and exogenous nitrovasodilators. The present study was to determine the role of protein kinase G (PKG) in the regulation of the basal tension and nitrovasodilator-induced relaxation of coronary veins. EXPERIMENTAL APPROACH Effects of a PKG inhibitor on the basal tension and responses induced by nitroglycerin, DETA NONOate, and 8-Br-cGMP in isolated porcine coronary veins were determined. Cyclic cGMP was measured with radioimmunoassay. PKG activity was determined by measuring the incorporation of 32P from gamma-32P-ATP into the specific substrate BPDEtide. KEY RESULTS Rp-8-Br-PET-cGMPS, a specific PKG inhibitor, increased the basal tension of porcine coronary veins and decreased PKG activity. The increase in tension was 38% of that caused by nitro-L-arginine. Relaxation of the veins induced by nitroglycerin and DETA NONOate was accompanied with increases in cGMP content and PKG activity. These effects were largely eliminated by inhibiting soluble guanylyl cyclase with ODQ. The increase in PKG activity induced by the nitrovasodilators was abolished by Rp-8-Br-PET-cGMPS. The relaxation caused by these dilators and by 8-Br-cGMP at their EC50 was attenuated by the PKG inhibitor by 51-66%. CONCLUSIONS AND IMPLICATIONS These results suggest that PKG is critically involved in nitric oxide-mediated regulation of the basal tension in porcine coronary veins and that it plays a primary role in relaxation induced by nitrovasodilators. Since nitric oxide plays a key role in modulating coronary venous activity, augmentation of PKG may be a therapeutic target for improving coronary blood flow.
Collapse
Affiliation(s)
- H Qi
- Department of Physiology and Pathophysiology, Peking University Health Science Center Beijing, China
| | - X Zheng
- Department of Physiology and Pathophysiology, Peking University Health Science Center Beijing, China
| | - X Qin
- Department of Physiology and Pathophysiology, Peking University Health Science Center Beijing, China
| | - D Dou
- Department of Physiology and Pathophysiology, Peking University Health Science Center Beijing, China
| | - H Xu
- Department of Physiology and Pathophysiology, Peking University Health Science Center Beijing, China
| | - J U Raj
- Division of Neonatology, Harbor-UCLA Medical Center, University of California at Los Angeles Geffen School of Medicine Los Angeles, CA, USA
| | - Y Gao
- Department of Physiology and Pathophysiology, Peking University Health Science Center Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education Beijing, China
- Author for correspondence:
| |
Collapse
|
20
|
Figueroa XF, Chen CC, Campbell KP, Damon DN, Day KH, Ramos S, Duling BR. Are voltage-dependent ion channels involved in the endothelial cell control of vasomotor tone? Am J Physiol Heart Circ Physiol 2007; 293:H1371-83. [PMID: 17513486 DOI: 10.1152/ajpheart.01368.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the microcirculation, longitudinal conduction of vasomotor responses provides an essential means of coordinating flow distribution among vessels in a complex network. Spread of current along the vessel axis can display a regenerative component, which leads to propagation of vasomotor signals over many millimeters; the ionic basis for the regenerative response is unknown. We examined the responses to 10 s of focal electrical stimulation (30 Hz, 2 ms, 30 V) of mouse cremaster arterioles to test the hypothesis that voltage-dependent Na(+) (Na(v)) and Ca(2+) channels might be activated in long-distance signaling in microvessels. Electrical stimulation evoked a vasoconstriction at the site of stimulation and a spreading, nondecremental conducted dilation. Endothelial damage (air bubble) blocked conduction of the vasodilation, indicating an involvement of the endothelium. The Na(v) channel blocker bupivacaine also blocked conduction, and TTX attenuated it. The Na(v) channel activator veratridine induced an endothelium-dependent dilation. The Na(v) channel isoforms Na(v)1.2, Na(v)1.6, and Na(v)1.9 were detected in the endothelial cells of cremaster arterioles by immunocytochemistry. These findings are consistent with the involvement of Na(v) channels in the conducted response. BAPTA buffering of endothelial cell Ca(2+) delayed and reduced the conducted dilation, which was almost eliminated by Ni(2+), amiloride, or deletion of alpha(1H) T-type Ca(2+) (Ca(v)3.2) channels. Blockade of endothelial nitric oxide synthase or Ca(2+)-activated K(+) channels also inhibited the conducted vasodilation. Our findings indicate that an electrically induced signal can propagate along the vessel axis via the endothelium and can induce sequential activation of Na(v) and Ca(v)3.2 channels. The resultant Ca(2+) influx activates endothelial nitric oxide synthase and Ca(2+)-activated K(+) channels, triggering vasodilation.
Collapse
Affiliation(s)
- Xavier F Figueroa
- Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
21
|
Maneen MJ, Cipolla MJ. Peroxynitrite diminishes myogenic tone in cerebral arteries: role of nitrotyrosine and F-actin. Am J Physiol Heart Circ Physiol 2006; 292:H1042-50. [PMID: 17040976 DOI: 10.1152/ajpheart.00800.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effect of peroxynitrite (OONO(-))-induced nitrosylation of filamentous (F)-actin on myogenic tone in isolated and pressurized posterior cerebral arteries (PCAs). Immunohistochemical staining was used to determine 3-nitrotyrosine (NT) and F-actin content in vascular smooth muscle after exposure to 10(-7) M or 10(-4) M OONO(-) for 5 or 60 min in isolated third-order PCAs (n = 37) from male Wistar rats pressurized to 75 mmHg in an arteriograph chamber, quantified with confocal microscopy. Additionally, the role of K(+) channels in OONO(-)-induced dilation was investigated with 3 microM glibenclamide or 10 mM tetraethylammonium chloride before OONO(-) exposure. OONO(-) (10(-4) M) induced a 40% dilation of tone (P < 0.05) while diminishing F-actin content by half (P < 0.05) and causing a 60-fold increase in NT (P < 0.05) in the vascular smooth muscle of PCAs. Additionally, F-actin was inversely correlated with both diameter and NT content (P < 0.05) and was significantly colocalized in the vascular smooth muscle with NT (overlap coefficient = 0.8). The dilation to ONOO(-) was independent of K(+) channel activity and thiol oxidation as glibenclamide, tetraethylammonium chloride, and dithiothreitol had no effect on OONO(-)-induced dilation or F-actin or NT content in PCAs. Because NT was colocalized with F-actin, we hypothesize that OONO(-) induces nitrosylation of F-actin in vascular smooth muscle leading to depolymerization and the subsequent loss of myogenic tone, which may promote vascular damage during oxidative stress such as in ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Matthew J Maneen
- Department of Neurology, University of Vermont, 89 Beaumont Ave., Given C454, Burlington, VT 05405, USA
| | | |
Collapse
|
22
|
Leal LKAM, Costa MF, Pitombeira M, Barroso VM, Silveira ER, Canuto KM, Viana GSB. Mechanisms underlying the relaxation induced by isokaempferide from Amburana cearensis in the guinea-pig isolated trachea. Life Sci 2006; 79:98-104. [PMID: 16455108 DOI: 10.1016/j.lfs.2005.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 12/02/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
The present study examines possible mechanisms by which the flavonoid isokaempferide (IKPF; 5,7,4'-trihydroxy-3-methoxyflavone) from Amburana cearensis, a Brazilian medicinal plant popularly used as bronchodilator, induces relaxation of guinea-pig isolated trachea. In the trachea (with intact epithelium) contracted by carbachol, IKPF (1-1000 microM) caused a graded relaxation, and the epithelium removal increased the sensitivity of the airway smooth muscle to IKPF (EC50, in intact tissue: 77.4 [54.8-109.2] microM; in denuded epithelium: 15.0 [11.3-20.1] microM). The IKPF-induced relaxation was inhibited in 41% by the nitric oxide (NO) synthase inhibitor L-NAME (100 microM); in 31% and 50% by the soluble guanylate cyclase (sGC) inhibitor ODQ (3 and 33 microM); by propranolol (31%) and also by capsaicin (37%). In the trachea pre-contracted by 40 mM KCl the pre-incubation with glibenclamide (33 microM) or iberiotoxin (IbTX, 0.1 microM), selective K(+) channel inhibitors, inhibited the IKPF-induced relaxation by 39% and 38%, respectively. On the other hand, 4-aminopyridine (100 microM), a nonselective K(+) channel antagonist, did not significantly influence the effect of IKPF, while IbTX induced a rightward displacement of the IKPF concentration-response curve. However, in muscle pre-contracted with 120 mM KCl the relaxant effect of IKPF was significantly reduced and not affected by glibenclamide. In conclusion, these results indicate a direct and epithelium-independent relaxant effect of IKPF on smooth muscle fibers. Although this IKPF relaxant action seems to be multi-mediated, it occurs via both Ca(2+) and ATP-sensitive K(+) channels, but some other possible mechanisms unrelated to K(+) channels cannot be excluded.
