1
|
Martins YA, Guerra-Gomes IC, Rodrigues TS, Tapparel C, Lopez RFV. Enhancing pulmonary delivery and immunomodulation of respiratory diseases through virus-mimicking nanoparticles. J Control Release 2024; 372:417-432. [PMID: 38908758 DOI: 10.1016/j.jconrel.2024.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
This study introduces the nanobromhexine lipid particle (NBL) platform designed for effective pulmonary drug delivery. Inspired by respiratory virus transport mechanisms, NBL address challenges associated with mucus permeation and inflammation in pulmonary diseases. Composed of low molecular weight polyethylene glycol-coated lipid nanoparticles with bromhexine hydrochloride, NBL exhibit a size of 118 ± 24 nm, a neutral zeta potential, osmolarity of 358 ± 28 mOsmol/kg, and a pH of 6.5. Nebulizing without leakage and showing no toxicity to epithelial cells, NBL display mucoadhesive properties with a 60% mucin-binding efficiency. They effectively traverse the dense mucus layer of Calu-3 cultures in an air-liquid interface, as supported by a 55% decrease in MUC5AC density and a 29% increase in nanoparticles internalization compared to non-exposed cells. In assessing immunomodulatory effects, NBL treatment in SARS-CoV-2-infected lung cells leads to a 40-fold increase in anti-inflammatory MUC1 gene expression, a proportional reduction in pro-inflammatory IL-6 expression, and elevated anti-inflammatory IL-10 expression. These findings suggest a potential mechanism to regulate the excessive IL-6 expression triggered by virus infection. Therefore, the NBL platform demonstrates promising potential for efficient pulmonary drug delivery and immunomodulation, offering a novel approach to addressing mucus permeation and inflammation in pulmonary diseases.
Collapse
Affiliation(s)
- Yugo Araújo Martins
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil
| | - Isabel Cristina Guerra-Gomes
- Fundação Oswaldo Cruz - FIOCRUZ, Bi-Institutional Translational Medicine Plataform, Ribeirão Preto, SP 14040-030, Brazil
| | - Tamara Silva Rodrigues
- Department of Biochemistry and Imumunology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Renata Fonseca Vianna Lopez
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| |
Collapse
|
2
|
Erbaş E, Celep NA, Tekiner D, Genç A, Gedikli S. Assessment of toxicological effects of favipiravir (T-705) on the lung tissue of rats: An experimental study. J Biochem Mol Toxicol 2024; 38:e23536. [PMID: 37942797 DOI: 10.1002/jbt.23536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/14/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
This study aimed to present new data on the side effects of favipiravir on healthy lung tissue and the respiratory system. In the study, two different durations (5 and 10 days) were preferred to determine the effect of favipiravir treatment due to clinical improvement rates of approximately 5 and 10 days during the use of favipiravir in COVID-19 patients. In addition, after 10 days of favipiravir treatment, animals were kept for 5 days without any treatment to determine the regeneration of lung tissues. Favipiravir was administered to rats by oral gavage at a daily dose of 200 mg/kg for 5 and 10 days, as in previous studies. At the end of the experiment, the histopathological and biochemical effects of favipiravir in the lung tissue were investigated. The data obtained from the study showed that favipiravir increased oxidative stress parameters, expression of apoptotic markers, and pro-inflammatory markers in lung tissue. Since malondialdehydes is an oxidant parameter, it increased in favipiravir-administered groups; It was determined that the antioxidant parameters glutathione, superoxide dismutase, glutathione peroxidase, and catalase decreased. Other markers used in the analysis are Bcl-2, Bax, NF-κB, interleukin (IL)-6, Muc1, iNOS, P2X7R, IL-6 and caspase-3. The levels of Bax, caspase-3, NF-κB, IL-6, Muc1, and P2X7R were increased in the Fav-treated groups compared with the control. However, the levels of Bcl-2 decreased in the Fav-treated groups. The present study proves that favipiravir, widely used today, causes side effects in lung tissue.
Collapse
Affiliation(s)
- Elif Erbaş
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Nevra Aydemir Celep
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
- Department of Pharmacology, Atatürk University Faculty of Medicine, Erzurum, Turkey
| | - Deniz Tekiner
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| | - Aydın Genç
- Department of Biochemistry, Bingöl University Faculty of Veterinary Medicine, Bingöl, Turkey
| | - Semin Gedikli
- Department of Histology and Embryology, Atatürk University Faculty of Veterinary Medicine, Erzurum, Turkey
| |
Collapse
|
3
|
Liu L, Zhou L, Wang L, Mao Z, Zheng P, Zhang F, Zhang H, Liu H. MUC1 attenuates neutrophilic airway inflammation in asthma by reducing NLRP3 inflammasome-mediated pyroptosis through the inhibition of the TLR4/MyD88/NF-κB pathway. Respir Res 2023; 24:255. [PMID: 37880668 PMCID: PMC10601133 DOI: 10.1186/s12931-023-02550-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Neutrophilic airway inflammation is a challenge in asthma management and is associated with poor patient prognosis. Mucin 1 (MUC1), which contains a cytoplasmic tail (MUC1-CT), has been found to mediate glucocorticoid sensitivity in asthma; however, its role in modulating neutrophilic airway inflammation in asthma remains unknown. METHODS Human-induced sputum cells were collected from healthy participants (n = 12), patients with mild-to-moderate asthma (n = 34), and those with severe asthma (n = 18). In vitro human lung bronchial 1 epithelial cell line (BEAS-2B) was transfected with small interfering RNA against MUC1 (MUC1-siRNA) and then stimulated by lipopolysaccharide (LPS), where some cells were pretreated with a TLR4 inhibitor (TAK-242). In vivo mouse model of asthmatic neutrophil airway inflammation was induced by ovalbumin (OVA)/LPS. Some groups were intraperitoneally injected with MUC1-CT inhibitor (GO-203) and/or TAK-242 . RESULTS The mRNA expression of MUC1 was downregulated in the induced sputum of patients with asthma and correlated with asthmatic neutrophilic airway inflammation. The mRNA expressions of TLR4, MyD88, nucleotide-binding oligomerization domain-like pyrin domain-containing protein 3 (NLRP3), caspase-1, interleukin (IL)-18, and IL-1β in induced sputum cells of patients with asthma were upregulated and related to the mRNA expression of MUC1. LPS activated the TLR4 pathway and NLRP3-mediated pyroptosis in BEAS-2B cells in vitro, which were significantly aggravated after MUC1-siRNA transfection. Furthermore, MUCl-CT interacted with TLR4, and the interaction between TLR4 and MyD88 was significantly increased after MUCl-siRNA transfection. Moreover, TAK-242 ameliorated TLR4/MyD88/nuclear factor kappa B (NF-κB) pathway activation, NLRP3 inflammasome-mediated pyroptosis, and neutrophilic inflammation exacerbated by MUC1 downregulation. GO-203 exacerbated TLR4/MyD88/NF-κB pathway activation in vivo, and NLRP3 inflammasome-mediated pyroptosis reduced in a mouse model of asthmatic neutrophil airway inflammation induced by OVA/LPS; these pathological changes were partially alleviated after TAK-242 application. CONCLUSION This study revealed that MUC1 downregulation plays an important role in asthmatic neutrophilic airway inflammation. MUC1-CT reduces NLRP3 inflammasome-mediated pyroptosis by inhibiting the activation of the TLR4/MyD88/NF-κB pathway, thereby attenuating neutrophil airway inflammation in patients with asthma.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengqin Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huojun Zhang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Milara J, Morell A, Roger I, Montero P, Cortijo J. Mechanisms underlying corticosteroid resistance in patients with asthma: a review of current knowledge. Expert Rev Respir Med 2023; 17:701-715. [PMID: 37658478 DOI: 10.1080/17476348.2023.2255124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Corticosteroids are the most cost-effective anti-inflammatory drugs available for the treatment of asthma. Despite their effectiveness, several asthmatic patients have corticosteroid resistance or insensitivity and exhibit a poor response. Corticosteroid insensitivity implies a poor prognosis due to challenges in finding alternative therapeutic options for asthma. AREAS COVERED In this review, we describe asthma phenotypes and endotypes, as well as their differential responsiveness to corticosteroids. In addition, we describe the mechanism of action of corticosteroids underlying their regulation of the expression of glucocorticoid receptors (GRs) and their anti-inflammatory effects. Furthermore, we summarize the mechanistic evidence underlying corticosteroid-insensitive asthma, which is mainly related to changes in GR gene expression, structure, and post-transcriptional modifications. Finally, various pharmacological strategies designed to reverse corticosteroid insensitivity are discussed. EXPERT OPINION Corticosteroid insensitivity is influenced by the asthma phenotype, endotype, and severity, and serves as an indication for biological therapy. The molecular mechanisms underlying corticosteroid-insensitive asthma have been used to develop targeted therapeutic strategies. However, the lack of clinical trials prevents the clinical application of these treatments.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Anselm Morell
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Inés Roger
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy department, University General Hospital of Valencia, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
5
|
Azekawa S, Chubachi S, Asakura T, Namkoong H, Sato Y, Edahiro R, Lee H, Tanaka H, Otake S, Nakagawara K, Fukushima T, Watase M, Sakurai K, Kusumoto T, Masaki K, Kamata H, Ishii M, Hasegawa N, Okada Y, Koike R, Kitagawa Y, Kimura A, Imoto S, Miyano S, Ogawa S, Kanai T, Fukunaga K. Serum KL-6 levels predict clinical outcomes and are associated with MUC1 polymorphism in Japanese patients with COVID-19. BMJ Open Respir Res 2023; 10:10/1/e001625. [PMID: 37230764 DOI: 10.1136/bmjresp-2023-001625] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND Krebs von den Lungen-6 (KL-6) is a known biomarker for diagnosis and monitoring of interstitial lung diseases. However, the role of serum KL-6 and the mucin 1 (MUC1) variant (rs4072037) in COVID-19 outcomes remains to be elucidated. We aimed to evaluate the relationships among serum KL-6 levels, critical outcomes and the MUC1 variant in Japanese patients with COVID-19. METHODS This is a secondary analysis of a multicentre retrospective study using data from the Japan COVID-19 Task Force collected from February 2020 to November 2021, including 2226 patients with COVID-19 whose serum KL-6 levels were measured. An optimal serum KL-6 level cut-off to predict critical outcomes was determined and used for multivariable logistic regression analysis. Furthermore, the relationship among the allele dosage of the MUC1 variant, calculated from single nucleotide polymorphism typing data of genome-wide association studies using the imputation method, serum KL-6 levels and COVID-19 critical outcomes was evaluated. RESULTS Serum KL-6 levels were significantly higher in patients with COVID-19 with critical outcomes (511±442 U/mL) than those without (279±204 U/mL) (p<0.001). Serum KL-6 levels ≥304 U/mL independently predicted critical outcomes (adjusted OR (aOR) 3.47, 95% CI 2.44 to 4.95). Moreover, multivariable logistic regression analysis with age and sex indicated that the MUC1 variant was independently associated with increased serum KL-6 levels (aOR 0.24, 95% CI 0.28 to 0.32) but not significantly associated with critical outcomes (aOR 1.11, 95% CI 0.80 to 1.54). CONCLUSION Serum KL-6 levels predicted critical outcomes in Japanese patients with COVID-19 and were associated with the MUC1 variant. Therefore, serum KL-6 level is a potentially useful biomarker of critical COVID-19 outcomes.
