1
|
Malakar B, Barth VC, Puffal J, Woychik NA, Husson RN. Phosphorylation of VapB antitoxins affects intermolecular interactions to regulate VapC toxin activity in Mycobacterium tuberculosis. J Bacteriol 2024; 206:e0023324. [PMID: 39315797 PMCID: PMC11500542 DOI: 10.1128/jb.00233-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
Toxin-antitoxin modules are present in many bacterial pathogens. The VapBC family is particularly abundant in members of the Mycobacterium tuberculosis complex, with 50 modules present in the M. tuberculosis genome. In type IIA modules, the VapB antitoxin protein binds to and inhibits the activity of the co-expressed cognate VapC toxin protein. VapB proteins may also bind to promoter region sequences and repress the expression of the vapB-vapC operon. Though VapB-VapC interactions can control the amount of free VapC toxin in the bacterial cell, the mechanisms that affect this interaction are poorly understood. Based on our recent finding of Ser/Thr phosphorylation of VapB proteins in M. tuberculosis, we substituted phosphomimetic or phosphoablative amino acids at the phosphorylation sites of two VapB proteins. We found that phosphomimetic substitution of VapB27 and VapB46 resulted in decreased interaction with their respective cognate VapC proteins, whereas phosphoablative substitution did not alter binding. Similarly, we determined that phosphomimetic substitution interfered with VapB binding to promoter region DNA sequences. Both decreased VapB-VapC interaction and decreased VapB repression of vapB-vapC operon transcription would result in increased free VapC in the M. tuberculosis cell. In growth inhibition experiments, M. tuberculosis strains expressing vapB46-vapC46 constructs containing a phosphoablative vapB mutation resulted in lower toxicity compared to a strain expressing native vapB46, whereas similar or greater toxicity was observed in the strain expressing the phosphomimetic vapB mutation. These results identify a novel mechanism by which VapC toxicity activity can be regulated by VapB phosphorylation.IMPORTANCEIntracellular bacterial toxins are present in many bacterial pathogens and have been linked to bacterial survival in response to stresses encountered during infection. The activity of many toxins is regulated by a co-expressed antitoxin protein that binds to and sequesters the toxin protein. The mechanisms by which an antitoxin may respond to stresses to alter toxin activity are poorly understood. Here, we show that antitoxin interactions with its cognate toxin and with promoter DNA required for antitoxin and toxin expression can be altered by Ser/Thr phosphorylation of the antitoxin and, thus, affect toxin activity. This reversible modification may play an important role in regulating toxin activity within the bacterial cell in response to signals generated during infection.
Collapse
Affiliation(s)
- Basanti Malakar
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Valdir C. Barth
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Puffal
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Nancy A. Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Robert N. Husson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Fu X, Wan X, Memon AA, Fan XY, Sun Q, Chen H, Yao Y, Deng Z, Ma J, Ma W. Regulatory role of Mycobacterium tuberculosis MtrA on dormancy/resuscitation revealed by a novel target gene-mining strategy. Front Microbiol 2024; 15:1415554. [PMID: 38952446 PMCID: PMC11215152 DOI: 10.3389/fmicb.2024.1415554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction The unique dormancy of Mycobacterium tuberculosis plays a significant role in the major clinical treatment challenge of tuberculosis, such as its long treatment cycle, antibiotic resistance, immune escape, and high latent infection rate. Methods To determine the function of MtrA, the only essential response regulator, one strategy was developed to establish its regulatory network according to high-quality genome-wide binding sites. Results and discussion The complex modulation mechanisms were implied by the strong bias distribution of MtrA binding sites in the noncoding regions, and 32.7% of the binding sites were located inside the target genes. The functions of 288 potential MtrA target genes predicted according to 294 confirmed binding sites were highly diverse, and DNA replication and damage repair, lipid metabolism, cell wall component biosynthesis, cell wall assembly, and cell division were the predominant pathways. Among the 53 pathways shared between dormancy/resuscitation and persistence, which accounted for 81.5% and 93.0% of the total number of pathways, respectively, MtrA regulatory genes were identified not only in 73.6% of their mutual pathways, but also in 75.4% of the pathways related to dormancy/resuscitation and persistence respectively. These results suggested the pivotal roles of MtrA in regulating dormancy/resuscitation and the apparent relationship between dormancy/resuscitation and persistence. Furthermore, the finding that 32.6% of the MtrA regulons were essential in vivo and/or in vitro for M. tuberculosis provided new insight into its indispensability. The findings mentioned above indicated that MtrA is a novel promising therapeutic target for tuberculosis treatment since the crucial function of MtrA may be a point of weakness for M. tuberculosis.
Collapse
Affiliation(s)
- Xiang Fu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyu Wan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Aadil Ahmed Memon
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yong Fan
- Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, Shanghai, China
| | - Qiuhong Sun
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yufeng Yao
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Shanghai, China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Liu Y, Li H, Dai D, He J, Liang Z. Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy. Curr Issues Mol Biol 2024; 46:5825-5844. [PMID: 38921019 PMCID: PMC11203133 DOI: 10.3390/cimb46060348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.
Collapse
Affiliation(s)
- Yiduo Liu
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Han Li
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Dejia Dai
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Jiakang He
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| | - Zhengmin Liang
- College of Animal Science and Technology, Guangxi University, No. 100 University West Road, Nanning 530004, China (D.D.)
| |
Collapse
|
4
|
Malakar B, Barth V, Puffal J, Woychik N, Husson RN. Phosphorylation of VapB antitoxins affects intermolecular interactions to regulate VapC toxin activity in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596101. [PMID: 38853858 PMCID: PMC11160731 DOI: 10.1101/2024.05.30.596101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Toxin-antitoxin modules are present in many bacterial pathogens. The VapBC family is particularly abundant in members of the Mycobacterium tuberculosis complex, with 50 modules present in the M. tuberculosis genome. In type IIA modules the VapB antitoxin protein binds to and inhibits the activity of the co-expressed cognate VapC toxin protein. VapB proteins also bind to promoter region sequences and repress expression of the vapB-vapC operon. Though VapB-VapC interactions can control the amount of free VapC toxin in the bacterial cell, the mechanisms that affect this interaction are poorly understood. Based on our recent finding of Ser/Thr phosphorylation of VapB proteins in M. tuberculosis, we substituted phosphomimetic or phosphoablative amino acids at the phosphorylation sites of two VapB proteins. We found that phosphomimetic substitution of VapB27 and VapB46 resulted in decreased interaction with their respective cognate VapC proteins, whereas phosphoablative substitution did not alter binding. Similarly, we determined that phosphomimetic substitution interfered with VapB binding to promoter region DNA sequences. Both decreased VapB-VapC interaction and decreased VapB repression of vapB-vapC operon transcription would result in increased free VapC in the M. tuberculosis cell. M. tuberculosis strains expressing vapB46-vapC46 constructs containing a phosphoablative vapB mutation resulted in lower toxicity compared to a strain expressing native vapB46, whereas similar or greater toxicity was observed in the strain expressing the phosphomimetic vapB mutation. These results identify a novel mechanism by which VapC toxicity activity can be regulated by VapB phosphorylation, potentially in response to extracytoplasmic as well as intracellular signals.
Collapse
Affiliation(s)
- Basanti Malakar
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Valdir Barth
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Julia Puffal
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Nancy Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Robert N. Husson
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Bagchi S, Sharma AK, Ghosh A, Saha S, Basu J, Kundu M. RegX3-dependent transcriptional activation of kdpDE and repression of rv0500A are linked to potassium homeostasis in Mycobacterium tuberculosis. FEBS J 2024; 291:2242-2259. [PMID: 38414198 DOI: 10.1111/febs.17100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
Ionic homeostasis is essential for the survival and replication of Mycobacterium tuberculosis within its host. Low potassium ion concentrations trigger a transition of M. tuberculosis into dormancy. Our current knowledge of the transcriptional regulation mechanisms governing genes involved in potassium homeostasis remains limited. Potassium transport is regulated by the constitutive Trk system and the inducible Kdp system in M. tuberculosis. The two-component system KdpDE (also known as KdpD/KdpE) activates expression of the kdpFABC operon, encoding the four protein subunits of the Kdp potassium uptake system (KdpFABC). We show that, under potassium deficiency, expression of the two-component system senX3/regX3 is upregulated, and bacterial survival is compromised in a regX3-inactivated mutant, ΔregX3. Electrophoretic mobility shift assays (EMSAs), promoter reporter assays and chromatin immunoprecipitation (ChIP) show that RegX3 binds to the kdpDE promoter and activates it under potassium deficiency, whereas RegX3 (K204A), a DNA binding-deficient mutant, fails to bind to the promoter. Mutation of the RegX3 binding motifs on the kdpDE promoter abrogates RegX3 binding. In addition, EMSAs and ChIP assays show that RegX3 represses Rv0500A, a repressor of kdpFABC, by binding to consensus RegX3 binding motifs on the rv0500A promoter. Our findings provide important insight into two converging pathways regulated by RegX3; one in which it activates an activator of kdpFABC, and the other in which it represses a repressor of kdpFABC, during potassium insufficiency. This culminates in increased expression of the potassium uptake system encoded by kdpFABC, enabling bacterial survival. These results further expand the growing transcriptional network in which RegX3 serves as a central node to enable bacterial survival under stress.
