1
|
Musiime M, Erusappan PM, Cukierman E, Chang J, Molven A, Hansen U, Zeltz C, Gullberg D. Fibroblast integrin α11β1 is a collagen assembly receptor in mechanoregulated fibrillar adhesions. Matrix Biol 2024; 134:144-161. [PMID: 39406317 DOI: 10.1016/j.matbio.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 11/25/2024]
Abstract
Solid epithelial cancers with significant desmoplasia are characterized by an excessive deposition of collagen-based matrix, which often supports tumor progression. However, the mechanism of how collagen receptors mediate collagen fibrillogenesis still remains mostly unclear. We show that the collagen-binding integrin α11β1 can co-localize with tensin-1 and deposited collagen I in human pancreatic ductal adenocarcinoma (PDAC) stroma. In addition to the canonical fibrillar adhesion integrin α5β1 expressed by human PDAC cancer-associated fibroblasts (CAFs), tensin-1-positive fibrillar adhesions contained α11β1 but lacked α1β1 and α2β1. CAFs lacking α5β1 expression displayed mechanoregulated and tensin-1 dependent α11β1 fibrillar adhesions, suggesting independent roles of the two integrins with regards to fibrillar adhesions-based de novo fibrillogenesis. Further, we demonstrate that cell surface-associated collagen I assembly necessitated α11β1, but not α5β1 expression. In summary, α11β1 integrin is a novel component of fibrillar adhesions, which is strategically positioned to mediate de novo collagen fibrillogenesis at the cell surface under pro-fibrotic conditions.
Collapse
Affiliation(s)
- Moses Musiime
- University of Bergen, Department of Biomedicine and Centre for Cancer Biomarkers, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Pugazendhi Murugan Erusappan
- University of Bergen, Department of Biomedicine and Centre for Cancer Biomarkers, Jonas Lies vei 91, 5009 Bergen, Norway; Institute for Experimental Medical Research, Oslo university Hospital and university of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, 19111, USA
| | - Joan Chang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, NO-5020 Bergen, Norway; Department of Pathology and Section for Cancer Genomics, Haukeland University Hospital, NO-5020 Bergen, Norway
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital of Münster, Münster, Germany
| | - Cédric Zeltz
- University of Bergen, Department of Biomedicine and Centre for Cancer Biomarkers, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Donald Gullberg
- University of Bergen, Department of Biomedicine and Centre for Cancer Biomarkers, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
2
|
Kwak D, Kang J, Yu Y, Lee H, Kim Y, Kwon EJ, Lim DM, Mun S, Kim HM, Lee HS, Kim YH, Yeo HJ, Cho WH. Integrative Genomic and Transcriptomic Analysis in Acute Interstitial Pneumonia. J Cell Mol Med 2024; 28:e70252. [PMID: 39636205 PMCID: PMC11619155 DOI: 10.1111/jcmm.70252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Acute Interstitial Pneumonia (AIP) represents a severe form of diffuse lung injury within the idiopathic interstitial pneumonia spectrum. Given the limited understanding of its molecular basis, this study aims to elucidate AIP's genomic and transcriptomic profiles to uncover its pathophysiological underpinnings and identify potential therapeutic targets. We conducted a comprehensive analysis of genomic and transcriptomic data from lung tissues of 15 AIP patients. This included assessing differentially expressed genes (DEGs) and identifying mutations in exonic coding variants, as well as analysing expression quantitative trait loci (eQTL) profiles to link non-coding SNP genotypes with gene expression levels. Transcriptomic analysis revealed a significant upregulation of genes linked to the Type I interferon receptor and keratin filament, and a downregulation of genes related to focal adhesion and endothelial integrity, compared to healthy individuals. These patterns were distinct from those observed in idiopathic pulmonary fibrosis (IPF) and non-IPF interstitial lung diseases (ILDs). Genomic analysis highlighted mutations in genes associated with keratin and the extracellular matrix. Additionally, eQTL profiling provided insights into the genetic regulation of gene expression in AIP. Our findings reveals AIP's unique molecular landscape, differentiating it from other ILDs and laying the groundwork for future diagnostic and therapeutic research.
Collapse
Affiliation(s)
- Donghee Kwak
- Convergence Medical SciencesPusan National UniversityYangsanRepublic of Korea
| | - Junho Kang
- Department of ResearchKeimyung University Dongsan Medical CenterDaeguRepublic of Korea
| | - Yeuni Yu
- Medical Research InstitutePusan National UniversityYangsanRepublic of Korea
| | - Hansong Lee
- Medical Research InstitutePusan National UniversityYangsanRepublic of Korea
| | - Yeongjoo Kim
- Interdisciplinary Program of Genomic Data SciencePusan National UniversityYangsanRepublic of Korea
| | - Eun Jung Kwon
- Interdisciplinary Program of Genomic Data SciencePusan National UniversityYangsanRepublic of Korea
| | - Dong Min Lim
- Interdisciplinary Program of Genomic Data SciencePusan National UniversityYangsanRepublic of Korea
| | - Seongik Mun
- Interdisciplinary Program of Genomic Data SciencePusan National UniversityYangsanRepublic of Korea
| | - Hyo Min Kim
- Interdisciplinary Program of Genomic Data SciencePusan National UniversityYangsanRepublic of Korea
| | - Hae Seul Lee
- Convergence Medical SciencesPusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Hye Ju Yeo
- Department of Internal Medicine, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal MedicinePusan National University Yangsan HospitalYangsanRepublic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and TechnologyPusan National University Yangsan HospitalYangsanRepublic of Korea
| | - Woo Hyun Cho
- Department of Internal Medicine, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal MedicinePusan National University Yangsan HospitalYangsanRepublic of Korea
- Transplantation Research Center, Research Institute for Convergence of Biomedical Science and TechnologyPusan National University Yangsan HospitalYangsanRepublic of Korea
| |
Collapse
|
3
|
Liu H, Deng Y, Luo G, Yang Y, Xie B, Diao H, Chen M, Chen L, Xie P, Kwan HY, Zhao X, Sun X. DNA methylation of miR-181a-5p mediated by DNMT3b drives renal interstitial fibrosis developed from acute kidney injury. Epigenomics 2024; 16:945-960. [PMID: 39023272 PMCID: PMC11370974 DOI: 10.1080/17501911.2024.2370229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Aim: To explore the role of miR-181a-5p in the progression of acute kidney injury (AKI) to renal interstitial fibrosis (RIF) from the perspective of DNA methylation.Materials & methods: The role of miR-181a-5p was confirmed by collecting clinical samples, injecting miR-181a-5p agomir into tail vein, and transfecting miR-181a-5p mimic in vitro. The mechanism of miR-181a-5p's influence on AKI induced RIF was investigated by methylation-specific PCR, bioinformatic analysis, transcriptome sequencing and so on.Results: MiR-181a-5p plays an important role in AKI induced RIF. DNMT3b-mediated miR-181a-5p promoter hypermethylation is the main reason for the downregulation of miR-181a-5p. HDAC9 and SNAI2 are direct targets of miR-181a-5p.Conclusion: Hypermethylation of miR-181a-5p promoter mediated by DNMT3b promotes AKI induced RIF by targeting HDAC9 and SNAI2.
Collapse
Affiliation(s)
- Huaxi Liu
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
- Boai Hospital of Zhongshan, Zhongshan, Guangdong528403, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Guanfeng Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Ying Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bei Xie
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Huiling Diao
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Meilin Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Penghui Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoshan Zhao
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaomin Sun
- Department of Nephrology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, 510315, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong510280, China
| |
Collapse
|
4
|
Sun Z, Ke P, Shen Y, Ma K, Wang B, Lin D, Wang Y. MXRA7 is involved in monocyte-to-macrophage differentiation. Mol Immunol 2024; 171:12-21. [PMID: 38735126 DOI: 10.1016/j.molimm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Macrophages are critical in mediating immune and inflammatory responses, while monocyte-to-macrophage differentiation is one of the main macrophage resources that involves various matrix proteins. Matrix remodeling associated 7 (MXRA7) was recently discovered to affect a variety of physiological and pathological processes related to matrix biology. In the present study, we investigated the role of MXRA7 in monocyte-to-macrophage differentiation in vitro. We found that knockdown of MXRA7 inhibited the proliferation of THP-1 human monocytic cells. Knockdown of MXRA7 increased the adhesion ability of THP-1 cells through upregulation the expression of adhesion molecules VCAM-1 and ICAM1. Knockdown of MXRA7 alone could promoted the differentiation of THP-1 cells to macrophages. Furthermore, the MXRA7-knockdown THP-1 cells produced a more significant upregulation pattern with M1-type cytokines (TNF-α, IL-1β and IL-6) than with those M2-type molecules (TGF-β1 and IL-1RA) upon PMA stimulation, indicating that knockdown of MXRA7 facilitated THP-1 cells differentiation toward M1 macrophages. RNA sequencing analysis revealed the potential biological roles of MXRA7 in cell adhesion, macrophage and monocyte differentiation. Moreover, MXRA7 knockdown promoted the expression of NF-κB p52/p100, while PMA stimulation could increase the expression of NF-κB p52/p100 and activating MAPK signaling pathways in MXRA7 knockdown cells. In conclusion, MXRA7 affected the differentiation of THP-1 cells toward macrophages possibly through NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Peng Ke
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Kunpeng Ma
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China
| | - Benfang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China.
| | - Yiqiang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
5
|
Margaritte-Jeannin P, Vernet R, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. TNS1 and NRXN1 Genes Interacting With Early-Life Smoking Exposure in Asthma-Plus-Eczema Susceptibility. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:779-794. [PMID: 37957795 PMCID: PMC10643854 DOI: 10.4168/aair.2023.15.6.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Numerous genes have been associated with allergic diseases (asthma, allergic rhinitis, and eczema), but they explain only part of their heritability. This is partly because most previous studies ignored complex mechanisms such as gene-environment (G-E) interactions and complex phenotypes such as co-morbidity. However, it was recently evidenced that the co-morbidity of asthma-plus-eczema appears as a sub-entity depending on specific genetic factors. Besides, evidence also suggest that gene-by-early life environmental tobacco smoke (ETS) exposure interactions play a role in asthma, but were never investigated for asthma-plus-eczema. To identify genetic variants interacting with ETS exposure that influence asthma-plus-eczema susceptibility. METHODS To conduct a genome-wide interaction study (GWIS) of asthma-plus-eczema according to ETS exposure, we applied a 2-stage strategy with a first selection of single nucleotide polymorphisms (SNPs) from genome-wide association meta-analysis to be tested at a second stage by interaction meta-analysis. All meta-analyses were conducted across 4 studies including a total of 5,516 European-ancestry individuals, of whom 1,164 had both asthma and eczema. RESULTS Two SNPs showed significant interactions with ETS exposure. They were located in 2 genes, NRXN1 (2p16) and TNS1 (2q35), never reported associated and/or interacting with ETS exposure for asthma, eczema or more generally for allergic diseases. TNS1 is a promising candidate gene because of its link to lung and skin diseases with possible interactive effect with tobacco smoke exposure. CONCLUSIONS This first GWIS of asthma-plus-eczema with ETS exposure underlines the importance of studying sub-phenotypes such as co-morbidities as well as G-E interactions to detect new susceptibility genes.