Collapse
Affiliation(s)
- Luzia K A M Leal
- Department of Pharmacy, Federal University of Ceará, Fortaleza, Brazil.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lin RJ, Wu BN, Lo YC, An LM, Dai ZK, Lin YT, Tang CS, Chen IJ. A xanthine-based epithelium-dependent airway relaxant KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) increases respiratory performance and protects against tumor necrosis factor-alpha-induced tracheal contraction, involving nitric oxide release and expression of cGMP and protein kinase G. J Pharmacol Exp Ther 2006; 316:709-17. [PMID: 16234412 DOI: 10.1124/jpet.105.092171] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
KMUP-3 (7-[2-[4-(4-nitrobenzene)piperazinyl]ethyl]-1,3-dimethylxanthine) was investigated in guinea pig tracheal smooth muscle. Intratracheal instillation of tumor necrosis factor (TNF)-alpha (0.01 mg/kg/300 microl) induced bronchoconstriction, increases of lung resistance, and decreases of dynamic lung compliance. Instillation of KMUP-3 (0.5-2.0 mg/kg) reversed this situation. In isolated trachea precontracted with carbachol, KMUP-3 (10-100 microM)-caused relaxations were attenuated by epithelium removal and by pretreatments with an inhibitor of K(+) channel, tetraethylammonium (10 mm); K(ATP) channel, glibenclamide (1 microM); voltage-dependent K(+) channel, 4-aminopyridine (100 microM); Ca(2+)-dependent K(+) channel, charybdotoxin (0.1 microM) or apamin (1 microM); soluble guanylate cyclase (sGC), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1one (ODQ, 1 microM); nitric-oxide (NO) synthase, N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 microM); and adenylate cyclase, SQ 22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine] (100 microM). KMUP-3 (0.01-100 microM) induced increases of cGMP and cAMP in primary culture of tracheal smooth muscle cells (TSMCs). The increase in cGMP by KMUP-3 was reduced by ODQ and L-NAME; the increase in cAMP was reduced by SQ 22536. Western blot analysis indicated that KMUP-3 (1 microM) induced expression of protein kinase A (PKA)(ri) and protein kinase G (PKG)(1alpha 1beta) in TSMCs.SQ 22536 inhibited KMUP-3-induced expression of (PKA)(ri). On the contrary, ODQ inhibited KMUP-3-induced expression of PKG(1alpha 1beta) In epithelium-intact trachea, KMUP-3 increased the NO release. Activation of sGC, NO release, and inhibition of phosphodiesterases in TSMCs by KMUP-3 may result in increases of intracellular cGMP and cAMP, which subsequently activate PKG and PKA, efflux of K(+) ion, and associated reduction in Ca(2+) influx in vitro, indicating the action mechanism to protect against TNF-alpha-induced airway dysfunction in vivo.
Collapse
Affiliation(s)
- Rong-Jyh Lin
- Institute of Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Han NLR, Ye JS, Yu ACH, Sheu FS. Differential mechanisms underlying the modulation of delayed-rectifier K+ channel in mouse neocortical neurons by nitric oxide. J Neurophysiol 2006; 95:2167-78. [PMID: 16421196 DOI: 10.1152/jn.01185.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The modulatory effects of nitric oxide (NO) on voltage-dependent K+ channels are intricate. In our present study, the augmentation and reduction of K+ currents by NO donor S-nitro-N-acetylpenicillamine (SNAP) and pure dissolved NO was observed in dissociated neurons from mice neocortex with both whole cell and cell-attached patch clamp. By using a specific electrochemical sensor, the critical concentrations of NO that increased or reduced the channel activities were accurately quantified. Low concentrations of SNAP (20 microM) or NO solution (0.1 microM) enhanced whole cell delayed rectifier K+ -current (IK) and left the fast inactivating A current (IA) unchanged. However, high concentrations of SNAP (100 microM) and NO (0.5 microM) reduced both IK and IA currents. In cell-attached experiments, a significant increase in channel open probability (NP0) was observed when using low concentrations of SNAP or NO. High concentrations of SNAP or NO dramatically decreased NP0. The increase in channel activities by low concentrations of SNAP was abolished in the presence of either inhibitors of soluble guaylate cyclase or inhibitors of cGMP-dependent protein kinase G, suggesting a link to the NO-cGMP signaling cascade. The reduction of channel activities by high concentrations of SNAP was reversed by the reducing agent dithiothreitol, implying a redox reaction mechanism. Thus both NO-cGMP signaling and a redox mechanism are involved in the modulation of IK channel activity for neuron excitability.
Collapse
Affiliation(s)
- Nian-Lin R Han
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
25
|
Deshpande DA, White TA, Dogan S, Walseth TF, Panettieri RA, Kannan MS. CD38/cyclic ADP-ribose signaling: role in the regulation of calcium homeostasis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2005; 288:L773-88. [PMID: 15821018 DOI: 10.1152/ajplung.00217.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contractility of airway smooth muscle cells is dependent on dynamic changes in the concentration of intracellular calcium. Signaling molecules such as inositol 1,4,5-trisphosphate and cyclic ADP-ribose play pivotal roles in the control of intracellular calcium concentration. Alterations in the processes involved in the regulation of intracellular calcium concentration contribute to the pathogenesis of airway diseases such as asthma. Recent studies have identified cyclic ADP-ribose as a calcium-mobilizing second messenger in airway smooth muscle cells, and modulation of the pathway involved in its metabolism results in altered calcium homeostasis and may contribute to airway hyperresponsiveness. In this review, we describe the basic mechanisms underlying the dynamics of calcium regulation and the role of CD38/cADPR, a novel pathway, in the context of airway smooth muscle function and its contribution to airway diseases such as asthma.