Collapse
Affiliation(s)
- Shuhei Azekawa
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan
| | - Ho Namkoong
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Yasunori Sato
- Department of Preventive Medicine and Public Health, Keio University School of Medicine, Tokyo, Japan
| | - Ryuya Edahiro
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ho Lee
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Hiromu Tanaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Shiro Otake
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Kensuke Nakagawara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Mayuko Watase
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Kaori Sakurai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Tatsuya Kusumoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Hirofumi Kamata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Makoto Ishii
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine Faculty of Medicine, Nagoya, Japan
| | - Naoki Hasegawa
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
| | - Ryuji Koike
- Medical Innovation Promotion Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Akinori Kimura
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University Graduate School of Medicine Faculty of Medicine, Kyoto, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
7
|
Bedir A, Özgür A, Bakırtaş M, Özdemir D, Mehel DM, Akgül G, Çelebi M. Mucin receptors in chronic rhinosinusitis with nasal polyps. Acta Otolaryngol 2022; 142:585-589. [DOI: 10.1080/00016489.2022.2116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Ahmet Bedir
- Faculty of Medicine, Department of Otorhinolaryngology, İstanbul Yeni Yuzyil University, İstanbul, Turkey
| | - Abdulkadir Özgür
- Faculty of Medicine, Department of Otorhinolaryngology, İstanbul Yeni Yuzyil University, İstanbul, Turkey
| | - Mustafa Bakırtaş
- Department of Pathology, University of Health Sciences Samsun Education and Research Hospital, Samsun, Turkey
| | - Doğukan Özdemir
- Faculty of Medicine, Department of Otorhinolaryngology, Samsun Univetsity, Samsun, Turkey
| | - Dursun Mehmet Mehel
- Department of Otorhinolaryngology, University of Health Sciences Samsun Education and Research Hospital, Samsun, Turkey
| | - Gökhan Akgül
- Department of Otorhinolaryngology, University of Health Sciences Samsun Education and Research Hospital, Samsun, Turkey
| | - Mehmet Çelebi
- Faculty of Medicine, Department of Otorhinolaryngology, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
Lillehoj EP, Luzina IG, Atamas SP. Mammalian Neuraminidases in Immune-Mediated Diseases: Mucins and Beyond. Front Immunol 2022; 13:883079. [PMID: 35479093 PMCID: PMC9035539 DOI: 10.3389/fimmu.2022.883079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 12/28/2022] Open
Abstract
Mammalian neuraminidases (NEUs), also known as sialidases, are enzymes that cleave off the terminal neuraminic, or sialic, acid resides from the carbohydrate moieties of glycolipids and glycoproteins. A rapidly growing body of literature indicates that in addition to their metabolic functions, NEUs also regulate the activity of their glycoprotein targets. The simple post-translational modification of NEU protein targets-removal of the highly electronegative sialic acid-affects protein folding, alters protein interactions with their ligands, and exposes or covers proteolytic sites. Through such effects, NEUs regulate the downstream processes in which their glycoprotein targets participate. A major target of desialylation by NEUs are mucins (MUCs), and such post-translational modification contributes to regulation of disease processes. In this review, we focus on the regulatory roles of NEU-modified MUCs as coordinators of disease pathogenesis in fibrotic, inflammatory, infectious, and autoimmune diseases. Special attention is placed on the most abundant and best studied NEU1, and its recently discovered important target, mucin-1 (MUC1). The role of the NEU1 - MUC1 axis in disease pathogenesis is discussed, along with regulatory contributions from other MUCs and other pathophysiologically important NEU targets.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Irina G. Luzina
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Research Service, Baltimore Veterans Affairs (VA) Medical Center, Baltimore, MD, United States
| | - Sergei P. Atamas
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Carlier FM, de Fays C, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Front Physiol 2021; 12:691227. [PMID: 34248677 PMCID: PMC8264588 DOI: 10.3389/fphys.2021.691227] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Mucosal surfaces are lined by epithelial cells, which provide a complex and adaptive module that ensures first-line defense against external toxics, irritants, antigens, and pathogens. The underlying mechanisms of host protection encompass multiple physical, chemical, and immune pathways. In the lung, inhaled agents continually challenge the airway epithelial barrier, which is altered in chronic diseases such as chronic obstructive pulmonary disease, asthma, cystic fibrosis, or pulmonary fibrosis. In this review, we describe the epithelial barrier abnormalities that are observed in such disorders and summarize current knowledge on the mechanisms driving impaired barrier function, which could represent targets of future therapeutic approaches.
Collapse
Affiliation(s)
- François M. Carlier
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology and Lung Transplant, Centre Hospitalier Universitaire UCL Namur, Yvoir, Belgium
| | - Charlotte de Fays
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Charles Pilette
- Pole of Pneumology, ENT, and Dermatology, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
- Department of Pneumology, Cliniques universitaires St-Luc, Brussels, Belgium
| |
Collapse
|
10
|
Hao Y, Zhao Y, Wang P, Du K, Li Y, Yang Z, Wang X, Zhang L. Transcriptomic Signatures and Functional Network Analysis of Chronic Rhinosinusitis With Nasal Polyps. Front Genet 2021; 12:609754. [PMID: 33603773 PMCID: PMC7884819 DOI: 10.3389/fgene.2021.609754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease with limited treatment options of corticosteroids, sinus surgery, or both. CRSwNP is frequently associated with allergic rhinitis and asthma, but the molecular mechanisms underlying CRSwNP inflammation are not completely understood. We obtained four gene expression profiles (GSE136825, GSE36830, GSE23552, and GSE72713) from four Gene Expression Omnibus (GEO), which collectively included 65 nasal polyp samples from CRSwNP patients and 54 nasal mucosal samples from healthy controls. Using an integrated analysis approach, we identified 76 co-differentially expressed genes (co-DEGs, including 45 upregulated and 31 downregulated) in CRSwNP patients compared with the healthy controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses identified the terms including immune effector process, leukocyte migration, regulation of the inflammatory response, Staphylococcus aureus infection, and cytokine-cytokine receptor interaction. protein-protein interaction (PPI) network analysis and real-time quantitative PCR (RT-qPCR) showed that 7 genes might be crucial in CRSwNP pathogenesis. Repurposing drug candidates (Alfadolone, Hydralazine, SC-560, Iopamidol, Iloprost, etc) for CRSwNP treatment were identified from the Connectivity Map (CMap) database. Our results suggest multiple molecular mechanisms, diagnostic biomarkers, potential therapeutic targets, and new repurposing drug candidates for CRSwNP treatment.
Collapse
Affiliation(s)
- Yun Hao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Yan Zhao
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ping Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Kun Du
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Ying Li
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Zhen Yang
- Shanghai Key Laboratory of Medical Epigenetics, The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Pudong Hospital, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xiangdong Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China.,Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Ballester B, Milara J, Cortijo J. The role of mucin 1 in respiratory diseases. Eur Respir Rev 2021; 30:30/159/200149. [PMID: 33536260 DOI: 10.1183/16000617.0149-2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/04/2020] [Indexed: 01/21/2023] Open
Abstract
Recent evidence has demonstrated that mucin 1 (MUC1) is involved in many pathological processes that occur in the lung. MUC1 is a transmembrane protein mainly expressed by epithelial and hematopoietic cells. It has a receptor-like structure, which can sense the external environment and activate intracellular signal transduction pathways through its cytoplasmic domain. The extracellular domain of MUC1 can be released to the external environment, thus acting as a decoy barrier to mucosal pathogens, as well as serving as a serum biomarker for the diagnosis and prognosis of several respiratory diseases such as lung cancer and interstitial lung diseases. Furthermore, bioactivated MUC1-cytoplasmic tail (CT) has been shown to act as an anti-inflammatory molecule in several airway infections and mediates the expression of anti-inflammatory genes in lung diseases such as chronic rhinosinusitis, chronic obstructive pulmonary disease and severe asthma. Bioactivated MUC1-CT has also been reported to interact with several effectors linked to cellular transformation, contributing to the progression of respiratory diseases such as lung cancer and pulmonary fibrosis. In this review, we summarise the current knowledge of MUC1 as a promising biomarker and drug target for lung disease.
Collapse
Affiliation(s)
- Beatriz Ballester
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Aurora, CO, USA .,CIBERES, Health Institute Carlos III, Valencia, Spain.,Both authors contributed equally to this work
| | - Javier Milara
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Pharmacy Unit, Consorcio Hospital General de Valencia, Valencia, Spain.,Pharmacology Dept, University Jaume I, Castellon, Spain.,Both authors contributed equally to this work
| | - Julio Cortijo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Research and teaching Unit, Consorcio Hospital General de Valencia, Valencia, Spain.,Dept of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
12
|
MUC1 Mitigates Renal Injury and Inflammation in Endotoxin Induced Acute Kidney Injury by Inhibiting the TLR4-MD2 Axis and Reducing Pro-Inflammatory Macrophages Infiltration. Shock 2021; 56:629-638. [PMID: 33534395 DOI: 10.1097/shk.0000000000001742] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Sepsis is the leading cause of acute kidney injury (AKI) in critical care patients. A cornerstone of sepsis-associated AKI is dysregulated inflammation driven by excessive activation of Toll-like receptor 4 (TLR4) pathway. MUC1, a membrane bound mucin expressed in both epithelial tubular cells and renal macrophages, has been shown to be involved in the regulation of TLRs. Therefore we hypothesized that MUC1 could mitigate the renal inflammatory response to TLR4 activation. To test this hypothesis, we used a murine model of endotoxin-induced AKI by intraperitoneal injection of lipopolysaccharide (LPS). We showed that Muc1-/- mice have a more severe renal dysfunction, an increased activation of the tissular NF-kB pathway and secreted more pro inflammatory cytokines compare to Muc1+/+ mice. By flow cytometry, we observed that the proportion of M1 (pro-inflammatory) macrophages in the kidneys of Muc1-/- mice was significantly increased. In human and murine primary macrophages, we showed that MUC1 is only induced in M1 type macrophages and that macrophages derived from Muc1-/- mice secreted more pro-inflammatory cytokines. Eventually, in HEK293 cells, we showed that (i) MUC1 cytosolic domain (CT) seems necessary for the negative regulation of TLR4 (ii) by proximity ligation assay, MUC1-CT is in close relationship with TLR4 and acts as a competitive inhibitor of the recruitment of MYD88. Overall our results support that in the context of endotoxin-induced AKI, MUC1 plays a significant role in controlling disease severity by regulating negatively the TLR4-MD2 axis.
Collapse
|
13
|
Chatterjee M, van Putten JPM, Strijbis K. Defensive Properties of Mucin Glycoproteins during Respiratory Infections-Relevance for SARS-CoV-2. mBio 2020; 11:e02374-20. [PMID: 33184103 PMCID: PMC7663010 DOI: 10.1128/mbio.02374-20] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mucus plays a pivotal role in protecting the respiratory tract against microbial infections. It acts as a primary contact site to entrap microbes and facilitates their removal from the respiratory tract via the coordinated beating of motile cilia. The major components of airway mucus are heavily O-glycosylated mucin glycoproteins, divided into gel-forming mucins and transmembrane mucins. The gel-forming mucins MUC5AC and MUC5B are the primary structural components of airway mucus, and they enable efficient clearance of pathogens by mucociliary clearance. MUC5B is constitutively expressed in the healthy airway, whereas MUC5AC is upregulated in response to inflammatory challenge. MUC1, MUC4, and MUC16 are the three major transmembrane mucins of the respiratory tracts which prevent microbial invasion, can act as releasable decoy receptors, and activate intracellular signal transduction pathways. Pathogens have evolved virulence factors such as adhesins that facilitate interaction with specific mucins and mucin glycans, for example, terminal sialic acids. Mucin expression and glycosylation are dependent on the inflammatory state of the respiratory tract and are directly regulated by proinflammatory cytokines and microbial ligands. Gender and age also impact mucin glycosylation and expression through the female sex hormone estradiol and age-related downregulation of mucin production. Here, we discuss what is currently known about the role of respiratory mucins and their glycans during bacterial and viral infections of the airways and their relevance for the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the impact of microbe-mucin interaction in the respiratory tract could inspire the development of novel therapies to boost mucosal defense and combat respiratory infections.
