1
|
Bell JA, Davies ER, Brereton CJ, Vukmirovic M, Roberts JJW, Lunn K, Wickens L, Conforti F, Ridley RA, Ceccato J, Sayer LN, Johnston DA, Vallejo AF, Alzetani A, Jogai S, Marshall BG, Fabre A, Richeldi L, Monk PD, Skipp P, Kaminski N, Offer E, Wang Y, Davies DE, Jones MG. Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2. Cell Rep Med 2024; 5:101695. [PMID: 39173635 PMCID: PMC11524965 DOI: 10.1016/j.xcrm.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/26/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Matrix stiffening by lysyl oxidase-like 2 (LOXL2)-mediated collagen cross-linking is proposed as a core feedforward mechanism that promotes fibrogenesis. Failure in clinical trials of simtuzumab (the humanized version of AB0023, a monoclonal antibody against human LOXL2) suggested that targeting LOXL2 may not have disease relevance; however, target engagement was not directly evaluated. We compare the spatial transcriptome of active human lung fibrogenesis sites with different human cell culture models to identify a disease-relevant model. Within the selected model, we then evaluate AB0023, identifying that it does not inhibit collagen cross-linking or reduce tissue stiffness, nor does it inhibit LOXL2 catalytic activity. In contrast, it does potently inhibit angiogenesis consistent with an alternative, non-enzymatic mechanism of action. Thus, AB0023 is anti-angiogenic but does not inhibit LOXL2 catalytic activity, collagen cross-linking, or tissue stiffening. These findings have implications for the interpretation of the lack of efficacy of simtuzumab in clinical trials of fibrotic diseases.
Collapse
Affiliation(s)
- Joseph A Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Elizabeth R Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | | | - Leanne Wickens
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Robert A Ridley
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Jessica Ceccato
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; Department of Medicine, University of Padova, Padova, Italy
| | - Lucy N Sayer
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - David A Johnston
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Sanjay Jogai
- University Hospital Southampton, SO16 6YD Southampton, UK
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | | | - Paul Skipp
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emily Offer
- Medicines Discovery Catapult, Alderley Edge, UK
| | - Yihua Wang
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK.
| |
Collapse
|
2
|
Devkota SR, Aryal P, Wilce MCJ, Payne RJ, Stone MJ, Bhusal RP. Structural basis of chemokine recognition by the class A3 tick evasin EVA-ACA1001. Protein Sci 2024; 33:e4999. [PMID: 38723106 PMCID: PMC11081419 DOI: 10.1002/pro.4999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024]
Abstract
Ticks produce chemokine-binding proteins, known as evasins, in their saliva to subvert the host's immune response. Evasins bind to chemokines and thereby inhibit the activation of their cognate chemokine receptors, thus suppressing leukocyte recruitment and inflammation. We recently described subclass A3 evasins, which, like other class A evasins, exclusively target CC chemokines but appear to use a different binding site architecture to control target selectivity among CC chemokines. We now describe the structural basis of chemokine recognition by the class A3 evasin EVA-ACA1001. EVA-ACA1001 binds to almost all human CC chemokines and inhibits receptor activation. Truncation mutants of EVA-ACA1001 showed that, unlike class A1 evasins, both the N- and C-termini of EVA-ACA1001 play minimal roles in chemokine binding. To understand the structural basis of its broad chemokine recognition, we determined the crystal structure of EVA-ACA1001 in complex with the human chemokine CCL16. EVA-ACA1001 forms backbone-backbone interactions with the CC motif of CCL16, a conserved feature of all class A evasin-chemokine complexes. A hydrophobic pocket in EVA-ACA1001, formed by several aromatic side chains and the unique disulfide bond of class A3 evasins, accommodates the residue immediately following the CC motif (the "CC + 1 residue") of CCL16. This interaction is shared with EVA-AAM1001, the only other class A3 evasins characterized to date, suggesting it may represent a common mechanism that accounts for the broad recognition of CC chemokines by class A3 evasins.
Collapse
Affiliation(s)
- Shankar Raj Devkota
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Pramod Aryal
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Richard J. Payne
- School of ChemistryThe University of SydneySydneyNSWAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNSWAustralia
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| | - Ram Prasad Bhusal
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVICAustralia
| |
Collapse
|
3
|
Ash S, Doyle TJ, Choi B, San Jose Estepar R, Castro V, Enzer N, Kalhan R, Liu G, Bowler R, Wilson DO, San Jose Estepar R, Rosas IO, Washko GR. Utility of peripheral protein biomarkers for the prediction of incident interstitial features: a multicentre retrospective cohort study. BMJ Open Respir Res 2024; 11:e002219. [PMID: 38485250 PMCID: PMC10941119 DOI: 10.1136/bmjresp-2023-002219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
INTRODUCTION/RATIONALE Protein biomarkers may help enable the prediction of incident interstitial features on chest CT. METHODS We identified which protein biomarkers in a cohort of smokers (COPDGene) differed between those with and without objectively measured interstitial features at baseline using a univariate screen (t-test false discovery rate, FDR p<0.001), and which of those were associated with interstitial features longitudinally (multivariable mixed effects model FDR p<0.05). To predict incident interstitial features, we trained four random forest classifiers in a two-thirds random subset of COPDGene: (1) imaging and demographic information, (2) univariate screen biomarkers, (3) multivariable confirmation biomarkers and (4) multivariable confirmation biomarkers available in a separate testing cohort (Pittsburgh Lung Screening Study (PLuSS)). We evaluated classifier performance in the remaining one-third of COPDGene, and, for the final model, also in PLuSS. RESULTS In COPDGene, 1305 biomarkers were available and 20 differed between those with and without interstitial features at baseline. Of these, 11 were associated with feature progression over a mean of 5.5 years of follow-up, and of these 4 were available in PLuSS, (angiopoietin-2, matrix metalloproteinase 7, macrophage inflammatory protein 1 alpha) over a mean of 8.8 years of follow-up. The area under the curve (AUC) of classifiers using demographics and imaging features in COPDGene and PLuSS were 0.69 and 0.59, respectively. In COPDGene, the AUC of the univariate screen classifier was 0.78 and of the multivariable confirmation classifier was 0.76. The AUC of the final classifier in COPDGene was 0.75 and in PLuSS was 0.76. The outcome for all of the models was the development of incident interstitial features. CONCLUSIONS Multiple novel and previously identified proteomic biomarkers are associated with interstitial features on chest CT and may enable the prediction of incident interstitial diseases such as idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Samuel Ash
- Department of Critical Care Medicine, South Shore Hospital, South Weymouth, Massachusetts, USA
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Tracy J Doyle
- Pulmonary and Critical Care Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Bina Choi
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Victor Castro
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nicholas Enzer
- Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ravi Kalhan
- Division of Pulmonary/Critical Care, Northwestern University, Chicago, Illinois, USA
| | - Gabrielle Liu
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - David O Wilson
- Medicine, Pulmonary Division, University of Pittsburgh, pittsburgh, Pennsylvania, USA
| | - Raul San Jose Estepar
- Applied Chest Imaging Laboratory, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ivan O Rosas
- Department of Medicine: Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - George R Washko
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Liu S, Liu C, Wang Q, Liu S, Min J. CC Chemokines in Idiopathic Pulmonary Fibrosis: Pathogenic Role and Therapeutic Potential. Biomolecules 2023; 13:biom13020333. [PMID: 36830702 PMCID: PMC9953349 DOI: 10.3390/biom13020333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 02/12/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF), characterized by progressive worsening of dyspnea and irreversible decline in lung function, is a chronic and progressive respiratory disease with a poor prognosis. Chronic or repeated lung injury results in inflammation and an excessive injury-repairing response that drives the development of IPF. A number of studies have shown that the development and progression of IPF are associated with dysregulated expression of several chemokines and chemokine receptors, several of which have been used as predictors of IPF outcome. Chemokines of the CC family play significant roles in exacerbating IPF progression by immune cell attraction or fibroblast activation. Modulating levels of detrimental CC chemokines and interrupting the corresponding transduction axis by neutralizing antibodies or antagonists are potential treatment options for IPF. Here, we review the roles of different CC chemokines in the pathogenesis of IPF, and their potential use as biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Shanshan Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Correspondence:
| | - Chang Liu
- Drug Clinical Trial Institution, Children’s Hospital, Capital Institute of Pediatrics, Beijing 100020, China
| | - Qianrong Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Suosi Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Jiali Min
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
5
|
Swapping N-terminal regions among tick evasins reveals cooperative interactions influencing chemokine binding and selectivity. J Biol Chem 2022; 298:102382. [PMID: 35973511 PMCID: PMC9478924 DOI: 10.1016/j.jbc.2022.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/21/2022] Open
Abstract
Class A tick evasins are natural chemokine-binding proteins that block the signaling of multiple chemokines from the CC subfamily through their cognate receptors, thus suppressing leukocyte recruitment and inflammation. Development of tick evasins as chemokine-targeted anti-inflammatory therapeutics requires an understanding of the factors controlling their chemokine recognition and selectivity. To investigate the role of the evasin N-terminal region for chemokine recognition, we prepared chimeric evasins by interchanging the N-terminal regions of four class A evasins, including a newly identified evasin, EVA-RPU02. We show through chemokine binding analysis of the parental and chimeric evasins that the N-terminal region is critical for chemokine binding affinity and selectivity. Notably, we found some chimeras were unable to bind certain cognate chemokine ligands of both parental evasins. Moreover, unlike any natural evasins characterized to date, some chimeras exhibited specific binding to a single chemokine. These results indicate that the evasin N terminus interacts cooperatively with the “body” of the evasin to enable optimum chemokine recognition. Furthermore, the altered chemokine selectivity of the chimeras validates the approach of engineering the N termini of evasins to yield unique chemokine recognition profiles.
