1
|
Han Y, Dong C, Hu M, Wang X, Wang G. Unlocking the adenosine receptor mechanism of the tumour immune microenvironment. Front Immunol 2024; 15:1434118. [PMID: 38994361 PMCID: PMC11236561 DOI: 10.3389/fimmu.2024.1434118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The suppressive tumour microenvironment significantly hinders the efficacy of immunotherapy in treating solid tumors. In this context, stromal cells, such as tumour-associated fibroblasts, undergo changes that include an increase in the number and function of immunosuppressive cells. Adenosine, a factor that promotes tumour growth, is produced from ATP breakdown and is markedly elevated in the tumour microenvironment. It acts through specific binding to adenosine receptors, with A2A and A2B adenosine receptor being primary drivers of immunosuppression. This paper presents the roles of various adenosine receptors in different tumour microenvironments. This review focus on the function of adenosine receptors in the stromal cells and non-cellular components of the tumour microenvironment. Additionally, we summarize and discuss recent advances and potential trends in using adenosine receptor antagonists combined with immunotherapy.
Collapse
Affiliation(s)
- Yecheng Han
- General Affairs Office of Shenyang Hongqiao Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Chenshuang Dong
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Mingwang Hu
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xinmiao Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Guiling Wang
- Key Laboratory of Cell Biology, Department of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Li S, Han J, Cao J, Han H, Lu B, Wen T, Bian W. ADORA2B, transcriptionally suppressing by MYC, promotes ferroptosis of chondrocytes via inhibition of the PI3K/Akt pathway in mice with osteoarthritis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2487-2501. [PMID: 38174997 DOI: 10.1002/tox.24131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/14/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
Recent studies have shown that chondrocyte ferroptosis contributes importantly to the pathogenesis of osteoarthritis (OA). However, it is largely unknown how it is regulated. In this study, the data sets GSE167852 and GSE190184 were downloaded from the Gene Expression Omnibus (GEO) database, and 161 differentially expressed genes (DEGs) related to ferroptosis were screened by bioinformatics analysis. Subsequently, ADORA2B was screened as a candidate gene from DEGs, which was significantly upregulated in palmitic acid (PA) treated chondrocytes. CCK-8, EdU, Western blotting, and ferroptosis-related kits assays demonstrated that knockdown of ADORA2B constrained ferroptosis and promoted viability of chondrocytes. Overexpression of ADORA2B promoted ferroptosis, while the PI3K/Akt pathway inhibitor LY294002 reversed the promotion of ADORA2B on ferroptosis. Dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assays indicated MYC was a transcription suppressor of ADORA2B, and overexpression of MYC promoted the viability, and inhibited the ferroptosis of chondrocytes, while ADORA2B overexpression abated the promotion of MYC on chondrocyte viability and the inhibition on ferroptosis. In vivo experiments showed that MYC overexpression alleviated cartilage tissue damage in OA mice, which was able to reversed by ADORA2B overexpression. In summary, ADORA2B, transcriptionally suppressing by MYC, promotes ferroptosis of chondrocytes via inhibition of the PI3K/Akt pathway. Thus, ADORA2B can be used as a potential treatment target for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shen Li
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiangbo Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Jiongzhe Cao
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Hong Han
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Bin Lu
- Department of Anesthesiology, Xi'an Chang'an District Hospital, Xi'an, China
| | - Tao Wen
- Department of Orthopedics, Xi'an Chang'an District Hospital, Xi'an, China
| | - Weiguo Bian
- Department of Orthopedics, The First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, China
| |
Collapse
|
3
|
Figarella K, Kim J, Ruan W, Mills T, Eltzschig HK, Yuan X. Hypoxia-adenosine axis as therapeutic targets for acute respiratory distress syndrome. Front Immunol 2024; 15:1328565. [PMID: 38312838 PMCID: PMC10835146 DOI: 10.3389/fimmu.2024.1328565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
The human respiratory and circulatory systems collaborate intricately to ensure oxygen delivery to all cells, which is vital for ATP production and maintaining physiological functions and structures. During limited oxygen availability, hypoxia-inducible factors (HIFs) are stabilized and play a fundamental role in maintaining cellular processes for hypoxia adaptation. First discovered during investigations of erythropoietin production regulation, HIFs influence physiological and pathological processes, including development, inflammation, wound healing, and cancer. HIFs promote extracellular adenosine signaling by enhancing adenosine generation and receptor signaling, representing an endogenous feedback mechanism that curbs excessive inflammation, supports injury resolution, and enhances hypoxia tolerance. This is especially important for conditions that involve tissue hypoxia, such as acute respiratory distress syndrome (ARDS), which globally poses significant health challenges without specific treatment options. Consequently, pharmacological strategies to amplify HIF-mediated adenosine production and receptor signaling are of great importance.
Collapse
Affiliation(s)
- Katherine Figarella
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Jieun Kim
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Tingting Mills
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger Klaus Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
4
|
Chen L, Alabdullah M, Mahnke K. Adenosine, bridging chronic inflammation and tumor growth. Front Immunol 2023; 14:1258637. [PMID: 38022572 PMCID: PMC10643868 DOI: 10.3389/fimmu.2023.1258637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Adenosine (Ado) is a well-known immunosuppressive agent that may be released or generated extracellularly by cells, via degrading ATP by the sequential actions of the ectonucleotides CD39 and CD73. During inflammation Ado is produced by leukocytes and tissue cells by different means to initiate the healing phase. Ado downregulates the activation and the effector functions of different leukocyte (sub-) populations and stimulates proliferation of fibroblasts for re-establishment of intact tissues. Therefore, the anti-inflammatory actions of Ado are already intrinsically triggered during each episode of inflammation. These tissue-regenerating and inflammation-tempering purposes of Ado can become counterproductive. In chronic inflammation, it is possible that Ado-driven anti-inflammatory actions sustain the inflammation and prevent the final clearance of the tissues from possible pathogens. These chronic infections are characterized by increased tissue damage, remodeling and accumulating DNA damage, and are thus prone for tumor formation. Developing tumors may further enhance immunosuppressive actions by producing Ado by themselves, or by "hijacking" CD39+/CD73+ cells that had already developed during chronic inflammation. This review describes different and mostly convergent mechanisms of how Ado-induced immune suppression, initially induced in inflammation, can lead to tumor formation and outgrowth.
Collapse
Affiliation(s)
| | | | - Karsten Mahnke
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld, Heidelberg, Germany
| |
Collapse
|
5
|
Meurer F, Häberlein H, Franken S. Ivy Leaf Dry Extract EA 575 ® Has an Inhibitory Effect on the Signalling Cascade of Adenosine Receptor A 2B. Int J Mol Sci 2023; 24:12373. [PMID: 37569749 PMCID: PMC10418604 DOI: 10.3390/ijms241512373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ivy leaf dry extract EA 575® is used to improve complaints of chronic inflammatory bronchial diseases and acute inflammation of the respiratory tract accompanied by coughing. Its mechanism of action has so far been explained by influencing β2-adrenergic signal transduction. In the present study, we investigated a possible influence on adenosine receptor A2B (A2BAR) signalling, as it has been described to play a significant and detrimental role in chronic inflammatory airway diseases. The influence of EA 575® on A2BAR signalling was assessed with measurements of dynamic mass redistribution. Subsequently, the effects on A2BAR-mediated second messenger cAMP levels, β-arrestin 2 recruitment, and cAMP response element (CRE) activation were examined using luciferase-based HEK293 reporter cell lines. Lastly, the impact on A2BAR-mediated IL-6 release in Calu-3 epithelial lung cells was investigated via the Lumit™ Immunoassay. Additionally, the adenosine receptor subtype mediating these effects was specified, and A2BAR was found to be responsible. The present study demonstrates an inhibitory influence of EA 575® on A2BAR-mediated general cellular response, cAMP levels, β-arrestin 2 recruitment, CRE activation, and IL-6 release. Since these EA 575®-mediated effects occur within a time frame of several hours of incubation, its mode of action can be described as indirect. The present data are the first to describe an inhibitory effect of EA 575® on A2BAR signalling. This may offer an explanation for the beneficial clinical effects of the extract in adjuvant asthma therapy.
Collapse
Affiliation(s)
| | | | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany; (F.M.); (H.H.)
| |
Collapse
|
6
|
Pinto-Cardoso R, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Could hypoxia rehabilitate the osteochondral diseased interface? Lessons from the interplay of hypoxia and purinergic signals elsewhere. Biochem Pharmacol 2023:115646. [PMID: 37321413 DOI: 10.1016/j.bcp.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
The osteochondral unit comprises the articular cartilage (90%), subchondral bone (5%) and calcified cartilage (5%). All cells present at the osteochondral unit that is ultimately responsible for matrix production and osteochondral homeostasis, such as chondrocytes, osteoblasts, osteoclasts and osteocytes, can release adenine and/or uracil nucleotides to the local microenvironment. Nucleotides are released by these cells either constitutively or upon plasma membrane damage, mechanical stress or hypoxia conditions. Once in the extracellular space, endogenously released nucleotides can activate membrane-bound purinoceptors. Activation of these receptors is fine-tuning regulated by nucleotides' breakdown by enzymes of the ecto-nucleotidase cascade. Depending on the pathophysiological conditions, both the avascular cartilage and the subchondral bone subsist to significant changes in oxygen tension, which has a tremendous impact on tissue homeostasis. Cell stress due to hypoxic conditions directly influences the expression and activity of several purinergic signalling players, namely nucleotide release channels (e.g. Cx43), NTPDase enzymes and purinoceptors. This review gathers experimental evidence concerning the interplay between hypoxia and the purinergic signalling cascade contributing to osteochondral unit homeostasis. Reporting deviations to this relationship resulting from pathological alterations of articular joints may ultimately unravel novel therapeutic targets for osteochondral rehabilitation. At this point, one can only hypothesize how hypoxia mimetic conditions can be beneficial to the ex vivo expansion and differentiation of osteo- and chondro-progenitors for auto-transplantation and tissue regenerative purposes.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP)
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP).