Collapse
Affiliation(s)
- Patricia Margaritte-Jeannin
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Raphaël Vernet
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Anne-Marie Madore
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Christophe Linhard
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Hamida Mohamdi
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Raquell Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Florence Demenais
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Cathrine Laprise
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Emmanuelle Bouzigon
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Marie-Hélène Dizier
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France.
| |
Collapse
|
6
|
Brooks S, Mittler S, Hamilton DW. Contact Guidance of Connective Tissue Fibroblasts on Submicrometer Anisotropic Topographical Cues Is Dependent on Tissue of Origin, β1 Integrins, and Tensin-1 Recruitment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19817-19832. [PMID: 37067372 PMCID: PMC10141244 DOI: 10.1021/acsami.2c22381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The substratum topography of both natural and synthetic materials is a prominent regulator of cell behaviors including adhesion, migration, matrix fibrillogenesis, and cell phenotype. Connective tissue fibroblasts are known to respond to repeating groove topographical modifications by aligning and exhibiting directed migration, a phenomenon termed contact guidance. Although both reside in collagen rich connective tissues, dermal and gingival fibroblasts are known to exhibit differences in phenotype during wound healing, with gingival tissue showing a fetal-like scarless response. Differences in adhesion formation and maturation are known to underlie both a scarring phenotype and cell response to topographical features. Utilizing repeating groove substrates with periodicities of 600, 900, and 1200 nm (depth, 100 nm), we investigated the roles of integrins αvβ3 and β1 associated adhesions on contact guidance of human gingival (HGFs) and dermal fibroblasts (HDFs). HGFs showed a higher degree of orientation with the groove long axis than HDFs, with alignment of both vinculin and tensin-1 evident on 600 and 900 nm periodicities in both cell types. Orientation with grooves of any periodicity in HGFs and HDFs did not alter the adhesion number or area compared to smooth control surfaces. Growth of both cell types on all periodicities reduced fibronectin fibrillogenesis compared to control surfaces. Independent inhibition of integrin αvβ3 and β1 in both cell types induced changes in spreading up to 6 h and reduced alignment with the groove long axis. At 24 h post-seeding with blocking antibodies, HGFs recovered orientation, but in HDFs, blocking of β1, but not αvβ3 integrins, inhibited alignment. Blocking of β1 and αvβ3 in HDFs, but not HGFs, inhibited tensin-1-associated fibrillar adhesion formation. Furthermore, inhibition of β1 integrins in HDFs, but not HGFs, resulted in recruitment of tensin-1 to αvβ3 focal adhesions, preventing HDFs from aligning with the groove long axis. Our work demonstrates that tensin-1 localization with specific integrins in adhesion sites is an important determinant of contact guidance. This work emphasizes further the need for tissue-specific biomaterials, when integration into host tissues is required.
Collapse
Affiliation(s)
- Sarah Brooks
- School
of Biomedical Engineering, Western University, London, ON N6A 5C1, Canada
| | - Silvia Mittler
- School
of Biomedical Engineering, Western University, London, ON N6A 5C1, Canada
- Department
of Physics and Astronomy, Faculty of Science, Western University, London, ON N6A 3K7, Canada
| | - Douglas W. Hamilton
- School
of Biomedical Engineering, Western University, London, ON N6A 5C1, Canada
- Department
of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A
5C1, Canada
| |
Collapse
|
7
|
Dotts AJ, Reiman D, Yin P, Kujawa S, Grobman WA, Dai Y, Bulun SE. In Vivo Genome-Wide PGR Binding in Pregnant Human Myometrium Identifies Potential Regulators of Labor. Reprod Sci 2023; 30:544-559. [PMID: 35732928 PMCID: PMC9988762 DOI: 10.1007/s43032-022-01002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/03/2022] [Indexed: 12/22/2022]
Abstract
The alterations in myometrial biology during labor are not well understood. The myometrium is the contractile portion of the uterus and contributes to labor, a process that may be regulated by the steroid hormone progesterone. Thus, human myometrial tissues from term pregnant in-active-labor (TIL) and term pregnant not-in-labor (TNIL) subjects were used for genome-wide analyses to elucidate potential future preventive or therapeutic targets involved in the regulation of labor. Using myometrial tissues directly subjected to RNA sequencing (RNA-seq), progesterone receptor (PGR) chromatin immunoprecipitation sequencing (ChIP-seq), and histone modification ChIP-seq, we profiled genome-wide changes associated with gene expression in myometrial smooth muscle tissue in vivo. In TIL myometrium, PGR predominantly occupied promoter regions, including the classical progesterone response element, whereas it bound mainly to intergenic regions in TNIL myometrial tissue. Differential binding analysis uncovered over 1700 differential PGR-bound sites between TIL and TNIL, with 1361 sites gained and 428 lost in labor. Functional analysis identified multiple pathways involved in cAMP-mediated signaling enriched in labor. A three-way integration of the data for ChIP-seq, RNA-seq, and active histone marks uncovered the following genes associated with PGR binding, transcriptional activation, and altered mRNA levels: ATP11A, CBX7, and TNS1. In vitro studies showed that ATP11A, CBX7, and TNS1 are progesterone responsive. We speculate that these genes may contribute to the contractile phenotype of the myometrium during various stages of labor. In conclusion, we provide novel labor-associated genome-wide events and PGR-target genes that can serve as targets for future mechanistic studies.
Collapse
Affiliation(s)
- Ariel J Dotts
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Derek Reiman
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ping Yin
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Stacy Kujawa
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - William A Grobman
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Yang Dai
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Serdar E Bulun
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Wang J, Tan L, Yu X, Cao X, Jia B, Chen R, Li J. lncRNA ZNRD1-AS1 promotes malignant lung cell proliferation, migration, and angiogenesis via the miR-942/TNS1 axis and is positively regulated by the m 6A reader YTHDC2. Mol Cancer 2022; 21:229. [PMID: 36581942 PMCID: PMC9801573 DOI: 10.1186/s12943-022-01705-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
RATIONALE Lung cancer is the most prevalent form of cancer and has a high mortality rate, making it a global public health concern. The N6-methyladenosine (m6A) modification is a highly dynamic and reversible process that is involved in a variety of essential biological processes. Using in vitro, in vivo, and multi-omics bioinformatics, the present study aims to determine the function and regulatory mechanisms of the long non-coding (lnc)RNA zinc ribbon domain-containing 1-antisense 1 (ZNRD1-AS1). METHODS The RNAs that were bound to the m6A 'reader' were identified using YTH domain-containing 2 (YTHDC2) RNA immunoprecipitation (RIP)-sequencing. Utilizing methylated RIP PCR/quantitative PCR, pull-down, and RNA stability assays, m6A modification and ZNRD1-AS1 regulation were analyzed. Using bioinformatics, the expression levels and clinical significance of ZNRD1-AS1 in lung cancer were evaluated. Using fluorescent in situ hybridization and quantitative PCR assays, the subcellular location of ZNRD1-AS1 was determined. Using cell migration, proliferation, and angiogenesis assays, the biological function of ZNRD1-AS1 in lung cancer was determined. In addition, the tumor suppressor effect of ZNRD1-AS1 in vivo was validated using a xenograft animal model. Through bioinformatics analysis and in vitro assays, the downstream microRNAs (miRs) and competing endogenous RNAs were also predicted and validated. RESULTS This study provided evidence that m6A modification mediates YTHDC2-mediated downregulation of ZNRD1-AS1 in lung cancer and cigarette smoke-exposed cells. Low levels of ZNRD1-AS1 expression were linked to adverse clinicopathological characteristics, immune infiltration, and prognosis. ZNRD1-AS1 overexpression was shown to suppress lung cancer cell proliferation, migration, and angiogenesis in vitro and in vivo, and to reduce tumor growth in nude mice. ZNRD1-AS1 expression was shown to be controlled by treatment of cells with either the methylation inhibitor 3-Deazaadenosine or the demethylation inhibitor Meclofenamic. Furthermore, the miR-942/tensin 1 (TNS1) axis was demonstrated to be the downstream regulatory signaling pathway of ZNRD1-AS1. CONCLUSIONS ZNRD1-AS1 serves an important function and has clinical relevance in lung cancer. In addition, the findings suggested that m6A modification could mediate the regulation of the ZNRD1-AS1/miR-942/TNS1 axis via the m6A reader YTHDC2.