Collapse
Affiliation(s)
- Maitrayee Chatterjee
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jos P M van Putten
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Karin Strijbis
- Department Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
14
|
Kennel C, Gould EA, Larson ED, Salcedo E, Vickery T, Restrepo D, Ramakrishnan VR. Differential Expression of Mucins in Murine Olfactory Versus Respiratory Epithelium. Chem Senses 2020; 44:511-521. [PMID: 31300812 DOI: 10.1093/chemse/bjz046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mucins are a key component of the surface mucus overlying airway epithelium. Given the different functions of the olfactory and respiratory epithelia, we hypothesized that mucins would be differentially expressed between these 2 areas. Secondarily, we evaluated for potential changes in mucin expression with radiation exposure, given the clinical observations of nasal dryness, altered mucus rheology, and smell loss in radiated patients. Immunofluorescence staining was performed to evaluate expression of mucins 1, 2, 5AC, and 5B in nasal respiratory and olfactory epithelia of control mice and 1 week after exposure to 8 Gy of radiation. Mucins 1, 5AC, and 5B exhibited differential expression patterns between olfactory and respiratory epithelium (RE) while mucin 2 showed no difference. In the olfactory epithelium (OE), mucin 1 was located in a lattice-like pattern around gaps corresponding to dendritic knobs of olfactory sensory neurons, whereas in RE it was intermittently expressed by surface goblet cells. Mucin 5AC was expressed by subepithelial glands in both epithelial types but to a higher degree in the OE. Mucin 5B was expressed by submucosal glands in OE and by surface epithelial cells in RE. At 1-week after exposure to single-dose 8 Gy of radiation, no qualitative effects were seen on mucin expression. Our findings demonstrate that murine OE and RE express mucins differently, and characteristic patterns of mucins 1, 5AC, and 5B can be used to define the underlying epithelium. Radiation (8 Gy) does not appear to affect mucin expression at 1 week. LEVEL OF EVIDENCE N/A (Basic Science Research).IACUC-approved study [Protocol 200065].
Collapse
Affiliation(s)
- Christopher Kennel
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elizabeth A Gould
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA.,Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Eric D Larson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ernesto Salcedo
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thad Vickery
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Diego Restrepo
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA.,Neuroscience Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Vijay R Ramakrishnan
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO, USA.,Rocky Mountain Taste and Smell Center, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
15
|
Non-Typeable Haemophilus influenzae Invade Choroid Plexus Epithelial Cells in a Polar Fashion. Int J Mol Sci 2020; 21:ijms21165739. [PMID: 32785145 PMCID: PMC7461124 DOI: 10.3390/ijms21165739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Non-typeable Haemophilus influenzae (NTHI) is a pathogen of the human respiratory tract causing the majority of invasive H. influenzae infections. Severe invasive infections such as septicemia and meningitis occur rarely, but the lack of a protecting vaccine and the increasing antibiotic resistance of NTHI impede treatment and emphasize its relevance as a potential meningitis causing pathogen. Meningitis results from pathogens crossing blood-brain barriers and invading the immune privileged central nervous system (CNS). In this study, we addressed the potential of NTHI to enter the brain by invading cells of the choroid plexus (CP) prior to meningeal inflammation to enlighten NTHI pathophysiological mechanisms. A cell culture model of human CP epithelial cells, which form the blood-cerebrospinal fluid barrier (BCSFB) in vivo, was used to analyze adhesion and invasion by immunofluorescence and electron microscopy. NTHI invade CP cells in vitro in a polar fashion from the blood-facing side. Furthermore, NTHI invasion rates are increased compared to encapsulated HiB and HiF strains. Fimbriae occurrence attenuated adhesion and invasion. Thus, our findings underline the role of the BCSFB as a potential entry port for NTHI into the brain and provide strong evidence for a function of the CP during NTHI invasion into the CNS during the course of meningitis.
Collapse
|
16
|
Kato K, Chang EH, Chen Y, Lu W, Kim MM, Niihori M, Hecker L, Kim KC. MUC1 contributes to goblet cell metaplasia and MUC5AC expression in response to cigarette smoke in vivo. Am J Physiol Lung Cell Mol Physiol 2020; 319:L82-L90. [PMID: 32401676 DOI: 10.1152/ajplung.00049.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Goblet cell metaplasia (GCM) and mucin overproduction are a hallmark of chronic rhinosinusitis (CRS) and chronic obstructive pulmonary disease (COPD). In the airways, cigarette smoke (CS) induces activation of the epidermal growth factor receptor (EGFR) leading to GCM and overexpression of the gel-forming mucin MUC5AC. Although previous studies have demonstrated that a membrane-bound mucin, MUC1, modulates the activation of CS-induced EGFR, the role of MUC1 in CS-induced GCM and mucin overproduction has not been explored. In response to CS exposure, wild-type (WT) rats displayed Muc1 translocation from the apical surface of airway epithelium to the intracellular compartment of hyperplastic intermediate cells, EGFR phosphorylation, GCM, and Muc5ac overproduction. Similarly, human CRS sinonasal tissues demonstrated hyperplasia of intermediate cells enriched with MUC1 in the intracellular compartment, which was accompanied by GCM and increased MUC5AC expression. To further evaluate the role of Muc1 in vivo, a Muc1 knockout (KO) rat (MUC in humans and Muc in animals) was developed. In contrast to WT littermates, Muc1-KO rats exhibited no activation of EGFR, and were protected from GCM and Muc5ac overproduction. Genetic knockdown of MUC1 in human lung or Muc1 knockout in primary rat airway epithelial cells led to significantly diminished EGF-induced MUC5AC production. Together, these findings suggest that MUC1-dependent EGFR activation mediates CS-induced GCM and mucin overproduction. Strategies designed to suppress MUC1-dependent EGFR activation may provide a novel therapeutic approach for treating mucin hypersecretion in CRS and COPD.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Eugene H Chang
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona
| | - Yin Chen
- Department of Pharmacology and Toxicology, University of Arizona College of Pharmacy, Tucson, Arizona
| | - Wenju Lu
- Department of Medicine, National Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Marianne M Kim
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona
| | - Maki Niihori
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona
| | - Louise Hecker
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Arizona College of Medicine, Tucson, Arizona.,Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| | - Kwang Chul Kim
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
17
|
Lo Bello F, Ieni A, Hansbro PM, Ruggeri P, Di Stefano A, Nucera F, Coppolino I, Monaco F, Tuccari G, Adcock IM, Caramori G. Role of the mucins in pathogenesis of COPD: implications for therapy. Expert Rev Respir Med 2020; 14:465-483. [PMID: 32133884 DOI: 10.1080/17476348.2020.1739525] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Evidence accumulated in the last decade has started to reveal the enormous complexity in the expression, interactions and functions of the large number of different mucins present in the different compartments of the human lower airways. This occurs both in normal subjects and in COPD patients in different clinical phases and stages of severity.Areas covered: We review the known physiological mechanisms that regulate mucin production in human lower airways of normal subjects, the changes in mucin synthesis/secretion in COPD patients and the clinical efficacy of drugs that modulate mucin synthesis/secretion.Expert opinion: It is evident that the old simplistic concept that mucus hypersecretion in COPD patients is associated with negative clinical outcomes is not valid and that the therapeutic potential of 'mucolytic drugs' is under-appreciated due to the complexity of the associated molecular network(s). Likewise, our current knowledge of the effects of the drugs already available on the market that target mucin synthesis/secretion/structure in the lower airways is extremely limited and often indirect and more well-controlled clinical trials are needed in this area.
Collapse
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, University of Technology Sydney, Ultimo, Australia
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Antonino Di Stefano
- Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Istituti Clinici Scientifici Maugeri, IRCCS, Veruno, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Monaco
- Unità Operativa Semplice Dipartimentale di Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), AOU Policlinico "G.martino", Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Ian M Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
18
|
Bose M, Mukherjee P. Microbe-MUC1 Crosstalk in Cancer-Associated Infections. Trends Mol Med 2020; 26:324-336. [PMID: 31753595 DOI: 10.1016/j.molmed.2019.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
Infection-associated cancers account for ∼20% of all malignancies. Understanding the molecular mechanisms underlying infection-associated malignancies may help in developing diagnostic biomarkers and preventative vaccines against malignancy. During infection, invading microbes interact with host mucins lining the glandular epithelial cells and trigger inflammation. MUC1 is a transmembrane mucin glycoprotein that is present on the surface of almost all epithelial cells, and is known to interact with invading microbes. This interaction can trigger pro- or anti-inflammatory responses depending on the microbe and the cell type. In this review we summarize the mechanisms of microbe and MUC1 interactions, and highlight how MUC1 plays contrasting roles in different cells. We also share perspectives on future research that may support clinical advances in infection-associated cancers.
Collapse
Affiliation(s)
- Mukulika Bose
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| | - Pinku Mukherjee
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
19
|
Schmelzer E, Miceli V, Chinnici CM, Bertani A, Gerlach JC. Effects of Mesenchymal Stem Cell Coculture on Human Lung Small Airway Epithelial Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9847579. [PMID: 32309444 PMCID: PMC7149353 DOI: 10.1155/2020/9847579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) and their secreted extracellular vesicles have been used effectively in different lung disease animal models and clinical trials. Their specific beneficial effects, the potential differences between MSCs derived from different organs, and interactions between MSC products and target cells still need to be studied further. Therefore, we investigated the effects of secreted products of human MSCs derived from the bone marrow and adipose tissue on human lung small airway epithelial (AE) cells in vitro. AE cells were cocultured with MSCs in inserts that allowed the free exchange of medium but did not allow direct cell-to-cell contact. We examined the effects on AE cell viability, proliferation, cell numbers, expression of AE cell-specific genes, and CD54 (intercellular adhesion molecule 1 (ICAM1)) surface positivity, as well as the secretion/uptake of growth factors relevant for AE cell. We found that coculture increased the viability of AE cells. The majority of AE cells expressed CD54 on their surface, but the percentage of cells being positive for CD54 did not increase in coculture. However, ICAM1 gene expression was increased in coculture. Also, we observed increased gene expression of mucin (MUC1), a lung-enriched cell surface glycoprotein. These observed effects were the same between bone marrow and adipose tissue MSCs. However, MSCs derived from adipose tissue reduced angiopoietin concentrations in coculture, whereas those from the bone marrow did not. Conclusively, MSCs influenced AE cells positively by increasing their viability and affecting gene expression, with some effects being specific for the tissue origin of MSCs.