Collapse
Affiliation(s)
- Deepak A Deshpande
- Dept. of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | | | | | | | | | | |
Collapse
|
26
|
De Young L, Yu D, Bateman RM, Brock GB. Oxidative stress and antioxidant therapy: their impact in diabetes-associated erectile dysfunction. ACTA ACUST UNITED AC 2005; 25:830-6. [PMID: 15292117 DOI: 10.1002/j.1939-4640.2004.tb02862.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Oxidative stress is believed to affect the development of diabetic-associated vasculopathy, endothelial dysfunction, and neuropathy within erectile tissue. Our hypothesis is that, given adequate concentrations of the oxygen free radical scavenger vitamin E, enhanced levels of circulating nitric oxide (NO) should improve erectile function with the potential for a synergistic effect with a phosphodiesterase type 5 (PDE5) inhibitor. Twenty adult male Sprague-Dawley streptozotocin-induced (60 mg/kg intraperitoneally) diabetic rats were placed in 4 therapeutic groups (n = 5 per group) as follows: 1) peanut oil only (diabetic control), 2) 20 IU of vitamin E per day, 3) 5 mg/kg of sildenafil per day, and 4) vitamin E plus sildenafil using oral gavage for 3 weeks. In addition, 5 age-matched rats served as normal nondiabetic controls (normal). Erectile function was assessed by measuring the rise in intracavernous pressure (ICP) following cavernous nerve electrostimulation. Penile tissue was evaluated for neuronal NO synthase (nNOS), smooth muscle alpha-actin, nitrotyrosine, and endothelial cell integrity. Urine nitrite and nitrate (NOx) concentration was quantified, and electrolytes were tested by a serum biochemistry panel. A significant decrease in ICP was recorded in the diabetic animals, with improvement measured in the animals receiving PDE5 inhibitors either with or without vitamin E; the controls had a pressure of 54.8 +/- 5.3 cm H2O, the vitamin E group had a pressure of 73.5 +/- 6.6 cm H2O, the sildenafil group had a pressure of 78.4 +/- 10.77 cm H2O, and the vitamin E plus sildenafil group had a pressure of 87.9 +/- 5.5 cm H2O (P <.05), compared with the normal cohorts at 103.0 +/- 4.8 cm H2O. Histoexaminations showed improved nNOS, endothelial cell, and smooth muscle cell staining in the vitamin E plus sildenafil group compared to the control animals. Urine NOx increased significantly in all the diabetic groups but was blunted in the vitamin E and vitamin E plus sildenafil groups. A significant increase in positive staining for nitrotyrosine was observed in the vitamin E plus sildenafil group. Vitamin E enhanced the therapeutic effect of the PDE5 inhibitor in this study, supporting the potential use of oxygen free radical scavengers in salvaging erectile function in diabetic patients.
Collapse
Affiliation(s)
- Ling De Young
- Department of Urology, St Joseph's Health Care, London, Canada N6A 4V2
| | | | | | | |
Collapse
|
27
|
Totsuka E, Murata A, Nishimura A, Umehara M, Nara M, Ono H, Nozaki T, Takiguchi M, Wajima N, Takahashi K, Seino K, Narumi S, Hakamada K, Sasaki M. Attenuation of canine warm ischemic small bowel injury by novel combination of nitric oxide donor, FK409, and cytokine suppressive anti-inflammatory agent FR167653. Transplant Proc 2004; 36:1988-90. [PMID: 15518720 DOI: 10.1016/j.transproceed.2004.08.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Organ ischemia-reperfusion injury is caused by two consecutive steps, microcirculatory disturbance and neutrophil-endothelial cell interactions, which are caused by inflammatory cytokines. We examined the hypothesis that combination therapy with a donor (FK409) of nitric oxide, one of the potent mediators with diverse roles as a vosodilator and a platelet inhibitor, together with the cytokine suppressor agent (FR167653) attenuates warm ischemic injury in canine small bowel. Small bowel ischemia was initiated by clamping the superior mesenteric artery and vein. Animals were divided into two groups: a control group (n = 5) subjected to 2-hour small bowel ischemia only, and a combination therapy group (FK/FR group, n = 5) that received FK409 (300 mcg/kg/h) plus FR167653 (1 mg/kg/h) intravenously before and after the ischemic event. We evaluated animal survival, small bowel tissue blood flow, and enzyme release from the small bowel. All controls died from severe acidosis within 2 days and all the FK/FR animals survived 7 days (P < .05). The FK/FR group recovered more than 70% of blood flow immediately after the revascularization, while the flow was less than 40% among the controls. Serum creatine phosphokinase values in the control group after reperfusion were significantly higher than those in the FK/FR group. In conclusion improvement of the microcirculation by FK409 and inhibition of cytokine release by FR167653 together attenuated warm ischemic small bowel injury.
Collapse
Affiliation(s)
- E Totsuka
- Second Department of Surgery, Hirosaki University School of Medicine, Hirosaki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ricciardolo FLM, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004; 84:731-65. [PMID: 15269335 DOI: 10.1152/physrev.00034.2003] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO synthase (NOS). NOS exists in three distinct isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). NO derived from the constitutive isoforms of NOS (nNOS and eNOS) and other NO-adduct molecules (nitrosothiols) have been shown to be modulators of bronchomotor tone. On the other hand, NO derived from iNOS seems to be a proinflammatory mediator with immunomodulatory effects. The concentration of this molecule in exhaled air is abnormal in activated states of different inflammatory airway diseases, and its monitoring is potentially a major advance in the management of, e.g., asthma. Finally, the production of NO under oxidative stress conditions secondarily generates strong oxidizing agents (reactive nitrogen species) that may modulate the development of chronic inflammatory airway diseases and/or amplify the inflammatory response. The fundamental mechanisms driving the altered NO bioactivity under pathological conditions still need to be fully clarified, because their regulation provides a novel target in the prevention and treatment of chronic inflammatory diseases of the airways.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Dept. of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
29
|
Wu BN, Lin RJ, Lo YC, Shen KP, Wang CC, Lin YT, Chen IJ. KMUP-1, a xanthine derivative, induces relaxation of guinea-pig isolated trachea: the role of the epithelium, cyclic nucleotides and K+ channels. Br J Pharmacol 2004; 142:1105-14. [PMID: 15237094 PMCID: PMC1575170 DOI: 10.1038/sj.bjp.0705791] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
7-[2-[4-(2-chlorophenyl)piperazinyl]ethyl]-1,3-dimethylxanthine (KMUP-1) produces tracheal relaxation, intracellular accumulation of cyclic nucleotides, inhibition of phosphodiesterases (PDEs) and activation of K+ channels. KMUP-1 (0.01-100 microm) induced concentration-dependent relaxation responses in guinea-pig epithelium-intact trachea precontracted with carbachol. Relaxation responses were also elicited by the PDE inhibitors theophylline, 3-isobutyl-1-methylxanthine (IBMX), milrinone, rolipram and zaprinast (100 microm), and a KATP channel opener, levcromakalim. Tracheal relaxation induced by KMUP-1 was attenuated by epithelium removal and by pretreatment with inhibitors of soluble guanylate cyclase (sGC) (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), 1 microm), nitric oxide synthase (Nomega-nitro-L-arginine methyl ester, 100 microm), K+ channels (tetraethylammonium, 10 mm), KATP channels (glibenclamide, 1 microm), voltage-dependent K+ channels (4-aminopyridine, 100 microm) and Ca2+-dependent K+ channels (charybdotoxin, 0.1 microm or apamin, 1 microm). Both KMUP-1 (10 microm) and theophylline nonselectively and slightly inhibited the enzyme activity of PDE3, 4 and 5, suggesting that they are able to inhibit the metabolism of adenosine 3',5'-cyclic monophosphate (cyclic AMP) and guanosine 3',5'-cyclic monophosphate (cyclic GMP). Likewise, the effects of IBMX were also measured and its IC50 values for PDE3, 4 and 5 were 6.5 +/- 1.2, 26.3 +/- 3.9 and 31.7 +/- 5.3 microm, respectively. KMUP-1 (0.01-10 microm) augmented intracellular cyclic AMP and cyclic GMP levels in guinea-pig cultured tracheal smooth muscle cells. These increases in cyclic AMP and cyclic GMP were abolished in the presence of an adenylate cyclase inhibitor SQ 22536 (100 microm) and an sGC inhibitor ODQ (10 microm), respectively. KMUP-1 (10 microm) increased the expression of protein kinase A (PKARI) and protein kinase G (PKG1alpha1beta) in a time-dependent manner, but this was only significant for PKG after 9 h. Intratracheal administration of tumour necrosis factor-alpha (TNF-alpha, 0.01 mg kg(-1)) induced bronchoconstriction and exhibited a time-dependent increase in lung resistance (RL) and decrease in dynamic lung compliance (Cdyn). KMUP-1 (1.0 mg kg(-1)), injected intravenously for 10 min before the intratracheal TNF-alpha, reversed these changes in RL and Cdyn. These data indicate that KMUP-1 activates sGC, produces relaxation that was partly dependent on an intact epithelium, inhibits PDEs and increases intracellular cyclic AMP and cyclic GMP, which then increases PKA and PKG, leading to the opening of K+ channels and resulting tracheal relaxation.
