1
|
Ciobanu DZ, Liessi N, Tomati V, Capurro V, Bertozzi SM, Summa M, Bertorelli R, Loberto N, Dobi D, Aureli M, Nobbio L, Bandiera T, Pedemonte N, Bassi R, Armirotti A. Tezacaftor is a direct inhibitor of sphingolipid delta-4 desaturase enzyme (DEGS). J Cyst Fibros 2024; 23:1167-1172. [PMID: 38789319 DOI: 10.1016/j.jcf.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND We recently demonstrated that 48 h exposure of primary human bronchial epithelial (hBE) cells, obtained from both CF (F508del homozygous) and non-CF subjects, to the triple drug combination Elexacaftor/Tezacaftor/Ivacaftor (ETI) results in a CFTR genotype-independent modulation of the de novo synthethic pathway of sphingolipids, with an accumulation of dihydroceramides (dHCer). Since dHCer are converted into ceramides (Cer) by the action of a delta-4 sphingolipid desaturase (DEGS) enzyme, we aimed to better understand this off-target effect of ETI (i.e., not related to CFTR rescue) METHODS: hBE cells, both F508del and wild-type, were cultured to create fully differentiated bronchial epithelia. We analyzed Cer and dHCer using an LC-MS based method previously developed by our lab. DEGS expression levels in differentiated hBE cells lysates were quantified by western blot analysis. RESULTS We demonstrated that 1) dHCer accumulate in hBE with time following prolonged ETI exposure, that 2) similar inhibition occurs in wild-type primary human hepatocytes and that 3) this does not result in an alteration of DEGS expression. We then proved that 4) ETI is a direct inhibitor of DEGS, that 5) Tezacaftor is the molecule responsible for this effect, that 6) the inhibition is concentration dependent. Finally, after repeated oral administration of ETI to naïve, non-CF, mice, we observed a slight accumulation of dHCer in the brain. CONCLUSIONS We believe that further investigations on Tezacaftor should be envisaged, particularly for the use of ETI during pregnancy, breastfeeding and in the early stages of development. DEGS dysfunction and dHCer accumulation causes impairment in the development of the nervous system, due to a derangement in myelin formation and maintenance.
Collapse
Affiliation(s)
- Dinu Zinovie Ciobanu
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genova, Italy
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Maria Summa
- Translational Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Rosalia Bertorelli
- Translational Pharmacology Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via F.lli Cervi 93, 20054, Segrate, Milano, Italy
| | - Dorina Dobi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via F.lli Cervi 93, 20054, Segrate, Milano, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via F.lli Cervi 93, 20054, Segrate, Milano, Italy
| | - Lucilla Nobbio
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147, Genova, Italy
| | - Rosaria Bassi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via F.lli Cervi 93, 20054, Segrate, Milano, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
| |
Collapse
|
2
|
Chen S, Pan Z, Liu M, Guo L, Jiang X, He G. Recent Advances on Small-Molecule Inhibitors of Lipocalin-like Proteins. J Med Chem 2024; 67:5144-5167. [PMID: 38525852 DOI: 10.1021/acs.jmedchem.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Lipid transfer proteins (LTPs) are crucial players in nonvesicular lipid trafficking. LTPs sharing a lipocalin lipid transfer domain (lipocalin-like proteins) have a wide range of biological functions, such as regulating immune responses and cell proliferation, differentiation, and death as well as participating in the pathogenesis of inflammatory, metabolic, and neurological disorders and cancer. Therefore, the development of small-molecule inhibitors targeting these LTPs is important and has potential clinical applications. Herein, we summarize the structure and function of lipocalin-like proteins, mainly including retinol-binding proteins, lipocalins, and fatty acid-binding proteins and discuss the recent advances on small-molecule inhibitors for these protein families and their applications in disease treatment. The findings of our Perspective can provide guidance for the development of inhibitors of these LTPs and highlight the challenges that might be faced during the procedures.
Collapse
Affiliation(s)
- Siliang Chen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhaoping Pan
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingxia Liu
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linghong Guo
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Bal Topcu D, Er B, Ozcan F, Aslan M, Coplu L, Lay I, Oztas Y. Decreased plasma levels of sphingolipids and total cholesterol in adult cystic fibrosis patients. Prostaglandins Leukot Essent Fatty Acids 2023; 197:102590. [PMID: 37741047 DOI: 10.1016/j.plefa.2023.102590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Sphingolipid species in the lung epithelium have a critical role for continuity of membrane structure, vesicular transport, and cell survival. Sphingolipid species were reported to have a role in the inflammatory etiology of cystic fibrosis by previous work. The aim of the study was to investigate the levels of plasma sphingomyelin and ceramide in adult cystic fibrosis (CF) patients and compared with healthy controls. MATERIALS AND METHODS Blood samples were obtained from CF patients at exacerbation (n = 15), discharge (n = 13) and stable periods (n = 11). Healthy individuals (n = 15) of similar age served as control. Levels of C16-C24 sphingomyelin and C16-C24 ceramide were measured in the plasma by LC-MS/MS. Also, cholesterol and triglyceride levels were determined in plasma samples of the patients at stable period. RESULTS All measured sphingomyelin and ceramide levels in all periods of CF patients were significantly lower than healthy controls except C16 sphingomyelin level in the stable period. However, plasma Cer and SM levels among exacerbation, discharge, and stable periods of CF were not different. CF patients had significantly lower cholesterol levels compared to healthy individuals. We found significant correlation of cholesterol with C16 sphingomyelin. CONCLUSION We observed lower plasma Cer and SM levels in adult CF patients at exacerbation, discharge, and stable periods compared to healthy controls. We didn't find any significant difference between patient Cer and SM levels among these three periods. Our limited number of patients might have resulted with this statistical insignificance. However, percentage of SM16 levels were increased at discharge compared to exacerbation levels, while percentage of Cer16 and Cer 20 decreased at stable compared to exacerbation. Inclusion of a larger number of CF patients in such a follow up study may better demonstrate any possible difference between exacerbation, discharge, and stable periods.
Collapse
Affiliation(s)
- Dilara Bal Topcu
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey
| | - Berrin Er
- Hacettepe University, Faculty of Medicine, Department of Chest Diseases, 06100, Ankara, Turkey
| | - Filiz Ozcan
- Antalya Bilim University, Vocational School of Health Services, Department of Dialysis, 07190, Antalya, Turkey
| | - Mutay Aslan
- Akdeniz University, Faculty of Medicine, Department of Medical Biochemistry, Konyaaltı, 07070, Antalya, Turkey
| | - Lutfi Coplu
- Hacettepe University, Faculty of Medicine, Department of Chest Diseases, 06100, Ankara, Turkey
| | - Incilay Lay
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey
| | - Yesim Oztas
- Hacettepe University, Faculty of Medicine, Department of Medical Biochemistry, 06100, Ankara, Turkey.
| |
Collapse
|
4
|
Oluwamodupe C, Adeleye AO. Targeting Retinol-Binding Protein 4 (RBP4) in the Management of Cardiometabolic Diseases. Cardiovasc Toxicol 2023; 23:285-294. [PMID: 37587250 DOI: 10.1007/s12012-023-09803-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 08/05/2023] [Indexed: 08/18/2023]
Abstract
The ancient use of herbs for the treatment of various human diseases have been documented, with several scientific literatures supporting the use of medicinal plants. There is however a major concern about the phyto-constituents in the plants that performs the healing function and the mechanism by which it works for different ailments are still a research prospect. Cardiometabolic disease (CMD) is no doubt becoming more frequent globally and this is due to poor approach in therapy, contrary effects linked with intensive control, inept strategies with old drugs, inadequate control of some risk factors and lack of knowledge of the pathophysiological mechanisms that lead to this malaise. Retinol-binding protein 4 (RBP4) are predominantly secreted in the liver and adipose tissues and several researches have observed that elevation in serum levels of RBP4 often observed in obese experimental animals and human subjects causes CMD (obesity, insulin resistance, hyperlipidemia, etc.). RBP4 has gained special attention in the last 20 years in the field of metabolism research. This review aims to show research interaction of some medicinal plants targeting RBP4 in treating CMD and to encourage researchers, who are interested in CMD drug design, to focus on medicinal plants that inhibit the secretion of serum RBP4 in the adipose tissue for therapeutic approach to CMD. It also aims to identify the major bioactive compounds of plants that serves as a better and cheaper drug candidate for CMD and also study the signaling pathway which the plant material uses to regulate the metabolic consequences.
Collapse
Affiliation(s)
- Cecilia Oluwamodupe
- Department of Chemical Sciences (Biochemistry Program), Olusegun Agagu University of Science and Technology, P. M. B. 353, Okitipupa, Nigeria.
| | - Adesola Oluwaseun Adeleye
- Department of Chemical Sciences (Biochemistry Program), Olusegun Agagu University of Science and Technology, P. M. B. 353, Okitipupa, Nigeria
| |
Collapse
|
5
|
Schnitker F, Liu Y, Keitsch S, Soddemann M, Verhasselt HL, Kehrmann J, Grassmé H, Kamler M, Gulbins E, Wu Y. Reduced Sphingosine in Cystic Fibrosis Increases Susceptibility to Mycobacterium abscessus Infections. Int J Mol Sci 2023; 24:14004. [PMID: 37762308 PMCID: PMC10530875 DOI: 10.3390/ijms241814004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by the deficiency of the cystic fibrosis transmembrane conductance regulator (CFTR) and often leads to pulmonary infections caused by various pathogens, including Staphylococcus aureus, Pseudomonas aeruginosa, and nontuberculous mycobacteria, particularly Mycobacterium abscessus. Unfortunately, M. abscessus infections are increasing in prevalence and are associated with the rapid deterioration of CF patients. The treatment options for M. abscessus infections are limited, requiring the urgent need to comprehend infectious pathogenesis and develop new therapeutic interventions targeting affected CF patients. Here, we show that the deficiency of CFTR reduces sphingosine levels in bronchial and alveolar epithelial cells and macrophages from CF mice and humans. Decreased sphingosine contributes to the susceptibility of CF tissues to M. abscessus infection, resulting in a higher incidence of infections in CF mice. Notably, treatment of M. abscessus with sphingosine demonstrated potent bactericidal activity against the pathogen. Most importantly, restoration of sphingosine levels in CF cells, whether human or mouse, and in the lungs of CF mice, provided protection against M. abscessus infections. Our findings demonstrate that pulmonary sphingosine levels are important in controlling M. abscessus infection. These results offer a promising therapeutic avenue for CF patients with pulmonary M. abscessus infections.