Collapse
Affiliation(s)
- Shreya Bagchi
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | | - Abhirupa Ghosh
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Joyoti Basu
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | | |
Collapse
|
6
|
Gupta VK, Vaishnavi VV, Arrieta-Ortiz ML, P S A, K M J, Jeyasankar S, Raghunathan V, Baliga NS, Agarwal R. 3D Hydrogel Culture System Recapitulates Key Tuberculosis Phenotypes and Demonstrates Pyrazinamide Efficacy. Adv Healthc Mater 2024:e2304299. [PMID: 38655817 PMCID: PMC7616495 DOI: 10.1002/adhm.202304299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Indexed: 04/26/2024]
Abstract
The mortality caused by tuberculosis (TB) infections is a global concern, and there is a need to improve understanding of the disease. Current in vitro infection models to study the disease have limitations such as short investigation durations and divergent transcriptional signatures. This study aims to overcome these limitations by developing a 3D collagen culture system that mimics the biomechanical and extracellular matrix (ECM) of lung microenvironment (collagen fibers, stiffness comparable to in vivo conditions) as the infection primarily manifests in the lungs. The system incorporates Mycobacterium tuberculosis (Mtb) infected human THP-1 or primary monocytes/macrophages. Dual RNA sequencing reveals higher mammalian gene expression similarity with patient samples than 2D macrophage infections. Similarly, bacterial gene expression more accurately recapitulates in vivo gene expression patterns compared to bacteria in 2D infection models. Key phenotypes observed in humans, such as foamy macrophages and mycobacterial cords, are reproduced in the model. This biomaterial system overcomes challenges associated with traditional platforms by modulating immune cells and closely mimicking in vivo infection conditions, including showing efficacy with clinically relevant concentrations of anti-TB drug pyrazinamide, not seen in any other in vitro infection model, making it reliable and readily adoptable for tuberculosis studies and drug screening.
Collapse
Affiliation(s)
- Vishal K Gupta
- Department of Bioengineering, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka, 560012, India
| | - Vijaya V Vaishnavi
- Department of Bioengineering, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka, 560012, India
| | | | - Abhirami P S
- Department of Bioengineering, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka, 560012, India
| | - Jyothsna K M
- Department of Electrical Communication Engineering, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka, 560012, India
| | - Sharumathi Jeyasankar
- Department of Bioengineering, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka, 560012, India
| | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka, 560012, India
| | - Nitin S Baliga
- Institute of Systems Biology, 401 Terry Ave N, Seattle, WA, 98109, USA
| | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, CV Raman Road, Bengaluru, Karnataka, 560012, India
| |
Collapse
|
7
|
Wynn EA, Dide-Agossou C, Reichlen M, Rossmassler K, Al Mubarak R, Reid JJ, Tabor ST, Born SEM, Ransom MR, Davidson RM, Walton KN, Benoit JB, Hoppers A, Loy DE, Bauman AA, Massoudi LM, Dolganov G, Strong M, Nahid P, Voskuil MI, Robertson GT, Moore CM, Walter ND. Transcriptional adaptation of Mycobacterium tuberculosis that survives prolonged multi-drug treatment in mice. mBio 2023; 14:e0236323. [PMID: 37905920 PMCID: PMC10746229 DOI: 10.1128/mbio.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE A major reason that curing tuberculosis requires prolonged treatment is that drug exposure changes bacterial phenotypes. The physiologic adaptations of Mycobacterium tuberculosis that survive drug exposure in vivo have been obscure due to low sensitivity of existing methods in drug-treated animals. Using the novel SEARCH-TB RNA-seq platform, we elucidated Mycobacterium tuberculosis phenotypes in mice treated for with the global standard 4-drug regimen and compared them with the effect of the same regimen in vitro. This first view of the transcriptome of the minority Mycobacterium tuberculosis population that withstands treatment in vivo reveals adaptation of a broad range of cellular processes, including a shift in metabolism and cell wall modification. Surprisingly, the change in gene expression induced by treatment in vivo and in vitro was largely similar. This apparent "portability" from in vitro to the mouse provides important new context for in vitro transcriptional analyses that may support early preclinical drug evaluation.
Collapse
Affiliation(s)
- Elizabeth A. Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Matthew Reichlen
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Justin J. Reid
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Samuel T. Tabor
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sarah E. M. Born
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Monica R. Ransom
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Rebecca M. Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Kendra N. Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Jeanne B. Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Amanda Hoppers
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Dorothy E. Loy
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Gregory Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, California, USA
| | - Michael Strong
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, California, USA
- UCSF Center for Tuberculosis, University of California San Francisco, San Francisco, California, USA
| | - Martin I. Voskuil
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory T. Robertson
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Camille M. Moore
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
| | - Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
8
|
Banerjee U, Chedere A, Padaki R, Mohan A, Sambaturu N, Singh A, Chandra N. PathTracer Comprehensively Identifies Hypoxia-Induced Dormancy Adaptations in Mycobacterium tuberculosis. J Chem Inf Model 2023; 63:6156-6167. [PMID: 37756209 DOI: 10.1021/acs.jcim.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Mining large-scale data to discover biologically relevant information remains a challenge despite the rapid development of bioinformatics tools. Here, we have developed a new tool, PathTracer, to identify biologically relevant information flows by mining genome-wide protein-protein interaction networks following integration of gene expression data. PathTracer successfully mines interactions between genes and traces the most perturbed paths of perceived activities under the conditions of the study. We further demonstrated the utility of this tool by identifying adaptation mechanisms of hypoxia-induced dormancy in Mycobacterium tuberculosis (Mtb).
Collapse
Affiliation(s)
- Ushashi Banerjee
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Adithya Chedere
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Raksha Padaki
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Abhilash Mohan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Amit Singh
- Center for Infectious Disease Research, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore 560012, Karnataka, India
- BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
9
|
Kaushal D, Singh DK, Mehra S. Immune Responses in Lung Granulomas during Mtb/HIV Co-Infection: Implications for Pathogenesis and Therapy. Pathogens 2023; 12:1120. [PMID: 37764928 PMCID: PMC10534770 DOI: 10.3390/pathogens12091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
HIV and TB are the cause of significant worldwide mortality and pose a grave danger to the global public health. TB is the leading cause of death in HIV-infected persons, with one in four deaths attributable to TB. While the majority of healthy individuals infected with M. tuberculosis (Mtb) are able to control the infection, co-infection with HIV increases the risk of TB infection progressing to TB disease by over 20-fold. While antiretroviral therapy (ART), the cornerstone of HIV care, decreases the incidence of TB in HIV-uninfected people, this remains 4- to 7-fold higher after ART in HIV-co-infected individuals in TB-endemic settings, regardless of the duration of therapy. Thus, the immune control of Mtb infection in Mtb/HIV-co-infected individuals is not fully restored by ART. We do not fully understand the reasons why Mtb/HIV-co-infected individuals maintain a high susceptibility to the reactivation of LTBI, despite an effective viral control by ART. A deep understanding of the molecular mechanisms that govern HIV-induced reactivation of TB is essential to develop improved treatments and vaccines for the Mtb/HIV-co-infected population. We discuss potential strategies for the mitigation of the observed chronic immune activation in combination with both anti-TB and anti-retroviral approaches.
Collapse
Affiliation(s)
| | | | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| |
Collapse
|
10
|
Simcox BS, Tomlinson BR, Shaw LN, Rohde KH. Mycobacterium abscessus DosRS two-component system controls a species-specific regulon required for adaptation to hypoxia. Front Cell Infect Microbiol 2023; 13:1144210. [PMID: 36968107 PMCID: PMC10034137 DOI: 10.3389/fcimb.2023.1144210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Mycobacterium abscessus (Mab), an emerging opportunistic pathogen, predominantly infects individuals with underlying pulmonary diseases such as cystic fibrosis (CF). Current treatment outcomes for Mab infections are poor due to Mab's inherent antibiotic resistance and unique host interactions that promote phenotypic tolerance and hinder drug access. The hypoxic, mucus-laden airways in the CF lung and antimicrobial phagosome within macrophages represent hostile niches Mab must overcome via alterations in gene expression for survival. Regulatory mechanisms important for the adaptation and long-term persistence of Mab within the host are poorly understood, warranting further genetic and transcriptomics study of this emerging pathogen. DosRS Mab , a two-component signaling system (TCS), is one proposed mechanism utilized to subvert host defenses and counteract environmental stress such as hypoxia. The homologous TCS of Mycobacterium tuberculosis (Mtb), DosRS Mtb , is known to induce a ~50 gene regulon in response to hypoxia, carbon monoxide (CO) and nitric oxide (NO) in vitro and in vivo. Previously, a small DosR Mab regulon was predicted using bioinformatics based on DosR Mtb motifs however, the role and regulon of DosRS Mab in Mab pathogenesis have yet to be characterized in depth. To address this knowledge gap, our lab generated a Mab dosRS knockout strain (MabΔdosRS) to investigate differential gene expression, and phenotype in an in vitro hypoxia model of dormancy. qRT-PCR and lux reporter assays demonstrate Mab_dosR and 6 predicted downstream genes are induced in hypoxia. In addition, RNAseq revealed induction of a much larger hypoxia response comprised of >1000 genes, including 127 differentially expressed genes in a dosRS mutant strain. Deletion of DosRS Mab led to attenuated growth under low oxygen conditions, a shift in morphotype from smooth to rough, and down-regulation of 216 genes. This study provides the first look at the global transcriptomic response of Mab to low oxygen conditions encountered in the airways of CF patients and within macrophage phagosomes. Our data also demonstrate the importance of DosRS Mab for adaptation of Mab to hypoxia, highlighting a distinct regulon (compared to Mtb) that is significantly larger than previously described, including both genes conserved across mycobacteria as well as Mab-specific genes.
