1
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E, Palestini P. Correlation between Exposure to UFP and ACE/ACE2 Pathway: Looking for Possible Involvement in COVID-19 Pandemic. TOXICS 2024; 12:560. [PMID: 39195662 PMCID: PMC11359209 DOI: 10.3390/toxics12080560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024]
Abstract
The overlap between the geographic distribution of COVID-19 outbreaks and pollution levels confirmed a correlation between exposure to atmospheric particulate matter (PM) and the SARS-CoV-2 pandemic. The RAS system is essential in the pathogenesis of inflammatory diseases caused by pollution: the ACE/AngII/AT1 axis activates a pro-inflammatory pathway, which is counteracted by the ACE2/Ang(1-7)/MAS axis, which activates an anti-inflammatory and protective pathway. However, ACE2 is also known to act as a receptor through which SARS-CoV-2 enters host cells to replicate. Furthermore, in vivo systems have demonstrated that exposure to PM increases ACE2 expression. In this study, the effects of acute and sub-acute exposure to ultrafine particles (UFP), originating from different anthropogenic sources (DEP and BB), on the levels of ACE2, ACE, COX-2, HO-1, and iNOS in the lungs and other organs implicated in the pathogenesis of COVID-19 were analyzed in the in vivo BALB/c male mice model. Exposure to UFP alters the levels of ACE2 and/or ACE in all examined organs, and exposure to sub-acute DEP also results in the release of s-ACE2. Furthermore, as evidenced in this and our previous works, COX-2, HO-1, and iNOS levels also demonstrated organ-specific alterations. These proteins play a pivotal role in the UFP-induced inflammatory and oxidative stress responses, and their dysregulation is linked to the development of severe symptoms in individuals infected with SARS-CoV-2, suggesting a heightened vulnerability or a more severe clinical course of the disease. UFP and SARS-CoV-2 share common pathways; therefore, in a "risk stratification" concept, daily exposure to air pollution may significantly increase the likelihood of developing a severe form of COVID-19, explaining, at least in part, the greater lethality of the virus observed in highly polluted areas.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
2
|
Smyth T, Jaspers I. Diesel exhaust particles induce polarization state-dependent functional and transcriptional changes in human monocyte-derived macrophages. Am J Physiol Lung Cell Mol Physiol 2024; 326:L83-L97. [PMID: 38084400 PMCID: PMC11279754 DOI: 10.1152/ajplung.00085.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/10/2024] Open
Abstract
Macrophage populations exist on a spectrum between the proinflammatory M1 and proresolution M2 states and have demonstrated the ability to reprogram between them after exposure to opposing polarization stimuli. Particulate matter (PM) has been repeatedly linked to worsening morbidity and mortality following respiratory infections and has been demonstrated to modify macrophage function and polarization. The purpose of this study was to determine whether diesel exhaust particles (DEP), a key component of airborne PM, would demonstrate polarization state-dependent effects on human monocyte-derived macrophages (hMDMs) and whether DEP would modify macrophage reprogramming. CD14+CD16- monocytes were isolated from the blood of healthy human volunteers and differentiated into macrophages with macrophage colony-stimulating factor (M-CSF). Resulting macrophages were left unpolarized or polarized into the proresolution M2 state before being exposed to DEP, M1-polarizing conditions (IFN-γ and LPS), or both and tested for phagocytic function, secretory profile, gene expression patterns, and bioenergetic properties. Contrary to previous reports, we observed a mixed M1/M2 phenotype in reprogrammed M2 cells when considering the broader range of functional readouts. In addition, we determined that DEP exposure dampens phagocytic function in all polarization states while modifying bioenergetic properties in M1 macrophages preferentially. Together, these data suggest that DEP exposure of reprogrammed M2 macrophages results in a highly inflammatory, highly energetic subpopulation of macrophages that may contribute to the poor health outcomes following PM exposure during respiratory infections.NEW & NOTEWORTHY We determined that reprogramming M2 macrophages in the presence of diesel exhaust particles (DEP) results in a highly inflammatory mixed M1/M2 phenotype. We also demonstrated that M1 macrophages are particularly vulnerable to particulate matter (PM) exposure as seen by dampened phagocytic function and modified bioenergetics. Our study suggests that PM causes reprogrammed M2 macrophages to become a highly energetic, highly secretory subpopulation of macrophages that may contribute to negative health outcomes observed in humans after PM exposure.
Collapse
Affiliation(s)
- Timothy Smyth
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ilona Jaspers
- Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Pediatrics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
3
|
Zhang R, Lai KY, Liu W, Liu Y, Ma X, Webster C, Luo L, Sarkar C. Associations between Short-Term Exposure to Ambient Air Pollution and Influenza: An Individual-Level Case-Crossover Study in Guangzhou, China. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127009. [PMID: 38078424 PMCID: PMC10711742 DOI: 10.1289/ehp12145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Influenza imposes a heavy burden on public health. Little is known, however, of the associations between detailed measures of exposure to ambient air pollution and influenza at an individual level. OBJECTIVE We examined individual-level associations between six criteria air pollutants and influenza using case-crossover design. METHODS In this individual-level time-stratified case-crossover study, we linked influenza cases collected by the Guangzhou Center for Disease Control and Prevention from 1 January 2013 to 31 December 2019 with individual residence-level exposure to particulate matter (PM 2.5 and PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), ozone (O 3 ) and carbon monoxide (CO). The exposures were estimated for the day of onset of influenza symptoms (lag 0), 1-7 d before the onset (lags 1-7), as well as an 8-d moving average (lag07), using a random forest model and linked to study participants' home addresses. Conditional logistic regression was developed to investigate the associations between short-term exposure to air pollution and influenza, adjusting for mean temperature, relative humidity, public holidays, population mobility, and community influenza susceptibility. RESULTS N = 108,479 eligible cases were identified in our study. Every 10 - μ g / m 3 increase in exposure to PM 2.5 , PM 10 , NO 2 , and CO and every 5 - μ g / m 3 increase in SO 2 over 8-d moving average (lag07) was associated with higher risk of influenza with a relative risk (RR) of 1.028 (95% CI: 1.018, 1.038), 1.041 (95% CI: 1.032, 1.049), 1.169 (95% CI: 1.151, 1.188), 1.004 (95% CI: 1.003, 1.006), and 1.134 (95% CI: 1.107, 1.163), respectively. There was a negative association between O 3 and influenza with a RR of 0.878 (95% CI: 0.866, 0.890). CONCLUSIONS Our findings suggest that short-term exposure to air pollution, except for O 3 , is associated with greater risk for influenza. Further studies are necessary to decipher underlying mechanisms and design preventive interventions and policies. https://doi.org/10.1289/EHP12145.
Collapse
Affiliation(s)
- Rong Zhang
- Healthy High Density Cities Lab, HKUrbanLab, University of Hong Kong (HKU), Hong Kong, China
- Department of Urban Planning and Design, HKU, Hong Kong, China
| | - Ka Yan Lai
- Healthy High Density Cities Lab, HKUrbanLab, University of Hong Kong (HKU), Hong Kong, China
- Department of Urban Planning and Design, HKU, Hong Kong, China
| | - Wenhui Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Yanhui Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Xiaowei Ma
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Chris Webster
- Healthy High Density Cities Lab, HKUrbanLab, University of Hong Kong (HKU), Hong Kong, China
- Department of Urban Planning and Design, HKU, Hong Kong, China
| | - Lei Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, Guangdong, China
| | - Chinmoy Sarkar
- Healthy High Density Cities Lab, HKUrbanLab, University of Hong Kong (HKU), Hong Kong, China
- Department of Urban Planning and Design, HKU, Hong Kong, China
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Collivignarelli MC, Bellazzi S, Caccamo FM, Carnevale Miino M. Discussion about the Latest Findings on the Possible Relation between Air Particulate Matter and COVID-19. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20065132. [PMID: 36982044 PMCID: PMC10049697 DOI: 10.3390/ijerph20065132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023]
Abstract
Since SARS-CoV-2 was identified, the scientific community has tried to understand the variables that can influence its spread. Several studies have already highlighted a possible link between particulate matter (PM) and COVID-19. This work is a brief discussion about the latest findings on this topic, highlighting the gaps in the current results and possible tips for future studies. Based on the literature outcomes, PM is suspected to play a double role in COVID-19: a chronic and an acute one. The chronic role is related to the possible influence of long-term and short-term exposure to high concentrations of PM in developing severe forms of COVID-19, including death. The acute role is linked to the possible carrier function of PM in SARS-CoV-2. The scientific community seems sure that the inflammatory effect on the respiratory system of short-term exposure to a high concentration of PM, and other additional negative effects on human health in cases of longer exposure, increases the risk of developing a more severe form of COVID-19 in cases of contagion. On the contrary, the results regarding PM acting as a carrier of SARS-CoV-2 are more conflicting, especially regarding the possible inactivation of the virus in the environment, and no final explanation on the possible acute role of PM in the spread of COVID-19 can be inferred.
