1
|
Jiang W, Chen Y, Yu CY, Zou B, Lu Y, Yang Q, Tang Z, Mao W, Li J, Han H, Shao L, Zeng J, Chu Y, Tang J, Lu M. Alveolar epithelial cells shape lipopolysaccharide-induced inflammatory responses and reprogramming of alveolar macrophages. Eur J Immunol 2024:e2350378. [PMID: 39498697 DOI: 10.1002/eji.202350378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Alveolar macrophages (AMs) are sentinels in the airways, where they sense and respond to invading microbes and other stimuli. Unlike macrophages in other locations, AMs can remain responsive to Gram-negative lipopolysaccharides (LPS) after they have responded to LPS in vivo (they do not develop "endotoxin tolerance"), suggesting that the alveolar microenvironment may influence their responses. Although alveolar epithelial cells (AECs) normally limit AMs' innate responses, preventing inflammation induced by harmless antigens in the lung, how AECs influence the innate responses of AMs to infectious agents has been uncertain. Here we report that (1) after exposure to aspirated (intranasal instillation) LPS, AMs increase their responses to TLR agonists and elevate their phagocytic and bactericidal activities in mice; (2) Aspirated LPS pre-exposure increases host resistance to pulmonary infection caused by Gram-negative bacteria and the protection effect lasts for at least 35 days; (3) LPS stimulation of AECs both increases AMs' innate immune responses and prevents AMs from developing tolerance in vitro; (4) Upon LPS stimulation, AMs secreted TNF-α induces AECs to release GM-CSF, which potentiates AMs' response. These experiments have revealed a previously unappreciated role that AECs may play in boosting the innate responses of AMs and promoting resistance to pulmonary infections.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yeying Chen
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Cheng-Yun Yu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Benkun Zou
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yimeng Lu
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian Yang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Zihui Tang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiying Mao
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Han Han
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiashun Zeng
- Department of Rheumatology and Immunology, the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
- MOE Innovative Center for New Drug Development of Immune Inflammatory Diseases, Fudan University, Shanghai, China
- Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai, China
| |
Collapse
|
2
|
Vonderohe C, Stoll B, Didelija I, Nguyen T, Mohammad M, Jones-Hall Y, Cruz MA, Marini J, Burrin D. Citrulline and ADI-PEG20 reduce inflammation in a juvenile porcine model of acute endotoxemia. Front Immunol 2024; 15:1400574. [PMID: 39176089 PMCID: PMC11338849 DOI: 10.3389/fimmu.2024.1400574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Background Arginine is a conditionally essential amino acid that is depleted in critically ill or surgical patients. In pediatric and adult patients, sepsis results in an arginine-deficient state, and the depletion of plasma arginine is associated with greater mortality. However, direct supplementation of arginine can result in the excessive production of nitric oxide (NO), which can contribute to the hypotension and macrovascular hypo-reactivity observed in septic shock. Pegylated arginine deiminase (ADI-PEG20, pegargiminase) reduces plasma arginine and generates citrulline that can be transported intracellularly to generate local arginine and NO, without resulting in hypotension, while maintaining microvascular patency. The objective of this study was to assess the efficacy of ADI-PEG20 with and without supplemental intravenous citrulline in mitigating hypovolemic shock, maintaining tissue levels of arginine, and reducing systemic inflammation in an endotoxemic pediatric pig model. Methods Twenty 3-week-old crossbred piglets were implanted with jugular and carotid catheters as well as telemetry devices in the femoral artery to measure blood pressure, body temperature, heart rate, and respiration rate. The piglets were assigned to one of three treatments before undergoing a 5 h lipopolysaccharide (LPS) infusion protocol. Twenty-four hours before LPS infusion, control pigs (LPS; n=6) received saline, ADI-PEG20 pigs (n=7) received an injection of ADI-PEG20, and seven pigs (ADI-PEG20 + CIT pigs [n=7]) received ADI-PEG20 and 250 mg/kg citrulline intravenously. Pigs were monitored throughout LPS infusion and tissue was harvested at the end of the protocol. Results Plasma arginine levels decreased and remained low in ADI-PEG20 + CIT and ADI-PEG20 pigs compared with LPS pigs but tissue arginine levels in the liver and kidney were similar across all treatments. Mean arterial pressure in all groups decreased from 90 mmHg to 60 mmHg within 1 h of LPS infusion but there were no significant differences between treatment groups. ADI-PEG20 and ADI-PEG20 + CIT pigs had less CD45+ infiltrate in the liver and lung and lower levels of pro-inflammatory cytokines in the plasma. Conclusion ADI-PEG20 and citrulline supplementation failed to ameliorate the hypotension associated with acute endotoxic sepsis in pigs but reduced systemic and local inflammation in the lung and liver.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Barbara Stoll
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Inka Didelija
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Trung Nguyen
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veteran Administration Medical Center, Houston, TX, United States
| | - Mahmoud Mohammad
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Yava Jones-Hall
- Department of Pathobiology, Texas A&M College of Veterinary Medicine and Biomedical Science, College Station, TX, United States
| | - Miguel A. Cruz
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veteran Administration Medical Center, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Juan Marini
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Pediatric Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Douglas Burrin
- USDA-ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
3
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
4
|
Wu Z, Yang S, Fang X, Shu Q, Chen Q. Function and mechanism of TREM2 in bacterial infection. PLoS Pathog 2024; 20:e1011895. [PMID: 38236825 PMCID: PMC10796033 DOI: 10.1371/journal.ppat.1011895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM2), which is a lipid sensing and phagocytosis receptor, plays a key role in immunity and inflammation in response to pathogens. Here, we review the function and signaling of TREM2 in microbial binding, engulfment and removal, and describe TREM2-mediated inhibition of inflammation by negatively regulating the Toll-like receptor (TLR) response. We further illustrate the role of TREM2 in restoring organ homeostasis in sepsis and soluble TREM2 (sTREM2) as a diagnostic marker for sepsis-associated encephalopathy (SAE). Finally, we discuss the prospect of TREM2 as an interesting therapeutic target for sepsis.
Collapse
Affiliation(s)
- Zehua Wu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Shiyue Yang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Soochow, People’s Republic of China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Qiang Shu
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Qixing Chen
- Department of the Clinical Research Center, Children’s Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Immunopathophysiology of human sepsis. EBioMedicine 2022; 86:104363. [PMID: 36470832 PMCID: PMC9783164 DOI: 10.1016/j.ebiom.2022.104363] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 10/27/2022] [Indexed: 12/04/2022] Open
Abstract
Sepsis is an ill-defined syndrome yet is a leading cause of morbidity and mortality worldwide. The most recent consensus defines sepsis as life-threatening organ dysfunction caused by a dysregulated host response to infection. However, this definition belies the complexity and breadth of immune mechanisms involved in sepsis, which are characterized by simultaneous hyperinflammation and immune suppression. In this review, we describe the immunopathogenesis of sepsis and highlight some recent pathophysiological findings that have expanded our understanding of sepsis. Sepsis endotypes can be used to divide sepsis patients in different groups with distinct immune profiles and outcomes. We also summarize evidence on the role of the gut microbiome in sepsis immunity. The challenge of the coming years will be to translate our increasing knowledge about the molecular mechanisms underlying sepsis into therapies that improve relevant patient outcomes.
Collapse
|
6
|
Lee FFY, Alper S. Alternative pre-mRNA splicing as a mechanism for terminating Toll-like Receptor signaling. Front Immunol 2022; 13:1023567. [PMID: 36531997 PMCID: PMC9755862 DOI: 10.3389/fimmu.2022.1023567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
While inflammation induced by Toll-like receptor (TLR) signaling is required to combat infection, persistent inflammation can damage host tissues and contribute to a myriad of acute and chronic inflammatory disorders. Thus, it is essential not only that TLR signaling be activated in the presence of pathogens but that TLR signaling is ultimately terminated. One mechanism that limits persistent TLR signaling is alternative pre-mRNA splicing. In addition to encoding the canonical mRNAs that produce proteins that promote inflammation, many genes in the TLR signaling pathway also encode alternative mRNAs that produce proteins that are dominant negative inhibitors of signaling. Many of these negative regulators are induced by immune challenge, so production of these alternative isoforms represents a negative feedback loop that limits persistent inflammation. While these alternative splicing events have been investigated on a gene by gene basis, there has been limited systemic analysis of this mechanism that terminates TLR signaling. Here we review what is known about the production of negatively acting alternative isoforms in the TLR signaling pathway including how these inhibitors function, how they are produced, and what role they may play in inflammatory disease.
