1
|
Huang TH, Lin CM, Lin CK, Chang SF, Shi CS. The blockade of neddylation alleviates ventilator-induced lung injury by reducing stretch-induced damage to pulmonary epithelial cells. Biochem Pharmacol 2024; 229:116533. [PMID: 39265821 DOI: 10.1016/j.bcp.2024.116533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Ventilator-induced lung injury is a serious complication in mechanically ventilated patients. Neddylation, the post-translational modification of neural precursor cell-expressed developmentally down-regulated 8 (NEDD8) conjugation, regulates numerous biological functions. However, its involvement and therapeutic significance in ventilator-induced lung injury remains unknown. Therefore, this study aimed to examine the kinetics and contribution of activated neddylation and the impact of neddylation inhibition in mice subjected to high tidal volume (HTV) ventilation in vivo and human pulmonary alveolar epithelial cells stimulated through cyclic stretching (CS) in vitro. The neddylation and expression of ubiquitin conjugating enzyme 3 (UBA3), a NEDD8-activating enzyme (NAE) catalytic subunit, were time-dependently upregulated in HTV-ventilated mice. Additionally, the NAE inhibitor MLN4924 considerably attenuated acute lung injury induced by HTV ventilation, manifesting as reduced inflammation and oxidative stress. Furthermore, MLN4924 effectively reduced the secretion of inflammatory cytokines from Ly6Chigh monocytes and neutrophils, subsequently decreasing endothelial permeability. Moreover, our study revealed an upregulation of the neddylation pathway, oxidative stress, and apoptosis during CS of alveolar epithelial cells. However, blockade of neddylation via MLN4924 or through UBA3 knockdown suppressed this upregulation. Overall, the inhibition of neddylation may alleviate HTV-induced acute lung injury by preventing CS-induced damage to alveolar epithelial cells. This indicates that the neddylation pathway plays a critical role in the progression of ventilator-induced lung injury. These findings may provide a new therapeutic target for treating ventilator-induced lung injury.
Collapse
Affiliation(s)
- Tzu-Hsiung Huang
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan; Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chieh-Mo Lin
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chin-Kuo Lin
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Chung-Sheng Shi
- Graduate Institute of Clinical Medicine Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Division of Colon and Rectal Surgery, Department of Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| |
Collapse
|
2
|
Wei K, Roy A, Ejike S, Eiken MK, Plaster EM, Shi A, Shtein M, Loebel C. Magnetoactive, Kirigami-Inspired Hammocks to Probe Lung Epithelial Cell Function. Cell Mol Bioeng 2024; 17:317-327. [PMID: 39513001 PMCID: PMC11538102 DOI: 10.1007/s12195-024-00808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/15/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Mechanical forces provide critical biological signals to cells. Within the distal lung, tensile forces act across the basement membrane and epithelial cells atop. Stretching devices have supported studies of mechanical forces in distal lung epithelium to gain mechanistic insights into pulmonary diseases. However, the integration of curvature into devices applying mechanical forces onto lung epithelial cell monolayers has remained challenging. To address this, we developed a hammock-shaped platform that offers desired curvature and mechanical forces to lung epithelial monolayers. Methods We developed hammocks using polyethylene terephthalate (PET)-based membranes and magnetic-particle modified silicone elastomer films within a 48-well plate that mimic the alveolar curvature and tensile forces during breathing. These hammocks were engineered and characterized for mechanical and cell-adhesive properties to facilitate cell culture. Using human small airway epithelial cells (SAECs), we measured monolayer formation and mechanosensing using F-Actin staining and immunofluorescence for cytokeratin to visualize intermediate filaments. Results We demonstrate a multi-functional design that facilitates a range of curvatures along with the incorporation of magnetic elements for dynamic actuation to induce mechanical forces. Using this system, we then showed that SAECs remain viable, proliferate, and form an epithelial cell monolayer across the entire hammock. By further applying mechanical stimulation via magnetic actuation, we observed an increase in proliferation and strengthening of the cytoskeleton, suggesting an increase in mechanosensing. Conclusion This hammock strategy provides an easily accessible and tunable cell culture platform for mimicking distal lung mechanical forces in vitro. We anticipate the promise of this culture platform for mechanistic studies, multi-modal stimulation, and drug or small molecule testing, extendable to other cell types and organ systems. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00808-z.
Collapse
Affiliation(s)
- Katherine Wei
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
- School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Avinava Roy
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Sonia Ejike
- School of Dentistry, University of Michigan, Ann Arbor, USA
| | - Madeline K. Eiken
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Eleanor M. Plaster
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Alan Shi
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Max Shtein
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| | - Claudia Loebel
- Materials Science & Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
- School of Dentistry, University of Michigan, Ann Arbor, USA
- Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, USA
| |
Collapse
|
3
|
El-Atawi K, Abdul Wahab MG, Alallah J, Osman MF, Hassan M, Siwji Z, Saleh M. Beyond Bronchopulmonary Dysplasia: A Comprehensive Review of Chronic Lung Diseases in Neonates. Cureus 2024; 16:e64804. [PMID: 39156276 PMCID: PMC11329945 DOI: 10.7759/cureus.64804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
In neonates, pulmonary diseases such as bronchopulmonary dysplasia and other chronic lung diseases (CLDs) pose significant challenges due to their complexity and high degree of morbidity and mortality. This review discusses the etiology, pathophysiology, clinical presentation, and diagnostic criteria for these conditions, as well as current management strategies. The review also highlights recent advancements in understanding the pathophysiology of these diseases and evolving strategies for their management, including gene therapy and stem cell treatments. We emphasize how supportive care is useful in managing these diseases and underscore the importance of a multidisciplinary approach. Notably, we discuss the emerging role of personalized medicine, enabled by advances in genomics and precision therapeutics, in tailoring therapy according to an individual's genetic, biochemical, and lifestyle factors. We conclude with a discussion on future directions in research and treatment, emphasizing the importance of furthering our understanding of these conditions, improving diagnostic criteria, and exploring targeted treatment modalities. The review underscores the need for multicentric and longitudinal studies to improve preventative strategies and better understand long-term outcomes. Ultimately, a comprehensive, innovative, and patient-centered approach can enhance the quality of care and outcomes for neonates with CLDs.
Collapse
Affiliation(s)
| | | | - Jubara Alallah
- Neonatology, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, SAU
- Neonatology, King Abdulaziz Medical City, Ministry of National Guard - Health Affairs, Jeddah, SAU
| | | | | | | | - Maysa Saleh
- Pediatrics and Child Health, Al Jalila Children's Specialty Hospital, Dubai, ARE
| |
Collapse
|
4
|
Al-Husinat L, Azzam S, Al Sharie S, Al Sharie AH, Battaglini D, Robba C, Marini JJ, Thornton LT, Cruz FF, Silva PL, Rocco PRM. Effects of mechanical ventilation on the interstitial extracellular matrix in healthy lungs and lungs affected by acute respiratory distress syndrome: a narrative review. Crit Care 2024; 28:165. [PMID: 38750543 PMCID: PMC11094887 DOI: 10.1186/s13054-024-04942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Mechanical ventilation, a lifesaving intervention in critical care, can lead to damage in the extracellular matrix (ECM), triggering inflammation and ventilator-induced lung injury (VILI), particularly in conditions such as acute respiratory distress syndrome (ARDS). This review discusses the detailed structure of the ECM in healthy and ARDS-affected lungs under mechanical ventilation, aiming to bridge the gap between experimental insights and clinical practice by offering a thorough understanding of lung ECM organization and the dynamics of its alteration during mechanical ventilation. MAIN TEXT Focusing on the clinical implications, we explore the potential of precise interventions targeting the ECM and cellular signaling pathways to mitigate lung damage, reduce inflammation, and ultimately improve outcomes for critically ill patients. By analyzing a range of experimental studies and clinical papers, particular attention is paid to the roles of matrix metalloproteinases (MMPs), integrins, and other molecules in ECM damage and VILI. This synthesis not only sheds light on the structural changes induced by mechanical stress but also underscores the importance of cellular responses such as inflammation, fibrosis, and excessive activation of MMPs. CONCLUSIONS This review emphasizes the significance of mechanical cues transduced by integrins and their impact on cellular behavior during ventilation, offering insights into the complex interactions between mechanical ventilation, ECM damage, and cellular signaling. By understanding these mechanisms, healthcare professionals in critical care can anticipate the consequences of mechanical ventilation and use targeted strategies to prevent or minimize ECM damage, ultimately leading to better patient management and outcomes in critical care settings.
Collapse
Affiliation(s)
- Lou'i Al-Husinat
- Department of Clinical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | - Saif Azzam
- Faculty of Medicine, Yarmouk University, Irbid, Jordan
| | | | - Ahmed H Al Sharie
- Department of Pathology and Microbiology, Jordan University of Science and Technology, Irbid, Jordan
| | - Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Dipartimento di Scienze Chirurgiche e Diagnostiche, Università Degli Studi di Genova, Genoa, Italy
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA
| | - Lauren T Thornton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN, USA
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
El-Khatib M, Zeeni C, Shebbo FM, Karam C, Safi B, Toukhtarian A, Nafeh NA, Mkhayel S, Shadid CA, Chalhoub S, Beresian J. Intraoperative mechanical power and postoperative pulmonary complications in low-risk surgical patients: a prospective observational cohort study. BMC Anesthesiol 2024; 24:82. [PMID: 38413871 PMCID: PMC10898029 DOI: 10.1186/s12871-024-02449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Inadequate intraoperative mechanical ventilation (MV) can lead to ventilator-induced lung injury and increased risk for postoperative pulmonary complications (PPCs). Mechanical power (MP) was shown to be a valuable indicator for MV outcomes in critical care patients. The aim of this study is to assess the association between intraoperative MP in low-risk surgical patients undergoing general anesthesia and PPCs. METHODS Two-hundred eighteen low-risk surgical patients undergoing general anesthesia for elective surgery were included in the study. Intraoperative mechanical ventilatory support parameters were collected for all patients. Postoperatively, patients were followed throughout their hospital stay and up to seven days post discharge for the occurrence of any PPCs. RESULTS Out of 218 patients, 35% exhibited PPCs. The average body mass index, tidal volume per ideal body weight, peak inspiratory pressure, and MP were significantly higher in the patients with PPCs than in the patients without PPCs (30.3 ± 8.1 kg/m2 vs. 26.8 ± 4.9 kg.m2, p < 0.001; 9.1 ± 1.9 ml/kg vs. 8.6 ± 1.4 ml/kg, p = 0.02; 20 ± 4.9 cmH2O vs. 18 ± 3.7 cmH2O, p = 0.001; 12.9 ± 4.5 J/min vs. 11.1 ± 3.7 J/min, p = 0.002). A multivariable regression analysis revealed MP as the sole significant predictor for the risk of postoperative pulmonary complications [OR 1.1 (95% CI 1.0-1.2, p = 0.036]. CONCLUSIONS High intraoperative mechanical power is a risk factor for developing postoperative pulmonary complications. Furthermore, intraoperative mechanical power is superior to other traditional mechanical ventilation variables in identifying surgical patients who are at risk for developing postoperative pulmonary complications. CLINICAL TRIAL REGISTRATION NCT03551899; 24/02/2017.
Collapse
Affiliation(s)
- Mohamad El-Khatib
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Carine Zeeni
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Fadia M Shebbo
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Cynthia Karam
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Bilal Safi
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Aline Toukhtarian
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Nancy Abou Nafeh
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Samar Mkhayel
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Carol Abi Shadid
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon
| | - Sana Chalhoub
- Department of Emergency Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Jean Beresian
- Department of Anesthesiology and Pain Medicine, American University of Beirut Medical Center, PO-Box: 11-0236, Beirut, 1107 2020, Lebanon.
| |
Collapse
|
6
|
Lilien TA, Fenn DW, Brinkman P, Hagens LA, Smit MR, Heijnen NFL, van Woensel JBM, Bos LDJ, Bem RA. HS-GC-MS analysis of volatile organic compounds after hyperoxia-induced oxidative stress: a validation study. Intensive Care Med Exp 2024; 12:14. [PMID: 38345723 PMCID: PMC10861410 DOI: 10.1186/s40635-024-00600-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Exhaled volatile organic compounds (VOCs), particularly hydrocarbons from oxidative stress-induced lipid peroxidation, are associated with hyperoxia exposure. However, important heterogeneity amongst identified VOCs and concerns about their precise pathophysiological origins warrant translational studies assessing their validity as a marker of hyperoxia-induced oxidative stress. Therefore, this study sought to examine changes in VOCs previously associated with the oxidative stress response in hyperoxia-exposed lung epithelial cells. METHODS A549 alveolar epithelial cells were exposed to hyperoxia for 24 h, or to room air as normoxia controls, or hydrogen peroxide as oxidative-stress positive controls. VOCs were sampled from the headspace, analysed by gas chromatography coupled with mass spectrometry and compared by targeted and untargeted analyses. A secondary analysis of breath samples from a large cohort of critically ill adult patients assessed the association of identified VOCs with clinical oxygen exposure. RESULTS Following cellular hyperoxia exposure, none of the targeted VOCs, previously proposed as breath markers of oxidative stress, were increased, and decane was significantly decreased. Untargeted analysis did not reveal novel identifiable hyperoxia-associated VOCs. Within the clinical cohort, three previously proposed breath markers of oxidative stress, hexane, octane, and decane had no real diagnostic value in discriminating patients exposed to hyperoxia. CONCLUSIONS Hyperoxia exposure of alveolar epithelial cells did not result in an increase in identifiable VOCs, whilst VOCs previously linked to oxidative stress were not associated with oxygen exposure in a cohort of critically ill patients. These findings suggest that the pathophysiological origin of previously proposed breath markers of oxidative stress is more complex than just oxidative stress from hyperoxia at the lung epithelial cellular level.
