1
|
Yu HR, Tsai CY, Chen WL, Liu PY, Tain YL, Sheen JM, Huang YS, Tiao MM, Chiu CY. Exploring Oxidative Stress and Metabolic Dysregulation in Lung Tissues of Offspring Rats Exposed to Prenatal Polystyrene Microplastics: Effects of Melatonin Treatment. Antioxidants (Basel) 2024; 13:1459. [PMID: 39765788 PMCID: PMC11672973 DOI: 10.3390/antiox13121459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolomics research provides a clearer understanding of an organism's metabolic state and enables a more accurate representation of its functional performance. This study aimed to investigate changes in the metabolome of lung tissues resulting from prenatal exposure to polystyrene microplastics (PS-MPs) and to understand the underlying mechanisms of lung damage in rat offspring. We conducted metabolomic analyses of lung tissue from seven-day-old rat pups exposed to prenatal PS-MPs. Our findings revealed that prenatal exposure to PS-MPs led to significantly increased oxidative stress in lung tissues, characterized by notable imbalances in nucleic acid metabolism and altered profiles of specific amino acids. Furthermore, we evaluated the therapeutic effects of melatonin treatment on lung function in 120-day-old offspring and found that melatonin treatment significantly improved lung function and histologic change in the affected offspring. This study provides valuable biological insights into the mechanisms underlying lung damage caused by prenatal PS-MPs exposure. Future studies should focus on validating the results of animal experiments in humans, exploring additional therapeutic mechanisms of melatonin, and developing suitable protocols for clinical use.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Ching-Yi Tsai
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Wei-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Po-Yu Liu
- School of Medicine, College of Medicine, The Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 807, Taiwan;
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Jiunn-Ming Sheen
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Yi-Siang Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Mao-Meng Tiao
- Graduate Institute of Clinical Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; (H.-R.Y.); (W.-L.C.); (Y.-L.T.); (J.-M.S.); (Y.-S.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chih-Yung Chiu
- Division of Pediatric Pulmonology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Chang Gung University, Taoyuan 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| |
Collapse
|
2
|
Gan PXL, Zhang S, Fred Wong WS. Targeting reprogrammed metabolism as a therapeutic approach for respiratory diseases. Biochem Pharmacol 2024; 228:116187. [PMID: 38561090 DOI: 10.1016/j.bcp.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid β-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Shanshan Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| |
Collapse
|
3
|
Howes A, Rogerson C, Belyaev N, Karagyozova T, Rapiteanu R, Fradique R, Pellicciotta N, Mayhew D, Hurd C, Crotta S, Singh T, Dingwell K, Myatt A, Arad N, Hasan H, Bijlsma H, Panjwani A, Vijayan V, Young G, Bridges A, Petit-Frere S, Betts J, Larminie C, Smith JC, Hessel EM, Michalovich D, Walport L, Cicuta P, Powell AJ, Beinke S, Wack A. The FAM13A Long Isoform Regulates Cilia Movement and Coordination in Airway Mucociliary Transport. Am J Respir Cell Mol Biol 2024; 71:282-293. [PMID: 38691660 PMCID: PMC11376246 DOI: 10.1165/rcmb.2024-0063oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024] Open
Abstract
Single nucelotide polymorphisms (SNPs) at the FAM13A locus are among the most commonly reported risk alleles associated with chronic obstructive pulmonary disease (COPD) and other respiratory diseases; however, the physiological role of FAM13A is unclear. In humans, two major protein isoforms are expressed at the FAM13A locus: "long" and "short," but their functions remain unknown, partly because of a lack of isoform conservation in mice. We performed in-depth characterization of organotypic primary human airway epithelial cell subsets and show that multiciliated cells predominantly express the FAM13A long isoform containing a putative N-terminal Rho GTPase-activating protein (RhoGAP) domain. Using purified proteins, we directly demonstrate the RhoGAP activity of this domain. In Xenopus laevis, which conserve the long-isoform, Fam13a deficiency impaired cilia-dependent embryo motility. In human primary epithelial cells, long-isoform deficiency did not affect multiciliogenesis but reduced cilia coordination in mucociliary transport assays. This is the first demonstration that FAM13A isoforms are differentially expressed within the airway epithelium, with implications for the assessment and interpretation of SNP effects on FAM13A expression levels. We also show that the long FAM13A isoform coordinates cilia-driven movement, suggesting that FAM13A risk alleles may affect susceptibility to respiratory diseases through deficiencies in mucociliary clearance.
Collapse
Affiliation(s)
| | - Clare Rogerson
- Immunoregulation Laboratory
- Crick-GSK Biomedical LinkLabs
| | | | | | | | - Ricardo Fradique
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Catherine Hurd
- Protein-Protein Interaction Laboratory
- Crick-GSK Biomedical LinkLabs
| | | | | | | | - Anniek Myatt
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Navot Arad
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Hikmatyar Hasan
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | - Hielke Bijlsma
- Capgemini Engineering, Capgemini UK, Stevenage, United Kingdom; and
| | | | - Vinaya Vijayan
- Development Digital and Tech, GSK, Collegeville, Pennsylvania
| | - George Young
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, United Kingdom
| | | | | | | | | | | | - Edith M. Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GSK R&D, Stevenage, United Kingdom
| | | | | | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
4
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
Yurakova TR, Gorshkova EA, Nosenko MA, Drutskaya MS. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:817-838. [PMID: 38880644 DOI: 10.1134/s0006297924050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02F306, Ireland
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| |
Collapse
|
6
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
7
|
Polverino F, Mora A. Alveolar Epithelial Cell Dysfunction in Idiopathic Pulmonary Fibrosis Linked to Lipid Alterations: Therapeutic Implications. Am J Respir Cell Mol Biol 2024; 70:233-234. [PMID: 38271680 PMCID: PMC11478126 DOI: 10.1165/rcmb.2023-0432ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 01/27/2024] Open
Affiliation(s)
| | - Ana Mora
- Division of Pulmonary, Critical Care, and Sleep Medicine Ohio State University Columbus, Ohio
| |
Collapse
|
8
|
He X, Barnett LM, Jeon J, Zhang Q, Alqahtani S, Black M, Shannahan J, Wright C. Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells. TOXICS 2024; 12:67. [PMID: 38251022 PMCID: PMC10818734 DOI: 10.3390/toxics12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air-liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1β, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes.