Collapse
Affiliation(s)
- Frank Fang Yao Lee
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States
| | - Scott Alper
- Department of Immunology and Genomic Medicine and Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States,Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz, CO, United States,*Correspondence: Scott Alper,
| |
Collapse
|
7
|
Efferocytosis in lung mucosae: implications for health and disease. Immunol Lett 2022; 248:109-118. [PMID: 35843361 DOI: 10.1016/j.imlet.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Efferocytosis is imperative to maintain lung homeostasis and control inflammation. Populations of lung macrophages are the main efferocytes in this tissue, responsible for controlling immune responses and avoiding unrestrained inflammation and autoimmunity through the expression of a plethora of receptors that recognize multiple 'eat me' signals on apoptotic cells. Efferocytosis is essentially anti-inflammatory and tolerogenic. However, in some situations, apoptotic cells phagocytosis can elicit inflammatory and immunogenic immune responses. Here, we summarized the current knowledge of the mechanisms of efferocytosis, and how any abnormality in this process may have an important contribution to the lung pathophysiology of many chronic inflammatory lung diseases such as asthma, acute lung injury, chronic obstructive pulmonary disease, and cystic fibrosis. Further, we consider the consequences of the dual role of efferocytosis on the susceptibility or resistance to pulmonary microbial infections. Understanding how efferocytosis works in different contexts will be useful to the development of new and more effective strategies to control the diversity of lung diseases.
Collapse
|
8
|
Nguyen TH, Turek I, Meehan-Andrews T, Zacharias A, Irving HR. A systematic review and meta-analyses of interleukin-1 receptor associated kinase 3 (IRAK3) action on inflammation in in vivo models for the study of sepsis. PLoS One 2022; 17:e0263968. [PMID: 35167625 PMCID: PMC8846508 DOI: 10.1371/journal.pone.0263968] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 02/01/2022] [Indexed: 12/27/2022] Open
Abstract
Background Interleukin-1 receptor associated kinase 3 (IRAK3) is a critical modulator of inflammation and is associated with endotoxin tolerance and sepsis. Although IRAK3 is known as a negative regulator of inflammation, several studies have reported opposing functions, and the temporal actions of IRAK3 on inflammation remain unclear. A systematic review and meta-analyses were performed to investigate IRAK3 expression and its effects on inflammatory markers (TNF-α and IL-6) after one- or two-challenge interventions, which mimic the hyperinflammatory and immunosuppression phases of sepsis, respectively, using human or animal in vivo models. Methods This systematic review and meta-analyses has been registered in the Open Science Framework (OSF) (Registration DOI: 10.17605/OSF.IO/V39UR). A systematic search was performed to identify in vivo studies reporting outcome measures of expression of IRAK3 and inflammatory markers. Meta-analyses were performed where sufficient data was available. Results The search identified 7778 studies for screening. After screening titles, abstracts and full texts, a total of 49 studies were included in the systematic review. The review identified significant increase of IRAK3 mRNA and protein expression at different times in humans compared to rodents following one-challenge, whereas the increases of IL-6 and TNF-α protein expression in humans were similar to rodent in vivo models. Meta-analyses confirmed the inhibitory effect of IRAK3 on TNF-α mRNA and protein expression after two challenges. Conclusions A negative correlation between IRAK3 and TNF-α expression in rodents following two challenges demonstrates the association of IRAK3 in the immunosuppression phase of sepsis. Species differences in underlying biology affect the translatability of immune responses of animal models to human, as shown by the dissimilarity in patterns of IRAK3 mRNA and protein expression between humans and rodents following one challenge that are further influenced by variations in experimental procedures.
Collapse
Affiliation(s)
- Trang H. Nguyen
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| | - Ilona Turek
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Terri Meehan-Andrews
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Anita Zacharias
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Helen R. Irving
- Department of Pharmacy and Biomedical Sciences, La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
- * E-mail: (HRI); (THN)
| |
Collapse
|
9
|
Abstract
Sepsis is expected to have a substantial impact on public health and cost as its prevalence increases. Factors contributing to increased prevalence include a progressively aging population, advances in the use of immunomodulatory agents to treat a rising number of diseases, and immune-suppressing therapies in organ transplant recipients and cancer patients. It is now recognized that sepsis is associated with profound and sustained immunosuppression, which has been implicated as a predisposing factor in the increased susceptibility of patients to secondary infections and mortality. In this review, we discuss mechanisms of sepsis-induced immunosuppression and biomarkers that identify a state of impaired immunity. We also highlight immune-enhancing strategies that have been evaluated in patients with sepsis, as well as therapeutics under current investigation. Finally, we describe future challenges and the need for a new treatment paradigm, integrating predictive enrichment with patient factors that may guide the future selection of tailored immunotherapy. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Lisa K Torres
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, New York-Presbyterian Hospital-Weill Cornell Medicine, New York, NY, USA;
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands;
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
10
|
Eo HJ, Park GH, Jeong JB. In vitro macrophage activation by Sageretia thea fruits through TLR2/TLR4-dependent activation of MAPK, NF-κB and PI3K/AKT signalling in RAW264.7 cells. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2020.1857339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hyun Ji Eo
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| | - Gwang Hun Park
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju, Republic of Korea
| | - Jin Boo Jeong
- Department of Medicinal Plant Resources, Andong National University, Andong, Republic of Korea
| |
Collapse
|
11
|
Son HJ, Eo HJ, Park GH, Jeong JB. Heracleum moellendorffii root extracts exert immunostimulatory activity through TLR2/4-dependent MAPK activation in mouse macrophages, RAW264.7 cells. Food Sci Nutr 2021; 9:514-521. [PMID: 33473312 PMCID: PMC7802540 DOI: 10.1002/fsn3.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/27/2022] Open
Abstract
Heracleum moellendorffii (H. moellendorffii) is a family of Umbelliferae and has long been used for food and medicinal purposes. However, the immune-enhancing activity of H. moellendorffii has not been studied. Thus, we evaluated in vitro immune-enhancing activity of H. moellendorffii through macrophage activation using RAW264.7 cells. Heracleum moellendorffii Root extracts (HMR) increased the production of immunomodulators such as NO, iNOS, IL-1β, IL-6 IL-12, TNF-α, and MCP-1 and activated phagocytosis in RAW264.7 cells. Inhibition of TLR2 and TLR4 reduced the production of immunomodulators induced by HMR. Inhibition of MAPK signaling attenuated the production of immunomodulators induced by HMR, but inhibitions of NF-κB or PI3K/AKT signaling did not affect HMR-mediated production of immunomodulators. HMR activated MAPK signaling pathway, and activation of MAPK signaling pathways by HMR was reversed by TLR2 and TLR4 inhibition. Based on the results of this study, HMR is thought to activate macrophages through the production of immunomodulators and phagocytosis activation through TLR2/4-dependent MAPK signaling pathway. Therefore, it is thought that HMR has the potential to be used as an agent for enhancing immunity.
Collapse
Affiliation(s)
- Ho Jun Son
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Hyun Ji Eo
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Gwang Hun Park
- Forest Medicinal Resources Research CenterNational Institute of Forest ScienceYeongjuKorea
| | - Jin Boo Jeong
- Department of Medicinal Plant ResourcesAndong National UniversityAndongKorea
| |
Collapse
|
12
|
Neff CP, Atif SM, Logue EC, Siebert J, Görg C, Lavelle J, Fiorillo S, Twigg H, Campbell TB, Fontenot AP, Palmer BE. HIV Infection Is Associated with Loss of Anti-Inflammatory Alveolar Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2447-2455. [PMID: 32929038 PMCID: PMC7577929 DOI: 10.4049/jimmunol.2000361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
HIV type 1 is associated with pulmonary dysfunction that is exacerbated by cigarette smoke. Alveolar macrophages (AM) are the most prominent immune cell in the alveolar space. These cells play an important role in clearing inhaled pathogens and regulating the inflammatory environment; however, how HIV infection impacts AM phenotype and function is not well understood, in part because of their autofluorescence and the absence of well-defined surface markers. The main aim of this study was to evaluate the impact of HIV infection on human AM and to compare the effect of smoking on their phenotype and function. Time-of-flight mass cytometry and RNA sequencing were used to characterize macrophages from human bronchoalveolar lavage of HIV-infected and -uninfected smokers and nonsmokers. We found that the frequency of CD163+ anti-inflammatory AM was decreased, whereas CD163-CCR7+ proinflammatory AM were increased in HIV infection. HIV-mediated proinflammatory polarization was associated with increased levels of inflammatory cytokines and macrophage activation. Conversely, smoking heightened the inflammatory response evident by change in the expression of CXCR4 and TLR4. Altogether, these findings suggest that HIV infection, along with cigarette smoke, favors a proinflammatory macrophage phenotype associated with enhanced expression of inflammatory molecules. Further, this study highlights time-of-flight mass cytometry as a reliable method for immunophenotyping the highly autofluorescent cells present in the bronchoalveolar lavage of cigarette smokers.