Collapse
Affiliation(s)
- Thijs A Lilien
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands.
| | - Dominic W Fenn
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Paul Brinkman
- Department of Pulmonary Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Laura A Hagens
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marry R Smit
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Nanon F L Heijnen
- Department of Intensive Care Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Job B M van Woensel
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Department of Intensive Care Medicine, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Reinout A Bem
- Department of Paediatric Intensive Care Medicine, Emma Children's Hospital, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Li X, Wang M, Kalina JO, Preckel B, Hollmann MW, Albrecht M, Zuurbier CJ, Weber NC. Empagliflozin prevents oxidative stress in human coronary artery endothelial cells via the NHE/PKC/NOX axis. Redox Biol 2024; 69:102979. [PMID: 38061206 PMCID: PMC10749278 DOI: 10.1016/j.redox.2023.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Empagliflozin (EMPA) ameliorates reactive oxygen species (ROS) generation in human endothelial cells (ECs) exposed to 10 % stretch, but the underlying mechanisms are still unclear. Pathological stretch is supposed to stimulate protein kinase C (PKC) by increasing intracellular calcium (Ca2+), therefore activating nicotinamide adenine dinucleotide phosphate oxidase (NOX) and promoting ROS production in human ECs. We hypothesized that EMPA inhibits stretch-induced NOX activation and ROS generation through preventing PKC activation. METHODS Human coronary artery endothelial cells (HCAECs) were pre-incubated for 2 h before exposure to cyclic stretch (5 % or 10 %) with either vehicle, EMPA or the PKC inhibitor LY-333531 or PKC siRNA. PKC activity, NOX activity and ROS production were detected after 24 h. Furthermore, the Ca2+ chelator BAPTA-AM, NCX inhibitor ORM-10962 or NCX siRNA, sodium/potassium pump inhibitor ouabain and sodium hydrogen exchanger (NHE) inhibitor cariporide were applied to explore the involvement of the NHE/Na+/NCX/Ca2+ in the ROS inhibitory capacity of EMPA. RESULTS Compared to 5 % stretch, 10 % significantly increased PKC activity, which was reduced by EMPA and PKC inhibitor LY-333531. EMPA and LY-333531 showed a similar inhibitory capacity on NOX activity and ROS generation induced by 10 % stretch, which was not augmented by combined treatment with both drugs. PKC-β knockdown inhibits the NOX activation induced by Ca2+ and 10 % stretch. BAPTA, pharmacologic or genetic NCX inhibition and cariporide reduced Ca2+ in static HCAECs and prevented the activation of PKC and NOX in 10%-stretched cells. Ouabain increased ROS generation in cells exposed to 5 % stretch. CONCLUSION EMPA reduced NOX activity via attenuation of the NHE/Na+/NCX/Ca2+/PKC axis, leading to less ROS generation in HCAECs exposed to 10 % stretch.
Collapse
Affiliation(s)
- Xiaoling Li
- Amsterdam, University Medical Centers, Location AMC, Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam Cardiovascular Science (ACS), Meibergdreef 11, 1105 AZ, Amsterdam, the Netherlands
| | - Mengnan Wang
- Amsterdam, University Medical Centers, Location AMC, Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam Cardiovascular Science (ACS), Meibergdreef 11, 1105 AZ, Amsterdam, the Netherlands
| | - Jan-Ole Kalina
- Amsterdam, University Medical Centers, Location AMC, Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam Cardiovascular Science (ACS), Meibergdreef 11, 1105 AZ, Amsterdam, the Netherlands; Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Benedikt Preckel
- Amsterdam, University Medical Centers, Location AMC, Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam Cardiovascular Science (ACS), Meibergdreef 11, 1105 AZ, Amsterdam, the Netherlands
| | - Markus W Hollmann
- Amsterdam, University Medical Centers, Location AMC, Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam Cardiovascular Science (ACS), Meibergdreef 11, 1105 AZ, Amsterdam, the Netherlands
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Campus Kiel, 24105, Kiel, Germany
| | - Coert J Zuurbier
- Amsterdam, University Medical Centers, Location AMC, Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam Cardiovascular Science (ACS), Meibergdreef 11, 1105 AZ, Amsterdam, the Netherlands
| | - Nina C Weber
- Amsterdam, University Medical Centers, Location AMC, Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology-L.E.I.C.A, Amsterdam Cardiovascular Science (ACS), Meibergdreef 11, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Ran X, Müller S, Brunssen C, Huhle R, Scharffenberg M, Schnabel C, Koch T, Gama de Abreu M, Morawietz H, Ferreira JMC, Wittenstein J. Modulation of the hippo-YAP pathway by cyclic stretch in rat type 2 alveolar epithelial cells-a proof-of-concept study. Front Physiol 2023; 14:1253810. [PMID: 37877098 PMCID: PMC10591329 DOI: 10.3389/fphys.2023.1253810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
Background: Mechanical ventilation (MV) is a life supporting therapy but may also cause lung damage. This phenomenon is known as ventilator-induced lung injury (VILI). A potential pathomechanisms of ventilator-induced lung injury may be the stretch-induced production and release of cytokines and pro-inflammatory molecules from the alveolar epithelium. Yes-associated protein (YAP) might be regulated by mechanical forces and involved in the inflammation cascade. However, its role in stretch-induced damage of alveolar cells remains poorly understood. In this study, we explored the role of YAP in the response of alveolar epithelial type II cells (AEC II) to elevated cyclic stretch in vitro. We hypothesize that Yes-associated protein activates its downstream targets and regulates the interleukin-6 (IL-6) expression in response to 30% cyclic stretch in AEC II. Methods: The rat lung L2 cell line was exposed to 30% cyclic equibiaxial stretch for 1 or 4 h. Non-stretched conditions served as controls. The cytoskeleton remodeling and cell junction integrity were evaluated by F-actin and Pan-cadherin immunofluorescence, respectively. The gene expression and protein levels of IL-6, Yes-associated protein, Cysteine-rich angiogenic inducer 61 (Cyr61/CCN1), and connective tissue growth factor (CTGF/CCN2) were studied by real-time polymerase chain reaction (RT-qPCR) and Western blot, respectively. Verteporfin (VP) was used to inhibit Yes-associated protein activation. The effects of 30% cyclic stretch were assessed by two-way ANOVA. Statistical significance as accepted at p < 0.05. Results: Cyclic stretch of 30% induced YAP nuclear accumulation, activated the transcription of Yes-associated protein downstream targets Cyr61/CCN1 and CTGF/CCN2 and elevated IL-6 expression in AEC II after 1 hour, compared to static control. VP (2 µM) inhibited Yes-associated protein activation in response to 30% cyclic stretch and reduced IL-6 protein levels. Conclusion: In rat lung L2 AEC II, 30% cyclic stretch activated YAP, and its downstream targets Cyr61/CCN1 and CTGF/CCN2 and proinflammatory IL-6 expression. Target activation was blocked by a Yes-associated protein inhibitor. This novel YAP-dependent pathway could be involved in stretch-induced damage of alveolar cells.
Collapse
Affiliation(s)
- Xi Ran
- Department of Intensive Care Medicine, Chongqing General Hospital, Changqing, China
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Sabine Müller
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Coy Brunssen
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Robert Huhle
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Scharffenberg
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Christian Schnabel
- Department of Anesthesiology and Intensive Care Medicine, Clinical Sensoring and Monitoring Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Thea Koch
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Marcelo Gama de Abreu
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
- Department of Intensive Care and Resuscitation, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Medical Faculty Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jorge M. C. Ferreira
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| | - Jakob Wittenstein
- Department of Anesthesiology and Intensive Care Medicine, Pulmonary Engineering Group, University Hospital Carl Gustav Carus Dresden, TUD Dresden University of Technology, Dresden, Germany
| |
Collapse
|
9
|
Xu Y, Li Y, Zhai D, Yan C, Liang J, Ichinomiya T, Hara T, Inadomi C, Li TS. Hyperoxia but not high tidal volume contributes to ventilator-induced lung injury in healthy mice. BMC Pulm Med 2023; 23:354. [PMID: 37730597 PMCID: PMC10510264 DOI: 10.1186/s12890-023-02626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Mechanical ventilation is a supportive therapy used to maintain respiratory function in several clinical and surgical cases but is always accompanied by lung injury risk due to improper treatment. We investigated how tidal volume and oxygen delivery would contribute independently or synergistically to ventilator-induced lung injury (VILI). METHODS Under general anesthesia and tracheal intubation, healthy female C57BL/6 N mice (9 weeks old) were randomly ventilated for 2 h by standard (7 ml/kg) or high (14 ml/kg) tidal volume at positive end-expiratory pressure (PEEP) of 2 cmH2O, with room air, 50% O2 (moderate hyperoxia), or 100% O2 (severe hyperoxia); respectively. Mice were sacrificed 4 h after mechanical ventilation, and lung tissues were collected for experimental assessments on lung injury. RESULTS Compared with the healthy control, severe hyperoxia ventilation by either standard or high tidal volume resulted in significantly higher wet-to-dry lung weight ratio and higher levels of IL-1β and 8-OHdG in the lungs. However, moderate hyperoxia ventilation, even by high tidal volume did not significantly increase the levels of IL-1β and 8-OHdG in the lungs. Western blot analysis showed that the expression of RhoA, ROCK1, MLC2, and p-MLC2 was not significantly induced in the ventilated lungs, even by high tidal volume at 2 cmH2O PEEP. CONCLUSION Severe hyperoxia ventilation causes inflammatory response and oxidative damage in mechanically ventilated lungs, while high tidal volume ventilation at a reasonable PEEP possibly does not cause VILI.
Collapse
Affiliation(s)
- Yong Xu
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang City, 330006, Jiangxi Province, China
| | - Da Zhai
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, P.R. China
| | - Taiga Ichinomiya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Chiaki Inadomi
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
- Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
10
|
Choi J, Kim DI, Kim JY, Pané S, Nelson BJ, Chang YT, Choi H. Magnetically Enhanced Intracellular Uptake of Superparamagnetic Iron Oxide Nanoparticles for Antitumor Therapy. ACS NANO 2023; 17:15857-15870. [PMID: 37477428 DOI: 10.1021/acsnano.3c03780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) have been widely employed in biomedical fields, including targeted delivery of antitumor therapy. Conventional magnetic tumor targeting has used simple static magnetic fields (SMFs), which cause SPIONs to linearly aggregate into a long chain-like shape. Such agglomeration greatly hinders the intracellular targeting of SPIONs into tumors, thus reducing the therapeutic efficacy. In this study, we investigated the enhancement of the intracellular uptake of SPIONs through the application of rotating magnetic fields (RMFs). Based on the physical principles of SPION chain disassembly, we investigated physical parameters to predict the chain length favorable for intracellular uptake. Our prediction was validated by clear visualization of the intracellular distributions of SPIONs in tumor cells at both cellular and three-dimensional microtissue levels. To identify the potential therapeutic effects of enhanced intracellular uptake, magnetic hyperthermia as antitumor therapy was investigated under varying conditions of magnetic hyperthermia and RMFs. The results showed that enhanced intracellular uptake reduced magnetic hyperthermia time and strength as well as particle concentration. The proposed method will be useful in the development of techniques to determine the optimized physical conditions for the enhanced intracellular uptake of SPIONs in antitumor therapy.