Collapse
Affiliation(s)
- Jin Wang
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Lirong Tan
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Xueting Yu
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Xiyuan Cao
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Beibei Jia
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| | - Rui Chen
- grid.452666.50000 0004 1762 8363Department of Respiratory Medicine, The Second Affiliated Hospital of Soochow University, Suzhou Jiangsu, 215004 China
| | - Jianxiang Li
- grid.263761.70000 0001 0198 0694School of Public Health, Suzhou Medical College of Soochow University, Suzhou, 215123 Jiangsu China
| |
Collapse
|
9
|
Binversie EE, Momen M, Rosa GJM, Davis BW, Muir P. Across-breed genetic investigation of canine hip dysplasia, elbow dysplasia, and anterior cruciate ligament rupture using whole-genome sequencing. Front Genet 2022; 13:913354. [PMID: 36531249 PMCID: PMC9755188 DOI: 10.3389/fgene.2022.913354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Here, we report the use of genome-wide association study (GWAS) for the analysis of canine whole-genome sequencing (WGS) repository data using breed phenotypes. Single-nucleotide polymorphisms (SNPs) were called from WGS data from 648 dogs that included 119 breeds from the Dog10K Genomes Project. Next, we assigned breed phenotypes for hip dysplasia (Orthopedic Foundation for Animals (OFA) HD, n = 230 dogs from 27 breeds; hospital HD, n = 279 dogs from 38 breeds), elbow dysplasia (ED, n = 230 dogs from 27 breeds), and anterior cruciate ligament rupture (ACL rupture, n = 279 dogs from 38 breeds), the three most important canine spontaneous complex orthopedic diseases. Substantial morbidity is common with these diseases. Previous within- and between-breed GWAS for HD, ED, and ACL rupture using array SNPs have identified disease-associated loci. Individual disease phenotypes are lacking in repository data. There is a critical knowledge gap regarding the optimal approach to undertake categorical GWAS without individual phenotypes. We considered four GWAS approaches: a classical linear mixed model, a haplotype-based model, a binary case-control model, and a weighted least squares model using SNP average allelic frequency. We found that categorical GWAS was able to validate HD candidate loci. Additionally, we discovered novel candidate loci and genes for all three diseases, including FBX025, IL1A, IL1B, COL27A1, SPRED2 (HD), UGDH, FAF1 (ED), TGIF2 (ED & ACL rupture), and IL22, IL26, CSMD1, LDHA, and TNS1 (ACL rupture). Therefore, categorical GWAS of ancestral dog populations may contribute to the understanding of any disease for which breed epidemiological risk data are available, including diseases for which GWAS has not been performed and candidate loci remain elusive.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Guilherme J. M. Rosa
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Peter Muir,
| |
Collapse
|
10
|
Zhuang Z, Wu J, Xu C, Ruan D, Qiu Y, Zhou S, Ding R, Quan J, Yang M, Zheng E, Wu Z, Yang J. The Genetic Architecture of Meat Quality Traits in a Crossbred Commercial Pig Population. Foods 2022; 11:foods11193143. [PMID: 36230219 PMCID: PMC9563986 DOI: 10.3390/foods11193143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/25/2022] Open
Abstract
Meat quality is of importance in consumer acceptance and purchasing tendency of pork. However, the genetic architecture of pork meat quality traits remains elusive. Herein, we conducted genome-wide association studies to detect single nucleotide polymorphisms (SNPs) and genes affecting meat pH and meat color (L*, lightness; a*, redness; b*, yellowness) in 1518 three-way crossbred pigs. All individuals were genotyped using the GeneSeek Porcine 50K BeadChip. In sum, 30 SNPs and 20 genes are found to be associated with eight meat quality traits. Notably, we detect one significant quantitative trait locus (QTL) on SSC15 with a 143 kb interval for meat pH (pH_12h), together with the most promising candidate TNS1. Interestingly, two newly identified SNPs located in the TTLL4 gene demonstrate the highest phenotypic variance of pH_12h in this QTL, at 2.67%. The identified SNPs are useful for the genetic improvement of meat quality traits in pigs by assigning higher weights to associated SNPs in genomic selection.
Collapse
Affiliation(s)
- Zhanwei Zhuang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Cineng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Donglin Ruan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yibin Qiu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shenping Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Rongrong Ding
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Zhongxin Breeding Technology Co., Ltd., Guangzhou 511466, China
| | - Jianping Quan
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu 527400, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
11
|
Atherton P, Konstantinou R, Neo SP, Wang E, Balloi E, Ptushkina M, Bennett H, Clark K, Gunaratne J, Critchley D, Barsukov I, Manser E, Ballestrem C. Tensin3 interaction with talin drives the formation of fibronectin-associated fibrillar adhesions. J Biophys Biochem Cytol 2022; 221:213452. [PMID: 36074065 PMCID: PMC9462884 DOI: 10.1083/jcb.202107022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 12/11/2022] Open
Abstract
The formation of healthy tissue involves continuous remodeling of the extracellular matrix (ECM). Whilst it is known that this requires integrin-associated cell-ECM adhesion sites (CMAs) and actomyosin-mediated forces, the underlying mechanisms remain unclear. Here, we examine how tensin3 contributes to the formation of fibrillar adhesions (FBs) and fibronectin fibrillogenesis. Using BioID mass spectrometry and a mitochondrial targeting assay, we establish that tensin3 associates with the mechanosensors such as talin and vinculin. We show that the talin R11 rod domain binds directly to a helical motif within the central intrinsically disordered region (IDR) of tensin3, whilst vinculin binds indirectly to tensin3 via talin. Using CRISPR knock-out cells in combination with defined tensin3 mutations, we show (i) that tensin3 is critical for the formation of α5β1-integrin FBs and for fibronectin fibrillogenesis, and (ii) the talin/tensin3 interaction drives this process, with vinculin acting to potentiate it.
Collapse
Affiliation(s)
- Paul Atherton
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rafaella Konstantinou
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.,sGSK Group, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Suat Peng Neo
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Emily Wang
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Eleonora Balloi
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Marina Ptushkina
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Hayley Bennett
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kath Clark
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Jayantha Gunaratne
- Quantitative Proteomics Group, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - David Critchley
- Department of Biochemistry, University of Leicester, Leicester, UK
| | - Igor Barsukov
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edward Manser
- sGSK Group, Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Zeng Y, Su X, Takezawa MG, Fichtinger PS, Lee UN, Pippin JW, Shankland SJ, Lim FY, Denlinger LC, Jarjour NN, Mathur SK, Sandbo N, Berthier E, Esnault S, Bernau K, Theberge AB. An open microfluidic coculture model of fibroblasts and eosinophils to investigate mechanisms of airway inflammation. Front Bioeng Biotechnol 2022; 10:993872. [PMID: 36246374 PMCID: PMC9558094 DOI: 10.3389/fbioe.2022.993872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Interactions between fibroblasts and immune cells play an important role in tissue inflammation. Previous studies have found that eosinophils activated with interleukin-3 (IL-3) degranulate on aggregated immunoglobulin G (IgG) and release mediators that activate fibroblasts in the lung. However, these studies were done with eosinophil-conditioned media that have the capacity to investigate only one-way signaling from eosinophils to fibroblasts. Here, we demonstrate a coculture model of primary normal human lung fibroblasts (HLFs) and human blood eosinophils from patients with allergy and asthma using an open microfluidic coculture device. In our device, the two types of cells can communicate via two-way soluble factor signaling in the shared media while being physically separated by a half wall. Initially, we assessed the level of eosinophil degranulation by their release of eosinophil-derived neurotoxin (EDN). Next, we analyzed the inflammation-associated genes and soluble factors using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and multiplex immunoassays, respectively. Our results suggest an induction of a proinflammatory fibroblast phenotype of HLFs following the coculture with degranulating eosinophils, validating our previous findings. Additionally, we present a new result that indicate potential impacts of activated HLFs back on eosinophils. This open microfluidic coculture platform provides unique opportunities to investigate the intercellular signaling between the two cell types and their roles in airway inflammation and remodeling.
Collapse
Affiliation(s)
- Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Xiaojing Su
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Meg G. Takezawa
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Paul S. Fichtinger
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ulri N. Lee
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Jeffery W. Pippin
- Division of Nephrology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Stuart J. Shankland
- Division of Nephrology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Fang Yun Lim
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Loren C. Denlinger
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Nizar N. Jarjour
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sameer K. Mathur
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Nathan Sandbo
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Stephane Esnault
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ksenija Bernau
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Ashleigh B. Theberge
- Department of Chemistry, University of Washington, Seattle, WA, United States
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Transcriptomics of angiotensin II-induced long noncoding and coding RNAs in endothelial cells. J Hypertens 2022; 40:1303-1313. [PMID: 35762471 DOI: 10.1097/hjh.0000000000003140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II)-induced endothelial dysfunction plays an important role in the pathogenesis of cardiovascular diseases such as systemic hypertension, cardiac hypertrophy and atherosclerosis. Recently, long noncoding RNAs (lncRNAs) have been shown to play an essential role in the pathobiology of cardiovascular diseases; however, the effect of Ang II on lncRNAs and coding RNAs expression in endothelial cells has not been evaluated. Accordingly, we sought to evaluate the expression profiles of lncRNAs and coding RNAs in endothelial cells following treatment with Ang II. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and treated with Ang II (10-6 mol/l) for 24 h. The cells were then profiled for the expression of lncRNAs and mRNAs using the Arraystar Human lncRNA Expression Microarray V3.0. RESULTS In HUVECs following Ang II treatment, from a total of 30 584 lncRNA targets screened, 25 targets were significantly upregulated, while 69 were downregulated. In the same HUVECs samples, from 26 106 mRNA targets screened, 28 targets were significantly upregulated and 67 were downregulated. Of the differentially expressed lncRNAs, RP11-354P11.2 and RP11-360F5.1 were the most upregulated (11-fold) and downregulated (three-fold) lncRNAs, respectively. Assigning the differentially regulated genes into functional groups using bioinformatics reveals numerous genes involved in the nucleotide excision repair and ECM-receptor interaction. CONCLUSION This is the first study to profile the Ang II-induced differentially expressed lncRNAs and mRNAs in human endothelial cells. Our results reveal novel targets and substantially extend the list of potential candidate genes involved in Ang II-induced endothelial dysfunction and cardiovascular diseases.
Collapse
|
14
|
Bosmans LA, van Tiel CM, Aarts SABM, Willemsen L, Baardman J, van Os BW, den Toom M, Beckers L, Ahern DJ, Levels JHM, Jongejan A, Moerland PD, Verberk SGS, van den Bossche J, de Winther MMPJ, Weber C, Atzler D, Monaco C, Gerdes N, Shami A, Lutgens E. Myeloid CD40 deficiency reduces atherosclerosis by impairing macrophages' transition into a pro-inflammatory state. Cardiovasc Res 2022; 119:1146-1160. [PMID: 35587037 DOI: 10.1093/cvr/cvac084] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS CD40 and its ligand, CD40L, play a critical role in driving atherosclerotic plaque development. Disrupted CD40-signaling reduces experimental atherosclerosis and induces a favourable stable plaque phenotype. We recently showed that small molecule-based inhibition of CD40-TNF Receptor Associated Factor-6 interactions attenuates atherosclerosis in hyperlipidaemic mice via macrophage-driven mechanisms. The present study aims to detail the function of myeloid CD40 in atherosclerosis using myeloid-specific CD40-deficient mice. METHOD AND RESULTS Cd40flox/flox and LysM-cre Cd40flox/flox mice on an Apoe-/- background were generated (CD40wt and CD40mac-/-, respectively). Atherosclerotic lesion size, as well as plaque macrophage content, were reduced in CD40mac-/- compared to CD40wt mice and their plaques displayed a reduction in necrotic core size. Transcriptomics analysis of the CD40mac-/- atherosclerotic aorta revealed downregulated pathways of immune pathways and inflammatory responses.Loss of CD40 in macrophages changed the representation of aortic macrophage subsets. Mass cytometry analysis revealed a higher content of a subset of alternative or resident-like CD206 + CD209b- macrophages in the atherosclerotic aorta of CD40mac-/- compared to CD40wt mice. RNA-sequencing of bone marrow-derived macrophages (BMDMs) of CD40mac-/- mice demonstrated upregulation of genes associated with alternatively activated macrophages (including Folr2, Thbs1, Sdc1 and Tns1). CONCLUSIONS We here show that absence of CD40 signalling in myeloid cells reduces atherosclerosis and limits systemic inflammation by preventing a shift in macrophage polarization towards pro-inflammatory states. Our study confirms the merit of macrophage-targeted inhibition of CD40 as a valuable therapeutic strategy to combat atherosclerosis.