Collapse
Affiliation(s)
- Breven S. Simcox
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Brooke R. Tomlinson
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| | - Kyle H. Rohde
- Division of Immunology and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
11
|
Wynn EA, Dide-Agossou C, Reichlen M, Rossmassler K, Al Mubarak R, Reid JJ, Tabor ST, Born SEM, Ransom MR, Davidson RM, Walton KN, Benoit JB, Hoppers A, Bauman AA, Massoudi LM, Dolganov G, Nahid P, Voskuil MI, Robertson GT, Moore CM, Walter ND. Transcriptional adaptation of drug-tolerant Mycobacterium tuberculosis in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531356. [PMID: 36945388 PMCID: PMC10028792 DOI: 10.1101/2023.03.06.531356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Transcriptome evaluation of Mycobacterium tuberculosis in the lungs of laboratory animals during long-term treatment has been limited by extremely low abundance of bacterial mRNA relative to eukaryotic RNA. Here we report a targeted amplification RNA sequencing method called SEARCH-TB. After confirming that SEARCH-TB recapitulates conventional RNA-seq in vitro, we applied SEARCH-TB to Mycobacterium tuberculosis-infected BALB/c mice treated for up to 28 days with the global standard isoniazid, rifampin, pyrazinamide, and ethambutol regimen. We compared results in mice with 8-day exposure to the same regimen in vitro. After treatment of mice for 28 days, SEARCH-TB suggested broad suppression of genes associated with bacterial growth, transcription, translation, synthesis of rRNA proteins and immunogenic secretory peptides. Adaptation of drug-stressed Mycobacterium tuberculosis appeared to include a metabolic transition from ATP-maximizing respiration towards lower-efficiency pathways, modification and recycling of cell wall components, large-scale regulatory reprogramming, and reconfiguration of efflux pumps expression. Despite markedly different expression at pre-treatment baseline, murine and in vitro samples had broadly similar transcriptional change during treatment. The differences observed likely indicate the importance of immunity and pharmacokinetics in the mouse. By elucidating the long-term effect of tuberculosis treatment on bacterial cellular processes in vivo, SEARCH-TB represents a highly granular pharmacodynamic monitoring tool with potential to enhance evaluation of new regimens and thereby accelerate progress towards a new generation of more effective tuberculosis treatment.
Collapse
Affiliation(s)
- Elizabeth A Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew Reichlen
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Justin J Reid
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samuel T Tabor
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah E M Born
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Monica R Ransom
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Rebecca M Davidson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Kendra N Walton
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Jeanne B Benoit
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Amanda Hoppers
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Allison A Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lisa M Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Gregory Dolganov
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, CA, USA
| | - Payam Nahid
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, CA, USA
- UCSF Center for Tuberculosis, University of California, San Francisco, CA, USA
| | - Martin I Voskuil
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory T Robertson
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camille M Moore
- Department of Biostatistics and Informatics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
| | - Nicholas D Walter
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Kaur K, Sharma S, Abhishek S, Kaur P, Saini UC, Dhillon MS, Karakousis PC, Verma I. Metabolic switching and cell wall remodelling of Mycobacterium tuberculosis during bone tuberculosis. J Infect 2023; 86:134-146. [PMID: 36549425 DOI: 10.1016/j.jinf.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Bone tuberculosis (TB) is the third most common types of extrapulmonary tuberculosis. It is critical to understand mycobacterial adaptive strategies within bone lesions to identify mycobacterial factors that may have role in disease pathogenesis. METHODS Whole genome microarray was used to characterize the in-vivo transcriptome of Mycobacterium tuberculosis (M.tb) within bone TB specimens. Mycobacterial virulent proteins were identified by bioinformatic software. An in vitro osteoblast cell line model was used to study the role of these proteins in bone TB pathogenesis. RESULTS 914 mycobacterial genes were significantly overexpressed and 1688 were repressed in bone TB specimens. Pathway analysis of differentially expressed genes demonstrated a non-replicative and hypometabolic state of M.tb, reinforcement of the mycobacterial cell wall and induction of DNA damage repair responses, suggesting possible survival strategies of M.tb within bone. Bioinformatics mining of microarray data led to identification of five virulence proteins. The genes encoding these proteins were also upregulated in the in vitro MC3T3 osteoblast cell line model of bone TB. Further, exposure of osteoblast cells to two of these virulence proteins (Rv1046c and Rv3663c) significantly inhibited osteoblast differentiation. CONCLUSION M.tb alters its transcriptome to establish infection in bone by upregulating certain virulence genes which play a key role in disturbing bone homeostasis.
Collapse
Affiliation(s)
- Khushpreet Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sumedha Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudhanshu Abhishek
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Prabhdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Uttam Chand Saini
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Mandeep Singh Dhillon
- Department of Orthopaedics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Petros C Karakousis
- Centers for Tuberculosis Research and Systems Approaches for Infectious Diseases, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Indu Verma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
13
|
Singh B, Moodley C, Singh DK, Escobedo RA, Sharan R, Arora G, Ganatra SR, Shivanna V, Gonzalez O, Hall-Ursone S, Dick EJ, Kaushal D, Alvarez X, Mehra S. Inhibition of indoleamine dioxygenase leads to better control of tuberculosis adjunctive to chemotherapy. JCI Insight 2023; 8:e163101. [PMID: 36692017 PMCID: PMC9977315 DOI: 10.1172/jci.insight.163101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
The expression of indoleamine 2,3-dioxygenase (IDO), a robust immunosuppressant, is significantly induced in macaque tuberculosis (TB) granulomas, where it is expressed on IFN-responsive macrophages and myeloid-derived suppressor cells. IDO expression is also highly induced in human TB granulomas, and products of its activity are detected in patients with TB. In vivo blockade of IDO activity resulted in the reorganization of the granuloma with substantially greater T cells being recruited to the core of the lesions. This correlated with better immune control of TB and reduced lung M. tuberculosis burdens. To study if the IDO blockade strategy can be translated to a bona fide host-directed therapy in the clinical setting of TB, we studied the effect of IDO inhibitor 1-methyl-d-tryptophan adjunctive to suboptimal anti-TB chemotherapy. While two-thirds of controls and one-third of chemotherapy-treated animals progressed to active TB, inhibition of IDO adjunctive to the same therapy protected macaques from TB, as measured by clinical, radiological, and microbiological attributes. Although chemotherapy improved proliferative T cell responses, adjunctive inhibition of IDO further enhanced the recruitment of effector T cells to the lung. These results strongly suggest the possibility that IDO inhibition can be attempted adjunctive to anti-TB chemotherapy in clinical trials.
Collapse
|
14
|
Verma A, Ghoshal A, Dwivedi VP, Bhaskar A. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:1079569. [PMID: 36619761 PMCID: PMC9813417 DOI: 10.3389/fcimb.2022.1079569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) is an intracellular pathogen that predominantly affects the alveolar macrophages in the respiratory tract. Upon infection, the activation of TLR2 and TLR4- mediated signaling pathways leads to lysosomal degradation of the bacteria. However, bacterium counteracts the host immune cells and utilizes them as a cellular niche for its survival. One distinctive mechanism of M.tb to limit the host stress responses such as hypoxia and nutrient starvation is induction of dormancy. As the environmental conditions become favorable, the bacteria resuscitate, resulting in a relapse of clinical symptoms. Different bacterial proteins play a critical role in maintaining the state of dormancy and resuscitation, namely, DevR (DosS), Hrp1, DATIN and RpfA-D, RipA, etc., respectively. Existing knowledge regarding the key proteins associated with dormancy and resuscitation can be employed to develop novel therapies. In this review we aim to highlight the current knowledge of bacterial progression from dormancy to resuscitation and the gaps in understanding the transition from dormant to active state. We have also focused on elucidating a few therapeutic strategies employed to prevent M.tb resuscitation.