Collapse
Affiliation(s)
- Fabian Schnitker
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Yongjie Liu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Simone Keitsch
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Matthias Soddemann
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (H.L.V.); (J.K.)
| | - Heike Grassmé
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| | - Markus Kamler
- West German Heart and Vascular Center, Thoracic Transplantation, Department of Thoracic and Cardiovascular Surgery, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany;
| | - Erich Gulbins
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Yuqing Wu
- Department of Molecular Biology, Institute of Molecular Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (F.S.); (Y.L.); (S.K.); (M.S.); (H.G.); (E.G.)
| |
Collapse
|
6
|
Liessi N, Tomati V, Capurro V, Loberto N, Garcia-Aloy M, Franceschi P, Aureli M, Pedemonte N, Armirotti A. The combination elexacaftor/tezacaftor/ivacaftor (ETI) modulates the de novo synthethic pathway of ceramides in a genotype-independent manner. J Cyst Fibros 2023; 22:680-682. [PMID: 37088636 DOI: 10.1016/j.jcf.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
We report here how the triple combination of drugs elexacaftor/tezacaftor/ivacaftor (ETI) alters the balance of the de-novo synthethic pathway of sphingolipids in primary cells of human bronchial epithelium. The treatment with ETI roughly doubles the levels of dihydrosphingolipids, possibly by modulating the delta(4)-desaturase enzymes that convert dihydroceramides into ceramides. This appears to be an off-target effect of ETI, since it occurs in a genotype-independent manner, for both cystic fibrosis (CF) and non-CF subjects.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Valeria Capurro
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Nicoletta Loberto
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via F.lli Cervi 93, 20054 Segrate (MI)
| | - Mar Garcia-Aloy
- Centro di Ricerca e Innovazione, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Trento, Italy
| | - Pietro Franceschi
- Centro di Ricerca e Innovazione, Fondazione Edmund Mach, Via Edmund Mach, 1, 38098 San Michele all'Adige, Trento, Italy
| | - Massimo Aureli
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via F.lli Cervi 93, 20054 Segrate (MI)
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Facility, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy
| |
Collapse
|
7
|
Distribution and Expression of Pulmonary Ionocyte-Related Factors CFTR, ATP6V0D2, and ATP6V1C2 in the Lungs of Yaks at Different Ages. Genes (Basel) 2023; 14:genes14030597. [PMID: 36980869 PMCID: PMC10048051 DOI: 10.3390/genes14030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
In order to reveal the distribution and expression characteristics of the pulmonary ionocyte-related factors CFTR, ATP6V0D2, and ATP6V1C2 in the lungs of yaks of different ages. Explore the possible regulation of these pulmonary ionocyte-related factors in the yak lung for adaptation to high-altitude hypoxia. The localization and expression of CTFR, ATP6V0D2, and ATP6V1C2 in the lungs of newborn, juvenile, adult, and elderly yaks were studied using immunohistochemistry, quantitative reverse transcription PCR, and Western blotting. Immunohistochemistry showed that CFTR, ATP6V0D2 and ATP6V1C2 were mainly localized in the ciliated cells and club cells of the epithelial mucosal layer of the bronchus and its branches in the lungs. For the qRT-PCR, expression of CFTR, ATP6V0D2 and ATP6V1C2 in the yak lungs varied according to age. For Western blotting, CFTR expression in the newborn group was significantly higher than in the other three groups. ATP6V0D2 expression of the adult group was significantly higher. ATP6V1C2 expression was the highest in the juvenile group (p < 0.05). This study showed that ciliated cells and club cells were related to the pulmonary ionocytes in yaks. CFTR, ATP6V0D2, and ATP6V1C2 were related to adaptations of yak lungs to high altitude hypoxia, through prevention of airway damage.
Collapse
|
8
|
Centorame A, Dumut DC, Youssef M, Ondra M, Kianicka I, Shah J, Paun RA, Ozdian T, Hanrahan JW, Gusev E, Petrof B, Hajduch M, Pislariu R, De Sanctis JB, Radzioch D. Treatment With LAU-7b Complements CFTR Modulator Therapy by Improving Lung Physiology and Normalizing Lipid Imbalance Associated With CF Lung Disease. Front Pharmacol 2022; 13:876842. [PMID: 35668939 PMCID: PMC9163687 DOI: 10.3389/fphar.2022.876842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal recessive genetic disease in Caucasians, affecting more than 100,000 individuals worldwide. It is caused by pathogenic variants in the gene encoding CFTR, an anion channel at the plasma membrane of epithelial and other cells. Many CF pathogenic variants disrupt the biosynthesis and trafficking of CFTR or reduce its ion channel function. The most frequent mutation, loss of a phenylalanine at position 508 (F508del), leads to misfolding, retention in the endoplasmic reticulum, and premature degradation of the protein. The therapeutics available for treating CF lung disease include antibiotics, mucolytics, bronchodilators, physiotherapy, and most recently CFTR modulators. To date, no cure for this life shortening disease has been found. Treatment with the Triple combination drug therapy, TRIKAFTA®, is composed of three drugs: Elexacaftor (VX-445), Tezacaftor (VX-661) and Ivacaftor (VX-770). This therapy, benefits persons with CF, improving their weight, lung function, energy levels (as defined by reduced fatigue), and overall quality of life. We examined the effect of combining LAU-7b oral treatment and Triple therapy combination on lung function in a F508deltm1EUR mouse model that displays lung abnormalities relevant to human CF. We assessed lung function, lung histopathology, protein oxidation, lipid oxidation, and fatty acid and lipid profiles in F508deltm1EUR mice.
Collapse
Affiliation(s)
- Amanda Centorame
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mina Youssef
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Martin Ondra
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juhi Shah
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Radu Alexandru Paun
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Tomas Ozdian
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Ekaterina Gusev
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Basil Petrof
- Meakins-Christie Laboratories, The Centre for Respiratory Research at McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | | | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
| | - Danuta Radzioch
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czechia
- Laurent Pharmaceuticals, Montreal, QC, Canada
| |
Collapse
|
9
|
Brusa I, Sondo E, Falchi F, Pedemonte N, Roberti M, Cavalli A. Proteostasis Regulators in Cystic Fibrosis: Current Development and Future Perspectives. J Med Chem 2022; 65:5212-5243. [PMID: 35377645 PMCID: PMC9014417 DOI: 10.1021/acs.jmedchem.1c01897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In cystic fibrosis (CF), the deletion of phenylalanine 508 (F508del) in the CF transmembrane conductance regulator (CFTR) leads to misfolding and premature degradation of the mutant protein. These defects can be targeted with pharmacological agents named potentiators and correctors. During the past years, several efforts have been devoted to develop and approve new effective molecules. However, their clinical use remains limited, as they fail to fully restore F508del-CFTR biological function. Indeed, the search for CFTR correctors with different and additive mechanisms has recently increased. Among them, drugs that modulate the CFTR proteostasis environment are particularly attractive to enhance therapy effectiveness further. This Perspective focuses on reviewing the recent progress in discovering CFTR proteostasis regulators, mainly describing the design, chemical structure, and structure-activity relationships. The opportunities, challenges, and future directions in this emerging and promising field of research are discussed, as well.
Collapse
Affiliation(s)
- Irene Brusa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Elvira Sondo
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | | | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Andrea Cavalli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.,Computational & Chemical Biology, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
10
|
Westhölter D, Schumacher F, Wülfinghoff N, Sutharsan S, Strassburg S, Kleuser B, Horn PA, Reuter S, Gulbins E, Taube C, Welsner M. CFTR modulator therapy alters plasma sphingolipid profiles in people with cystic fibrosis. J Cyst Fibros 2022; 21:713-720. [DOI: 10.1016/j.jcf.2022.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/17/2022]
|
11
|
Kim N, Priefer R. Retinol binding protein 4 antagonists and protein synthesis inhibitors: Potential for therapeutic development. Eur J Med Chem 2021; 226:113856. [PMID: 34547506 DOI: 10.1016/j.ejmech.2021.113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Retinol-binding protein 4 (RBP4) is a serum protein that transports Vitamin A. RBP4 is correlated with numerous diseases and metabolic syndromes, including insulin resistance in type 2 diabetes, cardiovascular diseases, obesity, and macular degeneration. Recently, RBP4 antagonists and protein synthesis inhibitors are under development to regulate the effect of RBP4. Several RBP4 antagonists, especially BPN-14136, have demonstrated promising safety profiles and potential therapeutic benefits in animal studies. Two RBP4 antagonists, specifically tinlarebant (Belite Bio) and STG-001 (Stargazer) are currently undergoing clinical trials. Some antidiabetic drugs and nutraceuticals have been reported to reduce RBP4 expression, but more clinical data is needed to evaluate their therapeutical benefits. As regulating RBP4 levels or its activities would benefit a wide range of patients, further research is highly recommended to develop clinically useful RBP4 antagonists or protein synthesis inhibitors.
Collapse
Affiliation(s)
- Noheul Kim
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, MA, USA.
| |
Collapse
|
12
|
Zulueta A, Dei Cas M, Luciano F, Mingione A, Pivari F, Righi I, Morlacchi L, Rosso L, Signorelli P, Ghidoni R, Paroni R, Caretti A. Spns2 Transporter Contributes to the Accumulation of S1P in Cystic Fibrosis Human Bronchial Epithelial Cells. Biomedicines 2021; 9:biomedicines9091121. [PMID: 34572307 PMCID: PMC8467635 DOI: 10.3390/biomedicines9091121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
The role of S1P in Cystic Fibrosis (CF) has been investigated since 2001, when it was first described that the CFTR channel regulates the inward transport of S1P. From then on, various studies have associated F508del CFTR, the most frequent mutation in CF patients, with altered S1P expression in tissue and plasma. We found that human bronchial epithelial immortalized and primary cells from CF patients express more S1P than the control cells, as evidenced by mass spectrometry analysis. S1P accumulation relies on two- to four-fold transcriptional up-regulation of SphK1 and simultaneous halving of SGPL1 in CF vs. control cells. The reduction of SGPL1 transcription protects S1P from irreversible degradation, but the excessive accumulation is partially prevented by the action of the two phosphatases that are up-regulated compared to control cells. For the first time in CF, we describe that Spns2, a non-ATP dependent transporter that normally extrudes S1P out of the cells, shows deficient transcriptional and protein expression, thus impairing S1P accrual dissipation. The in vitro data on CF human bronchial epithelia correlates with the impaired expression of Spns2 observed in CF human lung biopsies compared to healthy control.
Collapse
Affiliation(s)
- Aida Zulueta
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Michele Dei Cas
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Francesco Luciano
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Francesca Pivari
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Ilaria Righi
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.R.); (L.R.)
| | - Letizia Morlacchi
- Respiratory Unit and Cystic Fibrosis Center, Internal Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Lorenzo Rosso
- Thoracic Surgery and Lung Transplant Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (I.R.); (L.R.)
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
| | - Rita Paroni
- Clinical Biochemistry and Mass Spectrometry Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (M.D.C.); (R.P.)
| | - Anna Caretti
- Biochemistry and Molecular Biology Laboratory, Department of Health Sciences, University of Milan, 20142 Milan, Italy; (A.Z.); (F.L.); (A.M.); (F.P.); (P.S.); (R.G.)