Collapse
Affiliation(s)
- Xiaojia He
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Lillie Marie Barnett
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jennifer Jeon
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Saeed Alqahtani
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
- Advanced Diagnostic and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Marilyn Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
| | - Christa Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| |
Collapse
|
9
|
Jiang C, Peng M, Dai Z, Chen Q. Screening of Lipid Metabolism-Related Genes as Diagnostic Indicators in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 18:2739-2754. [PMID: 38046983 PMCID: PMC10693249 DOI: 10.2147/copd.s428984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/11/2023] [Indexed: 12/05/2023] Open
Abstract
Objective It has been observed that local and systemic disorders of lipid metabolism occur during the development of chronic obstructive pulmonary disease (COPD), but no specific mechanism has yet been identified. Methods The mRNA microarray dataset GSE76925 of COPD patients was downloaded from the Gene Expression Omnibus database and screened for differentially expressed genes (DEGs). Lipid metabolism-related genes (LMRGs) were extracted from the Kyoto Encyclopedia of Genes and Genomes database and Molecular Signature Database. The DEGs were intersected with LMRGs to obtain differentially expressed lipid metabolism-related genes (DeLMRGs). GO enrichment analysis and KEGG pathway analysis were performed on DeLMRGs, and protein-protein interaction networks were constructed and screened to identify hub genes. The GSE8581 validation set and further ELISA experiments were used to validate key DeLMRG expression. Results Differential analysis of dataset GSE76925 identified 587 DEGs, of which 62 genes were up-regulated and 525 were down-regulated. Taking the intersection of 587 DEGs with 1102 LMRGs, 20 DeLMRGs were obtained, including 1 up-regulated gene and 19 down-regulated genes. 10 hub genes were screened by cytohubba plugin, including 9 down-regulated genes PLA2G4A, HPGDS, LEP, PTGES3, LEPR, PLA2G2D, MED21, SPTLC1 and BCHE, as well as the only up-regulated gene PLA2G7. Validation of the identified 10 DeLMRGs using the validation set GSE8581 revealed that BCHE and PLA2G7 expression levels differed between the two groups. We further constructed the ceRNA network of BCHE and PLA2G7. Cell experiments also showed that PLA2G7 expression was up-regulated and BCHE expression was down-regulated in CSE-treated RAW264.7 and THP-1 cells. Conclusion Based on a comprehensive bioinformatic analysis of lipid metabolism genes, we identified BCHE and PLA2G7 as potentially significant biomarkers of COPD. These biomarkers may represent promising targets for COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Meijuan Peng
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
10
|
Chen Q, Vasse GF, Nwozor KO, Bekker NJ, van den Berge M, Brandsma CA, de Vries M, Heijink IH. FAM13A regulates cellular senescence marker p21 and mitochondrial reactive oxygen species production in airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L460-L466. [PMID: 37605846 DOI: 10.1152/ajplung.00141.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
Inhalation of noxious gasses induces oxidative stress in airway epithelial cells (AECs), which may lead to cellular senescence and contribute to the development of chronic obstructive pulmonary disease (COPD). FAM13A, a well-known COPD susceptibility gene, is highly expressed in airway epithelium. We studied whether its expression is associated with aging and cellular senescence and affects airway epithelial responses to paraquat, a cellular senescence inducer. The association between age and FAM13A expression was investigated in two datasets of human lung tissue and bronchial brushings from current/ex-smokers with/without COPD. Protein levels of FAM13A and cellular senescence marker p21 were investigated using immunohistochemistry in lung tissue from patients with COPD. In vitro, FAM13A and P21 expression was assessed using qPCR in air-liquid-interface (ALI)-differentiated AECs in absence/presence of paraquat. In addition, FAM13A was overexpressed in human bronchial epithelial 16HBE cells and the effect on P21 expression (qPCR) and mitochondrial reactive oxygen species (ROS) production (MitoSOX staining) was assessed. Lower FAM13A expression was significantly associated with increasing age in lung tissue and bronchial epithelium. In airway epithelium of patients with COPD, we found a negative correlation between FAM13A and p21 protein levels. In ALI-differentiated AECs, the paraquat-induced decrease in FAM13A expression was accompanied by increased P21 expression. In 16HBE cells, the overexpression of FAM13A significantly reduced paraquat-induced P21 expression and mitochondrial ROS production. Our data suggest that FAM13A expression decreases with aging, resulting in higher P21 expression and mitochondrial ROS production in the airway epithelium, thus facilitating cellular senescence and as such potentially contributing to accelerated lung aging in COPD.NEW & NOTEWORTHY To our knowledge, this is the first study investigating the role of the COPD susceptibility gene FAM13A in aging and cellular senescence. We found that FAM13A negatively regulates the expression of the cellular senescence marker P21 and mitochondrial ROS production in the airway epithelium. In this way, the lower expression of FAM13A observed upon aging may facilitate cellular senescence and potentially contribute to accelerated lung aging in COPD.
Collapse
Affiliation(s)
- Qing Chen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Gwenda F Vasse
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Kingsley Okechukwu Nwozor
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Nicolaas J Bekker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, The Netherlands
| |
Collapse
|
11
|
Fan LC, McConn K, Plataki M, Kenny S, Williams NC, Kim K, Quirke JA, Chen Y, Sauler M, Möbius ME, Chung KP, Area Gomez E, Choi AM, Xu JF, Cloonan SM. Alveolar type II epithelial cell FASN maintains lipid homeostasis in experimental COPD. JCI Insight 2023; 8:e163403. [PMID: 37606038 PMCID: PMC10543729 DOI: 10.1172/jci.insight.163403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/10/2023] [Indexed: 08/23/2023] Open
Abstract
Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid-containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.