| |
Collapse
|
7
|
Effendi WI, Nagano T. A2B Adenosine Receptor in Idiopathic Pulmonary Fibrosis: Pursuing Proper Pit Stop to Interfere with Disease Progression. Int J Mol Sci 2023; 24:4428. [PMID: 36901855 PMCID: PMC10002355 DOI: 10.3390/ijms24054428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Purine nucleotides and nucleosides are involved in various human physiological and pathological mechanisms. The pathological deregulation of purinergic signaling contributes to various chronic respiratory diseases. Among the adenosine receptors, A2B has the lowest affinity such that it was long considered to have little pathophysiological significance. Many studies suggest that A2BAR plays protective roles during the early stage of acute inflammation. However, increased adenosine levels during chronic epithelial injury and inflammation might activate A2BAR, resulting in cellular effects relevant to the progression of pulmonary fibrosis.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga (UNAIR), Surabaya 60132, Indonesia
- Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
- Pulmonology and Respiratory Medicine of UNAIR (PaRU) Research Center, Universitas Airlangga Teaching Hospital, Surabaya 60015, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| |
Collapse
|
8
|
Spagnolo P, Tonelli R, Samarelli AV, Castelli G, Cocconcelli E, Petrarulo S, Cerri S, Bernardinello N, Clini E, Saetta M, Balestro E. The role of immune response in the pathogenesis of idiopathic pulmonary fibrosis: far beyond the Th1/Th2 imbalance. Expert Opin Ther Targets 2022; 26:617-631. [PMID: 35983984 DOI: 10.1080/14728222.2022.2114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION . Idiopathic pulmonary fibrosis (IPF) is a chronic disease of unknown origin characterized by progressive scarring of the lung leading to irreversible loss of function. Despite the availability of two drugs that are able to slow down disease progression, IPF remains a deadly disease. The pathogenesis of IPF is poorly understood, but a dysregulated wound healing response following recurrent alveolar epithelial injury is thought to be crucial. Areas covered. In the last few years, the role of the immune system in IPF pathobiology has been reconsidered; indeed, recent data suggest that a dysfunctional immune system may promote and unfavorable interplay with pro-fibrotic pathways thus acting as a cofactor in disease development and progression. In this article, we review and critically discuss the role of T cells in the pathogenesis and progression of IPF in the attempt to highlight ways in which further research in this area may enable the development of targeted immunomodulatory therapies for this dreadful disease. EXPERT OPINION A better understanding of T cells interactions has the potential to facilitate the development of immune modulators targeting multiple T cell-mediated pathways thus halting disease initiation and progression.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Gioele Castelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Cocconcelli
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Simone Petrarulo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicol Bernardinello
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults University Hospital of Modena and Reggio Emilia, Modena, Italy.,University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marina Saetta
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elisabetta Balestro
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Marzec JM, Nadadur SS. Inflammation resolution in environmental pulmonary health and morbidity. Toxicol Appl Pharmacol 2022; 449:116070. [PMID: 35618031 PMCID: PMC9872158 DOI: 10.1016/j.taap.2022.116070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/04/2022] [Accepted: 05/14/2022] [Indexed: 02/07/2023]
Abstract
Inflammation and resolution are dynamic processes comprised of inflammatory activation and neutrophil influx, followed by mediator catabolism and efferocytosis. These critical pathways ensure a return to homeostasis and promote repair. Over the past decade research has shown that diverse mediators play a role in the active process of resolution. Specialized pro-resolving mediators (SPMs), biosynthesized from fatty acids, are released during inflammation to facilitate resolution and are deficient in a variety of lung disorders. Failed resolution results in remodeling and cellular deposition through pro-fibrotic myofibroblast expansion that irreversibly narrows the airways and worsens lung function. Recent studies indicate environmental exposures may perturb and deregulate critical resolution pathways. Environmental xenobiotics induce lung inflammation and generate reactive metabolites that promote oxidative stress, injuring the respiratory mucosa and impairing gas-exchange. This warrants recognition of xenobiotic associated molecular patterns (XAMPs) as new signals in the field of inflammation biology, as many environmental chemicals generate free radicals capable of initiating the inflammatory response. Recent studies suggest that unresolved, persistent inflammation impacts both resolution pathways and endogenous regulatory mediators, compromising lung function, which over time can progress to chronic lung disease. Chronic ozone (O3) exposure overwhelms successful resolution, and in susceptible individuals promotes asthma onset. The industrial contaminant cadmium (Cd) bioaccumulates in the lung to impair resolution, and recurrent inflammation can result in chronic obstructive pulmonary disease (COPD). Persistent particulate matter (PM) exposure increases systemic cardiopulmonary inflammation, which reduces lung function and can exacerbate asthma, COPD, and idiopathic pulmonary fibrosis (IPF). While recurrent inflammation underlies environmentally induced pulmonary morbidity and may drive the disease process, our understanding of inflammation resolution in this context is limited. This review aims to explore inflammation resolution biology and its role in chronic environmental lung disease(s).
Collapse
Affiliation(s)
- Jacqui M Marzec
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Srikanth S Nadadur
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Yang R, Tang Y, Hou J, Yu M, Long Y, Yamuhanmode A, Li Q, Li F, Zhang Y, Warsame M, Zhang C, Shen H. Fibrosis in frozen shoulder: Activation of IL-6 through PI3K-Akt signaling pathway in synovial fibroblast. Mol Immunol 2022; 150:29-38. [PMID: 35930846 DOI: 10.1016/j.molimm.2022.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/22/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022]
Abstract
Fibrosis is the main cause of limited range of motion (ROM) of shoulder in patients with frozen shoulder (FS). Overexpression of Interleukin 6 (IL-6) has been correlated with pathogenesis of FS. However, the underlying mechanism remains largely unexplored. In the current study, we focused on isolating synovial fibroblasts of FS and determining the influence of IL-6 as well as PI3K-Akt signaling pathway on the fibrotic process of synovial fibroblasts in FS by using RNA Sequencing (RNA-seq) and other molecular biology techniques. Synovial fibroblasts of FS express more extra cellular matrix (ECM) than that of control. RNA-seq results and bioinformatic analysis indicate that PI3K-Akt signaling pathway play an important role in the fibrotic process of FS, and IL-6 is the most related gene among those related to this process. The expression levels of IL-6 / IL-6R in FS synovial fibroblasts and IL-6 in culture supernatant were both significantly increased. siRNA interference with the expression of IL-6 attenuates the fibrosis level of FS as well as phosphorylation level of Akt. The findings suggest that synovial fibroblasts are key effector cells of fibrosis of FS. Activation of PI3K-Akt pathway can promote fibrosis of synovial fibroblasts in FS. IL-6 is up-regulated in synovial fibroblasts of FS and promoted the FS fibrosis through PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Rui Yang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China.
| | - Yiyong Tang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jingyi Hou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Menglei Yu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yi Long
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Alike Yamuhanmode
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Qingyue Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Fangqi Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Yuanhao Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Maslah Warsame
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Congda Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China.
| |
Collapse
|
11
|
Swarnakar R, Garje Y, Markandeywar N, Mehta S. Exploring the common pathophysiological links between IPF, SSc-ILD and post-COVID fibrosis. Lung India 2022; 39:279-285. [PMID: 35488687 PMCID: PMC9200204 DOI: 10.4103/lungindia.lungindia_89_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 11/04/2022] Open
Abstract
In coronavirus disease 2019 (COVID-19) patients, dysregulated release of matrix metalloproteinases occurs during the inflammatory phase of acute respiratory distress syndrome (ARDS), resulting in epithelial and endothelial injury with excessive fibroproliferation. COVID-19 resembles idiopathic pulmonary fibrosis (IPF) in several aspects. The fibrotic response in IPF is driven primarily by an abnormally activated alveolar epithelial cells (AECs) which release cytokines to activate fibroblasts. Endoplasmic reticulum (ER) stress is postulated to be one of the early triggers in both diseases. Systemic sclerosis (SSc) is a heterogeneous autoimmune rare connective tissue characterised by fibrosis of the skin and internal organs. Interstitial lung disease (ILD) is a common complication and the leading cause of SSc-related death. Several corollaries have been discussed in this paper for new drug development based on the pathogenic events in these three disorders associated with pulmonary fibrosis. A careful consideration of the similarities and differences in the pathogenic events associated with the development of lung fibrosis in post-COVID patients, IPF patients and patients with SSc-ILD may pave the way for precision medicine. Several questions need to be answered through research, which include the potential role of antifibrotics in managing IPF, SSc-ILD and post-COVID fibrosis. Many trials that are underway will ultimately shed light on their potency and place in therapy.
Collapse
Affiliation(s)
- Rajesh Swarnakar
- Department of Respiratory, Critical Care, Sleep Medicine and Interventional Pulmonology, Getwell Hospital and Research Institute, Dhantoli, Maharashtra, India
| | - Yogesh Garje
- Medical Affairs, Sun Pharma Industries Ltd., India
| | | | - Suyog Mehta
- Medical Affairs, Sun Pharma Laboratories Ltd., India
| |
Collapse
|
12
|
Pacini ESA, Satori NA, Jackson EK, Godinho RO. Extracellular cAMP-Adenosine Pathway Signaling: A Potential Therapeutic Target in Chronic Inflammatory Airway Diseases. Front Immunol 2022; 13:866097. [PMID: 35479074 PMCID: PMC9038211 DOI: 10.3389/fimmu.2022.866097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled receptors, modulates inflammation and immune responses. Under pathological conditions and in response to inflammatory stimuli, extracellular ATP is released from damaged cells and is metabolized to extracellular adenosine. However, studies over the past 30 years provide strong evidence for another source of extracellular adenosine, namely the “cAMP-adenosine pathway.” The cAMP-adenosine pathway is a biochemical mechanism mediated by ATP-binding cassette transporters that facilitate cAMP efflux and by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine (ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is operative in many cell types, including those of the airways. In airways, β2-adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway attenuates the efficacy of β2-adrenoceptor agonists. Indeed, our recent findings support this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Edwin Kerry Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Rosely Oliveira Godinho,
| |
Collapse
|
13
|
Francucci B, Dal Ben D, Lambertucci C, Spinaci A, Volpini R, Marucci G, Buccioni M. A patent review of adenosine A 2B receptor antagonists (2016-present). Expert Opin Ther Pat 2022; 32:689-712. [PMID: 35387537 DOI: 10.1080/13543776.2022.2057222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION A2B adenosine receptor (A2BAR) plays a crucial role in pathophysiologic conditions associated with high adenosine release, typical of airway inflammatory pathologies, gastrointestinal disorders, cancer, asthma, type 2 diabetes, and atherosclerosis. In some pathologies, simultaneous inactivation of A2A and A2BARs is desirable to have a synergism of action that leads to a greater efficacy of the pharmacological treatment and less side effects due to the dose of drug administered. In this context, it is strongly required to identify molecules capable of selectively antagonizing A2BAR or A2A/A2BARs. AREAS COVERED The review provides a summary of patents, published from 2016 to present, on chemicals and their clinical use. In this paper, information on the biological activity of representative structures of recently developed A2B or A2A/A2B receptor ligands is reported. EXPERT OPINION Among the four P1 receptors, A2BAR is the most inscrutable and the least studied until a few years ago, but its involvement in various inflammatory pathologies has recently made it a pharmacological target of high interest. Many efforts by the academy and pharmaceutical companies have been made to discover potential A2BAR and A2A/A2BARs drugs. Although several compounds have been synthesized only a few molecules have entered clinical trials.
Collapse
Affiliation(s)
- Beatrice Francucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Andrea Spinaci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Gabriella Marucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Camerino, Italy
| |
Collapse
|
14
|
Zarei M, Sahebi Vaighan N, Ziai SA. Purinergic receptor ligands: the cytokine storm attenuators, potential therapeutic agents for the treatment of COVID-19. Immunopharmacol Immunotoxicol 2021; 43:633-643. [PMID: 34647511 PMCID: PMC8544669 DOI: 10.1080/08923973.2021.1988102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease-19 (COVID-19), at first, was reported in Wuhan, China, and then rapidly became pandemic throughout the world. Cytokine storm syndrome (CSS) in COVID-19 patients is associated with high levels of cytokines and chemokines that cause multiple organ failure, systemic inflammation, and hemodynamic instabilities. Acute respiratory distress syndrome (ARDS), a common complication of COVID-19, is a consequence of cytokine storm. In this regard, several drugs have been being investigated to suppress this inflammatory condition. Purinergic signaling receptors comprising of P1 adenosine and P2 purinoceptors play a critical role in inflammation. Therefore, activation or inhibition of some subtypes of these kinds of receptors is most likely to be beneficial to attenuate cytokine storm. This article summarizes suggested therapeutic drugs with potential anti-inflammatory effects through purinergic receptors.