Collapse
|
15
|
Chauhan P, Datta I, Dhiman A, Shankar U, Kumar A, Vashist A, Sharma TK, Tyagi JS. DNA Aptamer Targets Mycobacterium tuberculosis DevR/DosR Response Regulator Function by Inhibiting Its Dimerization and DNA Binding Activity. ACS Infect Dis 2022; 8:2540-2551. [PMID: 36332135 DOI: 10.1021/acsinfecdis.2c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tuberculosis is recognized as one of the major public health threats worldwide. The DevR-DevS (DosR/DosS) two-component system is considered a novel drug target in Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, owing to its central role in bacterial adaptation and long-term persistence. An increase in DevR levels and the decreased permeability of the mycobacterial cell wall during hypoxia-associated dormancy pose formidable challenges to the development of anti-DevR compounds. Using an in vitro evolution approach of Systematic Evolution of Ligands by EXponential enrichment (SELEX), we developed a panel of single-stranded DNA aptamers that interacted with Mtb DevR protein in solid-phase binding assays. The best-performing aptamer, APT-6, forms a G-quadruplex structure and inhibits DevR-dependent transcription in Mycobacterium smegmatis. Mechanistic studies indicate that APT-6 functions by inhibiting the dimerization and DNA binding activity of DevR protein. In silico studies reveal that APT-6 interacts majorly with C-terminal domain residues that participate in DNA binding and formation of active dimer species of DevR. To the best of our knowledge, this is the first report of a DNA aptamer that inhibits the function of a cytosolic bacterial response regulator. By inhibiting the dimerization of DevR, APT-6 targets an essential step in the DevR activation mechanism, and therefore, it has the potential to universally block the expression of DevR-regulated genes for intercepting dormancy pathways in mycobacteria. These findings also pave the way for exploring aptamer-based approaches to design and develop potent inhibitors against intracellular proteins of various bacterial pathogens of global concern.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Ishara Datta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| |
Collapse
|
16
|
Gough M, Singh DK, Singh B, Kaushal D, Mehra S. System-wide identification of myeloid markers of TB disease and HIV-induced reactivation in the macaque model of Mtb infection and Mtb/SIV co-infection. Front Immunol 2022; 13:777733. [PMID: 36275677 PMCID: PMC9583676 DOI: 10.3389/fimmu.2022.777733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) has developed specialized mechanisms to parasitize its host cell, the macrophage. These mechanisms allow it to overcome killing by oxidative burst and persist in the wake of an inflammatory response. Mtb infection in the majority of those exposed is controlled in an asymptomatic form referred to as latent tuberculosis infection (LTBI). HIV is a well-known catalyst of reactivation of LTBI to active TB infection (ATB). Through the use of nonhuman primates (NHPs) co-infected with Mtb and Simian Immunodeficiency Virus (Mtb/SIV), we are able to simulate human progression of TB/AIDS comorbidity. The advantage of NHP models is that they recapitulate the breadth of human TB outcomes, including immune control of infection, and loss of this control due to SIV co-infection. Identifying correlates of immune control of infection is important for both vaccine and therapeutics development. Using macaques infected with Mtb or Mtb/SIV and with different clinical outcomes we attempted to identify signatures between those that progress to active infection after SIV challenge (reactivators) and those that control the infection (non-reactivators). We particularly focused on pathways relevant to myeloid origin cells such as macrophages, as these innate immunocytes have an important contribution to the initial control or the lack thereof, following Mtb infection. Using bacterial burden, C-reactive protein (CRP), and other clinical indicators of disease severity as a guide, we were able to establish gene signatures of host disease state and progression. In addition to gene signatures, clustering algorithms were used to differentiate between host disease states and identify relationships between genes. This allowed us to identify clusters of genes which exhibited differential expression profiles between the three groups of macaques: ATB, LTBI and Mtb/SIV. The gene signatures were associated with pathways relevant to apoptosis, ATP production, phagocytosis, cell migration, and Type I interferon (IFN), which are related to macrophage function. Our results suggest novel macrophage functions that may play roles in the control of Mtb infection with and without co-infection with SIV. These results particularly point towards an interplay between Type I IFN signaling and IFN-γ signaling, and the resulting impact on lung macrophages as an important determinant of progression to TB.
Collapse
|
17
|
Gough M, Singh DK, Moodley C, Niu T, Golden NA, Kaushal D, Mehra S. Peripheral Blood Markers Correlate with the Progression of Active Tuberculosis Relative to Latent Control of Mycobacterium tuberculosis Infection in Macaques. Pathogens 2022; 11:544. [PMID: 35631065 PMCID: PMC9146669 DOI: 10.3390/pathogens11050544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
Despite a century of research into tuberculosis (TB), there is a dearth of reproducible, easily quantifiable, biomarkers that can predict disease onset and differentiate between host disease states. Due to the challenges associated with human sampling, nonhuman primates (NHPs) are utilized for recapitulating the closest possible modelling of human TB. To establish a predictive peripheral biomarker profile based on a larger cohort of rhesus macaques (RM), we analyzed results pertaining to peripheral blood serum chemistry and cell counts from RMs that were experimentally exposed to Mtb in our prior studies and characterized as having either developed active TB (ATB) disease or latent TB infection (LTBI). We compared lung CFU burdens and quantitative pathologies with a number of measurables in the peripheral blood. Based on our results, the investigations were then extended to the study of specific molecules and cells in the lung compartments of a subset of these animals and their immune responses. In addition to the elevated serum C-reactive protein (CRP) levels, frequently used to discern the level of Mtb infection in model systems, reduced serum albumin-to-globulin (A/G) ratios were also predictive of active TB disease. Furthermore, higher peripheral myeloid cell levels, particularly those of neutrophils, kynurenine-to-tryptophan ratio, an indicator of induced expression of the immunosuppressive molecule indoleamine dioxygenase, and an influx of myeloid cell populations could also efficiently discriminate between ATB and LTBI in experimentally infected macaques. These quantifiable correlates of disease were then used in conjunction with a regression-based analysis to predict bacterial load. Our results suggest a potential biomarker profile of TB disease in rhesus macaques, that could inform future NHP-TB research. Our results thus suggest that specific biomarkers may be developed from the myeloid subset of peripheral blood or plasma with the ability to discriminate between active and latent Mtb infection.
Collapse
Affiliation(s)
- Maya Gough
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Dhiraj K. Singh
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Chivonne Moodley
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
- Tulane University Health Science Center, New Orleans, LA 70112, USA
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Nadia A. Golden
- Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| | - Smriti Mehra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; (M.G.); (D.K.S.); (C.M.)
| |
Collapse
|
18
|
Cronan MR. In the Thick of It: Formation of the Tuberculous Granuloma and Its Effects on Host and Therapeutic Responses. Front Immunol 2022; 13:820134. [PMID: 35320930 PMCID: PMC8934850 DOI: 10.3389/fimmu.2022.820134] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
The defining pathology of tuberculosis is the granuloma, an organized structure derived from host immune cells that surrounds infecting Mycobacterium tuberculosis. As the location of much of the bacteria in the infected host, the granuloma is a central point of interaction between the host and the infecting bacterium. This review describes the signals and cellular reprogramming that drive granuloma formation. Further, as a central point of host-bacterial interactions, the granuloma shapes disease outcome by altering host immune responses and bacterial susceptibility to antibiotic treatment, as discussed herein. This new understanding of granuloma biology and the signaling behind it highlights the potential for host-directed therapies targeting the granuloma to enhance antibiotic access and tuberculosis-specific immune responses.
Collapse
Affiliation(s)
- Mark R. Cronan
-
In Vivo Cell Biology of Infection Group, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
19
|
Belardinelli JM, Verma D, Li W, Avanzi C, Wiersma CJ, Williams JT, Johnson BK, Zimmerman M, Whittel N, Angala B, Wang H, Jones V, Dartois V, de Moura VCN, Gonzalez-Juarrero M, Pearce C, Schenkel AR, Malcolm KC, Nick JA, Charman SA, Wells TNC, Podell BK, Vennerstrom JL, Ordway DJ, Abramovitch RB, Jackson M. Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in Mycobacterium abscessus. Sci Transl Med 2022; 14:eabj3860. [PMID: 35196022 DOI: 10.1126/scitranslmed.abj3860] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A search for alternative Mycobacterium abscessus treatments led to our interest in the two-component regulator DosRS, which, in Mycobacterium tuberculosis, is required for the bacterium to establish a state of nonreplicating, drug-tolerant persistence in response to a variety of host stresses. We show here that the genetic disruption of dosRS impairs the adaptation of M. abscessus to hypoxia, resulting in decreased bacterial survival after oxygen depletion, reduced tolerance to a number of antibiotics in vitro and in vivo, and the inhibition of biofilm formation. We determined that three antimalarial drugs or drug candidates, artemisinin, OZ277, and OZ439, can target DosS-mediated hypoxic signaling in M. abscessus and recapitulate the phenotypic effects of genetically disrupting dosS. OZ439 displayed bactericidal activity comparable to standard-of-care antibiotics in chronically infected mice, in addition to potentiating the activity of antibiotics used in combination. The identification of antimalarial drugs as potent inhibitors and adjunct inhibitors of M. abscessus in vivo offers repurposing opportunities that could have an immediate impact in the clinic.
Collapse
Affiliation(s)
- Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Crystal J Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Nicholas Whittel
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Han Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camron Pearce
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Alan R Schenkel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, USA.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
20
|
Bokolia NP, Khan IA. Regulation of polyphosphate glucokinase gene expression through co-transcriptional processing in Mycobacterium tuberculosis H37Rv. J Biochem 2021; 170:593-609. [PMID: 34247237 DOI: 10.1093/jb/mvab080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/01/2021] [Indexed: 11/14/2022] Open
Abstract
Transcription is a molecular process that involves the synthesis of RNA chain into the 5'-3' direction, and simultaneously nascent RNA chain tends to form geometric structures, known as co-transcriptional folding. This folding determines the functional properties of RNA molecules and possibly has a critical role during the synthesis. This functioning includes the characterized properties of riboswitches and ribozymes, which are significant when the transcription rate is comparable to the cellular environment. This study reports a novel non-coding region important in the genetic expression of polyphosphate glucokinase (ppgk) in Mycobacterium tuberculosis. This non-coding element of ppgk gene undergoes cleavage activity during the transcriptional process in Mycobacterium tuberculosis. We revealed that cleavage occurs within the nascent RNA, and the resultant cleaved 3'RNA fragment carries the Shine- Dalgarno (SD) sequence and expression platform. We concluded co-transcriptional processing at the non-coding region as the required mechanism for ppgk expression that remains constitutive within the bacterial environment. This study defines the molecular mechanism dependent on the transient but highly active structural features of the nascent RNA.