Collapse
Affiliation(s)
- Li-Chao Fan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keith McConn
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, and
| | | | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | | - Yan Chen
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Kuei-Pin Chung
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Laboratory Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Estela Area Gomez
- Division of Neuromuscular Medicine, Department of Neurology, Columbia University Irving Medical Center, Neurological Institute, New York, New York, USA
- Center for Biological Research “Margarita Salas”, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Augustine M.K. Choi
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, New York, USA
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- School of Medicine, Trinity Biomedical Sciences Institute, and
| |
Collapse
|
12
|
Raby KL, Michaeloudes C, Tonkin J, Chung KF, Bhavsar PK. Mechanisms of airway epithelial injury and abnormal repair in asthma and COPD. Front Immunol 2023; 14:1201658. [PMID: 37520564 PMCID: PMC10374037 DOI: 10.3389/fimmu.2023.1201658] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
The airway epithelium comprises of different cell types and acts as a physical barrier preventing pathogens, including inhaled particles and microbes, from entering the lungs. Goblet cells and submucosal glands produce mucus that traps pathogens, which are expelled from the respiratory tract by ciliated cells. Basal cells act as progenitor cells, differentiating into different epithelial cell types, to maintain homeostasis following injury. Adherens and tight junctions between cells maintain the epithelial barrier function and regulate the movement of molecules across it. In this review we discuss how abnormal epithelial structure and function, caused by chronic injury and abnormal repair, drives airway disease and specifically asthma and chronic obstructive pulmonary disease (COPD). In both diseases, inhaled allergens, pollutants and microbes disrupt junctional complexes and promote cell death, impairing the barrier function and leading to increased penetration of pathogens and a constant airway immune response. In asthma, the inflammatory response precipitates the epithelial injury and drives abnormal basal cell differentiation. This leads to reduced ciliated cells, goblet cell hyperplasia and increased epithelial mesenchymal transition, which contribute to impaired mucociliary clearance and airway remodelling. In COPD, chronic oxidative stress and inflammation trigger premature epithelial cell senescence, which contributes to loss of epithelial integrity and airway inflammation and remodelling. Increased numbers of basal cells showing deregulated differentiation, contributes to ciliary dysfunction and mucous hyperproduction in COPD airways. Defective antioxidant, antiviral and damage repair mechanisms, possibly due to genetic or epigenetic factors, may confer susceptibility to airway epithelial dysfunction in these diseases. The current evidence suggests that a constant cycle of injury and abnormal repair of the epithelium drives chronic airway inflammation and remodelling in asthma and COPD. Mechanistic understanding of injury susceptibility and damage response may lead to improved therapies for these diseases.
Collapse
Affiliation(s)
- Katie Louise Raby
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - James Tonkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| | - Pankaj Kumar Bhavsar
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospital, London, United Kingdom
| |
Collapse
|
13
|
Pham KH, Tran NTC, Tran HD, Ngo TH, Tran VD, Ly HHV, Pham NTN, Nguyen T, Nguyen BH, Nguyen KT. Single Nucleotide Polymorphisms of FAM13A Gene in Chronic Obstructive Pulmonary Disease-A Case Control Study in Vietnam. Adv Respir Med 2023; 91:268-277. [PMID: 37366807 DOI: 10.3390/arm91030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND In 2018, GOLD addressed the issues of genotypes associated with risk factors for COPD. The genome-wide association study (GWAS) demonstrated an association between COPD and several genetic variants of single nucleotide polymorphisms (SNPs) of the FAM13A gene with the risk of COPD. OBJECTIVE To study the single nucleotide polymorphisms rs2869967 and rs17014601 of the FAM13A gene in chronic obstructive pulmonary disease. Subjects and research methods: 80 subjects diagnosed with COPD and 80 subjects determined not to have COPD according to GOLD 2020 criteria; the subjects were clinically examined, interviewed, and identified as possessing single nucleotide polymorphisms using the sanger sequencing method on whole blood samples. RESULTS The male/female ratio of the patient group and the control group was 79/1 and 39/1, respectively. The percentages of C and T alleles of rs2869967 in COPD patients were 50.6% and 49.4%, respectively. The percentages of C and T alleles of rs17014601 in COPD patients were 31.9% and 68.1%, respectively. At rs17014601, the ratio values of alleles T and C in the disease group and the control group were markedly different, making them statistically reliable (p = 0.031). The rate of CT genotype in the group of patients was considerably higher than that of the control group. The TT homozygous genotype had a lower risk of COPD compared with the other genotypes in the dominant model (ORTT/(CC + CT) = 0.441; CI95% = 0.233-0.833); this difference was statistically significant (p = 0.012). CONCLUSIONS With rs17014601, it is characteristic that the frequency of the T allele appears more than the C allele, and the CT heterozygous phenotype accounts for the highest proportion in rs17014601 and rs2869967 recorded in COPD patients. There is an association between the genetic variant of the SNP FAM13A-rs17014601 and the risk of COPD.
Collapse
Affiliation(s)
- Khanh Hoang Pham
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Nhung Thi Cam Tran
- Department of Anesthesiology and Resuscitation, Hoan My Cuu Long Hospital, Can Tho City 900000, Vietnam
| | - Hung Do Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Toan Hoang Ngo
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Van De Tran
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Hung Huynh Vinh Ly
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Nga Thi Ngoc Pham
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Thang Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Binh Huy Nguyen
- Physiology Department, Hanoi Medical University, Ha Noi 100000, Vietnam
| | - Kien Trung Nguyen
- Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| |
Collapse
|
14
|
Pagura L, Dumoulin PC, Ellis CC, Mendes MT, Estevao IL, Almeida IC, Burleigh BA. Fatty acid elongases 1-3 have distinct roles in mitochondrial function, growth, and lipid homeostasis in Trypanosoma cruzi. J Biol Chem 2023; 299:104715. [PMID: 37061002 PMCID: PMC10203773 DOI: 10.1016/j.jbc.2023.104715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/17/2023] Open
Abstract
Trypanosomatids are a diverse group of uniflagellate protozoan parasites that include globally relevant pathogens such as Trypanosoma cruzi, the causative agent of Chagas disease. Trypanosomes lack the fatty acid synthase system typically used for de novo fatty acid (FA) synthesis in other eukaryotes. Instead, these microbes have evolved a modular FA elongase (ELO) system comprised of individual ELO enzymes (ELO1-4) that can operate processively to generate long chain- and very long chain-FAs. The importance of ELO's for maintaining lipid homeostasis in trypanosomatids is currently unclear, given their ability to take up and utilize exogenous FAs for lipid synthesis. To assess ELO function in T. cruzi, we generated individual KO lines, Δelo1, Δelo2, and Δelo3, in which the genes encoding ELO1-3 were functionally disrupted in the parasite insect stage (epimastigote). Using unbiased lipidomic and metabolomic analyses, in combination with metabolic tracing and biochemical approaches, we demonstrate that ELO2 and ELO3 are required for global lipid homeostasis, whereas ELO1 is dispensable for this function. Instead, ELO1 activity is needed to sustain mitochondrial activity and normal growth in T. cruzi epimastigotes. The cross-talk between microsomal ELO1 and the mitochondrion is a novel finding that, we propose, merits further examination of the trypanosomatid ELO pathway as critical for central metabolism.