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
- Correspondence: (M.C.C.); (M.C.M.)
| | - Stefano Bellazzi
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
- Correspondence: (M.C.C.); (M.C.M.)
| |
Collapse
|
5
|
Burbank AJ. Risk Factors for Respiratory Viral Infections: A Spotlight on Climate Change and Air Pollution. J Asthma Allergy 2023; 16:183-194. [PMID: 36721739 PMCID: PMC9884560 DOI: 10.2147/jaa.s364845] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Climate change has both direct and indirect effects on human health, and some populations are more vulnerable to these effects than others. Viral respiratory infections are most common illnesses in humans, with estimated 17 billion incident infections globally in 2019. Anthropogenic drivers of climate change, chiefly the emission of greenhouse gases and toxic pollutants from burning of fossil fuels, and the consequential changes in temperature, precipitation, and frequency of extreme weather events have been linked with increased susceptibility to viral respiratory infections. Air pollutants like nitrogen dioxide, particulate matter, diesel exhaust particles, and ozone have been shown to impact susceptibility and immune responses to viral infections through various mechanisms, including exaggerated or impaired innate and adaptive immune responses, disruption of the airway epithelial barrier, altered cell surface receptor expression, and impaired cytotoxic function. An estimated 90% of the world's population is exposed to air pollution, making this a topic with high relevance to human health. This review summarizes the available epidemiologic and experimental evidence for an association between climate change, air pollution, and viral respiratory infection.
Collapse
Affiliation(s)
- Allison J Burbank
- Division of Pediatric Allergy and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Correspondence: Allison J Burbank, 5008B Mary Ellen Jones Building, 116 Manning Dr, CB#7231, Chapel Hill, NC, 27599, USA, Tel +1 919 962 5136, Fax +1 919 962 4421, Email
| |
Collapse
|
6
|
Molecular Mechanisms of RSV and Air Pollution Interaction: A Scoping Review. Int J Mol Sci 2022; 23:ijms232012704. [PMID: 36293561 PMCID: PMC9604398 DOI: 10.3390/ijms232012704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RSV is one of the major infectious agents in paediatrics, and its relationship with air pollution is frequently observed. However, the molecular basis of this interaction is sparsely reported. We sought to systematically review the existing body of literature and identify the knowledge gaps to answer the question: which molecular mechanisms are implied in the air pollutants-RSV interaction? Online databases were searched for original studies published before August 2022 focusing on molecular mechanisms of the interaction. The studies were charted and a narrative synthesis was based upon three expected directions of influence: a facilitated viral entry, an altered viral replication, and an inappropriate host reaction. We identified 25 studies published between 1993 and 2020 (without a noticeable increase in the number of studies) that were performed in human (n = 12), animal (n = 10) or mixed (n = 3) models, and analysed mainly cigarette smoke (n = 11), particulate matter (n = 4), nanoparticles (n = 3), and carbon black (n = 2). The data on a damage to the epithelial barrier supports the hypothesis of facilitated viral entry; one study also reported accelerated viral entry upon an RSV conjugation to particulate matter. Air pollution may result in the predominance of necrosis over apoptosis, and, as an effect, an increased viral load was reported. Similarly, air pollution mitigates epithelium function with decreased IFN-γ and Clara cell secretory protein levels and decreased immune response. Immune response might also be diminished due to a decreased viral uptake by alveolar macrophages and a suppressed function of dendritic cells. On the other hand, an exuberant inflammatory response might be triggered by air pollution and provoke airway hyperresponsiveness (AHR), prolonged lung infiltration, and tissue remodeling, including a formation of emphysema. AHR is mediated mostly by increased IFN-γ and RANTES concentrations, while the risk of emphysema was related to the activation of the IL-17 → MCP-1 → MMP-9 → MMP-12 axis. There is a significant lack of evidence on the molecular basics of the RSV-air pollution interaction, which may present a serious problem with regards to future actions against air pollution effects. The major knowledge gaps concern air pollutants (mostly the influence of cigarette smoke was investigated), the mechanisms facilitating an acute infection or a worse disease course (since it might help plan short-term, especially non-pharmacological, interventions), and the mechanisms of an inadequate response to the infection (which may lead to a prolonged course of an acute infection and long-term sequelae). Thus far, the evidence is insufficient regarding the broadness and complexity of the interaction, and future studies should focus on common mechanisms stimulated by various air pollutants and a comparison of influence of the different contaminants at various concentrations.
Collapse
|
7
|
Benowitz NL, Goniewicz ML, Halpern-Felsher B, Krishnan-Sarin S, Ling PM, O'Connor RJ, Pentz MA, Robertson RM, Bhatnagar A. Tobacco product use and the risks of SARS-CoV-2 infection and COVID-19: current understanding and recommendations for future research. THE LANCET. RESPIRATORY MEDICINE 2022; 10:900-915. [PMID: 35985357 PMCID: PMC9381032 DOI: 10.1016/s2213-2600(22)00182-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 01/27/2022] [Accepted: 05/03/2022] [Indexed: 01/11/2023]
Abstract
Heterogeneity in the clinical presentation of SARS-CoV-2 infection and COVID-19 progression underscores the urgent need to identify individual-level susceptibility factors that affect infection vulnerability and disease severity. Tobacco product use is a potential susceptibility factor. In this Personal View, we provide an overview of the findings of peer-reviewed, published studies relating tobacco product use to SARS-CoV-2 infection and COVID-19 outcomes, with most studies focusing on cigarette smoking in adults. Findings pertaining to the effects of tobacco product use on the incidence of SARS-CoV-2 infection are inconsistent. However, evidence supports a role for cigarette smoking in increasing the risk of poor COVID-19 outcomes, including hospital admission, progression in disease severity, and COVID-19-related mortality. We discuss the potential effects of tobacco use behaviour on SARS-CoV-2 transmission and infection, and highlight the pathophysiological changes associated with cigarette smoking that could promote SARS-CoV-2 infection and increased disease severity. We consider the biological mechanisms by which nicotine and other tobacco product constituents might affect immune and inflammatory responses to SARS-CoV-2 infection. Finally, we identify current knowledge gaps and suggest priorities for research to address acute and post-acute health outcomes of COVID-19 during and after the pandemic.
Collapse
Affiliation(s)
- Neal L Benowitz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | | | - Pamela M Ling
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Richard J O'Connor
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Mary Ann Pentz
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rose Marie Robertson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Aruni Bhatnagar
- Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
8
|
Kim BG, Choi DY, Kim MG, Jang AS, Suh MW, Lee JH, Oh SH, Park MK. Effect of Angiogenesis and Lymphangiogenesis in Diesel Exhaust Particles Inhalation in Mouse Model of LPS Induced Acute Otitis Media. Front Cell Infect Microbiol 2022; 12:824575. [PMID: 35646744 PMCID: PMC9132252 DOI: 10.3389/fcimb.2022.824575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Lymphangiogenesis and angiogenesis might have significant involvement in the pathogenesis of otitis media with effusion. This study investigated the effect of diesel exhaust particles (DEP) on inflammation and lymphangiogenesis in a mouse model of acute otitis media (AOM). BALB/c mice were injected with LPS and exposed to 100 µg/m3 DEP. The mice were divided into four groups: control (no stimulation), AOM, AOM + DEP, and DEP + AOM. The effects of DEP inhalation pre- and post-DEP induction were estimated based on measurements of the auditory brainstem response, mRNA levels of lymphangiogenesis-related genes and cytokines, and histology of the middle ear. Cell viability of human middle ear epithelial cells decreased in a dose-response manner at 24 and 48 hours post-DEP exposure. DEP alone did not induce AOM. AOM-induced mice with pre- or post-DEP exposure showed thickened middle ear mucosa and increased expression of TNF-α and IL1-β mRNA levels compared to the control group, but increased serum IL-1β levels were not found in the AOM + Post DEP. The mRNA expression of TLR4, VEGFA, VEGFAC, and VEGFR3 was increased by pre-AOM DEP exposure. The expression of VEFGA protein was stronger in the AOM + Post DEP group than in any other group. The expression of CD31 and CD45 markers in the mouse middle ear tissue was higher in the Pre DEP + AOM group than in the AOM group. This result implies that pre-exposure to DEP more strongly increases inflammation and lymphangiogenesis in a mouse model of acute otitis media.
Collapse
Affiliation(s)
- Byeong-Gon Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Da Yeon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Min-Gyoung Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea
| | - Myung-Whan Suh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
- *Correspondence: Moo Kyun Park, ;
| |
Collapse
|
9
|
Santurtún A, Colom ML, Fdez-Arroyabe P, Real ÁD, Fernández-Olmo I, Zarrabeitia MT. Exposure to particulate matter: Direct and indirect role in the COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 206:112261. [PMID: 34687752 PMCID: PMC8527737 DOI: 10.1016/j.envres.2021.112261] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 05/16/2023]
Abstract
Knowing the transmission factors and the natural environment that favor the spread of a viral infection is crucial to stop outbreaks and develop effective preventive strategies. This work aims to evaluate the role of Particulate Matter (PM) in the COVID-19 pandemic, focusing especially on that of PM as a vector for SARS-CoV-2. Exposure to PM has been related to new cases and to the clinical severity of people infected by SARS-CoV-2, which can be explained by the oxidative stress and the inflammatory response generated by these particles when entering the respiratory system, as well as by the role of PM in the expression of ACE-2 in respiratory cells in human hosts. In addition, different authors have detected SARS-CoV-2 RNA in PM sampled both in outdoor and indoor environments. The results of various studies lead to the hypothesis that the aerosols emitted by an infected person could be deposited in other suspended particles, sometimes of natural but especially of anthropogenic origin, that form the basal PM. However, the viability of the virus in PM has not yet been demonstrated. Should PM be confirmed as a vector of transmission, prevention strategies ought to be adapted, and PM sampling in outdoor environments could become an indicator of viral load in a specific area.