Collapse
Affiliation(s)
- Eva Schmelzer
- 1Department of Surgery, University of Pittsburgh, Pennsylvania, USA
| | - Vitale Miceli
- 2Research Department, IRCCS-ISMETT Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione, UPMC Italy, Palermo, Italy
| | - Cinzia Maria Chinnici
- 3Fondazione Ri.MED, Regenerative Medicine and Biomedical Technologies Unit, UPMC Italy, Palermo, Italy
- 4Regenerative Medicine and Biomedical Technologies Unit, IRCCS-ISMETT Palermo, Italy
| | - Alessandro Bertani
- 5Division of Thoracic Surgery and Lung Transplantation, IRCCS-ISMETT Palermo, Italy
| | - Jörg C. Gerlach
- 1Department of Surgery, University of Pittsburgh, Pennsylvania, USA
- 6Department of Bioengineering, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
20
|
Wang YM, Ji R, Chen WW, Huang SW, Zheng YJ, Yang ZT, Qu HP, Chen H, Mao EQ, Chen Y, Chen EZ. Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-κB pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3391-3404. [PMID: 31576113 PMCID: PMC6766586 DOI: 10.2147/dddt.s222296] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022]
Abstract
Purpose It has been reported that approximately 40% of ALI (acute lung injury) incidence resulted from sepsis. Paclitaxel, as a classic anti-cancer drug, plays an important role in the regulation of inflammation. However, we do not know whether it has a protective effect against CLP (cecal ligation and puncture)-induced septic ALI. Our study aims to illuminate the mitigative effects of paclitaxel on sepsis-induced ALI and its relevant mechanisms. Materials and methods The survival rates and organ injuries were used to evaluate the effects of paclitaxel on CLP mice. The levels of inflammatory cytokines were tested by ELISA. MUC1 siRNA pre-treatment was used to knockdown MUC1 expression in vitro. GO203 was used to inhibit the homodimerization of MUC1-C in vivo. The expression levels of MUC1, TLR 4 and p-NF-κB/p65 were detected by Western blot. Results Our results showed that paclitaxel improved the survival rates and ameliorated organ injuries especially lung injury in CLP-induced septic mice. These were accompanied by reduced inflammatory cytokines in sera and BALF (bronchoalveolar lavage fluid). We also found paclitaxel could attenuate TLR 4-NF-κB/p65 activation both in lung tissues of septic mice and LPS-stimulated lung type II epithelial cell line A549. At the upstream level, paclitaxel-upregulated expression levels of MUC1 in both in vivo and in vitro experiments. The inhibitory effects of paclitaxel on TLR 4-NF-κB/p65 activation were reversed in lung tissues of septic mice pre-treated with MUC1 inhibitor and in MUC1-knockdown A549 cells. Protection of paclitaxel on sepsis-induced ALI and decrease of inflammatory cytokines were also abolished by inhibition of MUC1. Conclusion Collectively, these results indicated paclitaxel could significantly alleviate acute lung injury in CLP-induced septic mice and LPS-stimulated lung type II epithelial cell line A549 by activating MUC1 and suppressing TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Yu-Ming Wang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ran Ji
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei-Wei Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shun-Wei Huang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan-Jun Zheng
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhi-Tao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong-Ping Qu
- Department of Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hao Chen
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - En-Qiang Mao
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Er-Zhen Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Chen ZG, Wang ZN, Yan Y, Liu J, He TT, Thong KT, Ong YK, Chow VTK, Tan KS, Wang DY. Upregulation of cell-surface mucin MUC15 in human nasal epithelial cells upon influenza A virus infection. BMC Infect Dis 2019; 19:622. [PMID: 31307416 PMCID: PMC6631914 DOI: 10.1186/s12879-019-4213-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background Cell-surface mucins are expressed in apical epithelial cells of the respiratory tract, and contribute a crucial part of the innate immune system. Despite anti-inflammatory or antiviral functions being revealed for certain cell-surface mucins such as MUC1, the roles of other mucins are still poorly understood, especially in viral infections. Methods To further identify mucins significant in influenza infection, we screened the expression of mucins in human nasal epithelial cells infected by H3N2 influenza A virus. Results We found that the expression of MUC15 was significantly upregulated upon infection, and specific only to active infection. While MUC15 did not interact with virus particles or reduce viral replication directly, positive correlations were observed between MUC15 and inflammatory factors in response to viral infection. Given that the upregulation of MUC15 was only triggered late into infection when immune factors (including cytokines, chemokines, EGFR and phosphorylated ERK) started to peak and plateau, MUC15 may potentially serve an immunomodulatory function later during influenza viral infection. Conclusions Our study revealed that MUC15 was one of the few cell-surface mucins induced during influenza infection. While MUC15 did not interact directly with influenza virus, we showed that its increase coincides with the peak of immune activation and thus MUC15 may serve an immunomodulatory role during influenza infection. Electronic supplementary material The online version of this article (10.1186/s12879-019-4213-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhuang Gui Chen
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Zhao Ni Wang
- Department of Pediatrics, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Yan Yan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.,Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Ting Ting He
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Kim Thye Thong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Yew Kwang Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Vincent T K Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, Singapore, 119228, Singapore
| |
Collapse
|
22
|
Dhar P, McAuley J. The Role of the Cell Surface Mucin MUC1 as a Barrier to Infection and Regulator of Inflammation. Front Cell Infect Microbiol 2019; 9:117. [PMID: 31069176 PMCID: PMC6491460 DOI: 10.3389/fcimb.2019.00117] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
The family of cell surface (cs-) mucins are constitutively expressed at the cell surface by nearly all epithelial cells, beneath the gel-mucin layer. All cs-mucin family members have structural features that enable them to act as a releasable decoy barrier to mucosal pathogens, by providing ligands for pathogen binding and the ability to shed the bound extracellular domain. Due to the towering structure of cs-mucins at the surface, binding of mucosal pathogens can also sterically block binding to underlying cellular receptors. The cytoplasmic tail domain of cs-mucins are capable of initiating signal transduction cascades and due to their conservation across species, may play an important biological role in cellular signaling. MUC1 is one of the most extensively studied of the cs-mucin family. With respect to its physiological function in the mucosal environment, MUC1 has been demonstrated to play a dynamic role in protection of the host from infection by a wide variety of pathogens and to regulate inflammatory responses to infection. This review briefly summarizes the current knowledge and new findings regarding the structural features relating to the function of MUC1, its role as a protective barrier against pathogen invasion and mechanisms by which this cs-mucin regulates inflammation.
Collapse
Affiliation(s)
- Poshmaal Dhar
- Faculty of Health, School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Julie McAuley
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
Behren S, Westerlind U. Glycopeptides and -Mimetics to Detect, Monitor and Inhibit Bacterial and Viral Infections: Recent Advances and Perspectives. Molecules 2019; 24:E1004. [PMID: 30871155 PMCID: PMC6471658 DOI: 10.3390/molecules24061004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 11/17/2022] Open
Abstract
The initial contact of pathogens with host cells is usually mediated by their adhesion to glycan structures present on the cell surface in order to enable infection. Furthermore, glycans play important roles in the modulation of the host immune responses to infection. Understanding the carbohydrate-pathogen interactions are of importance for the development of novel and efficient strategies to either prevent, or interfere with pathogenic infection. Synthetic glycopeptides and mimetics thereof are capable of imitating the multivalent display of carbohydrates at the cell surface, which have become an important objective of research over the last decade. Glycopeptide based constructs may function as vaccines or anti-adhesive agents that interfere with the ability of pathogens to adhere to the host cell glycans and thus possess the potential to improve or replace treatments that suffer from resistance. Additionally, synthetic glycopeptides are used as tools for epitope mapping of antibodies directed against structures present on various pathogens and have become important to improve serodiagnostic methods and to develop novel epitope-based vaccines. This review will provide an overview of the most recent advances in the synthesis and application of glycopeptides and glycopeptide mimetics exhibiting a peptide-like backbone in glycobiology.
Collapse
Affiliation(s)
- Sandra Behren
- Department of Chemistry, Umeå University, 90187 Umeå, Sweden.
| | | |
Collapse
|
24
|
Milara J, Morell A, de Diego A, Artigues E, Morcillo E, Cortijo J. Mucin 1 deficiency mediates corticosteroid insensitivity in asthma. Allergy 2019; 74:111-121. [PMID: 29978485 DOI: 10.1111/all.13546] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/19/2018] [Accepted: 06/09/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The loss of corticosteroid efficacy is an important issue in severe asthma management and may lead to poor asthma control and deterioration of airflow. Recent data indicate that Mucin 1 (MUC1) membrane mucin can mediate corticosteroid efficacy in chronic rhinosinusitis, but the role of MUC1 in uncontrolled severe asthma is unknown. The objective was to analyze the previously unexplored role of MUC1 on corticosteroid efficacy in asthma. METHODS Mucin 1 expression was evaluated by real-time PCR in human bronchial epithelial cells (HBEC) and blood neutrophils from uncontrolled severe asthma (n = 27), controlled mild asthma (n = 16), and healthy subjects (n = 13). IL-8, MMP9, and GM-CSF were measured by ELISA in HBEC and neutrophils. An asthma model of ovalbumin (OVA) was used in MUC1 KO and WT C57BL/6 mice according to ARRIVE guidelines. RESULTS Mucin 1-CT expression was downregulated in bronchial epithelial cells and peripheral blood neutrophils from severe asthma patients compared with mild asthma and healthy subjects (P < 0.05). Daily dose of inhaled corticosteroids (ICS) inversely correlated with MUC1 expression in neutrophils from mild and severe asthma (ρ = -0.71; P < 0.0001). Dexamethasone showed lower anti-inflammatory effects in severe asthma peripheral blood neutrophils and HBECs stimulated with lipopolysaccharide (LPS) than in cells from mild asthma. Glucocorticoid receptor (GR)-α phosphorylated at serine 226 was increased in cells from severe asthma, and the MUC1-CT/GRα complex was downregulated in severe asthma cells. OVA asthma model in MUC1 KO mice was resistant to the anti-inflammatory effects of dexamethasone. CONCLUSION Mucin 1-CT modulates corticosteroid efficacy in vitro and in vivo asthma models.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology Faculty of Medicine Jaume I University Valencia Spain
- Pharmacy Unit University General Hospital Consortium Valencia Spain
- CIBERES Health Institute Carlos III Valencia Spain
| | - Anselm Morell
- Department of Pharmacology Faculty of Medicine University of Valencia Valencia Spain
| | | | - Enrique Artigues
- Surgery Unit University General Hospital Consortium Valencia Spain
| | - Esteban Morcillo
- CIBERES Health Institute Carlos III Valencia Spain
- Department of Pharmacology Faculty of Medicine University of Valencia Valencia Spain
- Health Research Institute INCLIVA Valencia Spain
| | - Julio Cortijo
- CIBERES Health Institute Carlos III Valencia Spain
- Department of Pharmacology Faculty of Medicine University of Valencia Valencia Spain
- Research and Teaching Unit University General Hospital Consortium Valencia Spain
| |
Collapse
|
25
|
Milara J, Díaz-Platas L, Contreras S, Ribera P, Roger I, Ballester B, Montero P, Cogolludo Á, Morcillo E, Cortijo J. MUC1 deficiency mediates corticosteroid resistance in chronic obstructive pulmonary disease. Respir Res 2018; 19:226. [PMID: 30458870 PMCID: PMC6247701 DOI: 10.1186/s12931-018-0927-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
Background Lung inflammation in COPD is poorly controlled by inhaled corticosteroids (ICS). Strategies to improve ICS efficacy or the search of biomarkers who may select those patients candidates to receive ICS in COPD are needed. Recent data indicate that MUC1 cytoplasmic tail (CT) membrane mucin can mediate corticosteroid efficacy in chronic rhinosinusitis. The objective of this work was to analyze the previously unexplored role of MUC1 on corticosteroid efficacy in COPD in vitro and in vivo models. Methods MUC1-CT expression was measured by real time PCR, western blot, immunohistochemistry and immunofluorescence. The inflammatory mediators IL-8, MMP9, GM-CSF and MIP3α were measured by ELISA. The effect of MUC1 on inflammation and corticosteroid anti-inflammatory effects was measured using cell siRNA in vitro and Muc1-KO in vivo animal models. Results MUC1-CT expression was downregulated in lung tissue, bronchial epithelial cells and lung neutrophils from smokers (n = 11) and COPD (n = 11) patients compared with healthy subjects (n = 10). MUC1 was correlated with FEV1% (ρ = 0.7479; p < 0.0001) in smokers and COPD patients. Cigarette smoke extract (CSE) decreased the expression of MUC1 and induced corticosteroid resistance in human primary bronchial epithelial cells and human neutrophils. MUC1 Gene silencing using siRNA-MUC1 impaired the anti-inflammatory effects of dexamethasone and reduced glucocorticoid response element activation. Dexamethasone promoted glucocorticoid receptor alpha (GRα) and MUC1-CT nuclear translocation and co-localization that was inhibited by CSE. Lung function decline and inflammation induced by lipopolysaccharide and cigarette smoke in Muc1 KO mice was resistant to dexamethasone. Conclusions These results confirm a role for MUC1-CT mediating corticosteroid efficacy in COPD. Electronic supplementary material The online version of this article (10.1186/s12931-018-0927-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javier Milara
- Department of Pharmacology, Faculty of Medicine, Jaume I University, Castellón de la Plana, Spain. .,Pharmacy Unit, University General Hospital Consortium, Valencia, Spain. .,CIBERES, Health Institute Carlos III, Valencia, Spain. .,Unidad de Investigación Clínica, Consorcio Hospital General Universitario, Avenida tres cruces s/n, E-46014, Valencia, Spain.