Collapse
|
6
|
Schön MP. The tick and I: Parasite-host interactions between ticks and humans. J Dtsch Dermatol Ges 2022; 20:818-853. [PMID: 35674196 DOI: 10.1111/ddg.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Ticks, particularly hard ticks (Ixodidae), which are among the most important vectors of dangerous infectious agents, feed on their hosts for extended periods of time. With this lifestyle, numerous adaptations have evolved in ticks and their hosts, the pharmacological importance of which is increasingly being recognized. Many bioactive substances in tick saliva are being considered as the basis of new drugs. For example, components of tick cement can be developed into tissue adhesives or wound closures. Analgesic and antipruritic salivary components inhibit histamine or bradykinin, while other tick-derived molecules bind opioid or cannabinoid receptors. Tick saliva inhibits the extrinsic, intrinsic, or common pathway of blood coagulation with implications for the treatment of thromboembolic diseases. It contains vasodilating substances and affects wound healing. The broad spectrum of immunomodulatory and immunosuppressive effects of tick saliva, such as inhibition of chemokines or cellular immune responses, allows development of drugs against inflammation in autoimmune diseases and/or infections. Finally, modern vaccines against ticks can curb the spread of serious infections. The medical importance of the complex tick-host interactions is increasingly being recognized and translated into first clinical applications. Using selected examples, an overview of the mutual adaptations of ticks and hosts is given here, focusing on their significance to medical advance.
Collapse
Affiliation(s)
- Michael P Schön
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Germany
| |
Collapse
|
7
|
Schön MP. Die Zecke und ich: Parasiten-Wirt-Interaktionen zwischen Zecken und Menschen. J Dtsch Dermatol Ges 2022; 20:818-855. [PMID: 35711058 DOI: 10.1111/ddg.14821_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Michael P Schön
- Klinik für Dermatologie, Venerologie und Allergologie, Universitätsmedizin Göttingen
| |
Collapse
|
8
|
Xu Y, Li J, Lin Z, Liang W, Qin L, Ding J, Chen S, Zhou L. Isorhamnetin Alleviates Airway Inflammation by Regulating the Nrf2/Keap1 Pathway in a Mouse Model of COPD. Front Pharmacol 2022; 13:860362. [PMID: 35401244 PMCID: PMC8988040 DOI: 10.3389/fphar.2022.860362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a severely disabling chronic lung disease characterized by persistent airway inflammation, which leads to limited expiratory airflow that deteriorates over time. Isorhamnetin (Iso) is one of the most important active components in the fruit of Hippophae rhamnoides L. and leaves of Ginkgo biloba L, which is widely used in many pulmonary disease studies because of its anti-inflammatory effects. Here, we investigated the pharmacological action of Iso in CS-induced airway inflammation and dissected the anti-inflammation mechanisms of Iso in COPD mice. A mouse model of COPD was established by exposure to cigarette smoke (CS) and intratracheal inhalation of lipopolysaccharide (LPS). Our results illustrated that Iso treatment significantly reduced leukocyte recruitment and excessive secretion of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and regulated upon activation, normal T-cell expressed and secreted (RANTES) in BALF of CS-induced COPD mice in a dose-dependent manner. This improved airway collagen deposition and emphysema, and further alleviated the decline in lung functions and systemic symptoms of hypoxia and weight loss. Additionally, Iso treatment obviously improves the T lymphocyte dysregualtion in peripheral blood of COPD mice. Mechanistically, Iso may degrade Keap1 through ubiquitination of p62, thereby activating the nuclear factor erythroid 2-related factor (Nrf2) pathway to increase the expression of protective factors, such as heme oxygenase-1 (HO-1), superoxide dismutase (SOD) 1, and SOD2, in lungs of CS-exposed mice, which plays an anti-inflammatory role in COPD. In conclusion, our study indicates that Iso significantly alleviates the inflammatory response in CS-induced COPD mice mainly by affecting the Nrf2/Keap1 pathway. More importantly, Iso exhibited anti-inflammatory effects comparable with Dex in COPD and we did not observe discernible side effects of Iso. The high safety profile of Iso may make it a potential drug candidate for COPD.
Collapse
Affiliation(s)
- Yifan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zhiwei Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiquan Liang
- Department of Respiratory Medicine, The Second People’s Hospital of Foshan, Foshan, China
| | - Lijie Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiabin Ding
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuqi Chen
- Institute of Combination Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, China
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Luqian Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- *Correspondence: Luqian Zhou,
| |
Collapse
|
9
|
Structure-guided engineering of tick evasins for targeting chemokines in inflammatory diseases. Proc Natl Acad Sci U S A 2022; 119:2122105119. [PMID: 35217625 PMCID: PMC8892493 DOI: 10.1073/pnas.2122105119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
Inflammatory diseases collectively account for numerous deaths and morbidity worldwide. New treatment approaches are needed. A central feature of inflammatory diseases is the recruitment of leukocytes to the affected tissues, which is stimulated by secreted proteins called chemokines. Effective suppression of leukocyte recruitment could be achieved by simultaneously targeting multiple chemokines, a natural molecular strategy used by tick salivary proteins called evasins. Here, we describe the structural and molecular features of a tick evasin that control its ability to bind and block a limited set of chemokines. By modifying these features, we demonstrate that evasins can be engineered to alter the array of chemokines that they target. Thus, this study establishes a structure-based paradigm for the development of antiinflammatory therapeutics. As natural chemokine inhibitors, evasin proteins produced in tick saliva are potential therapeutic agents for numerous inflammatory diseases. Engineering evasins to block the desired chemokines and avoid off-target side effects requires structural understanding of their target selectivity. Structures of the class A evasin EVA-P974 bound to human CC chemokine ligands 7 and 17 (CCL7 and CCL17) and to a CCL8-CCL7 chimera reveal that the specificity of class A evasins for chemokines of the CC subfamily is defined by conserved, rigid backbone–backbone interactions, whereas the preference for a subset of CC chemokines is controlled by side-chain interactions at four hotspots in flexible structural elements. Hotspot mutations alter target preference, enabling inhibition of selected chemokines. The structure of an engineered EVA-P974 bound to CCL2 reveals an underlying molecular mechanism of EVA-P974 target preference. These results provide a structure-based framework for engineering evasins as targeted antiinflammatory therapeutics.
Collapse
|
10
|
Arifa RDN, Brito CB, de Paula TP, Lima RL, Menezes‐Garcia Z, Cassini‐Vieira P, Vilas Boas FA, Queiroz‐Junior CM, da Silva JM, da Silva TA, Barcelos LS, Fagundes CT, Teixeira MM, Souza DG. Eosinophil plays a crucial role in intestinal mucositis induced by antineoplastic chemotherapy. Immunology 2021; 165:355-368. [DOI: 10.1111/imm.13442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Raquel D N Arifa
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| | - Camila B Brito
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| | - Talles P de Paula
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| | - Renata L Lima
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| | | | | | | | - Celso M Queiroz‐Junior
- Department of Oral Pathology and Surgery Faculty of Dentistry Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais Brazil
| | - Janine M da Silva
- Department of Oral Pathology and Surgery Faculty of Dentistry Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais Brazil
| | - Tarcília A da Silva
- Department of Oral Pathology and Surgery Faculty of Dentistry Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais Brazil
| | | | - Caio T. Fagundes
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
- Center for Drug Research and Development of Pharmaceuticals
| | - Mauro M Teixeira
- Center for Drug Research and Development of Pharmaceuticals
- Department of Biochemistry and Immunology Institute of Biological Sciences
| | - Daniele G. Souza
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| |
Collapse
|
11
|
Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021; 11:769574. [PMID: 34722347 PMCID: PMC8548845 DOI: 10.3389/fcimb.2021.769574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
12
|
Magalhães L, Nogueira DS, Gazzinelli-Guimarães PH, Oliveira FMS, Kraemer L, Gazzinelli-Guimarães AC, Vieira-Santos F, Fujiwara RT, Bueno LL. Immunological underpinnings of Ascaris infection, reinfection and co-infection and their associated co-morbidities. Parasitology 2021; 148:1-10. [PMID: 33843506 DOI: 10.1017/s0031182021000627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human ascariasis is the most common and prevalent neglected tropical disease and is estimated that ~819 million people are infected around the globe, accounting for 0.861 million years of disability-adjusted life years in 2017. Even with the existence of highly effective drugs, the constant presence of infective parasite eggs in the environment contribute to a high reinfection rate after treatment. Due to its high prevalence and broad geographic distribution Ascaris infection is associated with a variety of co-morbidities and co-infections. Here, we provide data from both experimental models and humans studies that illustrate how complex is the interaction of Ascaris with the host immune system, especially, in the context of reinfections, co-infections and associated co-morbidities.