Collapse
Affiliation(s)
- Ana Santurtún
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain.
| | - Marina L Colom
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group. University of Cantabria, Santander, Spain
| | - Álvaro Del Real
- Medicine and Psychiatry Department. University of Cantabria, Santander, Spain
| | - Ignacio Fernández-Olmo
- Chemical and Molecular Engineering Department. University of Cantabria, Santander, Spain
| | - María T Zarrabeitia
- Legal Medicine and Toxicology Area, Department of Physiology and Pharmacology. Faculty of Medicine. University of Cantabria, Santander, Spain
| |
Collapse
|
10
|
Isphording IE, Pestel N. Pandemic meets pollution: Poor air quality increases deaths by COVID-19. JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT 2021; 108:102448. [PMID: 33850337 PMCID: PMC8028850 DOI: 10.1016/j.jeem.2021.102448] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 05/19/2023]
Abstract
We study the impact of short-term exposure to ambient air pollution on the spread and severity of COVID-19 in Germany. We combine data at the county-by-day level on confirmed cases and deaths with information on local air quality and weather conditions. Following Deryugina et al. (2019), we instrument short-term variation in local concentrations of particulate matter (PM10) by region-specific daily variation in wind directions. We find significant positive effects of PM10 concentration on death numbers from four days before to ten days after the onset of symptoms. Specifically, for elderly patients (80+ years) an increase in ambient PM10 concentration by one standard deviation between two and four days after developing symptoms increases the number of deaths by 19 percent of a standard deviation. In addition, higher levels air pollution raise the number of confirmed cases of COVID-19 for all age groups. The timing of effects surrounding the onset of illness suggests that air pollution affects the severity of already-realized infections. We discuss the implications of our results for immediate policy levers to reduce the exposure and level of ambient air pollution, as well as for cost-benefit considerations of policies aiming at sustainable longer-term reductions of pollution levels.
Collapse
|
11
|
Khan Z, Ualiyeva D, Khan A, Zaman N, Sapkota S, Khan A, Ali B, Ghafoor D. A Correlation among the COVID-19 Spread, Particulate Matters, and Angiotensin-Converting Enzyme 2: A Review. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2021; 2021:5524098. [PMID: 34054974 PMCID: PMC8114882 DOI: 10.1155/2021/5524098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
Air pollution (AP) is one of the leading causes of health risks because it causes widespread morbidity and mortality every year. Its impact on the environment includes acid rain and decreased visibility, but more importantly, it also has an impact on human health. The rise of COVID-19 demonstrates the cost of failing to manage AP. COVID-19 can be spread through the air, and atmospheric particulate matters (PMs) can create a good atmosphere for the long-distance spread of the virus. Moreover, these PMs can cause lung cell inflammation, thereby increasing sensitivity and the severity of symptoms in COVID-19 patients. In this study, we emphasized the potential role of PMs in the spread of COVID-19. The relationship among COVID-19, PMs, and angiotensin-converting enzyme 2 (ACE2) (receptor involved in virus entry into lung cells and inflammation) was also summarized.
Collapse
Affiliation(s)
- Zafran Khan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Center for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Daniya Ualiyeva
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Herpetology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Asaf Khan
- Ministry of Education, Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, China
| | - Nasib Zaman
- Center for Biotechnology and Microbiology, University of Swat, Mingora, Pakistan
| | - Sanjeep Sapkota
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ayub Khan
- Computer and Software Technology, University of Swat, Mingora, Pakistan
| | - Babar Ali
- Department of Optometry, Isra University, Islamabad, Pakistan
| | - Dawood Ghafoor
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
12
|
Yang N, Singhera GK, Yan YX, Pieper MP, Leung JM, Sin DD, Dorscheid DR. Olodaterol exerts anti-inflammatory effects on COPD airway epithelial cells. Respir Res 2021; 22:65. [PMID: 33622325 PMCID: PMC7901009 DOI: 10.1186/s12931-021-01659-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 02/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway inflammation is a key feature of chronic obstructive pulmonary disease (COPD) and inhaled corticosteroids (ICS) remain the main treatment for airway inflammation. Studies have noted the increased efficacy of ICS and long-acting beta 2 agonist (LABA) combination therapy in controlling exacerbations and improving airway inflammation than either monotherapy. Further studies have suggested that LABAs may have inherent anti-inflammatory potential, but this has not been well-studied. OBJECTIVE We hypothesize that the LABA olodaterol can inhibit airway inflammation resulting from exposure to respiratory syncytial virus (RSV) via its binding receptor, the β2-adrenergic receptor. METHODS Human bronchial epithelial brushing from patients with and without COPD were cultured into air-liquid interface (ALI) cultures and treated with or without olodaterol and RSV infection to examine the effect on markers of inflammation including interleukin-8 (IL-8) and mucus secretion. The cell line NCI-H292 was utilized for gene silencing of the β2-adrenergic receptor via siRNA as well as receptor blocking via ICI 118,551 and butaxamine. RESULTS At baseline, COPD-ALIs produced greater amounts of IL-8 than control ALIs. Olodaterol reduced RSV-mediated IL-8 secretion in both COPD and control ALIs and also significantly reduced Muc5AC staining in COPD-ALIs infected with RSV. A non-significant reduction was seen in control ALIs. Gene silencing of the β2-adrenergic receptor in NCI-H292 negated the ability of olodaterol to inhibit IL-8 secretion from both RSV infection and lipopolysaccharide stimulus, as did blocking of the receptor with ICI 118,551 and butaxamine. CONCLUSIONS Olodaterol exhibits inherent anti-inflammatory properties on the airway epithelium, in addition to its bronchodilation properties, that is mediated through the β2-adrenergic receptor and independent of ICS usage.
Collapse
Affiliation(s)
- Nan Yang
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gurpreet K Singhera
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Yi Xuan Yan
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Michael P Pieper
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim am Rhein, Germany
| | - Janice M Leung
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Delbert R Dorscheid
- Center for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Mastrangelo P, Chin AA, Tan S, Jeon AH, Ackerley CA, Siu KK, Lee JE, Hegele RG. Identification of RSV Fusion Protein Interaction Domains on the Virus Receptor, Nucleolin. Viruses 2021; 13:261. [PMID: 33567674 PMCID: PMC7915953 DOI: 10.3390/v13020261] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 01/09/2023] Open
Abstract
Nucleolin is an essential cellular receptor to human respiratory syncytial virus (RSV). Pharmacological targeting of the nucleolin RNA binding domain RBD1,2 can inhibit RSV infections in vitro and in vivo; however, the site(s) on RBD1,2 which interact with RSV are not known. We undertook a series of experiments designed to: document RSV-nucleolin co-localization on the surface of polarized MDCK cells using immunogold electron microscopy, to identify domains on nucleolin that physically interact with RSV using biochemical methods and determine their biological effects on RSV infection in vitro, and to carry out structural analysis toward informing future RSV drug development. Results of immunogold transmission and scanning electron microscopy showed RSV-nucleolin co-localization on the cell surface, as would be expected for a viral receptor. RSV, through its fusion protein (RSV-F), physically interacts with RBD1,2 and these interactions can be competitively inhibited by treatment with Palivizumab or recombinant RBD1,2. Treatment with synthetic peptides derived from two 12-mer domains of RBD1,2 inhibited RSV infection in vitro, with structural analysis suggesting these domains are potentially feasible for targeting in drug development. In conclusion, the identification and characterization of domains of nucleolin that interact with RSV provide the essential groundwork toward informing design of novel nucleolin-targeting compounds in RSV drug development.
Collapse
Affiliation(s)
- Peter Mastrangelo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Allysia A. Chin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Stephanie Tan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Amy H. Jeon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Cameron A. Ackerley
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Karen K. Siu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
| | - Richard G. Hegele
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.M.); (A.A.C.); (S.T.); (A.H.J.); (C.A.A.); (K.K.S.); (J.E.L.)
