1
|
Mahajan A, Kumar A, Chen L, Dhillon NK. LncRNA-536 and RNA Binding Protein RBM25 Interactions in Pulmonary Arterial Hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.610011. [PMID: 39253448 PMCID: PMC11383286 DOI: 10.1101/2024.08.27.610011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
OBJECTIVE Hyperproliferation of pulmonary artery smooth muscle cells (PASMCs) is one of the essential features of the maladaptive inward remodeling of the pulmonary arteries in pulmonary arterial hypertension (PAH). In this study, we define the mechanistic association between long-noncoding RNA: ENST00000495536 (Lnc-536) and anti-proliferative HOXB13 in mediating smooth muscle hyperplasia. METHODS Antisense oligonucleotide-based GapmeRs or plasmid overexpressing lnc-536 were used to evaluate the role of lnc-536 in mediating hyperproliferation of PDGF-treated or idiopathic PAH (IPAH) PASMCs. Further, we pulled down lnc536 to identify the proteins directly interacting with lnc536. The in-vivo role of lnc-536 was determined in Sugen-hypoxia and HIV-transgenic pulmonary hypertensive rats. RESULTS Increased levels of lnc-536 in PDGF-treated or IPAH PASMCs promote hyperproliferative phenotype by downregulating the HOXB13 expression. Knockdown of lnc-536 in-vivo prevented increased RVSP, Fulton Index, and pulmonary vascular remodeling in Sugen-Hypoxia rats. The lncRNA-536 pull-down assay demonstrated the interactions of RNA binding protein: RBM25 with SFPQ, a transcriptional regulator that has a binding motif on HOXB13 exon Further, The RNA-IP experiment using the SFPQ antibody showed direct interaction of RBM25 with SFPQ and knockdown of RBM25 resulted in increased interactions of SFPQ and HOXB13 mRNA while attenuating PASMC proliferation. Finally, we examined the role of lnc-536 and HOXB13 axis in the PASMCs exposed to the dual hit of HIV and a stimulant: cocaine as well. CONCLUSION lnc-536 acts as a decoy for RBM25, which in turn sequesters SFPQ, leading to the decrease in HOXB13 expression and hyperproliferation of smooth muscle cells associated with PAH development.
Collapse
Affiliation(s)
- Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
2
|
Mahajan A, Gunewardena S, Morris A, Clauss M, Dhillon NK. Analysis of MicroRNA Cargo in Circulating Extracellular Vesicles from HIV-Infected Individuals with Pulmonary Hypertension. Cells 2024; 13:886. [PMID: 38891019 PMCID: PMC11172129 DOI: 10.3390/cells13110886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 06/20/2024] Open
Abstract
The risk of developing pulmonary hypertension (PH) in people living with HIV is at least 300-fold higher than in the general population, and illicit drug use further potentiates the development of HIV-associated PH. The relevance of extracellular vesicles (EVs) containing both coding as well as non-coding RNAs in PH secondary to HIV infection and drug abuse is yet to be explored. We here compared the miRNA cargo of plasma-derived EVs from HIV-infected stimulant users with (HIV + Stimulants + PH) and without PH (HIV + Stimulants) using small RNA sequencing. The data were compared with 12 PH datasets available in the GEO database to identify potential candidate gene targets for differentially altered miRNAs using the following functional analysis tools: ingenuity pathway analysis (IPA), over-representation analysis (ORA), and gene set enrichment analysis (GSEA). MiRNAs involved in promoting cell proliferation and inhibition of intrinsic apoptotic signaling pathways were among the top upregulated miRNAs identified in EVs from the HIV + Stimulants + PH group compared to the HIV + Stimulants group. Alternatively, the downregulated miRNAs in the HIV + Stimulants + PH group suggested an association with the negative regulation of smooth muscle cell proliferation, IL-2 mediated signaling, and transmembrane receptor protein tyrosine kinase signaling pathways. The validation of significantly differentially expressed miRNAs in an independent set of HIV-infected (cocaine users and nondrug users) with and without PH confirmed the upregulation of miR-32-5p, 92-b-3p, and 301a-3p positively regulating cellular proliferation and downregulation of miR-5571, -4670 negatively regulating smooth muscle proliferation in EVs from HIV-PH patients. This increase in miR-301a-3p and decrease in miR-4670 were negatively correlated with the CD4 count and FEV1/FVC ratio, and positively correlated with viral load. Collectively, this data suggest the association of alterations in the miRNA cargo of circulating EVs with HIV-PH.
Collapse
Affiliation(s)
- Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alison Morris
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
| | - Matthias Clauss
- Pulmonary, Critical Care, Sleep and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Wen S, Unuma K, Funakoshi T, Aki T, Uemura K. Cocaine induces vascular smooth muscle cells proliferation via DRP1-mediated mitochondrial fission and PI3K/HIF-1α signaling. Biochem Biophys Res Commun 2023; 676:30-35. [PMID: 37481940 DOI: 10.1016/j.bbrc.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
Long-term cocaine abuse is associated with cardiovascular and pulmonary vascular complications. The vascular toxicity of cocaine can lead to vascular remodeling characterized by excessive proliferation of vascular smooth muscle cells. Though hypoxia-inducible factor (HIF) signaling and mitochondrial fission have been suggested to play essential roles in the pathogenesis of hypoxia-induced vascular remodeling, pathogenetic mechanism for cocaine-related vascular remodeling remains to be elucidated. In this study, we explore the effect of cocaine on the proliferation of vascular smooth muscle cells by in vitro experiments. The findings indicated that the cocaine-induced vascular smooth muscle cell hyperproliferation is achieved by enhancing DRP1-mediated mitochondrial fission and activating PI3K/HIF-1α signaling. Current findings suggested that mitochondrial fission would play a pivotal role in cocaine-related vascular remodeling and would be helpful in understanding the vascular toxicity of cocaine.
Collapse
Affiliation(s)
- Shuheng Wen
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
4
|
Cook CM, Craddock VD, Ram AK, Abraham AA, Dhillon NK. HIV and Drug Use: A Tale of Synergy in Pulmonary Vascular Disease Development. Compr Physiol 2023; 13:4659-4683. [PMID: 37358518 PMCID: PMC10693986 DOI: 10.1002/cphy.c210049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Over the past two decades, with the advent and adoption of highly active anti-retroviral therapy, HIV-1 infection, a once fatal and acute illness, has transformed into a chronic disease with people living with HIV (PWH) experiencing increased rates of cardio-pulmonary vascular diseases including life-threatening pulmonary hypertension. Moreover, the chronic consequences of tobacco, alcohol, and drug use are increasingly seen in older PWH. Drug use, specifically, can have pathologic effects on the cardiovascular health of these individuals. The "double hit" of drug use and HIV may increase the risk of HIV-associated pulmonary arterial hypertension (HIV-PAH) and potentiate right heart failure in this population. This article explores the epidemiology and pathophysiology of PAH associated with HIV and recreational drug use and describes the proposed mechanisms by which HIV and drug use, together, can cause pulmonary vascular remodeling and cardiopulmonary hemodynamic compromise. In addition to detailing the proposed cellular and signaling pathways involved in the development of PAH, this article proposes areas ripe for future research, including the influence of gut dysbiosis and cellular senescence on the pathobiology of HIV-PAH. © 2023 American Physiological Society. Compr Physiol 13:4659-4683, 2023.
Collapse
Affiliation(s)
- Christine M Cook
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Vaughn D Craddock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anil K Ram
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ashrita A Abraham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Kumar R, Aktay-Cetin Ö, Craddock V, Morales-Cano D, Kosanovic D, Cogolludo A, Perez-Vizcaino F, Avdeev S, Kumar A, Ram AK, Agarwal S, Chakraborty A, Savai R, de Jesus Perez V, Graham BB, Butrous G, Dhillon NK. Potential long-term effects of SARS-CoV-2 infection on the pulmonary vasculature: Multilayered cross-talks in the setting of coinfections and comorbidities. PLoS Pathog 2023; 19:e1011063. [PMID: 36634048 PMCID: PMC9836319 DOI: 10.1371/journal.ppat.1011063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its sublineages pose a new challenge to healthcare systems worldwide due to its ability to efficiently spread in immunized populations and its resistance to currently available therapies. COVID-19, although targeting primarily the respiratory system, is also now well established that later affects every organ in the body. Most importantly, despite the available therapy and vaccine-elicited protection, the long-term consequences of viral infection in breakthrough and asymptomatic individuals are areas of concern. In the past two years, investigators accumulated evidence on how the virus triggers our immune system and the molecular signals involved in the cross-talk between immune cells and structural cells in the pulmonary vasculature to drive pathological lung complications such as endothelial dysfunction and thrombosis. In the review, we emphasize recent updates on the pathophysiological inflammatory and immune responses associated with SARS-CoV-2 infection and their potential long-term consequences that may consequently lead to the development of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Öznur Aktay-Cetin
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Vaughn Craddock
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Daniel Morales-Cano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Ciber Enfermedades Respiratorias (Ciberes), Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Sergey Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Anil Kumar Ram
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Stuti Agarwal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Ananya Chakraborty
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
- Department of Internal Medicine, Justus Liebig University Giessen, Member of the DZL, Member of CPI, Giessen, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Vinicio de Jesus Perez
- Division of Pulmonary, Allergy, and Critical Care Medicine, Stanford University Medical Center, California, United States of America
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Lung Biology Center, Zuckerberg San Francisco General Hospital, San Francisco, California, United States of America
| | - Ghazwan Butrous
- Cardiopulmonary Sciences, University of Kent, Canterbury, United Kingdom
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
6
|
Eroume À Egom E, Shiwani HA, Nouthe B. From acute SARS-CoV-2 infection to pulmonary hypertension. Front Physiol 2022; 13:1023758. [PMID: 36601347 PMCID: PMC9806360 DOI: 10.3389/fphys.2022.1023758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
As the world progressively recovers from the acute stages of the coronavirus disease 2019 (COVID-19) pandemic, we may be facing new challenges regarding the long-term consequences of COVID-19. Accumulating evidence suggests that pulmonary vascular thickening may be specifically associated with COVID-19, implying a potential tropism of severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) virus for the pulmonary vasculature. Genetic alterations that may influence the severity of COVID-19 are similar to genetic drivers of pulmonary arterial hypertension. The pathobiology of the COVID-19-induced pulmonary vasculopathy shares many features (such as medial hypertrophy and smooth muscle cell proliferation) with that of pulmonary arterial hypertension. In addition, the presence of microthrombi in the lung vessels of individuals with COVID-19 during the acute phase, may predispose these subjects to the development of chronic thromboembolic pulmonary hypertension. These similarities raise the intriguing question of whether pulmonary hypertension (PH) may be a long-term sequela of SARS-COV-2 infection. Accumulating evidence indeed support the notion that SARS-COV-2 infection is indeed a risk factor for persistent pulmonary vascular defects and subsequent PH development, and this could become a major public health issue in the future given the large number of individuals infected by SARS-COV-2 worldwide. Long-term studies assessing the risk of developing chronic pulmonary vascular lesions following COVID-19 infection is of great interest for both basic and clinical research and may inform on the best long-term management of survivors.