Collapse
Affiliation(s)
- Charles Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Shaikh M Atif
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Eric C Logue
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Janet Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- CytoAnalytics, Denver, CO 80113
| | - Carsten Görg
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - James Lavelle
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Homer Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, IN 46202; and
| | - Thomas B Campbell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
- Department of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045;
| |
Collapse
|
13
|
Brooks D, Barr LC, Wiscombe S, McAuley DF, Simpson AJ, Rostron AJ. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. Eur Respir J 2020; 56:13993003.01298-2019. [PMID: 32299854 DOI: 10.1183/13993003.01298-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
Inflammation is a key feature in the pathogenesis of sepsis and acute respiratory distress syndrome (ARDS). Sepsis and ARDS continue to be associated with high mortality. A key contributory factor is the rudimentary understanding of the early events in pulmonary and systemic inflammation in humans, which are difficult to study in clinical practice, as they precede the patient's presentation to medical services. Lipopolysaccharide (LPS), a constituent of the outer membrane of Gram-negative bacteria, is a trigger of inflammation and the dysregulated host response in sepsis. Human LPS models deliver a small quantity of LPS to healthy volunteers, triggering an inflammatory response and providing a window to study early inflammation in humans. This allows biological/mechanistic insights to be made and new therapeutic strategies to be tested in a controlled, reproducible environment from a defined point in time. We review the use of human LPS models, focussing on the underlying mechanistic insights that have been gained by studying the response to intravenous and pulmonary LPS challenge. We discuss variables that may influence the response to LPS before considering factors that should be considered when designing future human LPS studies.
Collapse
Affiliation(s)
- Daniel Brooks
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Laura C Barr
- Dept of Respiratory Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Sarah Wiscombe
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Daniel F McAuley
- School of Medicine, Dentistry and Biomedical Sciences, Institute for Health Sciences, Wellcome-Wolfson Institute for Experimental Medicine, Belfast, UK
| | - A John Simpson
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| | - Anthony J Rostron
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
14
|
Abstract
Immunosuppression is the most commonly used concept to qualify the immune status of patients with either sterile systemic inflammatory response syndrome (SIRS) or sepsis. In this review we attempt to demonstrate that the concept of immunosuppression is an oversimplification of the complex anti-inflammatory response that occurs in patients dealing with a severe sterile or infectious insult. Particularly, the immune status of leukocytes varies greatly depending on the compartment from where they are derived from. Furthermore, although certain functions of immune cells present in the blood stream or in the hematopoietic organs can be significantly diminished, other functions are either unchanged or even enhanced. This juxtaposition illustrates that there is no global defect. The mechanisms called reprogramming or trained innate immunity are probably aimed at preventing a generalized deleterious inflammatory reaction, and work to maintain the defense mechanisms at their due levels.
Collapse
|
15
|
Lee FFY, Davidson K, Harris C, McClendon J, Janssen WJ, Alper S. NF-κB mediates lipopolysaccharide-induced alternative pre-mRNA splicing of MyD88 in mouse macrophages. J Biol Chem 2020; 295:6236-6248. [PMID: 32179652 DOI: 10.1074/jbc.ra119.011495] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Although a robust inflammatory response is needed to combat infection, this response must ultimately be terminated to prevent chronic inflammation. One mechanism that terminates inflammatory signaling is the production of alternative mRNA splice forms in the Toll-like receptor (TLR) signaling pathway. Whereas most genes in the TLR pathway encode positive mediators of inflammatory signaling, several, including that encoding the MyD88 signaling adaptor, also produce alternative spliced mRNA isoforms that encode dominant-negative inhibitors of the response. Production of these negatively acting alternatively spliced isoforms is induced by stimulation with the TLR4 agonist lipopolysaccharide (LPS); thus, this alternative pre-mRNA splicing represents a negative feedback loop that terminates TLR signaling and prevents chronic inflammation. In the current study, we investigated the mechanisms regulating the LPS-induced alternative pre-mRNA splicing of the MyD88 transcript in murine macrophages. We found that 1) the induction of the alternatively spliced MyD88 form is due to alternative pre-mRNA splicing and not caused by another RNA regulatory mechanism, 2) MyD88 splicing is regulated by both the MyD88- and TRIF-dependent arms of the TLR signaling pathway, 3) MyD88 splicing is regulated by the NF-κB transcription factor, and 4) NF-κB likely regulates MyD88 alternative pre-mRNA splicing per se rather than regulating splicing indirectly by altering MyD88 transcription. We conclude that alternative splicing of MyD88 may provide a sensitive mechanism that ensures robust termination of inflammation for tissue repair and restoration of normal tissue homeostasis once an infection is controlled.
Collapse
Affiliation(s)
- Frank Fang-Yao Lee
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Kevin Davidson
- Pulmonary and Critical Care, WakeMed Hospital, Raleigh, North Carolina 27610
| | - Chelsea Harris
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Jazalle McClendon
- Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - William J Janssen
- Department of Medicine, National Jewish Health, Denver, Colorado 80206; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Scott Alper
- Department of Biomedical Research, National Jewish Health, Denver, Colorado 80206; Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado 80206; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado 80045.
| |
Collapse
|
16
|
Kurian N, Cohen TS, Öberg L, De Zan E, Skogberg G, Vollmer S, Baturcam E, Svanberg P, Bonn B, Smith PD, Vaarala O, Cunoosamy DM. Dual Role For A MEK Inhibitor As A Modulator Of Inflammation And Host Defense Mechanisms With Potential Therapeutic Application In COPD. Int J Chron Obstruct Pulmon Dis 2019; 14:2611-2624. [PMID: 32063702 PMCID: PMC6885002 DOI: 10.2147/copd.s211619] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background Unlike p38 mitogen-activated protein Kinases (MAPK) that has been extensively studied in the context of lung-associated pathologies in COPD, the role of the dual-specificity mitogen-activated protein kinase kinase (MEK1/2) or its downstream signaling molecule extracellular signal-regulated kinases 1/2 (ERK1/2) in COPD is poorly understood. Objectives The aim of this study was to address whether MEK1/2 pathway activation is linked to COPD and that targeting this pathway can improve lung inflammation through decreased immune-mediated inflammatory responses without compromising bacterial clearance. Methods Association of MEK1/2 pathway activation to COPD was investigated by immunohistochemistry using lung tissue biopsies from COPD and healthy individuals and through analysis of sputum gene expression data from COPD patients. The anti-inflammatory effect of MEK1/2 inhibition was assessed on cytokine release from lipopolysaccharide-stimulated alveolar macrophages. The effect of MEK1/2 inhibition on bacterial clearance was assessed using Staphylococcus aureus killing assays with RAW 264.7 macrophage cell line and human neutrophils. Results We report here MEK1/2 pathway activation demonstrated by increased pERK1/2 staining in bronchial epithelium and by the presence of MEK gene activation signature in sputum samples from COPD patients. Inhibition of MEK1/2 resulted in a superior anti-inflammatory effect in human alveolar macrophages in comparison to a p38 inhibitor. Furthermore, MEK1/2 inhibition led to an increase in bacterial killing in human neutrophils and RAW 264.7 cells that was not observed with the p38 inhibitor. Conclusion Our data demonstrate the activation of MEK1/2 pathway in COPD and highlight a dual function of MEK1/2 inhibition in improving host defense responses whilst also controlling inflammation.