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
14
|
Vahabi N, Salehi M, Duarte JD, Mollalo A, Michailidis G. County-level longitudinal clustering of COVID-19 mortality to incidence ratio in the United States. Sci Rep 2021; 11:3088. [PMID: 33542313 PMCID: PMC7862666 DOI: 10.1038/s41598-021-82384-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/18/2021] [Indexed: 01/30/2023] Open
Abstract
As of November 12, 2020, the mortality to incidence ratio (MIR) of COVID-19 was 5.8% in the US. A longitudinal model-based clustering system on the disease trajectories over time was used to identify "vulnerable" clusters of counties that would benefit from allocating additional resources by federal, state and county policymakers. County-level COVID-19 cases and deaths, together with a set of potential risk factors were collected for 3050 U.S. counties during the 1st wave of COVID-19 (Mar25-Jun3, 2020), followed by similar data for 1344 counties (in the "sunbelt" region of the country) during the 2nd wave (Jun4-Sep2, 2020), and finally for 1055 counties located broadly in the great plains region of the country during the 3rd wave (Sep3-Nov12, 2020). We used growth mixture models to identify clusters of counties exhibiting similar COVID-19 MIR growth trajectories and risk-factors over time. The analysis identifies "more vulnerable" clusters during the 1st, 2nd and 3rd waves of COVID-19. Further, tuberculosis (OR 1.3-2.1-3.2), drug use disorder (OR 1.1), hepatitis (OR 13.1), HIV/AIDS (OR 2.3), cardiomyopathy and myocarditis (OR 1.3), diabetes (OR 1.2), mesothelioma (OR 9.3) were significantly associated with increased odds of being in a more vulnerable cluster. Heart complications and cancer were the main risk factors increasing the COVID-19 MIR (range 0.08-0.52% MIR↑). We identified "more vulnerable" county-clusters exhibiting the highest COVID-19 MIR trajectories, indicating that enhancing the capacity and access to healthcare resources would be key to successfully manage COVID-19 in these clusters. These findings provide insights for public health policymakers on the groups of people and locations they need to pay particular attention while managing the COVID-19 epidemic.
Collapse
Affiliation(s)
- Nasim Vahabi
- Informatics Institute, University of Florida, Gainesville, FL, USA
| | - Masoud Salehi
- Department of Biostatistics, College of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Julio D Duarte
- Center for Pharmacogenomics, Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abolfazl Mollalo
- Department of Public Health and Prevention Sciences, School of Health Sciences, Baldwin Wallace University, Berea, OH, USA
| | | |
Collapse
|
15
|
Woodby B, Arnold MM, Valacchi G. SARS-CoV-2 infection, COVID-19 pathogenesis, and exposure to air pollution: What is the connection? Ann N Y Acad Sci 2021; 1486:15-38. [PMID: 33022781 PMCID: PMC7675684 DOI: 10.1111/nyas.14512] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Exposure to air pollutants has been previously associated with respiratory viral infections, including influenza, measles, mumps, rhinovirus, and respiratory syncytial virus. Epidemiological studies have also suggested that air pollution exposure is associated with increased cases of SARS-CoV-2 infection and COVID-19-associated mortality, although the molecular mechanisms by which pollutant exposure affects viral infection and pathogenesis of COVID-19 remain unknown. In this review, we suggest potential molecular mechanisms that could account for this association. We have focused on the potential effect of exposure to nitrogen dioxide (NO2 ), ozone (O3 ), and particulate matter (PM) since there are studies investigating how exposure to these pollutants affects the life cycle of other viruses. We have concluded that pollutant exposure may affect different stages of the viral life cycle, including inhibition of mucociliary clearance, alteration of viral receptors and proteases required for entry, changes to antiviral interferon production and viral replication, changes in viral assembly mediated by autophagy, prevention of uptake by macrophages, and promotion of viral spread by increasing epithelial permeability. We believe that exposure to pollutants skews adaptive immune responses toward bacterial/allergic immune responses, as opposed to antiviral responses. Exposure to air pollutants could also predispose exposed populations toward developing COIVD-19-associated immunopathology, enhancing virus-induced tissue inflammation and damage.
Collapse
Affiliation(s)
- Brittany Woodby
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
| | - Michelle M. Arnold
- Department of Microbiology and ImmunologyCenter for Molecular and Tumor VirologyLouisiana State University Health Sciences CenterShreveportLouisiana
| | - Giuseppe Valacchi
- Animal Science DepartmentPlants for Human Health Institute, N.C. Research Campus, North Carolina State UniversityKannapolisNorth Carolina
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly
- Department of Food and NutritionKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
16
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
17
|
Pozzer A, Dominici F, Haines A, Witt C, Münzel T, Lelieveld J. Regional and global contributions of air pollution to risk of death from COVID-19. Cardiovasc Res 2020; 116:2247-2253. [PMID: 33236040 PMCID: PMC7797754 DOI: 10.1093/cvr/cvaa288] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/03/2020] [Accepted: 09/30/2020] [Indexed: 12/14/2022] Open
Abstract
AIMS The risk of mortality from the coronavirus disease that emerged in 2019 (COVID-19) is increased by comorbidity from cardiovascular and pulmonary diseases. Air pollution also causes excess mortality from these conditions. Analysis of the first severe acute respiratory syndrome coronavirus (SARS-CoV-1) outcomes in 2003, and preliminary investigations of those for SARS-CoV-2 since 2019, provide evidence that the incidence and severity are related to ambient air pollution. We estimated the fraction of COVID-19 mortality that is attributable to the long-term exposure to ambient fine particulate air pollution. METHODS AND RESULTS We characterized global exposure to fine particulates based on satellite data, and calculated the anthropogenic fraction with an atmospheric chemistry model. The degree to which air pollution influences COVID-19 mortality was derived from epidemiological data in the USA and China. We estimate that particulate air pollution contributed ∼15% (95% confidence interval 7-33%) to COVID-19 mortality worldwide, 27% (13 - 46%) in East Asia, 19% (8-41%) in Europe, and 17% (6-39%) in North America. Globally, ∼50-60% of the attributable, anthropogenic fraction is related to fossil fuel use, up to 70-80% in Europe, West Asia, and North America. CONCLUSION Our results suggest that air pollution is an important cofactor increasing the risk of mortality from COVID-19. This provides extra motivation for combining ambitious policies to reduce air pollution with measures to control the transmission of COVID-19.
Collapse
Affiliation(s)
- Andrea Pozzer
- International Center for Theoretical Physics, Trieste, Italy
- Max Planck Institute for Chemistry, Atmospheric Chemistry
Department, Mainz, Germany
| | - Francesca Dominici
- Harvard T.H. Chan School of Public Health, Department of
Biostatistics, Boston, MA, USA
| | - Andy Haines
- Centre for Climate Change and Planetary Health, London School of Hygiene and
Tropical Medicine, London, UK
| | - Christian Witt
- Charité University Medicine, Pneumological Oncology and
Transplantology, Berlin, Germany
| | - Thomas Münzel
- University Medical Center of the Johannes Gutenberg University,
Mainz, Germany
- German Center for Cardiovascular Research, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry
Department, Mainz, Germany
- The Cyprus Institute, Climate and Atmosphere Research Center,
Nicosia, Cyprus
| |
Collapse
|
18
|
Wu X, Nethery RC, Sabath MB, Braun D, Dominici F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. SCIENCE ADVANCES 2020; 6:eabd4049. [PMID: 33148655 PMCID: PMC7673673 DOI: 10.1126/sciadv.abd4049] [Citation(s) in RCA: 547] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/18/2020] [Indexed: 05/17/2023]
Abstract
Assessing whether long-term exposure to air pollution increases the severity of COVID-19 health outcomes, including death, is an important public health objective. Limitations in COVID-19 data availability and quality remain obstacles to conducting conclusive studies on this topic. At present, publicly available COVID-19 outcome data for representative populations are available only as area-level counts. Therefore, studies of long-term exposure to air pollution and COVID-19 outcomes using these data must use an ecological regression analysis, which precludes controlling for individual-level COVID-19 risk factors. We describe these challenges in the context of one of the first preliminary investigations of this question in the United States, where we found that higher historical PM2.5 exposures are positively associated with higher county-level COVID-19 mortality rates after accounting for many area-level confounders. Motivated by this study, we lay the groundwork for future research on this important topic, describe the challenges, and outline promising directions and opportunities.
Collapse
Affiliation(s)
- X Wu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - R C Nethery
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - M B Sabath
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - D Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - F Dominici
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
19
|
Comunian S, Dongo D, Milani C, Palestini P. Air Pollution and Covid-19: The Role of Particulate Matter in the Spread and Increase of Covid-19's Morbidity and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4487. [PMID: 32580440 PMCID: PMC7345938 DOI: 10.3390/ijerph17124487] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Sars-cov-2 virus (Covid-19) is a member of the coronavirus family and is responsible for the pandemic recently declared by the World Health Organization. A positive correlation has been observed between the spread of the virus and air pollution, one of the greatest challenges of our millennium. Covid-19 could have an air transmission and atmospheric particulate matter (PM) could create a suitable environment for transporting the virus at greater distances than those considered for close contact. Moreover, PM induces inflammation in lung cells and exposure to PM could increase the susceptibility and severity of the Covid-19 patient symptoms. The new coronavirus has been shown to trigger an inflammatory storm that would be sustained in the case of pre-exposure to polluting agents. In this review, we highlight the potential role of PM in the spread of Covid-19, focusing on Italian cities whose PM daily concentrations were found to be higher than the annual average allowed during the months preceding the epidemic. Furthermore, we analyze the positive correlation between the virus spread, PM, and angiotensin-converting enzyme 2 (ACE2), a receptor involved in the entry of the virus into pulmonary cells and inflammation.