Collapse
Affiliation(s)
- Malek Zarei
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navideh Sahebi Vaighan
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Barresi E, Martini C, Da Settimo F, Greco G, Taliani S, Giacomelli C, Trincavelli ML. Allosterism vs. Orthosterism: Recent Findings and Future Perspectives on A 2B AR Physio-Pathological Implications. Front Pharmacol 2021; 12:652121. [PMID: 33841166 PMCID: PMC8024542 DOI: 10.3389/fphar.2021.652121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
The development of GPCR (G-coupled protein receptor) allosteric modulators has attracted increasing interest in the last decades. The use of allosteric modulators in therapy offers several advantages with respect to orthosteric ones, as they can fine-tune the tissue responses to the endogenous agonist. Since the discovery of the first A1 adenosine receptor (AR) allosteric modulator in 1990, several efforts have been made to develop more potent molecules as well as allosteric modulators for all adenosine receptor subtypes. There are four subtypes of AR: A1, A2A, A2B, and A3. Positive allosteric modulators of the A1 AR have been proposed for the cure of pain. A3 positive allosteric modulators are thought to be beneficial during inflammatory processes. More recently, A2A and A2B AR allosteric modulators have also been disclosed. The A2B AR displays the lowest affinity for its endogenous ligand adenosine and is mainly activated as a consequence of tissue damage. The A2B AR activation has been found to play a crucial role in chronic obstructive pulmonary disease, in the protection of the heart from ischemic injury, and in the process of bone formation. In this context, allosteric modulators of the A2B AR may represent pharmacological tools useful to develop new therapeutic agents. Herein, we provide an up-to-date highlight of the recent findings and future perspectives in the field of orthosteric and allosteric A2B AR ligands. Furthermore, we compare the use of orthosteric ligands with positive and negative allosteric modulators for the management of different pathological conditions.
Collapse
Affiliation(s)
| | | | | | - Giovanni Greco
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | | | | | | |
Collapse
|
16
|
Li X, Berg NK, Mills T, Zhang K, Eltzschig HK, Yuan X. Adenosine at the Interphase of Hypoxia and Inflammation in Lung Injury. Front Immunol 2021; 11:604944. [PMID: 33519814 PMCID: PMC7840604 DOI: 10.3389/fimmu.2020.604944] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
Hypoxia and inflammation often coincide in pathogenic conditions such as acute respiratory distress syndrome (ARDS) and chronic lung diseases, which are significant contributors to morbidity and mortality for the general population. For example, the recent global outbreak of Coronavirus disease 2019 (COVID-19) has placed viral infection-induced ARDS under the spotlight. Moreover, chronic lung disease ranks the third leading cause of death in the United States. Hypoxia signaling plays a diverse role in both acute and chronic lung inflammation, which could partially be explained by the divergent function of downstream target pathways such as adenosine signaling. Particularly, hypoxia signaling activates adenosine signaling to inhibit the inflammatory response in ARDS, while in chronic lung diseases, it promotes inflammation and tissue injury. In this review, we discuss the role of adenosine at the interphase of hypoxia and inflammation in ARDS and chronic lung diseases, as well as the current strategy for therapeutic targeting of the adenosine signaling pathway.
Collapse
Affiliation(s)
- Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital, Tianjin, China
| | - Nathanial K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Tingting Mills
- Department of Biochemistry, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kaiying Zhang
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
17
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2020; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. .,Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates. .,Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
18
|
Effendi WI, Nagano T, Kobayashi K, Nishimura Y. Focusing on Adenosine Receptors as a Potential Targeted Therapy in Human Diseases. Cells 2020; 9:E785. [PMID: 32213945 PMCID: PMC7140859 DOI: 10.3390/cells9030785] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Adenosine is involved in a range of physiological and pathological effects through membrane-bound receptors linked to G proteins. There are four subtypes of adenosine receptors, described as A1AR, A2AAR, A2BAR, and A3AR, which are the center of cAMP signal pathway-based drug development. Several types of agonists, partial agonists or antagonists, and allosteric substances have been synthesized from these receptors as new therapeutic drug candidates. Research efforts surrounding A1AR and A2AAR are perhaps the most enticing because of their concentration and affinity; however, as a consequence of distressing conditions, both A2BAR and A3AR levels might accumulate. This review focuses on the biological features of each adenosine receptor as the basis of ligand production and describes clinical studies of adenosine receptor-associated pharmaceuticals in human diseases.
Collapse
Affiliation(s)
- Wiwin Is Effendi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
- Department of Pulmonology and Respiratory Medicine, Medical Faculty of Airlangga University, Surabaya 60131, Indonesia
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan; (W.I.E.); (K.K.); (Y.N.)
| |
Collapse
|
19
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
20
|
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the Cardiovascular System. Am J Cardiovasc Drugs 2019; 19:449-464. [PMID: 30972618 PMCID: PMC6773474 DOI: 10.1007/s40256-019-00345-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.
Collapse
|
21
|
Le TTT, Berg NK, Harting MT, Li X, Eltzschig HK, Yuan X. Purinergic Signaling in Pulmonary Inflammation. Front Immunol 2019; 10:1633. [PMID: 31379836 PMCID: PMC6646739 DOI: 10.3389/fimmu.2019.01633] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/01/2019] [Indexed: 12/21/2022] Open
Abstract
Purine nucleotides and nucleosides are at the center of biologic reactions. In particular, adenosine triphosphate (ATP) is the fundamental energy currency of cellular activity and adenosine has been demonstrated to play essential roles in human physiology and pathophysiology. In this review, we examine the role of purinergic signaling in acute and chronic pulmonary inflammation, with emphasis on ATP and adenosine. ATP is released into extracellular space in response to cellular injury and necrosis. It is then metabolized to adenosine monophosphate (AMP) via ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and further hydrolyzed to adenosine via ecto-5'-nucleotidase (CD73). Adenosine signals via one of four adenosine receptors to exert pro- or anti-inflammatory effects. Adenosine signaling is terminated by intracellular transport by concentrative or equilibrative nucleoside transporters (CNTs and ENTs), deamination to inosine by adenosine deaminase (ADA), or phosphorylation back into AMP via adenosine kinase (AK). Pulmonary inflammatory and hypoxic conditions lead to increased extracellular ATP, adenosine diphosphate (ADP) and adenosine levels, which translates to increased adenosine signaling. Adenosine signaling is central to the pulmonary injury response, leading to various effects on inflammation, repair and remodeling processes that are either tissue-protective or tissue destructive. In the acute setting, particularly through activation of adenosine 2A and 2B receptors, adenosine signaling serves an anti-inflammatory, tissue-protective role. However, excessive adenosine signaling in the chronic setting promotes pro-inflammatory, tissue destructive effects in chronic pulmonary inflammation.
Collapse
Affiliation(s)
- Thanh-Thuy T. Le
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nathaniel K. Berg
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Matthew T. Harting
- Department of Pediatric Surgery, McGovern Medical School, Children's Memorial Hermann Hospital, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiangyun Li
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Holger K. Eltzschig
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Xiaoyi Yuan
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
22
|
Vecchio EA, White PJ, May LT. The adenosine A 2B G protein-coupled receptor: Recent advances and therapeutic implications. Pharmacol Ther 2019; 198:20-33. [PMID: 30677476 DOI: 10.1016/j.pharmthera.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adenosine A2B receptor (A2BAR) is one of four adenosine receptor subtypes belonging to the Class A family of G protein-coupled receptors (GPCRs). Until recently, the A2BAR remained poorly characterised, in part due to its relatively low affinity for the endogenous agonist adenosine and therefore presumed minor physiological significance. However, the substantial increase in extracellular adenosine concentration, the sensitisation of the receptor and the upregulation of A2BAR expression under conditions of hypoxia and inflammation, suggest the A2BAR as an exciting therapeutic target in a variety of pathological disease states. Here we discuss the pharmacology of the A2BAR and outline its role in pathophysiology including ischaemia-reperfusion injury, fibrosis, inflammation and cancer.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
23
|
Karmouty-Quintana H, Molina JG, Philip K, Bellocchi C, Gudenkauf B, Wu M, Chen NY, Collum SD, Ko J, Agarwal SK, Assassi S, Zhong H, Blackburn MR, Weng T. The Antifibrotic Effect of A 2B Adenosine Receptor Antagonism in a Mouse Model of Dermal Fibrosis. Arthritis Rheumatol 2018; 70:1673-1684. [PMID: 29771006 PMCID: PMC10077881 DOI: 10.1002/art.40554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/08/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc; scleroderma) is a chronic disease that affects the skin and various internal organs. Dermal fibrosis is a major component of this disease. The mechanisms that promote dermal fibrosis remain elusive. Elevations in tissue adenosine levels and the subsequent engagement of the profibrotic A2B adenosine receptor (ADORA2B) have been shown to regulate fibrosis in multiple organs including the lung, kidney, and penis; however, the role of ADORA2B in dermal fibrosis has not been investigated. We undertook this study to test our hypothesis that elevated expression of ADORA2B in the skin drives the development of dermal fibrosis. METHODS We assessed the involvement of ADORA2B in the regulation of dermal fibrosis using a well-established mouse model of dermal fibrosis. Using an orally active ADORA2B antagonist, we demonstrated how inhibition of ADORA2B results in reduced dermal fibrosis in 2 distinct experimental models. Finally, using human dermal fibroblasts, we characterized the expression of adenosine receptors. RESULTS We demonstrated that levels of ADORA2B were significantly elevated in dermal fibrosis and that the therapeutic blockade of this receptor in vivo using an ADORA2B antagonist could reduce the production of profibrotic mediators in the skin and attenuate dermal fibrosis. Antagonism of ADORA2B resulted in reduced numbers of arginase-expressing macrophages and myofibroblasts and in reduced levels of the extracellular matrix proteins fibronectin, collagen, and hyaluronan. CONCLUSION These findings identify ADORA2B as a potential profibrotic regulator in dermal fibrosis and suggest that ADORA2B antagonism may be a useful approach for the treatment of SSc.