| | - Lucía Díaz-Platas
- Unidade Radiofármacos PET, GALARIA, Santiago de Compostela, A Coruña, Spain
| | - Sonia Contreras
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Pilar Ribera
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Inés Roger
- CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Beatriz Ballester
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ángel Cogolludo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Esteban Morcillo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Health Research Institute INCLIVA, Valencia, Spain
| | - Julio Cortijo
- CIBERES, Health Institute Carlos III, Valencia, Spain.,Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Research and teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
26
|
The Regulation of Inflammation by Innate and Adaptive Lymphocytes. J Immunol Res 2018; 2018:1467538. [PMID: 29992170 PMCID: PMC6016164 DOI: 10.1155/2018/1467538] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/16/2018] [Indexed: 02/08/2023] Open
Abstract
Inflammation plays an essential role in the control of pathogens and in shaping the ensuing adaptive immune responses. Traditionally, innate immunity has been described as a rapid response triggered through generic and nonspecific means that by definition lacks the ability to remember. Recently, it has become clear that some innate immune cells are epigenetically reprogrammed or “imprinted” by past experiences. These “trained” innate immune cells display altered inflammatory responses upon subsequent pathogen encounter. Remembrance of past pathogen encounters has classically been attributed to cohorts of antigen-specific memory T and B cells following the resolution of infection. During recall responses, memory T and B cells quickly respond by proliferating, producing effector cytokines, and performing various effector functions. An often-overlooked effector function of memory CD4 and CD8 T cells is the promotion of an inflammatory milieu at the initial site of infection that mirrors the primary encounter. This memory-conditioned inflammatory response, in conjunction with other secondary effector T cell functions, results in better control and more rapid resolution of both infection and the associated tissue pathology. Recent advancements in our understanding of inflammatory triggers, imprinting of the innate immune responses, and the role of T cell memory in regulating inflammation are discussed.
Collapse
|
27
|
Ma YK, Chen YB, Li P. Quercetin inhibits NTHi-triggered CXCR4 activation through suppressing IKKα/NF-κB and MAPK signaling pathways in otitis media. Int J Mol Med 2018; 42:248-258. [PMID: 29568908 PMCID: PMC5979834 DOI: 10.3892/ijmm.2018.3577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/21/2018] [Indexed: 12/16/2022] Open
Abstract
Otitis media is one of the most common bacterial infections in children, contributing to hearing loss. A vital bacterial pathogen leading to otitis media development is the nontypeable Haemophilus influenzae (NTHi). Inflammation response is reported as an important characristic for otitis media. Chemokine CXC receptor 4 (CXCR4) is a 352-amino acid seven-span transmembrane G-protein coupled receptor, essential for inflammatory response. However, the possible molecular mechanism indicating the alteration of CXCR4 modulated by NTHi is poorly known. In the present study, NTHi enhanced CXCR4 expression through phosphorylation of IKKα and p38, which relied on nuclear factor-κB (NF-κB) translocation in vitro as well as in the middle ear of mice in vivo. Previously, quercetin, a natural production mainly isolated from rutin, has shown anti-inflammatory effects. Here, we report that quercetin suppressed NTHi-induced CXCR4 expression levels in vitro and in vivo. Quercetin blocked CXCR4 activation through direct IKKβ phosphorylation inhibition, as well as of p38 MAPK restraining. Hence, identification of quercetin may be a potential therapeutic strategy for treating otitis media induced by NTHi through inflammation suppression.
Collapse
Affiliation(s)
- Yu-Kun Ma
- Department of Otorhinolaryngology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630 P.R. China
| | - Yu-Bin Chen
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630 P.R. China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630 P.R. China
| |
Collapse
|
28
|
The Role of Regulatory T Cell in Nontypeable Haemophilus influenzae-Induced Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Mediators Inflamm 2018; 2018:8387150. [PMID: 29725272 PMCID: PMC5872612 DOI: 10.1155/2018/8387150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/08/2018] [Accepted: 02/06/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with irreversible persistent airflow limitation and enhanced inflammation. The episodes of acute exacerbation (AECOPD) largely depend on the colonized pathogens such as nontypeable Haemophilus influenzae (NTHi), one of the most commonly isolated bacteria. Regulatory T cells (Tregs) are critical in controlling inflammatory immune responses and maintaining tolerance; however, their role in AECOPD is poorly understood. In this study, we hypothesized a regulatory role of Tregs, as NTHi participated in the progress of COPD. Immunological pathogenesis was investigated in a murine COPD model induced by cigarette smoke (CS). NTHi was administrated through intratracheal instillation for an acute exacerbation. Weight loss and lung function decline were observed in smoke-exposed mice. Mice in experimental groups exhibited serious inflammatory responses via histological and cytokine assessment. Expression levels of Tregs and Th17 cells with specific cytokines TGF-β1 and IL-17 were detected to assess the balance of pro-/anti-inflammatory influence partially. Our findings suggested an anti-inflammatory activity of Tregs in CS-induced model. But this activity was suppressed after NTHi administration. Collectively, these data suggested that NTHi might play a necessary role in downregulating Foxp3 to impair the function of Tregs, helping development into AECOPD.
Collapse
|
29
|
MUC1: The First Respiratory Mucin with an Anti-Inflammatory Function. J Clin Med 2017; 6:jcm6120110. [PMID: 29186029 PMCID: PMC5742799 DOI: 10.3390/jcm6120110] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 02/07/2023] Open
Abstract
MUC1 is a membrane-bound mucin expressed on the apical surfaces of most mucosal epithelial cells. In normal lung epithelia, MUC1 is a binding site for Pseudomonas aeruginosa, an opportunistic human pathogen of great clinical importance. It has now been established that MUC1 also serves an anti-inflammatory role in the airways that is initiated late in the course of a bacterial infection and is mediated through inhibition of Toll-like receptor (TLR) signaling. MUC1 expression was initially shown to interfere with TLR5 signaling in response to P. aeruginosa flagellin, but has since been extended to other TLRs. These new findings point to an immunomodulatory role for MUC1 during P. aeruginosa lung infection, particularly during the resolution phase of inflammation. This review briefly summarizes the recent characterization of MUC1’s anti-inflammatory properties in both the respiratory tract and extrapulmonary tissues.
Collapse
|
30
|
Yuste J. Mucin 1 is a novel glycoprotein involved in host defense against invasive pneumococcal disease. Virulence 2017; 8:1475-1477. [DOI: 10.1080/21505594.2017.1356971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jose Yuste
- Spanish Pneumococcal Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
31
|
The cell surface mucin MUC1 limits the severity of influenza A virus infection. Mucosal Immunol 2017; 10:1581-1593. [PMID: 28327617 DOI: 10.1038/mi.2017.16] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/26/2017] [Indexed: 02/04/2023]
Abstract
Cell surface mucin (cs-mucin) glycoproteins are constitutively expressed at the surface of respiratory epithelia where pathogens such as influenza A virus (IAV) gain entry into cells. Different members of the cs-mucin family each express a large and heavily glycosylated extracellular domain that towers above other receptors on the epithelial cell surface, a transmembrane domain that enables shedding of the extracellular domain, and a cytoplasmic tail capable of triggering signaling cascades. We hypothesized that IAV can interact with the terminal sialic acids presented on the extracellular domain of cs-mucins, resulting in modulation of infection efficiency. Utilizing human lung epithelial cells, we found that IAV associates with the cs-mucin MUC1 but not MUC13 or MUC16. Overexpression of MUC1 by epithelial cells or the addition of sialylated synthetic MUC1 constructs, reduced IAV infection in vitro. In addition, Muc1-/- mice infected with IAV exhibited enhanced morbidity and mortality, as well as greater inflammatory mediator responses compared to wild type mice. This study implicates the cs-mucin MUC1 as a critical and dynamic component of the innate host response that limits the severity of influenza and provides the foundation for exploration of MUC1 in resolving inflammatory disease.
Collapse
|
32
|
Xu X, Chen W, Leng S, Padilla MT, Saxton B, Hutt J, Tessema M, Kato K, Kim KC, Belinsky SA, Lin Y. Muc1 knockout potentiates murine lung carcinogenesis involving an epiregulin-mediated EGFR activation feedback loop. Carcinogenesis 2017; 38:604-614. [PMID: 28472347 DOI: 10.1093/carcin/bgx039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/22/2017] [Indexed: 12/14/2022] Open
Abstract
Mucin 1 (MUC1) is a tumor antigen that is aberrantly overexpressed in various cancers, including lung cancer. Our previous in vitro studies showed that MUC1 facilitates carcinogen-induced EGFR activation and transformation in human lung bronchial epithelial cells (HBECs), which along with other reports suggests an oncogenic property for MUC1 in lung cancer. However, direct evidence for the role of MUC1 in lung carcinogenesis is lacking. In this study, we used the 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced A/J mouse lung tumor model to investigate the effect of whole-body Muc1 knockout (KO) on carcinogen-induced lung carcinogenesis. Surprisingly, lung tumor multiplicity was significantly increased in Muc1 KO compared to wild-type (WT) mice. The EGFR/AKT pathway was unexpectedly activated, and expression of the EGFR ligand epiregulin (EREG) was increased in the lung tissues of the Muc1 KO compared to the WT mice. EREG stimulated proliferation and protected against cigarette smoke extract (CSE)-induced cytotoxicity in in vitro cultured human bronchial epithelial cells. Additionally, we determined that MUC1 was expressed in human fibroblast cell lines where it suppressed CSE-induced EREG production. Further, suppression of MUC1 cellular activity with GO-201 enhanced EREG production in lung cancer cells, which in turn protected cancer cells from GO-201-induced cell death. Moreover, an inverse association between MUC1 and EREG was detected in human lung cancer, and EREG expression was inversely associated with patient survival. Together, these results support a promiscuous role of MUC1 in lung cancer development that may be related to cell-type specific functions of MUC1 in the tumor microenvironment, and MUC1 deficiency in fibroblasts and malignant cells results in increased EREG production that activates the EGFR pathway for lung carcinogenesis.