Collapse
Affiliation(s)
- Silvia Comunian
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| | | | - Chiara Milani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- NeuroMi, Milan Centre for Neuroscience, University of Milano-Bicocca, 20900 Monza, Italy
- POLARIS Research Centre, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
20
|
Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32511651 DOI: 10.1101/2020.04.05.20054502] [Citation(s) in RCA: 389] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES United States government scientists estimate that COVID-19 may kill tens of thousands of Americans. Many of the pre-existing conditions that increase the risk of death in those with COVID-19 are the same diseases that are affected by long-term exposure to air pollution. We investigated whether long-term average exposure to fine particulate matter (PM 2.5 ) is associated with an increased risk of COVID-19 death in the United States. DESIGN A nationwide, cross-sectional study using county-level data. DATA SOURCES COVID-19 death counts were collected for more than 3,000 counties in the United States (representing 98% of the population) up to April 22, 2020 from Johns Hopkins University, Center for Systems Science and Engineering Coronavirus Resource Center. MAIN OUTCOME MEASURES We fit negative binomial mixed models using county-level COVID-19 deaths as the outcome and county-level long-term average of PM 2.5 as the exposure. In the main analysis, we adjusted by 20 potential confounding factors including population size, age distribution, population density, time since the beginning of the outbreak, time since state issuance of the stay-at-home order, hospital beds, number of individuals tested, weather, and socioeconomic and behavioral variables such as obesity and smoking. We included a random intercept by state to account for potential correlation in counties within the same state. We conducted more than 68 additional sensitivity analyses. RESULTS We found that an increase of only 1 μg/m 3 in PM 2.5 is associated with an 8% increase in the COVID-19 death rate (95% confidence interval [CI]: 2%, 15%). The results were statistically significant and robust to secondary and sensitivity analyses. CONCLUSIONS A small increase in long-term exposure to PM 2.5 leads to a large increase in the COVID-19 death rate. Despite the inherent limitations of the ecological study design, our results underscore the importance of continuing to enforce existing air pollution regulations to protect human health both during and after the COVID-19 crisis. The data and code are publicly available so our analyses can be updated routinely.
Collapse
|
21
|
Mack SM, Madl AK, Pinkerton KE. Respiratory Health Effects of Exposure to Ambient Particulate Matter and Bioaerosols. Compr Physiol 2019; 10:1-20. [PMID: 31853953 PMCID: PMC7553137 DOI: 10.1002/cphy.c180040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers have been studying the respiratory health effects of ambient air pollution for more than 70 years. While air pollution as a whole can include gaseous, solid, and liquid constituents, this article focuses only on the solid and liquid fractions, termed particulate matter (PM). Although PM may contain anthropogenic, geogenic, and/or biogenic fractions, in this article, particles that originate from microbial, fungal, animal, or plant sources are distinguished from PM as bioaerosols. Many advances have been made toward understanding which particle and exposure characteristics most influence deposition and clearance processes in the respiratory tract. These characteristics include particle size, shape, charge, and composition as well as the exposure concentration and dose rate. Exposure to particles has been directly associated with the exacerbation and, under certain circumstances, onset of respiratory disease. The circumstances of exposure leading to disease are dependent on stressors such as human activity level and changing particle composition in the environment. Historically, researchers assumed that bioaerosols were too large to be inhaled into the deep lung, and thus, not applicable for study in conjunction with PM2.5 (the 2.5-μm and below size fraction that can reach the deep lung); however, this concept is beginning to be challenged. While there is extensive research on the health effects of PM and bioaerosols independent of each other, only limited work has been performed on their coexposure. Studying these two particle types as dual stressors to the respiratory system may aid in more thoroughly understanding the etiology of respiratory injury and disease. © 2020 American Physiological Society. Compr Physiol 10:1-20, 2020.
Collapse
Affiliation(s)
- Savannah M. Mack
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Amy K. Madl
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| | - Kent E. Pinkerton
- Center for Health and the Environment, John Muir Institute of the Environment, University of California, Davis, California, USA
| |
Collapse
|
22
|
Rodrigues AF, Santos AM, Ferreira AM, Marino R, Barreira ME, Cabeda JM. Year-Long Rhinovirus Infection is Influenced by Atmospheric Conditions, Outdoor Air Virus Presence, and Immune System-Related Genetic Polymorphisms. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:340-349. [PMID: 31350695 DOI: 10.1007/s12560-019-09397-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/12/2019] [Indexed: 05/28/2023]
|
23
|
Croft DP, Zhang W, Lin S, Thurston SW, Hopke PK, Masiol M, Squizzato S, van Wijngaarden E, Utell MJ, Rich DQ. The Association between Respiratory Infection and Air Pollution in the Setting of Air Quality Policy and Economic Change. Ann Am Thorac Soc 2019; 16:321-330. [PMID: 30398895 PMCID: PMC6394122 DOI: 10.1513/annalsats.201810-691oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/02/2018] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Fine particulate matter air pollution of 2.5 μm or less in diameter (PM2.5) has been associated with an increased risk of respiratory disease, but assessments of specific respiratory infections in adults are lacking. OBJECTIVES To estimate the rate of respiratory infection healthcare encounters in adults associated with acute increases in PM2.5 concentrations. METHODS Using case-crossover methods, we studied 498,118 adult New York State residents with a primary diagnosis of influenza, bacterial pneumonia, or culture-negative pneumonia upon hospitalization or emergency department (ED) visit (2005-2016). We estimated the relative rate of healthcare encounters associated with increases in PM2.5 in the previous 1-7 days and explored differences before (2005-2007), during (2008-2013), and after (2014-2016) implementation of air quality policies and economic changes. RESULTS Interquartile range increases in PM2.5 over the previous 7 days were associated with increased excess rates (ERs) of culture-negative pneumonia hospitalizations (2.5%; 95% confidence interval [CI], 1.7-3.2%) and ED visits (2.5%; 95% CI, 1.4-3.6%), and increased ERs of influenza ED visits (3.9%; 95% CI, 2.1-5.6%). Bacterial pneumonia hospitalizations, but not ED visits, were associated with increases in PM2.5 and, though imprecise, were of a similar magnitude to culture-negative pneumonia (Lag Day 6 ER, 2.3%; 95% CI, 0.3-4.3). Increased relative rates of influenza ED visits and culture-negative pneumonia hospitalizations were generally larger in the "after" period (P < 0.025 for both outcomes), compared with the "during" period, despite reductions in overall PM2.5 concentrations. CONCLUSIONS Increased rates of culture-negative pneumonia and influenza were associated with increased PM2.5 concentrations during the previous week, which persisted despite reductions in PM2.5 from air quality policies and economic changes. Though unexplained, this temporal variation may reflect altered toxicity of different PM2.5 mixtures or increased pathogen virulence.
Collapse
Affiliation(s)
| | - Wangjian Zhang
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York; and
| | - Shao Lin
- Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York; and
| | | | - Philip K. Hopke
- Department of Public Health Sciences, and
- Institute for a Sustainable Environment, and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, New York
| | - Mauro Masiol
- Department of Public Health Sciences, and
- Institute for a Sustainable Environment, and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, New York
| | - Stefania Squizzato
- Department of Public Health Sciences, and
- Institute for a Sustainable Environment, and Center for Air Resources Engineering and Science, Clarkson University, Potsdam, New York
| | - Edwin van Wijngaarden
- Department of Public Health Sciences, and
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Mark J. Utell
- Division of Pulmonary and Critical Care Medicine
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - David Q. Rich
- Division of Pulmonary and Critical Care Medicine
- Department of Public Health Sciences, and
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
24
|
Mastrangelo P, Norris MJ, Duan W, Barrett EG, Moraes TJ, Hegele RG. Targeting Host Cell Surface Nucleolin for RSV Therapy: Challenges and Opportunities. Vaccines (Basel) 2017; 5:vaccines5030027. [PMID: 28925950 PMCID: PMC5620558 DOI: 10.3390/vaccines5030027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/30/2022] Open
Abstract
Nucleolin (NCL) has been reported as a cellular receptor for the human respiratory syncytial virus (RSV). We studied the effects of re-purposing AS1411, an anti-cancer compound that binds cell surface NCL, as a possible novel strategy for RSV therapy in vitro and in vivo. AS1411 was administered to RSV-infected cultures of non-polarized (HEp-2) and polarized (MDCK) epithelial cells and to virus-infected mice and cotton rats. Results of in vitro experiments showed that AS1411, used in micromolar concentrations, was associated with decreases in the number of virus-positive cells. Intranasal administration of AS1411 (50 mg/kg) to RSV-infected mice and cotton rats was associated with partial reductions in lung viral titers, decreased virus-associated airway inflammation, and decreased IL-4/IFN-γ ratios when compared to untreated, infected animals. In conclusion, our findings indicate that therapeutic use of AS1411 has modest effects on RSV replication and host response. While the results underscore the challenges of targeting cell surface NCL as a potential novel strategy for RSV therapy, they also highlight the potential of cell surface NCL as a therapeutic target.