Collapse
Affiliation(s)
- Laura A Bosmans
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia M van Tiel
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne A B M Aarts
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen Baardman
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Bram W van Os
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - David J Ahern
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Johannes H M Levels
- Department of Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Perry D Moerland
- Bioinformatics Laboratory, Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan van den Bossche
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam Cardiovascular Sciences, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Menno M P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands
| | - Christian Weber
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Cardiovascular Research Institute Maastricht (CARIM), Department of Biochemistry, Maastricht University, Maastricht, the Netherlands.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dorothee Atzler
- Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Walter-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians Universität, München, Germany
| | - Claudia Monaco
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, UK
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Hospital and Heinrich Heine University Düsseldorf, Germany
| | - Annelie Shami
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Dept. of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö, Sweden
| | - Esther Lutgens
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS) & Amsterdam Infection and Immunity (AII), Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, The Netherlands.,Institute of Cardiovascular Prevention (IPEK), Ludwig Maximilian's University, Munich, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.,Experimental Cardiovascular Immunology Laboratory, Dept of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
15
|
He W, Han X, Ong JS, Hewitt AW, Mackey DA, Gharahkhani P, MacGregor S. Association of Novel Loci With Keratoconus Susceptibility in a Multitrait Genome-Wide Association Study of the UK Biobank Database and Canadian Longitudinal Study on Aging. JAMA Ophthalmol 2022; 140:568-576. [PMID: 35446358 PMCID: PMC9026225 DOI: 10.1001/jamaophthalmol.2022.0891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Keratoconus can be a debilitating corneal ectasia in which the cornea thins, bulges, and steepens into a conical shape. Early features of keratoconus include myopia and irregular astigmatism, which affect vision and can be treated with contact lenses, collagen cross-linking, or, in advanced cases, corneal transplant. Recent estimates of the prevalence of keratoconus based on results of Scheimpflug imaging in young adults are as high as 1.2%. However, obtaining very large keratoconus data sets for a genome-wide association study (GWAS) is problematic because few population studies include Scheimpflug imaging and because severe keratoconus is relatively rare. Objective To identify novel keratoconus loci using corneal resistance factor (CRF) and central corneal thickness (CCT). Design, Setting, and Participants This multitrait GWAS used European ancestry CRF data from UK Biobank (UKB) (n = 105 427) and the Canadian Longitudinal Study on Aging (CLSA) (n = 18 307) and European ancestry CCT data from the International Glaucoma Genetics Consortium (IGGC) (n = 17 803). The CRF and CCT variants in published keratoconus data sets (4669 cases and 116 547 controls) were compared. The data set from UKB was compiled March 24, 2020; data were released from the CLSA in July 2020; and IGGC data were available from May 1, 2018. Main Outcomes and Measures Association of CRF and CCT variants with keratoconus risk. Results The GWAS included 4 cohorts: 105 427 UKB European ancestry (56 134 women [53.2%] and 49 293 men [46.7%]; mean [SD] age, 57 [8] years), 5029 UKB South Asian ancestry (2368 women [47.1%] and 2661 men [52.9%]; mean [SD] age, 54 [8] years), 902 UKB East Asian ancestry (622 women [68.9%] and 280 men [31.0%]; mean [SD] age, 53 [8] years), and 18 307 CLSA European ancestry (9260 women [50.6%] and 9047 men [49.4%]; mean [SD] age, 63 [10] years) participants. A total of 369 CRF and 233 CCT loci were identified, including 36 novel CRF loci and 114 novel CCT loci. Twenty-nine CRF loci and 24 CCT loci were associated with keratoconus. Polygenic risk scores (PRS) were constructed using CRF- and CCT-associated variants and published keratoconus variants. The PRS result showed that adding a CRF- or CCT-based PRS to the keratoconus PRS from previously published variants improved the prediction area under the receiver operating characteristic curve (from 0.705 to 0.756 for CRF and from 0.715 to 0.755 for CCT). Conclusions and Relevance These findings support the use of multitrait modeling of corneal parameters in a relatively large data set to identify new keratoconus risk loci and enhance polygenic risk score models.
Collapse
Affiliation(s)
- Weixiong He
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Xikun Han
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine, University of Queensland, Brisbane, Australia
| | - Jue-Sheng Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alex W Hewitt
- Centre for Eye Research Australia, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.,School of Medicine, Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
16
|
Wilson AC, Chiles J, Ashish S, Chanda D, Kumar PL, Mobley JA, Neptune ER, Thannickal VJ, McDonald MLN. Integrated bioinformatics analysis identifies established and novel TGFβ1-regulated genes modulated by anti-fibrotic drugs. Sci Rep 2022; 12:3080. [PMID: 35197532 PMCID: PMC8866468 DOI: 10.1038/s41598-022-07151-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is a leading cause of morbidity and mortality worldwide. Although fibrosis may involve different organ systems, transforming growth factor-β (TGFβ) has been established as a master regulator of fibrosis across organs. Pirfenidone and Nintedanib are the only currently-approved drugs to treat fibrosis, specifically idiopathic pulmonary fibrosis, but their mechanisms of action remain poorly understood. To identify novel drug targets and uncover potential mechanisms by which these drugs attenuate fibrosis, we performed an integrative 'omics analysis of transcriptomic and proteomic responses to TGFβ1-stimulated lung fibroblasts. Significant findings were annotated as associated with pirfenidone and nintedanib treatment in silico via Coremine. Integrative 'omics identified a co-expressed transcriptomic and proteomic module significantly correlated with TGFβ1 treatment that was enriched (FDR-p = 0.04) with genes associated with pirfenidone and nintedanib treatment. While a subset of genes in this module have been implicated in fibrogenesis, several novel TGFβ1 signaling targets were identified. Specifically, four genes (BASP1, HSD17B6, CDH11, and TNS1) have been associated with pirfenidone, while five genes (CLINT1, CADM1, MTDH, SYDE1, and MCTS1) have been associated with nintedanib, and MYDGF has been implicated with treatment using both drugs. Using the Clue Drug Repurposing Hub, succinic acid was highlighted as a metabolite regulated by the protein encoded by HSD17B6. This study provides new insights into the anti-fibrotic actions of pirfenidone and nintedanib and identifies novel targets for future mechanistic studies.
Collapse
Affiliation(s)
- Ava C. Wilson
- grid.265892.20000000106344187Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Joe Chiles
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Shah Ashish
- grid.265892.20000000106344187Department of Orthopedic Surgery, University of Alabama at Birmingham, Birmingham, AL USA
| | - Diptiman Chanda
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Preeti L. Kumar
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - James A. Mobley
- grid.265892.20000000106344187Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL USA
| | - Enid R. Neptune
- grid.21107.350000 0001 2171 9311Department of Medicine, Johns Hopkins University, Baltimore, MD USA
| | - Victor J. Thannickal
- grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265219.b0000 0001 2217 8588John W. Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Merry-Lynn N. McDonald
- grid.265892.20000000106344187Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA ,grid.265892.20000000106344187Department of Genetics, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
17
|
Sideris N, Dama P, Bayraktar S, Stiff T, Castellano L. LncRNAs in breast cancer: a link to future approaches. Cancer Gene Ther 2022; 29:1866-1877. [PMID: 35788171 PMCID: PMC9750866 DOI: 10.1038/s41417-022-00487-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
Breast cancer affects millions of women each year. Despite recent advances in targeted treatments breast cancer remains a significant threat to women's health. In recent years the development of high-throughput sequencing technologies has advanced the field of transcriptomics shedding light on the role of non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs), in human cellular function and disease. LncRNAs are classified as transcripts longer than 200nt with no coding potential. These transcripts constitute a diverse group of regulatory molecules essential to the modulation of crucial cellular processes, which dysregulation of leads to disease. LncRNAs exert their regulatory functions through their sequences and by forming complex secondary and tertiary structures that interact with other transcripts, chromatin and/or proteins. Numerous studies have provided evidence of the involvement of LncRNAs in tumor development and disease progression. They possess multiple characteristics that make them novel therapeutic and diagnostic targets. Indeed, the discovery of a novel mechanism by which lncRNAs associated with proteins can induce the formation of phase-separated droplets broadens our understanding of the spatiotemporal control of cellular processes and opens up developing a new treatment. Nevertheless, the role and the molecular mechanisms of many lncRNAs in the regulation of cellular processes and cancer still remain elusive. This is due to the absence of a thorough characterization of the regulatory role of their loci and the functional impact of their aberrations in cancer biology. Here, we present some of the latest advances concerning the role of LncRNAs in breast cancer.
Collapse
Affiliation(s)
- Nikolaos Sideris
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Paola Dama
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Salih Bayraktar
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Thomas Stiff
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK
| | - Leandro Castellano
- grid.12082.390000 0004 1936 7590Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG UK ,grid.7445.20000 0001 2113 8111Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, SW7 2AZ UK
| |
Collapse
|
18
|
Li Y, Xu F, Chen F, Chen Y, Ge D, Zhang S, Lu C. Transcriptomics based multi-dimensional characterization and drug screen in esophageal squamous cell carcinoma. EBioMedicine 2021; 70:103510. [PMID: 34365093 PMCID: PMC8353400 DOI: 10.1016/j.ebiom.2021.103510] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) remains one of the deadly cancer types. Comprehensively dissecting the molecular characterization and the heterogeneity of ESCC paves the way for developing more promising therapeutics. METHODS Expression profiles of multiple ESCC datasets were integrated. ATAC-seq and RNA-seq were combined to reveal the chromatin accessibility features. A prognosis-related subtype classifier (PrSC) was constructed, and its association with the tumor microenvironment (TME) and immunotherapy was assessed. The key gene signature was validated in clinical samples. Based on the TME heterogeneity of ESCC patients, potential subtype-specific therapeutic agents were screened. FINDINGS The common differentially expressed genes (cDEGs) in ESCC were identified. Up-regulated genes (HEATR1, TIMELESS, DTL, GINS1, RUVBL1, and ECT2) were found highly important in ESCC cell survival. The expression alterations of PRIM2, HPGD, NELL2, and TFAP2B were associated with chromatin accessibility changes. PrSC was a robust scoring tool that was not only associated with the prognosis of ESCC patients, but also could reflect the TME heterogeneity. TNS1high fibroblasts were associated with immune exclusion. TG-101348 and Vinorelbine were identified as potential subtype-specific therapeutic agents. Besides, the application of PrSC into two immunotherapy cohorts indicated its potential value in assessing treatment response to immunotherapy. INTERPRETATION Our study depicted the multi-dimensional characterization of ESCC, established a robust scoring tool for the prognosis assessment, highlighted the role of TNS1high fibroblasts in TME, and identified potential drugs for clinical use. FUNDING A full list of funding bodies that contributed to this study can be found in the Acknowledgements section.