Collapse
Affiliation(s)
- Luisa Magalhães
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise S Nogueira
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro H Gazzinelli-Guimarães
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Fabricio M S Oliveira
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucas Kraemer
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Flaviane Vieira-Santos
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo T Fujiwara
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lilian L Bueno
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
13
|
Chen X, Wu Y, Wang Y, Chen L, Zheng W, Zhou S, Xu H, Li Y, Yuan L, Xiang C. Human menstrual blood-derived stem cells mitigate bleomycin-induced pulmonary fibrosis through anti-apoptosis and anti-inflammatory effects. Stem Cell Res Ther 2020; 11:477. [PMID: 33176882 PMCID: PMC7656201 DOI: 10.1186/s13287-020-01926-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis is a kind of diffuse interstitial lung disease, the pathogenesis of which is unclear, and there is currently a lack of good treatment to improve the survival rate. Human menstrual blood-derived mesenchymal stem cells (MenSCs) have shown great potential in regenerative medicine. This study aimed to explore the therapeutic potential of MenSCs for bleomycin-induced pulmonary fibrosis. METHODS We investigated the transplantation of MenSCs in a pulmonary fibrosis mouse model induced by BLM. Mouse was divided into three groups: control group, BLM group, MenSC group. Twenty-one days after MenSC transplantation, we examined collagen content, pathological, fibrosis area in the lung tissue, and the level of inflammatory factors of serum. RNA sequence was used to examine the differential expressed gene between three groups. Transwell coculture experiments were further used to examine the function of MenSCs to MLE-12 cells and mouse lung fibroblasts (MLFs) in vitro. RESULTS We observed that transplantation of MenSCs significantly improves pulmonary fibrosis mouse through evaluations of pathological lesions, collagen deposition, and inflammation. Transwell coculturing experiments showed that MenSCs suppress the proliferation and the differentiation of MLFs and inhibit the apoptosis of MLE-12 cells. Furthermore, antibody array results demonstrated that MenSCs inhibit the apoptosis of MLE-12 cells by suppressing the expression of inflammatory-related cytokines, including RANTES, Eotaxin, GM-CSF, MIP-1γ, MCP-5, CCL1, and GITR. CONCLUSIONS Collectively, our results suggested MenSCs have a great potential in the treatment of pulmonary fibrosis, and cytokines revealed in antibody array are expected to become the target of future therapy of MenSCs in clinical treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Yi Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Yanling Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Wendi Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Sining Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Huikang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| | - Li Yuan
- Innovative Precision Medicine (IPM) Group, Hangzhou, 311215 China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310027 People’s Republic of China
| |
Collapse
|
14
|
Mattos MS, Ferrero MR, Kraemer L, Lopes GAO, Reis DC, Cassali GD, Oliveira FMS, Brandolini L, Allegretti M, Garcia CC, Martins MA, Teixeira MM, Russo RC. CXCR1 and CXCR2 Inhibition by Ladarixin Improves Neutrophil-Dependent Airway Inflammation in Mice. Front Immunol 2020; 11:566953. [PMID: 33123138 PMCID: PMC7566412 DOI: 10.3389/fimmu.2020.566953] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Rationale Increased IL-8 levels and neutrophil accumulation in the airways are common features found in patients affected by pulmonary diseases such as Asthma, Idiopathic Pulmonary Fibrosis, Influenza-A infection and COPD. Chronic neutrophilic inflammation is usually corticosteroid insensitive and may be relevant in the progression of those diseases. Objective To explore the role of Ladarixin, a dual CXCR1/2 antagonist, in several mouse models of airway inflammation with a significant neutrophilic component. Findings Ladarixin was able to reduce the acute and chronic neutrophilic influx, also attenuating the Th2 eosinophil-dominated airway inflammation, tissue remodeling and airway hyperresponsiveness. Correspondingly, Ladarixin decreased bleomycin-induced neutrophilic inflammation and collagen deposition, as well as attenuated the corticosteroid resistant Th17 neutrophil-dominated airway inflammation and hyperresponsiveness, restoring corticosteroid sensitivity. Finally, Ladarixin reduced neutrophilic airway inflammation during cigarette smoke-induced corticosteroid resistant exacerbation of Influenza-A infection, improving lung function and mice survival. Conclusion CXCR1/2 antagonist Ladarixin offers a new strategy for therapeutic treatment of acute and chronic neutrophilic airway inflammation, even in the context of corticosteroid-insensitivity.
Collapse
Affiliation(s)
- Matheus Silverio Mattos
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Lucas Kraemer
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriel Augusto Oliveira Lopes
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Diego Carlos Reis
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fabricio Marcus Silva Oliveira
- Laboratory of Comparative Pathology, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Cristiana Couto Garcia
- Laboratory of Respiratory Virus and Measles, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | | | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Comparative Pathology, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
15
|
Aounallah H, Bensaoud C, M'ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol 2020; 11:583845. [PMID: 33072132 PMCID: PMC7538779 DOI: 10.3389/fimmu.2020.583845] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.
Collapse
Affiliation(s)
- Hajer Aounallah
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia.,Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Youmna M'ghirbi
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Jindr Ich Chmelar
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
16
|
Prata MNL, Charlie-Silva I, Gomes JMM, Barra A, Berg BB, Paiva IR, Melo DC, Klein A, Romero MGMC, Oliveira CC, Pimenta LPS, Júnior JDC, Perez AC. Anti-inflammatory and immune properties of the peltatoside, isolated from the leaves of Annona crassiflora Mart., in a new experimental model zebrafish. FISH & SHELLFISH IMMUNOLOGY 2020; 101:234-243. [PMID: 32240748 DOI: 10.1016/j.fsi.2020.03.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Establishing new animal models for the study of inflammation is very important in the process of discovering new drugs, since the inflammatory event is the basis of many pathological processes. Whereas rodent models have been the primary focus of inflammation research, we defend the zebrafish (Danio rerio) test as a feasible alternative for preclinical studies. Moreover, despite all the technological development already achieved by humanity, nature can still be considered a relevant source of new medicines. In this context, the aim of this work was to evaluate the anti-inflammatory effect of a substance isolated from the medicinal plant Annona crassilfora Mart, the peltatoside, in an inflammatory model of zebrafish. It was determined: (i) total leukocyte count in the coelomate exudate; (ii) N-acetyl-β-d-glucuronidase (NAG); (iii) myeloperoxidase (MPO); (iv) and the histology of liver, intestine and mesentery. Peltotoside (25, 50 and 100 μg) and dexamethasone (25 μg) were administered intracelomatically (i.c.) 30 min before carrageenan (i.c.). Pretreatment with peltatoside at three doses significantly inhibited leukocyte recruitment in the coelomic cavity, and inhibited NAG and MPO activity against the action of Cg, in a similar manner as dexamethasone. However, some microlesions in the evaluated organs were detected. The dose of 25 μg showed an anti-inflammatory effect with lower undesirable effects in the tissues. Our results suggest that the zebrafish test was satisfactory in performing our analyzes and that the peltotoside has a modulatory action in reducing leukocyte migration.
Collapse
Affiliation(s)
- M N L Prata
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - I Charlie-Silva
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - J M M Gomes
- Department of Morphology, Federal University of Minas Gerais (UFMG), Brazil
| | - A Barra
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - B B Berg
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - I R Paiva
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - D C Melo
- Department of Zootechnics- Federal University of Minas Gerais (UFMG), Brazil
| | - A Klein
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - M G M Castor Romero
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - C C Oliveira
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil
| | - L P S Pimenta
- Department of Chemistry, Federal University of Minas Gerais (UFMG), Brazil
| | - J D Corrêa Júnior
- Department of Morphology, Federal University of Minas Gerais (UFMG), Brazil
| | - A C Perez
- Department of Pharmacology, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
17
|
Semisynthesis of an evasin from tick saliva reveals a critical role of tyrosine sulfation for chemokine binding and inhibition. Proc Natl Acad Sci U S A 2020; 117:12657-12664. [PMID: 32461364 DOI: 10.1073/pnas.2000605117] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Blood-feeding arthropods produce antiinflammatory salivary proteins called evasins that function through inhibition of chemokine-receptor signaling in the host. Herein, we show that the evasin ACA-01 from the Amblyomma cajennense tick can be posttranslationally sulfated at two tyrosine residues, albeit as a mixture of sulfated variants. Homogenously sulfated variants of the proteins were efficiently assembled via a semisynthetic native chemical ligation strategy. Sulfation significantly improved the binding affinity of ACA-01 for a range of proinflammatory chemokines and enhanced the ability of ACA-01 to inhibit chemokine signaling through cognate receptors. Comparisons of evasin sequences and structural data suggest that tyrosine sulfation serves as a receptor mimetic strategy for recognizing and suppressing the proinflammatory activity of a wide variety of mammalian chemokines. As such, the incorporation of this posttranslational modification (PTM) or mimics thereof into evasins may provide a strategy to optimize tick salivary proteins for antiinflammatory applications.
Collapse
|
18
|
Galland S, Martin P, Fregni G, Letovanec I, Stamenkovic I. Attenuation of the pro-inflammatory signature of lung cancer-derived mesenchymal stromal cells by statins. Cancer Lett 2020; 484:50-64. [PMID: 32418888 DOI: 10.1016/j.canlet.2020.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Solid tumor growth triggers a dynamic host response, which recapitulates wound healing and defines the tumor microenvironment (TME). In addition to the action of the tumor cells themselves, the TME is maintained by a myriad of immune and stromal cell-derived soluble mediators and extracellular matrix components whose combined action supports tumor progression. However, therapeutic targeting of the TME has proven challenging because of incomplete understanding of the tumor-host crosstalk at the molecular level. Here, we investigated the crosstalk between mesenchymal stromal cells (MSCs) and primary cancer cells (PCCs) from human squamous cell lung carcinoma (SCC). We discovered that PCCs secrete CCL3 and stimulate IL-6, CCL2, ICAM-1 and VCAM-1 expression in MSCs and that the MSC-PCC crosstalk can be disrupted by the lipid-lowering drug simvastatin, which displays pleiotropic effects on cell metabolism and suppresses IL-6 and CCL2 production by MSCs and CCL3 secretion by PCCs. In addition, simvastatin inhibited spheroid formation by PCCs and negatively affected PCC survival. Our observations demonstrate that commonly used statins may be repurposed to target the TME in lung carcinoma.