Collapse
Affiliation(s)
- Lucas Pagura
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Peter C Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Maria T Mendes
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Igor L Estevao
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas, USA.
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.
| |
Collapse
|
15
|
Faherty L, Kenny S, Cloonan SM. Iron and mitochondria in the susceptibility, pathogenesis and progression of COPD. Clin Sci (Lond) 2023; 137:219-237. [PMID: 36729089 DOI: 10.1042/cs20210504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating lung disease characterised by airflow limitation, chronic bronchitis, emphysema and airway remodelling. Cigarette smoke is considered the primary risk factor for the development of COPD; however, genetic factors, host responses and infection also play an important role. Accumulating evidence highlights a role for iron dyshomeostasis and cellular iron accumulation in the lung as a key contributing factor in the development and pathogenesis of COPD. Recent studies have also shown that mitochondria, the central players in cellular iron utilisation, are dysfunctional in respiratory cells in individuals with COPD, with alterations in mitochondrial bioenergetics and dynamics driving disease progression. Understanding the molecular mechanisms underlying the dysfunction of mitochondria and cellular iron metabolism in the lung may unveil potential novel investigational avenues and therapeutic targets to aid in the treatment of COPD.
Collapse
Affiliation(s)
- Lynne Faherty
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Sarah Kenny
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Suzanne M Cloonan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, New York, NY, U.S.A
| |
Collapse
|
16
|
Li L, Zhang Y, Gong J, Yang G, Zhi S, Ren D, Zhao H. Cpt1a alleviates cigarette smoke‑induced chronic obstructive pulmonary disease. Exp Ther Med 2022; 25:54. [PMID: 36588819 PMCID: PMC9780514 DOI: 10.3892/etm.2022.11753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022] Open
Abstract
The current study aimed to determine the expression of carnitine palmitoyltransferase 1A (Cpt1a) in the lung tissue of chronic obstructive pulmonary disease (COPD) patients and its correlation with lung function. An increase in Cpt1a expression improved lung function in patients with COPD by inhibiting apoptosis and the inflammatory response of lung endothelial cells. Lung tissues of 20 patients with COPD and 10 control patients were collected, their Cpt1a expression was determined by western blotting and apoptosis and inflammation were assessed by haematoxylin-eosin staining, TUNEL assay and ELISA. Mice with knockout or overexpression of Cpt1a were constructed by lentivirus in vivo. A COPD model was induced by cigarette smoke and the role of Cpt1a in COPD was determined in vivo and in vitro. Cpt1a expression was positively correlated with lung function and negatively correlated with apoptosis and inflammation. Patients with COPD with higher expression of Cpt1a in lung tissues had improved lung function indices and lung tissue morphology with less apoptosis and decreased inflammatory response. Compared with the control group, COPD mice with Cpt1a knockdown had aggravated lung dysfunction and increased lung inflammation and apoptosis. Overexpression of Cpt1a alleviated lung dysfunction and reduced inflammatory response and apoptosis of lung tissues in COPD mice. Pulmonary microvascular endothelial cells of mice were isolated in vitro and the results were consistent with the findings obtained in vivo. In conclusion, the clinical, in vivo and in vitro data confirmed for the first time that Cpt1a alleviated lung dysfunction of patients with COPD by inhibiting apoptosis of endothelial cells and inflammatory responses.
Collapse
Affiliation(s)
- Lifang Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yaqian Zhang
- School of Basic Medical Sciences, Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, P.R. China
| | - Jiannan Gong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guang Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Shuyin Zhi
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Dongping Ren
- Department of R&D, USBAY Biotechnology Co., Ltd, Beijing 102006, P.R. China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China,School of Basic Medical Sciences, Department of Pharmacology, Shanxi Medical University, Taiyuan 030000, P.R. China,Correspondence to: Professor Hui Zhao, Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
17
|
Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, Chellian J, Candasamy M, Patel VK, Arora P, Singh PK, Singh SK, Gupta G, Oliver BG, Hansbro PM, Dua K. Targeting the mitochondria in chronic respiratory diseases. Mitochondrion 2022; 67:15-37. [PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/28/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
Collapse
Affiliation(s)
- Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Nian Wan Tan
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ka Seng Cheong
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Samantha Sert Qi Khoo
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Su Min Seow
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Mayuren Candasamy
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vyoma K Patel
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW 2052, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Poonam Arora
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India; Department of Pharmacognosy and Phytochemistry, SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Kamal Dua
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
18
|
Lee SY, Lee HS, Park HW. Transcriptome analysis of sputum cells reveals two distinct molecular phenotypes of “asthma and chronic obstructive pulmonary disease overlap” in the elderly. Eur J Med Res 2022; 27:215. [DOI: 10.1186/s40001-022-00861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Little is known about the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD) overlap (ACO). This study examined the molecular phenotypes of ACO in the elderly.
Methods
A genome-wide investigation of gene expression in sputum cells from the elderly with asthma, ACO, or COPD was performed using gene set variation analysis (GSVA) with predefined asthma- or COPD-specific gene signatures. We then performed a subsequent cluster analysis using enrichment scores (ESs) to identify molecular clusters in the elderly with ACO. Finally, a second GSVA was conducted with curated gene signatures to gain insight into the pathogenesis of ACO associated with the identified molecular clusters.
Results
Seventy elderly individuals were enrolled (17 with asthma, 41 with ACO, and 12 with COPD). Two distinct molecular clusters of ACO were identified. Clinically, ACO cluster 1 (N = 23) was characterized by male and smoker dominance, more obstructive lung function, and higher proportions of both neutrophil and eosinophil in induced sputum compared to ACO cluster 2 (N = 18). ACO cluster 1 had molecular features similar to both asthma and COPD, with mitochondria and peroxisome dysfunction as important mechanisms in the pathogenesis of these diseases. The molecular features of ACO cluster 2 differed from those of asthma and COPD, with enhanced innate immune reactions to microorganisms identified as being important in the pathogenesis of this form of ACO.
Conclusion
Recognition of the unique biological pathways associated with the two distinct molecular phenotypes of ACO will deepen our understanding of ACO in the elderly.