Collapse
Affiliation(s)
- Xiuling Xu
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| | - Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| | - Shuguang Leng
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| | - Mabel T Padilla
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| | - Bryanna Saxton
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| | - Julie Hutt
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| | - Mathewos Tessema
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| | - Kosuke Kato
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ 86715, USA
| | - Kwang Chul Kim
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ 86715, USA
| | - Steven A Belinsky
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA and
| |
Collapse
|
33
|
Pseudomonas aeruginosa increases MUC1 expression in macrophages through the TLR4-p38 pathway. Biochem Biophys Res Commun 2017; 492:231-235. [PMID: 28822766 DOI: 10.1016/j.bbrc.2017.08.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 08/15/2017] [Indexed: 01/05/2023]
Abstract
Alveolar macrophages (AMs) play a critical role in the clearance of Pseudomonas aeruginosa (Pa) from the airways. However, hyper-activation of macrophages can impair bacterial clearance and contribute to morbidity and mortality. MUC1 mucin is a membrane-tethered, high molecular mass glycoprotein expressed on the apical surface of mucosal epithelial cells and some hematopoietic cells, including macrophages, where it counter-regulates inflammation. We recently reported that Pa up-regulates the expression of MUC1 in primary human AMs and THP-1 macrophages, and that increased MUC1 expression in these cells prevents hyper-activation of macrophages that appears to be important for host defense against severe pathology of Pa lung infection. The aims of this study were to elucidate the mechanism by which Pa increases MUC1 expression in macrophages. The results showed that: (a) Pa stimulation of THP-1 macrophages increased MUC1 expression both at transcriptional and protein levels in a dose-dependent manner; (b) Both Pa- and LPS-induced MUC1 expression in THP-1 cells were significantly diminished by an inhibitory peptide of TLR4; and (c) LPS-stimulated MUC1 expression was diminished at both the mRNA and protein levels by an inhibitor of the p38 mitogen-activated protein kinase, but not by inhibitors of ERK1/2, JNK, or IKK. We conclude that Pa-stimulated MUC1 expression in THP-1 macrophages is regulated mainly through the TLR4-p38 signaling pathway.
Collapse
|
34
|
Dhar P, Ng GZ, Dunne EM, Sutton P. Mucin 1 protects against severe Streptococcus pneumoniae infection. Virulence 2017; 8:1631-1642. [PMID: 28605238 DOI: 10.1080/21505594.2017.1341021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Streptococcus pneumoniae is a bacterial pathogen that commonly resides in the human nasopharynx, typically without causing any disease. However, in some cases these bacteria migrate from the nasopharynx to other sites of the body such as the lungs and bloodstream causing pneumonia and sepsis, respectively. This study used a mouse model of infection to investigate the potential role of Mucin 1 (MUC1), a cell membrane-associated glycoprotein known for playing a key barrier role at mucosal surfaces, in regulating this process. Wildtype (WT) and MUC1-deficient (Muc1-/-) mice were infected intranasally with an invasive strain of S. pneumoniae and bacterial loads in the nasopharynx, lungs, and blood were analyzed. Lungs were graded histologically for inflammation and cytokine profiles in the lungs analyzed by ELISA. While there was no difference in pneumococcal colonization of the nasopharynx between WT and Muc1-/- mice, infected Muc1-/- mice showed high pneumococcal loads in their lungs 16 hours post-infection, as well as bacteremia. In contrast, infected WT mice cleared the pneumococci from their lungs and remained asymptomatic. Infection in Muc1-/- mice was associated with an elevation in lung inflammation, with cellular recruitment especially of monocytes/macrophages. While MUC1-deficiency has been shown to increase phagocytosis of Pseudomonas aeruginosa, macrophages from Muc1-/- mice exhibited a reduced capacity to phagocytose S. pneumoniae indicating diverse and bacterial-specific effects. In conclusion, these findings indicate that MUC1 plays an important role in protection against severe pneumococcal disease, potentially mediated by facilitating macrophage phagocytosis.
Collapse
Affiliation(s)
- Poshmaal Dhar
- a Murdoch Childrens Research Institute , Royal Children's Hospital , Parkville , Victoria , Australia.,b Centre for Animal Biotechnology, School of Veterinary and Agricultural Science , University of Melbourne , Parkville , Victoria , Australia
| | - Garrett Z Ng
- a Murdoch Childrens Research Institute , Royal Children's Hospital , Parkville , Victoria , Australia.,b Centre for Animal Biotechnology, School of Veterinary and Agricultural Science , University of Melbourne , Parkville , Victoria , Australia
| | - Eileen M Dunne
- a Murdoch Childrens Research Institute , Royal Children's Hospital , Parkville , Victoria , Australia
| | - Philip Sutton
- a Murdoch Childrens Research Institute , Royal Children's Hospital , Parkville , Victoria , Australia.,b Centre for Animal Biotechnology, School of Veterinary and Agricultural Science , University of Melbourne , Parkville , Victoria , Australia.,c Department of Paediatrics , University of Melbourne , Parkville , Victoria , Australia
| |
Collapse
|
35
|
van Putten JPM, Strijbis K. Transmembrane Mucins: Signaling Receptors at the Intersection of Inflammation and Cancer. J Innate Immun 2017; 9:281-299. [PMID: 28052300 DOI: 10.1159/000453594] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 11/19/2016] [Indexed: 12/18/2022] Open
Abstract
Mucosal surfaces line our body cavities and provide the interaction surface between commensal and pathogenic microbiota and the host. The barrier function of the mucosal layer is largely maintained by gel-forming mucin proteins that are secreted by goblet cells. In addition, mucosal epithelial cells express cell-bound mucins that have both barrier and signaling functions. The family of transmembrane mucins consists of diverse members that share a few characteristics. The highly glycosylated extracellular mucin domains inhibit invasion by pathogenic bacteria and can form a tight mesh structure that protects cells in harmful conditions. The intracellular tails of transmembrane mucins can be phosphorylated and connect to signaling pathways that regulate inflammation, cell-cell interactions, differentiation, and apoptosis. Transmembrane mucins play important roles in preventing infection at mucosal surfaces, but are also renowned for their contributions to the development, progression, and metastasis of adenocarcinomas. In general, transmembrane mucins seem to have evolved to monitor and repair damaged epithelia, but these functions can be highjacked by cancer cells to yield a survival advantage. This review presents an overview of the current knowledge of the functions of transmembrane mucins in inflammatory processes and carcinogenesis in order to better understand the diverse functions of these multifunctional proteins.
Collapse
Affiliation(s)
- Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
36
|
Kato K, Uchino R, Lillehoj EP, Knox K, Lin Y, Kim KC. Membrane-Tethered MUC1 Mucin Counter-Regulates the Phagocytic Activity of Macrophages. Am J Respir Cell Mol Biol 2016; 54:515-23. [PMID: 26393683 DOI: 10.1165/rcmb.2015-0177oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MUC1 (MUC in human; Muc in animals) is a transmembrane mucin glycoprotein expressed in mucosal epithelial cells and hematopoietic cells. MUC1 is involved in the resolution of inflammation during airway Pseudomonas aeruginosa (Pa) infection by suppressing Toll-like receptor signaling in airway epithelial cells. Although alveolar macrophages are recognized as critical mediators of cell-mediated immunity against microorganisms inhaled into the airways, the role of MUC1 in regulating their response is unknown. The aims of this study were to determine whether macrophages express MUC1, and, if so, whether MUC1 expression might be associated with macrophage M0/M1/M2 differentiation or phagocytic activity. Human and mouse MUC1/Muc1 expression was drastically up-regulated in classically activated (M1) macrophages compared with nonactivated (M0) and alternatively activated (M2) macrophages. M1 polarization and Pa stimulation each increased MUC1 ectodomain shedding from the macrophage surface in a TNF-α-converting enzyme-dependent manner. MUC1/Muc1 deficiency in M0 macrophages increased adhesion and phagocytosis of Pa and Escherichia coli compared with MUC1/Muc1-expressing cells, and attenuation of phagocytosis by MUC1 was augmented after polarization into M1 macrophages compared with M0 macrophages. Finally, MUC1/Muc1 deficiency in macrophages increased reactive oxygen species production and TNF-α release in response to Pa compared with MUC1/Muc1-sufficient cells. These results indicate that MUC1/Muc1 expression by macrophages is predominantly in the M1 subtype, and that MUC1/Muc1 expression in these cells decreases their phagocytic activity in an antiinflammatory manner.
Collapse
Affiliation(s)
- Kosuke Kato
- 1 Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona.,2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Reina Uchino
- 2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - Erik P Lillehoj
- 3 Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenneth Knox
- 4 Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona; and
| | - Yong Lin
- 5 Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, New Mexico(Received in original form May 28, 2015 and in final form September 15, 2015)
| | - K Chul Kim
- 1 Department of Otolaryngology, University of Arizona College of Medicine, Tucson, Arizona.,2 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
37
|
Regulation of Airway Inflammation by G-protein Regulatory Motif Peptides of AGS3 protein. Sci Rep 2016; 6:27054. [PMID: 27270970 PMCID: PMC4895231 DOI: 10.1038/srep27054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/12/2016] [Indexed: 12/21/2022] Open
Abstract
Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and lung infections have critical consequences on mortality and morbidity in humans. The aims of the present study were to examine the mechanisms by which CXCL12 affects MUC1 transcription and airway inflammation, which depend on activator of G-protein signaling (AGS) 3 and to identify specific molecules that suppress CXCL12-induced airway inflammation by acting on G-protein-coupled receptors. Herein, AGS3 suppresses CXCL12-mediated upregulation of MUC1 and TNFα by regulating Gαi. We found that the G-protein regulatory (GPR) motif peptide in AGS3 binds to Gαi and downregulates MUC1 expression; in contrast, this motif upregulates TNFα expression. Mutated GPR Q34A peptide increased the expression of MUC1 and TGFβ but decreased the expression of TNFα and IL-6. Moreover, CXCR4-induced dendritic extensions in 2D and 3D matrix cultures were inhibited by the GPR Q34A peptide compared with a wild-type GPR peptide. The GPR Q34A peptide also inhibited CXCL12-induced morphological changes and inflammatory cell infiltration in the mouse lung, and production of inflammatory cytokines in bronchoalveolar lavage (BAL) fluid and the lungs. Our data indicate that the GPR motif of AGS3 is critical for regulating MUC1/Muc1 expression and cytokine production in the inflammatory microenvironment.
Collapse
|
38
|
The MUC1 mucin specifically inhibits activation of the NLRP3 inflammasome. Genes Immun 2016; 17:203-6. [PMID: 26938663 DOI: 10.1038/gene.2016.10] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 01/09/2023]
Abstract
MUC1 is a cell membrane-associated mucin, expressed ubiquitously on the mucosal epithelia as well as by immune cells, that limits the inflammatory response to multiple pathogens. We have recently shown that MUC1 controls inflammation resulting from Helicobacter pylori infection by suppressing interleukin-1β (IL-1β) produced via the NLRP3 inflammasome. Here, we demonstrate that MUC1 also regulates IL-1β secretion induced by the NLRP3-activating bacteria Haemophilus influenzae but not bacteria that activate other inflammasomes. Using purified ligands, we further demonstrate that MUC1 regulation of NLRP3 is specific, as it has no effect on the NLRP1b, NLRC4 and AIM2 inflammasomes. This indicates a unique role for MUC1 in the regulation of NLRP3-activating bacterial infections.
Collapse
|
39
|
Shirai K, Saika S. Ocular surface mucins and local inflammation--studies in genetically modified mouse lines. BMC Ophthalmol 2015; 15 Suppl 1:154. [PMID: 26818460 PMCID: PMC4895702 DOI: 10.1186/s12886-015-0137-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mucins locate to the apical surfaces of all wet-surfaced epithelia including ocular surface. The functions of the mucins include anti-adhesive, lubrication, water retention, allergens and pathogen barrier function. Ocular surface pathologies, i.e. dry eye syndrome or allergic conjunctivitis, are reportedly associated with alteration of expression pattern of mucin components. Recent investigations indicated anti-bacterial adhesion or anti-inflammatory effects of members of mucins in non-ocular tissues, i.e., gastrointestinal tracts or airway tissues, by using genetically modified mouse lines that lacks an expression of a mucin member. However, examination of ocular phenotypes of each of mucin gene-ablated mouse lines has not yet fully performed. Muc16-dficient mouse is associated with spontaneous subclinical inflammation in conjunctiva. The article reviews the roles of mucin members in modulation of local inflammation in mucous membrane tissues and phenotype of mouse lines with the loss of a mucin gene. Analysis of ocular surface of mucin-gene related mutant mouse lines are to be further performed.