- Correspondence: ; Tel.: +39-02-50323264
| |
Collapse
|
13
|
Cottrill KA, Peterson RJ, Lewallen CF, Koval M, Bridges RJ, McCarty NA. Sphingomyelinase decreases transepithelial anion secretion in airway epithelial cells in part by inhibiting CFTR-mediated apical conductance. Physiol Rep 2021; 9:e14928. [PMID: 34382377 PMCID: PMC8358481 DOI: 10.14814/phy2.14928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel whose dysfunction causes cystic fibrosis (CF). The loss of CFTR function in pulmonary epithelial cells causes surface dehydration, mucus build-up, inflammation, and bacterial infections that lead to lung failure. Little has been done to evaluate the effects of lipid perturbation on CFTR activity, despite CFTR residing in the plasma membrane. This work focuses on the acute effects of sphingomyelinase (SMase), a bacterial virulence factor secreted by CF relevant airway bacteria which degrades sphingomyelin into ceramide and phosphocholine, on the electrical circuitry of pulmonary epithelial monolayers. We report that basolateral SMase decreases CFTR-mediated transepithelial anion secretion in both primary bronchial and tracheal epithelial cells from explant tissue, with current CFTR modulators unable to rescue this effect. Focusing on primary cells, we took a holistic ion homeostasis approach to determine a cause for reduced anion secretion following SMase treatment. Using impedance analysis, we determined that basolateral SMase inhibits apical and basolateral conductance in non-CF primary cells without affecting paracellular permeability. In CF primary airway cells, correction with clinically relevant CFTR modulators did not prevent SMase-mediated inhibition of CFTR currents. Furthermore, SMase was found to inhibit only apical conductance in these cells. Future work should determine the mechanism for SMase-mediated inhibition of CFTR currents, and further explore the clinical relevance of SMase and sphingolipid imbalances.
Collapse
Affiliation(s)
- Kirsten A. Cottrill
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Raven J. Peterson
- Biochemistry, Cell, and Developmental Biology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
| | - Colby F. Lewallen
- Georgia Institute of TechnologyG.W. Woodruff School of Mechanical EngineeringAtlantaGeorgiaUSA
| | - Michael Koval
- Division of Pulmonary, Allergy, Critical Care and Sleep MedicineDepartment of MedicineEmory UniversityAtlantaGeorgiaUSA
- Department of Cell BiologyEmory UniversityAtlantaGeorgiaUSA
| | - Robert J. Bridges
- Department of Physiology and BiophysicsCenter for Genetic DiseasesChicago Medical SchoolNorth Chicago, IllinoisUSA
| | - Nael A. McCarty
- Molecular and Systems Pharmacology PhD ProgramEmory UniversityAtlantaGeorgiaUSA
- Department of Pediatrics and Children’s Healthcare of AtlantaCenter for Cystic Fibrosis and Airways Disease ResearchEmory University School of MedicineAtlantaGeorgiaUSA
| |
Collapse
|
14
|
Dysfunctional Inflammation in Cystic Fibrosis Airways: From Mechanisms to Novel Therapeutic Approaches. Int J Mol Sci 2021; 22:ijms22041952. [PMID: 33669352 PMCID: PMC7920244 DOI: 10.3390/ijms22041952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients.
Collapse
|
15
|
Veltman M, De Sanctis JB, Stolarczyk M, Klymiuk N, Bähr A, Brouwer RW, Oole E, Shah J, Ozdian T, Liao J, Martini C, Radzioch D, Hanrahan JW, Scholte BJ. CFTR Correctors and Antioxidants Partially Normalize Lipid Imbalance but not Abnormal Basal Inflammatory Cytokine Profile in CF Bronchial Epithelial Cells. Front Physiol 2021; 12:619442. [PMID: 33613309 PMCID: PMC7891400 DOI: 10.3389/fphys.2021.619442] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/07/2021] [Indexed: 12/20/2022] Open
Abstract
A deficiency in cystic fibrosis transmembrane conductance regulator (CFTR) function in CF leads to chronic lung disease. CF is associated with abnormalities in fatty acids, ceramides, and cholesterol, their relationship with CF lung pathology is not completely understood. Therefore, we examined the impact of CFTR deficiency on lipid metabolism and pro-inflammatory signaling in airway epithelium using mass spectrometric, protein array. We observed a striking imbalance in fatty acid and ceramide metabolism, associated with chronic oxidative stress under basal conditions in CF mouse lung and well-differentiated bronchial epithelial cell cultures of CFTR knock out pig and CF patients. Cell-autonomous features of all three CF models included high ratios of ω-6- to ω-3-polyunsaturated fatty acids and of long- to very long-chain ceramide species (LCC/VLCC), reduced levels of total ceramides and ceramide precursors. In addition to the retinoic acid analog fenretinide, the anti-oxidants glutathione (GSH) and deferoxamine partially corrected the lipid profile indicating that oxidative stress may promote the lipid abnormalities. CFTR-targeted modulators reduced the lipid imbalance and oxidative stress, confirming the CFTR dependence of lipid ratios. However, despite functional correction of CF cells up to 60% of non-CF in Ussing chamber experiments, a 72-h triple compound treatment (elexacaftor/tezacaftor/ivacaftor surrogate) did not completely normalize lipid imbalance or oxidative stress. Protein array analysis revealed differential expression and shedding of cytokines and growth factors from CF epithelial cells compared to non-CF cells, consistent with sterile inflammation and tissue remodeling under basal conditions, including enhanced secretion of the neutrophil activator CXCL5, and the T-cell activator CCL17. However, treatment with antioxidants or CFTR modulators that mimic the approved combination therapies, ivacaftor/lumacaftor and ivacaftor/tezacaftor/elexacaftor, did not effectively suppress the inflammatory phenotype. We propose that CFTR deficiency causes oxidative stress in CF airway epithelium, affecting multiple bioactive lipid metabolic pathways, which likely play a role in CF lung disease progression. A combination of anti-oxidant, anti-inflammatory and CFTR targeted therapeutics may be required for full correction of the CF phenotype.
Collapse
Affiliation(s)
- Mieke Veltman
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Pediatric Pulmonology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| | - Juan B De Sanctis
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Olomouc, Czechia
| | - Marta Stolarczyk
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Nikolai Klymiuk
- Large Animal Models for Cardiovascular Research, TU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Andrea Bähr
- Large Animal Models for Cardiovascular Research, TU Munich, Munich, Germany.,Center for Innovative Medical Models, LMU Munich, Munich, Germany
| | - Rutger W Brouwer
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Edwin Oole
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Center for Biomics, Erasmus Medical Center, Rotterdam, Netherlands
| | - Juhi Shah
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Tomas Ozdian
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University, Olomouc, Czechia
| | - Jie Liao
- Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Carolina Martini
- Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - John W Hanrahan
- Department of Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada.,Department of Physiology, CF Translational Research Centre, McGill University, Montreal, QC, Canada
| | - Bob J Scholte
- Cell Biology Department, Erasmus Medical Center, Rotterdam, Netherlands.,Pediatric Pulmonology, Sophia Children's Hospital, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
16
|
Gardner AI, Haq IJ, Simpson AJ, Becker KA, Gallagher J, Saint-Criq V, Verdon B, Mavin E, Trigg A, Gray MA, Koulman A, McDonnell MJ, Fisher AJ, Kramer EL, Clancy JP, Ward C, Schuchman EH, Gulbins E, Brodlie M. Recombinant Acid Ceramidase Reduces Inflammation and Infection in Cystic Fibrosis. Am J Respir Crit Care Med 2020; 202:1133-1145. [PMID: 32569477 PMCID: PMC7560813 DOI: 10.1164/rccm.202001-0180oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: In cystic fibrosis the major cause of morbidity and mortality is lung disease characterized by inflammation and infection. The influence of sphingolipid metabolism is poorly understood with a lack of studies using human airway model systems.Objectives: To investigate sphingolipid metabolism in cystic fibrosis and the effects of treatment with recombinant human acid ceramidase on inflammation and infection.Methods: Sphingolipids were measured using mass spectrometry in fully differentiated cultures of primary human airway epithelial cells and cocultures with Pseudomonas aeruginosa. In situ activity assays, Western blotting, and quantitative PCR were used to investigate function and expression of ceramidase and sphingomyelinase. Effects of treatment with recombinant human acid ceramidase on sphingolipid profile and inflammatory mediator production were assessed in cell cultures and murine models.Measurements and Main Results: Ceramide is increased in cystic fibrosis airway epithelium owing to differential function of enzymes regulating sphingolipid metabolism. Sphingosine, a metabolite of ceramide with antimicrobial properties, is not upregulated in response to P. aeruginosa by cystic fibrosis airway epithelia. Tumor necrosis factor receptor 1 is increased in cystic fibrosis epithelia and activates NF-κB signaling, generating inflammation. Treatment with recombinant human acid ceramidase, to decrease ceramide, reduced both inflammatory mediator production and susceptibility to infection.Conclusions: Sphingolipid metabolism is altered in airway epithelial cells cultured from people with cystic fibrosis. Treatment with recombinant acid ceramidase ameliorates the two pivotal features of cystic fibrosis lung disease, inflammation and infection, and thus represents a therapeutic approach worthy of further exploration.
Collapse
Affiliation(s)
- Aaron I. Gardner
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Iram J. Haq
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
- Paediatric Respiratory Medicine, Great North Children’s Hospital, and
| | - A. John Simpson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
- Respiratory Medicine, Freeman Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Katrin A. Becker
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - John Gallagher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Vinciane Saint-Criq
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Verdon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Emily Mavin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Alexandra Trigg
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Michael A. Gray
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Albert Koulman
- National Institute for Health Research Biomedical Research Centre Metabolomics and Lipidomics Facility, University of Cambridge, Cambridge, United Kingdom
| | - Melissa J. McDonnell
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Respiratory Medicine, Galway University Hospital, Galway, Ireland
| | - Andrew J. Fisher
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Elizabeth L. Kramer
- Department of Pediatrics and
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - John P. Clancy
- Department of Pediatrics and
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Christopher Ward
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
| | - Edward H. Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Malcolm Brodlie
- Translational and Clinical Research Institute, Faculty of Medical Sciences, and
- Paediatric Respiratory Medicine, Great North Children’s Hospital, and
| |
Collapse
|
17
|
Milliken BT, Melegari L, Smith GL, Grohn K, Wolfe AJ, Moody K, Bou-Abdallah F, Doyle RP. Fenretinide binding to the lysosomal protein saposin D alters ceramide solubilization and hydrolysis. RSC Med Chem 2020; 11:1048-1052. [PMID: 33479697 PMCID: PMC7513591 DOI: 10.1039/d0md00182a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/26/2020] [Indexed: 11/13/2023] Open
Abstract
Fenretinide is a synthetic retinoid pharmaceutical linked to ceramide build-up in vivo. Saposin D is an intralysosomal protein necessary for ceramide binding/degradation. We show, via electronic absorption spectroscopy, fluorescence spectroscopy, and ceramide hydrolysis assays, that fenretinide is bound by saposin D {K a = (1.45 ± 0.49) × 105 M-1}, and affects ceramide solubilization/degradation.
Collapse
Affiliation(s)
- Brandon T Milliken
- Department of Chemistry , Syracuse University , Syracuse , NY 13244 , USA .
| | - Lindy Melegari
- Department of Chemistry , Syracuse University , Syracuse , NY 13244 , USA .
| | - Gideon L Smith
- Department of Chemistry , State University of New York , Potsdam , NY 13676 , USA .
| | - Kris Grohn
- Ichor Therapeutics, Inc , 2521 US-1 , Lafayette , NY 13084 , USA
| | - Aaron J Wolfe
- Ichor Therapeutics, Inc , 2521 US-1 , Lafayette , NY 13084 , USA
- Lysoclear Inc. , 2521 US RT 11 , Lafayette , NY 13084 , USA
| | - Kelsey Moody
- Ichor Therapeutics, Inc , 2521 US-1 , Lafayette , NY 13084 , USA
- Lysoclear Inc. , 2521 US RT 11 , Lafayette , NY 13084 , USA
| | - Fadi Bou-Abdallah
- Department of Chemistry , State University of New York , Potsdam , NY 13676 , USA .
| | - Robert P Doyle
- Department of Chemistry , Syracuse University , Syracuse , NY 13244 , USA .