Collapse
|
19
|
Liu Q, Zhang H, Chang F, Qiu J, Duan L, Hu G, Zhang Y, Zhang X, Xu L. The effect of graphene photocatalysis on microbial communities in Lake Xingyun, southwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48851-48868. [PMID: 35211854 DOI: 10.1007/s11356-021-18183-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Graphene photocatalysis is a new method for harmful algae and water pollution control. However, microbial communities undergoing graphene photocatalysis treatment in freshwater lakes have been poorly studied. Here, using 16S rRNA and 18S rRNA gene high-throughput sequencing, the responses of microbial communities to graphene photocatalysis were analyzed in the eutrophic lake, Lake Xinyun, southwestern China. For microeukaryotes, we found that Arthropoda was dominant in summer, while its abundant level declined in spring under natural conditions. The evident reduction of Arthropods was observed after graphene photocatalysis treatment in summer and then reached a relatively stable level. For bacteria, Cyanobacteria decreased in summer due to the graphene photocatalysis-mediated inactivation. However, Cyanobacteria was higher in the treated group in spring with a genera group-shift. Functional analysis revealed that microeukaryotes showed higher potential for fatty acid oxidation and TCA cycle in the treated group in summer, but they were more abundant in control in spring. Pathways of starch and sucrose metabolism and galactose metabolism were more abundant in control in summer, while they were enriched in the treated group in spring for bacteria. This study offers insights into the effects of graphene photocatalysis on microbial communities and their functional potential in eutrophic lake.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China.
| | - Jian Qiu
- Jiangsu Shuangliang Graphene Photocatalytic Technology Co., Ltd., Jiangyin, 214444, China
| | - Lizeng Duan
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Liang Xu
- Jiangsu Shuangliang Graphene Photocatalytic Technology Co., Ltd., Jiangyin, 214444, China
| |
Collapse
|
20
|
Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. THE LANCET. RESPIRATORY MEDICINE 2022; 10:485-496. [PMID: 35427534 PMCID: PMC11197974 DOI: 10.1016/s2213-2600(21)00510-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deadly and highly morbid disease. Susceptibility to and heterogeneity of COPD are incompletely explained by environmental factors such as cigarette smoking. Family-based and population-based studies have shown that a substantial proportion of COPD risk is related to genetic variation. Genetic association studies have identified hundreds of genetic variants that affect risk for COPD, decreased lung function, and other COPD-related traits. These genetic variants are associated with other pulmonary and non-pulmonary traits, demonstrate a genetic basis for at least part of COPD heterogeneity, have a substantial effect on COPD risk in aggregate, implicate early-life events in COPD pathogenesis, and often involve genes not previously suspected to have a role in COPD. Additional progress will require larger genetic studies with more ancestral diversity, improved profiling of rare variants, and better statistical methods. Through integration of genetic data with other omics data and comprehensive COPD phenotypes, as well as functional description of causal mechanisms for genetic risk variants, COPD genetics will continue to inform novel approaches to understanding the pathobiology of COPD and developing new strategies for management and treatment.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Bandela M, Suryadevara V, Fu P, Reddy SP, Bikkavilli K, Huang LS, Dhavamani S, Subbaiah PV, Singla S, Dudek SM, Ware LB, Ramchandran R, Natarajan V. Role of Lysocardiolipin Acyltransferase in Cigarette Smoke-Induced Lung Epithelial Cell Mitochondrial ROS, Mitochondrial Dynamics, and Apoptosis. Cell Biochem Biophys 2022; 80:203-216. [PMID: 34724158 PMCID: PMC11650883 DOI: 10.1007/s12013-021-01043-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
Cigarette smoke is the primary cause of Chronic Obstructive Pulmonary Disorder (COPD). Cigarette smoke extract (CSE)-induced oxidative damage of the lungs results in mitochondrial dysfunction and apoptosis of epithelium. Mitochondrial cardiolipin (CL) present in the inner mitochondrial membrane plays an important role in mitochondrial function, wherein its fatty acid composition is regulated by lysocardiolipin acyltransferase (LYCAT). In this study, we investigated the role of LYCAT expression and activity in mitochondrial oxidative stress, mitochondrial dynamics, and lung epithelial cell apoptosis. LYCAT expression was increased in human lung specimens from smokers, and cigarette smoke-exposed-mouse lung tissues. Cigarette smoke extract (CSE) increased LYCAT mRNA levels and protein expression, modulated cardiolipin fatty acid composition, and enhanced mitochondrial fission in the bronchial epithelial cell line, BEAS-2B in vitro. Inhibition of LYCAT activity with a peptide mimetic, attenuated CSE-mediated mitochondrial (mt) reactive oxygen species (ROS), mitochondrial fragmentation, and apoptosis, while MitoTEMPO attenuated CSE-induced MitoROS, mitochondrial fission and apoptosis of BEAS-2B cells. Collectively, these findings suggest that increased LYCAT expression promotes MitoROS, mitochondrial dynamics and apoptosis of lung epithelial cells. Given the key role of LYCAT in mitochondrial cardiolipin remodeling and function, strategies aimed at inhibiting LYCAT activity and ROS may offer an innovative approach to minimize lung inflammation caused by cigarette smoke.