Collapse
Affiliation(s)
- Emmanuel Eroume À Egom
- Institut du Savoir Montfort (ISM), University of Ottawa, Ottawa, ON, Canada,CIEL, Centre d’Innovation et de Commercialisation en Recherche Clinique et Bio-Médicale Immânow’EL, Béatitude/Nkolbisson, Yaoundé, Cameroon,Laboratory of Endocrinology and Radioisotopes, Institute of Medical Research and Medicinal Plants Studies (IMPM), Yaoundé, Cameroon,*Correspondence: Emmanuel Eroume À Egom,
| | - Haaris A. Shiwani
- Burnley General Hospital, East Lancashire Hospitals NHS Trust, Burnley, United Kingdom
| | - Brice Nouthe
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Medrano-Garcia S, Morales-Cano D, Barreira B, Vera-Zambrano A, Kumar R, Kosanovic D, Schermuly RT, Graham BB, Perez-Vizcaino F, Mathie A, Savai R, Pullamseti S, Butrous G, Fernández-Malavé E, Cogolludo A. HIV and Schistosoma Co-Exposure Leads to Exacerbated Pulmonary Endothelial Remodeling and Dysfunction Associated with Altered Cytokine Landscape. Cells 2022; 11:cells11152414. [PMID: 35954255 PMCID: PMC9368261 DOI: 10.3390/cells11152414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
HIV and Schistosoma infections have been individually associated with pulmonary vascular disease. Co-infection with these pathogens is very common in tropical areas, with an estimate of six million people co-infected worldwide. However, the effects of HIV and Schistosoma co-exposure on the pulmonary vasculature and its impact on the development of pulmonary vascular disease are largely unknown. Here, we have approached these questions by using a non-infectious animal model based on lung embolization of Schistosoma mansoni eggs in HIV-1 transgenic (HIV) mice. Schistosome-exposed HIV mice but not wild-type (Wt) counterparts showed augmented pulmonary arterial pressure associated with markedly suppressed endothelial-dependent vasodilation, increased endothelial remodeling and vessel obliterations, formation of plexiform-like lesions and a higher degree of perivascular fibrosis. In contrast, medial wall muscularization was similarly increased in both types of mice. Moreover, HIV mice displayed an impaired immune response to parasite eggs in the lung, as suggested by decreased pulmonary leukocyte infiltration, small-sized granulomas, and augmented residual egg burden. Notably, vascular changes in co-exposed mice were associated with increased expression of proinflammatory and profibrotic cytokines, including IFN-γ and IL-17A in CD4+ and γδ T cells and IL-13 in myeloid cells. Collectively, our study shows for the first time that combined pulmonary persistence of HIV proteins and Schistosoma eggs, as it may occur in co-infected people, alters the cytokine landscape and targets the vascular endothelium for aggravated pulmonary vascular pathology. Furthermore, it provides an experimental model for the understanding of pulmonary vascular disease associated with HIV and Schistosoma co-morbidity.
Collapse
Affiliation(s)
- Sandra Medrano-Garcia
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Daniel Morales-Cano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| | - Bianca Barreira
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alba Vera-Zambrano
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Rahul Kumar
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ralph Theo Schermuly
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Brian B. Graham
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Francisco Perez-Vizcaino
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Soni Pullamseti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35305 Giessen, Germany
- Department of internal Medicine, Justus-Liebig University, Member of the German Center for Lung Research (DZL), 35305 Giessen, Germany
| | - Ghazwan Butrous
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham ME4 4BF, UK
| | - Edgar Fernández-Malavé
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28040 Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid and Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red Enfermedades Respiratorias, 28040 Madrid, Spain
- Correspondence: (D.M.-C.); (A.C.); Tel.: +34-913947120 (A.C.)
| |
Collapse
|
8
|
Immune Cells in Pulmonary Arterial Hypertension. Heart Lung Circ 2022; 31:934-943. [PMID: 35361533 DOI: 10.1016/j.hlc.2022.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and serious cardiopulmonary disease; it is characterised by increased pulmonary arterial pressure and pulmonary vascular remodelling accompanied by disordered endothelial and smooth muscle cell proliferation within pulmonary arterioles and arteries. Although recent reports have suggested that dysregulated immunity and inflammation are key players in PAH pathogenesis, their roles in PAH progression remain unclear. Intriguingly, altered host immune cell distribution, number, and polarisation within the lung arterial vasculature have been linked to disease development. This review mainly focusses on the roles of different immune cells in PAH and discusses the underlying mechanisms.
Collapse
|
9
|
Song Q, Chen P, Wu SJ, Chen Y, Zhang Y. Differential Expression Profile of microRNAs and Tight Junction in the Lung Tissues of Rat With Mitomycin-C-Induced Pulmonary Veno-Occlusive Disease. Front Cardiovasc Med 2022; 9:746888. [PMID: 35252374 PMCID: PMC8889576 DOI: 10.3389/fcvm.2022.746888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 01/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background Pulmonary veno-occlusive disease (PVOD) is characterized by increased pulmonary vascular resistance. Currently, there is a lack of effective treatment. It is of great significance to explore molecular targets for treatment. This study investigated the differential expression profile of miRNAs and tight junction in the lung tissues of rats with mitomycin-C (MMC)-induced PVOD. Methods A total of 14 rats were divided into the control group and he PVOD group. We measured mean pulmonary arterial pressure (mPAP) and right ventricular hypertrophy index (RVHI). Pathological changes including those in lung tissues, pulmonary venules, and capillary were detected by H&E and orcein staining. Western blot was used to detect GCN2, ZO-1, occludin, and claudin-5 expression. We analyzed the miRNAs profile in the rat lung tissues by high-throughput sequencing. The top differentially expressed miRNAs were validated by using real-time polymerase chain reaction (RT-PCR). Results There were severe pulmonary artery hypertrophy/hyperplasia, thickening, and occlusion in the small pulmonary veins, pulmonary edema, and dilated capillaries in MMC-induced rats with PVOD. In addition, mPAP and RVHI were significantly increased (P < 0.05). The expression of GCN2 was significantly decreased (P < 0.05). A total of 106 differentially expressed miRNAs were identified. According to the fold changes, the top ten upregulated miRNAs were miRNA-543-3p, miRNA-802-5p, miRNA-493-3p, miRNA-539-3p, miRNA-495, miRNA-380-5p, miRNA-214-5p, miRNA-539-5p, miRNA-190a-3p, and miRNA-431. The top 10 downregulated miRNAs were miRNA-201-3p, miRNA-141-3p, miRNA-1912-3p, miRNA-500-5p, miRNA-3585-5p, miRNA-448-3p, miRNA-509-5p, miRNA-3585-3p, miRNA-449c-5p, and miRNA-509-3p. RT-PCR confirmed that miRNA-214-5p was upregulated, while miRNA-141-3p was downregulated (P < 0.05). Functional analysis showed various signaling pathways and metabolic processes, such as fatty acid biosynthesis, tight junction, and the mTOR signaling pathway. In addition, the expression of the tight junction-related protein of ZO-1, occludin, and claudin-5 was significantly decreased in rats with PVOD (P < 0.05). Conclusion miRNAs may be involved in the pathogenesis of PVOD. Furthermore, ZO-1, occludin, and claudin-5 verification confirmed that the tight junction may be involved in the development of the disease.
Collapse
Affiliation(s)
- Qing Song
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Shang-Jie Wu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Disease, Central South University, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
- *Correspondence: Yan Zhang
| |
Collapse
|
10
|
Butrous G. Human Immunodeficiency Viruses and its effect on the Pulmonary Vascular bed. Am J Physiol Lung Cell Mol Physiol 2021; 321:L1062-L1066. [PMID: 34755531 DOI: 10.1152/ajplung.00451.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
December. 1st 2021 is "World AIDS Day" reminding us that HIV infection is still widespread and that many of its long-term effects can be deadly. One of these complications is its effect on the pulmonary vascular beds, leading to an increase in the pulmonary pressure, causing the clinical manifestation of "pulmonary hypertension". Unfortunately, we are still far from fully understanding the prevalence, mechanics, and pathobiology of "HIV pulmonary hypertension", especially in Africa and other developing countries where HIV is still common. In addition, the impact of other factors like co-infection and illicit drugs can add and modify the effect on the pulmonary vascular bed, complicating the pathological and clinical effects of HIV. Thus, "World AIDS Day" can be an impetus to pursue further research in this area.