Collapse
Affiliation(s)
- Bin-Nan Wu
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Rong-Jyh Lin
- Basic Medical Science Education Center, Fooyin University, Taliou, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kuo-Pyng Shen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Chuan Wang
- Department of Anatomy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Young-Tso Lin
- Department of Cardiovascular Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ing-Jun Chen
- Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Author for correspondence:
| |
Collapse
|
30
|
Beckmann N, Cannet C, Zurbruegg S, Rudin M, Tigani B. Proton MRI of lung parenchyma reflects allergen-induced airway remodeling and endotoxin-aroused hyporesponsiveness: A step toward ventilation studies in spontaneously breathing rats. Magn Reson Med 2004; 52:258-68. [PMID: 15282807 DOI: 10.1002/mrm.20127] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proton signals from lung parenchyma were detected with the use of a gradient-echo sequence to noninvasively obtain information on pulmonary function in models of airway diseases in rats. Initial measurements carried out in artificially ventilated control rats revealed a highly significant negative correlation between the parenchymal signal and the partial pressure of oxygen (pO2) in the blood, for different amounts of oxygen administered. The magnitude of the signal intensity variations caused by changes in the oxygen concentration was larger than expected solely from the paramagnetic properties of molecular oxygen. Inhomogeneous line-broadening induced by lung inflation may explain the observed signal amplification. Experiments carried out in spontaneously breathing animals challenged with allergen or endotoxin revealed parenchymal signal changes that reflected the oxygenation status of the lungs and were consistent with airway remodeling or hyporesponsiveness. The results suggest that proton MRI of parenchymal tissue is a sensitive tool for probing the functional status of the lung in rat models of respiratory diseases. The method is complementary to the recently described noninvasive assessment by MRI of pulmonary inflammation in small rodents. Overall, these techniques provide invaluable information for profiling anti-inflammatory drugs in models of airway diseases.
Collapse
Affiliation(s)
- Nicolau Beckmann
- Discovery Technologies Center, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Hamad AM, Clayton A, Islam B, Knox AJ. Guanylyl cyclases, nitric oxide, natriuretic peptides, and airway smooth muscle function. Am J Physiol Lung Cell Mol Physiol 2003; 285:L973-83. [PMID: 14551038 DOI: 10.1152/ajplung.00033.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway smooth muscle (ASM) plays an important role in asthma pathophysiology through its contractile and proliferative functions. The cyclic nucleotides adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP) are second messengers capable of mediating the effects of a variety of drugs and hormones. There is a large body of evidence to support the hypothesis that cAMP is a mediator of the ASM's relaxant effects of drugs, such as beta2-adrenoceptor agonists, in human airways. Although most attention has been paid to this second messenger and the signal transduction pathways it activates, recent evidence suggests that cGMP is also an important second messenger in ASM with important relaxant and antiproliferative effects. Here, we review the regulation and function of cGMP in ASM and discuss the implications for asthma pathophysiology and therapeutics. Recent studies suggest that activators of soluble and particulate guanylyl cyclases, such as nitric oxide donors and natriuretic peptides, have both relaxant and antiproliferative effects that are mediated through cGMP-dependent and cGMP-independent pathways. Abnormalities in these pathways may contribute to asthma pathophysiology, and therapeutic manipulation may complement the effects of beta2-adrenoceptor agonists.
Collapse
Affiliation(s)
- Ahmed M Hamad
- Department of Respiratory Medicine, Al-Mansourah University, Al-Dakahlia, Egypt
| | | | | | | |
Collapse
|
32
|
Walker JKL, Gainetdinov RR, Feldman DS, McFawn PK, Caron MG, Lefkowitz RJ, Premont RT, Fisher JT. G protein-coupled receptor kinase 5 regulates airway responses induced by muscarinic receptor activation. Am J Physiol Lung Cell Mol Physiol 2003; 286:L312-9. [PMID: 14565944 DOI: 10.1152/ajplung.00255.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) transduce extracellular signals into intracellular events. The waning responsiveness of GPCRs in the face of persistent agonist stimulation, or desensitization, is a necessary event that ensures physiological homeostasis. GPCR kinases (GRKs) are important regulators of GPCR desensitization. GRK5, one member of the GRK family, desensitizes central M(2) muscarinic receptors in mice. We questioned whether GRK5 might also be an important regulator of peripheral muscarinic receptor responsiveness in the cardiopulmonary system. Specifically, we wanted to determine the role of GRK5 in regulating muscarinic receptor-mediated control of airway smooth muscle tone or regulation of cholinergic-induced bradycardia. Tracheal pressure, heart rate, and tracheal smooth muscle tension were measured in mice having a targeted deletion of the GRK5 gene (GRK5(-/-)) and littermate wild-type (WT) control mice. Both in vivo and in vitro results showed that the airway contractile response to a muscarinic receptor agonist was not different between GRK5(-/-) and WT mice. However, the relaxation component of bilateral vagal stimulation and the airway smooth muscle relaxation resulting from beta(2)-adrenergic receptor activation were diminished in GRK5(-/-) mice. These data suggest that M(2) muscarinic receptor-mediated opposition of airway smooth muscle relaxation is regulated by GRK5 and is, therefore, excessive in GRK5(-/-) mice. In addition, this study shows that GRK5 regulates pulmonary responses in a tissue- and receptor-specific manner but does not regulate peripheral cardiac muscarinic receptors. GRK5 regulation of airway responses may have implications in obstructive airway diseases such as asthma or chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- J K L Walker
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
De Young L, Yu D, Freeman D, Brock GB. Effect of PDE5 inhibition combined with free oxygen radical scavenger therapy on erectile function in a diabetic animal model. Int J Impot Res 2003; 15:347-54. [PMID: 14562136 DOI: 10.1038/sj.ijir.3901026] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphodiesterase (PDE) inhibitors represent an important advance in the treatment of erectile dysfunction (ED). In spite of widespread use and generally good efficacy, as a class they remain ineffective in 15-57% of men. Specific cohorts of patients with severe vascular or neurogenic basis to their ED, such as diabetic men or those who have undergone radical pelvic surgery, demonstrate lower response rates with PDE inhibition treatment. We believe that circulating levels of nitric oxide (NO) may be enhanced through delivery of adequate concentrations of free oxygen radical scavenger molecules such as vitamin E. Higher levels of NO, theoretically, should produce increased penile blood flow with the potential for a synergistic effect when combined with a PDE5 inhibitor. With this hypothesis in mind, 20 adult male Sprague-Dawley streptozotocin-induced (60 mg/kg i.p.) diabetic rats were divided into four therapeutic groups (n=5). Group I--control animals received peanut oil, group II--vitamin E 20 IU/day, group III--sildenafil 5 mg/kg/day and group IV--vitamin E 20 IU/day plus sildenafil 5 mg/kg/day, by oral gavage daily for 3 weeks. Erectile function was assessed as a rise in intracavernous pressure following cavernous nerve electrostimulation. Penile tissue was harvested to determine the changes in tissue morphology including neuronal nitric oxide synthase, smooth muscle alpha-actin and endothelial cell integrity. PDE5 protein content and activity were measured. Significant increases in intracavernous pressure were measured in the animals receiving combined vitamin E plus sildenafil treatment. Immunohistochemical staining showed increases of neuronal nitric oxide synthase, endothelial cell and smooth muscle cell staining. Western blot analysis did not show significant differences of PDE5 protein between the groups. However, higher PDE5 activity was measured in the sildenafil group and lower activity of PDE5 was recorded in the cohort receiving vitamin E with sildenafil. Vitamin E enhanced the therapeutic effect of the PDE5 inhibitor in a meaningful way in this animal model of diabetes. This study indicates a potential means of salvaging erectile function among patients who are refractory to sildenafil.