Collapse
Affiliation(s)
- Mounica Bandela
- Departments of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Vidyani Suryadevara
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Panfeng Fu
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
- The Affiliated Hospital of School of Medicine, Ningbo University, Ningbo, China
| | - Sekhar P Reddy
- Departments of Pediatrics, University of Illinois at Chicago, Chicago, IL, USA
| | - Kamesh Bikkavilli
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Long Shuang Huang
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sugasini Dhavamani
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Papasani V Subbaiah
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sunit Singla
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Steven M Dudek
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ramaswamy Ramchandran
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Viswanathan Natarajan
- Departments of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
22
|
Karim L, Kosmider B, Bahmed K. Mitochondrial ribosomal stress in lung diseases. Am J Physiol Lung Cell Mol Physiol 2021; 322:L507-L517. [PMID: 34873929 DOI: 10.1152/ajplung.00078.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are involved in a variety of critical cellular functions, and their impairment drives cell injury. The mitochondrial ribosome (mitoribosome) is responsible for the protein synthesis of mitochondrial DNA encoded genes. These proteins are involved in oxidative phosphorylation, respiration, and ATP production required in the cell. Mitoribosome components originate from both mitochondrial and nuclear genomes. Their dysfunction can be caused by impaired mitochondrial protein synthesis or mitoribosome misassembly, leading to a decline in mitochondrial translation. This decrease can trigger mitochondrial ribosomal stress and contribute to pulmonary cell injury, death, and diseases. This review focuses on the contribution of the impaired mitoribosome structural components and function to respiratory disease pathophysiology. We present recent findings in the fields of lung cancer, chronic obstructive pulmonary disease, interstitial lung disease, and asthma. We also include reports on the mitoribosome dysfunction in pulmonary hypertension, high altitude pulmonary edema, bacterial and viral infections. Studies of the mitoribosome alterations in respiratory diseases can lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Loukmane Karim
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA, United States.,Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Biomedical Education and Data Science, Temple University, Philadelphia, PA, United States
| | - Karim Bahmed
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA, United States.,Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA, United States
| |
Collapse
|
23
|
Le HHT, Liu CW, Denaro P, Jousma J, Shao NY, Rahman I, Lee WH. Genome-wide differential expression profiling of lncRNAs and mRNAs in human induced pluripotent stem cell-derived endothelial cells exposed to e-cigarette extract. Stem Cell Res Ther 2021; 12:593. [PMID: 34863290 PMCID: PMC8643021 DOI: 10.1186/s13287-021-02654-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/31/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Electronic-cigarette (e-cig) usage, particularly in the youth population, is a growing concern. It is known that e-cig causes endothelial dysfunction, which is a risk factor for the development of cardiovascular diseases; however, the mechanisms involved remain unclear. We hypothesized that long noncoding RNAs (lncRNAs) may play a role in e-cig-induced endothelial dysfunction. METHODS Here, we identified lncRNAs that are dysregulated in human induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) following 24 h of e-cig aerosol extract treatment via microarray analysis. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analyses of the dysregulated mRNAs following e-cig exposure and constructed co-expression networks of the top 5 upregulated lncRNAs and the top 5 downregulated lncRNAs and the mRNAs that are correlated with them. Furthermore, the functional effects of knocking down lncRNA lung cancer-associated transcript 1 (LUCAT1) on EC phenotypes were determined as it was one of the significantly upregulated lncRNAs following e-cig exposure based on our profiling. RESULTS 183 lncRNAs and 132 mRNAs were found to be upregulated, whereas 297 lncRNAs and 413 mRNAs were found to be downregulated after e-cig exposure. We also observed that e-cig caused dysregulation of endothelial metabolism resulting in increased FAO activity, higher mitochondrial membrane potential, and decreased glucose uptake and glycolysis. These results suggest that e-cig alters EC metabolism by increasing FAO to compensate for energy deficiency in ECs. Finally, the knockdown of LUCAT1 prevented e-cig-induced EC dysfunction by maintaining vascular barrier, reducing reactive oxygen species level, and increasing migration capacity. CONCLUSION This study identifies an expression profile of differentially expressed lncRNAs and several potential regulators and pathways in ECs exposed to e-cig, which provide insights into the regulation of lncRNAs and mRNAs and the role of lncRNA and mRNA networks in ECs associated e-cig exposure.
Collapse
Affiliation(s)
- Hoai Huong Thi Le
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Chen-Wei Liu
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Philip Denaro
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA
| | - Jordan Jousma
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Ning-Yi Shao
- Health Sciences, University of Macau, Macau, China
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N 5th Street, Building ABC1, Rm 426, Phoenix, AZ, 85004-2157, USA.
| |
Collapse
|
24
|
Kotlyarov S, Kotlyarova A. Anti-Inflammatory Function of Fatty Acids and Involvement of Their Metabolites in the Resolution of Inflammation in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222312803. [PMID: 34884621 PMCID: PMC8657960 DOI: 10.3390/ijms222312803] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
Lipid metabolism plays an important role in many lung functions. Disorders of lipid metabolism are part of the pathogenesis of chronic obstructive pulmonary disease (COPD). Lipids are involved in numerous cross-linkages with inflammation. Recent studies strongly support the involvement of fatty acids as participants in inflammation. They are involved in the initiation and resolution of inflammation, including acting as a substrate for the formation of lipid mediators of inflammation resolution. Specialized pro-inflammatory mediators (SPMs) belonging to the classes of lipoxins, resolvins, maresins, and protectins, which are formed enzymatically from unsaturated fatty acids, are now described. Disorders of their production and function are part of the pathogenesis of COPD. SPMs are currently the subject of active research in order to find new drugs. Short-chain fatty acids are another important participant in metabolic and immune processes, and their role in the pathogenesis of COPD is of great clinical interest.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
- Correspondence:
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
25
|
Wang M, Wang K, Liao X, Hu H, Chen L, Meng L, Gao W, Li Q. Carnitine Palmitoyltransferase System: A New Target for Anti-Inflammatory and Anticancer Therapy? Front Pharmacol 2021; 12:760581. [PMID: 34764874 PMCID: PMC8576433 DOI: 10.3389/fphar.2021.760581] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 11/20/2022] Open
Abstract
Lipid metabolism involves multiple biological processes. As one of the most important lipid metabolic pathways, fatty acid oxidation (FAO) and its key rate-limiting enzyme, the carnitine palmitoyltransferase (CPT) system, regulate host immune responses and thus are of great clinical significance. The effect of the CPT system on different tissues or organs is complex: the deficiency or over-activation of CPT disrupts the immune homeostasis by causing energy metabolism disorder and inflammatory oxidative damage and therefore contributes to the development of various acute and chronic inflammatory disorders and cancer. Accordingly, agonists or antagonists targeting the CPT system may become novel approaches for the treatment of diseases. In this review, we first briefly describe the structure, distribution, and physiological action of the CPT system. We then summarize the pathophysiological role of the CPT system in chronic obstructive pulmonary disease, bronchial asthma, acute lung injury, chronic granulomatous disease, nonalcoholic fatty liver disease, hepatic ischemia–reperfusion injury, kidney fibrosis, acute kidney injury, cardiovascular disorders, and cancer. We are also concerned with the current knowledge in either preclinical or clinical studies of various CPT activators/inhibitors for the management of diseases. These compounds range from traditional Chinese medicines to novel nanodevices. Although great efforts have been made in studying the different kinds of CPT agonists/antagonists, only a few pharmaceuticals have been applied for clinical uses. Nevertheless, research on CPT activation or inhibition highlights the pharmacological modulation of CPT-dependent FAO, especially on different CPT isoforms, as a promising anti-inflammatory/antitumor therapeutic strategy for numerous disorders.