Collapse
Affiliation(s)
| | | | | | - Chiara Bellocchi
- McGovern Medical School, Houston, Texas, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
| | - Brent Gudenkauf
- McGovern Medical School, Houston, Texas, Texas Tech University Health Sciences Center, Lubbock
| | | | | | | | - Junsuk Ko
- McGovern Medical School, Houston, Texas
| | | | | | | | | | | |
Collapse
|
24
|
Lv XM, Li MD, Cheng S, Liu BL, Liu K, Zhang CF, Xu XH, Zhang M. Neotuberostemonine inhibits the differentiation of lung fibroblasts into myofibroblasts in mice by regulating HIF-1α signaling. Acta Pharmacol Sin 2018; 39:1501-1512. [PMID: 29645000 PMCID: PMC6289346 DOI: 10.1038/aps.2017.202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Pulmonary fibrosis may be partially the result of deregulated tissue repair in response to chronic hypoxia. In this study we explored the effects of hypoxia on lung fibroblasts and the effects of neotuberostemonine (NTS), a natural alkaloid isolated from Stemona tuberosa, on activation of fibroblasts in vitro and in vivo. PLFs (primary mouse lung fibroblasts) were activated and differentiated after exposure to 1% O2 or treatment with CoCl2 (100 μmol/L), evidenced by markedly increased protein or mRNA expression of HIF-1α, TGF-β, FGF2, α-SMA and Col-1α/3α, which was blocked after silencing HIF-1α, suggesting that the activation of fibroblasts was HIF-1α-dependent. NTS (0.1-10 μmol/L) dose-dependently suppressed hypoxia-induced activation and differentiation of PLFs, whereas the inhibitory effect of NTS was abolished by co-treatment with MG132, a proteasome inhibitor. Since prolyl hydroxylation is a critical step in initiation of HIF-1α degradation, we further showed that NTS treatment reversed hypoxia- or CoCl2-induced reduction in expression of prolyl hydroxylated-HIF-1α. With hypoxyprobe immunofiuorescence staining, we showed that NTS treatment directly reversed the lower oxygen tension in hypoxia-exposed PLFs. In a mouse model of lung fibrosis, oral administration of NTS (30 mg·kg-1·d-1, for 1 or 2 weeks) effectively attenuated bleomycin-induced pulmonary fibrosis by inhibiting the levels of HIF-1α and its downstream profibrotic factors (TGF-β, FGF2 and α-SMA). Taken together, these results demonstrate that NTS inhibits the protein expression of HIF-1α and its downstream factors TGF-β, FGF2 and α-SMA both in hypoxia-exposed fibroblasts and in lung tissues of BLM-treated mice. NTS with anti-HIF-1α activity may be a promising pharmacological agent for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin-Miao Lv
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ming-Dan Li
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, China
| | - Si Cheng
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, China
| | - Bao-Lin Liu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Kang Liu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chao-Feng Zhang
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiang-Hong Xu
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, China
| | - Mian Zhang
- State Key Laboratory of Natural Medicines, Research Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
25
|
Mateus M, Ilg MM, Stebbeds WJ, Christopher N, Muneer A, Ralph DJ, Cellek S. Understanding the Role of Adenosine Receptors in the Myofibroblast Transformation in Peyronie’s Disease. J Sex Med 2018; 15:947-957. [DOI: 10.1016/j.jsxm.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/27/2022]
|
26
|
Lasley RD. Adenosine Receptor-Mediated Cardioprotection-Current Limitations and Future Directions. Front Pharmacol 2018; 9:310. [PMID: 29670529 PMCID: PMC5893789 DOI: 10.3389/fphar.2018.00310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/19/2018] [Indexed: 01/21/2023] Open
Abstract
Since the seminal reports of adenosine receptor-mediated cardioprotection in the early 1990s, there have been a multitude of such reports in various species and preparations. Original observations of the beneficial effects of A1 receptor agonists have been followed up with numerous reports also implicating A2A, A3, and most recently A2B, receptor agonists as cardioprotective agents. Although adenosine has been approved for clinical use in the United States for the treatment of supraventricular tachycardia and coronary artery imaging, and the selective A2A agonist, regadenoson, for the latter, clinical use of adenosine receptor agonists for protecting the ischemic heart has not advanced beyond early trials. An examination of the literature indicates that existing experimental studies have several limitations in terms of clinical relevance, as well as lacking incorporation of recent new insights into adenosine receptor signaling. Such deficiencies include the lack of experimental studies in models that most closely mimic human cardiovascular disease. In addition, there have been very few studies in chronic models of myocardial ischemia, where limiting myocardial remodeling and heart failure, not reduction of infarct size, are the primary endpoints. Despite an increasing number of reports of the beneficial effects of adenosine receptor antagonists, not agonists, in chronic diseases, this idea has not been well-studied in experimental myocardial ischemia. There have also been few studies examining adenosine receptor subtype interactions as well as receptor heterodimerization. The purpose of this Perspective article is to discuss these deficiencies to highlight future directions of research in the field of adenosine receptor-mediated protection of ischemic myocardium.
Collapse
Affiliation(s)
- Robert D Lasley
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
27
|
Sorrentino C, Miele L, Porta A, Pinto A, Morello S. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression. Oncotarget 2018; 7:64274-64288. [PMID: 27590504 PMCID: PMC5325441 DOI: 10.18632/oncotarget.11729] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/25/2016] [Indexed: 12/26/2022] Open
Abstract
The A2B receptor (A2BR) can mediate adenosine-induced tumor proliferation, immunosuppression and angiogenesis. Targeting the A2BR has proved to be therapeutically effective in some murine tumor models, but the mechanisms of these effects are still incompletely understood. Here, we report that pharmacologic inhibition of A2BR with PSB1115, which inhibits tumor growth, decreased the number of fibroblast activation protein (FAP)-expressing cells in tumors in a mouse model of melanoma. This effect was associated with reduced expression of fibroblast growth factor (FGF)-2. Treatment of melanoma-associated fibroblasts with the A2BR agonist Bay60-6583 enhanced CXCL12 and FGF2 expression. This effect was abrogated by PSB1115. The A2AR agonist CGS21680 did not induce CXCL12 or FGF2 expression in tumor associated fibroblasts. Similar results were obtained under hypoxic conditions in skin-derived fibroblasts, which responded to Bay60-6583 in an A2BR-dependent manner, by stimulating pERK1/2. FGF2 produced by Bay60-6583-treated fibroblasts directly enhanced the proliferation of melanoma cells. This effect could be reversed by PSB1115 or an anti-FGF2 antibody. Interestingly, melanoma growth in mice receiving Bay60-6583 was attenuated by inhibition of the CXCL12/CXCR4 pathway with AMD3100. CXCL12 and its receptor CXCR4 are involved in angiogenesis and immune-suppression. Treatment of mice with AMD3100 reduced the number of CD31+ cells induced by Bay60-6583. Conversely, CXCR4 blockade did not affect the accumulation of tumor-infiltrating MDSCs or Tregs. Together, our data reveal an important role for A2BR in stimulating FGF2 and CXCL12 expression in melanoma-associated fibroblasts. These factors contribute to create a tumor-promoting microenvironment. Our findings support the therapeutic potential of PSB1115 for melanoma.
Collapse
Affiliation(s)
- Claudia Sorrentino
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy.,PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center and Stanley S. Scott Cancer Center, New Orleans, LA, USA
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| |
Collapse
|
28
|
Goulding J, May LT, Hill SJ. Characterisation of endogenous A 2A and A 2B receptor-mediated cyclic AMP responses in HEK 293 cells using the GloSensor™ biosensor: Evidence for an allosteric mechanism of action for the A 2B-selective antagonist PSB 603. Biochem Pharmacol 2017; 147:55-66. [PMID: 29106905 PMCID: PMC5770336 DOI: 10.1016/j.bcp.2017.10.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/23/2017] [Indexed: 01/13/2023]
Abstract
Endogenous adenosine A2B receptors (A2BAR) mediate cAMP accumulation in HEK 293 cells. Here we have used a biosensor to investigate the mechanism of action of the A2BAR antagonist PSB 603 in HEK 293 cells. The A2A agonist CGS 21680 elicited a small response in these cells (circa 20% of that obtained with NECA), suggesting that they also contain a small population of A2A receptors. The responses to NECA and adenosine were antagonised by PSB 603, but not by the selective A2AAR antagonist SCH 58261. In contrast, CGS 21680 responses were not antagonised by high concentrations of PSB 603, but were sensitive to inhibition by SCH 58261. Analysis of the effect of increasing concentrations of PSB 603 on the response to NECA indicated a non-competitive mode of action yielding a marked reduction in the NECA EMAX with no significant effect on EC50 values. Kinetics analysis of the effect of PSB 603 on the A2BAR-mediated NECA responses confirmed a saturable effect that was consistent with an allosteric mode of antagonism. The possibility that PSB 603 acts as a negative allosteric modulator of A2BAR suggests new approaches to the development of therapeutic agents to treat conditions where adenosine levels are high.
Collapse
Affiliation(s)
- Joelle Goulding
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK
| | - Lauren T May
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Stephen J Hill
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK.
| |
Collapse
|
29
|
Haddad M. Adenosine A2B Receptors - Mediated Induction of Interleukin-6 in Skeletal Muscle Cells. Turk J Pharm Sci 2017; 14:19-28. [PMID: 32454590 DOI: 10.4274/tjps.08108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 01/10/2023]
Abstract
Objectives Inflammatory response and cytokine activation are markedly stimulated in skeletal muscle during various conditions. Interleukin-6 (IL-6), a pro-inflammatory cytokine, has pleiotropic effects on skeletal muscle. Adenosine, released by all cell types, binds to a class of G protein-coupled receptors to induce various skeletal muscle effects. The aim of this work was to investigate whether activation of adenosine receptors, particularly adenosine A2B receptors, could stimulate IL-6 gene expression in rat L6 skeletal muscle cells. Materials and Methods The rat L6 skeletal muscle cells were cultured in 25 cm2 flasks. These differentiated cells were treated and then quantitative reverse transcription-polymerase chain reaction (Probe-based) was used to analyze IL-6 gene expression level among different treatment conditions. Results Adenosine-5'-N-ethyluronamide (NECA), a stable adenosine analogue, concentration- and time-dependently stimulates IL-6 gene expression in skeletal muscle cells. The effect of NECA is inhibited by a selective adenosine A2B receptor antagonist, PSB 603. By using cyclic adenosine monophosphate (cAMP)-arising reagent forskolin, cAMP is found to be involved in the up-regulation of IL-6 induction. Conclusion Here, a novel relationship between adenosine and IL-6 up-regulation has been demonstrated for the first time; IL-6 up-regulation induced by NECA is mediated by adenosine A2B receptor activation in skeletal muscle and is dependent on mainly a cAMP pathway. Adenosine A2B receptors are, thus, potentially important pharmacological targets in treating inflammation and related diseases in skeletal muscle tissues.