Collapse
Affiliation(s)
- Junhee Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Dong-In Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jin-Young Kim
- Department of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Robotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Division of Biotechnology, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- IMsystem Co., Ltd., Daegu 42988, Republic of Korea
| | - Salvador Pané
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Bradley J Nelson
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich CH-8092, Switzerland
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang, Gyeongbuk 37673, Republic of Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hongsoo Choi
- Department of Robotics and Mechatronics Engineering, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Robotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
11
|
Mižíková I, Thébaud B. Perinatal origins of bronchopulmonary dysplasia-deciphering normal and impaired lung development cell by cell. Mol Cell Pediatr 2023; 10:4. [PMID: 37072570 PMCID: PMC10113423 DOI: 10.1186/s40348-023-00158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/26/2023] [Indexed: 04/20/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a multifactorial disease occurring as a consequence of premature birth, as well as antenatal and postnatal injury to the developing lung. BPD morbidity and severity depend on a complex interplay between prenatal and postnatal inflammation, mechanical ventilation, and oxygen therapy as well as associated prematurity-related complications. These initial hits result in ill-explored aberrant immune and reparative response, activation of pro-fibrotic and anti-angiogenic factors, which further perpetuate the injury. Histologically, the disease presents primarily by impaired lung development and an arrest in lung microvascular maturation. Consequently, BPD leads to respiratory complications beyond the neonatal period and may result in premature aging of the lung. While the numerous prenatal and postnatal stimuli contributing to BPD pathogenesis are relatively well known, the specific cell populations driving the injury, as well as underlying mechanisms are still not well understood. Recently, an effort to gain a more detailed insight into the cellular composition of the developing lung and its progenitor populations has unfold. Here, we provide an overview of the current knowledge regarding perinatal origin of BPD and discuss underlying mechanisms, as well as novel approaches to study the perturbed lung development.
Collapse
Affiliation(s)
- I Mižíková
- Experimental Pulmonology, Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - B Thébaud
- Sinclair Centre for Regenerative Medicine, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO), CHEO Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Spassov SG, Faller S, Goeft A, von Itter MNA, Birkigt A, Meyerhoefer P, Ihle A, Seiler R, Schumann S, Hoetzel A. Profiling Distinctive Inflammatory and Redox Responses to Hydrogen Sulfide in Stretched and Stimulated Lung Cells. Antioxidants (Basel) 2022; 11:1001. [PMID: 35624865 PMCID: PMC9137934 DOI: 10.3390/antiox11051001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S) protects against stretch-induced lung injury. However, the impact of H2S on individual cells or their crosstalk upon stretch remains unclear. Therefore, we addressed this issue in vitro using relevant lung cells. We have explored (i) the anti-inflammatory properties of H2S on epithelial (A549 and BEAS-2B), macrophage (RAW264.7) and endothelial (HUVEC) cells subjected to cycling mechanical stretch; (ii) the intercellular transduction of inflammation by co-culturing epithelial cells and macrophages (A549 and RAW264.7); (iii) the effect of H2S on neutrophils (Hoxb8) in transmigration (co-culture setup with HUVECs) and chemotaxis experiments. In stretched epithelial cells (A549, BEAS-2B), the release of interleukin-8 was not prevented by H2S treatment. However, H2S reduced macrophage inflammatory protein-2 (MIP-2) release from unstretched macrophages (RAW264.7) co-cultured with stretched epithelial cells. In stretched macrophages, H2S prevented MIP-2 release by limiting nicotinamide adenine dinucleotide phosphate oxidase-derived superoxide radicals (ROS). In endothelial cells (HUVEC), H2S inhibited interleukin-8 release and preserved endothelial integrity. In neutrophils (Hoxb8), H2S limited MIP-2-induced transmigration through endothelial monolayers, ROS formation and their chemotactic movement. H2S induces anti-inflammatory effects in a cell-type specific manner. H2S limits stretch- and/or paracrine-induced inflammatory response in endothelial, macrophage, and neutrophil cells by maintaining redox homeostasis as underlying mechanism.
Collapse
Affiliation(s)
- Sashko G. Spassov
- Department of Anesthesiology and Critical Care, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany; (S.F.); (A.G.); (M.-N.A.v.I.); (A.B.); (P.M.); (A.I.); (R.S.); (S.S.); (A.H.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
A strain gradient was created by punching a hole in the center of a stretched elastic polydimethylsiloxane membrane to determine the effect of different strains on cultured human keratocytes (HK). In this study, two stretching methods were used: continuous stretching and cyclic stretching. Continuous stretching is relatively static, while acyclic stretching is relatively dynamic. These methods, respectively, represented the effects of high intraocular pressure and rubbing of the eyes on corneal cells. Image processing codes were developed to observe the effects of stress concentration, shear stress, continuous stretching, and cyclic stretching on HKs. The results demonstrate that stretching and shear stress are not conducive to the proliferation of corneal cells and instead cause cell death. A 10% strain had greater inhibitory effects than a 3% strain on cell proliferation. Cell survival rates for continuous stretching (static) were higher than those for cyclic stretching (dynamic). The stretching experiment revealed that cyclic stretching has a greater inhibitory effect on the growth and proliferation of corneal cells than continuous stretching. Accordingly, it shows that cyclic loading is more harmful than high intraocular pressure (static loading) to corneal cells.
Collapse
|
14
|
Lin C, Zheng X, Lin S, Zhang Y, Wu J, Li Y. Mechanotransduction Regulates the Interplays Between Alveolar Epithelial and Vascular Endothelial Cells in Lung. Front Physiol 2022; 13:818394. [PMID: 35250619 PMCID: PMC8895143 DOI: 10.3389/fphys.2022.818394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/28/2022] [Indexed: 12/22/2022] Open
Abstract
Mechanical stress plays a critical role among development, functional maturation, and pathogenesis of pulmonary tissues, especially for the alveolar epithelial cells and vascular endothelial cells located in the microenvironment established with vascular network and bronchial-alveolar network. Alveolar epithelial cells are mainly loaded by cyclic strain and air pressure tension. While vascular endothelial cells are exposed to shear stress and cyclic strain. Currently, the emerging evidences demonstrated that non-physiological mechanical forces would lead to several pulmonary diseases, including pulmonary hypertension, fibrosis, and ventilation induced lung injury. Furthermore, a series of intracellular signaling had been identified to be involved in mechanotransduction and participated in regulating the physiological homeostasis and pathophysiological process. Besides, the communications between alveolar epithelium and vascular endothelium under non-physiological stress contribute to the remodeling of the pulmonary micro-environment in collaboration, including hypoxia induced injuries, endothelial permeability impairment, extracellular matrix stiffness elevation, metabolic alternation, and inflammation activation. In this review, we aim to summarize the current understandings of mechanotransduction on the relation between mechanical forces acting on the lung and biological response in mechanical overloading related diseases. We also would like to emphasize the interplays between alveolar epithelium and vascular endothelium, providing new insights into pulmonary diseases pathogenesis, and potential targets for therapy.
Collapse
Affiliation(s)
- Chuyang Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaolan Zheng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Sha Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinlin Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Ge D, Zou X, Chu Y, Zhou J, Xu W, Liu Y, Zhang Q, Lu Y, Xia L, Li A, Huang C, Wang P, Shen C, Chu Y. Analysis of volatile organic compounds in exhaled breath after radiotherapy. J Zhejiang Univ Sci B 2022; 23:153-157. [PMID: 35187888 DOI: 10.1631/jzus.b2100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy uses high-energy X-rays or other particles to destroy cancer cells and medical practitioners have used this approach extensively for cancer treatment (Hachadorian et al., 2020). However, it is accompanied by risks because it seriously harms normal cells while killing cancer cells. The side effects can lower cancer patients' quality of life and are very unpredictable due to individual differences (Bentzen, 2006). Therefore, it is essential to assess a patient's body damage after radiotherapy to formulate an individualized recovery treatment plan. Exhaled volatile organic compounds (VOCs) can be changed by radiotherapy and thus used for medical diagnosis (Vaks et al., 2012). During treatment, high-energy X-rays can induce apoptosis; meanwhile, cell membranes are damaged due to lipid peroxidation, converting unsaturated fatty acids into volatile metabolites (Losada-Barreiro and Bravo-Díaz, 2017). At the same time, radiotherapy oxidizes water, resulting in reactive oxygen species (ROS) that can increase the epithelial permeability of pulmonary alveoli, enabling the respiratory system to exhale volatile metabolites (Davidovich et al., 2013; Popa et al., 2020). These exhaled VOCs can be used to monitor body damage caused by radiotherapy.
Collapse
Affiliation(s)
- Dianlong Ge
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Xue Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Yajing Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Jijuan Zhou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Wei Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Yue Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Qiangling Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Aiyue Li
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Pei Wang
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China. ,
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
16
|
Youn J, Hong H, Shin W, Kim D, Kim HJ, Kim DS. Thin and stretchable extracellular matrix (ECM) membrane reinforced by nanofiber scaffolds for developing in vitro barrier models. Biofabrication 2022; 14. [DOI: 10.1088/1758-5090/ac4dd7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Abstract
An extracellular matrix (ECM) membrane made up of ECM hydrogels has great potentials to develop a physiologically relevant organ-on-a-chip because of its biochemical and biophysical similarity to in vivo basement membranes (BMs). However, the limited mechanical stability of the ECM hydrogels makes it difficult to utilize the ECM membrane in long-term and dynamic cell/tissue cultures. This study proposes an ultra-thin but robust and transparent ECM membrane reinforced with silk fibroin (SF)/polycaprolactone (PCL) nanofibers, which is achieved by in situ self-assembly throughout a freestanding SF/PCL nanofiber scaffold. The SF/PCL nanofiber-reinforced ECM (NaRE) membrane shows biophysical characteristics reminiscent of native BMs, including small thickness (< 5 μm), high permeability (< 9 × 10−5 cm s-1), and nanofibrillar architecture (~10 to 100 nm). With the BM-like characteristics, the nanofiber reinforcement ensured that the NaRE membrane stably supported the construction of various types of in vitro barrier models, from epithelial or endothelial barrier models to complex co-culture models, even over two weeks of cell culture periods. Furthermore, the stretchability of the NaRE membrane allowed emulating the native organ-like cyclic stretching motions (10 to 15%) and was demonstrated to manipulate the cell and tissue-level functions of the in vitro barrier model.
Collapse
|
17
|
Dai ZX, Shih PJ, Yen JY, Wang IJ. Functional assistance for stress distribution in cell culture membrane under periodically stretching. J Biomech 2021; 125:110564. [PMID: 34237658 DOI: 10.1016/j.jbiomech.2021.110564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.
Collapse
Affiliation(s)
- Zhi-Xuan Dai
- Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan
| | - Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, 10617 Taipei, Taiwan.
| | - Jia-Yush Yen
- Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan; Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Li X, Römer G, Kerindongo RP, Hermanides J, Albrecht M, Hollmann MW, Zuurbier CJ, Preckel B, Weber NC. Sodium Glucose Co-Transporter 2 Inhibitors Ameliorate Endothelium Barrier Dysfunction Induced by Cyclic Stretch through Inhibition of Reactive Oxygen Species. Int J Mol Sci 2021; 22:ijms22116044. [PMID: 34205045 PMCID: PMC8199893 DOI: 10.3390/ijms22116044] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 02/08/2023] Open
Abstract
SGLT-2i's exert direct anti-inflammatory and anti-oxidative effects on resting endothelial cells. However, endothelial cells are constantly exposed to mechanical forces such as cyclic stretch. Enhanced stretch increases the production of reactive oxygen species (ROS) and thereby impairs endothelial barrier function. We hypothesized that the SGLT-2i's empagliflozin (EMPA), dapagliflozin (DAPA) and canagliflozin (CANA) exert an anti-oxidative effect and alleviate cyclic stretch-induced endothelial permeability in human coronary artery endothelial cells (HCAECs). HCAECs were pre-incubated with one of the SGLT-2i's (1 µM EMPA, 1 µM DAPA and 3 µM CANA) for 2 h, followed by 10% stretch for 24 h. HCAECs exposed to 5% stretch were considered as control. Involvement of ROS was measured using N-acetyl-l-cysteine (NAC). The sodium-hydrogen exchanger 1 (NHE1) and NADPH oxidases (NOXs) were inhibited by cariporide, or GKT136901, respectively. Cell permeability and ROS were investigated by fluorescence intensity imaging. Cell permeability and ROS production were increased by 10% stretch; EMPA, DAPA and CANA decreased this effect significantly. Cariporide and GKT136901 inhibited stretch-induced ROS production but neither of them further reduced ROS production when combined with EMPA. SGLT-2i's improve the barrier dysfunction of HCAECs under enhanced stretch and this effect might be mediated through scavenging of ROS. Anti-oxidative effect of SGLT-2i's might be partially mediated by inhibition of NHE1 and NOXs.
Collapse
Affiliation(s)
- Xiaoling Li
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Gregor Römer
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Raphaela P. Kerindongo
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Jeroen Hermanides
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany;
| | - Markus W. Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Coert J. Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Benedikt Preckel
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
| | - Nina C. Weber
- Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (X.L.); (G.R.); (R.P.K.); (J.H.); (M.W.H.); (C.J.Z.); (B.P.)