- Department of Medicine , State University of New York , Upstate Medical University , 13210 , USA
| |
Collapse
|
18
|
Mitri C, Xu Z, Bardin P, Corvol H, Touqui L, Tabary O. Novel Anti-Inflammatory Approaches for Cystic Fibrosis Lung Disease: Identification of Molecular Targets and Design of Innovative Therapies. Front Pharmacol 2020; 11:1096. [PMID: 32848733 PMCID: PMC7396676 DOI: 10.3389/fphar.2020.01096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cystic fibrosis (CF) is the most common genetic disorder among Caucasians, estimated to affect more than 70,000 people in the world. Severe and persistent bronchial inflammation and chronic bacterial infection, along with airway mucus obstruction, are hallmarks of CF lung disease and participate in its progression. Anti-inflammatory therapies are, therefore, of particular interest for CF lung disease. Furthermore, a better understanding of the molecular mechanisms involved in airway infection and inflammation in CF has led to the development of new therapeutic approaches that are currently under evaluation by clinical trials. These new strategies dedicated to CF inflammation are designed to treat different dysregulated aspects such as oxidative stress, cytokine secretion, and the targeting of dysregulated pathways. In this review, we summarize the current understanding of the cellular and molecular mechanisms that contribute to abnormal lung inflammation in CF, as well as the new anti-inflammatory strategies proposed to CF patients by exploring novel molecular targets and novel drug approaches.
Collapse
Affiliation(s)
- Christie Mitri
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Zhengzhong Xu
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Yangzhou University, Yangzhou, China
| | - Pauline Bardin
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| | - Harriet Corvol
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Département de Pédiatrie Respiratoire, Hôpital Trousseau, AP-HP, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France.,Equipe Mucoviscidose et Bronchopathies Chroniques, Département Santé Globale, Institut Pasteur, Paris, France
| | - Olivier Tabary
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Paris, France
| |
Collapse
|
19
|
Cottrill KA, Farinha CM, McCarty NA. The bidirectional relationship between CFTR and lipids. Commun Biol 2020; 3:179. [PMID: 32313074 PMCID: PMC7170930 DOI: 10.1038/s42003-020-0909-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023] Open
Abstract
Cystic Fibrosis (CF) is the most common life-shortening genetic disease among Caucasians, resulting from mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR). While work to understand this protein has resulted in new treatment strategies, it is important to emphasize that CFTR exists within a complex lipid bilayer - a concept largely overlooked when performing structural and functional studies. In this review we discuss cellular lipid imbalances in CF, mechanisms by which lipids affect membrane protein activity, and the specific impact of detergents and lipids on CFTR function.
Collapse
Affiliation(s)
- Kirsten A Cottrill
- Molecular and Systems Pharmacology PhD Program, Emory University, Atlanta, GA, USA
| | - Carlos M Farinha
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Nael A McCarty
- Molecular and Systems Pharmacology PhD Program, Emory University, Atlanta, GA, USA.
- Department of Pediatrics and Children's Healthcare of Atlanta, Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
20
|
Age-Dependent Progression in Lung Pathophysiology can be Prevented by Restoring Fatty Acid and Ceramide Imbalance in Cystic Fibrosis. Lung 2020; 198:459-469. [DOI: 10.1007/s00408-020-00353-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/02/2020] [Indexed: 11/29/2022]
|
21
|
Youssef M, De Sanctis JB, Shah J, Dumut DC, Hajduch M, Naumova AK, Radzioch D. Treatment of Allergic Asthma with Fenretinide Formulation (LAU-7b) Downregulates ORMDL Sphingolipid Biosynthesis Regulator 3 ( Ormdl3) Expression and Normalizes Ceramide Imbalance. J Pharmacol Exp Ther 2020; 373:476-487. [PMID: 32273303 DOI: 10.1124/jpet.119.263715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Zona pellucida binding protein 2 (Zpbp2) and ORMDL sphingolipid biosynthesis regulator 3 (Ormdl3), mapped downstream of Zpbp2, were identified as two genes associated with airway hyper-responsiveness (AHR). Ormdl3 gene product has been shown to regulate the biosynthesis of ceramides. Allergic asthma was shown to be associated with an imbalance between very-long-chain ceramides (VLCCs) and long-chain ceramides (LCCs). We hypothesized that Fenretinide can prevent the allergic asthma-induced augmentation of Ormdl3 gene expression, normalize aberrant levels of VLCCs and LCCs, and treat allergic asthma symptoms. We induced allergic asthma by house dust mite (HDM) in A/J WT mice and Zpbp2 KO mice expressing lower levels of Ormdl3 mRNA than WT. We investigated the effect of a novel formulation of Fenretinide, LAU-7b, on the AHR, inflammatory cell infiltration, mucus production, IgE levels, and ceramide levels. Although lower Ormdl3 expression, which was observed in Zpbp2 KO mice, was associated with lower AHR, allergic Zpbp2 KO mice were not protected from inflammatory cell infiltration, mucus accumulation, or aberrant levels of VLCCs and LCCs induced by HDM. LAU-7b treatment protects both the Zpbp2 KO and WT mice. The treatment significantly lowers the gene expression of Ormdl3, normalizes the VLCCs and LCCs, and corrects all the other phenotypes associated with allergic asthma after HDM challenge, except the elevated levels of IgE. LAU-7b treatment prevents the augmentation of Ormdl3 expression and ceramide imbalance induced by HDM challenge and protects both WT and Zpbp2 KO mice against allergic asthma symptoms. SIGNIFICANCE STATEMENT: Compared with A/J WT mice, KO mice with Zpbp2 gene deletion have lower AHR and lower levels of Ormdl3 expression. The novel oral clinical formulation of Fenretinide (LAU-7b) effectively lowers the AHR and protects against inflammatory cell infiltration and mucus accumulation induced by house dust mite in both Zpbp2 KO and WT A/J mice. LAU-7b prevents Ormdl3 overexpression in WT allergic mice and corrects the aberrant levels of very-long-chain and long-chain ceramides in both WT and Zpbp2 KO allergic mice.
Collapse
Affiliation(s)
- Mina Youssef
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Juan B De Sanctis
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Juhi Shah
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Daciana Catalina Dumut
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Marian Hajduch
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Anna K Naumova
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| | - Danuta Radzioch
- Department of Human Genetics (M.Y., A.K.N., D.R.), Department of Pharmacology and Therapeutics (J.S.), Division of Experimental Medicine, Department of Medicine (D.C.D., D.R.), and Department of Obstetrics and Gynecology (A.K.N.), McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada (M.Y., J.S., D.C.D., D.R.); and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic (J.B.D.S., M.H., D.R.)
| |
Collapse
|
22
|
Bal Topçu D, Tugcu G, Ozcan F, Aslan M, Yalcinkaya A, Polat SE, Hizal M, Yalcin EE, Ersoz DD, Ozcelik U, Kiper N, Lay I, Oztas Y. Plasma Ceramides and Sphingomyelins of Pediatric Patients Increase in Primary Ciliary Dyskinesia but Decrease in Cystic Fibrosis. Lipids 2020; 55:213-223. [PMID: 32120452 DOI: 10.1002/lipd.12230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/09/2020] [Accepted: 02/18/2020] [Indexed: 11/06/2022]
Abstract
We investigated plasma sphingomyelin (CerPCho) and ceramide (Cer) levels in pediatric patients with cystic fibrosis (CF) and primary ciliary dyskinesia (PCD). Plasma samples were obtained from CF (n = 19) and PCD (n = 7) patients at exacerbation, discharge, and stable periods. Healthy children (n = 17) of similar age served as control. Levels of 16-24 CerPCho and 16-24 Cer were measured by LC-MS/MS. Concentrations of all CerPCho and Cer species measured at exacerbation were significantly lower in patients with CF than PCD. 16, 18, 24 CerPCho, and 22, 24 Cer in exacerbation; 18, 24 CerPCho, and 18, 20, 22, 24 Cer at discharge; 18, 24 CerPCho and 24 Cer at stable period were significantly lower in CF patients than healthy children (p < 0.001 and p < 0.05). All CerPCho and Cer levels of PCD patients were significantly higher except 24 CerPCho and 24 Cer during exacerbation, 24 CerPCho at discharge, and 18, 22 CerPCho levels at stable period (p < 0.001 and p < 0.05) compared with healthy children. There was no significant difference among exacerbation, discharge, and stable periods in each group for Cer and CerPCho levels. This is the first study measuring plasma Cer and CerPCho levels in PCD and third study in CF patients. The dramatic difference in plasma levels of most CerPCho and Cer species found between two diseases suggest that cilia pathology in PCD and CFTR mutation in CF seem to alter sphingolipid metabolism possibly in opposite directions.
Collapse
Affiliation(s)
- Dilara Bal Topçu
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Gokcen Tugcu
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Filiz Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Konyaaltı, 07070, Turkey
| | - Mutay Aslan
- Department of Medical Biochemistry, Faculty of Medicine, Akdeniz University, Antalya, Konyaaltı, 07070, Turkey
| | - Ahmet Yalcinkaya
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Sanem Eryilmaz Polat
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Mina Hizal
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Ebru Elmas Yalcin
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Deniz Dogru Ersoz
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Ugur Ozcelik
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Nural Kiper
- Department of Pediatric Pulmonology, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Incilay Lay
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| | - Yesim Oztas
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Sıhhıye, 06100, Turkey
| |
Collapse
|
23
|
Efficacy of Optimized Treatment Protocol Using LAU-7b Formulation against Ovalbumin (OVA) and House Dust Mite (HDM) -Induced Allergic Asthma in Atopic Hyperresponsive A/J Mice. Pharm Res 2020; 37:31. [PMID: 31915990 DOI: 10.1007/s11095-019-2743-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/27/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE To assess the efficacy of the novel clinical formulation of fenretinide (LAU-7b) for the treatment of allergic asthma. To study the association between LAU-7b treatment in allergic asthma and the modulation of very long chain ceramides (VLCC). METHODS We used two allergens (OVA and HDM) to induce asthma in mouse models and we established a treatment protocol with LAU-7b. The severity of allergic asthma reaction was quantified by measuring the airway resistance, quantifying lung inflammatory cell infiltration (Haematoxylin and eosin stain) and mucus production (Periodic acid Schiff satin). IgE levels were measured by ELISA. Immunophenotyping of T cells was done using Fluorescence-activated cell sorting (FACS) analysis. The analysis of the specific species of lipids and markers of oxidation was performed using mass spectrometry. RESULTS Our data demonstrate that 10 mg/kg of LAU-7b was able to protect OVA- and HDM-challenged mice against increase in airway hyperresponsiveness, influx of inflammatory cells into the airways, and mucus production without affecting IgE levels. Treatment with LAU-7b significantly increased percentage of regulatory T cells and CD4+ IL-10-producing T cells and significantly decreased percentage of CD4+ IL-4-producing T cells. Our data also demonstrate a strong association between the improvement in the lung physiology and histology parameters and the drug-induced normalization of the aberrant distribution of ceramides in allergic mice. CONCLUSION 9 days of 10 mg/kg of LAU-7b daily treatment protects the mice against allergen-induced asthma and restores VLCC levels in the lungs and plasma.