Collapse
Affiliation(s)
- Mansour Haddad
- Department Of Clinical Sciences, Faculty Of Pharmacy, Philadelphia University, Amman, Jordan
| |
Collapse
|
30
|
Basu S, Barawkar DA, Ramdas V, Patel M, Waman Y, Panmand A, Kumar S, Thorat S, Naykodi M, Goswami A, Reddy BS, Prasad V, Chaturvedi S, Quraishi A, Menon S, Paliwal S, Kulkarni A, Karande V, Ghosh I, Mustafa S, De S, Jain V, Banerjee ER, Rouduri SR, Palle VP, Chugh A, Mookhtiar KA. Design and synthesis of novel xanthine derivatives as potent and selective A 2B adenosine receptor antagonists for the treatment of chronic inflammatory airway diseases. Eur J Med Chem 2017; 134:218-229. [PMID: 28415011 DOI: 10.1016/j.ejmech.2017.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/01/2017] [Accepted: 04/07/2017] [Indexed: 10/19/2022]
Abstract
Adenosine induces bronchial hyperresponsiveness and inflammation in asthmatics through activation of A2B adenosine receptor (A2BAdoR). Selective antagonists have been shown to attenuate airway reactivity and improve inflammatory conditions in pre-clinical studies. Hence, the identification of novel, potent and selective A2BAdoR antagonist may be beneficial for the potential treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD). Towards this effort, we explored several prop-2-ynylated C8-aryl or heteroaryl substitutions on xanthine chemotype and found that 1-prop-2-ynyl-1H-pyrazol-4-yl moiety was better tolerated at the C8 position. Compound 59, exhibited binding affinity (Ki) of 62 nM but was non-selective for A2BAdoR over other AdoRs. Incorporation of substituted phenyl on the terminal acetylene increased the binding affinity (Ki) significantly to <10 nM. Various substitutions on terminal phenyl group and different alkyl substitutions on N-1 and N-3 were explored to improve the potency, selectivity for A2BAdoR and the solubility. In general, compounds with meta-substituted phenyl provided better selectivity for A2BAdoR compared to that of para-substituted analogs. Substitutions such as basic amines like pyrrolidine, piperidine, piperazine or cycloalkyls with polar group were tried on terminal acetylene, keeping in mind the poor solubility of xanthine analogs in general. However, these substitutions led to a decrease in affinity compared to compound 59. Subsequent SAR optimization resulted in identification of compound 46 with high human A2BAdoR affinity (Ki = 13 nM), selectivity against other AdoR subtypes and with good pharmacokinetic properties. It was found to be a potent functional A2BAdoR antagonist with a Ki of 8 nM in cAMP assay in hA2B-HEK293 cells and an IC50 of 107 nM in IL6 assay in NIH-3T3 cells. Docking study was performed to rationalize the observed affinity data. Structure-activity relationship (SAR) studies also led to identification of compound 36 as a potent A2BAdoR antagonist with Ki of 1.8 nM in cAMP assay and good aqueous solubility of 529 μM at neutral pH. Compound 46 was further tested for in vivo efficacy and found to be efficacious in ovalbumin-induced allergic asthma model in mice.
Collapse
Affiliation(s)
- Sujay Basu
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India.
| | - Dinesh A Barawkar
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Vidya Ramdas
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Meena Patel
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Yogesh Waman
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Anil Panmand
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Santosh Kumar
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Sachin Thorat
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Minakshi Naykodi
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Arnab Goswami
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - B Srinivasa Reddy
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Vandna Prasad
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Sandhya Chaturvedi
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Azfar Quraishi
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Suraj Menon
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Shalini Paliwal
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Abhay Kulkarni
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Vikas Karande
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Indraneel Ghosh
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Syed Mustafa
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Siddhartha De
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Vaibhav Jain
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Ena Ray Banerjee
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Sreekanth R Rouduri
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Venkata P Palle
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Anita Chugh
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India
| | - Kasim A Mookhtiar
- Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune 411 057, India.
| |
Collapse
|
31
|
Densmore JC, Schaid TR, Jeziorczak PM, Medhora M, Audi S, Nayak S, Auchampach J, Dwinell MR, Geurts AM, Jacobs ER. Lung injury pathways: Adenosine receptor 2B signaling limits development of ischemic bronchiolitis obliterans organizing pneumonia. Exp Lung Res 2017; 43:38-48. [PMID: 28266889 PMCID: PMC5831175 DOI: 10.1080/01902148.2017.1286697] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. MATERIALS AND METHODS Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague-Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. RESULTS Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. CONCLUSION Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury.
Collapse
Affiliation(s)
- John C. Densmore
- Children’s Research Institute, Milwaukee, WI
- Clinical and Translational Science Institute, Milwaukee, WI
- Medical College of Wisconsin, Milwaukee, WI
| | | | - Paul M. Jeziorczak
- Children’s Research Institute, Milwaukee, WI
- Medical College of Wisconsin, Milwaukee, WI
| | | | | | | | | | | | | | - Elizabeth R. Jacobs
- Clinical and Translational Science Institute, Milwaukee, WI
- Medical College of Wisconsin, Milwaukee, WI
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI
| |
Collapse
|
32
|
A 2B adenosine receptors stimulate IL-6 production in primary murine microglia through p38 MAPK kinase pathway. Pharmacol Res 2016; 117:9-19. [PMID: 27974241 DOI: 10.1016/j.phrs.2016.11.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/17/2016] [Accepted: 11/20/2016] [Indexed: 01/22/2023]
Abstract
The hallmark of neuroinflammation is the activation of microglia, the immunocompetent cells of the CNS, releasing a number of proinflammatory mediators implicated in the pathogenesis of neuronal diseases. Adenosine is an ubiquitous autacoid regulating several microglia functions through four receptor subtypes named A1, A2A, A2B and A3 (ARs), that represent good targets to suppress inflammation occurring in CNS. Here we investigated the potential role of ARs in the modulation of IL-6 secretion and cell proliferation in primary microglial cells. The A2BAR agonist 2-[[6-Amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]-2-pyridinyl]thio]-acetamide (BAY60-6583) stimulated IL-6 increase under normoxia and hypoxia, in a dose- and time-dependent way. In cells incubated with the blockers of phospholipase C (PLC), protein kinase C epsilon (PKC-ε) and PKC delta (PKC-δ) the IL-6 increase due to A2BAR activation was strongly reduced, whilst it was not affected by the inhibitor of adenylyl cyclase (AC). Investigation of cellular signalling involved in the A2BAR effect revealed that only the inhibitor of p38 mitogen activated protein kinase (MAPK) was able to block the agonist's effect on IL-6 secretion, whilst inhibitors of pERK1/2, JNK1/2 MAPKs and Akt were not. Stimulation of p38 by BAY60-6583 was A2BAR-dependent, through a pathway affecting PLC, PKC-ε and PKC-δ but not AC, in both normoxia and hypoxia. Finally, BAY60-6583 increased microglial cell proliferation involving A2BAR, PLC, PKC-ε, PKC-δ and p38 signalling. In conclusion, A2BARs activation increased IL-6 secretion and cell proliferation in murine primary microglial cells, through PLC, PKC-ε, PKC-δ and p38 pathways, thus suggesting their involvement in microglial activation and neuroinflammation.
Collapse
|
33
|
Basu S, Barawkar DA, Ramdas V, Waman Y, Patel M, Panmand A, Kumar S, Thorat S, Bonagiri R, Jadhav D, Mukhopadhyay P, Prasad V, Reddy BS, Goswami A, Chaturvedi S, Menon S, Quraishi A, Ghosh I, Dusange S, Paliwal S, Kulkarni A, Karande V, Thakre R, Bedse G, Rouduri S, Gundu J, Palle VP, Chugh A, Mookhtiar KA. A 2B adenosine receptor antagonists: Design, synthesis and biological evaluation of novel xanthine derivatives. Eur J Med Chem 2016; 127:986-996. [PMID: 27842891 DOI: 10.1016/j.ejmech.2016.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 11/16/2022]
Abstract
A2BAdoR is a low affinity adenosine receptor that functions by Gs mediated elevation of cAMP and subsequent downstream signaling. The receptor has been implicated in lung inflammatory disorders like COPD and asthma. Several potent and selective A2BAdoR antagonists have been reported in literature, however most of the compounds suffer from poor pharmacokinetic profile. Therefore, with the aim to identify novel, potent and selective A2BAdoR antagonists with improved pharmacokinetic properties, we first explored more constrained form of MRS-1754 (4). To improve the metabolic stability, several linker modifications were attempted as replacement of amide linker along with different phenyl or other heteroaryls between C8 position of xanthine head group and terminal phenyl ring. SAR optimization resulted in identification of two novel A2BAdoR antagonists, 8-{1-[5-Oxo-1-(4-trifluoromethyl-phenyl)-pyrrolidin-3-ylmethyl]-1H-pyrazol-4-yl}-1,3-dipropyl-xanthine (31) and 8-(1-{2-Oxo-2-[4-(3-trifluoromethyl-phenyl)-piperazin-1-yl]-ethyl}-1H-pyrazol-4-yl)-1,3-dipropyl-xanthine (65), with high binding affinity (Ki = 1 and 1.5 nM, respectively) and selectivity for A2BAdoR with very good functional potency of 0.9 nM and 4 nM, respectively. Compound 31 and 65 also displayed good pharmacokinetic properties in mice with 27% and 65% oral bioavailability respectively. When evaluated in in vivo mice model of asthma, compound 65 also inhibited airway inflammation and airway reactivity in ovalbumin induced allergic asthma at 3 mpk dose.
Collapse
Affiliation(s)
- Sujay Basu
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India.
| | - Dinesh A Barawkar
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Vidya Ramdas
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Yogesh Waman
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Meena Patel
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Anil Panmand
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Santosh Kumar
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Sachin Thorat
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Rajesh Bonagiri
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Dilip Jadhav
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Partha Mukhopadhyay
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Vandna Prasad
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - B Srinivasa Reddy
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Arnab Goswami
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Sandhya Chaturvedi
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Suraj Menon
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Azfar Quraishi
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Indraneel Ghosh
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Sushant Dusange
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Shalini Paliwal
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Abhay Kulkarni
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Vikas Karande
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Rhishikesh Thakre
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Gaurav Bedse
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Sreekanth Rouduri
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Jayasagar Gundu
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Venkata P Palle
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Anita Chugh
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India
| | - Kasim A Mookhtiar
- Department of Discovery Chemistry, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of Discovery Biology, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India; Department of DMPK, Advinus Therapeutics Ltd., Drug Discovery Facility, Quantum Towers, Plot-9, Phase-I, Rajiv Gandhi Infotech Park, Hinjawadi, Pune, 411 057, India.
| |
Collapse
|
34
|
Singh J, Shah R, Singh D. Inundation of asthma target research: Untangling asthma riddles. Pulm Pharmacol Ther 2016; 41:60-85. [PMID: 27667568 DOI: 10.1016/j.pupt.2016.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/11/2016] [Accepted: 09/20/2016] [Indexed: 12/31/2022]
Abstract
Asthma is an inveterate inflammatory disorder, delineated by the airway inflammation, bronchial hyperresponsiveness (BHR) and airway wall remodeling. Although, asthma is a vague term, and is recognized as heterogenous entity encompassing different phenotypes. Targeting single mediator or receptor did not prove much clinical significant, as asthma is complex disease involving myriad inflammatory mediators. Asthma may probably involve a large number of different types of molecular and cellular components interacting through complex pathophysiological pathways. This review covers the past, present, and future therapeutic approaches and pathophysiological mechanisms of asthma. Furthermore, review describe importance of targeting several mediators/modulators and receptor antagonists involved in the physiopathology of asthma. Novel targets for asthma research include Galectins, Immunological targets, K + Channels, Kinases and Transcription Factors, Toll-like receptors, Selectins and Transient receptor potential channels. But recent developments in asthma research are very promising, these include Bitter taste receptors (TAS2R) abated airway obstruction in mouse model of asthma and Calcium-sensing receptor obliterate inflammation and in bronchial hyperresponsiveness allergic asthma. All these progresses in asthma targets, and asthma phenotypes exploration are auspicious in untangling of asthma riddles.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Ramanpreet Shah
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| | - Dhandeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India.
| |
Collapse
|
35
|
Hypoxia-stimulated cardiac fibroblast production of IL-6 promotes myocardial fibrosis via the TGF-β1 signaling pathway. J Transl Med 2016; 96:839-52. [PMID: 27348628 DOI: 10.1038/labinvest.2016.65] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/16/2016] [Accepted: 05/01/2016] [Indexed: 12/15/2022] Open
Abstract
Interlukin-6 (IL-6) is a multifunctional cytokine produced by several cell types that has a role in fibrosis. Fibroblasts (FBs) maintain this underlying pathogenic change through regulation of IL-6 production; however, its potential functional role in regulating surrounding cellular structural changes during ischemic myocardial remodeling remains unexplored. Here, we generated FBs, cardiomyocytes (CMs), and blood vascular endothelial cells (ECs) from the ventricles of neonatal rats. IL-6 was then overexpressed in FBs and the cells were treated with IL-6 receptor inhibitor (IL6RI), TGF-β1 receptor inhibitor (TβRI), or MMP2/MMP9 inhibitor (MMPI) using monoculture or coculture models under hypoxic conditions. The results indicate that overexpression of IL-6 is sufficient to induce myofibroblastic proliferation, differentiation, and fibrosis, probably via increased TGF-β1-mediated MMP2/MMP3 signaling. The use of IL6RI, TβRI, or MMPI diminished these effects. In addition, IL-6 activated the apoptosis-associated factors Caspase3 and Smad3, and decreased the expression of anti-apoptotic factor Bcl2, resulting in apoptosis of CMs under hypoxic coculture: IL6RI or TβRI inhibited these effects. Unexpectedly, IL-6-overexpressing FBs significantly increased the angiogenesis of ECs, which involved significant increases in the expression of proangiogenic growth factors. Treatment of FBs with IL6RI or TβRI in coculture with ECs reduced the levels of secreted proangiogenic growth factors, and the angiogenesis of ECs was significantly downregulated. Thus, IL-6 functions in ischemic myocardial remodeling through multifunctional reprogramming of hypoxia-associated FBs towards fibrosis via upregulation of the TGF-β1 signaling pathway.