Collapse
Affiliation(s)
- L De Young
- Department of Urology, St Joseph's Health Care, Lawson Health Research Institute, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Lang RJ, Harvey JR, Mulholland EL. Sodium (2-sulfonatoethyl) methanethiosulfonate prevents S-nitroso-L-cysteine activation of Ca2+-activated K+ (BKCa) channels in myocytes of the guinea-pig taenia caeca. Br J Pharmacol 2003; 139:1153-63. [PMID: 12871834 PMCID: PMC1573943 DOI: 10.1038/sj.bjp.0705349] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
1. The modulation of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels by the nitric oxide (NO(.)) donor, S-nitroso-L-cysteine (NOCys) and three sulfhydryl-specific methanethiosulfonate (MTS) reagents, positively charged 2-aminoethyl MTS hydrobromide (MTSEA C(3)H(9)NO(2)S(2)HBr) and [2-(trimethylammonium) ethyl MTS bromide (MTSET C(6)H(16)NO(2)S(2)Br), and negatively charged sodium (2-sulfonatoethyl) MTS (MTSES C(3)H(7)O(5)S(3)Na) were compared in excised inside-out membrane patches of the guinea-pig taenia caeca. 2. In membrane patches bathed in a low Ca(2+) (15 nM) high K(+) physiological salt solution, 1-3 BK(Ca) channels opened with a low probability (N.P(o)) of 0.019+/-0.011 at 0 mV. N.P(o) readily increased with membrane depolarization, raised Ca(2+) concentration or upon the addition of NOCys (10 micro M for 2-5 min) such that 5-15 open BK(Ca) channels were evident. 3. MTSEA (2.5 mM) decreased, while MTSES (2.5 mM) increased N.P(o) (at 0 mV) and the number of open BK(Ca) channels at positive potentials. These changes in channel activity remained after a prolonged washout of these two MTS reagents. 4. MTSET (2.5 mM) increased N.P(o) (at 0 mV) and voltage-dependently decreased BK(Ca) current amplitudes in a manner readily reversed upon washout. 5. Pre-exposure of excised membrane patches to MTSES or N-ethylmaleimide (NEM 1 mM), a specific alkylating agent of cysteine sulfhydryls, but not MTSEA or MTSET, prevented the excitatory actions of NOCys (10 micro M). 6. It was concluded that NOCys-evoked increases in BK(Ca) channel activity occur via the S-nitrosylation of cysteine residues within basic regions of the channel alpha subunit that have an accessible water interface.
Collapse
Affiliation(s)
- Richard J Lang
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
35
|
White TA, Walseth TF, Kannan MS. Nitric oxide inhibits ADP-ribosyl cyclase through a cGMP-independent pathway in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1065-71. [PMID: 12376359 DOI: 10.1152/ajplung.00064.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is evidence for a role of cyclic ADP-ribose (cADPR) in intracellular Ca2+ regulation in smooth muscle. cADPR is synthesized and degraded by ADP-ribosyl cyclase and cADPR hydrolase, respectively, by a bifunctional protein, CD38. Nitric oxide (NO) inhibits intracellular Ca2+ mobilization in airway smooth muscle. The present study was designed to determine whether this inhibition is due to regulation of ADP-ribosyl cyclase and/or cADPR hydrolase activity. Sodium nitroprusside (SNP) and S-nitroso-N-acetylpenicillamine, NO donors, produced a concentration-dependent decrease in ADP-ribosyl cyclase, but not cADPR hydrolase, activity. The NO scavenger carboxy-PTIO prevented and reversed, and reduced glutathione prevented, the inhibition of ADP-ribosyl cyclase by SNP, suggesting S-nitrosylation by NO as a mechanism. N-ethylmaleimide, which covalently modifies protein sulfhydryl groups, making them incapable of nitrosylation, produced a marked inhibition of ADP-ribosyl cyclase, but not cADPR hydrolase, activity. SNP and N-ethylmaleimide significantly inhibited the ADP-ribosyl cyclase activity in recombinant human CD38 without affecting the cADPR hydrolase activity. These results provide a novel mechanism for differential regulation of CD38 by NO through a cGMP-independent pathway involving S-nitrosylation of thiols.
Collapse
Affiliation(s)
- Thomas A White
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | |
Collapse
|
36
|
Lang RJ, Harvey JR. Thiol reagents and nitric oxide modulate the gating of BKCa channels from the guinea-pig taenia caeci. Clin Exp Pharmacol Physiol 2002; 29:944-9. [PMID: 12207576 DOI: 10.1046/j.1440-1681.2002.03754.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The site of the direct modulation of the gating of BKCa channels by the nitric oxide donor s-nitroso-l-cysteine (NOCys) was examined in excised membrane patches of the guinea-pig taenia caeci by the use of various thiol (sulphydryl)-specific reagents, including N-ethylmaleimide (NEM) and three charged methanethiosulphonate (MTS) reagents, namely positively charged 2-aminoethyl MTS hydrobromide (MTSEA) and [2-(trimethylammonium)ethyl] MTS bromide (MTSET) and negatively charged sodium (2-sulphonatoethyl) MTS (MTSES), which all specifically convert sulphydryls to a disulphide. 2. At 10 micro mol/L, NOCys transiently increased the probability of opening (N.Po) of the BKCa channels (at 0 mV) after a delay of 1-2 min. 3. Disulphide-reducing agents, such as dithiothreitol (10 micro mol/L), increased N.Po in a manner that was reversed by the sulphide-oxidizing agent thimerosal (10 micro mol/L). Both positively charged MTSET (2.5 mmol/L) and negatively charged MTSES (2.5 mmol/L) rapidly increased N.Po. However, only the MTSES-evoked increase in N.Po remained after a prolonged washout period. 4. The specific alkylating agent of cysteine thiols NEM (1 mmol/L) and the positively charged, but membrane permeable, MTSEA (2.5 mmol/L) decreased N.Po (at 0 mV). 5. Pre-exposure of excised membrane patches to NEM or MTSES prevented the excitatory actions of NOCys (10 micro mol/L). 6. We conclude that MTSES and NOCys must modify thiols on cysteine residues within basic regions of the channel protein that would electrostatically exclude MTSEA and MTSET. A consensus sequence of various mammalian alpha-subunits of the BKCa channel reveals two pairs of cysteine residues surrounded by basic amino acids that could be the site of action for NOCys and MTSES.