Collapse
Affiliation(s)
- Sabine Galland
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland.
| | - Patricia Martin
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Giulia Fregni
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Igor Letovanec
- Clinical Pathology Service, Institute of Pathology, CHUV, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| | - Ivan Stamenkovic
- Experimental Pathology Service, Institute of Pathology, CHUV, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 25, 1011, Lausanne, Switzerland
| |
Collapse
|
19
|
Bhattacharya S, Kawamura A. Using evasins to target the chemokine network in inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:1-38. [PMID: 31997766 DOI: 10.1016/bs.apcsb.2019.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inflammation, is driven by a network comprising cytokines, chemokines, their target receptors and leukocytes, and is a major pathologic mechanism that adversely affects organ function in diverse human diseases. Despite being supported by substantial target validation, no successful anti-chemokine therapeutic to treat inflammatory disease has yet been developed. This is in part because of the robustness of the chemokine network, which emerges from a large total chemokine load in disease, promiscuous expression of receptors on leukocytes, promiscuous and synergistic interactions between chemokines and receptors, and feedforward loops created by secretion of chemokines by leukocytes themselves. Many parasites, including viruses, helminths and ticks, evade the chemokine network by producing proteins that bind promiscuously to chemokines or their receptors. Evasins - three small glycoproteins identified in the saliva of the brown dog tick - bind multiple chemokines, and are active in several animal models of inflammatory disease. Over 50 evasin homologs have recently been identified from diverse tick species. Characterization of the chemokine binding patterns of evasins show that several have anti-chemokine activities that extend substantially beyond those previously described. These studies indicate that evasins function at the site of the tick bite by reducing total chemokine load. This not only reduces chemokine signaling to receptors, but also interrupts feedforward loops, thus disabling the chemokine network. Taking the lead from nature, a goal for the development of new anti-chemokine therapeutics would be to reduce the total chemokine load in disease. This could be achieved by administering appropriate evasin combinations or by smaller peptides that mimic evasin action.
Collapse
Affiliation(s)
- Shoumo Bhattacharya
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Akane Kawamura
- RDM Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Oliveira FMS, da Paixão Matias PH, Kraemer L, Gazzinelli-Guimarães AC, Santos FV, Amorim CCO, Nogueira DS, Freitas CS, Caliari MV, Bartholomeu DC, Bueno LL, Russo RC, Fujiwara RT. Comorbidity associated to Ascaris suum infection during pulmonary fibrosis exacerbates chronic lung and liver inflammation and dysfunction but not affect the parasite cycle in mice. PLoS Negl Trop Dis 2019; 13:e0007896. [PMID: 31765381 PMCID: PMC6901262 DOI: 10.1371/journal.pntd.0007896] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/09/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Ascariasis is considered the most neglected tropical disease, and is a major problem for the public health system. However, idiopathic pulmonary fibrosis (IPF) is a result of chronic extracellular deposition of matrix in the pulmonary parenchyma, and thickening of the alveolar septa, which reduces alveolar gas exchange. Considering the high rates of ascariasis and pulmonary fibrosis, we believe that these two diseases may co-exist and possibly lead to comorbidities. We therefore investigated the mechanisms involved in comorbidity of Ascaris suum (A. suum) infection, which could interfere with the progression of pulmonary fibrosis. In addition, we evaluated whether a previous lung fibrosis could interfere with the pulmonary cycle of A. suum in mice. The most important findings related to comorbidity in which A. suum infection exacerbated pulmonary and liver injury, inflammation and dysfunction, but did not promote excessive fibrosis in mice during the investigated comorbidity period. Interestingly, we found that pulmonary fibrosis did not alter the parasite cycle that transmigrated preferentially through preserved but not fibrotic areas of the lungs. Collectively, our results demonstrate that A. suum infection leads to comorbidity, and contributes to the aggravation of pulmonary dysfunction during pulmonary fibrosis, which also leads to significant liver injury and inflammation, without changing the A. suum cycle in the lungs. Ascariasis is considered a major problem for the public health system, which has an estimated 800 million infected people worldwide. It occurs in the United States, Africa, Asia, and Latin America, and is generally associated with poverty and precarious health conditions. Pulmonary fibrosis affects 14–63 people per 100,000 habitants/year, and is characterized by collagen deposition and alveolar wall thickening. The comorbidities caused by infections are commonly associated with pulmonary fibrosis exacerbations, poor prognosis, and high mortality. Despite the comorbidities caused by helminth infections, which display a pulmonary parasitic cycle such as that of Ascaris, there is no evidence relating to pulmonary fibrosis progression, possibly because Ascariasis is considered a neglected disease. We evaluated the role of Ascaris during pulmonary fibrosis. We considered two simple questions: (1) Whether Ascaris infection could protect or aggravate fibrosis (comorbidities) and (2) whether pulmonary fibrosis could change the cycle of Ascaris as a result of increased alveolar thickening, larvae retention, and the limitation of influx into airways. We answered both questions as follows: (1) Ascaris infection exacerbates pulmonary and liver injury and inflammation, but not fibrosis; and (2) Pulmonary fibrosis did not alter the course of Ascaris cycle in lungs during transmigration into airways, because Ascaris preferentially seeks and penetrates into the lung areas, which are thought to be preserved, but not into fibrotic areas.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pablo Hemanoel da Paixão Matias
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Kraemer
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Clara Gazzinelli-Guimarães
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Flaviane Vieira Santos
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Chiara Cássia Oliveira Amorim
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Silva Nogueira
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Simões Freitas
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Vidigal Caliari
- Laboratory of Protozooses, Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Castanheira Bartholomeu
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lilian Lacerda Bueno
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
21
|
Bhusal RP, Eaton JRO, Chowdhury ST, Power CA, Proudfoot AEI, Stone MJ, Bhattacharya S. Evasins: Tick Salivary Proteins that Inhibit Mammalian Chemokines. Trends Biochem Sci 2019; 45:108-122. [PMID: 31679840 PMCID: PMC7322545 DOI: 10.1016/j.tibs.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/27/2023]
Abstract
Ticks are hematophagous arachnids that parasitize mammals and other hosts, feeding on their blood. Ticks secrete numerous salivary factors that enhance host blood flow or suppress the host inflammatory response. The recruitment of leukocytes, a hallmark of inflammation, is regulated by chemokines, which activate chemokine receptors on the leukocytes. Ticks target this process by secreting glycoproteins called Evasins, which bind to chemokines and prevent leukocyte recruitment. This review describes the recent discovery of numerous Evasins produced by ticks, their classification into two structural and functional classes, and the efficacy of Evasins in animal models of inflammatory diseases. The review also proposes a standard nomenclature system for Evasins and discusses the potential of repurposing or engineering Evasins as therapeutic anti-inflammatory agents.
Collapse
Affiliation(s)
- Ram Prasad Bhusal
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - James R O Eaton
- Radcliffe Department of Medicine (RDM) Division of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Sayeeda T Chowdhury
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Christine A Power
- Biopharm Discovery, GlaxoSmithKline, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | | | - Martin J Stone
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Shoumo Bhattacharya
- Radcliffe Department of Medicine (RDM) Division of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
22
|
Dos Reis DC, Damasceno KA, de Campos CB, Veloso ES, Pêgas GRA, Kraemer LR, Rodrigues MA, Mattos MS, Gomes DA, Campos PP, Ferreira E, Russo RC, Cassali GD. Versican and Tumor-Associated Macrophages Promotes Tumor Progression and Metastasis in Canine and Murine Models of Breast Carcinoma. Front Oncol 2019; 9:577. [PMID: 31334111 PMCID: PMC6616078 DOI: 10.3389/fonc.2019.00577] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/14/2019] [Indexed: 12/31/2022] Open
Abstract
Versican and tumor-associated macrophages (TAMs) are involved in growth and metastases in several cancers. Here, we investigated the potential role of versican, a matrix proteoglycan, and its correlation with TAMs infiltrates in different stages of two different breast cancer models: spontaneous canine mammary gland carcinomas and the murine 4T1 breast cancer model. The stromal versican expression was correlated with TAMs accumulation in tumors with an advanced stage from spontaneous canine mammary carcinoma samples. Versican expression in mice, identified in late stages of tumor progression, was associated to a high number of peri-tumoral infiltrating TAMs. Indeed, TAMs were related to a pro-inflammatory and pro-angiogenic state in the primary tumor. Furthermore, TAMs accumulation was related to versican expression in the lungs and an increased number of pulmonary metastatic nodules with pulmonary mechanical dysfunction, which was due to leukocyte influx in the airways and elevated growth factor levels in the microenvironment. Thus, we suggest that versican and TAMs as attractive targets for breast cancer therapy.