Collapse
Affiliation(s)
- Ghazwan Butrous
- Medway School of Pharmacy, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
11
|
Krishnamachary B, Mahajan A, Kumar A, Agarwal S, Mohan A, Chen L, Hsue PY, Chalise P, Morris A, Dhillon NK. Extracellular Vesicle TGF-β1 Is Linked to Cardiopulmonary Dysfunction in Human Immunodeficiency Virus. Am J Respir Cell Mol Biol 2021; 65:413-429. [PMID: 34014809 PMCID: PMC8525206 DOI: 10.1165/rcmb.2021-0010oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/18/2021] [Indexed: 01/21/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as important mediators in cell-cell communication; however, their relevance in pulmonary hypertension (PH) secondary to human immunodeficiency virus (HIV) infection is yet to be explored. Considering that circulating monocytes are the source of the increased number of perivascular macrophages surrounding the remodeled vessels in PH, this study aimed to identify the role of circulating small EVs and EVs released by HIV-infected human monocyte-derived macrophages in the development of PH. We report significantly higher numbers of plasma-derived EVs carrying higher levels of TGF-β1 (transforming growth factor-β1) in HIV-positive individuals with PH compared with individuals without PH. Importantly, levels of these TGF-β1-loaded, plasma-derived EVs correlated with pulmonary arterial systolic pressures and CD4 counts but did not correlate with the Dl CO or viral load. Correspondingly, enhanced TGF-β1-dependent pulmonary endothelial injury and smooth muscle hyperplasia were observed. HIV-1 infection of monocyte-derived macrophages in the presence of cocaine resulted in an increased number of TGF-β1-high EVs, and intravenous injection of these EVs in rats led to increased right ventricle systolic pressure accompanied by myocardial injury and increased levels of serum ET-1 (endothelin-1), TNF-α, and cardiac troponin-I. Conversely, pretreatment of rats with TGF-β receptor 1 inhibitor prevented these EV-mediated changes. Findings define the ability of macrophage-derived small EVs to cause pulmonary vascular modeling and PH via modulation of TGF-β signaling and suggest clinical implications of circulating TGF-β-high EVs as a potential biomarker of HIV-associated PH.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Aatish Mahajan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Ashok Kumar
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| | - Priscilla Y. Hsue
- Department of Medicine, University of California San Francisco, San Francisco, California; and
| | - Prabhakar Chalise
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Alison Morris
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and
| |
Collapse
|
12
|
Butsabong T, Felippe M, Campagnolo P, Maringer K. The emerging role of perivascular cells (pericytes) in viral pathogenesis. J Gen Virol 2021; 102. [PMID: 34424156 PMCID: PMC8513640 DOI: 10.1099/jgv.0.001634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viruses may exploit the cardiovascular system to facilitate transmission or within-host dissemination, and the symptoms of many viral diseases stem at least in part from a loss of vascular integrity. The microvascular architecture is comprised of an endothelial cell barrier ensheathed by perivascular cells (pericytes). Pericytes are antigen-presenting cells (APCs) and play crucial roles in angiogenesis and the maintenance of microvascular integrity through complex reciprocal contact-mediated and paracrine crosstalk with endothelial cells. We here review the emerging ways that viruses interact with pericytes and pay consideration to how these interactions influence microvascular function and viral pathogenesis. Major outcomes of virus-pericyte interactions include vascular leakage or haemorrhage, organ tropism facilitated by barrier disruption, including viral penetration of the blood-brain barrier and placenta, as well as inflammatory, neurological, cognitive and developmental sequelae. The underlying pathogenic mechanisms may include direct infection of pericytes, pericyte modulation by secreted viral gene products and/or the dysregulation of paracrine signalling from or to pericytes. Viruses we cover include the herpesvirus human cytomegalovirus (HCMV, Human betaherpesvirus 5), the retrovirus human immunodeficiency virus (HIV; causative agent of acquired immunodeficiency syndrome, AIDS, and HIV-associated neurocognitive disorder, HAND), the flaviviruses dengue virus (DENV), Japanese encephalitis virus (JEV) and Zika virus (ZIKV), and the coronavirus severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2; causative agent of coronavirus disease 2019, COVID-19). We touch on promising pericyte-focussed therapies for treating the diseases caused by these important human pathogens, many of which are emerging viruses or are causing new or long-standing global pandemics.
Collapse
Affiliation(s)
- Teemapron Butsabong
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Mariana Felippe
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Paola Campagnolo
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
13
|
Pulmonary Vascular Diseases Associated with Infectious Disease-Schistosomiasis and Human Immunodeficiency Viruses. Clin Chest Med 2021; 42:71-80. [PMID: 33541618 DOI: 10.1016/j.ccm.2020.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide variety of infectious diseases are major contributors to the causation of pulmonary vascular disease and, consequently, pulmonary hypertension, especially in the developing world. Schistosomiasis and human immunodeficiency virus are the most common infections that are known to contribute to pulmonary hypertension worldwide. The resultant inflammation and immunologic milieu caused by infection are the main pathologic processes affecting the pulmonary vasculature.
Collapse
|
14
|
Krishnan M, Barnett CF. Advances in the diagnosis and treatment of HIV-associated pulmonary arterial hypertension. Expert Opin Orphan Drugs 2020. [DOI: 10.1080/21678707.2020.1770080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mrinalini Krishnan
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Department of Cardiology, Division of Advanced Heart Failure, Washington, D.C, USA
| | - Christopher F. Barnett
- MedStar Heart and Vascular Institute, MedStar Washington Hospital Center, Department of Cardiology, Division of Advanced Heart Failure, Washington, D.C, USA
| |
Collapse
|
15
|
Agarwal S, Sharma H, Chen L, Dhillon NK. NADPH oxidase-mediated endothelial injury in HIV- and opioid-induced pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1097-L1108. [PMID: 32233792 DOI: 10.1152/ajplung.00480.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously demonstrated that the combined exposure of human pulmonary microvascular endothelial cells (HPMECs) to morphine and viral protein(s) results in the oxidative stress-mediated induction of autophagy, leading to shift in the cells from early apoptotic to apoptosis-resistant proliferative status associated with the angioproliferative remodeling observed in pulmonary arterial hypertension (PAH). In this study, we tried to delineate the major source of HIV-1 protein Tat and morphine induced oxidative burst in HPMECs and its consequences on vascular remodeling and PAH in an in vivo model. We observed switch from the initial increased expression of NADPH oxidase (NOX) 2 in response to acute treatment of morphine and HIV-Tat to later increased expression of NOX4 on chronic treatment in the endoplasmic reticulum of HPMECs without any alterations in the mitochondria. Furthermore, NOX-dependent induction of autophagy was observed to play a pivotal role in regulating the endothelial cell survival. Our in vivo findings showed significant increase in pulmonary vascular remodeling, right ventricular systolic pressure, and Fulton index in HIV-transgenic rats on chronic administration of morphine. This was associated with increased oxidative stress in lung tissues and rat pulmonary microvascular endothelial cells. Additionally, endothelial cells from morphine-treated HIV-transgenic rats demonstrated increased expression of NOX2 and NOX4 proteins, inhibition of which ameliorated their increased survival upon serum starvation. In conclusion, this study describes NADPH oxidases as one of the main players in the oxidative stress-mediated endothelial dysfunction on the dual hit of HIV-viral protein(s) and opioids.
Collapse
Affiliation(s)
- Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ling Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
16
|
Alzghoul BN, Abualsuod A, Alqam B, Innabi A, Palagiri DR, Gheith Z, Amer FN, Meena NK, Kenchaiah S. Cocaine Use and Pulmonary Hypertension. Am J Cardiol 2020; 125:282-288. [PMID: 31757354 DOI: 10.1016/j.amjcard.2019.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
Abstract
Evidence linking cocaine to the risk of pulmonary hypertension (PH) is limited and inconsistent. We examined whether cocaine use, in the absence of other known causes of PH, was associated with elevated systolic pulmonary artery pressure (sPAP) and increased probability of PH. We compared patients with documented cocaine use to a randomly selected age, sex, and race-matched control group without history of cocaine use. All participants had no known causes of PH and underwent echocardiography for noninvasive estimation of sPAP. We used routinely reported echocardiographic parameters and contemporary guidelines to grade the probability of PH. In 88 patients with documented cocaine use (mean age ± standard deviation 51.7 ± 9.5 years), 33% were women and 89% were of Black race. The commonest route of cocaine use was smoking (74%). Cocaine users compared with the control group had significantly higher sPAP (mean ± standard deviation, 30.1 ± 13.1 vs 22.0 ± 9.8 mm Hg, p <0.001) and greater likelihood of PH (25% vs 10%, p = 0.012). In multivariable analyses adjusted for potential confounders including left ventricular diastolic dysfunction, cocaine use conferred a fivefold greater odds of echocardiographic PH (p = 0.006). Additionally, a stepwise increase in the likelihood of PH was noted across cocaine users with negative or no drug screen on the day of echocardiography to cocaine users with a positive drug screen (multivariable p for trend = 0.008). In conclusion, cocaine use was associated with a higher sPAP and an increased likelihood of echocardiographic PH with a probable acute-on-chronic effect.
Collapse
|
17
|
Surapaneni PK, Abe T, Fas N. Cocaine-Induced Ventilation/Perfusion Mismatch Mimicking Pulmonary Embolism. J Investig Med High Impact Case Rep 2020; 8:2324709620906962. [PMID: 32054344 PMCID: PMC7025422 DOI: 10.1177/2324709620906962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pulmonary complications from cocaine use can range from bronchospasm to vasospasm leading to pulmonary infarction. Profound vasospasm may also lead to perfusion defects presenting as pulmonary embolism on ventilation-perfusion scan. A 65-year-old patient with a past medical history of substance abuse and chronic kidney disease presents to the emergency department with sudden-onset chest pain and shortness of breath. Ventilation-perfusion scan revealed filling defect most notably in the lingual lobe. He was later discharged on warfarin for the management of pulmonary embolism. The patient presented to the emergency department 2 weeks later with similar complaints; the international normalized ratio was subtherapeutic, and urine drug screen was positive for cocaine. Repeat ventilation-perfusion scan revealed no filling defects. Follow-up bilateral venous Doppler of lower extremities and D-dimer were within normal limits.
Collapse
|
18
|
Basyal B, Jarrett H, Barnett CF. Pulmonary Hypertension in HIV. Can J Cardiol 2019; 35:288-298. [PMID: 30825951 DOI: 10.1016/j.cjca.2019.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Human immunodeficiency virus-associated pulmonary arterial hypertension (HIV-PAH) is important to recognize given its association with significant morbidity and mortality. With the introduction of antiretroviral therapy, the focus of disease management has largely shifted from treating immunodeficiency-related opportunistic infections to managing chronic cardiopulmonary complications. Symptoms are nonspecific, and a high index of clinical suspicion is needed to avoid significant delay in the diagnosis of HIV-PAH. Although several viral proteins have been implicated in the pathogenesis of HIV-PAH, the exact mechanism remains uncertain. Further studies are needed to elucidate precise pathogenic mechanisms, early diagnostic tools, and novel therapeutic targets to improve prognosis of this severe complication.