Collapse
|
24
|
Garić D, De Sanctis JB, Dumut DC, Shah J, Peña MJ, Youssef M, Petrof BJ, Kopriva F, Hanrahan JW, Hajduch M, Radzioch D. Fenretinide favorably affects mucins (MUC5AC/MUC5B) and fatty acid imbalance in a manner mimicking CFTR-induced correction. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158538. [PMID: 31678518 DOI: 10.1016/j.bbalip.2019.158538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/28/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common genetic disease in Caucasians. CF is manifested by abnormal accumulation of mucus in the lungs, which serves as fertile ground for the growth of microorganisms leading to recurrent infections and ultimately, lung failure. Mucus in CF patients consists of DNA from dead neutrophils as well as mucins produced by goblet cells. MUC5AC mucin leads to pathological plugging of the airways whereas MUC5B has a protective role against bacterial infection. Therefore, decreasing the level of MUC5AC while maintaining MUC5B intact would in principle be a desirable mucoregulatory treatment outcome. Fenretinide prevented the lipopolysaccharide-induced increase of MUC5AC gene expression, without affecting the level of MUC5B, in a lung goblet cell line. Additionally, fenretinide treatment reversed the pro-inflammatory imbalance of fatty acids by increasing docosahexaenoic acid and decreasing the levels of arachidonic acid in a lung epithelial cell line and primary leukocytes derived from CF patients. Furthermore, for the first time we also demonstrate the effect of fenretinide on multiple unsaturated fatty acids, as well as differential effects on the levels of long- compared to very-long-chain saturated fatty acids which are important substrates of complex phospholipids. Finally, we demonstrate that pre-treating mice with fenretinide in a chronic model of P. aeruginosa lung infection efficiently decreases the accumulation of mucus. These findings suggest that fenretinide may offer a new approach to therapeutic modulation of pathological mucus production in CF.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Juhi Shah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Maria Johanna Peña
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Bolivarian Republic of Venezuela
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada
| | - Basil J Petrof
- Meakins-Christie Laboratories, Translational Research in Respiratory Diseases Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Francisek Kopriva
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - John W Hanrahan
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Marian Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada; Program in Infectious Diseases and Immunity in Global Health, McGill University Health Center, Montreal, Quebec, Canada.
| |
Collapse
|
25
|
McElvaney OJ, Wade P, Murphy M, Reeves EP, McElvaney NG. Targeting airway inflammation in cystic fibrosis. Expert Rev Respir Med 2019; 13:1041-1055. [PMID: 31530195 DOI: 10.1080/17476348.2019.1666715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: The major cause of morbidity and mortality in patients with cystic fibrosis (CF) is lung disease. Inflammation in the CF airways occurs from a young age and contributes significantly to disease progression and shortened life expectancy. Areas covered: In this review, we discuss the key immune cells involved in airway inflammation in CF, the contribution of the intrinsic genetic defect to the CF inflammatory phenotype, and anti-inflammatory strategies designed to overcome what is a critical factor in the pathogenesis of CF lung disease. Review of the literature was carried out using the MEDLINE (from 1975 to 2018), Google Scholar and The Cochrane Library databases. Expert opinion: Therapeutic interventions specifically targeting the defective CF transmembrane conductance regulator (CFTR) protein have changed the clinical landscape and significantly improved the outlook for CF. As survival estimates for people with CF increase, long-term management has become an important focus, with an increased need for therapies targeted at specific elements of inflammation, to complement CFTR modulator therapies.
Collapse
Affiliation(s)
- Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Patricia Wade
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Mark Murphy
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| |
Collapse
|
26
|
Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain. Prog Lipid Res 2019:100998. [PMID: 31445070 DOI: 10.1016/j.plipres.2019.100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/18/2022]
Abstract
Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Juhi Shah
- Department of Pharmacology and Experimental Therapeutics, McGill University, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
27
|
Hanrahan JW, Sato Y, Carlile GW, Jansen G, Young JC, Thomas DY. Cystic Fibrosis: Proteostatic correctors of CFTR trafficking and alternative therapeutic targets. Expert Opin Ther Targets 2019; 23:711-724. [PMID: 31169041 DOI: 10.1080/14728222.2019.1628948] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Cystic fibrosis (CF) is the most frequent lethal orphan disease and is caused by mutations in the CFTR gene. The most frequent mutation F508del-CFTR affects multiple organs; infections and subsequent infections and complications in the lung lead to death. Areas covered: This review focuses on new targets and mechanisms that are attracting interest for the development of CF therapies. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER) but has some function if it can traffic to the plasma membrane. Cell-based assays have been used to screen chemical libraries for small molecule correctors that restore its trafficking. Pharmacological chaperones are correctors that bind directly to the F508del-CFTR mutant and promote its folding and trafficking. Other correctors fall into a heterogeneous class of proteostasis modulators that act indirectly by altering cellular homeostasis. Expert opinion: Pharmacological chaperones have so far been the most successful correctors of F508del-CFTR trafficking, but their level of correction means that more than one corrector is required. Proteostasis modulators have low levels of correction but hold promise because some can correct several different CFTR mutations. Identification of their cellular targets and the potential for development may lead to new therapies for CF.
Collapse
Affiliation(s)
- John W Hanrahan
- a Department of Physiology , McGill University , Montréal , QC , Canada.,c Research Institute of the McGill University Health Centre , McGill University , Montréal , QC , Canada
| | - Yukiko Sato
- a Department of Physiology , McGill University , Montréal , QC , Canada.,b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada
| | - Graeme W Carlile
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Gregor Jansen
- d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - Jason C Young
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada
| | - David Y Thomas
- b Cystic Fibrosis Translational Research centre , McGill University , Montréal , QC , Canada.,d Department of Biochemistry , McGill University , Montréal , QC , Canada.,e Department of Human Genetics , McGill University , Montréal , QC , Canada
| |
Collapse
|
28
|
Abu-Arish A, Pandžić E, Kim D, Tseng HW, Wiseman PW, Hanrahan JW. Agonists that stimulate secretion promote the recruitment of CFTR into membrane lipid microdomains. J Gen Physiol 2019; 151:834-849. [PMID: 31048413 PMCID: PMC6572005 DOI: 10.1085/jgp.201812143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 04/05/2019] [Indexed: 01/20/2023] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is a tightly regulated anion channel that mediates secretion by epithelia and is mutated in the disease cystic fibrosis. CFTR forms macromolecular complexes with many proteins; however, little is known regarding its associations with membrane lipids or the regulation of its distribution and mobility at the cell surface. We report here that secretagogues (agonists that stimulate secretion) such as the peptide hormone vasoactive intestinal peptide (VIP) and muscarinic agonist carbachol increase CFTR aggregation into cholesterol-dependent clusters, reduce CFTR lateral mobility within and between membrane microdomains, and trigger the fusion of clusters into large (3.0 µm2) ceramide-rich platforms. CFTR clusters are closely associated with motile cilia and with the enzyme acid sphingomyelinase (ASMase) that is constitutively bound on the cell surface. Platform induction is prevented by pretreating cells with cholesterol oxidase to disrupt lipid rafts or by exposure to the ASMase functional inhibitor amitriptyline or the membrane-impermeant reducing agent 2-mercaptoethanesulfonate. Platforms are reversible, and their induction does not lead to an increase in apoptosis; however, blocking platform formation does prevent the increase in CFTR surface expression that normally occurs during VIP stimulation. These results demonstrate that CFTR is colocalized with motile cilia and reveal surprisingly robust regulation of CFTR distribution and lateral mobility, most likely through autocrine redox activation of extracellular ASMase. Formation of ceramide-rich platforms containing CFTR enhances transepithelial secretion and likely has other functions related to inflammation and mucosal immunity.
Collapse
Affiliation(s)
- Asmahan Abu-Arish
- Department of Physiology, McGill University, Montréal, Canada
- Department of Physics, McGill University, Montréal, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - Elvis Pandžić
- Department of Physics, McGill University, Montréal, Canada
| | - Dusik Kim
- Department of Physiology, McGill University, Montréal, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - Hsin Wei Tseng
- Department of Physiology, McGill University, Montréal, Canada
| | - Paul W Wiseman
- Department of Physics, McGill University, Montréal, Canada
- Department of Chemistry, McGill University, Montréal, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
| | - John W Hanrahan
- Department of Physiology, McGill University, Montréal, Canada
- Cystic Fibrosis Translational Research Centre, McGill University, Montréal, Canada
- McGill University Health Centre Research Institute, Montréal, Canada
| |
Collapse
|
29
|
Scholte BJ, Horati H, Veltman M, Vreeken RJ, Garratt LW, Tiddens HAWM, Janssens HM, Stick SM. Oxidative stress and abnormal bioactive lipids in early cystic fibrosis lung disease. J Cyst Fibros 2019; 18:781-789. [PMID: 31031161 DOI: 10.1016/j.jcf.2019.04.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Clinical data indicate that airway inflammation in children with cystic fibrosis (CF) arises early, is associated with structural lung damage, and predicts progression. In bronchoalveolar lavage fluid (BALF) from CFTR mutant mice, several aspects of lipid metabolism are abnormal that contributes to lung disease. We aimed to determine whether lipid pathway dysregulation is also observed in BALF from children with CF, to identify biomarkers of early lung disease and potential therapeutic targets. METHODS A comprehensive panel of lipids that included Sphingolipids, oxylipins, isoprostanes and lysolipids, all bioactive lipid species known to be involved in inflammation and tissue remodeling, were measured in BALF from children with CF (1-6 years, N = 33) and age-matched non-CF patients with unexplained inflammatory disease (N = 16) by HPLC-MS/MS. Lipid data were correlated with chest CT scores and BALF inflammation biomarkers. RESULTS The ratio of long chain to very long chain ceramide species (LCC/VLCC) and lysolipid levels were enhanced in CF compared to non-CF patients, despite comparable neutrophil counts and bacterial load. In CF patients both LCC/VLCC and lysolipid levels correlated with inflammation and chest CT scores. The ceramide precursors Sphingosine, Sphinganine, Sphingomyelin, correlated with inflammation, whilst the oxidative stress marker isoprostane correlated with inflammation and chest CT scores. No correlation between lipids and current bacterial infection in CF (N = 5) was observed. CONCLUSIONS Several lipid biomarkers of early CF lung disease were identified, which point toward potential disease monitoring and therapeutic approaches that can be used to complement CFTR modulators.