Collapse
Affiliation(s)
- Naveen Prakash Bokolia
- Clinical Microbiology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India
| | - Inshad Ali Khan
- Department of Microbiology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
21
|
Park HE, Lee W, Shin MK, Shin SJ. Understanding the Reciprocal Interplay Between Antibiotics and Host Immune System: How Can We Improve the Anti-Mycobacterial Activity of Current Drugs to Better Control Tuberculosis? Front Immunol 2021; 12:703060. [PMID: 34262571 PMCID: PMC8273550 DOI: 10.3389/fimmu.2021.703060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) infection, remains a global health threat despite recent advances and insights into host-pathogen interactions and the identification of diverse pathways that may be novel therapeutic targets for TB treatment. In addition, the emergence and spread of multidrug-resistant Mtb strains led to a low success rate of TB treatments. Thus, novel strategies involving the host immune system that boost the effectiveness of existing antibiotics have been recently suggested to better control TB. However, the lack of comprehensive understanding of the immunomodulatory effects of anti-TB drugs, including first-line drugs and newly introduced antibiotics, on bystander and effector immune cells curtailed the development of effective therapeutic strategies to combat Mtb infection. In this review, we focus on the influence of host immune-mediated stresses, such as lysosomal activation, metabolic changes, oxidative stress, mitochondrial damage, and immune mediators, on the activities of anti-TB drugs. In addition, we discuss how anti-TB drugs facilitate the generation of Mtb populations that are resistant to host immune response or disrupt host immunity. Thus, further understanding the interplay between anti-TB drugs and host immune responses may enhance effective host antimicrobial activities and prevent Mtb tolerance to antibiotic and immune attacks. Finally, this review highlights novel adjunctive therapeutic approaches against Mtb infection for better disease outcomes, shorter treatment duration, and improved treatment efficacy based on reciprocal interactions between current TB antibiotics and host immune cells.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Project for Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Kundu M, Basu J. Applications of Transcriptomics and Proteomics for Understanding Dormancy and Resuscitation in Mycobacterium tuberculosis. Front Microbiol 2021; 12:642487. [PMID: 33868200 PMCID: PMC8044303 DOI: 10.3389/fmicb.2021.642487] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis can survive within its host for extended periods of time without any clinical symptoms of disease and reactivate when the immune system is weakened. A detailed understanding of how M. tuberculosis enters into and exits out of dormancy, is necessary in order to develop new strategies for tackling tuberculosis. Omics methodologies are unsupervised and unbiased to any hypothesis, making them useful tools for the discovery of new drug targets. This review summarizes the findings of transcriptomic and proteomic approaches toward understanding dormancy and reactivation of M. tuberculosis. Within the granuloma of latently infected individuals, the bacteria are dormant, with a marked slowdown of growth, division and metabolism. In vitro models have attempted to simulate these features by subjecting the bacterium to hypoxia, nutrient starvation, potassium depletion, growth in the presence of vitamin C, or growth in the presence of long-chain fatty acids. The striking feature of all the models is the upregulation of the DosR regulon, which includes the transcriptional regulator Rv0081, one of the central hubs of dormancy. Also upregulated are chaperone proteins, fatty acid and cholesterol degrading enzymes, the sigma factors SigE and SigB, enzymes of the glyoxylate and the methylcitrate cycle, the Clp proteases and the transcriptional regulator ClgR. Further, there is increased expression of genes involved in mycobactin synthesis, fatty acid degradation, the glyoxylate shunt and gluconeogenesis, in granulomas formed in vitro from peripheral blood mononuclear cells from latently infected individuals compared to naïve individuals. Genes linked to aerobic respiration, replication, transcription, translation and cell division, are downregulated during dormancy in vitro, but upregulated during reactivation. Resuscitation in vitro is associated with upregulation of genes linked to the synthesis of mycolic acids, phthiocerol mycocerosate (PDIM) and sulfolipids; ribosome biosynthesis, replication, transcription and translation, cell division, and genes encoding the five resuscitation promoting factors (Rpfs). The expression of proteases, transposases and insertion sequences, suggests genome reorganization during reactivation.
Collapse
Affiliation(s)
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
23
|
Kiran D, Basaraba RJ. Lactate Metabolism and Signaling in Tuberculosis and Cancer: A Comparative Review. Front Cell Infect Microbiol 2021; 11:624607. [PMID: 33718271 PMCID: PMC7952876 DOI: 10.3389/fcimb.2021.624607] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022] Open
Abstract
Infection with Mycobacterium tuberculosis (Mtb) leading to tuberculosis (TB) disease continues to be a major global health challenge. Critical barriers, including but not limited to the development of multi-drug resistance, lack of diagnostic assays that detect patients with latent TB, an effective vaccine that prevents Mtb infection, and infectious and non-infectious comorbidities that complicate active TB, continue to hinder progress toward a TB cure. To complement the ongoing development of new antimicrobial drugs, investigators in the field are exploring the value of host-directed therapies (HDTs). This therapeutic strategy targets the host, rather than Mtb, and is intended to augment host responses to infection such that the host is better equipped to prevent or clear infection and resolve chronic inflammation. Metabolic pathways of immune cells have been identified as promising HDT targets as more metabolites and metabolic pathways have shown to play a role in TB pathogenesis and disease progression. Specifically, this review highlights the potential role of lactate as both an immunomodulatory metabolite and a potentially important signaling molecule during the host response to Mtb infection. While long thought to be an inert end product of primarily glucose metabolism, the cancer research field has discovered the importance of lactate in carcinogenesis and resistance to chemotherapeutic drug treatment. Herein, we discuss similarities between the TB granuloma and tumor microenvironments in the context of lactate metabolism and identify key metabolic and signaling pathways that have been shown to play a role in tumor progression but have yet to be explored within the context of TB. Ultimately, lactate metabolism and signaling could be viable HDT targets for TB; however, critical additional research is needed to better understand the role of lactate at the host-pathogen interface during Mtb infection before adopting this HDT strategy.
Collapse
Affiliation(s)
| | - Randall J. Basaraba
- Metabolism of Infectious Diseases Laboratory, Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
24
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
25
|
Pore-forming Esx proteins mediate toxin secretion by Mycobacterium tuberculosis. Nat Commun 2021; 12:394. [PMID: 33452244 PMCID: PMC7810871 DOI: 10.1038/s41467-020-20533-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels. Electron microscopy of EsxEF reveals mainly pentameric structures with a central pore. Mutations of both WXG motifs and of a GXW motif do not affect dimerization, but abolish pore formation, membrane deformation and TNT secretion. The WXG/GXW mutants are locked in conformations with altered thermostability and solvent exposure, indicating that the WXG/GXW motifs are molecular switches controlling membrane interaction and pore formation. EsxF is accessible on the bacterial cell surface, suggesting that EsxEF form an outer membrane channel for toxin export. Thus, our study reveals a protein secretion mechanism in bacteria that relies on pore formation by small WXG proteins.
Collapse
|
26
|
Sharan R, Bucşan AN, Ganatra S, Paiardini M, Mohan M, Mehra S, Khader SA, Kaushal D. Chronic Immune Activation in TB/HIV Co-infection. Trends Microbiol 2020; 28:619-632. [PMID: 32417227 PMCID: PMC7390597 DOI: 10.1016/j.tim.2020.03.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/03/2020] [Accepted: 03/25/2020] [Indexed: 12/27/2022]
Abstract
HIV co-infection is the most critical risk factor for the reactivation of latent tuberculosis (TB) infection (LTBI). While CD4+ T cell depletion has been considered the major cause of HIV-induced reactivation of LTBI, recent work in macaques co-infected with Mycobacterium tuberculosis (Mtb)/simian immunodeficiency virus (SIV) suggests that cytopathic effects of SIV resulting in chronic immune activation and dysregulation of T cell homeostasis correlate with reactivation of LTBI. This review builds on compelling data that the reactivation of LTBI during HIV co-infection is likely to be driven by the events of HIV replication and therefore highlights the need to have optimum translational interventions directed at reactivation due to co-infection.
Collapse
Affiliation(s)
- Riti Sharan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Allison N Bucşan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Mirko Paiardini
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30329, USA
| | - Mahesh Mohan
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA 70433, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78227, USA.
| |
Collapse
|
27
|
Dunlap MD, Prince OA, Rangel-Moreno J, Thomas KA, Scordo JM, Torrelles JB, Cox J, Steyn AJC, Zúñiga J, Kaushal D, Khader SA. Formation of Lung Inducible Bronchus Associated Lymphoid Tissue Is Regulated by Mycobacterium tuberculosis Expressed Determinants. Front Immunol 2020; 11:1325. [PMID: 32695111 PMCID: PMC7338767 DOI: 10.3389/fimmu.2020.01325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of the infectious disease tuberculosis (TB), which is a leading cause of death worldwide. Approximately one fourth of the world's population is infected with Mtb. A major unresolved question is delineating the inducers of protective long-lasting immune response without inducing overt, lung inflammation. Previous studies have shown that the presence of inducible Bronchus-Associated Lymphoid Tissue (iBALT) correlate with protection from Mtb infection. In this study, we hypothesized that specific Mtb factors could influence the formation of iBALT, thus skewing the outcome of TB disease. We infected non-human primates (NHPs) with a transposon mutant library of Mtb, and identified specific Mtb mutants that were over-represented within iBALT-containing granulomas. A major pathway reflected in these mutants was Mtb cell wall lipid transport and metabolism. We mechanistically addressed the function of one such Mtb mutant lacking mycobacteria membrane protein large 7 (MmpL7), which transports phthiocerol dimycocerosate (PDIM) to the mycobacterial outer membrane (MOM). Accordingly, murine aerosol infection with the Mtb mutant Δmmpl7 correlated with increased iBALT-containing granulomas. Our studies showed that the Δmmpl7 mutant lacking PDIMs on the surface overexpressed diacyl trehaloses (DATs) in the cell wall, which altered the cytokine/chemokine production of epithelial and myeloid cells, thus leading to a dampened inflammatory response. Thus, this study describes an Mtb specific factor that participates in the induction of iBALT formation during TB by directly modulating cytokine and chemokine production in host cells.