Collapse
|
36
|
Huerter ME, Sharma AK, Zhao Y, Charles EJ, Kron IL, Laubach VE. Attenuation of Pulmonary Ischemia-Reperfusion Injury by Adenosine A2B Receptor Antagonism. Ann Thorac Surg 2016; 102:385-393. [PMID: 27109193 DOI: 10.1016/j.athoracsur.2016.02.060] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/16/2016] [Accepted: 02/16/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a major source of morbidity and mortality after lung transplantation. We previously demonstrated a proinflammatory role of adenosine A2B receptor (A2BR) in lung IR injury. The current study tests the hypothesis that A2BR antagonism is protective of ischemic lungs after in vivo reperfusion or ex vivo lung perfusion (EVLP). METHODS Mice underwent lung IR with or without administration of ATL802, a selective A2BR antagonist. A murine model of EVLP was also used to evaluate rehabilitation of donation after circulatory death (DCD) lungs. DCD lungs underwent ischemia, cold preservation, and EVLP with Steen solution with or without ATL802. A549 human type 2 alveolar epithelial cells were exposed to hypoxia-reoxygenation (HR) (3 hours/1 hour) with or without ATL802 treatment. Cytokines were measured in bronchoalveolar lavage (BAL) fluid and culture media by enzyme-linked immunoassay (ELISA). RESULTS After IR, ATL802 treatment significantly improved lung function (increased pulmonary compliance and reduced airway resistance and pulmonary artery pressure) and significantly attenuated proinflammatory cytokine production, neutrophil infiltration, vascular permeability, and edema. ATL802 also significantly improved the function of DCD lungs after EVLP (increased compliance and reduced pulmonary artery pressure). After HR, A549 cells exhibited robust production of interleukin (IL)-8, a potent neutrophil chemokine, which was significantly attenuated by ATL802. CONCLUSIONS These results demonstrate that A2BR antagonism attenuates lung IRI and augments reconditioning of DCD lungs by EVLP. The protective effects of ATL802 may involve targeting A2BRs on alveolar epithelial cells to prevent IL-8 production. A2BR may be a novel therapeutic target for mitigating IRI to increase the success of lung transplantation.
Collapse
Affiliation(s)
- Mary E Huerter
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Ashish K Sharma
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Yunge Zhao
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Eric J Charles
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Irving L Kron
- Department of Surgery, University of Virginia, Charlottesville, VA
| | - Victor E Laubach
- Department of Surgery, University of Virginia, Charlottesville, VA
| |
Collapse
|
37
|
Federico S, Redenti S, Sturlese M, Ciancetta A, Kachler S, Klotz KN, Cacciari B, Moro S, Spalluto G. The Influence of the 1-(3-Trifluoromethyl-Benzyl)-1H-Pyrazole-4-yl Moiety on the Adenosine Receptors Affinity Profile of Pyrazolo[4,3-e][1,2,4]Triazolo[1,5-c]Pyrimidine Derivatives. PLoS One 2015; 10:e0143504. [PMID: 26625265 PMCID: PMC4666649 DOI: 10.1371/journal.pone.0143504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 11/05/2015] [Indexed: 12/03/2022] Open
Abstract
A new series of pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine (PTP) derivatives has been developed in order to explore their affinity and selectivity profile at the four adenosine receptor subtypes. In particular, the PTP scaffold was conjugated at the C2 position with the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole, a group believed to confer potency and selectivity toward the human (h) A2B adenosine receptor (AR) to the xanthine ligand 8-(1-(3-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione (CVT 6975). Interestingly, the synthesized compounds turned out to be inactive at the hA2B AR but they displayed affinity at the hA3 AR in the nanomolar range. The best compound of the series (6) shows both high affinity (hA3 AR Ki = 11 nM) and selectivity (A1/A3 and A2A/A3 > 9090; A2B/A3 > 909) at the hA3 AR. To better rationalize these results, a molecular docking study on the four AR subtypes was performed for all the synthesized compounds. In addition, CTV 6975 and two close analogues have been subjected to the same molecular docking protocol to investigate the role of the 1-(3-trifluoromethyl-benzyl)-1H-pyrazole on the binding at the four ARs.
Collapse
Affiliation(s)
- Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Sara Redenti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Antonella Ciancetta
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Sonja Kachler
- Institut für Pharmakologie und Toxicologie, Universität Würzburg, Würzburg, Germany
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxicologie, Universität Würzburg, Würzburg, Germany
| | - Barbara Cacciari
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Ferrara, Ferrara, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Trieste, Italy
| |
Collapse
|
38
|
Eisenstein A, Patterson S, Ravid K. The Many Faces of the A2b Adenosine Receptor in Cardiovascular and Metabolic Diseases. J Cell Physiol 2015; 230:2891-7. [PMID: 25975415 DOI: 10.1002/jcp.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/09/2023]
Abstract
Modulation of the low affinity adenosine receptor subtype, the A2b adenosine receptor (A2bAR), has gained interest as a therapeutic target in various pathologic areas associated with cardiovascular disease. The actions of the A2bAR are diverse and at times conflicting depending on cell and tissue type and the timing of activation or inhibition of the receptor. The A2bAR is a promising and exciting pharmacologic target, however, a thorough understanding of A2bAR action is necessary to reach the therapeutic potential of this receptor. This review will focus on the role of the A2bAR in various cardiovascular and metabolic pathologies in which the receptor is currently being studied. We will illustrate the complexities of A2bAR signaling and highlight areas of research with potential for therapeutic development.
Collapse
Affiliation(s)
- Anna Eisenstein
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Shenia Patterson
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.,Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts.,Evans Center for Interdisciplinary Biomedical Research, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
39
|
Perez-Aso M, Mediero A, Low YC, Levine J, Cronstein BN. Adenosine A2A receptor plays an important role in radiation-induced dermal injury. FASEB J 2015; 30:457-65. [PMID: 26415936 DOI: 10.1096/fj.15-280388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/14/2015] [Indexed: 02/06/2023]
Abstract
Ionizing radiation is a common therapeutic modality and following irradiation dermal changes, including fibrosis and atrophy, may lead to permanent changes. We have previously demonstrated that occupancy of A2A receptor (A2AR) stimulates collagen production, so we determined whether blockade or deletion of A2AR could prevent radiation-induced fibrosis. After targeted irradiation (40 Gy) of the skin of wild-type (WT) or A2AR knockout (A2ARKO) mice, the A2AR antagonist ZM241385 was applied daily for 28 d. In irradiated WT mice treated with the A2AR antagonist, there was a marked reduction in collagen content and skin thickness, and ZM241385 treatment reduced the number of myofibroblasts and angiogenesis. After irradiation, there is an increase in loosely packed collagen fibrils, which is significantly diminished by ZM241385. Irradiation also induced an increase in epidermal thickness, prevented by ZM241385, by increasing the number of proliferating keratinocytes. Similarly, in A2ARKO mice, the changes in collagen alignment, skin thickness, myofibroblast content, angiogenesis, and epidermal hyperplasia were markedly reduced following irradiation. Radiation-induced changes in the dermis and epidermis were accompanied by an infiltrate of T cells, which was prevented in both ZM241385-treated and A2ARKO mice. Radiation therapy is administered to a significant number of patients with cancer, and radiation reactions may limit this therapeutic modality. Our findings suggest that topical application of an A2AR antagonist prevents radiation dermatitis and may be useful in the prevention or amelioration of radiation changes in the skin.
Collapse
Affiliation(s)
- Miguel Perez-Aso
- *Division of Translational Medicine, Department of Medicine, and New York University Cancer Center, New York University School of Medicine, New York, New York, USA
| | - Aránzazu Mediero
- *Division of Translational Medicine, Department of Medicine, and New York University Cancer Center, New York University School of Medicine, New York, New York, USA
| | - Yee Cheng Low
- *Division of Translational Medicine, Department of Medicine, and New York University Cancer Center, New York University School of Medicine, New York, New York, USA
| | - Jamie Levine
- *Division of Translational Medicine, Department of Medicine, and New York University Cancer Center, New York University School of Medicine, New York, New York, USA
| | - Bruce N Cronstein
- *Division of Translational Medicine, Department of Medicine, and New York University Cancer Center, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
40
|
Pedroza M, Le TT, Lewis K, Karmouty-Quintana H, To S, George AT, Blackburn MR, Tweardy DJ, Agarwal SK. STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation. FASEB J 2015; 30:129-40. [PMID: 26324850 DOI: 10.1096/fj.15-273953] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 08/17/2015] [Indexed: 01/08/2023]
Abstract
Lung fibrosis is the hallmark of the interstitial lung diseases. Alveolar epithelial cell (AEC) injury is a key step that contributes to a profibrotic microenvironment. Fibroblasts and myofibroblasts subsequently accumulate and deposit excessive extracellular matrix. In addition to TGF-β, the IL-6 family of cytokines, which signal through STAT-3, may also contribute to lung fibrosis. In the current manuscript, the extent to which STAT-3 inhibition decreases lung fibrosis is investigated. Phosphorylated STAT-3 was elevated in lung biopsies from patients with idiopathic pulmonary fibrosis and bleomycin (BLM)-induced fibrotic murine lungs. C-188-9, a small molecule STAT-3 inhibitor, decreased pulmonary fibrosis in the intraperitoneal BLM model as assessed by arterial oxygen saturation (control, 84.4 ± 1.3%; C-188-9, 94.4 ± 0.8%), histology (Ashcroft score: untreated, 5.4 ± 0.25; C-188-9, 3.3 ± 0.14), and attenuated fibrotic markers such as diminished α-smooth muscle actin, reduced collagen deposition. In addition, C-188-9 decreased the expression of epithelial injury markers, including hypoxia-inducible factor-1α (HIF-1α) and plasminogen activator inhibitor-1 (PAI-1). In vitro studies show that inhibition of STAT-3 decreased IL-6- and TGF-β-induced expression of multiple genes, including HIF-1α and PAI-1, in AECs. Furthermore, C-188-9 decreased fibroblast-to-myofibroblast differentiation. Finally, TGF-β stimulation of lung fibroblasts resulted in SMAD2/SMAD3-dependent phosphorylation of STAT-3. These findings demonstrate that STAT-3 contributes to the development of lung fibrosis and suggest that STAT-3 may be a therapeutic target in pulmonary fibrosis.