Collapse
Affiliation(s)
- Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fanghua Chen
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Yiwei Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
20
|
Walton NI, Zhang X, Soltis AR, Starr J, Dalgard CL, Wilkerson MD, Conrad D, Pollard HB. Tensin 1 (TNS1) is a modifier gene for low body mass index (BMI) in homozygous [F508del]CFTR patients. Physiol Rep 2021; 9:e14886. [PMID: 34086412 PMCID: PMC8176904 DOI: 10.14814/phy2.14886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/02/2021] [Indexed: 11/24/2022] Open
Abstract
Cystic fibrosis (CF) is a life‐limiting autosomal recessive genetic disease caused by variants in the CFTR gene, most commonly by the [F508del] variant. Although CF is a classical Mendelian disease, genetic variants in several modifier genes have been associated with variation of the clinical phenotype for pulmonary and gastrointestinal function and urogenital development. We hypothesized that whole genome sequencing of a well‐phenotyped CF populations might identify novel variants in known, or hitherto unknown, modifier genes. Whole genome sequencing was performed on the Illumina HiSeq X platform for 98 clinically diagnosed cystic fibrosis patient samples from the Adult CF Clinic at the University of California San Diego (UCSD). We compared protein‐coding, non‐silent variants genome wide between CFTR [F508del] homozygotes vs CFTR compound heterozygotes. Based on a single variant score test, we found 3 SNPs in common variants (MAF >5%) that occurred at significantly different rates between homozygous [F508del]CFTR and compound heterozygous [F508del]CFTR patients. The 3 SNPs were all located in one gene on chromosome 2: Tensin 1 (TNS1: rs3796028; rs2571445: and rs918949). We observed significantly lower BMIs in homozygous [F508del]CFTR patients who were also homozygous for Tensin 1 rs918949 (T/T) (p = 0.023) or rs2571445 (G/G) (p = 0.02) variants. The Tensin 1 gene is thus a potential modifier gene for low BMI in CF patients homozygous for the [F508del]CFTR variant.
Collapse
Affiliation(s)
- Nathan I Walton
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Xijun Zhang
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Anthony R Soltis
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Joshua Starr
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Clifton L Dalgard
- The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew D Wilkerson
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Douglas Conrad
- Department of Medicine, University of California, San Diego, CA, USA
| | - Harvey B Pollard
- The Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Consortium for Health and Military Performance, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.,Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
21
|
Nizioł M, Zińczuk J, Zaręba K, Guzińska-Ustymowicz K, Pryczynicz A. Immunohistochemical Analysis of the Expression of Adhesion Proteins: TNS1, TNS2 and TNS3 in Correlation with Clinicopathological Parameters in Gastric Cancer. Biomolecules 2021; 11:640. [PMID: 33926026 PMCID: PMC8146480 DOI: 10.3390/biom11050640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/13/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tensins belong to the group of adhesion proteins that are involved in cell adhesion and migration, actin cytoskeleton maintenance and intercellular communication. TNS1, TNS2 and TNS3 proteins expression was evaluated in 90 patients with gastric cancer by immunohistochemistry method. TNS1 was more frequently present in non-differentiated tumors compared to poorly and moderately differentiated tumors (p = 0.016). TNS1 was also more often observed in metastatic tumors compared to those without distant metastases (p = 0.001). TNS2 was more common in moderately differentiated tumors than in poorly or non-differentiated ones (p = 0.041). TNS2 expression was also more frequently present in tumors with peritumoral inflammation (p = 0.041) and with concomitant H. pylori infection (p = 0.023). In contrast, TNS3 protein was more prevalent in moderately than in poorly and non-differentiated tumors (p = 0.023). No significant relationship was found between tensins' expression and the overall survival rate of patients. TNS1 protein expression is associated with a poor-prognosis type of GC. Higher expression of TNS2 is accompanied by peritumoral inflammation and H. pylori infection, which favor the development of GC of a better prognosis, similarly to higher TNS3 protein expression.
Collapse
Affiliation(s)
- Marcin Nizioł
- Department of General Pathomorphology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland; (M.N.); (K.G.-U.)
| | - Justyna Zińczuk
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Konrad Zaręba
- 2nd Clinical Department of General and Gastroenterological Surgery, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland;
| | - Katarzyna Guzińska-Ustymowicz
- Department of General Pathomorphology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland; (M.N.); (K.G.-U.)
| | - Anna Pryczynicz
- Department of General Pathomorphology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland; (M.N.); (K.G.-U.)
| |
Collapse
|
22
|
Becker J, Schwoch S, Zelent C, Sitte M, Salinas G, Wilting J. Transcriptome Analysis of Hypoxic Lymphatic Endothelial Cells Indicates Their Potential to Contribute to Extracellular Matrix Rearrangement. Cells 2021; 10:cells10051008. [PMID: 33923324 PMCID: PMC8145299 DOI: 10.3390/cells10051008] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/27/2022] Open
Abstract
Lymphedema (LE) affects millions of people worldwide. It is a chronic progressive disease with massive development of fibrosclerosis when untreated. There is no pharmacological treatment of lymphedema. The disease is associated with swelling of the interstitium of the affected organ, mostly arm or leg, impressive development of adipose tissue, fibrosis and sclerosis with accumulation of huge amounts of collagen, and Papillomatosis cutis. Malnutrition and reduced oxygenation of the affected tissues is a hallmark of lymphedema. Here, we investigated if the hypoxia of lymphatic endothelial cells (LECs) might contribute to fibrosis. We applied RNASeq and qPCR to study the concordant changes of the exome of three human foreskin-derived LEC isolates after 4 days of hypoxia (1% O2) vs. normoxia (21% O2). Of the approximately 16,000 genes expressed in LECs, 162 (1%) were up- or down-regulated by hypoxia. Of these, 21 genes have important functions in the production or modification of the extracellular matrix (ECM). In addition to the down-regulation of elastin, we found up-regulation of druggable enzymes and regulators such as the long non-coding RNA H19, inter-alpha-trypsin inhibitor heavy chain family member 5 (ITIH5), lysyl-oxidase (LOX), prolyl 4-hydroxylase subunit alpha 1 (P4HA1), procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2), and others that are discussed in the paper. Initial lymphatics do not produce a continuous basement membrane; however, our study shows that hypoxic LECs have an unexpectedly high ability to alter the ECM.
Collapse
Affiliation(s)
- Jürgen Becker
- Department of Anatomy and Cell Biology, University Medical School Göttingen, 37075 Göttingen, Germany; (J.B.); (S.S.); (C.Z.)
| | - Sonja Schwoch
- Department of Anatomy and Cell Biology, University Medical School Göttingen, 37075 Göttingen, Germany; (J.B.); (S.S.); (C.Z.)
| | - Christina Zelent
- Department of Anatomy and Cell Biology, University Medical School Göttingen, 37075 Göttingen, Germany; (J.B.); (S.S.); (C.Z.)
| | - Maren Sitte
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany; (M.S.); (G.S.)
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit (NIG), Institute of Human Genetics, University Medical Center Göttingen, 37075 Göttingen, Germany; (M.S.); (G.S.)
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, 37075 Göttingen, Germany; (J.B.); (S.S.); (C.Z.)
- Correspondence:
| |
Collapse
|
23
|
Trevisan B, Morsi A, Aleman J, Rodriguez M, Shields J, Meares D, Farland AM, Doering CB, Spencer HT, Atala A, Skardal A, Porada CD, Almeida-Porada G. Effects of Shear Stress on Production of FVIII and vWF in a Cell-Based Therapeutic for Hemophilia A. Front Bioeng Biotechnol 2021; 9:639070. [PMID: 33732691 PMCID: PMC7957060 DOI: 10.3389/fbioe.2021.639070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Microfluidic technology enables recapitulation of organ-level physiology to answer pertinent questions regarding biological systems that otherwise would remain unanswered. We have previously reported on the development of a novel product consisting of human placental cells (PLC) engineered to overexpress a therapeutic factor VIII (FVIII) transgene, mcoET3 (PLC-mcoET3), to treat Hemophilia A (HA). Here, microfluidic devices were manufactured to model the physiological shear stress in liver sinusoids, where infused PLC-mcoET3 are thought to lodge after administration, to help us predict the therapeutic outcome of this novel biological strategy. In addition to the therapeutic transgene, PLC-mcoET3 also constitutively produce endogenous FVIII and von Willebrand factor (vWF), which plays a critical role in FVIII function, immunogenicity, stability, and clearance. While vWF is known to respond to flow by changing conformation, whether and how shear stress affects the production and secretion of vWF and FVIII has not been explored. We demonstrated that exposure of PLC-mcoET3 to physiological levels of shear stress present within the liver sinusoids significantly reduced mRNA levels and secreted FVIII and vWF when compared to static conditions. In contrast, mRNA for the vector-encoded mcoET3 was unaltered by flow. To determine the mechanism responsible for the observed decrease in FVIII and vWF mRNA, PCR arrays were performed to evaluate expression of genes involved in shear mechanosensing pathways. We found that flow conditions led to a significant increase in KLF2, which induces miRNAs that negatively regulate expression of FVIII and vWF, providing a mechanistic explanation for the reduced expression of these proteins in PLC under conditions of flow. In conclusion, microfluidic technology allowed us to unmask novel pathways by which endogenous FVIII and vWF are affected by shear stress, while demonstrating that expression of the therapeutic mcoET3 gene will be maintained in the gene-modified PLCs upon transplantation, irrespective of whether they engraft within sites that expose them to conditions of shear stress.