Collapse
Affiliation(s)
- Micah D Dunlap
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Oliver A Prince
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Kimberly A Thomas
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Julia M Scordo
- Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jeffery Cox
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Adrie J C Steyn
- Department of Microbiology, Centers for AIDS Research and Free Radical Biology, University of Alabama at Alabama, Birmingham, AL, United States.,African Health Research Institute (AHRI), Durban, South Africa
| | - Joaquín Zúñiga
- Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Deepak Kaushal
- Texas Biomedical Research Institute, San Antonio, TX, United States.,Division of Bacteriology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Shabaana A Khader
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
28
|
Sarathy JP, Dartois V. Caseum: a Niche for Mycobacterium tuberculosis Drug-Tolerant Persisters. Clin Microbiol Rev 2020; 33:e00159-19. [PMID: 32238365 PMCID: PMC7117546 DOI: 10.1128/cmr.00159-19] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Caseum, the central necrotic material of tuberculous lesions, is a reservoir of drug-recalcitrant persisting mycobacteria. Caseum is found in closed nodules and in open cavities connecting with an airway. Several commonly accepted characteristics of caseum were established during the preantibiotic era, when autopsies of deceased tuberculosis (TB) patients were common but methodologies were limited. These pioneering studies generated concepts such as acidic pH, low oxygen tension, and paucity of nutrients being the drivers of nonreplication and persistence in caseum. Here we review widely accepted beliefs about the caseum-specific stress factors thought to trigger the shift of Mycobacterium tuberculosis to drug tolerance. Our current state of knowledge reveals that M. tuberculosis is faced with a lipid-rich diet rather than nutrient deprivation in caseum. Variable caseum pH is seen across lesions, possibly transiently acidic in young lesions but overall near neutral in most mature lesions. Oxygen tension is low in the avascular caseum of closed nodules and high at the cavity surface, and a gradient of decreasing oxygen tension likely forms toward the cavity wall. Since caseum is largely made of infected and necrotized macrophages filled with lipid droplets, the microenvironmental conditions encountered by M. tuberculosis in foamy macrophages and in caseum bear many similarities. While there remain a few knowledge gaps, these findings constitute a solid starting point to develop high-throughput drug discovery assays that combine the right balance of oxygen tension, pH, lipid abundance, and lipid species to model the profound drug tolerance of M. tuberculosis in caseum.
Collapse
Affiliation(s)
- Jansy P Sarathy
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, New Jersey, USA
| |
Collapse
|
29
|
Huante MB, Saito TB, Nusbaum RJ, Naqvi KF, Chauhan S, Hunter RL, Actor JK, Rudra JS, Endsley MA, Lisinicchia JG, Gelman BB, Endsley JJ. Small Animal Model of Post-chemotherapy Tuberculosis Relapse in the Setting of HIV Co-infection. Front Cell Infect Microbiol 2020; 10:150. [PMID: 32373548 PMCID: PMC7176873 DOI: 10.3389/fcimb.2020.00150] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/23/2020] [Indexed: 12/23/2022] Open
Abstract
Tuberculosis relapse following drug treatment of active disease is an important global public health problem due to the poorer clinical outcomes and increased risk of drug resistance development. Concurrent infection with HIV, including in those receiving anti-retroviral therapy (ART), is an important risk factor for relapse and expansion of drug resistant Mycobacterium tuberculosis (Mtb) isolates. A greater understanding of the HIV-associated factors driving TB relapse is important for development of interventions that support immune containment and complement drug therapy. We employed the humanized mouse to develop a new model of post-chemotherapy TB relapse in the setting of HIV infection. Paucibacillary TB infection was observed following treatment with Rifampin and Isoniazid and subsequent infection with HIV-1 was associated with increased Mtb burden in the post-drug phase. Organized granulomas were observed during development of acute TB and appeared to resolve following TB drug therapy. At relapse, granulomatous pathology in the lung was infrequent and mycobacteria were most often observed in the interstitium and at sites of diffuse inflammation. Compared to animals with HIV mono-infection, higher viral replication was observed in the lung and liver, but not in the periphery, of animals with post-drug TB relapse. The results demonstrate a potential role for the humanized mouse as an experimental model of TB relapse in the setting of HIV. Long term, the model could facilitate discovery of disease mechanisms and development of clinical interventions.
Collapse
Affiliation(s)
- Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Rebecca J Nusbaum
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Kubra F Naqvi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Robert L Hunter
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jeffrey K Actor
- Department of Pathology and Laboratory Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Jai S Rudra
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
30
|
Tsenova L, Singhal A. Effects of host-directed therapies on the pathology of tuberculosis. J Pathol 2020; 250:636-646. [PMID: 32108337 DOI: 10.1002/path.5407] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022]
Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), has co-evolved with the human immune system and utilizes multiple strategies to persist within infected cells, to hijack several immune mechanisms, and to cause severe pathology and tissue damage in the host. This delays the efficacy of current antibiotic therapy and contributes to the evolution of multi-drug-resistant strains. These challenges led to the development of the novel approach in TB treatment that involves therapeutic targeting of host immune response to control disease pathogenesis and pathogen growth, namely, host-directed therapies (HDTs). Such HDT approaches can (1) enhance the effect of antibiotics, (2) shorten treatment duration for any clinical form of TB, (3) promote development of immunological memory that could protect against relapse, and (4) ameliorate the immunopathology including matrix destruction and fibrosis associated with TB. In this review we discuss TB-HDT candidates shown to be of clinical relevance that thus could be developed to reduce pathology, tissue damage, and subsequent impairment of pulmonary function. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liana Tsenova
- Department of Biological Sciences, New York City College of Technology, Brooklyn, NY, USA
| | - Amit Singhal
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, India
| |
Collapse
|
31
|
Sapriel G, Brosch R. Shared Pathogenomic Patterns Characterize a New Phylotype, Revealing Transition toward Host-Adaptation Long before Speciation of Mycobacterium tuberculosis. Genome Biol Evol 2020; 11:2420-2438. [PMID: 31368488 PMCID: PMC6736058 DOI: 10.1093/gbe/evz162] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis remains one of the deadliest infectious diseases of humanity. To better understand the evolutionary history of host-adaptation of tubercle bacilli (MTB), we sought for mycobacterial species that were more closely related to MTB than the previously used comparator species Mycobacterium marinum and Mycobacterium kansasii. Our phylogenomic approach revealed some recently sequenced opportunistic mycobacterial pathogens, Mycobacterium decipiens, Mycobacterium lacus, Mycobacterium riyadhense, and Mycobacterium shinjukuense, to constitute a common clade with MTB, hereafter called MTB-associated phylotype (MTBAP), from which MTB have emerged. Multivariate and clustering analyses of genomic functional content revealed that the MTBAP lineage forms a clearly distinct cluster of species that share common genomic characteristics, such as loss of core genes, shift in dN/dS ratios, and massive expansion of toxin–antitoxin systems. Consistently, analysis of predicted horizontal gene transfer regions suggests that putative functions acquired by MTBAP members were markedly associated with changes in microbial ecology, for example adaption to intracellular stress resistance. Our study thus considerably deepens our view on MTB evolutionary history, unveiling a decisive shift that promoted conversion to host-adaptation among ancestral founders of the MTBAP lineage long before Mycobacterium tuberculosis has adapted to the human host.
Collapse
Affiliation(s)
- Guillaume Sapriel
- UFR des Sciences de La Santé, Université de Versailles St. Quentin, Montigny le Bretonneux, France.,Atelier de Bioinformatique, ISYEB, UMR 7205, Paris, France
| | - Roland Brosch
- Unit for Integrated Mycobacterial Pathogenomics, Institut Pasteur, CNRS UMR 3525, Paris, France
| |
Collapse
|
32
|
Abstract
Progress against tuberculosis (TB) requires faster-acting drugs. Mycobacterium tuberculosis (Mtb) is the leading cause of death by an infectious disease and its treatment is challenging and lengthy. Mtb is remarkably successful, in part, due to its ability to become dormant in response to host immune pressures. The DosRST two-component regulatory system is induced by hypoxia, nitric oxide and carbon monoxide and remodels Mtb physiology to promote nonreplicating persistence (NRP). NRP bacteria are thought to play a role in the long course of TB treatment. Therefore, inhibitors of DosRST-dependent adaptation may function to kill this reservoir of persisters and potentially shorten therapy. This review examines the function of DosRST, newly discovered compounds that inhibit DosRST signaling and considers future development of DosRST inhibitors as adjunct therapies.