- Correspondence: ; Tel.: +31-20-566-8215
| |
Collapse
|
19
|
Pao HP, Liao WI, Tang SE, Wu SY, Huang KL, Chu SJ. Suppression of Endoplasmic Reticulum Stress by 4-PBA Protects Against Hyperoxia-Induced Acute Lung Injury via Up-Regulating Claudin-4 Expression. Front Immunol 2021; 12:674316. [PMID: 34122432 PMCID: PMC8194262 DOI: 10.3389/fimmu.2021.674316] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/10/2021] [Indexed: 12/20/2022] Open
Abstract
Endoplasmic reticulum (ER) stress that disrupts ER function can occur in response to a wide variety of cellular stress factors leads to the accumulation of unfolded and misfolded proteins in the ER. Many studies have shown that ER stress amplified inflammatory reactions and was involved in various inflammatory diseases. However, little is known regarding the role of ER stress in hyperoxia-induced acute lung injury (HALI). This study investigated the influence of ER stress inhibitor, 4-phenyl butyric acid (4-PBA), in mice with HALI. Treatment with 4-PBA in the hyperoxia groups significantly prolonged the survival, decreased lung edema, and reduced the levels of inflammatory mediators, lactate dehydrogenase, and protein in bronchoalveolar lavage fluid, and increased claudin-4 protein expression in lung tissue. Moreover, 4-PBA reduced the ER stress-related protein expression, NF-κB activation, and apoptosis in the lung tissue. In in vitro study, 4-PBA also exerted a similar effect in hyperoxia-exposed mouse lung epithelial cells (MLE-12). However, when claudin-4 siRNA was administrated in mice and MLE-12 cells, the protective effect of 4-PBA was abrogated. These results suggested that 4-PBA protected against hyperoxia-induced ALI via enhancing claudin-4 expression.
Collapse
Affiliation(s)
- Hsin-Ping Pao
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Wen-I Liao
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shih-En Tang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Yu Wu
- Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Kun-Lun Huang
- The Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shi-Jye Chu
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
20
|
Bossardi Ramos R, Adam AP. Molecular Mechanisms of Vascular Damage During Lung Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:95-107. [PMID: 34019265 DOI: 10.1007/978-3-030-68748-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A variety of pulmonary and systemic insults promote an inflammatory response causing increased vascular permeability, leading to the development of acute lung injury (ALI), a condition necessitating hospitalization and intensive care, or the more severe acute respiratory distress syndrome (ARDS), a disease with a high mortality rate. Further, COVID-19 pandemic-associated ARDS is now a major cause of mortality worldwide. The pathogenesis of ALI is explained by injury to both the vascular endothelium and the alveolar epithelium. The disruption of the lung endothelial and epithelial barriers occurs in response to both systemic and local production of pro-inflammatory cytokines. Studies that evaluate the association of genetic polymorphisms with disease risk did not yield many potential therapeutic targets to treat and revert lung injury. This failure is probably due in part to the phenotypic complexity of ALI/ARDS, and genetic predisposition may be obscured by the multiple environmental and behavioral risk factors. In the last decade, new research has uncovered novel epigenetic mechanisms that control ALI/ARDS pathogenesis, including histone modifications and DNA methylation. Enzyme inhibitors such as DNMTi and HDACi may offer new alternative strategies to prevent or reverse the vascular damage that occurs during lung injury. This review will focus on the latest findings on the molecular mechanisms of vascular damage in ALI/ARDS, the genetic factors that might contribute to the susceptibility for developing this disease, and the epigenetic changes observed in humans, as well as in experimental models of ALI/ADRS.
Collapse
Affiliation(s)
- Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Alejandro Pablo Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA. .,Department of Ophthalmology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
21
|
Veskemaa L, Graw JA, Pickerodt PA, Taher M, Boemke W, González-López A, Francis RCE. Tert-butylhydroquinone augments Nrf2-dependent resilience against oxidative stress and improves survival of ventilator-induced lung injury in mice. Am J Physiol Lung Cell Mol Physiol 2020; 320:L17-L28. [PMID: 33026237 DOI: 10.1152/ajplung.00131.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Oxidative stress caused by mechanical ventilation contributes to the pathophysiology of ventilator-induced lung injury (VILI). A key mechanism maintaining redox balance is the upregulation of nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant gene expression. We tested whether pretreatment with an Nrf2-antioxidant response element (ARE) pathway activator tert-butylhydroquinone (tBHQ) protects against VILI. Male C57BL/6J mice were pretreated with an intraperitoneal injection of tBHQ (n = 10), an equivalent volume of 3% ethanol (EtOH3%, vehicle, n = 13), or phosphate-buffered saline (controls, n = 10) and were then subjected to high tidal volume (HVT) ventilation for a maximum of 4 h. HVT ventilation severely impaired arterial oxygenation ([Formula: see text] = 49 ± 7 mmHg, means ± SD) and respiratory system compliance, resulting in a 100% mortality among controls. Compared with controls, tBHQ improved arterial oxygenation ([Formula: see text] = 90 ± 41 mmHg) and respiratory system compliance after HVT ventilation. In addition, tBHQ attenuated the HVT ventilation-induced development of lung edema and proinflammatory response, evidenced by lower concentrations of protein and proinflammatory cytokines (IL-1β and TNF-α) in the bronchoalveolar lavage fluid, respectively. Moreover, tBHQ enhanced the pulmonary redox capacity, indicated by enhanced Nrf2-depentent gene expression at baseline and by the highest total glutathione concentration after HVT ventilation among all groups. Overall, tBHQ pretreatment resulted in 60% survival (P < 0.001 vs. controls). Interestingly, compared with controls, EtOH3% reduced the proinflammatory response to HVT ventilation in the lung, resulting in 38.5% survival (P = 0.0054 vs. controls). In this murine model of VILI, tBHQ increases the pulmonary redox capacity by activating the Nrf2-ARE pathway and protects against VILI. These findings support the efficacy of pharmacological Nrf2-ARE pathway activation to increase resilience against oxidative stress during injurious mechanical ventilation.
Collapse
Affiliation(s)
- Lilly Veskemaa
- Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan A Graw
- Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp A Pickerodt
- Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mahdi Taher
- Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Willehad Boemke
- Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Adrián González-López
- Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,CIBER-Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Roland C E Francis
- Department of Anesthesiology and Operative Intensive Care Medicine CCM/CVK, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
22
|
Radiom M, He Y, Peng-Wang J, Baeza-Squiban A, Berret JF, Chen Y. Alveolar mimics with periodic strain and its effect on the cell layer formation. Biotechnol Bioeng 2020; 117:2827-2841. [PMID: 32542664 DOI: 10.1002/bit.27458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/09/2020] [Accepted: 06/13/2020] [Indexed: 12/16/2022]
Abstract
We report on the development of a new model of alveolar air-tissue interface on a chip. The model consists of an array of suspended hexagonal monolayers of gelatin nanofibers supported by microframes and a microfluidic device for the patch integration. The suspended monolayers are deformed to a central displacement of 40-80 µm at the air-liquid interface by application of air pressure in the range of 200-1,000 Pa. With respect to the diameter of the monolayers, that is, 500 µm, this displacement corresponds to a linear strain of 2-10% in agreement with the physiological strain range in the lung alveoli. The culture of A549 cells on the monolayers for an incubation time of 1-3 days showed viability in the model. We exerted a periodic strain of 5% at a frequency of 0.2 Hz for 1 hr to the cells. We found that the cells were strongly coupled to the nanofibers, but the strain reduced the coupling and induced remodeling of the actin cytoskeleton, which led to a better tissue formation. Our model can serve as a versatile tool in lung investigations such as in inhalation toxicology and therapy.
Collapse
Affiliation(s)
- Milad Radiom
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot Paris-VII, Paris, France
| | - Yong He
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France
| | - Juan Peng-Wang
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France
| | - Armelle Baeza-Squiban
- Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, Université Paris Diderot Paris-VII, Paris, France
| | - Jean-François Berret
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris Diderot Paris-VII, Paris, France
| | - Yong Chen
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, Pasteur, École Normale Supérieure-PSL Research University, Paris, France
| |
Collapse
|
23
|
Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LMD, Holien JK, Lim SY. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 2020; 213:107594. [PMID: 32473962 DOI: 10.1016/j.pharmthera.2020.107594] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are dynamic organelles constantly undergoing fusion and fission. A concerted balance between the process of mitochondrial fusion and fission is required to maintain cellular health under different physiological conditions. Mutation and dysregulation of Drp1, the major driver of mitochondrial fission, has been associated with various neurological, oncological and cardiovascular disorders. Moreover, when subjected to pathological insults, mitochondria often undergo excessive fission, generating fragmented and dysfunctional mitochondria leading to cell death. Therefore, manipulating mitochondrial fission by targeting Drp1 has been an appealing therapeutic approach for cytoprotection. However, studies have been inconsistent. Studies employing Drp1 constructs representing alternate Drp1 isoforms, have demonstrated differing impacts of these isoforms on mitochondrial fission and cell death. Furthermore, there are distinct expression patterns of Drp1 isoforms in different tissues, suggesting idiosyncratic engagement in specific cellular functions. In this review, we will discuss these inherent variations among human Drp1 isoforms and how they could affect Drp1-mediated mitochondrial fission and cell death.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia; Department of Surgery, University of Melbourne, Victoria, Australia
| | - William J Smiles
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia
| | - John W Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia; Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Christopher G Langendorf
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery, University of Melbourne, Victoria, Australia; Structural Bioinformatics and Drug Discovery, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Department of Surgery, University of Melbourne, Victoria, Australia.
| |
Collapse
|
24
|
Abrams D, Schmidt M, Pham T, Beitler JR, Fan E, Goligher EC, McNamee JJ, Patroniti N, Wilcox ME, Combes A, Ferguson ND, McAuley DF, Pesenti A, Quintel M, Fraser J, Hodgson CL, Hough CL, Mercat A, Mueller T, Pellegrino V, Ranieri VM, Rowan K, Shekar K, Brochard L, Brodie D. Mechanical Ventilation for Acute Respiratory Distress Syndrome during Extracorporeal Life Support. Research and Practice. Am J Respir Crit Care Med 2020; 201:514-525. [DOI: 10.1164/rccm.201907-1283ci] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Darryl Abrams
- Columbia University College of Physicians & Surgeons/New York-Presbyterian Hospital, New York, New York
- Center for Acute Respiratory Failure, Columbia University Medical Center, New York, New York
| | - Matthieu Schmidt
- INSERM, UMRS_1166-ICAN, Sorbonne Université, Paris, France
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Tài Pham
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
- Service de Médecine Intensive-Réanimation, Hôpital de Bicêtre, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Jeremy R. Beitler
- Columbia University College of Physicians & Surgeons/New York-Presbyterian Hospital, New York, New York
- Center for Acute Respiratory Failure, Columbia University Medical Center, New York, New York
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Ewan C. Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - James J. McNamee
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, United Kingdom
| | - Nicolò Patroniti
- Anaesthesia and Intensive Care, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) for Oncology, San Martino Policlinico Hospital, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
| | - M. Elizabeth Wilcox
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Alain Combes
- INSERM, UMRS_1166-ICAN, Sorbonne Université, Paris, France
- Service de Médecine Intensive-Réanimation, Institut de Cardiologie, Assistance Publique–Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Niall D. Ferguson
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Respirology, Department of Medicine, University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Danny F. McAuley
- Centre for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, United Kingdom
| | - Antonio Pesenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Anesthesia, Critical Care and Emergency Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico Milan, Milan, Italy
| | - Michael Quintel
- Department of Anesthesiology, University Medical Center, Georg August University, Goettingen, Germany
| | - John Fraser
- Critical Care Research Group, Prince Charles Hospital, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | - Carol L. Hodgson
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Australia
- Physiotherapy Department and
| | - Catherine L. Hough
- Pulmonary and Critical Care Medicine, University of Washington, Seattle, Washington
| | - Alain Mercat
- Département de Médecine Intensive-Réanimation et Médecine Hyperbare, Centre Hospitalier Universitaire d’Angers, Université d’Angers, Angers, France
| | - Thomas Mueller
- Department of Internal Medicine II, University Hospital of Regensburg, Regensburg, Germany
| | - Vin Pellegrino
- Intensive Care Unit, The Alfred Hospital, Melbourne, Australia
| | - V. Marco Ranieri
- Alma Mater Studiorum–Dipartimento di Scienze Mediche e Chirurgiche, Anesthesia and Intensive Care Medicine, Policlinico di Sant’Orsola, Università di Bologna, Bologna, Italy; and
| | - Kathy Rowan
- Clinical Trials Unit, Intensive Care National Audit & Research Centre, London, United Kingdom
| | - Kiran Shekar
- Critical Care Research Group, Prince Charles Hospital, Brisbane, Australia
- University of Queensland, Brisbane, Australia
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Center, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Daniel Brodie
- Columbia University College of Physicians & Surgeons/New York-Presbyterian Hospital, New York, New York
- Center for Acute Respiratory Failure, Columbia University Medical Center, New York, New York
| |
Collapse
|
25
|
Wan WL, Tian B, Lin YJ, Korupalli C, Lu MY, Cui Q, Wan D, Chang Y, Sung HW. Photosynthesis-inspired H 2 generation using a chlorophyll-loaded liposomal nanoplatform to detect and scavenge excess ROS. Nat Commun 2020; 11:534. [PMID: 31988280 PMCID: PMC6985250 DOI: 10.1038/s41467-020-14413-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
A disturbance of reactive oxygen species (ROS) homeostasis may cause the pathogenesis of many diseases. Inspired by natural photosynthesis, this work proposes a photo-driven H2-evolving liposomal nanoplatform (Lip NP) that comprises an upconversion nanoparticle (UCNP) that is conjugated with gold nanoparticles (AuNPs) via a ROS-responsive linker, which is encapsulated inside the liposomal system in which the lipid bilayer embeds chlorophyll a (Chla). The UCNP functions as a transducer, converting NIR light into upconversion luminescence for simultaneous imaging and therapy in situ. Functioning as light-harvesting antennas, AuNPs are used to detect the local concentration of ROS for FRET biosensing, while the Chla activates the photosynthesis of H2 gas to scavenge local excess ROS. The results thus obtained indicate the potential of using the Lip NPs in the analysis of biological tissues, restoring their ROS homeostasis, possibly preventing the initiation and progression of diseases.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Bo Tian
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yu-Jung Lin
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chiranjeevi Korupalli
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Qinghua Cui
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Dehui Wan
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yen Chang
- Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC.