Collapse
Affiliation(s)
- Nisha Kurian
- Respiratory Inflammation and Autoimmune (RIA) Precision Medicine Unit, Precision Medicine, Oncology R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Lisa Öberg
- Translational Science and Experimental Medicine, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Erica De Zan
- Translational Science and Experimental Medicine, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Gabriel Skogberg
- Bioscience, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Stefan Vollmer
- Translational Science and Experimental Medicine, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Engin Baturcam
- Translational Science and Experimental Medicine, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Petter Svanberg
- Drug Metabolism and Pharmacokinetics, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Britta Bonn
- Drug Metabolism and Pharmacokinetics, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Paul D Smith
- Bioscience, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Outi Vaarala
- Translational Science and Experimental Medicine, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Danen M Cunoosamy
- Translational Science and Experimental Medicine, Research and Early Development, RIA, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
17
|
Logue EC, Neff CP, Mack DG, Martin AK, Fiorillo S, Lavelle J, Vandivier RW, Campbell TB, Palmer BE, Fontenot AP. Upregulation of Chitinase 1 in Alveolar Macrophages of HIV-Infected Smokers. THE JOURNAL OF IMMUNOLOGY 2019; 202:1363-1372. [PMID: 30665939 DOI: 10.4049/jimmunol.1801105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/16/2018] [Indexed: 12/27/2022]
Abstract
Recent studies suggest that HIV infection is an independent risk factor for the development of chronic obstructive pulmonary disease (COPD). We hypothesized that HIV infection and cigarette smoking synergize to alter the function of alveolar macrophages (AMs). To test this hypothesis, global transcriptome analysis was performed on purified AMs from 20 individuals split evenly between HIV-uninfected nonsmokers and smokers and untreated HIV-infected nonsmokers and smokers. Differential expression analysis identified 143 genes significantly altered by the combination of HIV infection and smoking. Of the differentially expressed genes, chitinase 1 (CHIT1) and cytochrome P450 family 1 subfamily B member 1 (CYP1B1), both previously associated with COPD, were among the most upregulated genes (5- and 26-fold, respectively) in the untreated HIV-infected smoker cohort compared with HIV-uninfected nonsmokers. Expression of CHIT1 and CYP1B1 correlated with the expression of genes involved in extracellular matrix organization, oxidative stress, immune response, and cell death. Using time-of-flight mass cytometry to characterize AMs, a significantly decreased expression of CD163, an M2 marker, was seen in HIV-infected subjects, and CD163 inversely correlated with CYP1B1 expression in AMs. CHIT1 protein levels were significantly upregulated in bronchoalveolar lavage fluid from HIV-infected smokers, and increased CHIT1 levels negatively correlated with lung function measurements. Overall, these findings raise the possibility that elevated CHIT1 and CYP1B1 are early indicators of COPD development in HIV-infected smokers that may serve as biomarkers for determining this risk.
Collapse
Affiliation(s)
- Eric C Logue
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - C Preston Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Douglas G Mack
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Allison K Martin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Suzanne Fiorillo
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - James Lavelle
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - R William Vandivier
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Thomas B Campbell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Brent E Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and
| | - Andrew P Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045; and .,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
18
|
Grassin-Delyle S, Abrial C, Salvator H, Brollo M, Naline E, Devillier P. The Role of Toll-Like Receptors in the Production of Cytokines by Human Lung Macrophages. J Innate Immun 2018; 12:63-73. [PMID: 30557876 DOI: 10.1159/000494463] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 10/13/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Toll-like receptor (TLR) family is involved in the recognition of and response to microbial infections. These receptors are expressed in leukocytes. TLR stimulation induces the production of proinflammatory cytokines and chemokines. Given that human lung macrophages (LMs) constitute the first line of defense against inhaled pathogens, the objective of this study was to investigate the expression and function of TLR subtypes in this cell population. METHODS Human primary LMs were obtained from patients undergoing surgical resection. The RNA and protein expression levels of TLRs, chemokines, and cytokines were assessed after incubation with subtype-selective agonists. RESULTS In human LMs, the TLR expression level varied from one subtype to another. Stimulation with subtype-selective agonists induced an intense, concentration- and time-dependent increase in the production of chemokines and cytokines. TLR4 stimulation induced the strongest effect, whereas TLR9 stimulation induced a much weaker response. CONCLUSIONS The stimulation of TLRs in human LMs induces intense cytokine and chemokine production, a characteristic of the proinflammatory M1 macrophage phenotype.
Collapse
Affiliation(s)
- Stanislas Grassin-Delyle
- Département des Maladies Respiratoires, Hôpital Foch, Suresnes, France, .,INSERM UMR 1173 et Plateforme de spectrométrie de masse MasSpecLab, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint Quentin, Université Paris Saclay, Montigny-le-Bretonneux, France,
| | - Charlotte Abrial
- Laboratoire de Pharmacologie UPRES EA220, Université Versailles Saint Quentin, Université Paris Saclay, Hôpital Foch, Suresnes, France
| | - Hélène Salvator
- Département des Maladies Respiratoires, Hôpital Foch, Suresnes, France.,Laboratoire de Pharmacologie UPRES EA220, Université Versailles Saint Quentin, Université Paris Saclay, Hôpital Foch, Suresnes, France
| | - Marion Brollo
- Laboratoire de Pharmacologie UPRES EA220, Université Versailles Saint Quentin, Université Paris Saclay, Hôpital Foch, Suresnes, France
| | - Emmanuel Naline
- Département des Maladies Respiratoires, Hôpital Foch, Suresnes, France.,Laboratoire de Pharmacologie UPRES EA220, Université Versailles Saint Quentin, Université Paris Saclay, Hôpital Foch, Suresnes, France
| | - Philippe Devillier
- Département des Maladies Respiratoires, Hôpital Foch, Suresnes, France.,Laboratoire de Pharmacologie UPRES EA220, Université Versailles Saint Quentin, Université Paris Saclay, Hôpital Foch, Suresnes, France
| |
Collapse
|
19
|
Skerrett SJ, Braff MH, Liggitt HD, Rubens CE. Toll-like receptor 2 has a prominent but nonessential role in innate immunity to Staphylococcus aureus pneumonia. Physiol Rep 2018; 5:5/21/e13491. [PMID: 29142002 PMCID: PMC5688782 DOI: 10.14814/phy2.13491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022] Open
Abstract
Staphylococcus aureus is an important cause of acute bacterial pneumonia. Toll‐like receptor 2 (TLR2) recognizes multiple components of the bacterial cell wall and activates innate immune responses to gram‐positive bacteria. We hypothesized that TLR2 would have an important role in pulmonary host defense against S. aureus. TLR null (TLR2−/−) mice and wild type (WT) C57BL/6 controls were challenged with aerosolized S. aureus at a range of inocula for kinetic studies of cytokine and antimicrobial peptide expression, lung inflammation, bacterial killing by alveolar macrophages, and bacterial clearance. Survival was measured after intranasal infection. Pulmonary induction of most pro‐inflammatory cytokines was significantly blunted in TLR2−/− mice 4 and 24 h after infection in comparison with WT controls. Bronchoalveolar concentrations of cathelicidin‐related antimicrobial peptide also were reduced in TLR2−/− mice. Lung inflammation, measured by enumeration of bronchoalveolar neutrophils and scoring of histological sections, was significantly blunted in TLR2−/− mice. Phagocytosis of S. aureus by alveolar macrophages in vivo after low‐dose infection was unimpaired, but viability of ingested bacteria was significantly greater in TLR2−/− mice. Bacterial clearance from the lungs was slightly impaired in TLR2−/− mice after low‐dose infection only; bacterial elimination from the lungs was slightly accelerated in the TLR2−/− mice after high‐dose infection. Survival after high‐dose intranasal challenge was 50–60% in both groups. TLR2 has a significant role in early innate immune responses to S. aureus in the lungs but is not required for bacterial clearance and survival from S. aureus pneumonia.