Collapse
Affiliation(s)
- R J Lang
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
37
|
Wu L, Cao K, Lu Y, Wang R. Different mechanisms underlying the stimulation of K(Ca) channels by nitric oxide and carbon monoxide. J Clin Invest 2002; 110:691-700. [PMID: 12208870 PMCID: PMC151105 DOI: 10.1172/jci15316] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The molecular mechanisms underlying the effects of nitric oxide (NO) and carbon monoxide (CO), individually and collectively, on large-conductance calcium-activated K(+) (K(Ca)) channels were investigated in rat vascular smooth muscle cells (SMCs). Both NO and CO increased the activity of native K(Ca) channels. Dehydrosoyasaponin-I, a specific agonist for beta subunit of K(Ca) channels, increased the open probability of native K(Ca) channels only when it was delivered to the cytoplasmic surface of membrane. CO, but not NO, further increased the activity of native K(Ca) channels that had been maximally stimulated by dehydrosoyasaponin-I. After treatment of SMCs with anti-K(Ca),beta subunit antisense oligodeoxynucleotides, the stimulatory effect of NO, but not of CO, on K(Ca) channels was nullified. CO, but not NO, enhanced the K(Ca) current densities of heterologously expressed cloned K(Ca),alpha subunit, showing that the presence of K(Ca),beta subunit is not a necessity for the effect of CO but essential for that of NO. Finally, pretreatment of SMCs with NO abolished the effects of subsequently applied CO or diethyl pyrocarbonate on K(Ca) channels. In summary, the stimulatory effects of CO and NO on K(Ca) channels rely on the specific interactions of these gases with K(Ca),alpha and K(Ca),beta subunits.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
38
|
Wu L, Cao K, Lu Y, Wang R. Different mechanisms underlying the stimulation of KCa channels by nitric oxide and carbon monoxide. J Clin Invest 2002. [DOI: 10.1172/jci0215316] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
39
|
Kloek J, van Ark I, Bloksma N, De Clerck F, Nijkamp FP, Folkerts G. Glutathione and other low-molecular-weight thiols relax guinea pig trachea ex vivo: interactions with nitric oxide? Am J Physiol Lung Cell Mol Physiol 2002; 283:L403-8. [PMID: 12114202 DOI: 10.1152/ajplung.00376.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to determine the effects of glutathione (GSH) on trachea smooth muscle tension in view of previously reported interactions between GSH and nitric oxide (NO) (Gaston B. Biochim Biophys Acta 1411: 323-333, 1999; Kelm M. Biochim Biophys Acta 1411: 273-289, 1999; and Kharitonov VG, Sundquist AR, and Sharma VS. J Biol Chem 270: 28158-28164, 1995) and the high (millimolar) concentrations of GSH in trachea epithelium (Rahman I, Li XY, Donaldson K, Harrison DJ, and MacNee W. Am J Physiol Lung Cell Mol Physiol 269: L285-L292, 1995). GSH and other thiols (1.0-10 mM) dose dependently decreased the tension in isolated guinea pig tracheas. Relaxations by GSH were paralleled with sevenfold increased nitrite levels (P < 0.05) in the tracheal effluent, suggesting an interaction between GSH and NO. However, preincubation with a NO scavenger did not reduce the relaxations by GSH or its NO adduct, S-nitrosoglutathione (GSNO). Inhibition of guanylyl cyclase inhibited the relaxations induced by GSNO, but not by GSH. Blocking potassium channels, however, completely abolished the relaxing effects of GSH (P < 0.05). Preincubation of tracheas with GSH significantly (P < 0.05) suppressed hyperreactivity to histamine as caused by removal of tracheal epithelium. These data indicate that GSH plays a role in maintaining tracheal tone. The mechanism is probably an antioxidative action of GSH itself rather than an action of NO or GSNO.
Collapse
Affiliation(s)
- Joris Kloek
- Department of Pharmacology and Pathophysiology, Faculty of Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
40
|
Paulino N, Scremin FM, Raichaski LB, Marcucci MC, Scremin A, Calixto JB. Mechanisms involved in the relaxant action of the ethanolic extract of propolis in the guinea-pig trachea in-vitro. J Pharm Pharmacol 2002; 54:845-52. [PMID: 12079001 DOI: 10.1211/0022357021779023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This study examines the mechanisms by which the standardised ethanolic extract of propolis induces relaxation of the guinea-pig trachea in-vitro. In guinea-pig trachea with or without epithelium and contracted by histamine, the propolis extract caused reproducible and graded relaxation, with a mean EC50 value of 3.8 or 10.5 microg mL(-1) and Emax of 100%, respectively. The propolis extract-induced relaxation was markedly reduced (26+/-9 and 96+/-3%) when guinea-pig tracheas were exposed to Krebs solution containing elevated K+ in the medium (40 or 80 mM). Pre-incubation of guinea-pig tracheas with tetraethylamonium (100 mM) or with 4-aminopyridine (10mM) reduced the propolis extract-induced relaxation by 31+/-10% and 28+/-2%. Likewise, apamin (0.1 microM), charybdotoxin (0.1 microM) or iberiotoxin (0.1 microM) caused marked inhibition of propolis extract-mediated relaxation in guinea-pig trachea (percentage of inhibition: 65+/-3%, 60+/-5% and 65+/-9%, respectively). Also, glibenclamide (1 microM) inhibited the relaxant response caused by the propolis extract by 57+/-4%. Omega-conotoxin GIVA (0.1 microM) or capsaicin (1 microM) produced small but significant inhibition (30+/-5% or 47+/-7%, respectively) of the propolis extract-induced relaxation. The vasoactive intestinal peptide (VIP) antagonist D-p-Cl-Phe6,Leu17[VIP] porcine (0.1 microM) inhibited relaxation by 55+/-5%, while propranolol (1 microM) induced a parallel rightward displacement (about 20 fold) of the propolis extract concentration-response curve. Finally, the propolis extract-induced relaxation was inhibited by the nitric oxide synthase inhibitor L-N(G)-nitroarginine (L-NOArg, 100 microM) (48+/-6%), and by the soluble guanylatecyclase inhibitormethylene blue (10 microM) (37+/-6%), whilethe moreselectivesoluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolol[4,3-alquinoxalin-1-one (ODQ, 1 microM) produced only a parallel (about 3 fold) rightward displacement of the propolis extract concentration-response curve. Collectively, these results support the notion that the propolis extract-mediated relaxation in the guinea-pig trachea involves the release of nitric oxide, probably from sensory neurons, besides the activation of soluble guanylate cyclase and activation of Ca2+- and ATP-sensitive K+ channels. Furthermore, the stimulation of beta2-adrenergic and VIP receptors also seems to account for its relaxant action.
Collapse
Affiliation(s)
- Niraldo Paulino
- Grupo de Pesquisa e Desenvolvimento de Biofármacos, Universidade do Sul de Santa Catarina, Tubarão, Brasil.
| | | | | | | | | | | |
Collapse
|
41
|
Chiandussi E, Petrussa E, Macrì F, Vianello A. Modulation of a plant mitochondrial K+ATP channel and its involvement in cytochrome c release. J Bioenerg Biomembr 2002; 34:177-84. [PMID: 12171067 DOI: 10.1023/a:1016079319070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Pea stem mitochondria, resuspended in a KCl medium (de-energized mitochondria), underwent a swelling, as a consequence of K+ entry, that was inhibited by ATP. This inhibition was partially restored by GTP and diazoxide (K+ATP channel openers). In addition, glyburide and 5-hydroxydecanate (K+ATP channel blockers) induced an inhibition of the GTP-stimulated swelling. Mitochondrial swelling was inhibited by H2O2, but stimulated by NO. The same type of responses was also obtained in succinate-energized mitochondria. When the succinate-dependent transmembrane electrical potential (deltapsi) had reached a steady state, the addition of KCl induced a dissipation that was inhibited by H2O2 and stimulated by NO. The latter stimulation was prevented by carboxy-PTIO, a NO scavenger. Phenylarsine oxide (a thiol oxidant) and NEM (a thiol blocker) stimulated the KCl-induced dissipation of deltapsi, while DTE prevented this effect in both cases. In addition, DTE transiently inhibited the NO-induced dissipation of deltapsi, but then it caused a more rapid collapse. These results, therefore, show that the plant mitochondrial K+ATP channel resembles that present in mammalian mitochondria and that it appears to be modulated by dithiol-disulfide interconversion, NO and H2O2. The aperture of this channel was linked to the partial rupture of the outer membrane. The latter effect led to a release of cytochrome c, thus suggesting that this release may be involved in the manifestation of programmed cell death.
Collapse
Affiliation(s)
- Elisa Chiandussi
- Department of Biology and Agro-industrial Economics, University of Udine, Italy
| | | | | | | |
Collapse
|
42
|
Janssen LJ. Ionic mechanisms and Ca(2+) regulation in airway smooth muscle contraction: do the data contradict dogma? Am J Physiol Lung Cell Mol Physiol 2002; 282:L1161-78. [PMID: 12003770 DOI: 10.1152/ajplung.00452.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In general, excitation-contraction coupling in muscle is dependent on membrane depolarization and hyperpolarization to regulate the opening of voltage-dependent Ca(2+) channels and, thereby, influence intracellular Ca(2+) concentration ([Ca(2+)](i)). Thus Ca(2+) channel blockers and K(+) channel openers are important tools in the arsenals against hypertension, stroke, and myocardial infarction, etc. Airway smooth muscle (ASM) also exhibits robust Ca(2+), K(+), and Cl(-) currents, and there are elaborate signaling pathways that regulate them. It is easy, then, to presume that these also play a central role in contraction/relaxation of ASM. However, several lines of evidence speak to the contrary. Also, too many researchers in the ASM field view the sarcoplasmic reticulum as being centrally located and displacing its contents uniformly throughout the cell, and they have focused almost exclusively on the initial single [Ca(2+)] spike evoked by excitatory agonists. Several recent studies have revealed complex spatial and temporal heterogeneity in [Ca(2+)](i), the significance of which is only just beginning to be appreciated. In this review, we will compare what is known about ion channels in ASM with what is believed to be their roles in ASM physiology. Also, we will examine some novel ionic mechanisms in the context of Ca(2+) handling and excitation-contraction coupling in ASM.