Collapse
Affiliation(s)
- Binaya Basyal
- MedStar Heart and Vascular Institute, Washington Hospital Center, Washington, DC, USA
| | - Harish Jarrett
- MedStar Heart and Vascular Institute, Washington Hospital Center, Washington, DC, USA; MedStar Georgetown University Hospital, Washington, DC, USA
| | - Christopher F Barnett
- MedStar Heart and Vascular Institute, Washington Hospital Center, Washington, DC, USA; MedStar Georgetown University Hospital, Washington, DC, USA.
| |
Collapse
|
19
|
|
20
|
Cribbs SK, Crothers K, Morris A. Pathogenesis of HIV-Related Lung Disease: Immunity, Infection, and Inflammation. Physiol Rev 2019; 100:603-632. [PMID: 31600121 DOI: 10.1152/physrev.00039.2018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite anti-retroviral therapy (ART), human immunodeficiency virus-1 (HIV)-related pulmonary disease continues to be a major cause of morbidity and mortality for people living with HIV (PLWH). The spectrum of lung diseases has changed from acute opportunistic infections resulting in death to chronic lung diseases for those with access to ART. Chronic immune activation and suppression can result in impairment of innate immunity and progressive loss of T cell and B cell functionality with aberrant cytokine and chemokine responses systemically as well as in the lung. HIV can be detected in the lungs of PLWH and has profound effects on cellular immune functions. In addition, HIV-related lung injury and disease can occur secondary to a number of mechanisms including altered pulmonary and systemic inflammatory pathways, viral persistence in the lung, oxidative stress with additive effects of smoke exposure, microbial translocation, and alterations in the lung and gut microbiome. Although ART has had profound effects on systemic viral suppression in HIV, the impact of ART on lung immunology still needs to be fully elucidated. Understanding of the mechanisms by which HIV-related lung diseases continue to occur is critical to the development of new preventive and therapeutic strategies to improve lung health in PLWH.
Collapse
Affiliation(s)
- Sushma K Cribbs
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kristina Crothers
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alison Morris
- Pulmonary Medicine, Department of Veterans Affairs, Atlanta, Georgia; Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, Emory University, Atlanta, Georgia; Department of Medicine, Veterans Affairs Puget Sound Health Care System and Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington; and Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Chinnappan M, Gunewardena S, Chalise P, Dhillon NK. Analysis of lncRNA-miRNA-mRNA Interactions in Hyper-proliferative Human Pulmonary Arterial Smooth Muscle Cells. Sci Rep 2019; 9:10533. [PMID: 31324852 PMCID: PMC6642142 DOI: 10.1038/s41598-019-46981-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
We previously reported enhanced proliferation of smooth muscle cells on the combined exposure of HIV proteins and cocaine leading to the development of HIV-pulmonary arterial hypertension. Here, we attempt to comprehensively understand the interactions between long noncoding RNAs (lncRNAs), mRNAs and micro-RNAs (miRNAs) to determine their role in smooth muscle hyperplasia. Differential expression of lncRNAs, mRNAs and miRNAs were obtained by microarray and small-RNA sequencing from HPASMCs treated with and without cocaine and/or HIV-Tat. LncRNA to mRNA associations were conjectured by analyzing their genomic proximity and by interrogating their association to vascular diseases and cancer co-expression patterns reported in the relevant databases. Neuro-active ligand receptor signaling, Ras signaling and PI3-Akt pathway were among the top pathways enriched in either differentially expressed mRNAs or mRNAs associated to lncRNAs. HPASMC with combined exposure to cocaine and Tat (C + T) vs control identified the following top lncRNA-mRNA pairs, ENST00000495536-HOXB13, T216482-CBL, ENST00000602736-GDF7, and, TCONS_00020413-RND1. Many of the down-regulated miRNAs in the HPASMCs treated with C + T were found to be anti-proliferative and targets of up-regulated lncRNAs targeting up-regulated mRNAs, including down-regulation of miR-185, -491 and up-regulation of corresponding ENST00000585387. Specific knock down of the selected lncRNAs highlighted the importance of non-coding RNAs in smooth muscle hyperplasia.
Collapse
MESH Headings
- Cocaine/pharmacology
- Gene Expression Regulation
- Gene Knockdown Techniques
- Gene Ontology
- HIV Infections/complications
- Humans
- Hyperplasia
- Hypertension, Pulmonary/etiology
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- RNA, Long Noncoding/biosynthesis
- RNA, Long Noncoding/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Tissue Array Analysis
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Sumedha Gunewardena
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Prabhakar Chalise
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
22
|
Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, Oudiz R, Satoh T, Torres F, Torbicki A. Diagnosis of pulmonary hypertension. Eur Respir J 2019; 53:1801904. [PMID: 30545972 PMCID: PMC6351333 DOI: 10.1183/13993003.01904-2018] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
A revised diagnostic algorithm provides guidelines for the diagnosis of patients with suspected pulmonary hypertension, both prior to and following referral to expert centres, and includes recommendations for expedited referral of high-risk or complicated patients and patients with confounding comorbidities. New recommendations for screening high-risk groups are given, and current diagnostic tools and emerging diagnostic technologies are reviewed.
Collapse
Affiliation(s)
- Adaani Frost
- Dept of Medicine, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - David Badesch
- Divisions of Pulmonary Sciences and Critical Care Medicine, and Cardiology, University of Colorado, Denver, CO, USA
| | - J. Simon R. Gibbs
- National Heart and Lung Institute, Imperial College of London, London, UK
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Healthcare NHS Trust and Imperial College London, Hammersmith Hospital, London, UK
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Alessandra Manes
- Cardio-Thoracic and Vascular Dept, Sant'Orsola University Hospital, Bologna, Italy
| | - Ronald Oudiz
- LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Toru Satoh
- Division of Cardiology, Kyorin University Hospital, Tokyo, Japan
| | - Fernando Torres
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Adam Torbicki
- Dept of Pulmonary Circulation and Cardidology, Medical Center for Postgraduate Education, ECZ-Otwock, Otwock, Poland
| |
Collapse
|
23
|
Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, Oudiz R, Satoh T, Torres F, Torbicki A. Diagnosis of pulmonary hypertension. Eur Respir J 2018. [PMID: 30545972 DOI: 10.1183/13993003.01904‐2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A revised diagnostic algorithm provides guidelines for the diagnosis of patients with suspected pulmonary hypertension, both prior to and following referral to expert centres, and includes recommendations for expedited referral of high-risk or complicated patients and patients with confounding comorbidities. New recommendations for screening high-risk groups are given, and current diagnostic tools and emerging diagnostic technologies are reviewed.
Collapse
Affiliation(s)
- Adaani Frost
- Dept of Medicine, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - David Badesch
- Divisions of Pulmonary Sciences and Critical Care Medicine, and Cardiology, University of Colorado, Denver, CO, USA
| | - J Simon R Gibbs
- National Heart and Lung Institute, Imperial College of London, London, UK
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Healthcare NHS Trust and Imperial College London, Hammersmith Hospital, London, UK
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Alessandra Manes
- Cardio-Thoracic and Vascular Dept, Sant'Orsola University Hospital, Bologna, Italy
| | - Ronald Oudiz
- LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Toru Satoh
- Division of Cardiology, Kyorin University Hospital, Tokyo, Japan
| | - Fernando Torres
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Adam Torbicki
- Dept of Pulmonary Circulation and Cardidology, Medical Center for Postgraduate Education, ECZ-Otwock, Otwock, Poland
| |
Collapse
|
24
|
Abstract
: Improved survival among HIV-1-infected individuals with the advent of antiretroviral therapy has clearly led to a greater prevalence of noninfectious complications. One of the most devastating sequelae in these individuals is the development of pulmonary arterial hypertension (PAH). Various epidemiological studies suggest worse survival of HIV-PAH patients when compared with other forms of PAH. Given that only a subset and not all HIV-infected individuals develop HIV-PAH, it is suggested that an additional second-hit of genetic or environmental trigger is needed for the development of PAH. In this context, it has been well documented that HIV patients who abuse illicit drugs such as stimulants, opioids, and the like, are more susceptible to develop PAH. In this review, we highlight the studies that support the significance of a double hit of HIV and drug abuse in the incidence of PAH and focus on the research that has been undertaken to unravel the pathobiology and vascular remodeling mechanisms underlying the deleterious synergy between HIV infection and drugs of abuse in orchestrating the development of PAH.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW HIV-associated pulmonary arterial hypertension (HIV-PAH) is a well-recognized severe cardiovascular complication of HIV infection that confers an adverse prognosis irrespective of the stage of disease. This review will summarize the available data on HIV-PAH epidemiology and provide insights into the pathophysiology and therapeutic strategies currently available. RECENT FINDINGS Patients with HIV are several thousand times more likely to develop HIV-PAH compared to the incidence of idiopathic PAH. Several HIV viral proteins are implicated in the pathogenesis although the exact mechanism remains unknown. In the past two decades, there have been several new treatment strategies that appear effective in treating HIV-PAH. Novel pathophysiologic mechanisms implicating the transforming growth factor β receptor family may offer novel therapeutic targets in the future. SUMMARY As antiretroviral therapy continues to improve health outcomes for patients with HIV, there needs to be a shift in focus of care toward chronic noncommunicable diseases. Among cardiovascular disease-complicating chronic HIV infection, HIV-PAH is a severe progressive disease that leads to right heart failure and death. Currently available treatment strategies are effective, however, furthering our understanding of HIV-PAH will be critical as it is likely to become the commonest cause of PAH worldwide.
Collapse
|
26
|
Sharma H, Chinnappan M, Agarwal S, Dalvi P, Gunewardena S, O'Brien-Ladner A, Dhillon NK. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse. FASEB J 2018; 32:5174-5185. [PMID: 29672222 PMCID: PMC6103174 DOI: 10.1096/fj.201701558r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our previous studies consistently demonstrate enhanced pulmonary vascular remodeling in HIV–infected intravenous drug users, and in simian immunodeficiency virus–infected macaques or HIV-transgenic rats exposed to opioids or cocaine. Although we reported an associated increase in perivascular inflammation, the exact role of inflammatory cells in the development of pulmonary vascular remodeling remains unknown. In this study, HIV–infected and cocaine (H+C)–treated human monocyte derived macrophages released a higher number of extracellular vesicles (EVs), compared to HIV-infected or uninfected cocaine-treated macrophages, with a significant increase in the particle size range to 100–150 nm. Treatment of primary human pulmonary arterial smooth muscle cells (HPASMCs) with these EVs resulted in a significant increase in smooth muscle proliferation. We also observed a significant increase in the miRNA-130a level in the EVs derived from H+C-treated macrophages that corresponded with the decrease in the expression of phosphatase and tensin homolog and tuberous sclerosis 1 and 2 and activation of PI3K/protein kinase B signaling in HPASMCs on addition of these EVs. Transfection of HPASMCs with antagomir-130a–ameliorated the EV-induced effect. Thus, we conclude that EVs derived from H+C-treated macrophages promote pulmonary smooth muscle proliferation by delivery of its prosurvival miRNA cargo, which may play a crucial role in the development of PAH.—Sharma, H., Chinnappan, M., Agarwal, S., Dalvi, P., Gunewardena, S., O’Brien-Ladner, A., Dhillon, N. K. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse.