Collapse
Affiliation(s)
- Bob J Scholte
- Erasmus MC, Rotterdam, the Netherlands, Cell Biology; Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands.
| | - Hamed Horati
- Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands
| | - Mieke Veltman
- Erasmus MC, Rotterdam, the Netherlands, Cell Biology; Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands
| | - Rob J Vreeken
- Netherlands Metabolomics Centre, LACDR, Leiden, the Netherlands
| | - Luke W Garratt
- Telethon Kids Institute, University of Western Australia, Subiaco, 6008, Western Australia, Australia
| | - Harm A W M Tiddens
- Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands
| | - Hettie M Janssens
- Erasmus MC, Sophia Children Hospital, Pediatric Pulmonology, the Netherlands
| | - Stephen M Stick
- Telethon Kids Institute, University of Western Australia, Subiaco, 6008, Western Australia, Australia; Division of Paediatrics and Child Health, University of Western Australia, Nedlands, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands, 6009, Western Australia, Australia
| | | |
Collapse
|
30
|
Garić D, De Sanctis JB, Shah J, Dumut DC, Radzioch D. Biochemistry of very-long-chain and long-chain ceramides in cystic fibrosis and other diseases: The importance of side chain. Prog Lipid Res 2019; 74:130-144. [PMID: 30876862 DOI: 10.1016/j.plipres.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/01/2019] [Accepted: 03/10/2019] [Indexed: 12/19/2022]
Abstract
Ceramides, the principal building blocks of all sphingolipids, have attracted the attention of many scientists around the world interested in developing treatments for cystic fibrosis, the most common genetic disease of Caucasians. Many years of fruitful research in this field have produced some fundamentally important, yet controversial results. Here, we aimed to summarize the current knowledge on the role of long- and very-long- chain ceramides, the most abundant species of ceramides in animal cells, in cystic fibrosis and other diseases. We also aim to explain the importance of the length of their side chain in the context of stability of transmembrane proteins through a concise synthesis of their biophysical chemistry, cell biology, and physiology. This review also addresses several remaining riddles in this field. Finally, we discuss the technical challenges associated with the analysis and quantification of ceramides. We provide the evaluation of the antibodies used for ceramide quantification and we demonstrate their lack of specificity. Results and discussion presented here will be of interest to anyone studying these enigmatic lipids.
Collapse
Affiliation(s)
- Dušan Garić
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Juan B De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Juhi Shah
- Department of Pharmacology and Experimental Therapeutics, McGill University, Montreal, QC, Canada
| | - Daciana Catalina Dumut
- Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic; Department of Medicine, Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Kurz J, Parnham MJ, Geisslinger G, Schiffmann S. Ceramides as Novel Disease Biomarkers. Trends Mol Med 2019; 25:20-32. [DOI: 10.1016/j.molmed.2018.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023]
|
32
|
Roesch EA, Nichols DP, Chmiel JF. Inflammation in cystic fibrosis: An update. Pediatr Pulmonol 2018; 53:S30-S50. [PMID: 29999593 DOI: 10.1002/ppul.24129] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
Inflammation plays a critical role in cystic fibrosis (CF) lung pathology and disease progression making it an active area of research and important therapeutic target. In this review, we explore the most recent research on the major contributors to the exuberant inflammatory response seen in CF as well as potential therapeutics to combat this response. Absence of functional cystic fibrosis transmembrane conductance regulator (CFTR) alters anion transport across CF airway epithelial cells and ultimately results in dehydration of the airway surface liquid. The dehydrated airway surface liquid in combination with abnormal mucin secretion contributes to airway obstruction and subsequent infection that may serve as a trigger point for inflammation. There is also evidence to suggest that airway inflammation may be excessive and sustained relative to the infectious stimuli. Studies have shown dysregulation of both pro-inflammatory mediators such as IL-17 and pro-resolution mediators including metabolites of the eicosanoid pathway. Recently, CFTR potentiators and correctors have garnered much attention in the CF community. Although these modulators address the underlying defect in CF, their impact on downstream consequences such as inflammation are not known. Here, we review pre-clinical and clinical data on the impact of CFTR modulators on inflammation. In addition, we examine other cell types including neutrophils, macrophages, and T-lymphocytes that express CFTR and contribute to the CF inflammatory response. Finally, we address challenges in developing anti-inflammatory therapies and highlight some of the most promising anti-inflammatory drugs under development for CF.
Collapse
Affiliation(s)
- Erica A Roesch
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| | - David P Nichols
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington
| | - James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
33
|
Karandashova S, Kummarapurugu A, Zheng S, Kang L, Sun S, Rubin BK, Voynow JA. Neutrophil elastase correlates with increased sphingolipid content in cystic fibrosis sputum. Pediatr Pulmonol 2018; 53:872-880. [PMID: 29624923 PMCID: PMC6566867 DOI: 10.1002/ppul.24001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/07/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Sphingolipids are associated with the regulation of pulmonary inflammation. Although sphingolipids have been investigated in the context of cystic fibrosis (CF), the focus has been on loss of CF transmembrane conductance regulator (CFTR) function in mice, and in CF human lung epithelial cell lines. The sphingolipid content of CF sputum and the potential link between ceramide and airway inflammation in CF remain relatively unexplored. METHODS Fifteen patients with CF provided two spontaneously expectorated sputum samples, one collected during a hospitalization for an acute pulmonary exacerbation and one from an outpatient visit at a time of clinical stability. Sputum was processed, and the supernatant assessed for active neutrophil elastase (NE) using a chromogenic microplate assay and sphingolipid content using reverse phase high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Relevant demographic data including age, sex, CF genotype, FEV1 % predicted, and sputum bacteriology were assessed as possible modifying factors that could influence the correlation between NE and sputum sphingolipids. Data were analyzed for linear correlation, with statistical significance pre-defined as P < 0.05. RESULTS There was a significant association between the concentration of active NE and ceramide, sphingomyelin, and monohexosylceramide moieties as well as sphingosine-1-phosphate. The presence of Methicillin-resistant Staphylococcus aureus (MRSA), FEV1 % predicted, and female gender further strengthened the association of NE and sphingolipids, but Pseudomonas aeruginosa had no effect on the association between NE and sphingolipids. CONCLUSIONS These data suggest that NE may increase pro-inflammatory sphingolipid signaling, and the association is strengthened in female patients and patients with MRSA.
Collapse
Affiliation(s)
- Sophia Karandashova
- Center for Clinical and Translational Research at Virginia Commonwealth University (VCU), Richmond, Virginia
| | - Apparao Kummarapurugu
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at VCU, Richmond, Virginia
| | - Shuo Zheng
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at VCU, Richmond, Virginia
| | - Le Kang
- Department of Biostatistics, VCU, Richmond, Virginia
| | - Shumei Sun
- Department of Biostatistics, VCU, Richmond, Virginia
| | - Bruce K Rubin
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at VCU, Richmond, Virginia
| | - Judith A Voynow
- Division of Pediatric Pulmonology, Children's Hospital of Richmond at VCU, Richmond, Virginia
| |
Collapse
|
34
|
Kanagaratham C, Chiwara V, Ho B, Moussette S, Youssef M, Venuto D, Jeannotte L, Bourque G, de Sanctis JB, Radzioch D, Naumova AK. Loss of the zona pellucida-binding protein 2 (Zpbp2) gene in mice impacts airway hypersensitivity and lung lipid metabolism in a sex-dependent fashion. Mamm Genome 2018. [PMID: 29536159 DOI: 10.1007/s00335-018-9743-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The human chromosomal region 17q12-q21 is one of the best replicated genome-wide association study loci for childhood asthma. The associated SNPs span a large genomic interval that includes several protein-coding genes. Here, we tested the hypothesis that the zona pellucida-binding protein 2 (ZPBP2) gene residing in this region contributes to asthma pathogenesis using a mouse model. We tested the lung phenotypes of knock-out (KO) mice that carry a deletion of the Zpbp2 gene. The deletion attenuated airway hypersensitivity (AHR) in female, but not male, mice in the absence of allergic sensitization. Analysis of the lipid profiles of their lungs showed that female, but not male, KO mice had significantly lower levels of sphingosine-1-phosphate (S1P), very long-chain ceramides (VLCCs), and higher levels of long-chain ceramides compared to wild-type controls. Furthermore, in females, lung resistance following methacholine challenge correlated with lung S1P levels (Pearson correlation coefficient 0.57) suggesting a link between reduced AHR in KO females, Zpbp2 deletion, and S1P level regulation. In livers, spleens and blood plasma, however, VLCC, S1P, and sphingosine levels were reduced in both KO females and males. We also find that the Zpbp2 deletion was associated with gain of methylation in the adjacent DNA regions. Thus, we demonstrate that the mouse ortholog of ZPBP2 has a role in controlling AHR in female mice. Our data also suggest that Zpbp2 may act through regulation of ceramide metabolism. These findings highlight the importance of phospholipid metabolism for sexual dimorphism in AHR.
Collapse
Affiliation(s)
| | - Victoria Chiwara
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Bianca Ho
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sanny Moussette
- The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Mina Youssef
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - David Venuto
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Lucie Jeannotte
- Département de Biologie moléculaire, Biochimie medicale & Pathologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Centre de recherche sur le cancer de l'Université Laval, CRCHU de Québec-Université Laval, L'Hôtel-Dieu de Québec, Québec, QC, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
| | - Juan Bautista de Sanctis
- Institute of Immunology, Faculty of Medicine, Universidad Central de Venezuela, Sabana Grande, Caracas, Venezuela
| | - Danuta Radzioch
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program (IDIGH), The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, QC, Canada. .,The Research Institute of the McGill University Health Centre, Montreal, QC, Canada. .,Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
35
|
Evidence for the Involvement of Lipid Rafts and Plasma Membrane Sphingolipid Hydrolases in Pseudomonas aeruginosa Infection of Cystic Fibrosis Bronchial Epithelial Cells. Mediators Inflamm 2017; 2017:1730245. [PMID: 29333001 PMCID: PMC5733190 DOI: 10.1155/2017/1730245] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/02/2017] [Accepted: 08/30/2017] [Indexed: 12/28/2022] Open
Abstract
Cystic fibrosis (CF) is the most common autosomal genetic recessive disease caused by mutations of gene encoding for the cystic fibrosis transmembrane conductance regulator. Patients with CF display a wide spectrum of symptoms, the most severe being chronic lung infection and inflammation, which lead to onset of cystic fibrosis lung disease. Several studies indicate that sphingolipids play a regulatory role in airway inflammation. The inhibition and downregulation of GBA2, the enzyme catabolizing glucosylceramide to ceramide, are associated with a significant reduction of IL-8 production in CF bronchial epithelial cells. Herein, we demonstrate that GBA2 plays a role in the proinflammatory state characterizing CF cells. We also report for the first time that Pseudomonas aeruginosa infection causes a recruitment of plasma membrane-associated glycosphingolipid hydrolases into lipid rafts of CuFi-1-infected cells. This reorganization of cell membrane may be responsible for activation of a signaling cascade, culminating in aberrant inflammatory response in CF bronchial epithelial cells upon bacterial infection. Taken together, the presented data further support the role of sphingolipids and their metabolic enzymes in controlling the inflammatory response in CF.