Collapse
Affiliation(s)
- Diego Carlos Dos Reis
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Cecília Bonolo de Campos
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Emerson Soares Veloso
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Rafaela Arantes Pêgas
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Rocha Kraemer
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michele Angela Rodrigues
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Matheus Silvério Mattos
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Enio Ferreira
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
23
|
Štibrániová I, Bartíková P, Holíková V, Kazimírová M. Deciphering Biological Processes at the Tick-Host Interface Opens New Strategies for Treatment of Human Diseases. Front Physiol 2019; 10:830. [PMID: 31333488 PMCID: PMC6617849 DOI: 10.3389/fphys.2019.00830] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022] Open
Abstract
Ticks are obligatory blood-feeding ectoparasites, causing blood loss and skin damage in their hosts. In addition, ticks also transmit a number of various pathogenic microorganisms that cause serious diseases in humans and animals. Ticks evolved a wide array of salivary bioactive compounds that, upon injection into the host skin, inhibit or modulate host reactions such as hemostasis, inflammation and wound healing. Modulation of the tick attachment site in the host skin involves mainly molecules which affect physiological processes orchestrated by cytokines, chemokines and growth factors. Suppressing host defense reactions is crucial for tick survival and reproduction. Furthermore, pharmacologically active compounds in tick saliva have a promising therapeutic potential for treatment of some human diseases connected with disorders in hemostasis and immune system. These disorders are often associated to alterations in signaling pathways and dysregulation or overexpression of specific cytokines which, in turn, affect mechanisms of angiogenesis, cell motility and cytoskeletal regulation. Moreover, tick salivary molecules were found to exert cytotoxic and cytolytic effects on various tumor cells and have anti-angiogenic properties. Elucidation of the mode of action of tick bioactive molecules on the regulation of cell processes in their mammalian hosts could provide new tools for understanding the complex changes leading to immune disorders and cancer. Tick bioactive molecules may also be exploited as new pharmacological inhibitors of the signaling pathways of cytokines and thus help alleviate patient discomfort and increase patient survival. We review the current knowledge about tick salivary peptides and proteins that have been identified and functionally characterized in in vitro and/or in vivo models and their therapeutic perspective.
Collapse
Affiliation(s)
- Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
24
|
Rago F, Melo EM, Kraemer L, Galvão I, Cassali GD, Santos RAS, Russo RC, Teixeira MM. Effect of preventive or therapeutic treatment with angiotensin 1–7 in a model of bleomycin‐induced lung fibrosis in mice. J Leukoc Biol 2019; 106:677-686. [DOI: 10.1002/jlb.ma1218-490rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/19/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Flávia Rago
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Eliza Mathias Melo
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Lucas Kraemer
- Laboratorio de Imunologia e Mecânica PulmonarDepartamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Izabela Galvão
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Geovanni D. Cassali
- Departamento de Patologia GeralUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Robson A. S. Santos
- Departamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Remo C. Russo
- Laboratorio de Imunologia e Mecânica PulmonarDepartamento de Fisiologia e BiofísicaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| | - Mauro Martins Teixeira
- Laboratório de ImunofarmacologiaDepartamento de Bioquímica e ImunologiaUniversidade Federal de Minas Gerais Belo Horizonte Brazil
- Centro de Desenvolvimento de FármacosInstituto de Ciências BiológicasUniversidade Federal de Minas Gerais Belo Horizonte Brazil
| |
Collapse
|
25
|
Chmelař J, Kotál J, Kovaříková A, Kotsyfakis M. The Use of Tick Salivary Proteins as Novel Therapeutics. Front Physiol 2019; 10:812. [PMID: 31297067 PMCID: PMC6607933 DOI: 10.3389/fphys.2019.00812] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/11/2019] [Indexed: 12/12/2022] Open
Abstract
The last three decades of research into tick salivary components have revealed several proteins with important pharmacological and immunological activities. Two primary interests have driven research into tick salivary secretions: the search for suitable pathogen transmission blocking or “anti-tick” vaccine candidates and the search for novel therapeutics derived from tick salivary components. Intensive basic research in the field of tick salivary gland transcriptomics and proteomics has identified several major protein families that play important roles in tick feeding and overcoming vertebrate anti-tick responses. Moreover, these families contain members with unrealized therapeutic potential. Here we review the major tick salivary protein families exploitable in medical applications such as immunomodulation, inhibition of hemostasis and inflammation. Moreover, we discuss the potential, opportunities, and challenges in searching for novel tick-derived drugs.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| | - Anna Kovaříková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia.,Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, České Budějovice, Czechia
| |
Collapse
|
26
|
Zhang Y, Zhang W, Wang H, Yang B. miR-21 Contributes to Human Amniotic Membrane-Derived Mesenchymal Stem Cell Growth and Human Amniotic Membrane-Derived Mesenchymal Stem Cell-Induced Immunoregulation. Genet Test Mol Biomarkers 2018; 22:665-673. [PMID: 30481073 DOI: 10.1089/gtmb.2018.0116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Wenjin Zhang
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, PR China
| | - Huancheng Wang
- Department of Blood Transfusion, The First People's Hospital of Nanyang, Nanyang, PR China
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
27
|
Rodrigues Oliveira JL, Teixeira MM, Lambertucci JR, Antunes CMF, Carneiro M, Negrão-Corrêa D. Plasma levels of innate immune mediators are associated with liver fibrosis in low parasite burden Schistosoma mansoni-infected individuals. Scand J Immunol 2018; 87. [PMID: 29363152 DOI: 10.1111/sji.12642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/15/2018] [Indexed: 12/01/2022]
Abstract
In the murine model, it was demonstrated that pro-inflammatory cytokines and chemokines are essential to the formation and modulation of Schistosoma-induced granulomatous inflammation. However, the relationship of these immune mediators and disease severity is hard to be established in naturally infected individuals. The current study evaluates the association between plasma concentrations of MIF, sTNF-R1, CCL3, CCL7 and CCL24 and schistosomiasis morbidity in Schistosoma mansoni-infected patients with a low parasite burden. For this propose, 97 S. mansoni-infected individuals were subjected to abdominal ultrasound analysis and clinical examination. Among them, 88 had plasma concentration of immune mediators estimated by ELISA assay. Multivariate linear regression models were used to evaluate the relationship between the plasma concentration of immune mediators and the variables investigated. Although most individuals presented low parasite burden, over 30% of them showed signs of fibrosis defined by ultrasound measurements and 2 patients had a severe form of schistosomiasis. No association between parasite burden and the plasma levels of chemokine/cytokines or disease severity was observed. There was a positive association between plasma concentration of CCL4, sTNF-R1, CCL3 and MIF with gall bladder thickness and/or with portal vein thickness that are liver fibrosis markers. In contrast, no association was found between CCL7 plasma concentrations with any of the schistosomiasis morbidity parameters evaluated. The data showed that CCL24, sTNFR1, MIF and CCL3 can be detected in plasma of S. mansoni-infected individuals and their concentration would be used as prognostic makers of Schistosoma-induced liver fibrosis, even in individuals with low parasite burden.
Collapse
Affiliation(s)
- J L Rodrigues Oliveira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - M M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - J R Lambertucci
- Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - C M F Antunes
- Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - M Carneiro
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Faculdade de Medicina, Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - D Negrão-Corrêa
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
28
|
Russo RC, Savino B, Mirolo M, Buracchi C, Germano G, Anselmo A, Zammataro L, Pasqualini F, Mantovani A, Locati M, Teixeira MM. The atypical chemokine receptor ACKR2 drives pulmonary fibrosis by tuning influx of CCR2 + and CCR5 + IFNγ-producing γδT cells in mice. Am J Physiol Lung Cell Mol Physiol 2018; 314:L1010-L1025. [PMID: 29469612 DOI: 10.1152/ajplung.00233.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chemokines coordinate lung inflammation and fibrosis by acting on chemokine receptors expressed on leukocytes and other cell types. Atypical chemokine receptors (ACKRs) bind, internalize, and degrade chemokines, tuning homeostasis and immune responses. ACKR2 recognizes and decreases the levels of inflammatory CC chemokines. The role of ACKR2 in fibrogenesis is unknown. The purpose of the study was to investigate the role of ACKR2 in the context of pulmonary fibrosis. The effects of ACKR2 expression and deficiency during inflammation and fibrosis were analyzed using a bleomycin-model of fibrosis, ACKR2-deficient mice, bone marrow chimeras, and antibody-mediated leukocyte depletion. ACKR2 was upregulated acutely in response to bleomycin and normalized over time. ACKR2-/- mice showed reduced lethality and lung fibrosis. Bone marrow chimeras showed that lethality and fibrosis depended on ACKR2 expression in pulmonary resident (nonhematopoietic) cells but not on leukocytes. ACKR2-/- mice exhibited decreased expression of tissue-remodeling genes, reduced leukocyte influx, pulmonary injury, and dysfunction. ACKR2-/- mice had early increased levels of CCL5, CCL12, CCL17, and IFNγ and an increased number of CCR2+ and CCR5+ IFNγ-producing γδT cells in the airways counterbalanced by low Th17-lymphocyte influx. There was reduced accumulation of IFNγ-producing γδT cells in CCR2-/- and CCR5-/- mice. Moreover, depletion of γδT cells worsened the clinical symptoms induced by bleomycin and reversed the phenotype of ACKR2-/- mice exposed to bleomycin. ACKR2 controls the CC chemokine expression that drives the influx of CCR2+ and CCR5+ IFNγ-producing γδT cells, tuning the Th17 response that mediated pulmonary fibrosis triggered by bleomycin instillation.