Collapse
Affiliation(s)
- Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amy O'Brien-Ladner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
27
|
Chinnappan M, Mohan A, Agarwal S, Dalvi P, Dhillon NK. Network of MicroRNAs Mediate Translational Repression of Bone Morphogenetic Protein Receptor-2: Involvement in HIV-Associated Pulmonary Vascular Remodeling. J Am Heart Assoc 2018; 7:e008472. [PMID: 29478969 PMCID: PMC5866341 DOI: 10.1161/jaha.117.008472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 01/26/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Earlier, we reported that the simultaneous exposure of pulmonary arterial smooth muscle cells to HIV proteins and cocaine results in the attenuation of antiproliferative bone morphogenetic protein receptor-2 (BMPR2) protein expression without any decrease in its mRNA levels. Therefore, in this study, we aimed to investigate the micro RNA-mediated posttranscriptional regulation of BMPR2 expression. METHODS AND RESULTS We identified a network of BMPR2 targeting micro RNAs including miR-216a to be upregulated in response to cocaine and Tat-mediated augmentation of oxidative stress and transforming growth factor-β signaling in human pulmonary arterial smooth muscle cells. By using a loss or gain of function studies, we observed that these upregulated micro RNAs are involved in the Tat- and cocaine-mediated smooth muscle hyperplasia via regulation of BMPR2 protein expression. These in vitro findings were further corroborated using rat pulmonary arterial smooth muscle cells isolated from HIV transgenic rats exposed to cocaine. More importantly, luciferase reporter and in vitro translation assays demonstrated that direct binding of novel miR-216a and miR-301a to 3'UTR of BMPR2 results in the translational repression of BMPR2 without any degradation of its mRNA. CONCLUSIONS We identified for the first time miR-216a as a negative modulator of BMPR2 translation and observed it to be involved in HIV protein(s) and cocaine-mediated enhanced proliferation of pulmonary smooth muscle cells.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Binding Sites
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cell Proliferation
- Cells, Cultured
- Cocaine/pharmacology
- Down-Regulation
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Rats, Transgenic
- Signal Transduction
- Vascular Remodeling/drug effects
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, KS
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
28
|
Orcholski ME, Yuan K, Rajasingh C, Tsai H, Shamskhou EA, Dhillon NK, Voelkel NF, Zamanian RT, de Jesus Perez VA. Drug-induced pulmonary arterial hypertension: a primer for clinicians and scientists. Am J Physiol Lung Cell Mol Physiol 2018; 314:L967-L983. [PMID: 29417823 DOI: 10.1152/ajplung.00553.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Drug-induced pulmonary arterial hypertension (D-PAH) is a form of World Health Organization Group 1 pulmonary hypertension (PH) defined by severe small vessel loss and obstructive vasculopathy, which leads to progressive right heart failure and death. To date, 16 different compounds have been associated with D-PAH, including anorexigens, recreational stimulants, and more recently, several Food and Drug Administration-approved medications. Although the clinical manifestation, pathology, and hemodynamic profile of D-PAH are indistinguishable from other forms of pulmonary arterial hypertension, its clinical course can be unpredictable and to some degree dependent on removal of the offending agent. Because only a subset of individuals develop D-PAH, it is probable that genetic susceptibilities play a role in the pathogenesis, but the characterization of the genetic factors responsible for these susceptibilities remains rudimentary. Besides aggressive treatment with PH-specific therapies, the major challenge in the management of D-PAH remains the early identification of compounds capable of injuring the pulmonary circulation in susceptible individuals. The implementation of pharmacovigilance, precision medicine strategies, and global warning systems will help facilitate the identification of high-risk drugs and incentivize regulatory strategies to prevent further outbreaks of D-PAH. The goal for this review is to inform clinicians and scientists of the prevalence of D-PAH and to highlight the growing number of common drugs that have been associated with the disease.
Collapse
Affiliation(s)
- Mark E Orcholski
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Ke Yuan
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Halley Tsai
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California
| | - Elya A Shamskhou
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | | | - Norbert F Voelkel
- School of Pharmacy, Virginia Commonwealth University , Richmond, Virginia
| | - Roham T Zamanian
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| | - Vinicio A de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center , Stanford, California.,The Vera Moulton Wall Center for Pulmonary Vascular Medicine, Stanford University Medical Center , Stanford, California.,Stanford Cardiovascular Institute, Stanford University Medical Center , Stanford, California
| |
Collapse
|
29
|
Dalvi P, Sharma H, Konstantinova T, Sanderson M, Brien-Ladner AO, Dhillon NK. Hyperactive TGF-β Signaling in Smooth Muscle Cells Exposed to HIV-protein(s) and Cocaine: Role in Pulmonary Vasculopathy. Sci Rep 2017; 7:10433. [PMID: 28874783 PMCID: PMC5585314 DOI: 10.1038/s41598-017-10438-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/09/2017] [Indexed: 01/22/2023] Open
Abstract
We earlier demonstrated synergistic increase in the proliferation of pulmonary smooth muscle cells on exposure to HIV-proteins and/or cocaine due to severe down-modulation of bone morphogenetic protein receptor (BMPR) axis: the anti-proliferative arm of TGF-β super family of receptors. Here, now we demonstrate the effect of HIV-Tat and cocaine on the proliferative TGF-β signaling cascade. We observed a significant increase in the secretion of TGF-β1 ligand along with enhanced protein expression of TGFβ Receptor (TGFβR)-1, TGFβR-2 and phosphorylated SMAD2/3 in human pulmonary arterial smooth muscle cells on treatment with cocaine and Tat. Further, we noticed an increase in the levels of p-TAK1 complexed with TGFβR-2. Concomitant to this a significant increase in the activation of TAK1-mediated, SMAD-independent downstream signaling molecules: p-MKK4 and p-JNK was observed. However, activation of MKK3/6-p38MAPK, another axis downstream of TAK1 was found to be reduced due to attenuation in the protein levels of BMPR2. Both SMAD and non-SMAD dependent TGFβR cascades were found to contribute to hyper-proliferation. Finally the increase in the levels of phosphorylated TGFβR1 and TGFβR2 on exposure to HIV-proteins and cocaine was confirmed in pulmonary smooth muscle cells from cocaine injected HIV-transgenic rats and in total lung extracts from HIV infected cocaine and/or opioid users.
Collapse
Affiliation(s)
- Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tomara Konstantinova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Miles Sanderson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amy O' Brien-Ladner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA. .,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
30
|
Dalvi P, Spikes L, Allen J, Gupta VG, Sharma H, Gillcrist M, Montes de Oca J, O'Brien-Ladner A, Dhillon NK. Effect of Cocaine on Pulmonary Vascular Remodeling and Hemodynamics in Human Immunodeficiency Virus-Transgenic Rats. Am J Respir Cell Mol Biol 2017; 55:201-12. [PMID: 26820592 DOI: 10.1165/rcmb.2015-0264oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human immunodeficiency virus (HIV)-related pulmonary arterial hypertension has been found to be more prevalent in intravenous drug users. Our earlier cell-culture findings reported down-regulation of bone morphogenetic protein receptors (BMPRs) in combination with enhanced proliferation of human pulmonary arterial smooth muscle cells (PASMCs) in the presence of HIV-Trans-activator of transcription (Tat) and cocaine compared with either treatment alone. Here, we report physiologic evidence of significant increases in mean pulmonary arterial pressure in HIV-transgenic (Tg) rats intraperitoneally administered 40 mg/kg body weight cocaine (HIV-cocaine group) once daily for 21 days when compared with HIV-Tg rats given saline (HIV group) or wild-type (WT) Fischer 334 rats treated with (WT-cocaine group) and without cocaine (WT group). In addition, right ventricle systolic pressure was also found to be significantly higher in the HIV-cocaine rats compared with the WT group. Significant down-regulation in protein expression of BMPR-2 and BMPR-1B was observed in total lung extract from HIV-cocaine rats compared with the other three groups. Furthermore, the PASMCs isolated from HIV-cocaine rats demonstrated a higher level of proliferation and lower levels of apoptosis compared with cells isolated from other rat groups. Interestingly, corroborating our earlier cell-culture findings, we observed higher expression of BMPR-2 and BMPR-1B messenger RNA and significantly lower levels of BMPR-2 and BMPR-1B protein in HIV-cocaine PASMCs compared with cells isolated from all other groups. In conclusion, our findings support an additive effect of cocaine and HIV on smooth muscle dysfunction, resulting in enhanced pulmonary vascular remodeling with associated elevation of mean pulmonary arterial pressure and right ventricle systolic pressure in HIV-Tg rats exposed to cocaine.