Collapse
Affiliation(s)
- Shawn J Skerrett
- Department of Medicine, University of Washington, Seattle, Washington
| | - Marissa H Braff
- Seattle Children's Hospital Research Institute, Seattle, Washington
| | - H Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Craig E Rubens
- Seattle Children's Hospital Research Institute, Seattle, Washington
| |
Collapse
|
20
|
Rasid O, Cavaillon JM. Compartment diversity in innate immune reprogramming. Microbes Infect 2018; 20:156-165. [PMID: 29287986 DOI: 10.1016/j.micinf.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
|
21
|
Zou B, Jiang W, Han H, Li J, Mao W, Tang Z, Yang Q, Qian G, Qian J, Zeng W, Gu J, Chu T, Zhu N, Zhang W, Yan D, He R, Chu Y, Lu M. Acyloxyacyl hydrolase promotes the resolution of lipopolysaccharide-induced acute lung injury. PLoS Pathog 2017. [PMID: 28622363 PMCID: PMC5489216 DOI: 10.1371/journal.ppat.1006436] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pulmonary infection is the most common risk factor for acute lung injury (ALI). Innate immune responses induced by Microbe-Associated Molecular Pattern (MAMP) molecules are essential for lung defense but can lead to tissue injury. Little is known about how MAMP molecules are degraded in the lung or how MAMP degradation/inactivation helps prevent or ameliorate the harmful inflammation that produces ALI. Acyloxyacyl hydrolase (AOAH) is a host lipase that inactivates Gram-negative bacterial endotoxin (lipopolysaccharide, or LPS). We report here that alveolar macrophages increase AOAH expression upon exposure to LPS and that Aoah+/+ mice recover more rapidly than do Aoah-/- mice from ALI induced by nasally instilled LPS or Klebsiella pneumoniae. Aoah-/- mouse lungs had more prolonged leukocyte infiltration, greater pro- and anti-inflammatory cytokine expression, and longer-lasting alveolar barrier damage. We also describe evidence that the persistently bioactive LPS in Aoah-/- alveoli can stimulate alveolar macrophages directly and epithelial cells indirectly to produce chemoattractants that recruit neutrophils to the lung and may prevent their clearance. Distinct from the prolonged tolerance observed in LPS-exposed Aoah-/- peritoneal macrophages, alveolar macrophages that lacked AOAH maintained or increased their responses to bioactive LPS and sustained inflammation. Inactivation of LPS by AOAH is a previously unappreciated mechanism for promoting resolution of pulmonary inflammation/injury induced by Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Benkun Zou
- Department of Immunology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, and Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Wei Jiang
- Department of Immunology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, and Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Han Han
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Li
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiying Mao
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Zihui Tang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Qian Yang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Guojun Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, and Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Jing Qian
- Department of Immunology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, and Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Wenjiao Zeng
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianqing Chu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Zhu
- Departments of Infectious Diseases and Pulmonary Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenhong Zhang
- Departments of Infectious Diseases and Pulmonary Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Dapeng Yan
- Department of Immunology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, and Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Rui He
- Department of Immunology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, and Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, and Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
| | - Mingfang Lu
- Department of Immunology, Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, and Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
22
|
Bartko J, Schoergenhofer C, Schwameis M, Buchtele N, Wojta J, Schabbauer G, Stiebellehner L, Jilma B. Dexamethasone inhibits endotoxin-induced coagulopathy in human lungs. J Thromb Haemost 2016; 14:2471-2477. [PMID: 27622544 PMCID: PMC5298044 DOI: 10.1111/jth.13504] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/26/2016] [Indexed: 12/17/2022]
Abstract
Essentials Glucocorticoids are associated with an increased risk of thrombosis. Healthy volunteers received dexamethasone or placebo in an endotoxin lung instillation model. Dexamethasone suppressed thrombin generation in bronchoalveolar lavage. Glucocorticoids inhibit endotoxin induced pulmonary coagulopathy. SUMMARY Background Activation of local and systemic coagulation is a common finding in patients with pneumonia. There is evidence that glucocorticoids have procoagulant activity in the circulation, particularly in the context of inflammation. The effects of glucocorticoids on local pulmonary coagulation have not yet been investigated. Objective To use a human model of lung inflammation based on the local instillation of endotoxin in order to investigate whether glucocorticoids alter pulmonary coagulation. Methods Twenty-four healthy volunteers were randomized to receive either dexamethasone or placebo in a double-blind trial. Endotoxin was instilled via bronchoscope into right or left lung segments, followed by saline into the contralateral site. Six hours later, a bilateral bronchoalveolar lavage (BAL) was performed and coagulation parameters were measured. Results Endotoxin induced activation of coagulation in the bronchoalveolar compartment: the level of prothrombin fragment 1 + 2 (F1 + 2 ) was increased three-fold (248 pmol L-1 , 95% confidence interval [CI] 43-454 versus 743 pmol L-1 , 95% CI 437-1050) and the level of thrombin-antithrombin complex (TATc) was increased by ~ 50% (31 μg L-1 , 95% CI 18-45 versus 49 μg L-1 , 95% CI 36-61) as compared with saline-challenged segments. Dexamethasone reduced F1 + 2 (284 pmol L-1 , 95% CI 34-534) and TATc (9 μg L-1 , 95% CI 0.7-17) levels almost to those measured in BAL fluid from the saline-instilled segments in the placebo group. Dexamethasone even profoundly reduced F1 + 2 levels (80%) in saline-instilled lung segments (50 pmol L-1 , 95% CI 12-87). In contrast, dexamethasone had no effect on systemic F1 + 2 levels. Conclusions Dexamethasone inhibits endotoxin-induced coagulopathy in lungs. This trial is the first to provide insights into the effects of glucocorticoids on pulmonary coagulation in response to endotoxin.
Collapse
Affiliation(s)
- J. Bartko
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - C. Schoergenhofer
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - M. Schwameis
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - N. Buchtele
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| | - J. Wojta
- Department of Internal Medicine IIMedical University of ViennaViennaAustria
| | - G. Schabbauer
- Institute of Physiology, Center for Physiology and PharmacologyMedical University of ViennaViennaAustria
| | - L. Stiebellehner
- Department of Internal Medicine IIMedical University of ViennaViennaAustria
| | - B. Jilma
- Department of Clinical PharmacologyMedical University of ViennaViennaAustria
| |
Collapse
|
23
|
The Early Expression of HLA-DR and CD64 Myeloid Markers Is Specifically Compartmentalized in the Blood and Lungs of Patients with Septic Shock. Mediators Inflamm 2016; 2016:3074902. [PMID: 27413252 PMCID: PMC4930815 DOI: 10.1155/2016/3074902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 12/29/2022] Open
Abstract
Identification of reliable biomarkers is key to guide targeted therapies in septic patients. Expression monitoring of monocyte HLA-DR and neutrophil CD64 could fulfill the above need. However, it is unknown whether their expression on circulating cells reflects the status of tissue resident cells. We compared expressions of HLA-DR and CD64 markers in the circulation and airways of septic shock patients and evaluated their outcome prognostic value. The expression of CD64 on neutrophils and HLA-DR on monocytes was analyzed in the peripheral blood and mini-bronchoalveolar lavage fluid cells by flow cytometry. Twenty-seven patients with septic shock were enrolled into the study. The fluorescence intensity of HLA-DR on circulating monocytes was 3.5-fold lower than on the pulmonary monocytes (p = 0.01). The expression of CD64 on circulating and airway neutrophils was similar (p = 0.47). Only the expression of CD64 on circulating neutrophils was higher in nonsurvivors versus survivors (2.8-fold; p = 0.031). Pulmonary monocytes display a higher level of HLA-DR activation compared to peripheral blood monocytes but the expression of neutrophil CD64 is similar on lung and circulating cells. Death in septic patients was effectively predicted by neutrophil CD64 but not monocytic HLA-DR. Prognostic value of cellular activation markers in septic shock appears to strongly depend on their level of compartmentalization.
Collapse
|
24
|
Grabiec AM, Hussell T. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation. Semin Immunopathol 2016; 38:409-23. [PMID: 26957481 PMCID: PMC4896990 DOI: 10.1007/s00281-016-0555-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/29/2016] [Indexed: 12/19/2022]
Abstract
Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called ‘efferocytosis’. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released ‘damage associated molecular patterns’ (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections.
Collapse
Affiliation(s)
- Aleksander M Grabiec
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, The University of Manchester, 46 Grafton Street, M13 9NT, Manchester, UK
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, Core Technology Facility, The University of Manchester, 46 Grafton Street, M13 9NT, Manchester, UK.
| |
Collapse
|
25
|
Gaydos J, McNally A, Guo R, Vandivier RW, Simonian PL, Burnham EL. Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells. Am J Physiol Lung Cell Mol Physiol 2016; 310:L507-18. [PMID: 26747782 DOI: 10.1152/ajplung.00242.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/30/2015] [Indexed: 12/26/2022] Open
Abstract
Alcohol use disorders (AUDs) and tobacco smoking are associated with an increased predisposition for community-acquired pneumonia and the acute respiratory distress syndrome. Mechanisms are incompletely established but may include alterations in response to pathogens by immune cells, including alveolar macrophages (AMs) and peripheral blood mononuclear cells (PBMCs). We sought to determine the relationship of AUDs and smoking to expression of IFNγ, IL-1β, IL-6, and TNFα by AMs and PBMCs from human subjects after stimulation with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). AMs and PBMCs from healthy subjects with AUDs and controls, matched on smoking, were cultured with LPS (1 μg/ml) or LTA (5 μg/ml) in the presence and absence of the antioxidant precursor N-acetylcysteine (10 mM). Cytokines were measured in cell culture supernatants. Expression of IFNγ, IL-1β, IL-6, and TNFα in AMs and PBMCs was significantly increased in response to stimulation with LPS and LTA. AUDs were associated with augmented production of proinflammatory cytokines, particularly IFNγ and IL-1β, by AMs and PBMCs in response to LPS. Smoking diminished the impact of AUDs on AM cytokine expression. Expression of basal AM and PBMC Toll-like receptors-2 and -4 was not clearly related to differences in cytokine expression; however, addition of N-acetylcysteine with LPS or LTA led to diminished AM and PBMC cytokine secretion, especially among current smokers. Our findings suggest that AM and PBMC immune cell responses to LPS and LTA are influenced by AUDs and smoking through mechanisms that may include alterations in cellular oxidative stress.