Collapse
Affiliation(s)
- Luke J Janssen
- Asthma Research Group, Firestone Institute for Respiratory Health, St. Joseph's Hospital, McMaster University, Hamilton, Ontario, Canada L8N 4A6.
| |
Collapse
|
43
|
Schwingshackl A, Moqbel R, Duszyk M. Nitric oxide activates ATP‐dependent K
+
channels in human eosinophils. J Leukoc Biol 2002. [DOI: 10.1189/jlb.71.5.807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - Redwan Moqbel
- Medicine, Pulmonary Research Group, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
44
|
Pucovský V, Gordienko DV, Bolton TB. Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea-pig small mesenteric arteries. J Physiol 2002; 539:25-39. [PMID: 11850499 PMCID: PMC2290128 DOI: 10.1113/jphysiol.2001.012978] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In smooth muscle the spontaneous Ca2+ release from the sarcoplasmic reticulum (SR) occurs at preferred locations called frequent discharge sites (FDSs) giving rise to localized intracellular Ca2+ transients (Ca2+ sparks). Laser scanning confocal microscopy of fluo-3-loaded single myocytes freshly isolated from small mesenteric arteries of guinea-pig was used to investigate the action of nitric oxide (NO) donors and noradrenaline on the position and activity of FDSs and on global intracellular Ca2+ concentration ([Ca2+]i). In 8 % of cells 'microsparks', Ca2+ release events smaller in duration, spread and amplitude than Ca2+ sparks were observed. The location of the initiation point of Ca2+ sparks observed during line-scan imaging was found to 'jitter' by +/- 0.41 microm. However, the general position of an FDS within the cell did not change; most FDSs were close (within 1.2 +/- 0.1 microm) to the cell membrane and often multiple FDSs occurred in one confocal plane of the cell. In the resting state, NO donors S-nitroso-N-acetylpenicillamine (SNAP; 50 microM) and sodium nitroprusside (SNP; 100 microM) did not change the general position of FDSs and slightly depressed their activity, but did not affect the global [Ca2+]i significantly. Application of noradrenaline (1-10 microM) increased Ca2+ spark frequency at existing FDS(s) leading to a Ca2+ wave. The increase in FDS activity and in global [Ca2+]i produced by noradrenaline were inhibited by the presence of SNAP or SNP but not by 8-bromoguanosine cyclic 3',5'-monophosphate (8-Br-cGMP; 100 microM). In the presence of 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), inhibitor of soluble guanylate cyclase, SNAP and SNP still exerted their effects on the noradrenaline response. These results suggest that SNAP and SNP inhibit the noradrenaline-evoked rise in global [Ca2+]i by a cGMP-independent mechanism and that part of this effect is due to inhibition of the activity of FDSs; moreover, only the activity, but not the position, of FDSs is changed by either stimulant or inhibitory substances.
Collapse
Affiliation(s)
- Vladimír Pucovský
- Department of Pharmacology and Clinical Pharmacology, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK.
| | | | | |
Collapse
|
45
|
Forsythe P, Gilchrist M, Kulka M, Befus AD. Mast cells and nitric oxide: control of production, mechanisms of response. Int Immunopharmacol 2001; 1:1525-41. [PMID: 11515817 DOI: 10.1016/s1567-5769(01)00096-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mast cells are involved in numerous activities ranging from control of the vasculature, to tissue injury and repair, allergic inflammation and host defences. They synthesize and secrete a variety of mediators, activating and modulating the functions of nearby cells and initiating complex physiological changes. Interestingly, NO produced by mast cells and/or other cells in the microenvironment appears to regulate these diverse roles. This review outlines some of the pathways central to the production of NO by mast cells and identifies many of the tightly controlled regulatory mechanisms involved. Several cofactors and regulatory elements are involved in NO production, and these act at transcriptional and post-translational sites. Their involvement in NO production will be outlined and the possibility that these pathways are critically important in mast cell functions will be discussed. The effects of NO on mast cell functions such as adhesion, activation and mediator secretion will be examined with a focus on molecular mechanisms by which NO modifies intracellular signalling pathways dependent or independent of cGMP and soluble guanylate cyclase. The possibility that NO regulates mast cell function through effects on selected ion channels will be discussed. Metabolic products of NO including peroxynitrite and other reactive species may be the critical elements that affect the actions of NO on mast cell functions. Further understanding of the actions of NO on mast cell activities may uncover novel strategies to modulate inflammatory conditions.
Collapse
Affiliation(s)
- P Forsythe
- 574 Heritage Medical Research Center, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
46
|
Swayze RD, Braun AP. A catalytically inactive mutant of type I cGMP-dependent protein kinase prevents enhancement of large conductance, calcium-sensitive K+ channels by sodium nitroprusside and cGMP. J Biol Chem 2001; 276:19729-37. [PMID: 11262387 DOI: 10.1074/jbc.m005711200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activation of large conductance, calcium-sensitive K(+) (BK(Ca)) channels by the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway appears to be an important cellular mechanism contributing to the relaxation of smooth muscle. In HEK 293 cells transiently transfected with BK(Ca) channels, we observed that the NO donor sodium nitroprusside and the membrane-permeable analog of cGMP, dibutyryl cGMP, were both able to enhance BK(Ca) channel activity 4-5-fold in cell-attached membrane patches. This enhancement correlated with an endogenous cGMP-dependent protein kinase activity and the presence of the alpha isoform of type I cGMP-dependent protein kinase (cGKI). We observed that co-transfection of cells with BK(Ca) channels and a catalytically inactive ("dead") mutant of human cGKIalpha prevented enhancement of BK(Ca) channel in response to either sodium nitroprusside or dibutyryl cGMP in a dominant negative fashion. In contrast, expression of wild-type cGKIalpha supported enhancement of channel activity by these two agents. Importantly, both endogenous and expressed forms of cGKIalpha were found to associate with BK(Ca) channel protein, as demonstrated by a reciprocal co-immunoprecipitation strategy. In vitro, cGKIalpha was able to directly phosphorylate immunoprecipitated BK(Ca) channels, suggesting that cGKIalpha-dependent phosphorylation of BK(Ca) channels in situ may be responsible for the observed enhancement of channel activity. In summary, our data demonstrate that cGKIalpha alone is sufficient to promote the enhancement of BK(Ca) channels in situ after activation of the NO/cGMP signaling pathway.
Collapse
Affiliation(s)
- R D Swayze
- Smooth Muscle Research Group, Department of Pharmacology and Therapeutics, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
47
|
Evans JR, Bielefeldt K. Regulation of sodium currents through oxidation and reduction of thiol residues. Neuroscience 2001; 101:229-36. [PMID: 11068151 DOI: 10.1016/s0306-4522(00)00367-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Changes in redox state are involved in several physiological and pathophysiological processes. Previous experiments have demonstrated that nitric oxide can function as a reactive oxygen species, inhibiting neuronal sodium currents by nitrosylation of thiol residues. We hypothesized that nitric oxide and thiol oxidizers similarly modulate voltage-dependent sodium currents. Voltage-dependent sodium currents were studied with the whole-cell patch-clamp technique in NB41A3 neuroblastoma cells. The nitric oxide donor 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine did not affect sodium currents. In contrast, the thiol oxidizers thimerosal and 4,4'-dithiopyridine significantly inhibited sodium currents. The effect of thimerosal persisted after washout, but could be fully reversed by the reducing agent dithiothreitol. Reduced glutathione did not restore the sodium current amplitude when given extracellularly, while intracellular glutathione prevented the inhibitory effect of thimerosal. Pretreatment with the alkylating agent N-ethylmaleimide blocked the inhibitory action of thimerosal. Thiol oxidation caused a shift in the voltage dependence of fast and slow inactivation to more hyperpolarized potentials without concomitant effects on the voltage dependence of activation. Mercaptoethanol and reduced glutathione enhanced sodium currents by shifting the voltage dependence of inactivation to depolarized potentials. These results demonstrate that the oxidation and reduction of thiol residues alters the properties of voltage-sensitive sodium channels and may play an important role in the regulation of membrane excitability.