Collapse
|
33
|
Zheng H, Williams JT, Aleiwi B, Ellsworth E, Abramovitch RB. Inhibiting Mycobacterium tuberculosis DosRST Signaling by Targeting Response Regulator DNA Binding and Sensor Kinase Heme. ACS Chem Biol 2020; 15:52-62. [PMID: 31556993 PMCID: PMC6970277 DOI: 10.1021/acschembio.8b00849] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Mycobacterium
tuberculosis (Mtb) possesses a two-component
regulatory system, DosRST, that enables Mtb to sense host immune cues
and establish a state of nonreplicating persistence (NRP). NRP bacteria
are tolerant to several antimycobacterial drugs in vitro and are thought to play a role in the long course of tuberculosis
therapy. Previously, we reported the discovery of six novel chemical
inhibitors of DosRST, named HC101A–106A, from a whole cell,
reporter-based phenotypic high throughput screen. Here, we report
functional and mechanism of action studies of HC104A and HC106A. RNaseq
transcriptional profiling shows that the compounds downregulate genes
of the DosRST regulon. Both compounds reduce hypoxia-induced triacylglycerol
synthesis by ∼50%. HC106A inhibits Mtb survival during hypoxia-induced
NRP; however, HC104A did not inhibit survival during NRP. An electrophoretic
mobility assay shows that HC104A inhibits DosR DNA binding in a dose-dependent
manner, indicating that HC104A may function by directly targeting
DosR. In contrast, UV–visible spectroscopy studies suggest
HC106A directly targets the sensor kinase heme, via a mechanism that
is distinct from the oxidation and alkylation of heme previously observed
with artemisinin (HC101A). Synergistic interactions were observed
when DosRST inhibitors were examined in pairwise combinations with
the strongest potentiation observed between artemisinin paired with
HC102A, HC103A, or HC106A. Our data collectively show that the DosRST
pathway can be inhibited by multiple distinct mechanisms.
Collapse
|
34
|
Gautam US, Mehra S, Kumari P, Alvarez X, Niu T, Tyagi JS, Kaushal D. Mycobacterium tuberculosis sensor kinase DosS modulates the autophagosome in a DosR-independent manner. Commun Biol 2019; 2:349. [PMID: 31552302 PMCID: PMC6754383 DOI: 10.1038/s42003-019-0594-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 09/03/2019] [Indexed: 01/03/2023] Open
Abstract
Dormancy is a key characteristic of the intracellular life-cycle of Mtb. The importance of sensor kinase DosS in mycobacteria are attributed in part to our current findings that DosS is required for both persistence and full virulence of Mtb. Here we show that DosS is also required for optimal replication in macrophages and involved in the suppression of TNF-α and autophagy pathways. Silencing of these pathways during the infection process restored full virulence in MtbΔdosS mutant. Notably, a mutant of the response regulator DosR did not exhibit the attenuation in macrophages, suggesting that DosS can function independently of DosR. We identified four DosS targets in Mtb genome; Rv0440, Rv2859c, Rv0994, and Rv0260c. These genes encode functions related to hypoxia adaptation, which are not directly controlled by DosR, e.g., protein recycling and chaperoning, biosynthesis of molybdenum cofactor and nitrogen metabolism. Our results strongly suggest a DosR-independent role for DosS in Mtb.
Collapse
Affiliation(s)
- Uma S. Gautam
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Present Address: Duke Human Vaccine Institute, Duke University School of Medicine, 909 S. LaSalle St., Durham, NC 27710 USA
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
- Center for Experimental Infectious Diseases Research, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803 USA
| | - Priyanka Kumari
- All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Xavier Alvarez
- Tulane National Primate Research Center, Covington, LA 70433 USA
| | - Tianhua Niu
- Department of Biochemistry, Tulane University School of Medicine, New Orleans, 70112 LA USA
| | - Jaya S. Tyagi
- All India Institute of Medical Sciences, New Delhi, 110029 India
- Centre for Bio-design and Diagnostics, Translational Health Science and Technology Institute Faridabad, Haryana, 121001 India
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, LA 70433 USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, 70112 LA USA
| |
Collapse
|
35
|
Ryndak MB, Laal S. Mycobacterium tuberculosis Primary Infection and Dissemination: A Critical Role for Alveolar Epithelial Cells. Front Cell Infect Microbiol 2019; 9:299. [PMID: 31497538 PMCID: PMC6712944 DOI: 10.3389/fcimb.2019.00299] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
Globally, tuberculosis (TB) has reemerged as a major cause of morbidity and mortality, despite the use of the Mycobacterium bovis BCG vaccine and intensive attempts to improve upon BCG or develop new vaccines. Two lacunae in our understanding of the Mycobacterium tuberculosis (M. tb)-host pathogenesis have mitigated the vaccine efforts; the bacterial-host interaction that enables successful establishment of primary infection and the correlates of protection against TB. The vast majority of vaccine efforts are based on the premise that cell-mediated immunity (CMI) is the predominating mode of protection against TB. However, studies in animal models and in humans demonstrate that post-infection, a period of several weeks precedes the initiation of CMI during which the few inhaled bacteria replicate dramatically and disseminate systemically. The “Trojan Horse” mechanism, wherein M. tb is phagocytosed and transported across the alveolar barrier by infected alveolar macrophages has been long postulated as the sole, primary M. tb:host interaction. In the current review, we present evidence from our studies of transcriptional profiles of M. tb in sputum as it emerges from infectious patients where the bacteria are in a quiescent state, to its adaptations in alveolar epithelial cells where the bacteria transform to a highly replicative and invasive phenotype, to its maintenance of the invasive phenotype in whole blood to the downregulation of invasiveness upon infection of epithelial cells at an extrapulmonary site. Evidence for this alternative mode of infection and dissemination during primary infection is supported by in vivo, in vitro cell-based, and transcriptional studies from multiple investigators in recent years. The proposed alternative mechanism of primary infection and dissemination across the alveolar barrier parallels our understanding of infection and dissemination of other Gram-positive pathogens across their relevant mucosal barriers in that barrier-specific adhesins, toxins, and enzymes synergize to facilitate systemic establishment of infection prior to the emergence of CMI. Further exploration of this M. tb:non-phagocytic cell interaction can provide alternative approaches to vaccine design to prevent infection with M. tb and not only decrease clinical disease but also decrease the overwhelming reservoir of latent TB infection.
Collapse
Affiliation(s)
- Michelle B Ryndak
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Suman Laal
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
36
|
Revisiting hypoxia therapies for tuberculosis. Clin Sci (Lond) 2019; 133:1271-1280. [PMID: 31209098 DOI: 10.1042/cs20190415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022]
Abstract
The spectre of the coming post-antibiotic age demands novel therapies for infectious diseases. Tuberculosis (TB), caused by Mycobacterium tuberculosis, is the single deadliest infection throughout human history. M. tuberculosis has acquired antibiotic resistance at an alarming rate with some strains reported as being totally drug resistant. Host-directed therapies (HDTs) attempt to overcome the evolution of antibiotic resistance by targeting relatively immutable host processes. Here, I hypothesise the induction of hypoxia via anti-angiogenic therapy will be an efficacious HDT against TB. I argue that anti-angiogenic therapy is a modernisation of industrial revolution era sanatoria treatment for TB, and present a view of the TB granuloma as a 'bacterial tumour' that can be treated with anti-angiogenic therapies to reduce bacterial burden and spare host immunopathology. I suggest two complementary modes of action, induction of bacterial dormancy and activation of host hypoxia-induced factor (HIF)-mediated immunity, and define the experimental tools necessary to test this hypothesis.
Collapse
|
37
|
Bucsan AN, Rout N, Foreman TW, Khader SA, Rengarajan J, Kaushal D. Mucosal-activated invariant T cells do not exhibit significant lung recruitment and proliferation profiles in macaques in response to infection with Mycobacterium tuberculosis CDC1551. Tuberculosis (Edinb) 2019; 116S:S11-S18. [PMID: 31072689 PMCID: PMC7050191 DOI: 10.1016/j.tube.2019.04.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022]
Abstract
TB is a catastrophic infectious disease, affecting roughly one third of the world's population. Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognize vitamin B metabolites produced by bacteria, possess effector memory phenotype, and express tissue-homing markers driving migration to sites of infection. Previous research in both Mtb and HIV infections has shown that MAIT cells are depleted in the human periphery, possibly migrating to the tissue sites of infection. We investigated this hypothesis using rhesus macaques (RMs) with active TB, latent TB (LTBI), and SIV-coinfection to explore the effects of different disease states on the MAIT cell populations in vivo. Early in infection, we observed that MAIT cells increased in the blood and bronchoalveolar lavage fluid (BAL) of all infected RMs, irrespective of clinical outcome. However, the frequency of MAIT cells rapidly normalized such that they had returned to baseline levels prior to endpoint. Furthermore, following infection, the chemokines expressed on MAIT cells reflected a strong shift towards a Th1 phenotype from a shared Th1/Th17 phenotype. In conclusion, MAIT cells with enhanced Th1 functions migrating to the site of Mtb-infection. The anti-mycobacterial effector functions of MAIT cells, particularly during the early stages of Mtb infection, had been of interest in promoting protective long-term TB immunity. Our research shows, however, that they have relatively short-acting responses in the host.