Collapse
Affiliation(s)
- Remo C Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Benedetta Savino
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan , Milan , Italy
| | | | | | | | | | | | | | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan , Milan , Italy
| | - Mauro M Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| |
Collapse
|
29
|
Hayward J, Sanchez J, Perry A, Huang C, Rodriguez Valle M, Canals M, Payne RJ, Stone MJ. Ticks from diverse genera encode chemokine-inhibitory evasin proteins. J Biol Chem 2017; 292:15670-15680. [PMID: 28778927 DOI: 10.1074/jbc.m117.807255] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Indexed: 12/22/2022] Open
Abstract
To prolong residence on their hosts, ticks secrete many salivary factors that target host defense molecules. In particular, the tick Rhipicephalus sanguineus has been shown to produce three salivary glycoproteins named "evasins," which bind to host chemokines, thereby inhibiting the recruitment of leukocytes to the location of the tick bite. Using sequence similarity searches, we have identified 257 new putative evasin sequences encoded by the genomes or salivary or visceral transcriptomes of numerous hard ticks, spanning the genera Rhipicephalus, Amblyomma, and Ixodes of the Ixodidae family. Nine representative sequences were successfully expressed in Escherichia coli, and eight of the nine candidates exhibited high-affinity binding to human chemokines. Sequence alignments enabled classification of the evasins into two subfamilies: C8 evasins share a conserved set of eight Cys residues (four disulfide bonds), whereas C6 evasins have only three of these disulfide bonds. Most of the identified sequences contain predicted secretion leader sequences, N-linked glycosylation sites, and a putative site of tyrosine sulfation. We conclude that chemokine-binding evasin proteins are widely expressed among tick species of the Ixodidae family, are likely to play important roles in subverting host defenses, and constitute a valuable pool of anti-inflammatory proteins for potential future therapeutic applications.
Collapse
Affiliation(s)
- Jenni Hayward
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology and
| | - Julie Sanchez
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology and
| | - Andrew Perry
- the Monash Bioinformatics Platform, Monash University, Clayton, Victoria 3800, Australia
| | - Cheng Huang
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology and
| | - Manuel Rodriguez Valle
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010
| | - Meritxell Canals
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, and
| | - Richard J Payne
- the School of Chemistry, The University of Sydney, New South Wales 2006, Australia
| | - Martin J Stone
- From the Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology and
| |
Collapse
|
30
|
Škrlec K, Pucer Janež A, Rogelj B, Štrukelj B, Berlec A. Evasin-displaying lactic acid bacteria bind different chemokines and neutralize CXCL8 production in Caco-2 cells. Microb Biotechnol 2017; 10:1732-1743. [PMID: 28736998 PMCID: PMC5658612 DOI: 10.1111/1751-7915.12781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/30/2017] [Accepted: 06/05/2017] [Indexed: 01/26/2023] Open
Abstract
Chemokines are key signals in the immune system and play an important role as proinflammatory mediators in the pathology of inflammatory bowel disease and colorectal cancer, making them an important target for therapy. Recombinant lactic acid bacteria (LAB) were engineered to bind CC and CXC chemokines by displaying chemokine‐binding proteins evasin‐1, evasin‐3 and evasin‐4 on their surface. Evasin genes were cloned into lactococcal surface display vector and overexpressed in L. lactis NZ9000 and NZ9000ΔhtrA in fusion with secretion signal and surface anchor. Evasin‐displaying bacteria removed from 15% to 90% of 11 different chemokines from the solution as determined with ELISA and Luminex multiplexing assays, whereby L. lactis NZ9000ΔhtrA proved more efficient. Lactobacillus salivarius ATCC 11741 was coated with L. . lactis‐expressed evasin fusion protein, and its ability to bind chemokines was also confirmed. Evasin‐3‐displaying L. lactis removed 76.0% of IL‐1β‐induced CXCL8 from the supernatant of Caco‐2 epithelial cells. It also prevented secretion of CXCL8 from Caco‐2 cells in a time‐dependent manner when added before induction with IL‐1β. Evasin‐displaying LAB have the ability to bind multiple chemokines simultaneously and exert synergistic activity. This innovative treatment approach therefore has the potential for mucosal therapy of inflammatory bowel disease or colorectal cancer.
Collapse
Affiliation(s)
- Katja Škrlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Anja Pucer Janež
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Biomedical Research Institute (BRIS), Puhova 10, SI-1000, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000, Ljubljana, Slovenia
| | - Borut Štrukelj
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000, Ljubljana, Slovenia
| | - Aleš Berlec
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
31
|
Yeast surface display identifies a family of evasins from ticks with novel polyvalent CC chemokine-binding activities. Sci Rep 2017; 7:4267. [PMID: 28655871 PMCID: PMC5487423 DOI: 10.1038/s41598-017-04378-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/31/2017] [Indexed: 01/21/2023] Open
Abstract
Chemokines function via G-protein coupled receptors in a robust network to recruit immune cells to sites of inflammation. Due to the complexity of this network, targeting single chemokines or receptors has not been successful in inflammatory disease. Dog tick saliva contains polyvalent CC-chemokine binding peptides termed evasins 1 and 4, that efficiently disrupt the chemokine network in models of inflammatory disease. Here we develop yeast surface display as a tool for functionally identifying evasins, and use it to identify 10 novel polyvalent CC-chemokine binding evasin-like peptides from salivary transcriptomes of eight tick species in Rhipicephalus and Amblyomma genera. These evasins have unique binding profiles compared to evasins 1 and 4, targeting CCL2 and CCL13 in addition to other CC-chemokines. Evasin binding leads to neutralisation of chemokine function including that of complex chemokine mixtures, suggesting therapeutic efficacy in inflammatory disease. We propose that yeast surface display is a powerful approach to mine potential therapeutics from inter-species protein interactions that have arisen during evolution of parasitism in ticks.
Collapse
|
32
|
Chen Y, Li C, Lu Y, Zhuang H, Gu W, Liu B, Liu F, Sun J, Yan B, Weng D, Chen J. IL-10-Producing CD1d hiCD5 + Regulatory B Cells May Play a Critical Role in Modulating Immune Homeostasis in Silicosis Patients. Front Immunol 2017; 8:110. [PMID: 28243231 PMCID: PMC5303715 DOI: 10.3389/fimmu.2017.00110] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/24/2017] [Indexed: 12/28/2022] Open
Abstract
Silicosis is characterized by chronic lung inflammation and fibrosis, which are extremely harmful to human health. The pathogenesis of silicosis involves uncontrolled immune processes. Evidence supports that regulatory B cells (Bregs) produce negative regulatory cytokines, such as IL-10, which can negatively regulate immune responses in inflammation and autoimmune diseases. Our previous study found that IL-10-producing B cells were involved in the development of silica-induced lung inflammation and fibrosis of mice. However, little is known about the role of Bregs in silicosis patients (SP). In this study, we found that serum concentrations of IL-10 were significantly increased in SP by using protein array screening. We further determined that the frequency of IL-10-producing CD1dhiCD5+ Bregs, not IL-10-producing non-B lymphocytes, was significantly higher in SP compared to subjects under surveillance (SS) and healthy workers (HW) by flow cytometry. We also found that regulatory T cells (Tregs) and Th2 cytokines (IL-4, IL-5, and IL-13) were significantly increased in SP. Th1 cytokines (IFN-γ, IL-2, and IL-12) and inflammatory cytokines (IL-1β, IL-6, and TNF-α) were not significantly different between SP, SS, and HW. Our study indicated that IL-10-producing CD1dhiCD5+ Bregs might maintain Tregs and regulate Th1/Th2 polarization in SP, suggesting that IL-10-producing Bregs may play a critical role in modulating immune homeostasis in SP.
Collapse
Affiliation(s)
- Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Yiping Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Huiying Zhuang
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Weijia Gu
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Bo Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| | - Jinkai Sun
- Department of Respiratory Medicine, Shenyang No. 9 Hospital , Shenyang , China
| | - Bo Yan
- Department of Respiratory Medicine, Shenyang No. 9 Hospital , Shenyang , China
| | - Dong Weng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China; Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University , Shenyang , China
| |
Collapse
|
33
|
Wang W, He M, Huang W. Association of monocyte chemoattractant protein-1 gene 2518A/G polymorphism with diabetic retinopathy in type 2 diabetes mellitus: A meta-analysis. Diabetes Res Clin Pract 2016; 120:40-6. [PMID: 27505625 DOI: 10.1016/j.diabres.2016.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 01/02/2023]
Abstract
AIMS The relationship between monocyte chemoattractant protein-1 (MCP-1) 2518 A/G polymorphism and diabetic retinopathy (DR) attracted intense interest recently, but the reported results are controversial. A meta-analysis was performed to assess the MCP-1 polymorphism associated with DR susceptibility in type 2 diabetes mellitus. METHODS Eligible studies were identified from PubMed, Embase, Web of science, Chinese Biomedical database, and references of retrieved articles. Pooled odds ratios (ORs) with their 95% confidence intervals (95%CI) were calculated by fixed or random-effects models. RESULTS Six studies involving 3415 patients without DR and 3468 with any DR were included in the final meta-analysis. Each 5 studies evaluated the associations of MCP-1 polymorphism and any DR and proliferative DR (PDR), respectively. Meta-analysis in fixed model demonstrated a significant association between MCP-1 polymorphism and any DR under the homozygous model (OR=1.36; 95%CI: 1.15-1.62, P<0.001), heterozygous model (OR=1.20; 95%CI: 1.02-1.42, P=0.031), dominant model (OR=1.28; 95%CI: 1.10-1.50, P=0.002), recessive model (OR=1.17; 95%CI: 1.05-1.31, P=0.004), and allelic model (OR=1.16; 95%CI: 1.07-1.25, P<0.001). Furthermore, a significant association of MCP-1 polymorphism and DR progression from non-proliferative DR to proliferative DR was identified under heterozygous model (OR=1.45; 95%CI: 1.04-2.02, P=0.030). Sensitivity analyses did not draw different findings. CONCLUSIONS Meta-analysis of existing data suggested that MCP-1 2518 A/G polymorphism affected the risk of presence and progression of DR in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Wei Wang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Miao He
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenyong Huang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
34
|
Campos-Junior PHA, Alves TJM, Dias MT, Assunçao CM, Munk M, Mattos MS, Kraemer LR, Almeida BG, Russo RC, Barcelos L, Camargo LSA, Viana JHM. Ovarian Grafts 10 Days after Xenotransplantation: Folliculogenesis and Recovery of Viable Oocytes. PLoS One 2016; 11:e0158109. [PMID: 27362486 PMCID: PMC4928796 DOI: 10.1371/journal.pone.0158109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/12/2016] [Indexed: 11/30/2022] Open
Abstract
Ovarian xenotransplantation is a promising alternative to preserve fertility of oncologic patients. However, several functional aspects of this procedure remained to be addressed. The aim of this study was evaluate the feasibility of xenotransplantation as a strategy to maintain bovine ovarian grafts and produce oocytes. Adult ovarian cortical pieces were xenotransplanted to the dorsal subcutaneous of female NOD-SCID mice (n = 62). Grafts were recovered ten days after xenotransplantation. Host and graft weights; folliculogenesis progression; blood perfusion, relative gene expression and number of macrophage and neutrophil of xenografts; in vitro developmental competence of graft-derived oocytes were evaluated. Folliculogenesis was supported in the grafts, as indicated by the presence of primordial, primary, secondary, antral, and atretic follicles. The xenografts showed a greater volumetric density of atretic follicles and higher hyperemia and number of host-derived macrophage and neutrophil (P<0.05), when compared to non-grafted fragments. There was a higher blood perfusion under the back skin in the transplantation sites of host animals than in control and non-grafted (P<0.01). BAX and PRDX1 genes were up-regulated, while BCL2, FSHR, IGF1R and IGF2R were down-regulated, when compared to the control (P<0.01). Twenty seven oocytes were successfully harvested from grafts, and some of these oocytes were able to give rise to blastocysts after in vitro fertilization. However, cleavage and blastocyst rates of xenograft derived oocytes were lower than in control (P<0.01). Despite showing some functional modifications, the ovarian xenografts were able to support folliculogenesis and produce functional oocytes.