Collapse
Affiliation(s)
- Kumi Shirai
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan.
| |
Collapse
|
40
|
Kato K, Lillehoj EP, Kim KC. Pseudomonas aeruginosa stimulates tyrosine phosphorylation of and TLR5 association with the MUC1 cytoplasmic tail through EGFR activation. Inflamm Res 2015; 65:225-33. [PMID: 26645913 DOI: 10.1007/s00011-015-0908-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 11/06/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND MUC1 is a membrane-tethered mucin expressed on the surface of epithelial and hematopoietic cells. Previous studies have established that MUC1 attenuates airway inflammation in response to Pseudomonas aeruginosa (Pa) through suppression of Toll-like receptor (TLR) signaling. Here, we elucidate the mechanism through which the MUC1 cytoplasmic tail (CT) inhibits TLR5 signaling in response to Pa and its flagellin in primary normal human bronchial epithelial (NHBE) cells. METHODS NHBE and human and mouse macrophages were stimulated with Pa or flagellin and transforming growth factor-α (TGF-α) and tumor necrosis factor-α (TNF-α) levels in cell culture supernatants were measured by ELISA. NHBE cells were stimulated with Pa, flagellin, or TNF-α and MUC1-CT, and epidermal growth factor receptor (EGFR) levels were measured by immunoblotting. NHBE cells were stimulated with Pa and MUC1-CT/TLR5 and MUC1-CT/EGFR association were detected by co-immunoprecipitation. RESULTS Stimulation of NHBE cells with Pa and flagellin each increased release of the EGFR ligand, TGF-α, from NHBE cells. Both stimuli also activated EGFR tyrosine phosphorylation in these same cells. By contrast, stimulation of NHBE cells with Pa failed to induce TNF-α release, whereas stimulation of human or mouse macrophages with Pa promoted TNF-α release. Stimulation of NHBE cells with recombinant TNF-α increased both MUC1 and EGFR protein levels, and stimulation of these cells with Pa enhanced MUC1-CT tyrosine phosphorylation and increased MUC1-CT/TLR5 and MUC1-CT/EGFR protein association, in an EGFR-dependent manner. CONCLUSIONS These results indicate that in response to Pa or flagellin, EGFR associates with and tyrosine phosphorylates MUC1-CT in primary NHBE cells, leading to increased MUC1-CT association with TLR5. Based on prior studies in tumor cells, increased MUC1-CT/TLR5 association in NHBE cells is predicted to competitively inhibit Pa/flagellin-stimulated TLR5 activation, reduce TLR5-dependent cell signaling, and down-regulate airway inflammation. Given that MUC1 is a universal suppressor of TLR signaling, the results from this study suggest that abnormal interactions between MUC1 and EGFR or TLRs may lead to the development of chronic inflammatory diseases. Thus, this is an important finding from the clinical point of view.
Collapse
Affiliation(s)
- Kosuke Kato
- Department of Otolaryngology, University of Arizona College of Medicine, 1656 E Mabel St, MRB-419, Tucson, AZ, 85724, USA. .,Department of Physiology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Erik P Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Kwang Chul Kim
- Department of Otolaryngology, University of Arizona College of Medicine, 1656 E Mabel St, MRB-419, Tucson, AZ, 85724, USA. .,Department of Physiology and Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
41
|
Apostolopoulos V, Stojanovska L, Gargosky SE. MUC1 (CD227): a multi-tasked molecule. Cell Mol Life Sci 2015; 72:4475-500. [PMID: 26294353 PMCID: PMC11113675 DOI: 10.1007/s00018-015-2014-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 12/16/2022]
Abstract
Mucin 1 (MUC1 [CD227]) is a high-molecular weight (>400 kDa), type I membrane-tethered glycoprotein that is expressed on epithelial cells and extends far above the glycocalyx. MUC1 is overexpressed and aberrantly glycosylated in adenocarcinomas and in hematological malignancies. As a result, MUC1 has been a target for tumor immunotherapeutic studies in mice and in humans. MUC1 has been shown to have anti-adhesive and immunosuppressive properties, protects against infections, and is involved in the oncogenic process as well as in cell signaling. In addition, MUC1 plays a key role in the reproductive tract, in the immune system (affecting dendritic cells, monocytes, T cells, and B cells), and in chronic inflammatory diseases. Evidence for all of these roles for MUC1 is discussed herein and demonstrates that MUC1 is truly a multitasked molecule.
Collapse
Affiliation(s)
- Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia.
| | - Lily Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | | |
Collapse
|
42
|
Cha HJ, Jung MS, Ahn DW, Choi JK, Ock MS, Kim KS, Yoon JH, Song EJ, Song KS. Silencing of MUC8 by siRNA increases P2Y₂-induced airway inflammation. Am J Physiol Lung Cell Mol Physiol 2015; 308:L495-502. [PMID: 25575516 DOI: 10.1152/ajplung.00332.2014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mucin hypersecretion and overproduction are frequent manifestations of respiratory disease. Determining the physiological function of airway mucin is presently considered more important than identifying the relevant signaling pathways. The lack of a full-length human mucin 8 (MUC8) cDNA sequence has hindered the generation of a Muc8 knockout mouse line. Thus, the precise physiological functions of MUC8 are unclear. Herein, we investigated the function of MUC8 using a small-interfering RNA (siRNA)-mediated genetic silencing approach in human airway epithelial cells. Herein, intracellular IL-1α production was stimulated by an ATP/P2Y2 complex. While ATP/P2Y₂ increased IL-1α secretion in a time-dependent manner, treatment with P2Y₂-specific siRNA significantly decreased IL-1α secretion. Moreover, ATP increased P2Y₂-mediated upregulation of MUC8 expression; however, IL-1α significantly decreased the extent to which ATP/P2Y₂ upregulated MUC8 expression. Interestingly, treatment with MUC8-specific siRNA decreased the production of anti-inflammatory cytokines (TGF-β and IL-1 receptor antagonist) and increased the production of inflammatory cytokines (IL-1α and IL-6) in our system. In addition, siRNA-mediated knockdown of MUC8 expression dramatically increased the secretion of inflammatory chemokines and resulted in an approximately threefold decrease in cell chemotaxis. We propose that MUC8 may function as an anti-inflammatory mucin that participates in inflammatory response by attracting immune cells/cytokines to the site of inflammation. Our results provide new insight into the physiological function of MUC8 and enhance our understanding of mucin overproduction during airway inflammation.
Collapse
Affiliation(s)
- Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Korea; Institute of Medicine, Kosin University College of Medicine, Busan, Korea
| | - Min-Su Jung
- Department of Physiology, Kosin University College of Medicine, Busan, Korea
| | - Do Whan Ahn
- Department of Physiology, Kosin University College of Medicine, Busan, Korea
| | - Jang-Kyu Choi
- Department of Physiology, Kosin University College of Medicine, Busan, Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, Korea
| | - Kyung Soo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chung-Ang University School of Medicine, Seoul, Korea
| | - Joo-Heon Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea; and
| | - Eun Ju Song
- Department of Veterinary Physiology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kyoung Seob Song
- Institute of Medicine, Kosin University College of Medicine, Busan, Korea; Department of Physiology, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
43
|
Abstract
Mucosal immune responses within the middle ear and eustachian tube generally provide an effective and efficient response to the presence of microbial pathogens, with approximately 80% of clinically recognizable middle ear infections resolved within 7 days. Particularly for young children aged less than 3 years of age, the proximity and direct connection of the middle ear, via the eustachian tube, to the nasopharynx provide increased risk of commensal bacteria and upper respiratory tract viruses infecting the middle ear. Mucosal immunological defense in the middle ear and eustachian tube utilizes a number of mechanisms, including physicochemical barriers of mucus and the mucosal epithelial cells and innate immune responses such as inflammation, cellular infiltration, effusion, and antimicrobial protein secretions, in addition to adaptive host immune responses. Recent advances in otopathogen recognition via microbial pattern recognition receptors and elucidation of complex signaling cascades have improved understanding of the coordination and regulation of the middle ear mucosal response. These advances support vaccine development aiming to reduce the risk of otitis media in children.
Collapse
|
44
|
Kato K, Lillehoj EP, Kim KC. MUC1 regulates epithelial inflammation and apoptosis by PolyI:C through inhibition of Toll/IL-1 receptor-domain-containing adapter-inducing IFN-β (TRIF) recruitment to Toll-like receptor 3. Am J Respir Cell Mol Biol 2014; 51:446-54. [PMID: 24693944 DOI: 10.1165/rcmb.2014-0018oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MUC1/Muc1 (MUC1 in humans, Muc1 in animals) is a membrane-tethered mucin expressed by airway epithelial cells and plays an antiinflammatory role during airway bacterial infection. We previously demonstrated that MUC1/Muc1 is a negative regulator of Toll-like receptor (TLR) inflammatory signaling mediated through the myeloid differentiation primary response gene 88 (MyD88) adaptor protein. In the present study, we determined whether MUC1 regulates MyD88-independent TLR signaling mediated through the TLR3-Toll/IL-1 receptor-domain-containing adapter-inducing IFN-β (TRIF) pathway in response to poly(I:C). Compared with MUC1/Muc1-expressing controls, cells deficient in MUC1/Muc1 were more prone to poly(I:C)-induced apoptosis; had increased poly(I:C)-driven activation of caspase-3, caspase-8, IFN regulatory factor-3, and NF-κB; and displayed heightened IFN-β gene expression. MUC1 overexpression by these cells had the opposite effects. Reciprocal coimmunoprecipitation experiments established constitutive TLR3/MUC1-CT (cytoplasmic tail) protein interaction in human embryonic kidney (HEK)293T cells overexpressing the two proteins and in lung epithelial cells expressing the endogenous proteins, the latter of which was confirmed by immunofluorescence colocalization of TLR3 with MUC1-CT. Coimmunoprecipitation studies also revealed that MUC1 overexpression by HEK293T cells reduced poly(I:C)-induced TLR3/TRIF protein interaction. Finally, MUC1 overexpression had no effect on TRIF-dependent auto-activation of TLR3 signaling, suggesting that the site of action of the MUC1-CT in TLR3 signaling is not downstream of TRIF. These data indicate that MUC1-CT counter-regulates apoptotic and inflammatory responses of airway epithelial cell through constitutive association with TLR3, thereby inhibiting poly(I:C)-induced recruitment of TRIF to TLR3.