Collapse
Affiliation(s)
- Mesias Pedroza
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Thuy T Le
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Katherine Lewis
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Harry Karmouty-Quintana
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Sarah To
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Anuh T George
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Michael R Blackburn
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - David J Tweardy
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| | - Sandeep K Agarwal
- *Department of Medicine and Department of Infectious Disease, Baylor College of Medicine, Houston, Texas, USA; and Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston Medical School, Houston, Texas, USA
| |
Collapse
|
41
|
Roberts VS, Cowan PJ, Alexander SI, Robson SC, Dwyer KM. The role of adenosine receptors A2A and A2B signaling in renal fibrosis. Kidney Int 2014; 86:685-92. [DOI: 10.1038/ki.2014.244] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 01/16/2014] [Accepted: 01/24/2014] [Indexed: 12/20/2022]
|
42
|
Le TTT, Karmouty-Quintana H, Melicoff E, Le TTT, Weng T, Chen NY, Pedroza M, Zhou Y, Davies J, Philip K, Molina J, Luo F, George AT, Garcia-Morales LJ, Bunge RR, Bruckner BA, Loebe M, Seethamraju H, Agarwal SK, Blackburn MR. Blockade of IL-6 Trans signaling attenuates pulmonary fibrosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:3755-68. [PMID: 25172494 PMCID: PMC4169999 DOI: 10.4049/jimmunol.1302470] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 07/31/2014] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with progressive fibrosis and death within 2-3 y of diagnosis. IPF incidence and prevalence rates are increasing annually with few effective treatments available. Inhibition of IL-6 results in the attenuation of pulmonary fibrosis in mice. It is unclear whether this is due to blockade of classical signaling, mediated by membrane-bound IL-6Rα, or trans signaling, mediated by soluble IL-6Rα (sIL-6Rα). Our study assessed the role of sIL-6Rα in IPF. We demonstrated elevations of sIL-6Rα in IPF patients and in mice during the onset and progression of fibrosis. We demonstrated that protease-mediated cleavage from lung macrophages was important in production of sIL-6Rα. In vivo neutralization of sIL-6Rα attenuated pulmonary fibrosis in mice as seen by reductions in myofibroblasts, fibronectin, and collagen in the lung. In vitro activation of IL-6 trans signaling enhanced fibroblast proliferation and extracellular matrix protein production, effects relevant in the progression of pulmonary fibrosis. Taken together, these findings demonstrate that the production of sIL-6Rα from macrophages in the diseased lung contributes to IL-6 trans signaling that in turn influences events crucial in pulmonary fibrosis.
Collapse
Affiliation(s)
- Thanh-Thuy T Le
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | | | - Thanh-Truc T Le
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Ning-Yuan Chen
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Mesias Pedroza
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030; Biology of Inflammation Center, Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Jonathan Davies
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030
| | - Kemly Philip
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Jose Molina
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Fayong Luo
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030
| | - Anuh T George
- Biology of Inflammation Center, Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Luis J Garcia-Morales
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030; and
| | - Raquel R Bunge
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030; and
| | - Brian A Bruckner
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030; and Methodist J.C. Walter Jr. Transplant Center, The Methodist Hospital, Houston, TX 77030
| | - Matthias Loebe
- Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX 77030; and Methodist J.C. Walter Jr. Transplant Center, The Methodist Hospital, Houston, TX 77030
| | - Harish Seethamraju
- Methodist J.C. Walter Jr. Transplant Center, The Methodist Hospital, Houston, TX 77030
| | - Sandeep K Agarwal
- Biology of Inflammation Center, Section of Immunology, Allergy and Rheumatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030;
| |
Collapse
|
43
|
Zheng LH, Cai FF, Ge I, Biskup E, Cheng ZP. Stromal fibroblast activation and their potential association with uterine fibroids (Review). Oncol Lett 2014; 8:479-486. [PMID: 25013460 PMCID: PMC4081411 DOI: 10.3892/ol.2014.2225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/24/2014] [Indexed: 12/19/2022] Open
Abstract
Uterine fibroids are the most common type of benign, gynecologic neoplasm and are the primary indication for performance of a hysterectomy, accounting for >200,000 hysterectomies annually in the USA. At present, females are younger and exhibit larger leiomyomas at the time of diagnosis. Cancer-associated fibroblasts in tumor microenvironments have emerged as an important target for cancer therapy. Repeated stimulation by infectious or non-infectious agents in the uterine tissues, including inflammation, mechanical forces or hypoxia, stimulate the resident fibroblasts to undergo specific activation and, thus, are significant in tumorigenesis. Furthermore, complex signaling pathways regulate the mechanisms of fibroblastic activation. The current review focuses on the molecular mechanisms of fibroblastic activation and the potential association with uterine leiomyoma pathogenesis, enabling an integrated pathogenic analysis for review of the therapeutic options.
Collapse
Affiliation(s)
- Li-Hua Zheng
- Department of Gynaecology and Obstetrics, Yangpu District Central Hospital, Tongji University, Shanghai 200090, P.R. China
| | - Feng-Feng Cai
- Department of Breast Surgery, Yangpu Hospital, Tongji University, Shanghai 200090, P.R. China
| | - Isabell Ge
- Faculty of Medicine, Heidelberg University, Heidelberg, Baden-Württemberg D-69120, Germany
| | - Ewelina Biskup
- Department of Oncology, University Hospital of Basel, Basel-Stadt CH 4055, Switzerland
| | - Zhong-Ping Cheng
- Department of Gynaecology and Obstetrics, Yangpu District Central Hospital, Tongji University, Shanghai 200090, P.R. China
| |
Collapse
|
44
|
Dayanim S, Lopez B, Maisonet TM, Grewal S, Londhe VA. Caffeine induces alveolar apoptosis in the hyperoxia-exposed developing mouse lung. Pediatr Res 2014; 75:395-402. [PMID: 24321990 PMCID: PMC3943688 DOI: 10.1038/pr.2013.233] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Caffeine is a nonspecific adenosine receptor antagonist used in premature neonates to treat apnea of prematurity. While its use may reduce the incidence of bronchopulmonary dysplasia (BPD), the precise mechanisms remain unknown. Evidence of increased adenosine levels are noted in chronic lung diseases including tracheal aspirates of infants with BPD. Utilizing a well-characterized newborn mouse model of alveolar hypoplasia, we hypothesized that hyperoxia-induced alveolar inflammation and hypoplasia is associated with alterations in the adenosine signaling pathway. METHODS Newborn murine pups were exposed to a 14-d period of hyperoxia and daily caffeine administration followed by a 14-d recovery period in room air. Lungs were collected at both time points for bronchoalveolar lavage (BAL) analysis as well as histopathology and mRNA and protein expression. RESULTS Caffeine treatment increased inflammation and worsened alveolar hypoplasia in hyperoxia-exposed newborn mice. These changes were associated with decreased alveolar type II (ATII) cell numbers, increased cell apoptosis, and decreased expression of A2A receptors. Following discontinuation of caffeine and hyperoxia, lung histology returned to baseline levels comparable to hyperoxia exposure alone. CONCLUSION Results of this study suggest a potentially adverse role of caffeine on alveolar development in a murine model of hyperoxia-induced alveolar hypoplasia.
Collapse
Affiliation(s)
- Sara Dayanim
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Benjamin Lopez
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Tiffany M. Maisonet
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Sungat Grewal
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| | - Vedang A. Londhe
- Department of Pediatrics, Division of Neonatology and Developmental Biology, Neonatal Research Center, David Geffen School of Medicine at University of California, Los Angeles, CA 90095
| |
Collapse
|
45
|
Karmouty-Quintana H, Weng T, Garcia-Morales LJ, Chen NY, Pedroza M, Zhong H, Molina JG, Bunge R, Bruckner BA, Xia Y, Johnston RA, Loebe M, Zeng D, Seethamraju H, Belardinelli L, Blackburn MR. Adenosine A2B receptor and hyaluronan modulate pulmonary hypertension associated with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 2014; 49:1038-47. [PMID: 23855769 DOI: 10.1165/rcmb.2013-0089oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death worldwide. The development of pulmonary hypertension (PH) in patients with COPD is strongly associated with increased mortality. Chronic inflammation and changes to the lung extracellular matrix (ECM) have been implicated in the pathogenesis of COPD, yet the mechanisms that lead to PH secondary to COPD remain unknown. Our experiments using human lung tissue show increased expression levels of the adenosine A2B receptor (ADORA2B) and a heightened deposition of hyaluronan (HA; a component of the ECM) in remodeled vessels of patients with PH associated with COPD. We also demonstrate that the expression of HA synthase 2 correlates with mean pulmonary arterial pressures in patients with COPD, with and without a secondary diagnosis of PH. Using an animal model of airspace enlargement and PH, we show that the blockade of ADORA2B is able to attenuate the development of a PH phenotype that correlates with reduced levels of HA deposition in the vessels and the down-regulation of genes involved in the synthesis of HA.
Collapse
|
46
|
Darashchonak N, Koepsell B, Bogdanova N, von Versen-Höynck F. Adenosine A2B receptors induce proliferation, invasion and activation of cAMP response element binding protein (CREB) in trophoblast cells. BMC Pregnancy Childbirth 2014; 14:2. [PMID: 24383849 PMCID: PMC3909477 DOI: 10.1186/1471-2393-14-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/18/2013] [Indexed: 12/04/2022] Open
Abstract
Background Placental hypoxia is a result of abnormal and shallow trophoblast invasion and involved in the pathophysiology of preeclampsia. Hypoxia increases extracellular adenosine levels and plays an important role in the regulation of angiogenesis, proliferation, vascular tone, endothelial permeability and inflammation. It was shown that adenosine concentrations are higher in preeclamptic patients. We tested the hypothesis that hypoxia and A2B adenosine receptor activation influence cyclic adenosine monophosphate (cAMP) production, proliferation, invasion and cAMP-PKA-CREB signaling in trophoblast cells (HTR-8/SVneo). Methods HTR-8/SVneo and human uterine microvascular endothelial cells (HUtMVEC) were used as model for experiments. We employed a cAMP assay, invasion assay, proliferation, RT-PCR and Western Blot. Statistical analyses were performed with ANOVA, Kruskal-Wallis-, Wilcoxon signed rank- or Mann–Whitney Test, as appropriate. Results Hypoxia (2% O2) in comparison to normoxia (21% O2) led to increased A2B mRNA levels (1.21 ± 0.06 fold, 1 h 2% O2; 1.66 ± 0.2 fold, 4 h 2% O2 and 1.2 ± 0.04 fold, 24 h 2% O2). A2B adenosine receptor activation (NECA) stimulated trophoblast proliferation at 2% O2 (1.27 ± 0.06 fold) and 8% O2 (1.17 ± 0.07 fold) after 24 h and at 2% O2 (1.22 ± 0.05 fold), 8% O2 (1.23 ± 0.09 fold) and 21% O2 (1.15 ± 0.04 fold) after 48 h of incubation. Trophoblast invasion into an endothelial monolayer was significantly expanded by activation of the receptor (NECA) at 8% O2 (1.20 ± 0.07 fold) and 21% O2 (1.22 ± 0.006 fold). A2B adenosine receptor stimulation (NECA) additionally led to increased CREB phosphorylation in trophoblast cells at 2% O2 (2.13 ± 0.45 fold), 8% O2 (1.55 ± 0.13 fold) and 21% O2 (1.71 ± 0.34 fold). Blocking of CREB signaling resulted in reduced proliferation and CREB phosphorylation. Conclusion These data expand the recent knowledge regarding the role of adenosine receptor A2B in human placental development, and may provide insight in mechanisms associated with pregnancy complications linked to impaired trophoblast invasion such as preeclampsia.