Collapse
Affiliation(s)
- Paulo Henrique Almeida Campos-Junior
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
- * E-mail:
| | - Thalys Jair Melo Alves
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
| | - Marco Tulio Dias
- Fertility Preservation Research Group, Department of Natural Sciences, Federal University of Sao Joao Del Rei, Sao Joao Del Rei, Minas Gerais, Brazil, 36301–160
| | - Carolina Marinho Assunçao
- Laboratory of Genetics and Biotechnology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil, 36036–900
| | - Michele Munk
- Laboratory of Genetics and Biotechnology, Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil, 36036–900
| | - Matheus Silvério Mattos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Lucas Rocha Kraemer
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Brígida Gomes Almeida
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Remo Castro Russo
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | - Lucíola Barcelos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil, 31270–901
| | | | | |
Collapse
|
35
|
Bonvin P, Power CA, Proudfoot AEI. Evasins: Therapeutic Potential of a New Family of Chemokine-Binding Proteins from Ticks. Front Immunol 2016; 7:208. [PMID: 27375615 PMCID: PMC4894869 DOI: 10.3389/fimmu.2016.00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/15/2016] [Indexed: 02/03/2023] Open
Abstract
Blood-sucking parasites, such as ticks, remain attached to their hosts for relatively long periods of time in order to obtain their blood meal without eliciting an immune response. One mechanism used to avoid rejection is the inhibition of the recruitment of immune cells, which can be achieved by a class of chemokine-binding proteins (CKBPs) known as Evasins. We have identified three distinct Evasins produced by the salivary glands of the common brown dog tick, Rhipicephalus sanguineus. They display different selectivities for chemokines, the first two identified show a narrow selectivity profile, while the third has a broader binding spectrum. The Evasins showed efficacy in animal models of inflammatory disease. Here, we will discuss the potential of their development for therapeutic use, addressing both the advantages and disadvantages that this entails.
Collapse
Affiliation(s)
- Pauline Bonvin
- Geneva Research Centre, Merck Serono S.A., Geneva, Switzerland; Research Department, Novimmune S.A., Plan-les-Ouates, Switzerland
| | | | - Amanda E I Proudfoot
- Geneva Research Centre, Merck Serono S.A., Geneva, Switzerland; Research Department, Novimmune S.A., Plan-les-Ouates, Switzerland
| |
Collapse
|
36
|
Oliveira LCFD, Danilucci TM, Chaves-Neto AH, Campanelli AP, Silva TCCD, Oliveira SHP. Tracheal Smooth Muscle Cells Stimulated by Stem Cell Factor-c-Kit Coordinate the Production of Transforming Growth Factor-β1 and Fibroblast Growth Factor-2 Mediated by Chemokine (C-C Motif) Ligand 3. J Interferon Cytokine Res 2016; 36:401-11. [PMID: 27123814 DOI: 10.1089/jir.2015.0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the mechanism involved in the stem cell factor (SCF)-induced production of fibroblast growth factor-2 (FGF-2), transforming growth factor-β1 (TGF-β1), and chemokine (C-C motif) ligand 3 (CCL3) in tracheal smooth muscle cells (tSMCs) and the signaling pathway involved in the process. tSMC primary cultures were stimulated with SCF and evaluated at 24 h. Cells treated with specific antibodies did not show any immunolabeling for cytokeratin or fibroblast activation protein, but were positive for α-smooth muscle actin, indicating the purity of the primary cell line. Western blot analysis showed constitutive phosphorylation of c-Kit, as well as increased total protein and phosphorylated c-Kit levels in tSMCs after SCF stimulation. Flow cytometry analysis also showed an increase in cell-surface c-Kit expression in the presence of SCF. SCF induced TGF-β mRNA expression in tSMCs, as well as the production of TGF-β1, CCL3, and FGF-2. Pretreatment with anti-CCL3 antibody blocked TGF-β1 expression and partially inhibited FGF-2 production. On the other hand, anti-c-Kit antibody blocked TGF-β1 expression and FGF-2 production. Thus, TGF-β1 and FGF-2 production were mediated by CCL3 production through c-Kit. Pretreatment with mitogen-activated protein kinase kinase 1, p38, and Jun N-terminal kinase inhibitors showed that the effects mediated by SCF were involved with the modulation of mitogen-activated protein kinase (MAPK) pathways. Development of inhibitors targeting CCL3 through MAPK activation could thus be an attractive strategy to inhibit tSMC activation during asthma.
Collapse
Affiliation(s)
- Luis Cezar Farias de Oliveira
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Taís Marolato Danilucci
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Antonio Hernandes Chaves-Neto
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Ana Paula Campanelli
- 2 Department of Biological Sciences, School of Dentistry of Bauru, São Paulo University-USP , Bauru, Brazil
| | - Tereza Cristina Cardoso da Silva
- 3 Laboratory of Animal Virology and Cell Culture, School of Medicine Veterinary of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| | - Sandra Helena Penha Oliveira
- 1 Programa de Pós-graduação Multicêntrico em Ciências Fisiológicas-SBFis, Department of Basic Sciences, School of Dentistry of Araçatuba, Univ. Estadual Paulista-UNESP , Araçatuba, Brazil
| |
Collapse
|
37
|
Proudfoot AEI, Bonvin P, Power CA. Targeting chemokines: Pathogens can, why can't we? Cytokine 2015; 74:259-67. [PMID: 25753743 DOI: 10.1016/j.cyto.2015.02.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 12/19/2022]
Abstract
Chemoattractant cytokines, or chemokines, are the largest sub-family of cytokines. About 50 distinct chemokines have been identified in humans. Their principal role is to stimulate the directional migration of leukocytes, which they achieve through activation of their receptors, following immobilization on cell surface glycosaminoglycans (GAGs). Chemokine receptors belong to the G protein-coupled 7-transmembrane receptor family, and hence their identification brought great promise to the pharmaceutical industry, since this receptor class is the target for a large percentage of marketed drugs. Unfortunately, the development of potent and efficacious inhibitors of chemokine receptors has not lived up to the early expectations. Several approaches to targeting this system will be described here, which have been instrumental in establishing paradigms in chemokine biology. Whilst drug discovery programs have not yet elucidated how to make successful drugs targeting the chemokine system, it is now known that certain parasites have evolved anti-chemokine strategies in order to remain undetected by their hosts. What can we learn from them?
Collapse
Affiliation(s)
- Amanda E I Proudfoot
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève and NovImmune S.A., 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Pauline Bonvin
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève and NovImmune S.A., 14 chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.
| | - Christine A Power
- Geneva Research Centre, Merck Serono S.A., 9 chemin des Mines, 1202 Genève, Switzerland.
| |
Collapse
|
38
|
Association between inflammatory biomarkers in plasma, radiological severity, and duration of exposure in patients with silicosis. J Occup Environ Med 2015; 56:493-7. [PMID: 24806562 DOI: 10.1097/jom.0000000000000164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the plasma levels of CCL2, CCL3, CCL11, CCL24, tumor necrosis factor alpha, sTNFR1, and sTNFR2 in subjects exposed to silica (SES) with and without silicosis compared with unexposed reference control group, and their associations with the radiological severity and duration of exposure to silica. METHODS Fifty-seven SES; 36 with silicosis and 22 subjects in control group, were included in the study. RESULTS CCL3, CCL24, sTNFR1, and sTNFR2 were increased in SES and in SES with silicosis than in controls. There were no differences in the levels of CCL2, CCL11, or tumor necrosis factor alpha. The sTNFR2 level was greater in SES with silicosis than in SES without silicosis. There was a positive correlation between sTNFR1 and sTNFR2 and the radiological severity and time of exposure to silica. sTNFR2 was associated with all categories of radiological severity. CONCLUSION sTNFR2 is associated with silicosis severity and early exposure to silica.