Collapse
Affiliation(s)
- Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyang Hu
- Department of Vascular Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Liangzhi Chen
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Linlin Meng
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Kotlyarov S, Bulgakov A. Lipid Metabolism Disorders in the Comorbid Course of Nonalcoholic Fatty Liver Disease and Chronic Obstructive Pulmonary Disease. Cells 2021; 10:2978. [PMID: 34831201 PMCID: PMC8616072 DOI: 10.3390/cells10112978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/30/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently among the most common liver diseases. Unfavorable data on the epidemiology of metabolic syndrome and obesity have increased the attention of clinicians and researchers to the problem of NAFLD. The research results allow us to emphasize the systemicity and multifactoriality of the pathogenesis of liver parenchyma lesion. At the same time, many aspects of its classification, etiology, and pathogenesis remain controversial. Local and systemic metabolic disorders are also a part of the pathogenesis of chronic obstructive pulmonary disease and can influence its course. The present article analyzes the metabolic pathways mediating the links of impaired lipid metabolism in NAFLD and chronic obstructive pulmonary disease (COPD). Free fatty acids, cholesterol, and ceramides are involved in key metabolic and inflammatory pathways underlying the pathogenesis of both diseases. Moreover, inflammation and lipid metabolism demonstrate close links in the comorbid course of NAFLD and COPD.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia;
| | | |
Collapse
|
27
|
Chen Q, Heijink IH, de Vries M. Connecting GWAS Susceptibility Genes in COPD: Do We Need to Consider TGF-β2? Am J Respir Cell Mol Biol 2021; 65:468-470. [PMID: 34411507 PMCID: PMC8641857 DOI: 10.1165/rcmb.2021-0265ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Qing Chen
- Department of Pathology and Medical Biology.,Groningen Research Institute for Asthma and COPD University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Irene H Heijink
- Groningen Research Institute for Asthma and COPD University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Pathology and Medical Biology Department of Pulmonology
| | - Maaike de Vries
- Groningen Research Institute for Asthma and COPD University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.,Department of Epidemiology
| |
Collapse
|
28
|
Benway CJ, Liu J, Guo F, Du F, Randell SH, Cho MH, Silverman EK, Zhou X. Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. Am J Respir Cell Mol Biol 2021; 65:92-102. [PMID: 33788674 DOI: 10.1165/rcmb.2020-0475oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified dozens of loci associated with risk of chronic obstructive pulmonary disease (COPD). However, identifying the causal variants and their functional role in the appropriate cell type remains a major challenge. We aimed to identify putative causal variants in 82 GWAS loci associated with COPD susceptibility and predict the regulatory impact of these variants in lung-cell types. We used an integrated approach featuring statistical fine mapping, open chromatin profiling, and machine learning to identify functional variants. We generated chromatin accessibility data using the Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-seq) for human primary lung-cell types implicated in COPD pathobiology. We then evaluated the enrichment of COPD risk variants in lung-specific open chromatin regions and generated cell type-specific regulatory predictions for >6,500 variants corresponding to 82 COPD GWAS loci. Integration of the fine-mapped variants with lung open chromatin regions helped prioritize 22 variants in putative regulatory elements with potential functional effects. Comparison with functional predictions from 222 Encyclopedia of DNA Elements (ENCODE) cell samples revealed cell type-specific regulatory effects of COPD variants in the lung epithelium, endothelium, and immune cells. We identified potential causal variants for COPD risk by integrating fine mapping in GWAS loci with cell-specific regulatory profiling, highlighting the importance of leveraging the chromatin status in relevant cell types to predict the molecular effects of risk variants in lung disease.
Collapse
Affiliation(s)
| | | | - Feng Guo
- Channing Division of Network Medicine and
| | - Fei Du
- Channing Division of Network Medicine and
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael H Cho
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Edwin K Silverman
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Xiaobo Zhou
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | | |
Collapse
|
29
|
Chen Q, de Vries M, Nwozor KO, Noordhoek JA, Brandsma CA, Boezen HM, Heijink IH. A Protective Role of FAM13A in Human Airway Epithelial Cells Upon Exposure to Cigarette Smoke Extract. Front Physiol 2021; 12:690936. [PMID: 34163376 PMCID: PMC8215130 DOI: 10.3389/fphys.2021.690936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is a progressive lung disease characterized by chronic inflammation upon inhalation of noxious particles, e.g., cigarette smoke. FAM13A is one of the genes often found to be associated with COPD, however its function in the pathophysiology of COPD is incompletely understood. We studied its role in airway epithelial barrier integrity and cigarette smoke-induced epithelial responses. Materials and Methods Protein level and localization of FAM13A was assessed with immunohistochemistry in lung tissue from COPD patients and non-COPD controls. In vitro, FAM13A expression was determined in the absence or presence of cigarette smoke extract (CSE) in primary airway epithelial cells (AECs) from COPD patients and controls by western blotting. FAM13A was overexpressed in cell line 16HBE14o- and its effect on barrier function was monitored real-time by electrical resistance. Expression of junctional protein E-cadherin and β-catenin was assessed by western blotting. The secretion of neutrophil attractant CXCL8 upon CSE exposure was measured by ELISA. Results FAM13A was strongly expressed in airway epithelium, but significantly weaker in airways of COPD patients compared to non-COPD controls. In COPD-derived AECs, but not those of controls, FAM13A was significantly downregulated by CSE. 16HBE14o- cells overexpressing FAM13A built up epithelial resistance significantly more rapidly, which was accompanied by higher E-cadherin expression and reduced CSE-induced CXCL8 levels. Conclusion Our data indicate that the expression of FAM13A is lower in airway epithelium of COPD patients compared to non-COPD controls. In addition, cigarette smoking selectively downregulates airway epithelial expression of FAM13A in COPD patients. This may have important consequences for the pathophysiology of COPD, as the more rapid build-up of epithelial resistance upon FAM13A overexpression suggests improved (re)constitution of barrier function. The reduced epithelial secretion of CXCL8 upon CSE-induced damage suggests that lower FAM13A expression upon cigarette smoking may facilitate epithelial-driven neutrophilia.
Collapse
Affiliation(s)
- Qing Chen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maaike de Vries
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kingsley Okechukwu Nwozor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jacobien A Noordhoek
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - H Marike Boezen
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
30
|
Li X, Zhao F, Wang A, Cheng P, Chen H. Role and mechanisms of autophagy in lung metabolism and repair. Cell Mol Life Sci 2021; 78:5051-5068. [PMID: 33864479 PMCID: PMC11072280 DOI: 10.1007/s00018-021-03841-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023]
Abstract
Mammalian lungs are metabolically active organs that frequently encounter environmental insults. Stress responses elicit protective autophagy in epithelial barrier cells and the supportive niche. Autophagy promotes the recycling of damaged intracellular organelles, denatured proteins, and other biological macromolecules for reuse as components required for lung cell survival. Autophagy, usually induced by metabolic defects, regulates cellular metabolism. Autophagy is a major adaptive response that protects cells and organisms from injury. Endogenous region-specific stem/progenitor cell populations are found in lung tissue, which are responsible for epithelial repair after lung damage. Additionally, glucose and fatty acid metabolism is altered in lung stem/progenitor cells in response to injury-related lung fibrosis. Autophagy deregulation has been observed to be involved in the development and progression of other respiratory diseases. This review explores the role and mechanisms of autophagy in regulating lung metabolism and epithelial repair.