Collapse
Affiliation(s)
- Peter Mastrangelo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Michael J Norris
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON M5G 1L5, Canada.
| | - Wenming Duan
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON M5G 1L5, Canada.
| | - Edward G Barrett
- Lovelace Respiratory Research Institute, Albuquerque, NM 87105, USA.
| | - Theo J Moraes
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Paediatrics, The Hospital for Sick Children, Toronto, ON M5G 1L5, Canada.
| | - Richard G Hegele
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 1L5, Canada.
| |
Collapse
|
25
|
Zhou J, Zhang X, Liu S, Wang Z, Chen Q, Wu Y, He Z, Huang Z. Genetic association of TLR4 Asp299Gly, TLR4 Thr399Ile, and CD14 C-159T polymorphisms with the risk of severe RSV infection: a meta-analysis. Influenza Other Respir Viruses 2016; 10:224-33. [PMID: 26901241 PMCID: PMC4814857 DOI: 10.1111/irv.12378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2016] [Indexed: 01/11/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequent cause of hospitalization in infants worldwide. It is recognized by Toll‐like receptor 4 (TLR 4) and cluster of differentiation 14 (CD14) in the innate immune response. Previous case–control studies reported the influence of TLR4 Asp299Gly, TLR4 Thr399Ile, and CD14 C‐159T polymorphisms on the risk of severe RSV infection. However, a decisive conclusion has not been achieved. Therefore, we performed this meta‐analysis to examine the association between these three polymorphisms and the development of RSV bronchiolitis. A systematic literature search was performed using the PubMed, EMbase, Google Scholar Search, China National Knowledge Infrastructure, China Biological Medicine, and Wanfang Databases. The data were extracted and pooled odds ratios with 95% confidence intervals were calculated under six genetic models. A total of six studies with 1009 cases and 1348 controls, three studies with 473 cases and 481 controls, or four studies with 325 cases and 650 controls relating to each of the three polymorphisms were included in this meta‐analysis. The analyzed data indicated that all of these polymorphisms were not associated with the risk of severe RSV infection. This is the first meta‐analysis to investigate the relationship of TLR4 Asp299Gly, TLR4 Thr399Ile, and CD14 C‐159T polymorphisms with the risk of severe RSV infection. Although the results of this retrospective analysis indicated a lack of the association, more extensive multicentric studies with large sample sizes are necessary to provide a more reliable estimation of the association between these three polymorphisms and RSV bronchiolitis susceptibility.
Collapse
Affiliation(s)
- Jiahui Zhou
- China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, Guangdong, China.,Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xiangning Zhang
- China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, Guangdong, China.,Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Shuming Liu
- China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, Guangdong, China.,Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Ziyou Wang
- China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, Guangdong, China.,Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Qicong Chen
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, China
| | - Yongfu Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhiwei He
- China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, Guangdong, China.,Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| | - Zunnan Huang
- China-America Cancer Research Institute, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China.,Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Dongguan, Guangdong, China.,Department of Pathophysiology, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|
26
|
Possible molecular mechanisms linking air pollution and asthma in children. BMC Pulm Med 2014; 14:31. [PMID: 24581224 PMCID: PMC3941253 DOI: 10.1186/1471-2466-14-31] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/03/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Air pollution has many effects on the health of both adults and children, but children's vulnerability is unique. The aim of this review is to discuss the possible molecular mechanisms linking air pollution and asthma in children, also taking into account their genetic and epigenetic characteristics. RESULTS Air pollutants appear able to induce airway inflammation and increase asthma morbidity in children. A better definition of mechanisms related to pollution-induced airway inflammation in asthmatic children is needed in order to find new clinical and therapeutic strategies for preventing the exacerbation of asthma. Moreover, reducing pollution-induced oxidative stress and consequent lung injury could decrease children's susceptibility to air pollution. This would be extremely useful not only for the asthmatic children who seem to have a genetic susceptibility to oxidative stress, but also for the healthy population. In addition, epigenetics seems to have a role in the lung damage induced by air pollution. Finally, a number of epidemiological studies have demonstrated that exposure to common air pollutants plays a role in the susceptibility to, and severity of respiratory infections. CONCLUSIONS Air pollution has many negative effects on pediatric health and it is recognised as a serious health hazard. There seems to be an association of air pollution with an increased risk of asthma exacerbations and acute respiratory infections. However, further studies are needed in order to clarify the specific mechanism of action of different air pollutants, identify genetic polymorphisms that modify airway responses to pollution, and investigate the effectiveness of new preventive and/or therapeutic approaches for subjects with low antioxidant enzyme levels. Moreover, as that epigenetic changes are inheritable during cell division and may be transmitted to subsequent generations, it is very important to clarify the role of epigenetics in the relationship between air pollution and lung disease in asthmatic and healthy children.
Collapse
|
27
|
Ciencewicki JM, Wang X, Marzec J, Serra ME, Bell DA, Polack FP, Kleeberger SR. A genetic model of differential susceptibility to human respiratory syncytial virus (RSV) infection. FASEB J 2014; 28:1947-56. [PMID: 24421397 DOI: 10.1096/fj.13-239855] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Respiratory syncytial virus (RSV) is the primary cause of lower respiratory tract infection during childhood and causes severe symptoms in some patients, which may cause hospitalization and death. Mechanisms for differential responses to RSV are unknown. Our objective was to develop an in vitro model of RSV infection to evaluate interindividual variation in response to RSV and identify susceptibility genes. Populations of human-derived HapMap lymphoblastoid cell lines (LCLs) were infected with RSV. Compared with controls, RSV-G mRNA expression varied from ~1- to 400-fold between LCLs. Basal expression of a number of gene transcripts, including myxovirus (influenza virus) resistance 1 (MX1), significantly correlated with RSV-G expression in HapMap LCLs. Individuals in a case-control population of RSV-infected children who were homozygous (n=94) or heterozygous (n=172) for the predicted deleterious A allele in a missense G/A SNP in MX1 had significantly greater risk for developing severe RSV disease relative to those with the major allele (n=108) (χ(2)=5.305, P=0.021; OR: 1.750, 95% CI: 1.110, 2.758, P=0.021). We conclude that genetically diverse human LCLs enable identification of susceptibility genes (e.g., MX1) for RSV disease severity in children, providing insight for disease risk.
Collapse
Affiliation(s)
- Jonathan M Ciencewicki
- 1Laboratory of Respiratory Biology National Institute of Environmental Health Sciences, 111 T. W. Alexander Dr., Bldg. 101, MD D-201, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Respiratory syncytial virus (RSV) is a major worldwide pathogen for which there is still no effective vaccine or antiviral treatment available, and immunoprophylaxis with RSV-specific antibodies (e.g., palivizumab) is used in limited clinical settings. In this review, we discuss virus-host interactions relevant to RSV pathobiology and how advances in cell and systems biology have accelerated knowledge in this area. We also highlight recent advances in understanding the relationship between RSV bronchiolitis and sequelae of recurrent wheezing and asthma, new findings into an intriguing interaction between RSV and air pollution, and exciting developments toward the goal of realizing a safe and effective RSV vaccine.
Collapse
Affiliation(s)
- Peter Mastrangelo
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 6231-1 King’s College Circle, Toronto, ON M5S 1A8 Canada
| | - Richard G. Hegele
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 6231-1 King’s College Circle, Toronto, ON M5S 1A8 Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON Canada
| |
Collapse
|
29
|
Jedrychowski WA, Perera FP, Spengler JD, Mroz E, Stigter L, Flak E, Majewska R, Klimaszewska-Rembiasz M, Jacek R. Intrauterine exposure to fine particulate matter as a risk factor for increased susceptibility to acute broncho-pulmonary infections in early childhood. Int J Hyg Environ Health 2013; 216:395-401. [PMID: 23333083 DOI: 10.1016/j.ijheh.2012.12.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 11/06/2012] [Accepted: 12/20/2012] [Indexed: 11/24/2022]
Abstract
Over the last decades many epidemiologic studies considered the morbidity patterns for respiratory diseases and lung function of children in the context of ambient air pollution usually measured in the postnatal period. The main purpose of this study is to assess the impact of prenatal exposure to fine particulate matter (PM2.5) on the recurrent broncho-pulmonary infections in early childhood. The study included 214 children who had measurements of personal prenatal PM2.5 exposure and regularly collected data on the occurrence of acute bronchitis and pneumonia diagnosed by a physician from birth over the seven-year follow-up. The effect of prenatal exposure to PM2.5 was adjusted in the multivariable logistic models for potential confounders, such as prenatal and postnatal ETS (environmental tobacco smoke), city residence area as a proxy of postnatal urban exposure, children's sensitization to domestic aeroallergens, and asthma. In the subgroup of children with available PM2.5 indoor levels, the effect of prenatal exposure was additionally adjusted for indoor exposure as well. The adjusted odds ratio (OR) for incidence of recurrent broncho-pulmonary infections (five or more spells of bronchitis and/or pneumonia) recorded in the follow-up significantly correlated in a dose-response manner with the prenatal PM2.5 level (OR=2.44, 95%CI: 1.12-5.36). In conclusion, the study suggests that prenatal exposure to PM2.5 increases susceptibility to respiratory infections and may program respiratory morbidity in early childhood. The study also provides evidence that the target value of 20μg/m(3) for the 24-h mean level of PM2.5 protects unborn babies better than earlier established EPA guidelines.