Collapse
Affiliation(s)
- Brady Trevisan
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Alshaimaa Morsi
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Julio Aleman
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martin Rodriguez
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jordan Shields
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Diane Meares
- Department of Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andrew M Farland
- Department of Medicine, Section on Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher B Doering
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - H Trent Spencer
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Anthony Atala
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Aleks Skardal
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher D Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Fetal Research and Therapy Program, Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
24
|
Duan J, Wang L, Shang L, Yang S, Wu H, Huang Y, Miao Y. miR-152/TNS1 axis inhibits non-small cell lung cancer progression through Akt/mTOR/RhoA pathway. Biosci Rep 2021; 41:BSR20201539. [PMID: 33269380 PMCID: PMC7785040 DOI: 10.1042/bsr20201539] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
AIM The purpose of the present study was to explore the function and mechanism of tensin 1 (TNS1) in non-small cell lung cancer (NSCLC) progression. METHODS The expression of TNS1 in NSCLC cells and tissues was assessed by RT-PCR and Western blot. Besides, Kaplan-Meier survival analysis was recruited to explore the association between TNS1 and NSCLC. Cell growth was analyzed by MTT and flow cytometry assay, while cell metastasis was determined by wound healing and transwell assays. The targeting relationship between TNS1 and miR-152 was assessed by luciferase activity assays. And Western blot was employed to determine the expression of related proteins of Akt/mTOR/RhoA pathway. RESULTS TNS1 level was boosted in NSCLC cells and tissues, related to the prognosis of NSCLC patients. Furthermore, it was proved that TNS1 promoted the growth and metastasis of NSCLC cells via Akt/mTOR/RhoA pathway. And miR-152 targeted TNS1 to affect the progression of NSCLC. CONCLUSION miR-152/TNS1 axis inhibits the progression of NSCLC by Akt/mTOR/RhoA pathway.
Collapse
Affiliation(s)
- Jinjin Duan
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Li Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Liqun Shang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Shumei Yang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Hua Wu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| | - Yongcheng Huang
- Department of Pathology, Xi’an Central Hospital, Xi’an, Shaanxi 7100033, P.R. China
| | - Yi Miao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi 710068, P.R. China
| |
Collapse
|
25
|
Chang KC, Diermeier SD, Yu AT, Brine LD, Russo S, Bhatia S, Alsudani H, Kostroff K, Bhuiya T, Brogi E, Pappin DJ, Bennett CF, Rigo F, Spector DL. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat Commun 2020; 11:6438. [PMID: 33353933 PMCID: PMC7755919 DOI: 10.1038/s41467-020-20207-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022] Open
Abstract
Misregulation of long non-coding RNA (lncRNA) genes has been linked to a wide variety of cancer types. Here we report on Mammary Tumor Associated RNA 25 (MaTAR25), a nuclear enriched and chromatin associated lncRNA that plays a role in mammary tumor cell proliferation, migration, and invasion, both in vitro and in vivo. MaTAR25 functions by interacting with purine rich element binding protein B (PURB), and associating with a major downstream target gene Tensin1 (Tns1) to regulate its expression in trans. The Tns1 protein product is a critical component of focal adhesions linking signaling between the extracellular matrix and the actin cytoskeleton. Knockout of MaTAR25 results in down-regulation of Tns1 leading to a reorganization of the actin cytoskeleton, and a reduction of focal adhesions and microvilli. We identify LINC01271 as the human ortholog of MaTAR25, and importantly, increased expression of LINC01271 is associated with poor patient prognosis and metastasis. Our findings demonstrate that LINC01271 represents a potential therapeutic target to alter breast cancer progression.
Collapse
Affiliation(s)
- Kung-Chi Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sarah D Diermeier
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Department of Biochemistry, University of Otago, Dunedin, 9016, New Zealand
| | - Allen T Yu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
- Genetics Program, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Lily D Brine
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Suzanne Russo
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Sonam Bhatia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Habeeb Alsudani
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | - Karen Kostroff
- Department of Surgical Oncology, Northwell Health, Lake Success, NY, 11042, USA
| | - Tawfiqul Bhuiya
- Department of Pathology, Northwell Health, Lake Success, NY, 11042, USA
| | - Edi Brogi
- Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Darryl J Pappin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, 92010, USA
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, New York, USA.
- Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY, 11794, USA.
- Genetics Program, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
26
|
Krakhotkin DV, Chernylovskyi VA, Mottrie A, Greco F, Bugaev RA. New insights into the pathogenesis of Peyronie's disease: A narrative review. Chronic Dis Transl Med 2020; 6:165-181. [PMID: 32885153 PMCID: PMC7451633 DOI: 10.1016/j.cdtm.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Peyronie's disease (PD) is a benign, progressive fibrotic disorder characterized by scar or plaques within the tunica albuginea (TA) of the penis. This study provides new insights into the pathogenesis of PD based on data from different studies regarding the roles of cytokines, cell signaling pathways, biochemical mechanisms, genetic factors responsible for fibrogenesis. A growing body of literature has shown that PD is a chronically impaired, localized, wound healing process within the TA and the Smith space. It is caused by the influence of different pathological stimuli, most often the effects of mechanical stress during sexual intercourse in genetically sensitive individuals with unusual anatomical TA features, imbalanced matrix metalloproteinase/tissue inhibitor of metalloproteinase (MMP/TIMP), and suppressed antioxidant systems during chronic inflammation. Other intracellular signal cascades are activated during fibrosis along with low expression levels of their negative regulators and transforming growth factor-β1 signaling. The development of multikinase agents with minimal side effects that can block several signal cell pathways would significantly improve fibrosis in PD tissues by acting on common downstream mediators.
Collapse
Affiliation(s)
- Denis V Krakhotkin
- Outpatient Department, Central District Hospital, Kamenolomni, Rostov Region, Russia
| | | | - Alexandre Mottrie
- Department of Urology, Onze Lieve Vrouw Hospital, Aalst, Belgium.,ORSI Academy, Melle, Belgium
| | | | - Ruslan A Bugaev
- Outpatient Department, Central District Hospital, Kamenolomni, Rostov Region, Russia
| |
Collapse
|
27
|
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020; 127:427-447. [PMID: 32673537 DOI: 10.1161/circresaha.120.316958] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFβ (transforming growth factor β) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael P Lazaropoulos
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
28
|
Wozniak JM, Silva TA, Thomas D, Siqueira-Neto JL, McKerrow JH, Gonzalez DJ, Calvet CM. Molecular dissection of Chagas induced cardiomyopathy reveals central disease associated and druggable signaling pathways. PLoS Negl Trop Dis 2020; 14:e0007980. [PMID: 32433643 PMCID: PMC7279607 DOI: 10.1371/journal.pntd.0007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/08/2020] [Accepted: 03/25/2020] [Indexed: 12/13/2022] Open
Abstract
Chagas disease, the clinical presentation of T. cruzi infection, is a major human health concern. While the acute phase of Chagas disease is typically asymptomatic and self-resolving, chronically infected individuals suffer numerous sequelae later in life. Cardiomyopathies in particular are the most severe consequence of chronic Chagas disease and cannot be reversed solely by parasite load reduction. To prioritize new therapeutic targets, we unbiasedly interrogated the host signaling events in heart tissues isolated from a Chagas disease mouse model using quantitative, multiplexed proteomics. We defined the host response to infection at both the proteome and phospho-proteome levels. The proteome showed an increase in the immune response and a strong repression of several mitochondrial proteins. Complementing the proteome studies, the phospho-proteomic survey found an abundance of phospho-site alterations in plasma membrane and cytoskeletal proteins. Bioinformatic analysis of kinase activity provided substantial evidence for the activation of NDRG2 and JNK/p38 kinases during Chagas disease. A significant activation of DYRK2 and AMPKA2 and the inhibition of casein family kinases were also predicted. We concluded our analyses by linking the diseased heart proteome profile to known therapeutic interventions, uncovering a potential to target mitochondrial proteins, secreted immune effectors and core kinases for the treatment of chronic Chagas disease. Together, this study provides molecular insight into host proteome and phospho-proteome responses to T. cruzi infection in the heart for the first time, highlighting pathways that can be further validated for functional contributions to disease and suitability as drug targets.
Collapse
Affiliation(s)
- Jacob M. Wozniak
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
| | - Tatiana Araújo Silva
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
| | - David J. Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Department of Pharmacology; University of California San Diego; La Jolla, CA, United States of America
- * E-mail: (DJG); (CMC)
| | - Claudia M. Calvet
- Skaggs School of Pharmacy and Pharmaceutical Sciences; University of California San Diego; La Jolla, CA, United States of America
- Cellular Ultrastructure Laboratory; Oswaldo Cruz Institute, FIOCRUZ; Rio de Janeiro, RJ, Brazil
- * E-mail: (DJG); (CMC)
| |
Collapse
|
29
|
Mi B, Li Q, Li T, Liu G, Sai J. High miR-31-5p expression promotes colon adenocarcinoma progression by targeting TNS1. Aging (Albany NY) 2020; 12:7480-7490. [PMID: 32315285 PMCID: PMC7202535 DOI: 10.18632/aging.103096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Overexpression of the miR-31-5p contributes to tumorigenesis and metastasis in diverse neoplasms. In this study, we evaluated expression of miR-31-5p in patients with colon adenocarcinoma (COAD). We found that miR-31-5p was overexpressed in four cohorts (GSE30454, GSE41655, GSE18392, GSE108153) of COAD patients. Importantly, a LinkedOmics analysis revealed that high miR-31-5p expression was associated with poor overall survival of COAD patients. At total of 133 putative target genes of miR-31-5p were identified from TargetScan, miRDB, and TargetMiner. After integrating the target genes with 1,556 deregulated genes in COAD, 8 were acquired that may be targeted by miR-31-5p and contribute to COAD progression. Among these, tensin 1 (TNS1) showed the greatest prognostic ability in COAD and was strongly correlated with M2 macrophages, regulatory T cells, and other immune cells. These findings indicate that, in COAD, miR-31-5p is a potential prognostic factor that affects immune infiltration by targeting TNS1.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiushi Li
- Department of Cardiology, Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing 100029, China
| | - Tong Li
- Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiayang Sai
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of oncology, The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.,Surgery Department, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Tisler M, Alkmin S, Chang HY, Leet J, Bernau K, Sandbo N, Campagnola PJ. Analysis of fibroblast migration dynamics in idiopathic pulmonary fibrosis using image-based scaffolds of the lung extracellular matrix. Am J Physiol Lung Cell Mol Physiol 2020; 318:L276-L286. [PMID: 31774302 PMCID: PMC7052674 DOI: 10.1152/ajplung.00087.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by a profound remodeling of the collagen in the extracellular matrix (ECM), where the fibers become both denser and more highly aligned. However, it is unknown how this reconfiguration of the collagen matrix affects disease progression. Here, we investigate the role of specific alterations in collagen fiber organization on cell migration dynamics by using biomimetic image-based collagen scaffolds representing normal and fibrotic lung, where the designs are derived directly from high-resolution second harmonic generation microscopy images. The scaffolds are fabricated by multiphoton-excited (MPE) polymerization, where the process is akin to three-dimensional printing, except that it is performed at much greater resolution (∼0.5 microns) and with collagen and collagen analogs. These scaffolds were seeded with early passaged primary human normal and IPF fibroblasts to enable the decoupling of the effect of cell-intrinsic characteristics (normal vs. IPF) versus ECM structure (normal vs. IPF) on migration dynamics. We found that the highly aligned IPF collagen structure promoted enhanced cell elongation and F-actin alignment along with increased cell migration speed and straightness relative to the normal tissues. Collectively, the data are consistent with an enhanced contact guidance mechanism on the aligned IPF matrix. Although cell intrinsic effects were observed, the aligned collagen matrix morphology had a larger effect on these metrics. Importantly, these biomimetic models of the lung cannot be synthesized by conventional fabrication methods. We suggest that the MPE image-based fabrication method will enable additional hypothesis-based testing studies of cell-matrix interactions in the context of tissue fibrosis.