Collapse
Affiliation(s)
| | | | | | - Frauke von Versen-Höynck
- Gynecology Research Unit, Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
47
|
|
48
|
Pejman L, Omrani H, Mirzamohammadi Z, Shahbazfar AA, Khalili M, Keyhanmanesh R. The Effect of Adenosine A2A and A2B Antagonists on Tracheal Responsiveness, Serum Levels of Cytokines and Lung Inflammation in Guinea Pig Model of Asthma. Adv Pharm Bull 2013; 4:131-8. [PMID: 24511476 DOI: 10.5681/apb.2014.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 08/14/2013] [Accepted: 09/01/2013] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Nowadays adenosine is specified as an important factor in the pathophysiology of asthma. For determining the effect of different A2 receptors, in this investigation the effect of single dose of selective adenosine A2A and A2B antagonists (ZM241385 and MRS1706) on different inflammatory parameters; tracheal responsiveness to methacholine and ovalbumin, total and differential cell count in bronchoalveolar lavage (BAL), blood levels of IL-4 and IFN-γ and lung pathology of guinea pig model of asthma were assessed. METHODS All mentioned parameters were evaluated in two sensitized groups of guinea pigs pretreated with A2A and A2B antagonists (S+Anta A2A, S+Anta A2B) compared with sensitized (S) and control (C) groups. RESULTS The tracheal responsiveness to methacholine and OA, total cell and eosinophil and basophil count in BAL, blood IL-4 level and pathological changes in pre-treated group with MRS1706 (S+Anta A2B) was significantly lower than those of sensitized group (p<0.01 to p<0.05). In pretreated group with Anta A2A(S+Anta A2A), all the above changes were reversed. CONCLUSION These results showed a preventive effect of A2B antagonist (MRS1706) on tracheal responsiveness to methacholine and OA, total and differential cell count in bronchoalveolar lavage, blood cytokines and pathological changes. Administration of ZM241385, selective A2A antagonist, deteriorated the induction effect of ovalbumin.
Collapse
Affiliation(s)
- Laleh Pejman
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hasan Omrani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mirzamohammadi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ali Shahbazfar
- Department of Pathology, Faculty of Veterinary Medicine, Tabriz University, Tabriz, Iran
| | - Majid Khalili
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rana Keyhanmanesh
- Tuberculosis and Lung Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Della Latta V, Cabiati M, Rocchiccioli S, Del Ry S, Morales MA. The role of the adenosinergic system in lung fibrosis. Pharmacol Res 2013; 76:182-9. [PMID: 23994158 DOI: 10.1016/j.phrs.2013.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/05/2013] [Accepted: 08/14/2013] [Indexed: 12/15/2022]
Abstract
Adenosine (ADO) is a retaliatory metabolite that is expressed in conditions of injury or stress. During these conditions ATP is released at the extracellular level and is metabolized to adenosine. For this reason, adenosine is defined as a "danger signal" for cells and organs, in addition to its important role as homeostatic regulator. Its physiological functions are mediated through interaction with four specific transmembrane receptors called ADORA1, ADORA2A, ADORA2B and ADORA3. In the lungs of mice and humans all four adenosine receptors are expressed with different roles, having pro- and anti-inflammatory roles, determining bronchoconstriction and regulating lung inflammation and airway remodeling. Adenosine receptors can also promote differentiation of lung fibroblasts into myofibroblasts, typical of the fibrotic event. This last function suggests a potential involvement of adenosine in the fibrotic lung disease processes, which are characterized by different degrees of inflammation and fibrosis. Idiopathic pulmonary fibrosis (IPF) is the pathology with the highest degree of fibrosis and is of unknown etiology and burdened by lack of effective treatments in humans.
Collapse
Key Words
- 1-deoxy-1,6[[(3-iodophenyl)methyl]amino]-9H-purin-9yl-N-methyl-B-d-ribofuronamide
- 1-propyl-8-p-sulfophenulxanthine
- 2 hexynyl-5′-N ethylcarboxamidoadenosine
- 2-(2-phenyl)ethynyl-N-ethylcarboxamido-adenosine
- 2-CI-IB MECA
- 2-chloro-N6-cyclopentyladenosine
- 2-cloro-N6-(3-iodobenzyl)-adenosine-50-N methyluronamide
- 2-methyl-6-phenyl-4-phenylethynyl-1,4-dihydro-pyridine-3,5-dicarboxylicacid-3-ethyl ester-5-(4-nitro-benzyl)ester
- 2-p-(2-carboxyethyl) phenethylamino-50-N-ethyl-carboxamidoadenosine
- 2-phenyl hydroxypropynyl-5′-N-ethylcarboxamido adenosine phosphoinositide 3
- 3-ethyl-1-propyl-8-(1-(3-(trifluoromethyl) benzyl)-1H-pyrazol-4-yl)-1H-purine-2,6(3H,7H)-dione
- 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate
- 3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2-phenyl-4-propyl-3-pyridinecarboxylate
- 4-(2-[7-amino-2-(2-furyl)-{1,2,4}-triazolo{2,3-a}{1,3,5}triazin-5-ylamino]ethyl)pieno
- 5-[[(4-methoxyphenyl)amino]carbonyl]amino-8-methyl-2-(2-furyl)pyra-zolo[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine
- 7-methyl-[11C]-(E)-8-(3-bromostyryl)-3,7-dimethyl-1-propargylxanthin
- 8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]oxy]phenyl]-l,3-dipropylxanthine
- 8-cyclopentyl-1,3-dipropylxanthine
- 9-chloro-2-(2-furanyl)-5-[(phenylacetyl) amino] [1,2,4]-triazolo[1,5-c]quinazoline
- 9-chloro-2-(2-furanyl)-[1,2,4]triazolo[1,5-c]quinazolin-5-amine
- A(1)R
- A(2A)R
- A(2B)R
- A(3)R
- AB-MECA
- ADA
- ADO
- ADORA 1 receptor
- ADORA 2A receptor
- ADORA 2B receptor
- ADORA 3 receptor
- ADP
- AIP
- AK
- AMP
- ARs
- ATP
- Adenosine
- Adenosine receptors
- Bleomycin
- CCPA
- CD39
- CD73
- CGS 15943
- CGS21680
- CHA
- CNS
- CNT-1
- CNT-2
- COP
- COPD
- CPA
- CVT6883
- DAG
- DIP
- DPCPX
- E-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine
- ECM
- ENT-1
- ENT-2
- ET-1
- FITC
- HE-NECA
- IB-MECA
- IIPs
- ILD
- INO
- IPF
- Idiopathic pulmonary fibrosis
- KF17837
- LIP
- Lung disease
- MAP
- MRE3008-F207
- MRS 1191
- MRS 1220
- MRS 1334
- MRS 1523
- MRS 1754
- N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide
- N-ethylcarboxamido-adenosine
- N6-(2-phenylisopropyl)adenosine
- N6-(4-aminobenzyl)-adenosine-5′-N-methyluronamidedihydrochloride
- N6-cyclohexyl adenosine
- N6-cyclopentyladenosine
- NECA
- NSPI
- PAH
- PENECA
- PHPNECA
- PIA
- PKC
- PLA2
- PLC
- PLD
- PSB1115
- RB-ILD
- ROS
- SCH-58261
- UIP
- XAC
- ZM 241385
- [11C]BS-DMPX
- [7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-(4,3-e)-1,2,4-triazolo(1,5-c) pyrimidine]
- acute interstitial pneumonia
- adenosine
- adenosine deaminase
- adenosine diphosphate
- adenosine kinase
- adenosine monophosphate
- adenosine receptors
- adenosine triphosphate
- cAMP
- central nervous system
- chronic obstructive pulmonary diseases
- concentrative nucleoside transporters-1
- concentrative nucleoside transporters-2
- cryptogenic organizing pneumonia
- cyclic adenosine monophosphate
- desquamative interstitial pneumonia
- diacylglycerol
- ecto-5′-nucleotidase
- ectonucleoside triphosphate diphosphohydrolase
- endothelin 1
- equilibrative nucleoside transporters-1
- equilibrative nucleoside transporters-2
- extracellular matrix
- fluorescein isothiocyanate
- idiopathic interstitial pneumonias
- idiopathic pulmonary fibrosis
- inosine
- interstitial lung disease
- lymphocytic interstitial pneumonia
- mitogen-activated protein
- nonspecific interstitial pneumonia
- phospholipase A2
- phospholipase C
- phospholipase D
- protein kinase C
- pulmonary arterial hypertension
- reactive oxygen specie
- respiratory bronchiolitis-associated interstitial lung disease
- usual interstitial pneumonia
Collapse
|
50
|
Caruso M, Alamo A, Crisafulli E, Raciti C, Fisichella A, Polosa R. Adenosine signaling pathways as potential therapeutic targets in respiratory disease. Expert Opin Ther Targets 2013; 17:761-72. [PMID: 23642090 DOI: 10.1517/14728222.2013.795220] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Adenosine receptors (ARs) and their differential pattern of expression modulate a series of pleiotropic activities that are known to contribute to the control of inflammation, remodeling, and tissue repair. Consequently, pharmacological manipulation of adenosine signaling pathway is of great interest and is currently exploited as a therapeutic target for a number of respiratory diseases with several molecules with agonist and antagonist activities against known ARs being developed for the treatment of different conditions of the respiratory system. AREAS COVERED Herein, we will review the rational basis leading to the development of novel therapies for asthma, chronic obstructive pulmonary disease (COPD), interstitial lung disease (ILD), pulmonary arterial hypertension (PAH), and cystic fibrosis. Their most recent clinical development will be also discussed. EXPERT OPINION Advances in our understanding of the pathogenetic role of adenosine in respiratory diseases may be soon translated into effective treatment options. In consideration of the complex interplay driven by the different pattern of receptor distribution and/or affinity of the four known AR subtypes in specific cell types at different stages of the disease, it is likely that combination of selective antagonist/agonists for different AR subtypes will be required to obtain reasonable clinical efficacy. Alternatively, controlling the factors involved in driving adenosine concentrations in the tissue may be also of great significance.
Collapse
Affiliation(s)
- Massimo Caruso
- University of Catania-AOU Policlinico-V. Emanuele, Institute of Internal Medicine and Clinical Immunology, Department of Clinical and Molecular Bio-Medicine, Catania, Italy.
| | | | | | | | | | | |
Collapse
|