Collapse
Affiliation(s)
- J R Evans
- University of Iowa, 4614 JCP, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | |
Collapse
|
48
|
Ellershaw DC, Greenwood IA, Large WA. Dual modulation of swelling-activated chloride current by NO and NO donors in rabbit portal vein myocytes. J Physiol 2000; 528 Pt 1:15-24. [PMID: 11018102 PMCID: PMC2270118 DOI: 10.1111/j.1469-7793.2000.00015.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2000] [Accepted: 07/03/2000] [Indexed: 11/26/2022] Open
Abstract
1. The effects of authentic NO and the NO donor S-nitroso-N-acetylpenicillamine (SNAP) on swelling-activated chloride currents (Iswell) were investigated in freshly dispersed rabbit portal vein smooth muscle cells. Iswell was recorded with the perforated patch configuration of the whole-cell patch clamp technique. 2. In approximately 50 % of cells NO and SNAP inhibited the amplitude of Iswell by about 45 % in a voltage-independent manner. Iswell was also inhibited by an inhibitor of NO-sensitive guanylate cyclase (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and by KT5823, an inhibitor of cGMP-dependent protein kinase. 3. In other cells both NO and SNAP enhanced Iswell by about 40 % in a voltage-independent manner. A similar increase was produced by application of the cell-permeable cGMP analogue 8-bromo-guanosine 3', 5'-cyclic monophosphate (8-Br-cGMP). However, 8-Br-cGMP had no effect on current amplitude in cells pre-treated with KT5823. In contrast 8-Br-cGMP increased the amplitude of Iswell in cells which had been pre-treated with ODQ. 4. SNAP also modulated Iswell recorded in the conventional whole-cell configuration with internal solutions containing 10 mM EGTA to rule out any contribution from Ca2+-activated Cl- currents. 5. These data suggest that the amplitude of Iswell can be enhanced by NO via a cGMP-dependent phosphorylation and inhibited by NO in a cGMP-independent manner.
Collapse
Affiliation(s)
- D C Ellershaw
- Department of Pharmacology and Clinical Pharmacology, Cardiovascular Research Group, St George's Hospital Medical School, Cranmer Terrace, London SW17 0RE, UK
| | | | | |
Collapse
|
49
|
Lang RJ, Harvey JR, McPhee GJ, Klemm MF. Nitric oxide and thiol reagent modulation of Ca2+-activated K+ (BKCa) channels in myocytes of the guinea-pig taenia caeci. J Physiol 2000; 525 Pt 2:363-76. [PMID: 10835040 PMCID: PMC2269941 DOI: 10.1111/j.1469-7793.2000.00363.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The modulation of large conductance Ca2+-activated K+ (BKCa) channels by the nitric oxide (NO) donors S-nitroso-L-cysteine (NOCys) and sodium nitroprusside (SNP) and agents which oxidize or reduce reactive thiol groups were compared in excised inside-out membrane patches of the guinea-pig taenia caeci. When the cytosolic side of excised patches was bathed in a physiological salt solution (PSS) containing 130 mM K+ and 15 nM Ca2+, few BKCa channel openings were recorded at potentials negative to 0 mV. However, the current amplitude and open probability (NPo) of these BKCa channels increased with patch depolarization. A plot of ln(NPo) against the membrane potential (V) fitted with a straight line revealed a voltage at half-maximal activation (V0.5) of 9.4 mV and a slope (K) indicating an e-fold increase in NPo with 12.9 mV depolarization. As the cytosolic Ca2+ was raised to 150 nM, V0.5 shifted 11.5 mV in the negative direction, with little change in K (13.1 mV). NOCys (10 microM) and SNP (100 microM) transiently increased NPo 16- and 3. 7-fold, respectively, after a delay of 2-5 min. This increase in NPo was associated with an increase in the number of BKCa channel openings evoked at positive potentials by ramped depolarizations (between -60 and +60 mV). Moreover, this NOCys-induced increase in NPo was still evident in the presence of 1H-[1,2,4]oxadiazolo[4, 3-a]quinoxalin-1-one (ODQ; 10 microM), the specific blocker of soluble guanylyl cyclase. The sulfhydryl reducing agents dithiothreitol (DTT; 10 and 100 microM) and reduced glutathione (GSH; 1 mM) also significantly increased NPo (at 0 mV) 7- to 9-fold, as well as increasing the number of BKCa channel openings evoked during ramped depolarizations. Sulfhydryl oxidizing agents thimerosal (10 microM) and 4,4'-dithiodipyridine (4,4DTDP; 10 microM) and the thiol-specific alkylating agent N-ethylmaleimide (NEM; 1 mM) significantly decreased NPo (at 0 mV) to 40-50% of control values after 5-10 min. Ramped depolarizations to +100 mV evoked relatively few BKCa channel openings. The effects of thimerosal on NPo were readily reversed by DTT, while the effects of NOCys were prevented by NEM. It was concluded that both redox modulation and nitrothiosylation of cysteine groups on the cytosolic surface of the alpha subunit of the BKCa channel protein can alter channel gating.
Collapse
Affiliation(s)
- R J Lang
- Department of Physiology, Monash University, Clayton 3800, Victoria, Australia.
| | | | | | | |
Collapse
|
50
|
Janssen LJ, Premji M, Lu-Chao H, Cox G, Keshavjee S. NO(+) but not NO radical relaxes airway smooth muscle via cGMP-independent release of internal Ca(2+). Am J Physiol Lung Cell Mol Physiol 2000; 278:L899-905. [PMID: 10781419 DOI: 10.1152/ajplung.2000.278.5.l899] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the effects of two redox forms of nitric oxide, NO(+) [liberated by S-nitroso-N-acetyl-penicillamine (SNAP)] and NO. [liberated by 3-morpholinosydnonimine (SIN-1) in the presence of superoxide dismutase], on cytosolic concentration of Ca(2+) ([Ca(2+)](i); single cells) and tone (intact strips) obtained from human main stem bronchi and canine trachealis. SNAP evoked a rise in [Ca(2+)](i) that was unaffected by removing external Ca(2+) but was markedly reduced by depleting the internal Ca(2+) pool using cyclopiazonic acid (10(-5) M). Dithiothreitol (1 mM) also antagonized the Ca(2+) transient as well as the accompanying relaxation. SNAP attenuated responses to 15 and 30 mM KCl but not those to 60 mM KCl, suggesting the involvement of an electromechanical coupling mechanism rather than a direct effect on the contractile apparatus or on Ca(2+) channels. SNAP relaxations were sensitive to charybdotoxin (10(-7) M) or tetraethylammonium (30 mM) but not to 4-aminopyridine (1 mM). Neither SIN-1 nor 8-bromoguanosine 3',5'-cyclic monophosphate had any significant effect on resting [Ca(2+)](i), although both of these agents were able to completely reverse tone evoked by carbachol (10(-7) M). We conclude that NO(+) causes release of internal Ca(2+) in a cGMP-independent fashion, leading to activation of Ca(2+)-dependent K(+) channels and relaxation, whereas NO. relaxes the airways through a cGMP-dependent, Ca(2+)-independent pathway.
Collapse
Affiliation(s)
- L J Janssen
- Asthma Research Group, Smooth Muscle Research Group, Department of Medicine, McMaster University, Hamilton, Ontario, Canada L8N 3Z5.
| | | | | | | | | |
Collapse
|