Collapse
|
36
|
Karandashova S, Kummarapurugu AB, Zheng S, Chalfant CE, Voynow JA. Neutrophil elastase increases airway ceramide levels via upregulation of serine palmitoyltransferase. Am J Physiol Lung Cell Mol Physiol 2017; 314:L206-L214. [PMID: 29025713 DOI: 10.1152/ajplung.00322.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Altered sphingolipid metabolism is associated with increased inflammation; however, the impact of inflammatory mediators, including neutrophil elastase (NE), on airway sphingolipid homeostasis remains unknown. Using a well-characterized mouse model of NE oropharyngeal aspiration, we investigated a potential link between NE-induced airway inflammation and increased synthesis of various classes of sphingolipids, including ceramide species. Sphingolipids in bronchoalveolar lavage fluids (BAL) were identified and quantified using reverse-phase high-performance liquid chromatography/electrospray ionization tandem mass spectrometry analysis. BAL total and differential cell counts, CXCL1/keratinocyte chemoattractant (KC) protein levels, and high-mobility group box 1 (HMGB1) protein levels were determined. NE exposure increased BAL long-chain ceramides, total cell and neutrophil counts, and upregulated KC and HMGB1. The mRNA and protein levels of serine palmitoyltransferase (SPT) long-chain subunits 1 and 2, the multimeric enzyme responsible for the first, rate-limiting step of de novo ceramide generation, were determined by qRT-PCR and Western analyses, respectively. NE increased lung SPT long-chain subunit 2 (SPTLC2) protein levels but not SPTLC1 and had no effect on mRNA for either subunit. To assess whether de novo ceramide synthesis was required for NE-induced inflammation, myriocin, a SPT inhibitor, or a vehicle control was administered intraperitoneally 2 h before NE administration. Myriocin decreased BAL d18:1/22:0 and d18:1/24:1 ceramide, KC, and HMGB1 induced by NE exposure. These results support a feed-forward cycle of NE-generated ceramide and ceramide-driven cytokine signaling that may be a potential target for intervention in lung disease typified by chronic neutrophilic inflammation.
Collapse
Affiliation(s)
- Sophia Karandashova
- Center for Clinical and Translational Research, Virginia Commonwealth University , Richmond, Virginia
| | - Apparao B Kummarapurugu
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| | - Shuo Zheng
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| | - Charles E Chalfant
- Dept. of Biochemistry and Molecular Biology, Institute of Molecular Medicine, Johnson Center for Critical Care and Pulmonary Research, and Massey Cancer Center, Virginia Commonwealth University , Richmond, Virginia.,Research Service, Hunter Holmes McGuire Veterans Administration Medical Center , Richmond, Virginia
| | - Judith A Voynow
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Richmond at Virginia Commonwealth University , Richmond, Virginia
| |
Collapse
|
37
|
Cystic fibrosis: the conductance regulator, ceramides, and possible treatments. J Mol Med (Berl) 2017; 95:1017-1019. [DOI: 10.1007/s00109-017-1577-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
White MM, Geraghty P, Hayes E, Cox S, Leitch W, Alfawaz B, Lavelle GM, McElvaney OJ, Flannery R, Keenan J, Meleady P, Henry M, Clynes M, Gunaratnam C, McElvaney NG, Reeves EP. Neutrophil Membrane Cholesterol Content is a Key Factor in Cystic Fibrosis Lung Disease. EBioMedicine 2017; 23:173-184. [PMID: 28835336 PMCID: PMC5605378 DOI: 10.1016/j.ebiom.2017.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 01/13/2023] Open
Abstract
Background Identification of mechanisms promoting neutrophil trafficking to the lungs of patients with cystic fibrosis (CF) is a challenge for next generation therapeutics. Cholesterol, a structural component of neutrophil plasma membranes influences cell adhesion, a key step in transmigration. The effect of chronic inflammation on neutrophil membrane cholesterol content in patients with CF (PWCF) remains unclear. To address this we examined neutrophils of PWCF to evaluate the cause and consequence of altered membrane cholesterol and identified the effects of lung transplantation and ion channel potentiator therapy on the cellular mechanisms responsible for perturbed membrane cholesterol and increased cell adhesion. Methodology PWCF homozygous for the ΔF508 mutation or heterozygous for the G551D mutation were recruited (n = 48). Membrane protein expression was investigated by mass spectrometry. The effect of lung transplantation or ivacaftor therapy was assessed by ELISAs, and calcium fluorometric and μ-calpain assays. Findings Membranes of CF neutrophils contain less cholesterol, yet increased integrin CD11b expression, and respond to inflammatory induced endoplasmic reticulum (ER) stress by activating μ-calpain. In vivo and in vitro, increased μ-calpain activity resulted in proteolysis of the membrane cholesterol trafficking protein caveolin-1. The critical role of caveolin-1 for adequate membrane cholesterol content was confirmed in caveolin-1 knock-out mice. Lung transplant therapy or treatment of PWCF with ivacaftor, reduced levels of circulating inflammatory mediators and actuated increased caveolin-1 and membrane cholesterol, with concurrent normalized neutrophil adhesion. Interpretation Results demonstrate an auxiliary benefit of lung transplant and potentiator therapy, evident by a reduction in circulating inflammation and controlled neutrophil adhesion. This study explored neutrophil adhesion in cystic fibrosis. Altered membrane cholesterol lead to increased adhesion. Circulating inflammatory mediators caused increased calpain activity and reduced membrane cholesterol content.
In patients with cystic fibrosis (CF), chronic inflammation in the circulation, in part originating from the pulmonary compartment, leads to decreased membrane cholesterol in circulating neutrophils, resulting in increased cell adhesion. The mechanism of action involves proteolytic down-regulation of the cholesterol trafficking protein caveolin-1. The overall effect of lung transplant therapy, or CFTR potentiator treatment, was to significantly diminish the circulating inflammatory burden thereby permitting caveolin-1 expression, with concomitant decreased CF cell adhesion and significant clinical improvement.
Collapse
Affiliation(s)
- Michelle M White
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Patrick Geraghty
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Elaine Hayes
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Stephen Cox
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - William Leitch
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Bader Alfawaz
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Gillian M Lavelle
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Oliver J McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Ryan Flannery
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland; Coláiste Dhúlaigh College of Further Education, Dublin 17, Ireland
| | - Joanne Keenan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Cedric Gunaratnam
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McElvaney
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Emer P Reeves
- Irish Centre for Genetic Lung Disease, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
39
|
Garić D, De Sanctis JB, Wojewodka G, Houle D, Cupri S, Abu-Arish A, Hanrahan JW, Hajduch M, Matouk E, Radzioch D. Fenretinide differentially modulates the levels of long- and very long-chain ceramides by downregulating Cers5 enzyme: evidence from bench to bedside. J Mol Med (Berl) 2017; 95:1053-1064. [DOI: 10.1007/s00109-017-1564-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/01/2017] [Accepted: 06/15/2017] [Indexed: 10/19/2022]
|
40
|
Abstract
SIGNIFICANCE There are a number of redox-active anticancer agents currently in development based on the premise that altered redox homeostasis is necessary for cancer cell's survival. Recent Advances: This review focuses on the relatively few agents that target cellular redox homeostasis to have entered clinical trial as anticancer drugs. CRITICAL ISSUES The success rate of redox anticancer drugs has been disappointing compared to other classes of anticancer agents. This is due, in part, to our incomplete understanding of the functions of the redox targets in normal and cancer tissues, leading to off-target toxicities and low therapeutic indexes of the drugs. The field also lags behind in the use biomarkers and other means to select patients who are most likely to respond to redox-targeted therapy. FUTURE DIRECTIONS If we wish to derive clinical benefit from agents that attack redox targets, then the future will require a more sophisticated understanding of the role of redox targets in cancer and the increased application of personalized medicine principles for their use. Antioxid. Redox Signal. 26, 262-273.
Collapse
Affiliation(s)
| | - Garth Powis
- 2 Sanford Burnham Prebys Medical Discovery Institute Cancer Center , La Jolla, California
| |
Collapse
|
41
|
Duchesneau P, Besla R, Derouet MF, Guo L, Karoubi G, Silberberg A, Wong AP, Waddell TK. Partial Restoration of CFTR Function in cftr-Null Mice following Targeted Cell Replacement Therapy. Mol Ther 2017; 25:654-665. [PMID: 28187947 DOI: 10.1016/j.ymthe.2016.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 11/10/2016] [Accepted: 11/27/2016] [Indexed: 01/22/2023] Open
Abstract
Cystic fibrosis (CF) is a fatal recessive genetic disorder caused by a mutation in the gene encoding CF transmembrane conductance regulator (CFTR) protein. Alteration in CFTR leads to thick airway mucus and bacterial infection. Cell therapy has been proposed for CFTR restoration, but efficacy has been limited by low engraftment levels. In our previous studies, we have shown that using a pre-conditioning regimen in combination with optimization of cell number and time of delivery, we could obtain greater bone marrow cell (BMC) retention in the lung. Here, we found that optimized delivery of wild-type (WT) BMC contributed to apical CFTR expression in airway epithelium and restoration of select ceramide species and fatty acids in CFTR-/- mice. Importantly, WT BMC delivery delayed Pseudomonas aeruginosa lung infection and increased survival of CFTR-/- recipients. Only WT BMCs had a beneficial effect beyond 6 months, suggesting a dual mechanism of BMC benefit: a non-specific effect early after cell delivery, possibly due to the recruitment of macrophages and neutrophils, and a late beneficial effect dependent on long-term CFTR expression. Taken together, our results suggest that BMC can improve overall lung function and may have potential therapeutic benefit for the treatment of CF.
Collapse
Affiliation(s)
- Pascal Duchesneau
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Rickvinder Besla
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Mathieu F Derouet
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Li Guo
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Amanda Silberberg
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada
| | - Amy P Wong
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas K Waddell
- Latner Thoracic Surgery Research Laboratories and McEwen Centre for Regenerative Medicine, Toronto General Hospital Research Institute, University of Toronto, Toronto, ON M5G 2C4, Canada.
| |
Collapse
|
42
|
The impact of impaired macrophage functions in cystic fibrosis disease progression. J Cyst Fibros 2016; 16:443-453. [PMID: 27856165 DOI: 10.1016/j.jcf.2016.10.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 01/29/2023]
Abstract
The underlying cause of morbidity in cystic fibrosis (CF) is the decline in lung function, which results in part from chronic inflammation. Inflammation and infection occur early in infancy in CF and the role of innate immune defense in CF has been highlighted in the last years. Once thought simply to be consumers of bacteria, macrophages have emerged as highly sensitive immune cells that are located at the balance point between inflammation and resolution of this inflammation in CF pathophysiology. In order to assess the potential role of macrophage in CF, we review the evidence that: (1) CF macrophage has a dysregulated inflammatory phenotype; (2) CF macrophage presents altered phagocytosis capacity and bacterial killing; and (3) lipid disorders in CF macrophage affect its function. These alterations of macrophage weaken innate defense of CF patients and may be involved in CF disease progression and lung damage.
Collapse
|
43
|
Aureli M, Schiumarini D, Loberto N, Bassi R, Tamanini A, Mancini G, Tironi M, Munari S, Cabrini G, Dechecchi MC, Sonnino S. Unravelling the role of sphingolipids in cystic fibrosis lung disease. Chem Phys Lipids 2016; 200:94-103. [DOI: 10.1016/j.chemphyslip.2016.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022]
|
44
|
Epithelial Anion Transport as Modulator of Chemokine Signaling. Mediators Inflamm 2016; 2016:7596531. [PMID: 27382190 PMCID: PMC4921137 DOI: 10.1155/2016/7596531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 12/16/2022] Open
Abstract
The pivotal role of epithelial cells is to secrete and absorb ions and water in order to allow the formation of a luminal fluid compartment that is fundamental for the epithelial function as a barrier against environmental factors. Importantly, epithelial cells also take part in the innate immune system. As a first line of defense they detect pathogens and react by secreting and responding to chemokines and cytokines, thus aggravating immune responses or resolving inflammatory states. Loss of epithelial anion transport is well documented in a variety of diseases including cystic fibrosis, chronic obstructive pulmonary disease, asthma, pancreatitis, and cholestatic liver disease. Here we review the effect of aberrant anion secretion with focus on the release of inflammatory mediators by epithelial cells and discuss putative mechanisms linking these transport defects to the augmented epithelial release of chemokines and cytokines. These mechanisms may contribute to the excessive and persistent inflammation in many respiratory and gastrointestinal diseases.