Collapse
Affiliation(s)
- Pranjali Dalvi
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Leslie Spikes
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Julie Allen
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Vijayalaxmi G Gupta
- 2 Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Himanshu Sharma
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Marion Gillcrist
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | | | - Amy O'Brien-Ladner
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, and
| | - Navneet K Dhillon
- 1 Department of Medicine, Division of Pulmonary and Critical Care Medicine, and.,2 Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
31
|
Yang L, Chen X, Simet SM, Hu G, Cai Y, Niu F, Kook Y, Buch SJ. Reactive Oxygen Species/Hypoxia-Inducible Factor-1α/Platelet-Derived Growth Factor-BB Autocrine Loop Contributes to Cocaine-Mediated Alveolar Epithelial Barrier Damage. Am J Respir Cell Mol Biol 2017; 55:736-748. [PMID: 27391108 DOI: 10.1165/rcmb.2016-0096oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abuse of psychostimulants, such as cocaine, has been shown to be closely associated with complications of the lung, such as pulmonary hypertension, edema, increased inflammation, and infection. However, the mechanism by which cocaine mediates impairment of alveolar epithelial barrier integrity that underlies various pulmonary complications has not been well determined. Herein, we investigate the role of cocaine in disrupting the alveolar epithelial barrier function and the associated signaling cascade. Using the combinatorial electric cell-substrate impedance sensing and FITC-dextran permeability assays, we demonstrated cocaine-mediated disruption of the alveolar epithelial barrier, as evidenced by increased epithelial monolayer permeability with a concomitant loss of the tight junction protein zonula occludens-1 (Zo-1) in both mouse primary alveolar epithelial cells and the alveolar epithelial cell line, L2 cells. To dissect the signaling pathways involved in this process, we demonstrated that cocaine-mediated induction of permeability factors, platelet-derived growth factor (PDGF-BB) and vascular endothelial growth factor, involved reactive oxygen species (ROS)-dependent induction of hypoxia-inducible factor (HIF)-1α. Interestingly, we demonstrated that ROS-dependent induction of another transcription factor, nuclear factor erythroid-2-related factor-2, that did not play a role in cocaine-mediated barrier dysfunction. Importantly, this study identifies, for the first time, that ROS/HIF-1α/PDGF-BB autocrine loop contributes to cocaine-mediated barrier disruption via amplification of oxidative stress and downstream signaling. Corroboration of these cell culture findings in vivo demonstrated increased permeability of the alveolar epithelial barrier, loss of expression of Zo-1, and a concomitantly increased expression of both HIF-1α and PDGF-BB. Pharmacological blocking of HIF-1α significantly abrogated cocaine-mediated loss of Zo-1. Understanding the mechanism(s) by which cocaine mediates barrier dysfunction could provide insights into the development of potential therapeutic targets for cocaine-mediated pulmonary hypertension.
Collapse
Affiliation(s)
- Lu Yang
- 1 School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xufeng Chen
- 2 Department of Emergence, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Samantha M Simet
- 3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Guoku Hu
- 1 School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.,3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yu Cai
- 3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Fang Niu
- 3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Yeonhee Kook
- 3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shilpa J Buch
- 3 Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
32
|
Presti RM, Flores SC, Palmer BE, Atkinson JJ, Lesko CR, Lau B, Fontenot AP, Roman J, McDyer JF, Twigg HL. Mechanisms Underlying HIV-Associated Noninfectious Lung Disease. Chest 2017; 152:1053-1060. [PMID: 28427967 DOI: 10.1016/j.chest.2017.04.154] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/28/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023] Open
Abstract
Pulmonary disease remains a primary source of morbidity and mortality in persons living with HIV (PLWH), although the advent of potent combination antiretroviral therapy has resulted in a shift from predominantly infectious to noninfectious pulmonary complications. PLWH are at high risk for COPD, pulmonary hypertension, and lung cancer even in the era of combination antiretroviral therapy. The underlying mechanisms of this are incompletely understood, but recent research in both human and animal models suggests that oxidative stress, expression of matrix metalloproteinases, and genetic instability may result in lung damage, which predisposes PLWH to these conditions. Some of the factors that drive these processes include tobacco and other substance use, direct HIV infection and expression of specific HIV proteins, inflammation, and shifts in the microbiome toward pathogenic and opportunistic organisms. Further studies are needed to understand the relative importance of these factors to the development of lung disease in PLWH.
Collapse
Affiliation(s)
- Rachel M Presti
- Department of Medicine, Washington University School of Medicine, St. Louis, MO.
| | - Sonia C Flores
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Brent E Palmer
- Department of Medicine, University of Colorado Denver, Aurora, CO
| | - Jeffrey J Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Catherine R Lesko
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Bryan Lau
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, School of Medicine, Johns Hopkins University, Baltimore, MD
| | | | - Jesse Roman
- Department of Medicine, University of Louisville, Health Sciences Center and Robley Rex VA Medical Center, Louisville, KY
| | - John F McDyer
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Homer L Twigg
- Department of Medicine, Indiana University, Indianapolis, IN
| |
Collapse
|
33
|
Dalvi P, Sharma H, Chinnappan M, Sanderson M, Allen J, Zeng R, Choi A, O'Brien-Ladner A, Dhillon NK. Enhanced autophagy in pulmonary endothelial cells on exposure to HIV-Tat and morphine: Role in HIV-related pulmonary arterial hypertension. Autophagy 2016; 12:2420-2438. [PMID: 27723373 DOI: 10.1080/15548627.2016.1238551] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intravenous drug use is one of the major risk factors for HIV-infection in HIV-related pulmonary arterial hypertension patients. We previously demonstrated exaggerated pulmonary vascular remodeling with enhanced apoptosis followed by increased proliferation of pulmonary endothelial cells on simultaneous exposure to both opioids and HIV protein(s). Here we hypothesize that the exacerbation of autophagy may be involved in the switching of endothelial cells from an early apoptotic state to later hyper-proliferative state. Treatment of human pulmonary microvascular endothelial cells (HPMECs) with both the HIV-protein Tat and morphine resulted in an oxidative stress-dependent increase in the expression of various markers of autophagy and formation of autophagosomes when compared to either Tat or morphine monotreatments as demonstrated by western blot, transmission electron microscopy and immunofluorescence. Autophagy flux experiments suggested increased formation rather than decreased clearance of autolysosomes. Inhibition of autophagy resulted in a significant increase in apoptosis and reduction in proliferation of HPMECs with combined morphine and Tat (M+T) treatment compared to monotreatments whereas stimulation of autophagy resulted in opposite effects. Significant increases in the expression of autophagy markers as well as the number of autophagosomes and autolysosomes was observed in the lungs of SIV-infected macaques and HIV-infected humans exposed to opioids. Overall our findings indicate that morphine in combination with viral protein(s) results in the induction of autophagy in pulmonary endothelial cells that may lead to an increase in severity of angio-proliferative remodeling of the pulmonary vasculature on simian and human immunodeficiency virus infection in the presence of opioids.
Collapse
Affiliation(s)
- Pranjali Dalvi
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Himanshu Sharma
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Mahendran Chinnappan
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Miles Sanderson
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Julie Allen
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Ruoxi Zeng
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Augustine Choi
- b Department of Medicine , Weill Cornell Medical College , New York , NY , USA
| | - Amy O'Brien-Ladner
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA
| | - Navneet K Dhillon
- a Division of Pulmonary and Critical Care Medicine, Department of Medicine , University of Kansas Medical Center , Kansas City , KS , USA.,c Department of Molecular and Integrative Physiology , University of Kansas Medical Center , Kansas City , KS , USA
| |
Collapse
|
34
|
Dalvi PN, Gupta VG, Griffin BR, O'Brien-Ladner A, Dhillon NK. Ligand-Independent Activation of Platelet-Derived Growth Factor Receptor β during Human Immunodeficiency Virus-Transactivator of Transcription and Cocaine-Mediated Smooth Muscle Hyperplasia. Am J Respir Cell Mol Biol 2015; 53:336-45. [PMID: 25569182 DOI: 10.1165/rcmb.2014-0369oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Our previous study supports an additive effect of cocaine to human immunodeficiency virus infection in the development of pulmonary arteriopathy through enhancement of proliferation of pulmonary smooth muscle cells (SMCs), while also suggesting involvement of platelet-derived growth factor receptor (PDGFR) activation in the absence of further increase in PDGF-BB ligand. Redox-related signaling pathways have been shown to regulate tyrosine kinase receptors independent of ligand binding, so we hypothesized that simultaneous treatment of SMCs with transactivator of transcription (Tat) and cocaine may be able to indirectly activate PDGFR through modulation of reactive oxygen species (ROS) without the need for PDGF binding. We found that blocking the binding of ligand using suramin or monoclonal IMC-3G3 antibody significantly reduced ligand-induced autophosphorylation of Y1009 without affecting ligand-independent transphosphorylation of Y934 residue on PDGFRβ in human pulmonary arterial SMCs treated with both cocaine and Tat. Combined treatment of human pulmonary arterial SMCs with cocaine and Tat resulted in augmented production of superoxide radicals and hydrogen peroxide when compared with either treatment alone. Inhibition of this ROS generation prevented cocaine- and Tat-mediated Src activation and transphosphorylation of PDGFRβ at Y934 without any changes in phosphorylation of Y1009, in addition to attenuation of smooth muscle hyperplasia. Furthermore, pretreatment with an Src inhibitor, PP2, also suppressed cocaine- and Tat-mediated enhanced Y934 phosphorylation and smooth muscle proliferation. Finally, we report total abrogation of cocaine- and Tat-mediated synergistic increase in cell proliferation on inhibition of both ligand-dependent and ROS/Src-mediated ligand-independent phosphorylation of PDGFRβ.
Collapse
Affiliation(s)
| | - Vijayalaxmi G Gupta
- 2 Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | | | | | - Navneet K Dhillon
- Departments of 1 Internal Medicine and.,2 Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
35
|
Zhang X, Jiang S, Yu J, Kuzontkoski PM, Groopman JE. Cocaine enhances HIV-1 gp120-induced lymphatic endothelial dysfunction in the lung. Physiol Rep 2015; 3:3/8/e12482. [PMID: 26311830 PMCID: PMC4562568 DOI: 10.14814/phy2.12482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pulmonary complications are common in both AIDS patients and cocaine users. We addressed the cellular and molecular mechanisms by which HIV and cocaine may partner to induce their deleterious effects. Using primary lung lymphatic endothelial cells (L-LECs), we examined how cocaine and HIV-1 gp120, alone and together, modulate signaling and functional properties of L-LECs. We found that brief cocaine exposure activated paxillin and induced cytoskeletal rearrangement, while sustained exposure increased fibronectin (FN) expression, decreased Robo4 expression, and enhanced the permeability of L-LEC monolayers. Moreover, incubating L-LECs with both cocaine and HIV-1 gp120 exacerbated hyperpermeability, significantly enhanced apoptosis, and further impaired in vitro wound healing as compared with cocaine alone. Our studies also suggested that the sigma-1 receptor (Sigma-1R) and the dopamine-4 receptor (D4R) are involved in cocaine-induced pathology in L-LECs. Seeking clinical correlation, we found that FN levels in sera and lung tissue of HIV(+) donors were significantly elevated as compared to HIV(-) donors. Our in vitro data demonstrate that cocaine and HIV-1 gp120 induce dysfunction and damage of lung lymphatics, and suggest that cocaine use may exacerbate pulmonary edema and fibrosis associated with HIV infection. Continued exploration of the interplay between cocaine and HIV should assist the design of therapeutics to ameliorate HIV-induced pulmonary disorders within the drug using population.