Collapse
|
39
|
Barbosa RPA, Salgado APC, Garcia CC, Filho BG, Gonçalves APDF, Lima BHF, Lopes GAO, Rachid MA, Peixoto ACC, de Oliveira DB, Ataíde MA, Zirke CA, Cotrim TM, Costa ÉA, Almeida GMDF, Russo RC, Gazzinelli RT, Machado ADMV. Protective immunity and safety of a genetically modified influenza virus vaccine. PLoS One 2014; 9:e98685. [PMID: 24927156 PMCID: PMC4057169 DOI: 10.1371/journal.pone.0098685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 05/07/2014] [Indexed: 12/01/2022] Open
Abstract
Recombinant influenza viruses are promising viral platforms to be used as antigen delivery vectors. To this aim, one of the most promising approaches consists of generating recombinant viruses harboring partially truncated neuraminidase (NA) segments. To date, all studies have pointed to safety and usefulness of this viral platform. However, some aspects of the inflammatory and immune responses triggered by those recombinant viruses and their safety to immunocompromised hosts remained to be elucidated. In the present study, we generated a recombinant influenza virus harboring a truncated NA segment (vNA-Δ) and evaluated the innate and inflammatory responses and the safety of this recombinant virus in wild type or knock-out (KO) mice with impaired innate (Myd88 -/-) or acquired (RAG -/-) immune responses. Infection using truncated neuraminidase influenza virus was harmless regarding lung and systemic inflammatory response in wild type mice and was highly attenuated in KO mice. We also demonstrated that vNA-Δ infection does not induce unbalanced cytokine production that strongly contributes to lung damage in infected mice. In addition, the recombinant influenza virus was able to trigger both local and systemic virus-specific humoral and CD8+ T cellular immune responses which protected immunized mice against the challenge with a lethal dose of homologous A/PR8/34 influenza virus. Taken together, our findings suggest and reinforce the safety of using NA deleted influenza viruses as antigen delivery vectors against human or veterinary pathogens.
Collapse
Affiliation(s)
- Rafael Polidoro Alves Barbosa
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brasil
- Laboratório de Imunoparasitologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ana Paula Carneiro Salgado
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brasil
| | - Cristiana Couto Garcia
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Bruno Galvão Filho
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brasil
| | | | - Braulio Henrique Freire Lima
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Gabriel Augusto Oliveira Lopes
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Milene Alvarenga Rachid
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Andiara Cristina Cardoso Peixoto
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Danilo Bretas de Oliveira
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Marco Antônio Ataíde
- Laboratório de Imunoparasitologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Carla Aparecida Zirke
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brasil
| | - Tatiane Marques Cotrim
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brasil
| | - Érica Azevedo Costa
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brasil
| | - Gabriel Magno de Freitas Almeida
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Remo Castro Russo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- Laboratório de Imunologia e Mecânica Pulmonar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo Tostes Gazzinelli
- Laboratório de Imunopatologia, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brasil
- Laboratório de Imunoparasitologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | |
Collapse
|
40
|
Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, Horuk R, Sparre-Ulrich AH, Locati M, Luster AD, Mantovani A, Matsushima K, Murphy PM, Nibbs R, Nomiyama H, Power CA, Proudfoot AEI, Rosenkilde MM, Rot A, Sozzani S, Thelen M, Yoshie O, Zlotnik A. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev 2013; 66:1-79. [PMID: 24218476 DOI: 10.1124/pr.113.007724] [Citation(s) in RCA: 668] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sixteen years ago, the Nomenclature Committee of the International Union of Pharmacology approved a system for naming human seven-transmembrane (7TM) G protein-coupled chemokine receptors, the large family of leukocyte chemoattractant receptors that regulates immune system development and function, in large part by mediating leukocyte trafficking. This was announced in Pharmacological Reviews in a major overview of the first decade of research in this field [Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, Miller LH, Oppenheim JJ, and Power CA (2000) Pharmacol Rev 52:145-176]. Since then, several new receptors have been discovered, and major advances have been made for the others in many areas, including structural biology, signal transduction mechanisms, biology, and pharmacology. New and diverse roles have been identified in infection, immunity, inflammation, development, cancer, and other areas. The first two drugs acting at chemokine receptors have been approved by the U.S. Food and Drug Administration (FDA), maraviroc targeting CCR5 in human immunodeficiency virus (HIV)/AIDS, and plerixafor targeting CXCR4 for stem cell mobilization for transplantation in cancer, and other candidates are now undergoing pivotal clinical trials for diverse disease indications. In addition, a subfamily of atypical chemokine receptors has emerged that may signal through arrestins instead of G proteins to act as chemokine scavengers, and many microbial and invertebrate G protein-coupled chemokine receptors and soluble chemokine-binding proteins have been described. Here, we review this extended family of chemokine receptors and chemokine-binding proteins at the basic, translational, and clinical levels, including an update on drug development. We also introduce a new nomenclature for atypical chemokine receptors with the stem ACKR (atypical chemokine receptor) approved by the Nomenclature Committee of the International Union of Pharmacology and the Human Genome Nomenclature Committee.
Collapse
Affiliation(s)
- Francoise Bachelerie
- Chair, Subcommittee on Chemokine Receptors, Nomenclature Committee-International Union of Pharmacology, Bldg. 10, Room 11N113, NIH, Bethesda, MD 20892.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Braunersreuther V, Montecucco F, Pelli G, Galan K, Proudfoot AE, Belin A, Vuilleumier N, Burger F, Lenglet S, Caffa I, Soncini D, Nencioni A, Vallée JP, Mach F. Treatment with the CC chemokine-binding protein Evasin-4 improves post-infarction myocardial injury and survival in mice. Thromb Haemost 2013; 110:807-25. [PMID: 23925450 DOI: 10.1160/th13-04-0297] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022]
Abstract
Chemokines trigger leukocyte trafficking and are implicated in cardiovascular disease pathophysiology. Chemokine-binding proteins, called "Evasins" have been shown to inhibit both CC and CXC chemokine-mediated bioactivities. Here, we investigated whether treatment with Evasin-3 (CXC chemokine inhibitor) and Evasin-4 (CC chemokine inhibitor) could influence post-infarction myocardial injury and remodelling. C57Bl/6 mice were submitted in vivo to left coronary artery permanent ligature and followed up for different times (up to 21 days). After coronary occlusion, three intraperitoneal injections of 10 μg Evasin-3, 1 μg Evasin-4 or equal volume of vehicle (PBS) were performed at 5 minutes, 24 hours (h) and 48 h after ischaemia onset. Both anti-chemokine treatments were associated with the beneficial reduction in infarct size as compared to controls. This effect was accompanied by a decrease in post-infarction myocardial leukocyte infiltration, reactive oxygen species release, and circulating levels of CXCL1 and CCL2. Treatment with Evasin-4 induced a more potent effect, abrogating the inflammation already at one day after ischaemia onset. At days 1 and 21 after ischaemia onset, both anti-chemokine treatments failed to significantly improve cardiac function, remodelling and scar formation. At 21-day follow-up, mouse survival was exclusively improved by Evasin-4 treatment when compared to control vehicle. In conclusion, we showed that the selective inhibition of CC chemokines (i.e. CCL5) with Evasin-4 reduced cardiac injury/inflammation and improved survival. Despite the inhibition of CXC chemokine bioactivities, Evasin-3 did not affect mouse survival. Therefore, early inhibition of CC chemokines might represent a promising therapeutic approach to reduce the development of post-infarction heart failure in mice.
Collapse
Affiliation(s)
- Vincent Braunersreuther
- Fabrizio Montecucco, MD, PhD, Cardiology Division, Department of Medicine, Geneva University Hospital, Foundation for Medical Researches, 64 Avenue Roseraie, 1211 Geneva, Switzerland, Tel.: +41 223827238, Fax: +41 223827245, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Todd NW, Luzina IG, Atamas SP. Molecular and cellular mechanisms of pulmonary fibrosis. FIBROGENESIS & TISSUE REPAIR 2012; 5:11. [PMID: 22824096 PMCID: PMC3443459 DOI: 10.1186/1755-1536-5-11] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/28/2012] [Indexed: 12/22/2022]
Abstract
Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM) and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.
Collapse
Affiliation(s)
- Nevins W Todd
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
43
|
Galzi JL, Haas M, Frossard N, Hibert M. Why and how to find neutraligands targeting chemokines? DRUG DISCOVERY TODAY. TECHNOLOGIES 2012; 9:e227-e314. [PMID: 24063739 DOI: 10.1016/j.ddtec.2012.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
44
|
Ribeiro HJ, Procópio MS, Gomes JMM, Vieira FO, Russo RC, Balzuweit K, Chiarini-Garcia H, Santana Castro AC, Rizzo E, Corrêa JD. Functional dissimilarity of melanomacrophage centres in the liver and spleen from females of the teleost fish Prochilodus argenteus. Cell Tissue Res 2011; 346:417-25. [DOI: 10.1007/s00441-011-1286-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/07/2011] [Indexed: 11/29/2022]
|