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Institute of Biomedical Engineering, Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, ROC.
| |
Collapse
|
26
|
Saez F, Hong NJ, Cabral PD, Garvin JL. Stretch-Induced Increases in Intracellular Ca Stimulate Thick Ascending Limb O 2- Production and Are Enhanced in Dahl Salt-Sensitive Rats. Hypertension 2019; 75:431-438. [PMID: 31865796 DOI: 10.1161/hypertensionaha.119.13765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanical stretch raises intracellular Ca (Cai) in many cell types. Luminal flow-derived stretch stimulates O2- production by thick ascending limbs (THALs). Renal O2- is greater in Dahl salt-sensitive (SS) than salt-resistant (SR) rats. We hypothesized that mechanical stretch stimulates Ca influx via TRPV4 (transient receptor potential vanilloid type 4) which in turn raises Cai in THALs; these increases in Cai are necessary for stretch to augment O2- production; and stretch-stimulated, and therefore flow-induced, O2- production is enhanced in SS compared with SR THALs due to elevated Ca influx and increased Cai. Cai and O2- were measured in SS and SR THALs from rats on normal salt using Fura2-acetoxymethyl ester and dihydroethidium, respectively. Stretch raised Cai in SS by 270.4±48.9 nmol/L and by 123.6±27.0 nmol/L in SR THALs (P<0.02). Removing extracellular Ca eliminated the increases and differences in Cai between strains. Knocking down TRPV4 in SS THALs reduced stretch-induced Cai to SR levels (SS: 92.0±15.9 nmol/L; SR: 123.6±27.0 nmol/L). RN1734, a TRPV4 inhibitor, blunted stretch-elevated Cai by ≈75% and ≈66% in SS (P<0.03) and SR (P<0.04), respectively. Stretch augmented O2- production by 58.6±10.2 arbitrary fluorescent units/min in SS and by 24.4±2.6 arbitrary fluorescent units/min in SR THALs (P<0.05). Removal of extracellular Ca blunted stretch-induced increases in O2- and eliminated differences between strains. RN1734 reduced stretch-induced O2- by ≈70% in SS (P<0.005) and ≈60% in SR (P<0.01). Conclusions are as follows: (1) stretch activates TRPV4, which raises Cai in THALs; (2) the increase in Cai stimulates O2- production; and (3) stretch-induced O2- production is enhanced in SS THALs due to greater increases in Cai.
Collapse
Affiliation(s)
- Fara Saez
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH
| | - Nancy J Hong
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH
| | - Pablo D Cabral
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH
| | - Jeffrey L Garvin
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
27
|
Prevalence and development of chronic critical illness in acute patients admitted to a respiratory intensive care setting. Pulmonology 2019; 26:151-158. [PMID: 31672594 DOI: 10.1016/j.pulmoe.2019.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Chronic Critical Illness (chronic CI) is a condition associated to patients surviving an episode of acute respiratory failure (ARF). The prevalence and the factors associated with the development of chronic CI in the population admitted to a Respiratory Intensive Care Unit (RICU) have not yet been clarified. METHODS An observational prospective cohort study was undertaken at the RICU of the University Hospital of Modena (Italy). Patients mechanically ventilated with ARF in RICU were enrolled. Demographics, severity scores (APACHEII, SOFA, SAPSII), and clinical condition (septic shock, pneumonia, ARDS) were recorded on admission. Respiratory mechanics and inflammatory-metabolic blood parameters were measured both on admission and over the first week of stay. All variables were tested as predictors of chronic CI through univariate and multivariate analysis. RESULTS Chronic CI occurred in 33 out of 100 patients observed. Higher APACHEII, the presence of septic shock, diaphragmatic dysfunction (DD) at sonography, multidrug-resistant (MDR) bacterial infection, the occurrence of a second infection during stay, and a C-reactive protein (CRP) serum level inceasing 7 days over admission were associated with chronic CI. Septic shock was the strongest predictor of chronic CI (AUC = 0.92 p < 0.0001). CONCLUSIONS Chronic CI is frequent in patients admitted to RICU and mechanically ventilated due to ARF. Infection-related factors seem to play a major role as predictors of this syndrome.
Collapse
|
28
|
Wang X, Gong J, Zhu J, Jin Z, Gao W. Alpha 1-antitrypsin for treating ventilator-associated lung injury in acute respiratory distress syndrome rats. Exp Lung Res 2019; 45:209-219. [PMID: 31347410 DOI: 10.1080/01902148.2019.1642968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purpose: Mechanical ventilation (MV) is an essential life support tool for patients with acute respiratory distress syndrome (ARDS). However, MV for ARDS can result in ventilator-induced lung injury (VILI). This study aimed to assess whether alpha 1-antitrypsin (AAT) can reduce VILI in ARDS rats. Materials and Methods: Rats were randomly divided into five groups: the sham (S) group, MV (V) group, lipopolysaccharide (LPS) (L) group, MV/LPS (VL) group and MV/AAT (VA) group. Rats in the S group were anesthetized. The rats in the L group received LPS but not ventilation, the rats in the V group received only MV, and the rats in the VL and VA groups received LPS and MV. Additionally, the rats in the VA group were treated with AAT, and the other rats were injected with saline. The PaO2/FiO2 ratio and the wet/dry weight were assessed. The total protein and neutrophil elastase concentrations and the neutrophil and macrophage counts in bronchoalveolar lavage fluid (BALF) were evaluated. Proinflammatory factors in BALF and ICAM-1 and MIP-2 in serum were also tested. Furthermore, the oxidative stress response was detected, and histological injury and apoptosis were evaluated. Results: All the rats in the V, L and VL groups had significant lung injury, with the VL group exhibiting the most severe injury. Compared with the findings in the VL group, AAT significantly upregulated the PaO2/FiO2 ratio but decreased the wet/dry weight ratio and protein levels in BALF. AAT also reduced proinflammatory cytokine levels and inflammatory cell counts in BALF. Lung tissue injury and cell apoptosis were mitigated by AAT. Conclusions: AAT ameliorated VILI in ARDS rats. The protection conferred by AAT may be associated with the anti-inflammatory, antioxidative stress response and anti-apoptotic effects of AAT.
Collapse
Affiliation(s)
- Xueting Wang
- a The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Jing Gong
- a The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Jingli Zhu
- a The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Zhehao Jin
- a The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| | - Wei Gao
- a The Second Affiliated Hospital of Harbin Medical University , Harbin , China
| |
Collapse
|
29
|
Park BH, Shin MH, Douglas IS, Chung KS, Song JH, Kim SY, Kim EY, Jung JY, Kang YA, Chang J, Kim YS, Park MS. Erythropoietin-Producing Hepatoma Receptor Tyrosine Kinase A2 Modulation Associates with Protective Effect of Prone Position in Ventilator-induced Lung Injury. Am J Respir Cell Mol Biol 2019; 58:519-529. [PMID: 29216437 DOI: 10.1165/rcmb.2017-0143oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The erythropoietin-producing hepatoma (Eph) receptor tyrosine kinase A2 (EphA2) and its ligand, ephrinA1, play a pivotal role in inflammation and tissue injury by modulating the epithelial and endothelial barrier integrity. Therefore, EphA2 receptor may be a potential therapeutic target for modulating ventilator-induced lung injury (VILI). To support this hypothesis, here, we analyzed EphA2/ephrinA1 signaling in the process of VILI and determined the role of EphA2/ephrinA1 signaling in the protective mechanism of prone positioning in a VILI model. Wild-type mice were ventilated with high (24 ml/kg; positive end-expiratory pressure, 0 cm; 5 h) tidal volume in a supine or prone position. Anti-EphA2 receptor antibody or IgG was administered to the supine position group. Injury was assessed by analyzing the BAL fluid, lung injury scoring, and transmission electron microscopy. Lung lysates were evaluated using cytokine/chemokine ELISA and Western blotting of EphA2, ephrinA1, PI3Kγ, Akt, NF-κB, and P70S6 kinase. EphA2/ephrinA1 expression was higher in the supine high tidal volume group than in the control group, but it did not increase upon prone positioning or anti-EphA2 receptor antibody treatment. EphA2 antagonism reduced the extent of VILI and downregulated the expression of PI3Kγ, Akt, NF-κB, and P70S6 kinase. These findings demonstrate that EphA2/ephrinA1 signaling is involved in the molecular mechanism of VILI and that modulation of EphA2/ehprinA1 signaling by prone position or EphA2 antagonism may be associated with the lung-protective effect. Our data provide evidence for EphA2/ehprinA1 as a promising therapeutic target for modulating VILI.
Collapse
Affiliation(s)
- Byung Hoon Park
- 1 Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Gyeonggi Provincial Medical Center Paju Hospital, Paju City, Gyeonggi-Do, Republic of Korea
| | - Mi Hwa Shin
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Ivor S Douglas
- 3 Division of Pulmonary Sciences and Critical Care Medicine, Denver Health Medical Center, University of Colorado School of Medicine, Denver, Colorado
| | - Kyung Soo Chung
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Joo Han Song
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Song Yee Kim
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Eun Young Kim
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Ji Ye Jung
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Young Ae Kang
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Joon Chang
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Young Sam Kim
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| | - Moo Suk Park
- 2 Division of Pulmonology, The Institute of Chest Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea; and
| |
Collapse
|
30
|
Ventilation-Like Mechanical Strain Modulates the Inflammatory Response of BEAS2B Epithelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2769761. [PMID: 31320981 PMCID: PMC6607724 DOI: 10.1155/2019/2769761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/29/2019] [Accepted: 05/28/2019] [Indexed: 01/16/2023]
Abstract
Protective mechanical ventilation is aimed at preventing ventilator-induced lung injury while ensuring sufficient gas exchange. A new approach focuses on the temporal profile of the mechanical ventilation. We hypothesized that the temporal mechanical strain profile modulates inflammatory signalling. We applied cyclic strain with various temporal profiles to human bronchial epithelial cells (BEAS2B) and assessed proinflammatory response. The cells were subjected to sinusoidal, rectangular, or triangular strain profile and rectangular strain profile with prestrain set to 0, 25, 50, or 75% of the maximum stain, static strain, and strain resembling a mechanical ventilation-like profile with or without flow-controlled expiration. The BEAS2B response to mechanical load included altered mitochondrial activity, increased superoxide radical levels, NF-kappaB translocation, and release of interleukin-8. The response to strain was substantially modulated by the dynamics of the stimulation pattern. The rate of dynamic changes of the strain profile correlates with the degree of mechanical stress-induced cell response.
Collapse
|
31
|
Feng Z, Wang JW, Wang Y, Dong WW, Xu ZF. Propofol Protects Lung Endothelial Barrier Function by Suppression of High-Mobility Group Box 1 (HMGB1) Release and Mitochondrial Oxidative Damage Catalyzed by HMGB1. Med Sci Monit 2019; 25:3199-3211. [PMID: 31040263 PMCID: PMC6507496 DOI: 10.12659/msm.915417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The processes of mechanical ventilation-induced lung injury (VILI) triggers the release of high-mobility group box 1 (HMGB1), a prominent damage-associated molecular pattern (DAMP) family member, which can cause damage to pulmonary vascular endothelial cells. We aimed to determine whether propofol protected against endothelial cell injury induced by HMGB1 in vitro and in vivo. Material/Methods ICR mice (male) were mechanically ventilated for 4 h after anesthetization at both low tidal volume (LVT, 6 ml/kg) and high tidal volume (HVT, 30 ml/kg). A propofol bolus (10 mg/kg) was administered to the animals prior to the onset of ventilation, followed by infusion at 5 mg/(kg·h). We obtained confluent cultures of mouse lung vascular endothelial cells (MLVECs) and then performed cyclic stretching at 20% stretch for 4 h with or without propofol. Results HMGB1 reduced the expression of tight junctions between endothelial cells, including VE-cadherin and ZO-1, and increased endothelial permeability, and both were blocked by propofol. We found that MLVECs exhibited mitochondrial oxidative damage by HMGB1, which was successfully suppressed through administration of MnTBAP as well as propofol. Propofol ameliorated HVT-associated lung vascular hyperpermeability and HMGB1 production in vivo. Propofol also inhibited HMBG1 release caused by cyclic stretching in MLVECs in vitro. Conclusions Our results prove that the cyto-protective function of propofol protects against lung ventilation-induced dysfunction of the lung endothelial barrier. This function of propofol is mediated through inhibition of HMGB1 release caused by mechanical stretching and mitochondrial oxidative damage triggered by HMGB1.