Collapse
Affiliation(s)
- Xuefeng Zhang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, Massachusetts, USA
| | - Susan Jiang
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, Massachusetts, USA
| | - Jinlong Yu
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, Massachusetts, USA Department of Psychiatry, Mclean Hospital Harvard Medical School, Belmont, Massachusetts, USA
| | - Paula M Kuzontkoski
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, Massachusetts, USA DynaMed, EBSCO Information Services, Ipswich, Massachusetts, USA
| | - Jerome E Groopman
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Butrous G. Human immunodeficiency virus-associated pulmonary arterial hypertension: considerations for pulmonary vascular diseases in the developing world. Circulation 2015; 131:1361-70. [PMID: 25869003 DOI: 10.1161/circulationaha.114.006978] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ghazwan Butrous
- From School of Pharmacy, University of Kent, Canterbury, UK; and Pulmonary Vascular Research Institute, Canterbury, UK.
| |
Collapse
|
37
|
Correale M, Palmiotti GA, Lo Storto MM, Montrone D, Foschino Barbaro MP, Di Biase M, Lacedonia D. HIV-associated pulmonary arterial hypertension: from bedside to the future. Eur J Clin Invest 2015; 45:515-28. [PMID: 25715739 DOI: 10.1111/eci.12427] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/23/2015] [Indexed: 12/27/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening complication of HIV infection. The prevalence of HIV-associated PAH (HIV-PAH) seems not to be changed over time, regardless of the introduction of highly active antiretroviral therapy (HAART). In comparison with the incidence of idiopathic PAH in the general population (1-2 per million), HIV-infected patients have a 2500-fold increased risk of developing PAH. HIV-PAH treatment is similar to that for all PAH conditions and includes lifestyle changes, general treatments and specific treatments.
Collapse
|
38
|
Relationship between endothelin-1 levels and pulmonary arterial hypertension in HIV-infected patients. AIDS 2014; 28:2693-9. [PMID: 25493595 DOI: 10.1097/qad.0000000000000470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Pulmonary arterial hypertension (PAH) is a progressive, fatal disease with average survival of less than 3 years if left untreated. It is most common in patients infected with HIV. Although the pathogenesis in this population is not fully understood, it is thought that HIV infection, through the immune response and release of different inflammatory mediators such as endothelin-1, may contribute directly to endothelial damage. Our objective was to quantify endothelin-1 levels in HIV-infected patients and determine whether or not there is an association between this marker and PAH. DESIGN A case-control study in patients attending an infectious diseases clinic. METHODS The sample was composed of 79 patients divided into three groups: 23 HIV patients with PAH (HIV+/PAH+), 45 HIV patients without PAH (HIV+/PAH-) and a control group of 11 healthy individuals. The ratio between the HIV+/PAH- and HIV+/PAH+ groups was 2 : 1. Patients were matched by age, sex, risk group and viral load; the control group by age and sex. All patients had blood taken for endothelin-1 plasma quantification. RESULTS We found lower endothelin-1 levels in the controls than in the HIV+/PAH- group [0.71 pg/ml (interquartile range, IQR 0.54-0.94) vs. 1.13 pg/ml (IQR 0.87-1.38); P = 0.005] and the HIV+/PAH+ cohort [1.16 pg/ml (IQR 0.86-2.37); P = 0.003]. Patients with severe PAH had higher endothelin-1 levels [2.94 pg/ml (IQR 1.81-6.33)] than patients with mild and moderate PAH. CONCLUSION Plasma endothelin-1 levels are higher in HIV patients with PAH than in the HIV-noninfected population and levels increase with the severity of the PAH.
Collapse
|
39
|
Simonetti JA, Gingo MR, Kingsley L, Kessinger C, Lucht L, Balasubramani GK, Leader JK, Huang L, Greenblatt RM, Dermand J, Kleerup EC, Morris A. Pulmonary Function in HIV-Infected Recreational Drug Users in the Era of Anti-Retroviral Therapy. JOURNAL OF AIDS & CLINICAL RESEARCH 2014; 5:365. [PMID: 25664201 PMCID: PMC4318265 DOI: 10.4172/2155-6113.1000365] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Individuals with HIV infection commonly have pulmonary function abnormalities, including airflow obstruction and diffusion impairment, which may be more prevalent among recreational drug users. To date, the relationship between drug use and pulmonary function abnormalities among those with HIV remains unclear. OBJECTIVE To determine associations between recreational drug use and airflow obstruction, diffusion impairment, and radiographic emphysema in men and women with HIV. METHODS Cross-sectional analysis of pulmonary function and self-reported recreational drug use data from a cohort of 121 men and 63 women with HIV. Primary outcomes were the presence (yes/no) of: 1) airflow obstruction, (pre- or post-bronchodilator forced expiratory volume in 1 second/forced vital capacity<0.70); 2) moderate diffusion impairment (diffusing capacity for carbon monoxide <60% predicted); and 3) radiographic emphysema (>1% of lung voxels <-950 Hounsfield units). Exposures of interest were frequency of recreational drug use, recent (since last study visit) drug use, and any lifetime drug use. We used logistic regression to determine associations between recreational drug use and the primary outcomes. RESULTS HIV-infected men and women reported recent recreational drug use at 56.0% and 31.0% of their study visits, respectively, and 48.8% of men and 39.7% of women reported drug use since their last study visit. Drug use was not associated with airway obstruction or radiographic emphysema in men or women. Recent crack cocaine use was independently associated with moderate diffusion impairment in women (odds ratio 17.6; 95% confidence interval 1.3-249.6, p=0.03). CONCLUSIONS In this cross-sectional analysis, we found that recreational drug use was common among HIV-infected men and women and recent crack cocaine use was associated with moderate diffusion impairment in women. Given the increasing prevalence of HIV infection, any relationship between drug use and prevalence or severity of chronic pulmonary diseases could have a significant impact on HIV and chronic disease management.
Collapse
Affiliation(s)
- Joseph A Simonetti
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Matthew R Gingo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lawrence Kingsley
- Division of Infectious Diseases and Microbiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cathy Kessinger
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lorrie Lucht
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - GK Balasubramani
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph K Leader
- Imaging Research Division, Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laurence Huang
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ruth M Greenblatt
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Clinical Pharmacy, University of California, San Francisco, CA, USA
| | - John Dermand
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Eric C Kleerup
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Alison Morris
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Abstract
Illicit stimulants, such as cocaine, amphetamine, and their derivatives (e.g., "ecstasy"), continue to exact heavy toll on health care in both developed and developing countries. The US Department of Health and Human Service reported over one million illicit drug-related emergency department visits in 2010, which was higher than any of the six previous years. Both inhaled and intravenous forms of these substances of abuse can result in a variety of acute and chronic injuries to practically every part of the respiratory tract, leading potentially to permanent morbidities as well as fatal consequences--including but not limited to nasal septum perforation, pulmonary hypertension, pneumothorax, pneumomediastinum, interstitial lung disease, alveolar hemorrhage, reactive airway disease, pulmonary edema, pulmonary granulomatosis, infections, foreign body aspiration, infections, bronchoconstriction, and thermal injuries. Stimulants are all rapidly absorbed substances that can also significantly alter the patient's systemic acid-base balance and central nervous system, thereby leading to further respiratory compromise. Mounting evidence in the past decade has demonstrated that adulterants coinhaled with these substances (e.g., levamisole) and the metabolites of these substances (e.g., cocaethylene) are associated with specific forms of systemic and respiratory complications as well. Recent studies have also demonstrated the effects of stimulants on autoimmune-mediated injuries of the respiratory tract, such as cocaine-induced midline destructive lesions. A persistent challenge to studies involving stimulant-associated respiratory toxidromes is the high prevalence of concomitant usage of various substances by drug abusers, including tobacco smoking. Now more than ever, health care providers must be familiar with the multitude of respiratory toxidromes as well as the diverse pathophysiology related to commonly abused stimulants to provide timely diagnosis and effective treatment.