Collapse
Affiliation(s)
- Wiesław A Jedrychowski
- Chair of Epidemiology and Preventive Medicine, Jagiellonian University Medical College in Krakow, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lin YK, Chang CK, Chang SC, Chen PS, Lin C, Wang YC. Temperature, nitrogen dioxide, circulating respiratory viruses and acute upper respiratory infections among children in Taipei, Taiwan: a population-based study. ENVIRONMENTAL RESEARCH 2013; 120:109-18. [PMID: 23040210 PMCID: PMC7127042 DOI: 10.1016/j.envres.2012.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 08/30/2012] [Accepted: 09/11/2012] [Indexed: 05/22/2023]
Abstract
OBJECTIVE This study investigated whether outpatient visits of acute upper respiratory infections for children aged less than 15 years are associated with temperature, air pollutants and circulating respiratory viruses in Taipei, Taiwan, from 2003 to 2007. METHODS Outpatient records for acute upper respiratory infections (ICD9 CM codes: 460, 462, 463,464, 465.9 and 487) in a randomly selected sample (n=39,766 children in 2005) was used to estimate the cumulative relative risks (RR) associated with average temperature lasting for 8 days (lag 0-7 days), air pollutants (NO2, O3 and PM(2.5)) lasting for 6 days (lag 0-5 days), and virus-specific positive isolation rate lasting for 11 days (lag 0-10 days) using distributed lag non-linear models after controlling for relative humidity, wind speed, day of week, holiday effects and long-term trend. RESULTS Average temperature of 33 °C was associated with the lowest risk for outpatient visits of acute upper respiratory infections. Relative to 33 °C, cumulative 8-day RR was highest at 15 °C of ambient average temperature [RR=1.94; 95% confidence interval (CI): 1.78, 2.11]. With the first quartile as reference, cumulative 6-day RRs were 1.25 (95% CI: 1.21, 1.29) for NO2, 1.04 (95% CI: 1.01, 1.06) for O3, and 1.00 (95% CI: 0.98, 1.03) for PM(2.5) at the 95th percentile. Per-standard deviation (SD) increase of virus-specific isolation rate for influenza type A (SD=13.2%), type B (SD=8.76%), and adenoviruses (SD=5.25%) revealed statistical significance for overall 11-day RRs of 1.02 (95% CI: 1.01, 1.03), 1.05 (95% CI: 1.03, 1.06) and 1.04 (95% CI: 1.03, 1.05), respectively. CONCLUSIONS Current study suggested a positive association between outpatient visits for acute upper respiratory infections and ambient environment factors, including average temperature, air pollutants, and circulating respiratory viruses.
Collapse
Affiliation(s)
- Yu-Kai Lin
- Institute of Environmental Health, College of Public Health, National Taiwan University, 17 Xu-Zhou Road, Taipei 10055, Taiwan
- Environmental and Occupational Medicine and Epidemiology Program, Department of Environmental Health, Harvard School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Chin-Kuo Chang
- Department of Health Service and Population Research, King’s College London, Denmark Hill, London SE5 8AF, UK
| | - Shuenn-Chin Chang
- School of Public Health, National Defense Medical Center, 161 Sec. 6, Min-Chuan East Road, Taipei 114, Taiwan
- Taiwan Environmental Protection Administration, 83 Sec. 1, Jhonghua Road, Taipei City 10042, Taiwan
| | - Pei-Shih Chen
- Institute and Department of Public Health, College of Health Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, College of Ocean Engineering, National Kaohsiung Marine University, 142 Haijhuan Road, Nanzih District, Kaohsiung City 811, Taiwan
| | - Yu-Chun Wang
- Department of Bioenvironmental Engineering, College of Ocean Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li 320, Taiwan
- Corresponding author at: Department of Bioenvironmental Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Chung Li 320, Taiwan. Fax: +886 3 265 4949.
| |
Collapse
|
31
|
Saravia J, Lee GI, Lomnicki S, Dellinger B, Cormier SA. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: a review. J Biochem Mol Toxicol 2012; 27:56-68. [PMID: 23281110 DOI: 10.1002/jbt.21465] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 10/25/2012] [Accepted: 11/03/2012] [Indexed: 12/19/2022]
Abstract
The health impacts of airborne particulate matter (PM) are of global concern, and the direct implications to the development/exacerbation of lung disease are immediately obvious. Most studies to date have sought to understand mechanisms associated with PM exposure in adults/adult animal models; however, infants are also at significant risk for exposure. Infants are affected differently than adults due to drastic immaturities, both physiologically and immunologically, and it is becoming apparent that they represent a critically understudied population. Highlighting our work funded by the ONES award, in this review we argue the understated importance of utilizing infant models to truly understand the etiology of PM-induced predisposition to severe, persistent lung disease. We also touch upon various mechanisms of PM-mediated respiratory damage, with a focus on the emerging importance of environmentally persistent free radicals (EPFRs) ubiquitously present in combustion-derived PM. In conclusion, we briefly comment on strengths/challenges facing current PM research, while giving perspective on how we may address these challenges in the future.
Collapse
Affiliation(s)
- Jordy Saravia
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
32
|
Cruz-Sanchez TM, Haddrell AE, Hackett TL, Singhera GK, Marchant D, Lekivetz R, Meredith A, Horne D, Knight DA, van Eeden SF, Bai TR, Hegele RG, Dorscheid DR, Agnes GR. Formation of a stable mimic of ambient particulate matter containing viable infectious respiratory syncytial virus and its dry-deposition directly onto cell cultures. Anal Chem 2012. [PMID: 23205519 DOI: 10.1021/ac302174y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epidemiological associations of worse respiratory outcomes from combined exposure to ambient particulate matter (PM) and respiratory viral infection suggest possible interactions between PM and viruses. To characterize outcomes of such exposures, we developed an in vitro mimic of the in vivo event of exposure to PM contaminated with respiratory syncytial virus (RSV). Concentration of infectious RSV stocks and a particle levitation apparatus were the foundations of the methodology developed to generate specific numbers of PM mimics (PM(Mimics)) of known composition for dry, direct deposition onto airway epithelial cell cultures. Three types of PM(Mimics) were generated for this study: (i) carbon alone (P(C)), (ii) carbon and infectious RSV (P(C+RSV)), and (iii) aerosols consisting of RSV (A(RSV)). P(C+RSV) were stable in solution and harbored infectious RSV for up to 6 months. Unlike A(RSV) infection, P(C+RSV) infection was found to be dynamin dependent and to cause lysosomal rupture. Cells dosed with PM(Mimics) comprised of RSV (A(RSV)), carbon (P(C)), or RSV and carbon (P(C+RSV)) responded differentially as exemplified by the secretion patterns of IL-6 and IL-8. Upon infection, and prior to lung cell death due to viral infection, regression analysis of these two mediators in response to incubation with A(RSV), P(C), or P(C+RSV) yielded higher concentrations upon infection with the latter and at earlier time points than the other PM(Mimics). In conclusion, this experimental platform provides an approach to study the combined effects of PM-viral interactions and airway epithelial exposures in the pathogenesis of respiratory diseases involving inhalation of environmental agents.
Collapse
Affiliation(s)
- Teresita M Cruz-Sanchez
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Epidemiological and toxicological research continues to support a link between urban air pollution and an increased incidence and/or severity of airway disease. Detrimental effects of ozone (O(3)), nitrogen dioxide (NO(2)) and particulate matter (PM), as well as traffic-related pollution as a whole, on respiratory symptoms and function are well documented. Not only do we have strong epidemiological evidence of a relationship between air pollution and exacerbation of asthma and respiratory morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD), but recent studies, particularly in urban areas, have suggested a role for pollutants in the development of both asthma and COPD. Similarly, while prevalence and severity of atopic conditions appear to be more common in urban compared with rural communities, evidence is emerging that traffic-related pollutants may contribute to the development of allergy. Furthermore, numerous epidemiological and experimental studies suggest an association between exposure to NO(2) , O(3) , PM and combustion products of biomass fuels and an increased susceptibility to and morbidity from respiratory infection. Given the considerable contribution that traffic emissions make to urban air pollution researchers have sought to characterize the relative toxicity of traffic-related PM pollutants. Recent advances in mechanisms implicated in the association of air pollutants and airway disease include epigenetic alteration of genes by combustion-related pollutants and how polymorphisms in genes involved in antioxidant pathways and airway inflammation can modify responses to air pollution exposures. Other interesting epidemiological observations related to increased host susceptibility include a possible link between chronic PM exposure during childhood and vulnerability to COPD in adulthood, and that infants subjected to higher prenatal levels of air pollution may be at greater risk of developing respiratory conditions. While the characterization of pollutant components and sources promise to guide pollution control strategies, the identification of susceptible subpopulations will be necessary if targeted therapy/prevention of pollution-induced respiratory diseases is to be developed.