Collapse
Affiliation(s)
- Zhou Feng
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Jian-Wei Wang
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Wen-Wen Dong
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Zi-Feng Xu
- Department of Anesthesiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
32
|
Liang X, Wang Z, Gao M, Wu S, Zhang J, Liu Q, Yu Y, Wang J, Liu W. Cyclic stretch induced oxidative stress by mitochondrial and NADPH oxidase in retinal pigment epithelial cells. BMC Ophthalmol 2019; 19:79. [PMID: 30885167 PMCID: PMC6421648 DOI: 10.1186/s12886-019-1087-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/12/2019] [Indexed: 01/24/2023] Open
Abstract
Background Vitreomacular adhesion (VMA) has been reported to associated with age-related macular degeneration (AMD). Understanding the mechanisms underlying cyclic stretch induced in retinal pigment epithelial cells (RPE) may be important for the treatment of VMA-related AMD. Method Cyclic stretch (1HZ, 20% elongation) was applied to cultured ARPE-19 cells for 15 min, 2 h, 6 h, 12 h, 24 h by flexcell FX-5000 Tension system. Total reactive oxygen species (ROS) were detected using DCFH-DA. Mitochondrial superoxide were detected using MitoSOX Red mitochondrial superoxide indicator. NADPH oxidases (NOX) and signaling pathways, such as p38 and PKC, were detected using western blot. Apocycin (Apo) were used as NOX inhibitors. Result High levels of total ROS were detected from 15 min to 24 h, whereas mitochondrial superoxide were higher only in early time. NOX2 were significantly increased at 24 h. NOX4 were significantly increased at 2 h and reach its peak at 24 h. P-p38 was significantly increased at 12 h and 24 h. P-PKC was significantly increased at 15 min and kept a persistent high level. The upregulated expression of NOX4 by cyclic stretch can be significantly decreased under p-PKC inhibitor other than p-p38 inhibitor. Conclusion Cyclic stretch induce oxidative stress from both mitochodrial and NADPH oxidase in RPE cells, which may prompt oxidative damage in VMA-related AMD.
Collapse
Affiliation(s)
- Xida Liang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Zengyi Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Meng Gao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Yanping Yu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jing Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Wu Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
33
|
Yehya N, Song MJ, Lawrence GG, Margulies SS. HER2 Signaling Implicated in Regulating Alveolar Epithelial Permeability with Cyclic Stretch. Int J Mol Sci 2019; 20:ijms20040948. [PMID: 30813222 PMCID: PMC6412492 DOI: 10.3390/ijms20040948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 11/16/2022] Open
Abstract
Mechanical ventilation can be damaging, and can cause or exacerbate ventilator-induced lung injury (VILI). The human epidermal growth factor receptor (HER) ligand neuregulin-1 (NRG1) activates HER2 heterodimerization with HER3, and has been implicated in inflammatory injuries. We hypothesized that HER2 activation contributes to VILI. We analyzed a database of differentially expressed genes between cyclically stretched and unstretched rat alveolar epithelial cells (RAEC) for HER ligands and validated the differential expression. The effect of the ligand and HER2 inhibition on RAEC permeability was tested, and in vivo relevance was assessed in a rat model of VILI. Analysis of our expression array revealed the upregulation of NRG1 and amphiregulin (AREG) with stretch. NRG1 protein, but not AREG, increased after stretch in culture media. Treatment with an NRG1-cleavage inhibitor (TAPI2) or an inhibitor of NRG1-binding (anti-HER3 antibody) reduced HER2 phosphorylation and partially mitigated stretch-induced permeability, with the upregulation of claudin-7. The results were reproduced by treatment with a direct inhibitor of HER2 phosphorylation (AG825). The transfection of microRNA miR-15b, predicted to negatively regulate NRG1, also attenuated stretch-induced permeability, and was associated with lower NRG1 mRNA levels. In rats ventilated at damaging tidal volumes, AG825 partly attenuated VILI. We concluded that cyclic stretch activates HER2 via the HER3 ligand NRG1, leading to increased permeability. Outcomes were mitigated by the downregulation of NRG1, prevention of NRG1 binding, and most strongly by the direct inhibition of HER2. In vivo HER2 inhibition also attenuated VILI. Ligand-dependent HER2 activation is a potential target for reducing VILI.
Collapse
Affiliation(s)
- Nadir Yehya
- Department of Bioengineering, University of Pennsylvania, 40 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104, USA.
- Department of Anesthesiology and Critical Care Medicine, Children' Hospital of Philadelphia and University of Pennsylvania, Suite 7C-26, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| | - Min Jae Song
- Department of Bioengineering, University of Pennsylvania, 40 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Gladys G Lawrence
- Department of Bioengineering, University of Pennsylvania, 40 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104, USA.
| | - Susan S Margulies
- Department of Bioengineering, University of Pennsylvania, 40 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering, Emory University School of Medicine, Atlanta, GA 30332, USA.
| |
Collapse
|
34
|
Abstract
Perioperative lung injury is a major source of postoperative morbidity, excess healthcare use, and avoidable mortality. Many potential inciting factors can lead to this condition, including intraoperative ventilator induced lung injury. Questions exist as to whether protective ventilation strategies used in the intensive care unit for patients with acute respiratory distress syndrome are equally beneficial for surgical patients, most of whom do not present with any pre-existing lung pathology. Studied both individually and in combination as a package of intraoperative lung protective ventilation, the use of low tidal volumes, moderate positive end expiratory pressure, and recruitment maneuvers have been shown to improve oxygenation and pulmonary physiology and to reduce postoperative pulmonary complications in at risk patient groups. Further work is needed to define the potential contributions of alternative ventilator strategies, limiting excessive intraoperative oxygen supplementation, use of non-invasive techniques in the postoperative period, and personalized mechanical ventilation. Although the weight of evidence strongly suggests a role for lung protective ventilation in moderate risk patient groups, definitive evidence of its benefit for the general surgical population does not exist. However, given the shift in understanding of what is needed for adequate oxygenation and ventilation under anesthesia, the largely historical arguments against the use of intraoperative lung protective ventilation may soon be outdated, on the basis of its expanding track record of safety and efficacy in multiple settings.
Collapse
Affiliation(s)
- Brian O'Gara
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel Talmor
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
35
|
Inflammation and Monocyte Recruitment due to Aging and Mechanical Stretch in Alveolar Epithelium are Inhibited by the Molecular Chaperone 4-phenylbutyrate. Cell Mol Bioeng 2018; 11:495-508. [PMID: 30581495 DOI: 10.1007/s12195-018-0537-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction Ventilator-Induced lung injury (VILI) is a form of acute lung injury that is initiated or exacerbated by mechanical ventilation. The aging lung is also more susceptible to injury. Harmful mechanical stretch of the alveolar epithelium is a recognized mechanism of VILI, yet little is known about how mechanical stretch affects aged epithelial cells. Disruption to Endoplasmic Reticulum (ER) homeostasis results in a condition known as ER stress that leads to disruption of cellular homeostasis, apoptosis, and inflammation. ER stress is increased with aging and other pathological stimuli. We hypothesized that age and mechanical stretch increase alveolar epithelial cells' proinflammatory responses that are mediated by ER stress. Furthermore, we believed that inhibition of this upstream mechanism with 4PBA, an ER stress reducer, alleviates subsequent inflammation and monocyte recruitment. Methods Type II alveolar epithelial cells (ATII) were harvested from C57Bl6/J mice 2 months (young) and 20 months (old) of age. The cells were cyclically stretched at 15% change in surface area for up to 24 hours. Prior to stretch, groups were administered 4PBA or vehicle as a control. Results Mechanical stretch and age upregulated ER stress and proinflammatory MCP-1/CCL2 and MIP-1β/CCL4 chemokine expression in ATIIs. Age-matched and mismatched monocyte recruitment by ATII conditioned media was also quantified. Conclusions Age increases susceptibility to stretch-induced ER stress and downstream inflammatory gene expression in a primary ATII epithelial cell model. Administration of 4PBA attenuated the increased ER stress and proinflammatory responses from stretch and/or age and significantly reduced monocyte migration to ATII conditioned media.
Collapse
|
36
|
Sim TY, Harith HH, Tham CL, Md Hashim NF, Shaari K, Sulaiman MR, Israf DA. The Protective Effects of a Synthetic Geranyl Acetophenone in a Cellular Model of TNF-α-Induced Pulmonary Epithelial Barrier Dysfunction. Molecules 2018; 23:molecules23061355. [PMID: 29874809 PMCID: PMC6100020 DOI: 10.3390/molecules23061355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/19/2018] [Accepted: 05/25/2018] [Indexed: 01/19/2023] Open
Abstract
Alveolar epithelial barrier dysfunction contributes to lung edema and can lead to acute lung injury (ALI). The features include increased epithelial permeability, upregulation of inflammatory mediators and downregulation of junctional complex molecules; these changes are often induced by inflammation. tHGA is an acetophenone analogue with therapeutic potential in asthma. Its therapeutic potential in ALI is presently unknown. Herein, the effects of tHGA on epithelial barrier dysfunction were determined in TNF-α-induced human alveolar epithelial cells. The anti-inflammatory properties of tHGA were assessed by monocyte adhesion assay and analysis of MCP-1 and ICAM-1 expression. The epithelial barrier function was assessed by paracellular permeability and transepithelial electrical resistance (TEER) assays, and analysis of junctional complex molecules expression. To elucidate the mechanism of action, the effects of tHGA on the NF-κB and MAPK pathways were determined. Gene and protein expression were analyzed by RT-PCR and Western blotting or ELISA, respectively. tHGA suppressed leukocyte adhesion to TNF-α-induced epithelium and reduced MCP-1 and ICAM-1 gene expression and secretion. tHGA also increased TEER readings, reduced epithelial permeability and enhanced expression of junctional complex molecules (zona occludens-1, occludin and E-cadherin) in TNF-α-induced cells. Correspondingly, the NF-κB, ERK and p38 MAPK pathways were also inhibited by tHGA. These findings suggest that tHGA is able to preserve alveolar epithelial barrier function in response to acute inflammation, via its anti-inflammatory activity and stabilization of epithelial barrier integrity, mediated by NF-κB, ERK and p38 MAPK signaling.
Collapse
Affiliation(s)
- Tee Yee Sim
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Hanis Hazeera Harith
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Natural Products Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Roslan Sulaiman
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Daud Ahmad Israf
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
37
|
Chen L, Xia HF, Shang Y, Yao SL. Molecular Mechanisms of Ventilator-Induced Lung Injury. Chin Med J (Engl) 2018; 131:1225-1231. [PMID: 29553050 PMCID: PMC5956775 DOI: 10.4103/0366-6999.226840] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Mechanical ventilation (MV) has long been used as a life-sustaining approach for several decades. However, researchers realized that MV not only brings benefits to patients but also cause lung injury if used improperly, which is termed as ventilator-induced lung injury (VILI). This review aimed to discuss the pathogenesis of VILI and the underlying molecular mechanisms. DATA SOURCES This review was based on articles in the PubMed database up to December 2017 using the following keywords: "ventilator-induced lung injury", "pathogenesis", "mechanism", and "biotrauma". STUDY SELECTION Original articles and reviews pertaining to mechanisms of VILI were included and reviewed. RESULTS The pathogenesis of VILI was defined gradually, from traditional pathological mechanisms (barotrauma, volutrauma, and atelectrauma) to biotrauma. High airway pressure and transpulmonary pressure or cyclic opening and collapse of alveoli were thought to be the mechanisms of barotraumas, volutrauma, and atelectrauma. In the past two decades, accumulating evidence have addressed the importance of biotrauma during VILI, the molecular mechanism underlying biotrauma included but not limited to proinflammatory cytokines release, reactive oxygen species production, complement activation as well as mechanotransduction. CONCLUSIONS Barotrauma, volutrauma, atelectrauma, and biotrauma contribute to VILI, and the molecular mechanisms are being clarified gradually. More studies are warranted to figure out how to minimize lung injury induced by MV.