Collapse
Affiliation(s)
- Jeanette Gaydos
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Alicia McNally
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Ruixin Guo
- Department of Biostatistics and Informatics, University of Colorado School of Public Health, Denver, Colorado; and
| | - R William Vandivier
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Philip L Simonian
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado; Division of Allergy and Immunology, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Ellen L Burnham
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Denver, Colorado;
| |
Collapse
|
26
|
Philippart F, Bouroche G, Timsit JF, Garrouste-Orgeas M, Azoulay E, Darmon M, Adrie C, Allaouchiche B, Ara-Somohano C, Ruckly S, Dumenil AS, Souweine B, Goldgran-Toledano D, Bouadma L, Misset B. Decreased Risk of Ventilator-Associated Pneumonia in Sepsis Due to Intra-Abdominal Infection. PLoS One 2015; 10:e0137262. [PMID: 26339904 PMCID: PMC4560443 DOI: 10.1371/journal.pone.0137262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 08/13/2015] [Indexed: 12/26/2022] Open
Abstract
RATIONALE Experimental studies suggest that intra-abdominal infection (IAI) induces biological alterations that may affect the risk of lung infection. OBJECTIVES To investigate the potential effect of IAI at ICU admission on the subsequent occurrence of ventilator-associated pneumonia (VAP). METHODS We used data entered into the French prospective multicenter Outcomerea database in 1997-2011. Consecutive patients who had severe sepsis and/or septic shock at ICU admission and required mechanical ventilation for more than 3 days were included. Patients with acute pancreatitis were not included. MEASUREMENTS AND MAIN RESULTS Of 2623 database patients meeting the inclusion criteria, 290 (11.1%) had IAI and 2333 (88.9%) had other infections. The IAI group had fewer patients with VAP (56 [19.3%] vs. 806 [34.5%], P<0.01) and longer time to VAP (5.0 vs.10.5 days; P<0.01). After adjustment on independent risk factors for VAP and previous antimicrobial use, IAI was associated with a decreased risk of VAP (hazard ratio, 0.62; 95% confidence interval, 0.46-0.83; P<0.0017). The pathogens responsible for VAP were not different between the groups with and without IAI (Pseudomonas aeruginosa, 345 [42.8%] and 24 [42.8%]; Enterobacteriaceae, 264 [32.8%] and 19 [34.0%]; and Staphylococcus aureus, 215 [26.7%] and 17 [30.4%], respectively). Crude ICU mortality was not different between the groups with and without IAI (81 [27.9%] and 747 [32.0%], P = 0.16). CONCLUSIONS In our observational study of mechanically ventilated ICU patients with severe sepsis and/or septic shock, VAP occurred less often and later in the group with IAIs compared to the group with infections at other sites.
Collapse
MESH Headings
- Aged
- Bacterial Infections/complications
- Bacterial Infections/microbiology
- Bacterial Infections/mortality
- Bacterial Infections/pathology
- Databases, Factual
- Enterobacteriaceae/growth & development
- Female
- Humans
- Intensive Care Units
- Intraabdominal Infections/complications
- Intraabdominal Infections/microbiology
- Intraabdominal Infections/mortality
- Intraabdominal Infections/pathology
- Length of Stay
- Male
- Middle Aged
- Pneumonia, Ventilator-Associated/complications
- Pneumonia, Ventilator-Associated/microbiology
- Pneumonia, Ventilator-Associated/mortality
- Pneumonia, Ventilator-Associated/pathology
- Prospective Studies
- Pseudomonas aeruginosa/growth & development
- Respiration, Artificial
- Risk Factors
- Shock, Septic/complications
- Shock, Septic/microbiology
- Shock, Septic/mortality
- Shock, Septic/pathology
- Staphylococcus aureus/growth & development
- Survival Analysis
Collapse
Affiliation(s)
- François Philippart
- Medical-Surgical ICU, Groupe Hospitalier Paris Saint Joseph, Paris, France
- * E-mail:
| | - Gaëlle Bouroche
- Department of Anesthesia and Intensive Care, Gustave Roussy Institute, Villejuif, France
| | - Jean-François Timsit
- Université Grenoble 1, U823, Albert Bonniot Institute, La Tronche, France
- Medical ICU, Groupe hospitalier Bichat-Claude Bernard, Paris, France
| | - Maité Garrouste-Orgeas
- Medical-Surgical ICU, Groupe Hospitalier Paris Saint Joseph, Paris, France
- Université Grenoble 1, U823, Albert Bonniot Institute, La Tronche, France
| | - Elie Azoulay
- Medical ICU, Saint Louis Teaching Hospital, Paris, France
- Université Paris VII—Denis Diderot, Paris, France
| | | | | | - Bernard Allaouchiche
- Surgical ICU, Edouart Herriot Hospital, Lyon, France
- Université Lyon I—Claude Bernard, Lyon, France
| | - Claire Ara-Somohano
- Université Grenoble 1, U823, Albert Bonniot Institute, La Tronche, France
- Medical ICU, Albert Michallon Teaching Hospital, Grenoble, France
| | - Stéphane Ruckly
- Université Grenoble 1, U823, Albert Bonniot Institute, La Tronche, France
| | | | - Bertrand Souweine
- Medical ICU, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | | | - Lila Bouadma
- Université Paris VII—Denis Diderot, Paris, France
- Medical-Surgical ICU, Gonesse Hospital, Gonesse, France
| | - Benoît Misset
- Medical-Surgical ICU, Groupe Hospitalier Paris Saint Joseph, Paris, France
- Université Paris Descartes, Paris, France
| | | |
Collapse
|
27
|
SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015; 10:e0126576. [PMID: 25965346 PMCID: PMC4428707 DOI: 10.1371/journal.pone.0126576] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages.
Collapse
|
28
|
Lowe APP, Thomas RS, Nials AT, Kidd EJ, Broadley KJ, Ford WR. LPS exacerbates functional and inflammatory responses to ovalbumin and decreases sensitivity to inhaled fluticasone propionate in a guinea pig model of asthma. Br J Pharmacol 2015; 172:2588-603. [PMID: 25586266 PMCID: PMC4409909 DOI: 10.1111/bph.13080] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/03/2014] [Accepted: 01/06/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthma exacerbations contribute to corticosteroid insensitivity. LPS is ubiquitous in the environment. It causes bronchoconstriction and airway inflammation and may therefore exacerbate allergen responses. This study examined whether LPS and ovalbumin co-administration could exacerbate the airway inflammatory and functional responses to ovalbumin in conscious guinea pigs and whether these exacerbated responses were insensitive to inhaled corticosteroid treatment with fluticasone propionate (FP). EXPERIMENTAL APPROACH Guinea pigs were sensitized and challenged with ovalbumin and airway function recorded as specific airway conductance by whole body plethysmography. Airway inflammation was measured from lung histology and bronchoalveolar lavage. Airway hyper-reactivity (AHR) to inhaled histamine was examined 24 h after ovalbumin. LPS was inhaled alone or 24 or 48 h before ovalbumin and combined with ovalbumin. FP (0.05-1 mg·mL(-1) ) or vehicle was nebulized for 15 min twice daily for 6 days before ovalbumin or LPS exposure. KEY RESULTS Ovalbumin inhalation caused early (EAR) and late asthmatic response (LAR), airway hyper-reactivity to histamine and influx of inflammatory cells into the lungs. LPS 48 h before and co-administered with ovalbumin exacerbated the response with increased length of the EAR, prolonged response to histamine and elevated inflammatory cells. FP 0.5 and 1 mg·mL(-1) reduced the LAR, AHR and cell influx with ovalbumin alone, but was ineffective when guinea pigs were exposed to LPS before and with ovalbumin. CONCLUSIONS AND IMPLICATIONS LPS exposure exacerbates airway inflammatory and functional responses to allergen inhalation and decreases corticosteroid sensitivity. Its widespread presence in the environment could contribute to asthma exacerbations and corticosteroid insensitivity in humans.