Collapse
Affiliation(s)
- F J Kelly
- MRC-HPA Centre for Environment and Health, King's College, London, 150 Stamford Street, London SE1 9NH, UK.
| | | |
Collapse
|
34
|
Differential expression of cytokine transcripts in neonatal and adult ovine alveolar macrophages in response to respiratory syncytial virus or toll-like receptor ligation. Vet Immunol Immunopathol 2010; 136:55-64. [PMID: 20207014 DOI: 10.1016/j.vetimm.2010.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 02/06/2023]
Abstract
Alveolar macrophages (AMvarphis) secrete regulatory molecules that are believed to be critical in maintaining normal lung homeostasis. However, in response to activating signals, AMvarphis have been shown to become highly phagocytic cells capable of secreting significant levels of pro-inflammatory cytokines. There is evidence to suggest that susceptibility of Mvarphi subpopulations to viral infection, and their subsequent cytokine/chemokine response, is dependent on age of the host. In the present study, we compared bovine respiratory syncytial virus (BRSV) replication and induction of cytokine responses in neonatal ovine AMvarphis to those cells isolated from adult animals. While neonatal AMvarphis could be infected with BRSV, viral replication was limited as previously shown for AMvarphis from mature animals. Interestingly, following BRSV infection, peak mRNA levels of IL-1beta and IL-8 in neonatal AMvarphi were several fold higher than levels induced in adult AMvarphis. In addition, peak mRNA expression for the cytokines examined occurred at earlier time points in neonatal AMvarphis compared to adult AMvarphis. However, the data indicated that viral replication was not required for the induction of specific cytokines in either neonatal or adult AMvarphis. TLR3 and TLR4 agonists induced significantly higher levels of cytokine transcripts than BRSV in both neonatal and adult AMvarphis. It was recently proposed that immaturity of the neonatal immune system extends from production of pro-inflammatory cytokines to regulation of such responses. Differential regulation of cytokines in neonatal AMvarphis compared to adult AMvarphis in response to RSV could be a contributory factor to more severe clinical episodes seen in neonates.
Collapse
|
35
|
|
36
|
Sutton TC, Tayyari F, Khan MA, Manson HE, Hegele RG. T helper 1 background protects against airway hyperresponsiveness and inflammation in guinea pigs with persistent respiratory syncytial virus infection. Pediatr Res 2007; 61:525-9. [PMID: 17413871 DOI: 10.1203/pdr.0b013e3180459f5b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A family history of allergy has been implicated in children who develop post-bronchiolitis wheezing and asthma. In a guinea pig model of respiratory syncytial virus (RSV) lung infection, we evaluated the role of host Th1 background (either genetic or induced) on the development of a persistent infection, nonspecific airway hyperresponsiveness (AHR) and airway inflammation. Allergy resistant/T helper 1 (Th1)-skewed strain 2 guinea pigs (STR2) and cytosine phosphate guanine oligodeoxynucleotides (CpG-ODN) (Th1 stimuli) pretreated Cam Hartley guinea pigs (CH) were inoculated with RSV and compared with virus-inoculated allergy-susceptible/Th2-skewed CHs and to sham-inoculated STR2 and CH, 60 d post-inoculation. We measured titers of intrapulmonary RSV, lung interferon (IFN)-gamma and interleukin (IL)-5 mRNA expression, AHR and airway T cells and eosinophils. All virus-inoculated groups of animals showed evidence of persistent RSV lung infection; however, Th2-skewed guinea pigs had virus-associated AHR and significantly greater levels of airway T cells and eosinophils. In conclusion, RSV can establish persistent infection of the guinea pig lung regardless of host Th1/Th2 background; however; a host Th1 background limits the extent of virus-associated AHR and airway inflammation. Heterogeneity in virus-host interactions may be relevant to understanding why some children hospitalized for RSV bronchiolitis go on to develop recurrent wheezing/asthma symptoms.
Collapse
Affiliation(s)
- Troy C Sutton
- James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6Z 1Y6
| | | | | | | | | |
Collapse
|
37
|
Cormier SA, Lomnicki S, Backes W, Dellinger B. Origin and health impacts of emissions of toxic by-products and fine particles from combustion and thermal treatment of hazardous wastes and materials. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:810-7. [PMID: 16759977 PMCID: PMC1480527 DOI: 10.1289/ehp.8629] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
High-temperature, controlled incineration and thermal treatment of contaminated soils, sediments, and wastes at Superfund sites are often preferred methods of remediation of contaminated sites under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and related legislation. Although these methods may be executed safely, formation of toxic combustion or reaction by-products is still a cause of concern. Emissions of polycyclic aromatic hydrocarbons (PAHs) ; chlorinated hydrocarbons (CHCs) , including polychlorinated dibenzo-p-dioxins and dibenzofurans ; and toxic metals (e.g., chromium VI) have historically been the focus of combustion and health effects research. However, fine particulate matter (PM) and ultrafine PM, which have been documented to be related to cardiovascular disease, pulmonary disease, and cancer, have more recently become the focus of research. Fine PM and ultrafine PM are effective delivery agents for PAHs, CHCs, and toxic metals. In addition, it has recently been realized that brominated hydrocarbons (including brominated/chlorinated dioxins) , redox-active metals, and redox-active persistent free radicals are also associated with PM emissions from combustion and thermal processes. In this article, we discuss the origin of each of these classes of pollutants, the nature of their association with combustion-generated PM, and the mechanisms of their known and potential health impacts.
Collapse
Affiliation(s)
- Stephania A Cormier
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana 70803, USA.
| | | | | | | |
Collapse
|
38
|
Iwai K, Mizuno S, Miyasaka Y, Mori T. Correlation between suspended particles in the environmental air and causes of disease among inhabitants: cross-sectional studies using the vital statistics and air pollution data in Japan. ENVIRONMENTAL RESEARCH 2005; 99:106-17. [PMID: 16053935 DOI: 10.1016/j.envres.2004.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2003] [Revised: 10/03/2004] [Accepted: 11/16/2004] [Indexed: 05/03/2023]
Abstract
To identify the diseases that correlate with suspended particle concentration in the ambient air, a cross-sectional epidemiological study was conducted using the annual vital statistics and air pollution estimates of 1881 points throughout Japan. The concentration of suspended particulate matters (SPMs) 10 microm or less in diameter were hypothetically converted to PM(2.5) values (converted PM(2.5) or cPM(2.5)) by using a conversion factor obtained from 25 estimates in Japan. Among various causes of death, a significant correlation was observed between both the SPM and cPM(2.5) (SPM/cPM(2.5)) levels and the age-adjusted death rates of ischemic heart disease or hypertensive heart disease in both genders. Correlation was noted with pneumonia, asthma, chronic bronchitis/emphysema, or lung cancer only in females. Unexpectedly, breast, endometrial, and ovarian cancer also showed significant increases in mortality rates related to the SPM/cPM(2.5) level, suggesting a role for suspended particles in the ambient air with or without gaseous component as a possible endocrine-disrupting, estrogenic agent. Multivariate regression analysis of confounding factors, smoking rate, population density, and hormone-related factors revealed consistent significance of SPM/cPM(2.5) in these diseases.
Collapse
Affiliation(s)
- Kazuro Iwai
- Research Institute of Tuberculosis, Japan Anti-tuberculosis Association, 3-1-24, Matsuyama, Kiyose-shi, Tokyo 204-8533, Japan.
| | | | | | | |
Collapse
|
39
|
Bhatt JM, Everard ML. Do environmental pollutants influence the onset of respiratory syncytial virus epidemics or disease severity? Paediatr Respir Rev 2004; 5:333-8. [PMID: 15531259 DOI: 10.1016/j.prrv.2004.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The trigger for annual epidemics of respiratory syncytial virus (RSV) infections and the factors contributing to the disappearance of RSV infections in late winter remain obscure. Similarly, there is no adequate explanation for the higher morbidity and admission rates in industrialised as compared with rural areas. It has been suggested that a variety of environmental factors such as temperature, daylight and humidity may influence the onset and waning of the epidemics. However, the few studies assessing these variables fail to support such a link. In many tropical countries the annual epidemic occurs in the summer or autumn, arguing against temperature having a direct influence. A number of studies have suggested that indoor pollutants, including cigarette smoke, are associated with an increased likelihood of being admitted to hospital with severe lower respiratory tract disease. One study exploring the potential role of outdoor pollutants on the pattern of RSV related illness in infancy was unable to identify a clear link between a variety of pollutants and the timing of the epidemic. Nitric oxide levels were higher in winter than during the summer and much higher winter peaks of NO were observe in industrialised areas as compared with urban and rural areas. Whether this or other environmental pollutants contribute to the higher incidence of severe disease in industrialised areas is unclear. Further work is required to explore the possible influence of NO and other environmental pollutants on both the timing and severity of epidemics.
Collapse
Affiliation(s)
- Jayesh M Bhatt
- Pediatric Respiratory Unit, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH, UK
| | | |
Collapse
|