Collapse
Affiliation(s)
- Lin Chen
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Hai-Fa Xia
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - You Shang
- Department of Critical Care Medicine, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Shang-Long Yao
- Department of Anesthesiology, Institute of Anesthesiology and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
38
|
Parker JC. Mitochondrial damage pathways in ventilator induced lung injury (VILI): an update. JOURNAL OF LUNG HEALTH AND DISEASES 2018; 2:18-22. [PMID: 30123891 PMCID: PMC6097182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although reduced tidal volumes have improved patient survival during ventilation for acute lung injury, further improvements will require pharmacologic interventions of the cellular pathways for inflammation and injury. We previously reported that pretreatment with mitochondrial targeted mtDNA repair enzymes largely prevented lung injury and inflammation during a protocol for moderately severe ventilation induced lung injury. GSH/GSSG ratios indicated that free radical production had been reduced to baseline levels by treatment. The central role of the alveolar macrophages and cellular mechanisms of injury are discussed. This includes a rapid calcium entry and mitochondrial production of excessive reactive oxygen species. Excessive ROS can then result in activation of the NLRP3 inflammasome and secretion of IL-1 and IL-18 by caspase-1. A simultaneous activation of NFkB to transcribe pro forms of the cytokines is stimulated by damage associated molecular pattern (DAMP) recognition receptors. These are primarily TLR4 responding to various cellular damage products and TLR9 responding to mtDNA fragments that appear to be primarily involved. Intervention in these pathways could result in useful future clinical treatments.
Collapse
Affiliation(s)
- James C. Parker
- Department of Physiology, College of Medicine, MSB 3074, University of South Alabama, 307 University Blvd. Mobile, AL 36688, USA
| |
Collapse
|
39
|
Liu J, Wang W, Liu F, Li Z. Pediatric acute respiratory distress syndrome - current views. Exp Ther Med 2018; 15:1775-1780. [PMID: 29434764 PMCID: PMC5776650 DOI: 10.3892/etm.2017.5628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) mainly involves acute respiratory failure. In addition to this affected patients feel progressive arterial hypoxemia, dyspnea, and a marked increase in the work of breathing. The only clinical solution for the above pathological state is ventilation. Mechanical ventilation is necessary to support life in ARDs but it itself worsen lung injury and the term is known clinically as ‘ventilation induced lung injury’ (VILI). At the cellular level, respiratory epithelial cells are subjected to cyclic stretch, i.e. repeated cycles of positive and negative strain, during normal tidal ventilation. In aerated areas of diseased lungs, or even normal lungs subjected to injurious positive pressure mechanical ventilation, the cells are at risk of being over distended, and worsening injury by disrupting the alveolar epithelial barrier. Further, hypercapnic acidosis (HCA) in itself confers protection from stretch injury, potentially via a mechanisms involving inhibition of nuclear factor κB (NF-κB), a transcription factor central to inflammation, injury and repair. Mesenchymal stem cells are the latest in the field and are being investigated as a possible therapy for ARDS.
Collapse
Affiliation(s)
- Jinfeng Liu
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Wei Wang
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Fengli Liu
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| | - Zhenguang Li
- Department of Neonatology, Xuzhou Chlidren's Hospital, Xuzhou, Jiangsu 221002, P.R. China
| |
Collapse
|
40
|
Suryadevara V, Fu P, Ebenezer DL, Berdyshev E, Bronova IA, Huang LS, Harijith A, Natarajan V. Sphingolipids in Ventilator Induced Lung Injury: Role of Sphingosine-1-Phosphate Lyase. Int J Mol Sci 2018; 19:E114. [PMID: 29301259 PMCID: PMC5796063 DOI: 10.3390/ijms19010114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/21/2017] [Accepted: 12/27/2017] [Indexed: 12/14/2022] Open
Abstract
Mechanical ventilation (MV) performed in respiratory failure patients to maintain lung function leads to ventilator-induced lung injury (VILI). This study investigates the role of sphingolipids and sphingolipid metabolizing enzymes in VILI using a rodent model of VILI and alveolar epithelial cells subjected to cyclic stretch (CS). MV (0 PEEP (Positive End Expiratory Pressure), 30 mL/kg, 4 h) in mice enhanced sphingosine-1-phosphate lyase (S1PL) expression, and ceramide levels, and decreased S1P levels in lung tissue, thereby leading to lung inflammation, injury and apoptosis. Accumulation of S1P in cells is a balance between its synthesis catalyzed by sphingosine kinase (SphK) 1 and 2 and catabolism mediated by S1P phosphatases and S1PL. Thus, the role of S1PL and SphK1 in VILI was investigated using Sgpl1+/- and Sphk1-/- mice. Partial genetic deletion of Sgpl1 protected mice against VILI, whereas deletion of SphK1 accentuated VILI in mice. Alveolar epithelial MLE-12 cells subjected to pathophysiological 18% cyclic stretch (CS) exhibited increased S1PL protein expression and dysregulation of sphingoid bases levels as compared to physiological 5% CS. Pre-treatment of MLE-12 cells with S1PL inhibitor, 4-deoxypyridoxine, attenuated 18% CS-induced barrier dysfunction, minimized cell apoptosis and cytokine secretion. These results suggest that inhibition of S1PL that increases S1P levels may offer protection against VILI.
Collapse
Affiliation(s)
- Vidyani Suryadevara
- Department of Bioengineering, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA.
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - David Lenin Ebenezer
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Evgeny Berdyshev
- Department of Pharmacology, Department of Medicine, National Jewish Health Center, Denver, CO 80206, USA.
| | - Irina A Bronova
- Department of Pharmacology, Department of Medicine, National Jewish Health Center, Denver, CO 80206, USA.
| | - Long Shuang Huang
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
- Department of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA.
| |
Collapse
|
41
|
Toumpanakis D, Vassilakopoulou V, Sigala I, Zacharatos P, Vraila I, Karavana V, Theocharis S, Vassilakopoulos T. The role of Src & ERK1/2 kinases in inspiratory resistive breathing induced acute lung injury and inflammation. Respir Res 2017; 18:209. [PMID: 29237457 PMCID: PMC5729404 DOI: 10.1186/s12931-017-0694-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/05/2017] [Indexed: 01/08/2023] Open
Abstract
Background Inspiratory resistive breathing (IRB), a hallmark of obstructive airway diseases, is associated with large negative intrathoracic pressures, due to strenuous contractions of the inspiratory muscles. IRB is shown to induce lung injury in previously healthy animals. Src is a multifunctional kinase that is activated in the lung by mechanical stress. ERK1/2 kinase is a downstream target of Src. We hypothesized that Src is activated in the lung during IRB, mediates ERK1/2 activation and IRB-induced lung injury. Methods Anaesthetized, tracheostomized adult rats breathed spontaneously through a 2-way non-rebreathing valve. Resistance was added to the inspiratory port to provide a peak tidal inspiratory pressure of 50% of maximum (inspiratory resistive breathing). Activation of Src and ERK1/2 in the lung was estimated during IRB. Following 6 h of IRB, respiratory system mechanics were measured by the forced oscillation technique and bronchoalveolar lavage (BAL) was performed to measure total and differential cell count and total protein levels. IL-1b and MIP-2a protein levels were measured in lung tissue samples. Wet lung weight to total body weight was measured and Evans blue dye extravasation was estimated to measure lung permeability. Lung injury was evaluated by histology. The Src inhibitor, PP-2 or the inhibitor of ERK1/2 activation, PD98059 was administrated 30 min prior to IRB. Results Src kinase was activated 30 min after the initiation of IRB. Src inhibition ameliorated the increase in BAL cellularity after 6 h IRB, but not the increase of IL-1β and MIP-2a in the lung. The increase in BAL total protein and lung injury score were not affected. The increase in tissue elasticity was partly inhibited. Src inhibition blocked ERK1/2 activation at 3 but not at 6 h of IRB. ERK1/2 inhibition ameliorated the increase in BAL cellularity after 6 h of IRB, blocked the increase of IL-1β and returned Evans blue extravasation and wet lung weight to control values. BAL total protein and the increase in elasticity were partially affected. ERK1/2 inhibition did not significantly change total lung injury score compared to 6 h IRB. Conclusions Src and ERK1/2 are activated in the lung following IRB and participate in IRB-induced lung injury.
Collapse
Affiliation(s)
- Dimitrios Toumpanakis
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Vyronia Vassilakopoulou
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Ioanna Sigala
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Panagiotis Zacharatos
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Ioanna Vraila
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | - Vassiliki Karavana
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece
| | | | - Theodoros Vassilakopoulos
- 1st Department of Critical Care and Pulmonary Medicine and "Marianthi Simou" Applied Biomedical Research and Training Center, Medical School, University of Athens, 45-47 Ispilandou str, 10676, Athens, Greece.
| |
Collapse
|
42
|
Protective Ventilation in general anesthesia. Anything new? ACTA ACUST UNITED AC 2017; 65:218-224. [PMID: 29102404 DOI: 10.1016/j.redar.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022]
|
43
|
Sethi GS, Dharwal V, Naura AS. Poly(ADP-Ribose)Polymerase-1 in Lung Inflammatory Disorders: A Review. Front Immunol 2017; 8:1172. [PMID: 28974953 PMCID: PMC5610677 DOI: 10.3389/fimmu.2017.01172] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022] Open
Abstract
Asthma, acute lung injury (ALI), and chronic obstructive pulmonary disease (COPD) are lung inflammatory disorders with a common outcome, that is, difficulty in breathing. Corticosteroids, a class of potent anti-inflammatory drugs, have shown less success in the treatment/management of these disorders, particularly ALI and COPD; thus, alternative therapies are needed. Poly(ADP-ribose)polymerases (PARPs) are the post-translational modifying enzymes with a primary role in DNA repair. During the last two decades, several studies have reported the critical role played by PARPs in a good of inflammatory disorders. In the current review, the studies that address the role of PARPs in asthma, ALI, and COPD have been discussed. Among the different members of the family, PARP-1 emerges as a key player in the orchestration of lung inflammation in asthma and ALI. In addition, PARP activation seems to be associated with the progression of COPD. Furthermore, PARP-14 seems to play a crucial role in asthma. STAT-6 and GATA-3 are reported to be central players in PARP-1-mediated eosinophilic inflammation in asthma. Interestingly, oxidative stress-PARP-1-NF-κB axis appears to be tightly linked with inflammatory response in all three-lung diseases despite their distinct pathophysiologies. The present review sheds light on PARP-1-regulated factors, which may be common or differential players in asthma/ALI/COPD and put forward our prospective for future studies.
Collapse
Affiliation(s)
| | - Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India
| |
Collapse
|
44
|
Wu NC, Liao FT, Cheng HM, Sung SH, Yang YC, Wang JJ. Intravenous superoxide dismutase as a protective agent to prevent impairment of lung function induced by high tidal volume ventilation. BMC Pulm Med 2017; 17:105. [PMID: 28747201 PMCID: PMC5530466 DOI: 10.1186/s12890-017-0448-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Background Positive-pressure mechanical ventilation is essential in assisting patients with respiratory failure in the intensive care unit and facilitating oxygenation in the operating room. However, it was also recognized as a primary factor leading to hospital-acquired pulmonary dysfunction, in which pulmonary oxidative stress and lung inflammation had been known to play important roles. Cu/Zn superoxide dismutase (SOD) is an important antioxidant, and possesses anti-inflammatory capacity. In this study, we aimed to study the efficacy of Cu/Zn SOD, administered intravenously during high tidal volume (HTV) ventilation, to prevent impairment of lung function. Methods Thirty-eight male Sprague-Dawley rats were divided into 3 groups: 5 h ventilation with (A) low tidal volume (LTV; 8 mL/kg; n = 10), (B) high tidal volume (HTV; 18 mL/kg; n = 14), or (C) HTV and intravenous treatment of Cu/Zn SOD at a dose of 1000 U/kg/h (HTV + SOD; n = 14). Lung function was evaluated both at baseline and after 5-h ventilation. Lung injury was assessed by histological examination, lung water and protein contents in the bronchoalveolar lavage fluid (BALF). Pulmonary oxidative stress was examined by concentrations of methylguanidine (MG) and malondialdehyde (MDA) in BALF, and antioxidative activity by protein expression of glutathione peroxidase-1 (GPx-1) in the lung. Severity of lung inflammation was evaluated by white blood cell and differential count in BALF, and protein expression of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), matrix metalloproteinase-9 (MMP-9), and mRNA expression of nuclear factor-κB (NF-κB) in the lung. We also examined protein expression of surfactant protein (SP)-A and D and we measured hourly changes in serum nitric oxide (NO) level. Results Five hours of LTV ventilation did not induce a major change in lung function, whereas 5 h of HTV ventilation induced apparent combined restrictive and obstructive lung disorder, together with increased pulmonary oxidative stress, decreased anti-oxidative activity and increased lung inflammation (P < 0.05). HTV ventilation also decreased SP-A and SP-D expression and suppressed serum NO level during the time course of ventilation. Cu/Zn SOD administered intravenously during HTV ventilation effectively reversed associated pulmonary oxidative stress and lung inflammation (P < 0.05); moreover, it preserved SP-A and SP-D expressions in the lung and increased serum nitric oxide (NO) level, enhancing vascular NO bioavailability. Conclusions HTV ventilation can induce combined restrictive and obstructive lung disorders. Intravenous administration of Cu/Zn SOD during HTV ventilation can prevent lung function impairment and lung injury via reducing pulmonary oxidative stress and lung inflammation, preserving pulmonary surfactant expression, and enhancing vascular NO bioavailability.