Collapse
Affiliation(s)
- A P P Lowe
- Cardiff School of Pharmacy, Cardiff University, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
29
|
Gawish R, Martins R, Böhm B, Wimberger T, Sharif O, Lakovits K, Schmidt M, Knapp S. Triggering receptor expressed on myeloid cells-2 fine-tunes inflammatory responses in murine Gram-negative sepsis. FASEB J 2014; 29:1247-57. [PMID: 25477281 DOI: 10.1096/fj.14-260067] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 11/13/2014] [Indexed: 12/18/2022]
Abstract
During infections, TLR-mediated responses require tight regulation to allow for pathogen removal, while preventing overwhelming inflammation and immunopathology. The triggering receptor expressed on myeloid cells (TREM)-2 negatively regulates inflammation by macrophages and impacts on phagocytosis, but the function of endogenous TREM-2 during infections is poorly understood. We investigated TREM-2's role in regulating TLR4-mediated inflammation by studying wild-type and TREM-2(-/-) mice challenged with LPS and found TREM-2 to dampen early inflammation. Augmented early inflammation in TREM-2(-/-) animals was followed by an accelerated resolution and ultimately improved survival, associated with the induction of the negative regulator A20. Upon infection with Escherichia coli, the otherwise beneficial effect of an exaggerated early immune response in TREM-2(-/-) animals was counteracted by a 50% reduction in bacterial phagocytosis. In line with this, TREM-2(-/-) peritoneal macrophages (PMs) exhibited augmented inflammation following TLR4 stimulation, demonstrating the presence and negative regulatory functionality of TREM-2 on primary PMs. Significantly, we identified a high turnover rate because TREM-2 RNA is 25-fold down-regulated and the protein proteasomally degraded upon LPS encounter, thus ensuring a tightly regulated and versatile system that modulates inflammation. Our results illustrate TREM-2's effects on infection-triggered inflammation and identify TREM-2 as a potential target to prevent overwhelming inflammation while preserving antibacterial-effector functions.
Collapse
Affiliation(s)
- Riem Gawish
- *Ce-M-M-, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria; and National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Lyngby, Denmark
| | - Rui Martins
- *Ce-M-M-, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria; and National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Lyngby, Denmark
| | - Benedikta Böhm
- *Ce-M-M-, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria; and National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Lyngby, Denmark
| | - Terje Wimberger
- *Ce-M-M-, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria; and National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Lyngby, Denmark
| | - Omar Sharif
- *Ce-M-M-, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria; and National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Lyngby, Denmark
| | - Karin Lakovits
- *Ce-M-M-, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria; and National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Lyngby, Denmark
| | - Mariane Schmidt
- *Ce-M-M-, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria; and National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Lyngby, Denmark
| | - Sylvia Knapp
- *Ce-M-M-, Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Medicine I, Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria; and National Food Institute, Division for Epidemiology and Microbial Genomics, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
30
|
Hommes TJ, Hoogendijk AJ, Dessing MC, Van't Veer C, Florquin S, Colonna M, de Vos AF, van der Poll T. Triggering receptor expressed on myeloid cells-1 (TREM-1) improves host defence in pneumococcal pneumonia. J Pathol 2014; 233:357-67. [PMID: 24752755 DOI: 10.1002/path.4361] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/30/2014] [Accepted: 04/07/2014] [Indexed: 02/02/2023]
Abstract
Streptococcus (S.) pneumoniae is a common Gram-positive pathogen in community-acquired pneumonia and sepsis. Triggering receptor expressed on myeloid cells-1 (TREM-1) is a receptor on phagocytes known to amplify inflammatory responses. Previous studies showed that TREM-1 inhibition protects against lethality during experimental Gram-negative sepsis. We here aimed to investigate the role of TREM-1 in an experimental model of pneumococcal pneumonia, using TREM-1/3-deficient (Trem-1/3(-/-) ) and wild-type (Wt) mice. Additionally ex vivo responsiveness of Trem-1/3(-/-) neutrophils and macrophages was examined. S. pneumoniae infection resulted in a rapid recruitment of TREM-1-positive neutrophils into the bronchoalveolar space, while high constitutive TREM-1 expression on alveolar macrophages remained unchanged. TREM-1/3 deficiency led to increased lethality, accompanied by enhanced growth of S. pneumoniae at the primary site of infection and increased dissemination to distant organs. Within the first 3-6 h of infection, Trem-1/3(-/-) mice demonstrated a strongly impaired innate immune response in the airways, as reflected by reduced local release of cytokines and chemokines and a delayed influx of neutrophils. Trem-1/3(-/-) alveolar macrophages produced fewer cytokines upon exposure to S. pneumoniae in vitro and were less capable of phagocytosing this pathogen. TREM-1/3 deficiency did not influence neutrophil responsiveness to S. pneumoniae. These results identify TREM-1 as a key player in protective innate immunity during pneumococcal pneumonia, most likely by enhancing the early immune response of alveolar macrophages.
Collapse
Affiliation(s)
- Tijmen J Hommes
- Center for Experimental and Molecular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands; Centre for Infection and Immunity, Academic Medical Centre, University of Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Sender V, Stamme C. Lung cell-specific modulation of LPS-induced TLR4 receptor and adaptor localization. Commun Integr Biol 2014; 7:e29053. [PMID: 25136402 PMCID: PMC4134348 DOI: 10.4161/cib.29053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 04/29/2014] [Indexed: 01/07/2023] Open
Abstract
Lung infection by Gram-negative bacteria is a major cause of morbidity and mortality in humans. Lipopolysaccharide (LPS), located in the outer membrane of the Gram-negative bacterial cell wall, is a highly potent stimulus of immune and structural cells via the TLR4/MD2 complex whose function is sequentially regulated by defined subsets of adaptor proteins. Regulatory mechanisms of lung-specific defense pathways point at the crucial role of resident alveolar macrophages, alveolar epithelial cells, the TLR4 receptor pathway, and lung surfactant in shaping the innate immune response to Gram-negative bacteria and LPS. During the past decade intracellular spatiotemporal localization of TLR4 emerged as a key feature of TLR4 function. Here, we briefly review lung cell type- and compartment-specific mechanisms of LPS-induced TLR4 regulation with a focus on primary resident hematopoietic and structural cells as well as modifying microenvironmental factors involved.
Collapse
Affiliation(s)
- Vicky Sender
- Department of Microbiology, Tumor and Cell Biology; Karolinska Institutet; Stockholm, Sweden
| | - Cordula Stamme
- Division of Cellular Pneumology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences; Borstel, Germany ; Department of Anesthesiology, University Hospital of Lübeck, Lübeck, Germany
| |
Collapse
|
32
|
Cavaillon JM, Eisen D, Annane D. Is boosting the immune system in sepsis appropriate? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:216. [PMID: 24886820 PMCID: PMC4035855 DOI: 10.1186/cc13787] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A relative immunosuppression is observed in patients after sepsis, trauma, burns, or any severe insults. It is currently proposed that selected patients will benefit from treatment aimed at boosting their immune systems. However, the host immune response needs to be considered in context with pathogen-type, timing, and mainly tissue specificity. Indeed, the immune status of leukocytes is not universally decreased and their activated status in tissues contributes to organ failure. Accordingly, any new immune-stimulatory therapeutic intervention should take into consideration potentially deleterious effects in some situations.
Collapse
|
33
|
Lung microenvironment contributes to the resistance of alveolar macrophages to develop tolerance to endotoxin*. Crit Care Med 2013; 40:2987-96. [PMID: 22878679 DOI: 10.1097/ccm.0b013e31825b8d57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Endotoxin tolerance corresponds to reprogramming of mononuclear phagocytes after iterative encounters with toll-like receptor agonists aimed to dampen the inflammatory response. We investigated why this phenomenon cannot be observed with murine alveolar macrophages. DESIGN Animal study. SETTING Research institution laboratory. SUBJECTS rag2-/-, rag2γc-/-, cd3ε-/-, µ-/-, il-15-/-, Jα18-/-, ifnγr-/-, il-18r-/-, and wild-type mice. INTERVENTIONS Alveolar macrophages were harvested from untreated mice or after injection of endotoxin. Alveolar macrophages were activated in vitro with endotoxin (lipopolysaccharide), and tumor necrosis factor production was monitored. MEASUREMENTS AND MAIN RESULTS In contrast to monocytes or peritoneal macrophages, alveolar macrophages did not display endotoxin tolerance in an ex vivo model after injection of endotoxin. An in vivo systemic inhibition of granulocyte-macrophage colony-stimulating factor or interferon-γ allowed the induction of alveolar macrophage endotoxin tolerance, which was also observed in interferon-γ receptor-deficient mice. Using mice missing different leukocyte subsets and adoptive cell transfers, we demonstrated the involvement of B lymphocytes in interferon-γ production within the lung microenvironment and in the prevention of alveolar macrophage endotoxin tolerance. Furthermore, we demonstrated the importance of interleukin-18 in preventing alveolar macrophage endotoxin tolerance through studies of interleukin-18 messenger RNA expression in il-18r-/- mice and injection of interleukin-18 in rag2-/- and µ-/- mice. CONCLUSIONS Our results support the conclusion that at homeostasis in the lungs, constitutive expression of granulocyte-macrophage colony-stimulating factor, interleukin-18, interferon-γ and possibly interleukin-15, and a cross-talk between B lymphocytes and alveolar macrophages create a microenvironment specific to the lungs that prevents alveolar macrophages from becoming tolerant to endotoxin.