Collapse
Affiliation(s)
- Marisa Tisler
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Samuel Alkmin
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Hsin-Yu Chang
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jon Leet
- 2Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ksenija Bernau
- 2Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nathan Sandbo
- 2Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Paul J. Campagnola
- 1Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
31
|
Tensin1 expression and function in chronic obstructive pulmonary disease. Sci Rep 2019; 9:18942. [PMID: 31831813 PMCID: PMC6908681 DOI: 10.1038/s41598-019-55405-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 11/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) constitutes a major cause of morbidity and mortality. Genome wide association studies have shown significant associations between airflow obstruction or COPD with a non-synonymous SNP in the TNS1 gene, which encodes tensin1. However, the expression, cellular distribution and function of tensin1 in human airway tissue and cells are unknown. We therefore examined these characteristics in tissue and cells from controls and people with COPD or asthma. Airway tissue was immunostained for tensin1. Tensin1 expression in cultured human airway smooth muscle cells (HASMCs) was evaluated using qRT-PCR, western blotting and immunofluorescent staining. siRNAs were used to downregulate tensin1 expression. Tensin1 expression was increased in the airway smooth muscle and lamina propria in COPD tissue, but not asthma, when compared to controls. Tensin1 was expressed in HASMCs and upregulated by TGFβ1. TGFβ1 and fibronectin increased the localisation of tensin1 to fibrillar adhesions. Tensin1 and α-smooth muscle actin (αSMA) were strongly co-localised, and tensin1 depletion in HASMCs attenuated both αSMA expression and contraction of collagen gels. In summary, tensin1 expression is increased in COPD airways, and may promote airway obstruction by enhancing the expression of contractile proteins and their localisation to stress fibres in HASMCs.
Collapse
|
32
|
Esnault S, Leet JP, Johansson MW, Barretto KT, Fichtinger PS, Fogerty FJ, Bernau K, Mathur SK, Mosher DF, Sandbo N, Jarjour NN. Eosinophil cytolysis on Immunoglobulin G is associated with microtubule formation and suppression of rho-associated protein kinase signalling. Clin Exp Allergy 2019; 50:198-212. [PMID: 31750580 DOI: 10.1111/cea.13538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/18/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND The presence of eosinophils in the airway is associated with asthma severity and risk of exacerbations. Cell-free eosinophil granules are found in tissues in eosinophilic diseases, including asthma. This suggests that eosinophils have lysed and released cellular content, likely harming tissues. OBJECTIVE The present study explores the mechanism of CD32- and αMß2 integrin-dependent eosinophil cytolysis of IL3-primed blood eosinophils seeded on heat-aggregated immunoglobulin G (HA-IgG). METHODS Cytoskeletal events and signalling pathways potentially involved in cytolysis were assessed using inhibitors. The level of activation of the identified events and pathways involved in cytolysis was measured. In addition, the links between these identified pathways and changes in degranulation (exocytosis) and adhesion were analysed. RESULTS Cytolysis of IL3-primed eosinophils was dependent on the production of reactive oxygen species (ROS) and downstream phosphorylation of p-38 MAPK. In addition, formation of microtubule (MT) arrays was necessary for cytolysis and was accompanied by changes in MT dynamics as measured by phosphorylation status of stathmin and microtubule-associated protein 4 (MAP4), the latter of which was regulated by ROS production. Reduced ROCK signalling preceded cytolysis, which was associated with eosinophil adhesion and reduced migration. CONCLUSION AND CLINICAL RELEVANCE In this CD32- and αMß2 integrin-dependent adhesion model, lysing eosinophils exhibit reduced migration and ROCK signalling, as well as both MT dynamic changes and p-38 phosphorylation downstream of ROS production. We propose that interfering with these pathways would modulate eosinophil cytolysis and subsequent eosinophil-driven tissue damage.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Jonathan P Leet
- Department of medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Mats W Johansson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Karina T Barretto
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Paul S Fichtinger
- Department of medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Frances J Fogerty
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ksenija Bernau
- Department of medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Sameer K Mathur
- Department of medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.,Department of Medicine, Division of Hematology and Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Nathan Sandbo
- Department of medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Nizar N Jarjour
- Department of medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
33
|
Ji J, Yan G, Chen D, Xiao S, Gao J, Zhang Z. An association study using imputed whole-genome sequence data identifies novel significant loci for growth-related traits in a Duroc × Erhualian F 2 population. J Anim Breed Genet 2019; 136:217-228. [PMID: 30869175 DOI: 10.1111/jbg.12389] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 01/21/2023]
Abstract
The average daily gain (ADG) and body weight (BW) are very important traits for breeding programs and for the meat production industry, which have attracted many researchers to delineate the genetic architecture behind these traits. In the present study, single- and multi-trait genome-wide association studies (GWAS) were performed between imputed whole-genome sequence data and the traits of the ADG and BW at different stages in a large-scale White Duroc × Erhualian F2 population. A bioinformatics annotation analysis was used to assist in the identification of candidate genes that are associated with these traits. Five and seven genome-wide significant quantitative trait loci (QTLs) were identified by single- and multi-trait GWAS, respectively. Furthermore, more than 40 genome-wide suggestive loci were detected. On the basis of the whole-genome sequence association study and the bioinformatics analysis, NDUFAF6, TNS1 and HMGA1 stood out as the strongest candidate genes. The presented single- and multi-trait GWAS analysis using imputed whole-genome sequence data identified several novel QTLs for pig growth-related traits. Integrating the GWAS with bioinformatics analysis can facilitate the more accurate identification of candidate genes. Higher imputation accuracy, time-saving algorithms, improved models and comprehensive databases will accelerate the identification of causal genes or mutations, which will contribute to genomic selection and pig breeding in the future.
Collapse
Affiliation(s)
- Jiuxiu Ji
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guorong Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Dong Chen
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Jun Gao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
34
|
Zhou Z, Shen Y, Yin J, Xi F, Xu R, Lin D, Saijilafu, Chen J, Wang Y. Matrix remodeling associated 7 promotes differentiation of bone marrow mesenchymal stem cells toward osteoblasts. J Cell Physiol 2019; 234:18053-18064. [PMID: 30843215 DOI: 10.1002/jcp.28438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 01/15/2023]
Abstract
The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active β-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.
Collapse
Affiliation(s)
- Zhishuai Zhou
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Juanjuan Yin
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Feng Xi
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Renjie Xu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Dandan Lin
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Saijilafu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Yiqiang Wang
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
35
|
Woychek A, Jones JCR. Nesprin-2G knockout fibroblasts exhibit reduced migration, changes in focal adhesion composition, and reduced ability to generate traction forces. Cytoskeleton (Hoboken) 2019; 76:200-208. [PMID: 30667166 DOI: 10.1002/cm.21515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 02/01/2023]
Abstract
The nuclear envelope protein nesprin-2G is a component of the linker of nucleoskeleton and cytoskeleton (LINC) complex and is responsible for mechanical and signaling crosstalk between the nucleus and cytoskeleton. A prior study has demonstrated that nesprin-2G knockout mice show delayed wound healing. The goal was to elucidate the mechanism underlying the delayed wound closure in this mouse model. Primary fibroblasts from wild-type and knockout neonatal mice were isolated. Knockout cells exhibited decreased focal adhesion (FA) size, number, and intensity. Consistent with this result, FA protein expression levels were decreased in knockout cells. Additionally, knockout fibroblasts displayed an abnormal actin cytoskeleton, as evidenced by loss of TAN line formation and both cytoplasmic and peri-nuclear actin staining. Using collective and single cell motility assays, it was found that knockout cells exhibited a reduction in both speed and directed migration. Traction force microscopy revealed that knockout fibroblasts generated fewer traction forces compared with WT fibroblasts. In summary, the data indicated that changes in actin organization and defects in FAs result in a reduced ability of knockout fibroblasts to generate traction forces needed for efficient motility.
Collapse
Affiliation(s)
- Alexandra Woychek
- School of Molecular Biosciences, Washington State University, Pullman, United States of America
| | - Jonathan C R Jones
- School of Molecular Biosciences, Washington State University, Pullman, United States of America
| |
Collapse
|
36
|
Brophy RH, Rothermich MA, Tycksen ED, Cai L, Rai MF. Presence of meniscus tear alters gene expression profile of anterior cruciate ligament tears. J Orthop Res 2018; 36:2612-2621. [PMID: 29668032 DOI: 10.1002/jor.24025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/07/2018] [Indexed: 02/04/2023]
Abstract
Anterior cruciate ligament (ACL) tears occur in isolation or in tandem with other intra-articular injuries such as meniscus tears. The impact of injury pattern on the molecular biology of the injured ACL is unknown. Here, we tested the hypothesis that the biological response of the ACL to injury varies based on the presence or absence of concomitant meniscus tear. We performed RNA-seq on 28 ACL tears remnants (12 isolated, 16 combined). In total, 16,654 transcripts were differentially expressed between isolated and combined injury groups at false discovery rate of 0.05. Due to the large number of differentially expressed transcripts, we undertook an Ensembl approach to discover features that acted as hub genes that did not necessarily have large fold changes or high statistical significance, but instead had high biological significance. Our data revealed a negatively correlated module containing 5,960 transcripts (down-regulated in combined injury) and a positively correlated module containing 2,260 transcripts (up-regulated in combined injury). TNS1, MEF2D, NOTCH3, SOGA1, and MLXIP were highly-connected hub genes in the negatively correlated module and SCN2A, CSMD3, LRC44, USH2A, and LRP1B were critical hub genes in the positively correlated module. Transcripts in the negatively correlated module were associated with biological adhesion, actin-filament organization, cell junction assembly, and cell matrix adhesion. The positively correlated module transcripts were enriched for neuron migration and exocytosis regulation. These findings indicate genes and pathways reflective of healing deficiency and gain of neurogenic signaling in combined ACL and meniscus tears, suggesting their diminished repair potential. The biological response of ACL to injury could have implications for healing potential of the ligament and the long term health of the knee. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2612-2621, 2018.