Collapse
|
45
|
Lactosylceramide-accumulation in lipid-rafts mediate aberrant-autophagy, inflammation and apoptosis in cigarette smoke induced emphysema. Apoptosis 2015; 20:725-39. [PMID: 25638276 DOI: 10.1007/s10495-015-1098-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ceramide-accumulation is known to be involved in the pathogenesis of chronic inflammatory lung diseases including cigarette smoke-induced emphysema (CS-emphysema) but the exact sphingolipid metabolite that initiates emphysema progression remains ambiguous. We evaluated here a novel role for the sphingolipid, lactosylceramide (LacCer), as a potential mechanism for pathogenesis of CS-emphysema. We assessed the expression of LacCer, and LacCer-dependent inflammatory, apoptosis and autophagy responses in lungs of mice exposed to CS, as well as peripheral lung tissues from COPD subjects followed by experimental analysis to verify the role of LacCer in CS-emphysema. We observed significantly elevated LacCer-accumulation in human COPD lungs with increasing severity of emphysema over non-emphysema controls. Moreover, increased expression of defective-autophagy marker, p62, in lung tissues of severe COPD subjects suggest that LacCer induced aberrant-autophagy may contribute to the pathogenesis of CS-emphysema. We verified that CS-extract treatment significantly induces LacCer-accumulation in both bronchial-epithelial cells (BEAS2B) and macrophages (Raw264.7) as a mechanism to initiate aberrant-autophagy (p62-accumulation) and apoptosis that was rescued by pharmacological inhibitor of LacCer-synthase. Further, we corroborated that CS exposure induces LacCer-accumulation in murine lungs that can be controlled by LacCer-synthase inhibitor. We propose LacCer-accumulation as a novel prognosticator of COPD-emphysema severity, and provide evidence on the therapeutic efficacy of LacCer-synthase inhibitor in CS induced COPD-emphysema.
Collapse
|
46
|
Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2015; 283:246-64. [PMID: 26416076 DOI: 10.1111/febs.13531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis has attracted much attention in recent years due to significant advances in the pharmacological targeting of the basic defect underlying this recessive disorder: the deficient functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels at the apical membrane of epithelial cells. However, increasing evidence points to the reduced efficacy of single treatments, thus reinforcing the need to combine several therapeutic strategies to effectively target the multiple basic defect(s). Protein-repair therapies that use potentiators (activating membrane-located CFTR) or correctors (promoting the relocation of intracellular-retained trafficking mutants of CFTR) in frequent mutations such as F508del and G551D have been put forward and made their way to the clinic with moderate to good efficiency. However, alternative (or additional) approaches targeting the membrane stability of mutant proteins, or correcting the cellular phenotype through a direct effect upon other ion channels (affecting the overall electrolyte transport or simply promoting alternative chloride transport) or targeting less frequent mutations (splicing variants, for example), have been proposed and tested in the field of cystic fibrosis (CF). Here, we cover the different strategies that rely on novel findings concerning the CFTR interactome and signalosome through which it might be possible to further influence the cellular trafficking and post-translational modification machinery (to increase rescued CFTR abundance and membrane stability). We also highlight the new data on strategies aiming at the regulation of sodium absorption or to increase chloride transport through alternative channels. The development and implementation of these complementary approaches will pave the way to combinatorial therapeutic strategies with increased benefit to CF patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Paulo Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisboa, Portugal
| |
Collapse
|
47
|
Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol 2015; 50 Suppl 40:S39-56. [PMID: 26335954 DOI: 10.1002/ppul.23242] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/07/2015] [Accepted: 06/16/2015] [Indexed: 12/17/2022]
Abstract
The host inflammatory response in cystic fibrosis (CF) lung disease has long been recognized as a central pathological feature and an important therapeutic target. Indeed, many believe that bronchiectasis results largely from the oxidative and proteolytic damage comprised within an exuberant airway inflammatory response that is dominated by neutrophils. In this review, we address the longstanding argument of whether or not the inflammatory response is directly attributable to impairment of the cystic fibrosis transmembrane conductance regulator or only secondary to airway obstruction and chronic bacterial infection and challenge the importance of this distinction in the context of therapy. We also review the centrality of neutrophils in CF lung pathophysiology and highlight more recent data that suggest the importance of other cell types and signaling beyond NF-κB activation. We discuss how protease and redox imbalance are critical factors in CF airway inflammation and end by reviewing some of the more promising therapeutic approaches now under development.
Collapse
Affiliation(s)
- David P Nichols
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,National Jewish Health, Denver, Colorado
| | - James F Chmiel
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, Ohio
| |
Collapse
|
48
|
Yan D, Weisshaar M, Lamb K, Chung HK, Lin MZ, Plemper RK. Replication-Competent Influenza Virus and Respiratory Syncytial Virus Luciferase Reporter Strains Engineered for Co-Infections Identify Antiviral Compounds in Combination Screens. Biochemistry 2015; 54:5589-604. [PMID: 26307636 PMCID: PMC4719150 DOI: 10.1021/acs.biochem.5b00623] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myxoviruses such as influenza A virus (IAV) and respiratory syncytial virus (RSV) are major human pathogens, mandating the development of novel therapeutics. To establish a high-throughput screening protocol for the simultaneous identification of pathogen- and host-targeted hit candidates against either pathogen or both, we have attempted co-infection of cells with IAV and RSV. However, viral replication kinetics were incompatible, RSV signal window was low, and an IAV-driven minireplicon reporter assay used in initial screens narrowed the host cell range and restricted the assay to single-cycle infections. To overcome these limitations, we developed an RSV strain carrying firefly luciferase fused to an innovative universal small-molecule assisted shut-off domain, which boosted assay signal window, and a hyperactive fusion protein that synchronized IAV and RSV reporter expression kinetics and suppressed the identification of RSV entry inhibitors sensitive to a recently reported RSV pan-resistance mechanism. Combined with a replication-competent recombinant IAV strain harboring nanoluciferase, the assay performed well on a human respiratory cell line and supports multicycle infections. Miniaturized to 384-well format, the protocol was validated through screening of a set of the National Institutes of Health Clinical Collection (NCC) in quadruplicate. These test screens demonstrated favorable assay parameters and reproducibility. Application to a LOPAC library of bioactive compounds in a proof-of-concept campaign detected licensed antimyxovirus therapeutics, ribavirin and the neuraminidase inhibitor zanamivir, and identified two unexpected RSV-specific hit candidates, Fenretinide and the opioid receptor antagonist BNTX-7. Hits were evaluated in direct and orthogonal dose-response counterscreens using a standard recRSV reporter strain expressing Renilla luciferase.
Collapse
Affiliation(s)
- Dan Yan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | - Marco Weisshaar
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | - Kristen Lamb
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| | | | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA
- Department of Pediatrics, Stanford University, Stanford, CA
| | - Richard K Plemper
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
| |
Collapse
|
49
|
Cantin AM, Hartl D, Konstan MW, Chmiel JF. Inflammation in cystic fibrosis lung disease: Pathogenesis and therapy. J Cyst Fibros 2015; 14:419-30. [PMID: 25814049 DOI: 10.1016/j.jcf.2015.03.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/08/2015] [Accepted: 03/08/2015] [Indexed: 11/16/2022]
Abstract
Lung disease is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). Although CF lung disease is primarily an infectious disorder, the associated inflammation is both intense and ineffective at clearing pathogens. Persistent high-intensity inflammation leads to permanent structural damage of the CF airways and impaired lung function that eventually results in respiratory failure and death. Several defective inflammatory responses have been linked to cystic fibrosis transmembrane conductance regulator (CFTR) deficiency including innate and acquired immunity dysregulation, cell membrane lipid abnormalities, various transcription factor signaling defects, as well as altered kinase and toll-like receptor responses. The inflammation of the CF lung is dominated by neutrophils that release oxidants and proteases, particularly elastase. Neutrophil elastase in the CF airway secretions precedes the appearance of bronchiectasis, and correlates with lung function deterioration and respiratory exacerbations. Anti-inflammatory therapies are therefore of particular interest for CF lung disease but must be carefully studied to avoid suppressing critical elements of the inflammatory response and thus worsening infection. This review examines the role of inflammation in the pathogenesis of CF lung disease, summarizes the results of past clinical trials and explores promising new anti-inflammatory options.
Collapse
Affiliation(s)
- André M Cantin
- Pulmonary Division, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, Canada.
| | - Dominik Hartl
- CF Center, Children's Hospital of the University of Tübingen, Tübingen, Germany
| | - Michael W Konstan
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
50
|
Caohuy H, Yang Q, Eudy Y, Ha TA, Xu AE, Glover M, Frizzell RA, Jozwik C, Pollard HB. Activation of 3-phosphoinositide-dependent kinase 1 (PDK1) and serum- and glucocorticoid-induced protein kinase 1 (SGK1) by short-chain sphingolipid C4-ceramide rescues the trafficking defect of ΔF508-cystic fibrosis transmembrane conductance regulator (ΔF508-CFTR). J Biol Chem 2014; 289:35953-68. [PMID: 25384981 DOI: 10.1074/jbc.m114.598649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cystic fibrosis (CF) is due to a folding defect in the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, ΔF508, prevents CFTR from trafficking to the apical plasma membrane. Here we show that activation of the PDK1/SGK1 signaling pathway with C4-ceramide (C4-CER), a non-toxic small molecule, functionally corrects the trafficking defect in both cultured CF cells and primary epithelial cell explants from CF patients. The mechanism of C4-CER action involves a series of mutual autophosphorylation and phosphorylation events between PDK1 and SGK1. Detailed mechanistic studies indicate that C4-CER initially induces autophosphorylation of SGK1 at Ser(422). SGK1[Ser(P)(422)] and C4-CER coincidently bind PDK1 and permit PDK1 to autophosphorylate at Ser(241). Then PDK1[Ser(P)(241)] phosphorylates SGK1[Ser(P)(422)] at Thr(256) to generate fully activated SGK1[Ser(422), Thr(P)(256)]. SGK1[Ser(P)(422),Thr(P)(256)] phosphorylates and inactivates the E3 ubiquitin ligase Nedd4-2. ΔF508-CFTR is thus free to traffic to the plasma membrane. Importantly, C4-CER-mediated activation of both PDK1 and SGK1 is independent of the PI3K/Akt/mammalian target of rapamycin signaling pathway. Physiologically, C4-CER significantly increases maturation and stability of ΔF508-CFTR (t½ ∼10 h), enhances cAMP-activated chloride secretion, and suppresses hypersecretion of interleukin-8 (IL-8). We suggest that candidate drugs for CF directed against the PDK1/SGK1 signaling pathway, such as C4-CER, provide a novel therapeutic strategy for a life-limiting disorder that affects one child, on average, each day.
Collapse
Affiliation(s)
- Hung Caohuy
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Qingfeng Yang
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Yvonne Eudy
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Thien-An Ha
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Andrew E Xu
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Matthew Glover
- the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Raymond A Frizzell
- the Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15224
| | - Catherine Jozwik
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| | - Harvey B Pollard
- From the Department of Anatomy, Physiology, and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 and
| |
Collapse
|