Collapse
Affiliation(s)
- Nan-Chun Wu
- Division of Cardiovascular Surgery, Department of Surgery, Chi-Mei Foundation Hospital, 901, Chung Hwa Rd. Yung Kang, Tainan, Taiwan
| | - Fan-Ting Liao
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Hao-Min Cheng
- Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hsien Sung
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Chun Yang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Jiun-Jr Wang
- School of Medicine, Fu Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan.
| |
Collapse
|
45
|
Tanaka KI, Tamura F, Sugizaki T, Kawahara M, Kuba K, Imai Y, Mizushima T. Evaluation of Lecithinized Superoxide Dismutase for the Prevention of Acute Respiratory Distress Syndrome in Animal Models. Am J Respir Cell Mol Biol 2017; 56:179-190. [PMID: 27668315 DOI: 10.1165/rcmb.2016-0158oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For acute respiratory distress syndrome (ARDS), mechanical ventilation (MV) is a life-saving intervention without alternative; however, MV can cause ventilator-induced lung injury. Reactive oxygen species (ROS) play important roles in the pathogenesis of both ARDS and ventilator-induced lung injury. Lecithinized superoxide dismutase (PC-SOD) overcomes the limitations of superoxide dismutase such as low tissue affinity and low stability in plasma. In this study, we examined the effect of PC-SOD on tissue injury, edema, and inflammation in the lung and other organs of mice subjected to cecal ligation and puncture (CLP), LPS administration, or MV. The severity of the lung injury was assessed on the basis of vascular permeability, histopathologic evaluation, and lung mechanics. Intravenous PC-SOD administration (the first administered just before CLP) increased the survival rate and decreased vascular permeability in mice subjected to CLP. PC-SOD, but not dexamethasone or sivelestat sodium hydrate (sivelestat), suppressed CLP-induced kidney injury and systemic inflammation. PC-SOD also suppressed vascular permeability, tissue injury, and inflammation in the lung induced by LPS administration. Moreover, PC-SOD, but not dexamethasone or sivelestat, suppressed vascular permeability, edema, tissue injury, and mechanical alterations in the lung induced by MV. In vivo imaging analysis of ROS revealed that CLP, LPS administration, and MV increased the level of ROS and that this increase was suppressed by PC-SOD. The results of this study thus suggest that, on the basis of its ROS-reducing properties, intravenous administration of PC-SOD may be beneficial for patients at high risk of developing ARDS.
Collapse
Affiliation(s)
- Ken-Ichiro Tanaka
- 1 Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Fumiya Tamura
- 1 Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Toshifumi Sugizaki
- 2 Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masahiro Kawahara
- 1 Laboratory of Bio-Analytical Chemistry, Research Institute of Pharmaceutical Sciences, Musashino University, Tokyo, Japan
| | - Keiji Kuba
- 3 Departments of Biochemistry and Metabolic Science and
| | - Yumiko Imai
- 4 Biological Informatics and Experimental Therapeutics, Graduate School of Medicine, Akita University, Akita, Japan; and
| | | |
Collapse
|
46
|
Bravo B, García de Durango C, González Á, Gortázar AR, Santos X, Forteza-Vila J, Vidal-Vanaclocha F. Opposite Effects of Mechanical Action of Fluid Flow on Proangiogenic Factor Secretion From Human Adipose-Derived Stem Cells With and Without Oxidative Stress. J Cell Physiol 2017; 232:2158-2167. [PMID: 27925206 DOI: 10.1002/jcp.25712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/29/2016] [Indexed: 12/30/2022]
Abstract
Mechanical forces, hypoxia, and oxidative stress contribute to skin renewal, perfusion, and wound healing, but how are they regulating subcutaneous adipose-derived stem cells (ASCs) in the inflammatory microenvironment associated to skin repair and disorders is unknown. In this study, ASCs were isolated from lipoaspirate samples from plastic surgery patients, primary cultured and their differentiation and secretion of a panel of cytokines with pronounced effects on skin repair and angiogenesis were studied under mechanical stimulation by intermittent fluid flow, 1% hypoxia and oxidative stress by glutathione (GSH) depletion with buthionine sulfoximine (BSO) treatment. Mechanical action of fluid flow did not alter mesenchymal phenotype of CD90+ /CD29+ /CD44+ /CD34- /CD106- /CD45- ASCs; however, it remarkably induced ASC secretion of human umbilical vein endothelial cell (HUVEC) migration-stimulating factors. Multiplex Luminex assay further confirmed an increased secretion of VEGF, G-CSF, HGF, Leptin, IL-8, PDGF-BB, Angiopoietin-2, and Follistatin from mechanically-stimulated ASCs via cyclooxygenase-2. Consistent with this mechanism, GSH depletion and hypoxia also increased ASC secretion of VEGF, IL-8, leptin, Angiopoitein-2, and PDGF-BB. However, mechanical action of fluid flow abrogated VEGF and HUVEC migration-stimulating activity from GSH-depleted and hypoxic ASCs. Conversely, GSH depletion and hypoxia abrogated VEGF and HUVEC migration-stimulating activity from mechano-stimulated ASCs. Although mechanical action of fluid flow, hypoxia, and GSH-depletion had independent proangiogenic-stimulating activity on ASCs, mechanical stimulation had opposite effects on proangiogenic factor secretion from ASCs with and without oxidative stress. These data uncover the role of hypoxia and endogenous redox balance during the proangiogenic response of ASCs and other mesenchymal-derived cell types to mechanical action of interstitial fluid flow. J. Cell. Physiol. 232: 2158-2167, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Beatriz Bravo
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Cira García de Durango
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Álvaro González
- Department of Molecular and Cellular Oncology Houston, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arancha R Gortázar
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Xavier Santos
- Institute of Applied Molecular Medicine (IMMA), CEU-San Pablo University School of Medicine, Boadilla del Monte, Madrid, Spain
| | - Jerónimo Forteza-Vila
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| | - Fernando Vidal-Vanaclocha
- Valencia Institute of Pathology (IVP), Catholic University of Valencia School of Medicine and Odontology, Valencia, Spain
| |
Collapse
|
47
|
Omar NM, Sarhan NR. The possible protective role of pumpkin seed oil in an animal model of acid aspiration pneumonia: Light and electron microscopic study. Acta Histochem 2017; 119:161-171. [PMID: 28122663 DOI: 10.1016/j.acthis.2017.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/02/2017] [Indexed: 12/24/2022]
Abstract
Aspiration pneumonitis is a common problem occurring in many clinical disorders. Pumpkin seed oil (PO) is a rich source of antioxidants. This work aimed to assess the effect of PO on the lung histopathological changes induced by acid aspiration. Forty male albino rats assigned to four groups were used. Rats of control group were instilled intratracheally with normal saline 2mL/kg. HCL group instilled with 2mL/kg of HCL 0.1N, pH 1.25. PO group received pumpkin seed oil (PO) orally (∼1375mg/kgbw/day) for 7days. HCL+PO group instilled with 2mL/kg of HCL 0.1N, pH 1.25 and received PO at the same dose of PO group. Lung tissue samples were processed for light, electron microscopic and immunohistochemical study using anti inducible NO synthase (iNOS). The lung of HCL group demonstrated thickened interalveolar septa, inflammatory cell infiltration and significant increase in the area percent of collagenous fibers and immune expression of iNOS. Ultra structurally, disrupted alveolocapillay membrane, degenerated type II pneumocytes and plentiful alveolar macrophages were evident. PO administration partially attenuated these histological and ultra structural alterations and reduced iNOS immune-expression in lung tissue. In conclusion, PO has a protective effect against HCL aspiration lung injury most probably through its antioxidant activity.
Collapse
|
48
|
Davidson LM, Berkelhamer SK. Bronchopulmonary Dysplasia: Chronic Lung Disease of Infancy and Long-Term Pulmonary Outcomes. J Clin Med 2017; 6:E4. [PMID: 28067830 PMCID: PMC5294957 DOI: 10.3390/jcm6010004] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease most commonly seen in premature infants who required mechanical ventilation and oxygen therapy for acute respiratory distress. While advances in neonatal care have resulted in improved survival rates of premature infants, limited progress has been made in reducing rates of BPD. Lack of progress may in part be attributed to the limited therapeutic options available for prevention and treatment of BPD. Several lung-protective strategies have been shown to reduce risks, including use of non-invasive support, as well as early extubation and volume ventilation when intubation is required. These approaches, along with optimal nutrition and medical therapy, decrease risk of BPD; however, impacts on long-term outcomes are poorly defined. Characterization of late outcomes remain a challenge as rapid advances in medical management result in current adult BPD survivors representing outdated neonatal care. While pulmonary disease improves with growth, long-term follow-up studies raise concerns for persistent pulmonary dysfunction; asthma-like symptoms and exercise intolerance in young adults after BPD. Abnormal ventilatory responses and pulmonary hypertension can further complicate disease. These pulmonary morbidities, combined with environmental and infectious exposures, may result in significant long-term pulmonary sequalae and represent a growing burden on health systems. Additional longitudinal studies are needed to determine outcomes beyond the second decade, and define risk factors and optimal treatment for late sequalae of disease.
Collapse
Affiliation(s)
- Lauren M Davidson
- Department of Pediatrics, University at Buffalo SUNY, Buffalo, NY 14228, USA.
| | - Sara K Berkelhamer
- Department of Pediatrics, University at Buffalo SUNY, Buffalo, NY 14228, USA.
| |
Collapse
|
49
|
Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS Signaling in the Pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 967:105-137. [PMID: 29047084 PMCID: PMC7120947 DOI: 10.1007/978-3-319-63245-2_8] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The generation of reactive oxygen species (ROS) plays an important role for the maintenance of cellular processes and functions in the body. However, the excessive generation of oxygen radicals under pathological conditions such as acute lung injury (ALI) and its most severe form acute respiratory distress syndrome (ARDS) leads to increased endothelial permeability. Within this hallmark of ALI and ARDS, vascular microvessels lose their junctional integrity and show increased myosin contractions that promote the migration of polymorphonuclear leukocytes (PMNs) and the transition of solutes and fluids in the alveolar lumen. These processes all have a redox component, and this chapter focuses on the role played by ROS during the development of ALI/ARDS. We discuss the origins of ROS within the cell, cellular defense mechanisms against oxidative damage, the role of ROS in the development of endothelial permeability, and potential therapies targeted at oxidative stress.
Collapse
Affiliation(s)
- Manuela Kellner
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Satish Noonepalle
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Qing Lu
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Anup Srivastava
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Evgeny Zemskov
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA
| | - Stephen M Black
- Department of Medicine, Center for Lung Vascular Pathobiology, University of Arizona, 1501 N Campbell Ave., Tucson, AZ, 85719, USA.
| |
Collapse
|
50
|
Wang T, Gross C, Desai AA, Zemskov E, Wu X, Garcia AN, Jacobson JR, Yuan JXJ, Garcia JGN, Black SM. Endothelial cell signaling and ventilator-induced lung injury: molecular mechanisms, genomic analyses, and therapeutic targets. Am J Physiol Lung Cell Mol Physiol 2016; 312:L452-L476. [PMID: 27979857 DOI: 10.1152/ajplung.00231.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022] Open
Abstract
Mechanical ventilation is a life-saving intervention in critically ill patients with respiratory failure due to acute respiratory distress syndrome (ARDS). Paradoxically, mechanical ventilation also creates excessive mechanical stress that directly augments lung injury, a syndrome known as ventilator-induced lung injury (VILI). The pathobiology of VILI and ARDS shares many inflammatory features including increases in lung vascular permeability due to loss of endothelial cell barrier integrity resulting in alveolar flooding. While there have been advances in the understanding of certain elements of VILI and ARDS pathobiology, such as defining the importance of lung inflammatory leukocyte infiltration and highly induced cytokine expression, a deep understanding of the initiating and regulatory pathways involved in these inflammatory responses remains poorly understood. Prevailing evidence indicates that loss of endothelial barrier function plays a primary role in the development of VILI and ARDS. Thus this review will focus on the latest knowledge related to 1) the key role of the endothelium in the pathogenesis of VILI; 2) the transcription factors that relay the effects of excessive mechanical stress in the endothelium; 3) the mechanical stress-induced posttranslational modifications that influence key signaling pathways involved in VILI responses in the endothelium; 4) the genetic and epigenetic regulation of key target genes in the endothelium that are involved in VILI responses; and 5) the need for novel therapeutic strategies for VILI that can preserve endothelial barrier function.
Collapse
Affiliation(s)
- Ting Wang
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christine Gross
- Vascular Biology Center, Augusta University, Augusta, Georgia
| | - Ankit A Desai
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Evgeny Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Xiaomin Wu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Alexander N Garcia
- Department of Pharmacology University of Illinois at Chicago, Chicago, Illinois; and
| | - Jeffrey R Jacobson
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Joe G N Garcia
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona;
| |
Collapse
|