Collapse
|
41
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|
42
|
Pulmonary Arterial Hypertension in HIV Infection: A Concise Review. Heart Lung Circ 2014; 23:299-302. [DOI: 10.1016/j.hlc.2013.10.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/16/2013] [Accepted: 10/22/2013] [Indexed: 11/22/2022]
|
43
|
de Almeida RR, de Souza LS, Mançano AD, Souza AS, Irion KL, Nobre LF, Zanetti G, Hochhegger B, Pereira e Silva JL, Marchiori E. High-Resolution Computed Tomographic Findings of Cocaine-Induced Pulmonary Disease: A State of the Art Review. Lung 2014; 192:225-33. [DOI: 10.1007/s00408-013-9553-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
|
44
|
Dalvi P, Wang K, Mermis J, Zeng R, Sanderson M, Johnson S, Dai Y, Sharma G, Ladner AO, Dhillon NK. HIV-1/cocaine induced oxidative stress disrupts tight junction protein-1 in human pulmonary microvascular endothelial cells: role of Ras/ERK1/2 pathway. PLoS One 2014; 9:e85246. [PMID: 24409324 PMCID: PMC3883699 DOI: 10.1371/journal.pone.0085246] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/25/2013] [Indexed: 01/08/2023] Open
Abstract
Intravenous drug use (IVDU) is the major risk factor in the development of HIV-related pulmonary arterial hypertension (HRPAH); however, the pathogenesis of HRPAH in association with IVDU has yet to be characterized. Endothelial injury is considered to be an initiating factor for pulmonary vascular remodeling in animal models of PAH. Our previous study shows that simultaneous exposure to HIV-Trans-activator of transcription (Tat) and cocaine exacerbates both disruption of tight junction proteins and permeability of human pulmonary artery endothelial cells compared with either treatment alone. We here now demonstrate that this HIV-Tat and cocaine mediated endothelial dysfunction accompanies with increase in hydrogen peroxide and superoxide radicals generation and involves redox sensitive signaling pathway. Pretreatment with antioxidant cocktail attenuated the cocaine and Tat mediated disassembly of Zonula Occludens (ZO)-1 and enhancement of endothelial monolayer permeability. Furthermore, inhibition of NADPH oxidase by apocynin or siRNA-mediated knockdown of gp-91(phox) abolished the Tat/cocaine-induced reactive oxygen species (ROS) production, suggesting the NADPH oxidase mediated generation of oxidative radicals. In addition, ROS dependent activation of Ras and ERK1/2 Kinase was observed to be mediating the TJP-1 disassembly, and endothelial dysfunction in response to cocaine and Tat exposure. In conclusion, our findings demonstrate that Tat/cocaine -mediated production of ROS activate Ras/Raf/ERK1/2 pathway that contributes to disruption of tight junction protein leading to pulmonary endothelial dysfunction associated with pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kun Wang
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Joel Mermis
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ruoxi Zeng
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Miles Sanderson
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Sara Johnson
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yuqiao Dai
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Garima Sharma
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Amy O’Brien Ladner
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Navneet K. Dhillon
- Division of Pulmonary and Critical Care Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Gundavarapu S, Mishra NC, Singh SP, Langley RJ, Saeed AI, Feghali-Bostwick CA, McIntosh JM, Hutt J, Hegde R, Buch S, Sopori ML. HIV gp120 induces mucus formation in human bronchial epithelial cells through CXCR4/α7-nicotinic acetylcholine receptors. PLoS One 2013; 8:e77160. [PMID: 24155926 PMCID: PMC3796539 DOI: 10.1371/journal.pone.0077160] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/06/2013] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as chronic obstructive pulmonary disease (COPD), asthma, and lung infections are major causes of morbidity and mortality among HIV-infected patients even in the era of antiretroviral therapy (ART). Many of these diseases are strongly associated with smoking and smoking is more common among HIV-infected than uninfected people; however, HIV is an independent risk factor for chronic bronchitis, COPD, and asthma. The mechanism by which HIV promotes these diseases is unclear. Excessive airway mucus formation is a characteristic of these diseases and contributes to airway obstruction and lung infections. HIV gp120 plays a critical role in several HIV-related pathologies and we investigated whether HIV gp120 promoted airway mucus formation in normal human bronchial epithelial (NHBE) cells. We found that NHBE cells expressed the HIV-coreceptor CXCR4 but not CCR5 and produced mucus in response to CXCR4-tropic gp120. The gp120-induced mucus formation was blocked by the inhibitors of CXCR4, α7-nicotinic acetylcholine receptor (α7-nAChR), and γ-aminobutyric acid (GABA)AR but not the antagonists of CCR5 and epithelial growth factor receptor (EGFR). These results identify two distinct pathways (α7-nAChR-GABAAR and EGFR) for airway mucus formation and demonstrate for the first time that HIV-gp120 induces and regulates mucus formation in the airway epithelial cells through the CXCR4-α7-nAChR-GABAAR pathway. Interestingly, lung sections from HIV ± ART and simian immunodeficiency virus (SIV) ± ART have significantly more mucus and gp120-immunoreactivity than control lung sections from humans and macaques, respectively. Thus, even after ART, lungs from HIV-infected patients contain significant amounts of gp120 and mucus that may contribute to the higher incidence of obstructive pulmonary diseases in this population.
Collapse
Affiliation(s)
- Sravanthi Gundavarapu
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Neerad C. Mishra
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Shashi P. Singh
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Raymond J. Langley
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Ali Imran Saeed
- Pulmonary and Critical Care Medicine, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Carol A. Feghali-Bostwick
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - J. Michael McIntosh
- George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, Utah, United States of America
- Departments of Psychiatry and Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Julie Hutt
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| | - Ramakrishna Hegde
- The Department of Molecular and Integrative Physiology, Kansas University Medical Center, Kansas City, Kansas, United States of America
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mohan L. Sopori
- Respiratory Immunology Division, Lovelace Respiratory Research Institute, Albuquerque, New Mexico, United States of America
| |
Collapse
|
46
|
Dalvi P, O'Brien-Ladner A, Dhillon NK. Downregulation of bone morphogenetic protein receptor axis during HIV-1 and cocaine-mediated pulmonary smooth muscle hyperplasia: implications for HIV-related pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2013; 33:2585-95. [PMID: 24008158 DOI: 10.1161/atvbaha.113.302054] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Our previous findings support an additive effect of cocaine to HIV infection in the development of pulmonary arteriopathy through enhanced proliferation of human pulmonary smooth muscle cells. We now examined the role of antiproliferative bone morphogenetic protein receptor (BMPR) axis in HIV protein and cocaine-mediated pulmonary smooth muscle hyperplasia. APPROACH AND RESULTS Stimulation of BMPR axis resulted in attenuation of synergistic increase in the proliferation of human pulmonary arterial smooth muscle cells in response to cocaine and HIV protein, transactivator of transcription (Tat). Interestingly, an increase in mRNA but decrease in protein levels of BMPR with correlated decrease in the activation of Sma- and MAD-related family protein 1/5/8 and Id1 gene expression was observed on combined treatment with cocaine and Tat when compared with the untreated cells at all time points tested. Although longer exposure to either cocaine or Tat alone also resulted in a significant decrease in the BMPR protein expression, the abrogation on combined treatment was still significantly more when compared with that of the monotreatments. Significant increase in mRNA but downmodulation of BMPR protein expression was also observed in the lung extracts from HIV-infected intravenous drug users (HIV+IVDU) when compared with that from HIV-infected non-IVDUs (HIV) or uninfected IVDUs (IVDU). Furthermore, significant decrease in BMPR protein expression was also observed in HIV or IVDUs when compared with normal controls that correlated with in vitro findings on chronic exposure to cocaine or HIV protein alone. CONCLUSIONS Simultaneous exposure of pulmonary smooth muscle cells to viral protein(s) and cocaine exacerbates downregulation of BMPR axis that may result in enhanced pulmonary vasculature aberrations in HIV+IVDUs.
Collapse
Affiliation(s)
- Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine (P.D., A.O'B.-L., N.K.D.) and Department of Molecular and Integrative Physiology (N.K.D.), University of Kansas Medical Center, Kansas City, KS
| | | | | |
Collapse
|
47
|
Human immunodeficiency virus and pulmonary arterial hypertension. ISRN CARDIOLOGY 2013; 2013:903454. [PMID: 24027641 PMCID: PMC3763567 DOI: 10.1155/2013/903454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/23/2013] [Indexed: 11/19/2022]
Abstract
Human immunodeficiency virus- (HIV-) related pulmonary arterial hypertension (PAH) is a rare complication of HIV infection. The pathophysiology of HIV-related PAH is complex, with viral proteins seeming to play the major role. However, other factors, such as coinfection with other microorganisms and HIV-related systemic inflammation, might also contribute. The clinical presentation of HIV-related PAH and diagnosis is similar to other forms of pulmonary hypertension. Both PAH-specific therapies and HAART are important in HIV-related PAH management. Future studies investigating the pathogenesis are needed to discover new therapeutic targets and treatments.
Collapse
|
48
|
Abstract
Antiretroviral therapy has improved longevity for HIV-infected persons, but long-term HIV infection is now complicated by increased rates of chronic medical conditions including pulmonary disorders. Chronic obstructive pulmonary disease, lung cancer, asthma, and pulmonary hypertension are becoming common comorbidities of HIV infection, and these diseases may develop as a result of HIV-related risk factors, such as antiretroviral drug toxicities, colonization by infectious organisms, HIV viremia, immune activation, or immune dysfunction. It also appears that the ability to control HIV infection does not completely eliminate the risk for infectious complications, such as bacterial pneumonia and tuberculosis. The effect of HIV infection on lung-specific immune responses is being elucidated to help develop better prevention and treatment strategies in HIV-infected persons.
Collapse
Affiliation(s)
- Matthew R Gingo
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
49
|
George MP, Champion HC, Simon M, Guyach S, Tarantelli R, Kling HM, Brower A, Janssen C, Murphy J, Carney JP, Morris A, Gladwin MT, Norris KA. Physiologic changes in a nonhuman primate model of HIV-associated pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2012; 48:374-81. [PMID: 23239493 DOI: 10.1165/rcmb.2011-0434oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is increased in HIV, but its pathogenesis is not fully understood. Nonhuman primates infected with simian immunodeficiency virus (SIV) or SIV-HIV chimeric virus (SHIV) exhibit histologic changes characteristic of human PAH, but whether hemodynamic changes accompany this pathology is unknown. Repeated measurements of pulmonary artery pressures would permit longitudinal assessments of disease development and provide insights into pathogenesis. We tested the hypothesis that SIV-infected and SHIV-infected macaques develop physiologic manifestations of PAH. We performed right heart catheterizations, echocardiography, and computed tomography (CT) scans in macaques infected with either SIV (ΔB670) or SHIV (89.6P), and compared right heart and pulmonary artery pressures, as well as pulmonary vascular changes on CT scans, with those in uninfected control animals. Right atrial, right ventricular systolic, and pulmonary artery pressures (PAPs) were significantly elevated in 100% of macaques infected with either SIV or SHIV compared with control animals, with no difference in pulmonary capillary wedge pressure. PAPs increased as early as 3 months after SIV infection. Radiographic evidence of pulmonary vascular pruning was also found. Both SIV-infected and SHIV-infected macaques exhibited histologic changes in pulmonary arteries, predominantly consisting of intimal and medial hyperplasia. This report is the first to demonstrate SHIV-infected and SIV-infected macaques develop pulmonary hypertension at a high frequency, with physiologic changes occurring as early as 3 months after infection. These studies establish an important nonhuman primate model of HIV-associated PAH that will be useful in studies of disease pathogenesis and the efficacy of interventions.
Collapse
Affiliation(s)
- M Patricia George
- Department of Immunology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15261.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Recent clinical and experimental studies are redefining the cellular and molecular bases of pulmonary arterial hypertension (PAH). The genetic abnormalities first identified in association with the idiopathic form of PAH--together with a vast increase in our understanding of cell signaling, cell transformation, and cell-cell interactions; gene expression; microRNA processing; and mitochondrial and ion channel function--have helped explain the abnormal response of vascular cells to injury. Experimental and clinical studies now converge on the intersection and interactions between a genetic predisposition involving the BMPR2 signaling pathway and an impaired metabolic and chronic inflammatory state in the vessel wall. These deranged processes culminate in an exuberant proliferative response that occludes the pulmonary arterial (PA) lumen and obliterates the most distal intraacinar vessels. Here, we describe emerging therapies based on preclinical studies that address these converging pathways.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Stanford University School of Medicine, Stanford, California 94305-5162, USA.
| |
Collapse
|