Collapse
Affiliation(s)
- Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, Musculoskeletal Research Center, St. Louis, Missouri, 63110
| | - Marcus A Rothermich
- Department of Orthopaedic Surgery, Washington University School of Medicine, Musculoskeletal Research Center, St. Louis, Missouri, 63110
| | - Eric D Tycksen
- Washington University School of Medicine, Genome Technology Access Center, St. Louis, Missouri, 63110
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, Musculoskeletal Research Center, St. Louis, Missouri, 63110
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, Musculoskeletal Research Center, St. Louis, Missouri, 63110
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, 63110
| |
Collapse
|
37
|
Lee WH, Tsai MJ, Chang WA, Wu LY, Wang HY, Chang KF, Su HM, Kuo PL. Deduction of novel genes potentially involved in hypoxic AC16 human cardiomyocytes using next-generation sequencing and bioinformatics approaches. Int J Mol Med 2018; 42:2489-2502. [PMID: 30226555 PMCID: PMC6192719 DOI: 10.3892/ijmm.2018.3851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Atherosclerotic cardiovascular disease and acute myocardial infarction are the leading causes of mortality worldwide, and apoptosis is the major pathway of cardiomyocyte death under hypoxic conditions. Although studies have reported changes in the expression of certain pro‑apoptotic and anti‑apoptotic genes in hypoxic cardiomyocytes, genetic regulations are complex in human cardiomyocytes and there is much that remains to be fully elucidated. The present study aimed to identify differentially expressed genes in hypoxic human AC16 cardiomyocytes using next‑generation sequencing and bioinformatics. A total of 24 genes (15 upregulated and 9 downregulated) with potential micro (mi)RNA‑mRNA interactions were identified in the miRmap database. Utilising the Gene Expression Omnibus database of cardiac microvascular endothelial cells, tensin 1, B‑cell lymphoma 2‑interacting protein 3 like, and stanniocalcin 1 were found to be upregulated, and transferrin receptor and methyltransferase like 7A were found to be downregulated in response to hypoxia. Considering the results from miRmap, TargetScan and miRDB together, two potential miRNA‑mRNA interactions were identified: hsa‑miRNA (miR)‑129‑5p/CDC42EP3 and hsa‑miR‑330‑3p/HELZ. These findings contribute important insights into possible novel diagnostic or therapeutic strategies for targeting cardiomyocytes under acute hypoxic stress in conditions, including acute myocardial infarction. The results of the present study also introduce an important novel approach in investigating acute hypoxic pathophysiology.
Collapse
Affiliation(s)
- Wen-Hsien Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Ju Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Han-Ying Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | | | - Ho-Ming Su
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
38
|
Zhou XG, Huang XL, Liang SY, Tang SM, Wu SK, Huang TT, Mo ZN, Wang QY. Identifying miRNA and gene modules of colon cancer associated with pathological stage by weighted gene co-expression network analysis. Onco Targets Ther 2018; 11:2815-2830. [PMID: 29844680 PMCID: PMC5961473 DOI: 10.2147/ott.s163891] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Introduction Colorectal cancer (CRC) is the fourth most common cause of cancer-related mortality worldwide. The tumor, node, metastasis (TNM) stage remains the standard for CRC prognostication. Identification of meaningful microRNA (miRNA) and gene modules or representative biomarkers related to the pathological stage of colon cancer helps to predict prognosis and reveal the mechanisms behind cancer progression. Materials and methods We applied a systems biology approach by combining differential expression analysis and weighted gene co-expression network analysis (WGCNA) to detect the pathological stage-related miRNA and gene modules and construct a miRNA–gene network. The Cancer Genome Atlas (TCGA) colon adenocarcinoma (CAC) RNA-sequencing data and miRNA-sequencing data were subjected to WGCNA analysis, and the GSE29623, GSE35602 and GSE39396 were utilized to validate and characterize the results of WGCNA. Results Two gene modules (Gmagenta and Ggreen) and one miRNA module were associated with the pathological stage. Six hub genes (COL1A2, THBS2, BGN, COL1A1, TAGLN and DACT3) were related to prognosis and validated to be associated with the pathological stage. Five hub miRNAs were identified to be related to prognosis (hsa-miR-125b-5p, hsa-miR-145-5p, hsa-let-7c-5p, hsa-miR-218-5p and hsa-miR-125b-2-3p). A total of 18 hub genes and seven hub miRNAs were predominantly expressed in tumor stroma. Proteoglycans in cancer, focal adhesion, extracellular matrix (ECM)–receptor interaction and so on were common pathways of the three modules. Hsa-let-7c-5p was located at the core of miRNA–gene network. Conclusion These findings help to advance the understanding of tumor stroma in the progression of CAC and provide prognostic biomarkers as well as therapeutic targets.
Collapse
Affiliation(s)
- Xian-Guo Zhou
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Liang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Si-Yuan Liang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Colorectal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shao-Mei Tang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Si-Kao Wu
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Tong-Tong Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zeng-Nan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Department of Urology and Nephrology, The First Affiliated Hospital of Guangxi, Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Qiu-Yan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China.,Guangxi Colleges and Universities Key Laboratory of Biological Molecular Medicine Research, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
39
|
Lin D, Sun Z, Jin Z, Lei L, Liu Y, Hu B, Wang B, Shen Y, Wang Y. Matrix Remodeling Associated 7 Deficiency Alleviates Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Front Immunol 2018; 9:773. [PMID: 29720975 PMCID: PMC5915751 DOI: 10.3389/fimmu.2018.00773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Matrix remodeling associated 7 (MXRA7) was first noted to co-express with a group of matrix remodeling related genes, and its biological functions had remained unclear. In this study, we investigated the presumed function of MXRA7 in a carbon tetrachloride (CCl4)-induced acute liver injury model in mice. Wild-type, MXRA7−/− mice, and mice that were pulsed with hydrodynamic injection of vehicle or MXRA7-harboring plasmids were challenged with a single dose of CCl4 for injury induction. The sera, spleens, and livers were harvested from mice for assay of cytokines/chemokines expression, cellular responses, or histological features. We found that MXRA7 deficiency alleviated, and MXRA7 overexpression aggravated liver damage in CCl4-challenged mice. FACS analysis showed that MXRA7 deficiency reduced the recruitment of neutrophils through downregulation the expression of CXCL1 and CXCL2 in liver, decreased the number of CD8+ T cells in liver and spleen, suppressed the release of IFNγ and TNFα from T cells, and decreased IFNγ in serum and liver. Western blot assay demonstrated that MXRA7 deficiency suppressed the activation of MAPK pathway and AKT/NF-κB pathway, respectively. Lastly, MXRA7 deficiency or overexpression regulated the expression of two matrix remodeling-related genes (fibronectin and TIMP1) in the liver. We concluded that MXRA7 was an active player in CCl4-induced liver injury, hypothetically by mediating the inflammation or immune compartments and matrix remodeling processes. Further exploration of MXRA7 as a possible new therapeutic target for management of inflammation-mediated liver injury was discussed.
Collapse
Affiliation(s)
- Dandan Lin
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Zhenjiang Sun
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ziqi Jin
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Lei Lei
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Yonghao Liu
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Bo Hu
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Benfang Wang
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Yiqiang Wang
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
40
|
Horowitz JC. Releasing Tensin. Am J Respir Cell Mol Biol 2018; 56:417-418. [PMID: 28362149 DOI: 10.1165/rcmb.2016-0417ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jeffrey C Horowitz
- 1 Division of Pulmonary and Critical Care Medicine University of Michigan Medical School Ann Arbor, Michigan
| |
Collapse
|
41
|
Tensins: Bridging AMP-Activated Protein Kinase with Integrin Activation. Trends Cell Biol 2017; 27:703-711. [DOI: 10.1016/j.tcb.2017.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
|
42
|
Jia C, Zhang F, Zhu Y, Qi X, Wang Y. Public data mining plus domestic experimental study defined involvement of the old-yet-uncharacterized gene matrix-remodeling associated 7 (MXRA7) in physiopathology of the eye. Gene 2017; 632:43-49. [PMID: 28847716 DOI: 10.1016/j.gene.2017.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/12/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
Abstract
Matrix-remodeling associated 7 (MXRA7) gene was first reported in 2002 and named so for its co-expression with several genes known to relate with matrix-remodeling. However, not any studies had been intentionally performed to characterize this gene. We started defining the functions of MXRA7 by integrating bioinformatics analysis and experimental study. Data mining of MXRA7 expression in BioGPS, Gene Expression Omnibus and EurExpress platforms highlighted high level expression of Mxra7 in murine ocular tissues. Real-time PCR was employed to measure Mxra7 mRNA in tissues of adult C57BL/6 mice and demonstrated that Mxra7 was preferentially expressed at higher level in retina, corneas and lens than in other tissues. Then the inflammatory corneal neovascularization (CorNV) model and fungal corneal infections were induced in Balb/c mice, and mRNA levels of Mxra7 as well as several matrix-remodeling related genes (Mmp3, Mmp13, Ecm1, Timp1) were monitored with RT-PCR. The results demonstrated a time-dependent Mxra7 under-expression pattern (U-shape curve along timeline), while all other matrix-remodeling related genes manifested an opposite changes pattern (dome-shape curve). When limited data from BioGPS concerning human MXRA7 gene expression in human tissues were looked at, it was found that ocular tissue was also the one expressing highest level of MXRA7. To conclude, integrative assay of MXRA7 gene expression in public databank as well as domestic animal models revealed a selective high expression MXRA7 in murine and human ocular tissues, and its change patterns in two corneal disease models implied that MXRA7 might play a role in pathological processes or diseases involving injury, neovascularization and would healing.
Collapse
Affiliation(s)
- Changkai Jia
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Feng Zhang
- Eye Clinic, Linyi People's Hospital, Linyi, China
| | - Ying Zhu
- Eye Hospital, Institute & School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xia Qi
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yiqiang Wang
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China; Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|