Collapse
Affiliation(s)
- Kosuke Kato
- 1 Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania; and
| | | | | |
Collapse
|
45
|
MUC1 expression in Fallopian tubes of women with hydrosalpinx. Eur J Obstet Gynecol Reprod Biol 2014; 180:106-10. [DOI: 10.1016/j.ejogrb.2014.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 12/24/2022]
|
46
|
Milara J, Peiró T, Armengot M, Frias S, Morell A, Serrano A, Cortijo J. Mucin 1 downregulation associates with corticosteroid resistance in chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2014; 135:470-6. [PMID: 25159466 DOI: 10.1016/j.jaci.2014.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 07/01/2014] [Accepted: 07/14/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND A number of patients with chronic rhinosinusitis with nasal polyps (CRSwNP) are resistant to oral corticosteroids. Mucin 1 (MUC1) shows anti-inflammatory properties, and its cytoplasmic tail (CT) interacts with transcription factors, facilitating their nuclear translocation. Because glucocorticoid receptor (GR) nuclear translocation is key to the anti-inflammatory effect of corticosteroids, we hypothesized that MUC1 is involved in the effectiveness of corticosteroids. OBJECTIVE To analyze the role of MUC1 in corticosteroid effectiveness in different cohorts of patients with CRSwNP and elucidate the possible mechanisms involved. METHODS Seventy-three patients with CRSwNP took oral corticosteroids for 15 days. Corticosteroid resistance was evaluated by nasal endoscopy. The expression of MUC1 and MUC1 CT was evaluated by real-time PCR, Western blotting, and immunohistochemistry. Beas-2B knockdown with RNA interference for MUC1 (siRNA-MUC1) was used to analyze the role of MUC1 in the anti-inflammatory effects of dexamethasone. RESULTS Nineteen patients had nasal polyps that were resistant to oral corticosteroids (NP-CR). MUC1 expression was downregulated in these patients. Primary epithelial cells from patients with NP-CR were insensitive to the anti-inflammatory effects of dexamethasone. In siRNA-MUC1 Beas-2B, dexamethasone showed weaker anti-inflammatory effects, a reduced inhibition of phospho-extracellular-signal-regulated kinases 1/2, a less severe mitogen-activated protein kinase phosphatase 1 increase, and a reduced GR nuclear translocation. Immunoprecipitation experiments revealed that MUC1-CT and GRα form protein complexes and translocate to the nucleus in response to dexamethasone. MUC1-CT-GRα complex was downregulated in NP-CR tissue. CONCLUSION MUC1-CT participates in the corticosteroid response that mediates GRα nuclear translocation. The low expression of MUC1 in patients with CRSwNP may participate in corticosteroid resistance.
Collapse
Affiliation(s)
- Javier Milara
- Clinical Research Unit, University General Hospital Consortium, Valencia, Spain; Department of Biotechnology, Universidad Politécnica de Valencia, Valencia, Spain; Research Foundation of General Hospital of Valencia, Valencia, Spain.
| | - Teresa Peiró
- Research Foundation of General Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Miquel Armengot
- Rhinology Unit, University General Hospital Consortium, Valencia, Spain; Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Soledad Frias
- Rhinology Unit, University General Hospital Consortium, Valencia, Spain
| | - Anselm Morell
- Research Foundation of General Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Adela Serrano
- Research Foundation of General Hospital of Valencia, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Julio Cortijo
- Clinical Research Unit, University General Hospital Consortium, Valencia, Spain; Research Foundation of General Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
47
|
Xu X, Wells A, Padilla MT, Kato K, Kim KC, Lin Y. A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance. Carcinogenesis 2014; 35:2457-66. [PMID: 25085901 DOI: 10.1093/carcin/bgu159] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acquired chemoresistance is a major challenge in cancer therapy. While the oncoprotein Mucin-1 (MUC1) performs multiple roles in the development of diverse human tumors, whether MUC1 is involved in acquired chemoresistance has not been determined. Using an acquired chemoresistance lung cancer cell model, we show that MUC1 expression was substantially increased in cells with acquired apoptosis resistance (AR). Knockdown of MUC1 expression effectively increased the sensitivity of these cells to the apoptotic cytotoxicity of anticancer therapeutics, suggesting that MUC1 contributes to acquired chemoresistance. Decreased catalase expression and increased cellular reactive oxygen species (ROS) accumulation were found to be associated with MUC1 overexpression. Scavenging ROS with butylated hydroxyanisole or supplying exogenous catalase dramatically suppressed MUC1 expression through destabilizing MUC1 protein, suggesting that reduced catalase expression mediated ROS accumulation is accounted for MUC1 overexpression. Further, we found that increased miR-551b expression in the AR cells inhibited the expression of catalase and potentiated ROS accumulation and MUC1 expression. Finally, by manipulating MUC1 expression, we found that MUC1 promotes EGFR-mediated activation of the cell survival cascade involving Akt/c-FLIP/COX-2 in order to protect cancer cells from responding to anticancer agents. Thus, our results establish a pathway consisting of miR-551b/catalase/ROS that results in MUC1 overexpression, and intervention against this pathway could be exploited to overcome acquired chemoresistance.
Collapse
Affiliation(s)
- Xiuling Xu
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, Albuquerque, NM 87108, USA and Department of Physiology & Lung Center, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | - Alexandria Wells
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, Albuquerque, NM 87108, USA and Department of Physiology & Lung Center, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | - Mabel T Padilla
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, Albuquerque, NM 87108, USA and Department of Physiology & Lung Center, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | - Kosuke Kato
- Department of Physiology & Lung Center, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | - Kwang Chul Kim
- Department of Physiology & Lung Center, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest Drive, Albuquerque, NM 87108, USA and Department of Physiology & Lung Center, Temple University School of Medicine, 3420 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
48
|
Shirai K, Okada Y, Cheon DJ, Miyajima M, Behringer RR, Yamanaka O, Saika S. Effects of the loss of conjunctival Muc16 on corneal epithelium and stroma in mice. Invest Ophthalmol Vis Sci 2014; 55:3626-37. [PMID: 24812549 DOI: 10.1167/iovs.13-12955] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To examine the role of conjunctival Muc16 in the homeostasis of the ocular surface epithelium and stroma using Muc16-null knockout (KO) mice. METHODS We used KO mice (n = 58) and C57/BL6 (WT) mice (n = 58). Histology and immunohistochemistry were employed to analyze the phenotypes in the ocular surface epithelium. The expression of phospho-Stat3, AP-1 components, interleukin 6 (IL-6), and tumor necrosis factor-α (TNFα) in the cornea and conjunctiva was examined. The shape of the nuclei of corneal epithelial cells was examined to evaluate intraepithelial cell differentiation. Epithelial cell proliferation was studied using bromo-deoxyuridine labeling. Finally, the wound healing of a round defect (2-mm diameter) in the corneal epithelium was measured. The keratocyte phenotype and macrophage invasion in the stroma were evaluated after epithelial repair. RESULTS The loss of Muc16 activated Stat3 signal, affected JunB signal, and upregulated the expression of IL-6 in the conjunctiva. Basal-like cells were observed in the suprabasal layer of the corneal epithelium with an increase in proliferation. The loss of Muc16 accelerated the wound healing of the corneal epithelium. The incidence of myofibroblast appearance and macrophage invasion were more marked in KO stroma than in WT stroma after epithelial repair. CONCLUSIONS The loss of Muc16 in the conjunctiva affected the homeostasis of the corneal epithelium and stroma. The mechanism might include the upregulation of the inflammatory signaling cascade (i.e., Stat3 signal, and IL-6 expression in the KO conjunctiva). Current data provides insight into the research of the pathophysiology of dry eye syndrome.
Collapse
Affiliation(s)
- Kumi Shirai
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Dong-Joo Cheon
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Masayasu Miyajima
- The Laboratory Animal Center, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Richard R Behringer
- Program in Genes and Development, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States
| | - Osamu Yamanaka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
49
|
Xu X, Padilla MT, Li B, Wells A, Kato K, Tellez C, Belinsky SA, Kim KC, Lin Y. MUC1 in macrophage: contributions to cigarette smoke-induced lung cancer. Cancer Res 2014; 74:460-70. [PMID: 24282280 PMCID: PMC3947020 DOI: 10.1158/0008-5472.can-13-1713] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Expression of the pro-oncogenic mucin MUC1 is elevated by inflammation in airway epithelial cells, but the contributions of MUC1 to the development of lung cancer are uncertain. In this study, we developed our finding that cigarette smoke increases Muc1 expression in mouse lung macrophages, where we hypothesized MUC1 may contribute to cigarette smoke-induced transformation of bronchial epithelial cells. In human macrophages, cigarette smoke extract (CSE) strongly induced MUC1 expression through a mechanism involving the nuclear receptor PPAR-γ. CSE-induced extracellular signal-regulated kinase (ERK) activation was also required for MUC1 expression, but it had little effect on MUC1 transcription. RNA interference-mediated attenuation of MUC1 suppressed CSE-induced secretion of TNF-α from macrophages, by suppressing the activity of the TNF-α-converting enzyme (TACE), arguing that MUC1 is required for CSE-induced and TACE-mediated TNF-α secretion. Similarly, MUC1 blockade after CSE induction through suppression of PPAR-γ or ERK inhibited TACE activity and TNF-α secretion. Conditioned media from CSE-treated macrophages induced MUC1 expression and potentiated CSE-induced transformation of human bronchial epithelial cells in a TNF-α-dependent manner. Together, our results identify a signaling pathway involving PPAR-γ, ERK, and MUC1 for TNF-α secretion induced by CSE from macrophages. Furthermore, our results show how MUC1 contributes to smoking-induced lung cancers that are driven by inflammatory signals from macrophages.
Collapse
Affiliation(s)
- Xiuling Xu
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Mabel T. Padilla
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Bilan Li
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Alexandria Wells
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Kosuke Kato
- Department of Physiology & Lung Center, Temple University School of Medicine, 3420 N. Broad St., Philadelphia, PA 19140, USA
| | - Carmen Tellez
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Steven A. Belinsky
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| | - Kwang Chul Kim
- Department of Physiology & Lung Center, Temple University School of Medicine, 3420 N. Broad St., Philadelphia, PA 19140, USA
| | - Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, 2425 Ridgecrest DR. SE, Albuquerque, NM 87108, USA
| |
Collapse
|
50
|
Zhang K, Wang J, Jiang H, Xu X, Wang S, Zhang C, Li Z, Gong X, Lu W. Tanshinone IIA inhibits lipopolysaccharide-induced MUC1 overexpression in alveolar epithelial cells. Am J Physiol Cell Physiol 2013; 306:C59-65. [PMID: 24153432 DOI: 10.1152/ajpcell.00070.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anti-inflammatory function of tanshinone IIA (TIIA), an active natural compound from Chinese herbal medicine Danshen, has been well recognized, and therefore TIIA has been widely used to treat various inflammatory conditions associated with cardiac and lung diseases. Mucin 1 (Muc1) plays important anti-inflammatory roles in resolution of acute lung inflammation. In this study, we investigated the effects of TIIA on LPS-induced acute lung inflammation, as well as its relationship to Muc1 expression in mouse lung and MUC1 in human alveolar epithelial cells. TIIA pretreatment significantly inhibited LPS-induced pulmonary inflammation in both Muc1 wild-type (Muc1(+/+)) and knockout (Muc1(-/-)) mice, as manifested by reduced neutrophil infiltration and reduced TNF-α and keratinocyte chemoattractant levels in bronchoalveolar lavage fluid. The inhibitory effects of TIIA on airway inflammation were associated with reduced expression of Muc1 in Muc1(+/+) mouse lung. Moreover, pretreatment with TIIA significantly inhibited LPS-induced MUC1 expression and TNF-α release in A549 alveolar epithelial cells. TNF-α upregulated MUC1 mRNA and protein expression in A549 cells, which was inhibited by pretreatment with TIIA. The LPS-induced MUC1 expression was blocked when A549 cells were transfected with siRNA targeting for TNF-α receptor 1. Furthermore, TIIA inhibited LPS-induced nuclear translocation of NF-κB and upregulation of Toll-like receptor 4 in A549 cells. Taken together, these results demonstrate that TIIA suppressed LPS-induced acute lung inflammation regardless of the presence of Muc1, and TIIA inhibited LPS- and TNF-α-induced MUC1/Muc1 expression in airway epithelial cells, suggesting that MUC1/Muc1 does not account for the mechanisms of the anti-inflammatory effects of TIIA in the airway.
Collapse
Affiliation(s)
- Kedong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | |
Collapse
|