Collapse
|
34
|
Differences in organ dysfunction in endotoxin-tolerant pigs under intensive care exposed to a second hit of endotoxin. Shock 2012; 37:501-10. [PMID: 22266970 DOI: 10.1097/shk.0b013e318249bb0d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Endotoxin tolerance is a well-studied phenomenon associated with a reduced inflammatory response. In the switch from an inflammatory to an anti-inflammatory response in clinical sepsis, the concept of endotoxin tolerance is of obvious interest. However, only limited data exist regarding the effect of endotoxin tolerance on organ dysfunction, and therefore, this was investigated in a porcine intensive care sepsis model. Twenty-seven healthy pigs, including nine control animals, were included in the study. Twelve pigs pre-exposed to 24 h of intravenous endotoxin infusion and intensive care and six unexposed pigs were given either a high- or low-dose endotoxin challenge for 6 h. Inflammatory, circulatory, hypoperfusion, and organ dysfunction parameters were followed. The inflammatory responses as well as parameters representing circulation, hypoperfusion, and cardiac and renal function were all markedly attenuated in animals pre-exposed to endotoxin and intensive care as compared with animals not pre-exposed. In animals pre-exposed to endotoxin and given the high-dose of endotoxin challenge, deterioration in pulmonary function was equal to or even worse than in animals not pre-exposed. In contrast to the overall protective effect of endotoxin tolerance observed in other organ systems, the lungs of endotoxin-tolerant animals demonstrated an increased responsiveness to high-dose endotoxin challenge.
Collapse
|
35
|
Wang Y, Mao M, Xu JC. Cell-surface nucleolin is involved in lipopolysaccharide internalization and signalling in alveolar macrophages. Cell Biol Int 2011; 35:677-85. [PMID: 21309751 DOI: 10.1042/cbi20100625] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
C23 (nucleolin) shuttling between the nucleus, cytoplasm and cell surface has been implicated in controlling regulatory processes and may play a role in pathogen infection and autoimmune diseases. It has been reported that cell surface-expressed C23 on THP-1 monocytes is involved in the inflammatory response induced by LPS (lipopolysaccharide). This study investigates whether C23 is a membrane receptor for LPS during LPS-induced AMs (alveolar macrophages) activation. First, using immunofluorescence and microscopy, we detected the expression of C23 on the surface of AMs. Second, using LPS affinity columns, we demonstrated that C23 directly binds to LPS. Third, we found that LPS colocalized with C23 on both the cell surface and in the cytoplasm. Finally, knockdown of C23 expression on the cell surface using siRNA (small interfering RNA) led to significant reductions in the internalization of LPS, in LPS-induced NF-κB (nuclear factor κB)-DNA binding and in the protein expression of TNF (tumour necrosis factor)-α and IL-6 (interleukin-6). These findings provide evidence that cell-surface C23 on AMs may serve as a receptor for LPS and are essential for internalization and transport of LPS. Furthermore, C23 participates in the regulation of LPS-induced inflammation of AMs, which indicates that cell-surface C23 is a new and promising therapeutic target for the treatment of bacterial infections.
Collapse
Affiliation(s)
- Yi Wang
- *Institute of Human Respiratory Diseases, No. 2 Hospital/Third Military Medical University, Chongqing, Peoples Republic of China
| | | | | |
Collapse
|
36
|
Józefowski S, Czerkies M, Sobota A, Kwiatkowska K. Determination of cell surface expression of Toll-like receptor 4 by cellular enzyme-linked immunosorbent assay and radiolabeling. Anal Biochem 2011; 413:185-91. [PMID: 21354097 DOI: 10.1016/j.ab.2011.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 02/16/2011] [Accepted: 02/18/2011] [Indexed: 12/31/2022]
Abstract
Lipopolysaccharide (LPS) is recognized by Toll-like receptor 4 (TLR4) of macrophages triggering production of pro-inflammatory mediators. One of the factors determining the magnitude of responses to LPS, which may even lead to life-threatening septic shock, is the cell surface abundance of TLR4. However, quantitation of the surface TLR4 is difficult due to the low level of receptor expression. To develop a method of TLR4 assessment, we labeled the receptor on the cell surface with a rabbit antibody followed by either anti-rabbit immunoglobulin G-fluorescein isothiocyanate (IgG-FITC) for flow cytometry or with anti-rabbit IgG-peroxidase for a cellular enzyme-linked immunosorbent assay (ELISA). Alternatively, the anti-TLR4 antibody was detected by anti-rabbit IgG labeled with (125)I. Flow cytometry did not allow detection of TLR4 on the surface of J774 cells or human macrophages. In contrast, application of cellular ELISA or the radiolabeling technique combined with effective blockage of nonspecific binding of antibodies provided TLR4-specific signals. The level of TLR4 on the surface of J774 cells did not change on treatment with 1-100ng/ml LPS; however, it was reduced by approximately 30-40% after 2 h of treatment with 1 μg/ml LPS. These data indicate that down-regulation of surface TLR4 can serve as a means of negative regulation of cell responses toward high doses of LPS.
Collapse
|
37
|
Barrenschee M, Lex D, Uhlig S. Effects of the TLR2 agonists MALP-2 and Pam3Cys in isolated mouse lungs. PLoS One 2010; 5:e13889. [PMID: 21124967 PMCID: PMC2987752 DOI: 10.1371/journal.pone.0013889] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 10/15/2010] [Indexed: 11/22/2022] Open
Abstract
Background Gram-positive and Gram-negative bacteria are main causes of pneumonia or acute lung injury. They are recognized by the innate immune system via toll-like receptor-2 (TLR2) or TLR4, respectively. Among all organs, the lungs have the highest expression of TLR2 receptors, but little is known about the pulmonary consequences of their activation. Here we studied the effects of the TLR2/6 agonist MALP-2, the TLR2/1 agonist Pam3Cys and the TLR4 agonist lipopolysaccharide (LPS) on pro-inflammatory responses in isolated lungs. Methodology/Principal Findings Isolated perfused mouse lungs were perfused for 60 min or 180 min with MALP-2 (25 ng/mL), Pam3Cys (160 ng/mL) or LPS (1 µg/mL). We studied mediator release by enzyme linked immunosorbent assay (ELISA), the activation of mitogen activated protein kinase (MAPK) and AKT/protein kinase B by immunoblotting, and gene induction by quantitative polymerase chain reaction. All agonists activated the MAPK ERK1/2 and p38, but neither JNK or AKT kinase. The TLR ligands upregulated the inflammation related genes Tnf, Il1β, Il6, Il10, Il12, Ifng, Cxcl2 (MIP-2α) and Ptgs2. MALP-2 was more potent than Pam3Cys in inducing Slpi, Cxcl10 (IP10) and Parg. Remarkable was the strong induction of Tnc by MALP2, which was not seen with Pam3Cys or LPS. The growth factor related genes Areg and Hbegf were not affected. In addition, all three TLR agonists stimulated the release of IL-6, TNF, CXCL2 and CXCL10 protein from the lungs. Conclusions/Significance TLR2 and TLR4 activation leads to similar reactions in the lungs regarding MAPK activation, gene induction and mediator release. Several genes studied here have not yet been appreciated as targets of TLR2-activation in the lungs before, i.e., Slpi, tenascin C, Parg and Traf1. In addition, the MALP-2 dependent induction of Tnc may indicate the existence of TLR2/6-specific pathways.
Collapse
Affiliation(s)
- Martina Barrenschee
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Dennis Lex
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- * E-mail:
| |
Collapse
|