Collapse
Affiliation(s)
| | - Namita Rout
- Tulane National Primate Research Centre, Covington, LA, USA
| | | | | | | | - Deepak Kaushal
- Tulane National Primate Research Centre, Covington, LA, USA; Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
38
|
Foreman TW, Mehra S, Lackner AA, Kaushal D. Translational Research in the Nonhuman Primate Model of Tuberculosis. ILAR J 2018; 58:151-159. [PMID: 28575319 DOI: 10.1093/ilar/ilx015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/10/2017] [Indexed: 11/14/2022] Open
Abstract
Infection with Mycobacterium tuberculosis predominantly establishes subclinical latent infection over the lifetime of an individual, with a fraction of infected individuals rapidly progressing to active disease. The immune control in latent infection can be perturbed by comorbidities such as diabetes mellitus, obesity, smoking, and coinfection with helminthes or HIV. Modeling the varying aspects of natural infection remains incomplete when using zebrafish and mice. However, the nonhuman primate model of tuberculosis offers a unique and accurate model to investigate host responses to infection, test novel therapeutics, and thoroughly assess preclinical vaccine candidates. Rhesus macaques and cynomolgus macaques manifest the full gamut of clinical and pathological findings in human Mycobacterium tuberculosis infection, including the ability to co-infect macaques with Simian Immunodeficiency Virus to model HIV co-infection. Here we discuss advanced techniques to assay various clinical outcomes of the natural progression of infection as well as therapeutics in development and novel preclinical vaccines. Finally, we survey the translational aspects of nonhuman primate research and argue the urgent need to thoroughly examine preclinical therapeutics and vaccines using this model prior to clinical implementation.
Collapse
Affiliation(s)
- Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana.,Tulane University School of Medicine, New Orleans, Louisiana
| | - Smriti Mehra
- Louisiana State University School, Veterinary Medicine, Baton Rouge, Louisiana.,Tulane National Primate Research Center in Covington, Louisiana
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, Louisiana.,Immunology and Pathology at Tulane University School of Medicine in New Orleans, Louisiana
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana.,Immunology at Tulane University School of Medicine, New Orleans, Louisiana.,Department of Medicine, Tulane University School of Medicine in New Orleans, Louisiana
| |
Collapse
|
39
|
Slayden RA, Dawson CC, Cummings JE. Toxin-antitoxin systems and regulatory mechanisms in Mycobacterium tuberculosis. Pathog Dis 2018; 76:4969681. [PMID: 29788125 DOI: 10.1093/femspd/fty039] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/01/2018] [Indexed: 11/14/2022] Open
Abstract
There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.
Collapse
Affiliation(s)
- Richard A Slayden
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Clinton C Dawson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| | - Jason E Cummings
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-0922, USA
| |
Collapse
|
40
|
Pacl HT, Reddy VP, Saini V, Chinta KC, Steyn AJC. Host-pathogen redox dynamics modulate Mycobacterium tuberculosis pathogenesis. Pathog Dis 2018; 76:4972762. [PMID: 29873719 PMCID: PMC5989597 DOI: 10.1093/femspd/fty036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/13/2018] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, encounters variable and hostile environments within the host. A major component of these hostile conditions is reductive and oxidative stresses induced by factors modified by the host immune response, such as oxygen tension, NO or CO gases, reactive oxygen and nitrogen intermediates, the availability of different carbon sources and changes in pH. It is therefore essential for Mtb to continuously monitor and appropriately respond to the microenvironment. To this end, Mtb has developed various redox-sensitive systems capable of monitoring its intracellular redox environment and coordinating a response essential for virulence. Various aspects of Mtb physiology are regulated by these systems, including drug susceptibility, secretion systems, energy metabolism and dormancy. While great progress has been made in understanding the mechanisms and pathways that govern the response of Mtb to the host's redox environment, many questions in this area remain unanswered. The answers to these questions are promising avenues for addressing the tuberculosis crisis.
Collapse
Affiliation(s)
- Hayden T Pacl
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Vikram Saini
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Krishna C Chinta
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
| | - Adrie J C Steyn
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama 35205, USA
- Africa Health Research Institute, K-RITH Tower Building, Durban 4001, South Africa
- School of Laboratory Medicine and Medical Sciences, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| |
Collapse
|
41
|
Yang H, Sha W, Liu Z, Tang T, Liu H, Qin L, Cui Z, Chen J, Liu F, Zheng R, Huang X, Wang J, Feng Y, Ge B. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg Microbes Infect 2018; 7:34. [PMID: 29559631 PMCID: PMC5861037 DOI: 10.1038/s41426-018-0032-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/10/2018] [Accepted: 01/14/2018] [Indexed: 01/09/2023]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) infection remains a large global public health problem. One striking characteristic of Mtb is its ability to adapt to hypoxia and trigger the ensuing transition to a dormant state for persistent infection, but how the hypoxia response of Mtb is regulated remains largely unknown. Here we performed a quantitative acetylome analysis to compare the acetylation profile of Mtb under aeration and hypoxia, and showed that 377 acetylation sites in 269 Mtb proteins were significantly changed under hypoxia. In particular, deacetylation of dormancy survival regulator (DosR) at K182 promoted the hypoxia response in Mtb and enhanced the transcription of DosR-targeted genes. Mechanistically, recombinant DosRK182R protein demonstrated enhanced DNA-binding activity in comparison with DosRK182Q protein. Moreover, Rv0998 was identified as an acetyltransferase that mediates the acetylation of DosR at K182. Deletion of Rv0998 also promoted the adaptation of Mtb to hypoxia and the transcription of DosR-targeted genes. Mice infected with an Mtb strain containing acetylation-defective DosRK182R had much lower bacterial counts and less severe histopathological impairments compared with those infected with the wild-type strain. Our findings suggest that hypoxia induces the deacetylation of DosR, which in turn increases its DNA-binding ability to promote the transcription of target genes, allowing Mtb to shift to dormancy under hypoxia.
Collapse
Affiliation(s)
- Hua Yang
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Wei Sha
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Zhonghua Liu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Tianqi Tang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200049, PR China
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Lianhua Qin
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Jianxia Chen
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Feng Liu
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Ruijuan Zheng
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Xiaochen Huang
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Jie Wang
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Yonghong Feng
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China
| | - Baoxue Ge
- Shanghai Key Laboratory of Tuberculosis, Clinic and Research Center of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China. .,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200049, PR China.
| |
Collapse
|
42
|
Veatch AV, Kaushal D. Opening Pandora's Box: Mechanisms of Mycobacterium tuberculosis Resuscitation. Trends Microbiol 2017; 26:145-157. [PMID: 28911979 DOI: 10.1016/j.tim.2017.08.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/12/2017] [Accepted: 08/03/2017] [Indexed: 12/27/2022]
Abstract
Mycobacterium tuberculosis (Mtb) characteristically causes an asymptomatic infection. While this latent tuberculosis infection (LTBI) is not contagious, reactivation to active tuberculosis disease (TB) causes the patient to become infectious. A vaccine has existed for TB for a century, while drug treatments have been available for over 70 years; despite this, TB remains a major global health crisis. Understanding the factors which allow the bacillus to control responses to host stress and mechanisms leading to latency are critical for persistence. Similarly, molecular switches which respond to reactivation are important. Recently, research in the field has sought to focus on reactivation, employing system-wide approaches and animal models. Here, we describe the current work that has been done to elucidate the mechanisms of reactivation and stop reactivation in its tracks.
Collapse
Affiliation(s)
- Ashley V Veatch
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Center, Covington, LA, USA; Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
43
|
Phillips BL, Gautam US, Bucsan AN, Foreman TW, Golden NA, Niu T, Kaushal D, Mehra S. LAG-3 potentiates the survival of Mycobacterium tuberculosis in host phagocytes by modulating mitochondrial signaling in an in-vitro granuloma model. PLoS One 2017; 12:e0180413. [PMID: 28880895 PMCID: PMC5589099 DOI: 10.1371/journal.pone.0180413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/28/2017] [Indexed: 11/23/2022] Open
Abstract
CD4+ T-cell mediated Th1 immune responses are critical for immunity to TB. The immunomodulatory protein, lymphocyte activation gene-3 (LAG-3) decreases Th1-type immune responses in T-cells. LAG-3 expression is significantly induced in the lungs of macaques with active TB and correlates with increased bacterial burden. Overproduction of LAG-3 can greatly diminish responses and could lead to uncontrolled Mtb replication. To assess the effect of LAG-3 on the progression of Mtb infection, we developed a co-culture system wherein blood-derived macrophages are infected with Mtb and supplemented with macaque blood or lung derived CD4+ T-cells. Silencing LAG-3 signaling in macaque lung CD4+ T-cells enhanced killing of Mtb in co-cultures, accompanied by reduced mitochondrial electron transport and increased IFN-γ expression. Thus, LAG-3 may modulate adaptive immunity to Mtb infection by interfering with the mitochondrial apoptosis pathway. Better understanding this pathway could allow us to circumvent immune features that promote disease.
Collapse
Affiliation(s)
- Bonnie L Phillips
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Uma S Gautam
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Allison N Bucsan
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Taylor W Foreman
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Nadia A Golden
- Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Tianhua Niu
- Department of Biostatistics and Bioinformatics, Tulane University School of Public Health, New Orleans, Louisiana, United States of America
| | - Deepak Kaushal
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Smriti Mehra
- Tulane National Primate Research Center, Covington, Louisiana, United States of America.,Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, United States of America
| |
Collapse
|