Collapse
Affiliation(s)
- Xue Li
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - An Wang
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China
| | - Peiyong Cheng
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
- Department of Basic Medicine, Haihe Clinical College of Tianjin Medical University, Tianjin, China.
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin, China.
- Tianjin Key Laboratory of Lung Regenerative Medicine, Haihe Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
31
|
van de Wetering C, Elko E, Berg M, Schiffers CHJ, Stylianidis V, van den Berge M, Nawijn MC, Wouters EFM, Janssen-Heininger YMW, Reynaert NL. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility? Redox Biol 2021; 43:101995. [PMID: 33979767 PMCID: PMC8131726 DOI: 10.1016/j.redox.2021.101995] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/01/2023] Open
Abstract
Our lungs are exposed daily to airborne pollutants, particulate matter, pathogens as well as lung allergens and irritants. Exposure to these substances can lead to inflammatory responses and may induce endogenous oxidant production, which can cause chronic inflammation, tissue damage and remodeling. Notably, the development of asthma and Chronic Obstructive Pulmonary Disease (COPD) is linked to the aforementioned irritants. Some inhaled foreign chemical compounds are rapidly absorbed and processed by phase I and II enzyme systems critical in the detoxification of xenobiotics including the glutathione-conjugating enzymes Glutathione S-transferases (GSTs). GSTs, and in particular genetic variants of GSTs that alter their activities, have been found to be implicated in the susceptibility to and progression of these lung diseases. Beyond their roles in phase II metabolism, evidence suggests that GSTs are also important mediators of normal lung growth. Therefore, the contribution of GSTs to the development of lung diseases in adults may already start in utero, and continues through infancy, childhood, and adult life. GSTs are also known to scavenge oxidants and affect signaling pathways by protein-protein interaction. Moreover, GSTs regulate reversible oxidative post-translational modifications of proteins, known as protein S-glutathionylation. Therefore, GSTs display an array of functions that impact the pathogenesis of asthma and COPD. In this review we will provide an overview of the specific functions of each class of mammalian cytosolic GSTs. This is followed by a comprehensive analysis of their expression profiles in the lung in healthy subjects, as well as alterations that have been described in (epithelial cells of) asthmatics and COPD patients. Particular emphasis is placed on the emerging evidence of the regulatory properties of GSTs beyond detoxification and their contribution to (un)healthy lungs throughout life. By providing a more thorough understanding, tailored therapeutic strategies can be designed to affect specific functions of particular GSTs.
Collapse
Affiliation(s)
- Cheryl van de Wetering
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Evan Elko
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Marijn Berg
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Caspar H J Schiffers
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA
| | - Vasili Stylianidis
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Maarten van den Berge
- Pulmonology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Martijn C Nawijn
- Pathology and Medical Biology, GRIAC Research Institute, University of Groningen, University Medical Center Groningen (UMCG), Groningen, the Netherlands
| | - Emiel F M Wouters
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands; Ludwig Boltzmann Institute for Lung Health, Vienna, Austria
| | - Yvonne M W Janssen-Heininger
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, VT, USA.
| | - Niki L Reynaert
- Department of Respiratory Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.
| |
Collapse
|
32
|
Li Y, Zhang L, Polverino F, Guo F, Hao Y, Lao T, Xu S, Li L, Pham B, Owen CA, Zhou X. Hedgehog interacting protein (HHIP) represses airway remodeling and metabolic reprogramming in COPD-derived airway smooth muscle cells. Sci Rep 2021; 11:9074. [PMID: 33907231 PMCID: PMC8079715 DOI: 10.1038/s41598-021-88434-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Although HHIP locus has been consistently associated with the susceptibility to COPD including airway remodeling and emphysema in genome-wide association studies, the molecular mechanism underlying this genetic association remains incompletely understood. By utilizing Hhip+/- mice and primary human airway smooth muscle cells (ASMCs), here we aim to determine whether HHIP haploinsufficiency increases airway smooth muscle mass by reprogramming glucose metabolism, thus contributing to airway remodeling in COPD pathogenesis. The mRNA levels of HHIP were compared in normal and COPD-derived ASMCs. Mitochondrial oxygen consumption rate and lactate levels in the medium were measured in COPD-derived ASMCs with or without HHIP overexpression as readouts of glucose oxidative phosphorylation and aerobic glycolysis rates. The proliferation rate was measured in healthy and COPD-derived ASMCs treated with or without 2-DG. Smooth muscle mass around airways was measured by immunofluorescence staining for α-smooth muscle actin (α-SMA) in lung sections from Hhip+/- mice and their wild type littermates, Hhip+/+ mice. Airway remodeling was assessed in Hhip+/- and Hhip+/- mice exposed to 6 months of cigarette smoke. Our results show HHIP inhibited aerobic glycolysis and represses cell proliferation in COPD-derived ASMCs. Notably, knockdown of HHIP in normal ASMCs increased PKM2 activity. Importantly, Hhip+/- mice demonstrated increased airway remodeling and increased intensity of α-SMA staining around airways compared to Hhip+/+ mice. In conclusion, our findings suggest that HHIP represses aerobic glycolysis and ASMCs hyperplasia, which may contribute to the increased airway remodeling in Hhip+/- mice.
Collapse
Affiliation(s)
- Yan Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
| | - Li Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Medicine, Tucson, AZ, 85724, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Hao
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Taotao Lao
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Lijia Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Betty Pham
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
33
|
Song Q, Chen P, Liu XM. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD. Respir Res 2021; 22:39. [PMID: 33546691 PMCID: PMC7866753 DOI: 10.1186/s12931-021-01630-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the most common chronic respiratory diseases with high morbidity and mortality. It has become the fifth most burdened and the third most deadly disease in the global economy and increases year by year. The prevention and treatment of COPD are urgent. Smoking is the main and most common risk factor for COPD. Cigarette smoke (CS) contains a large number of toxic substances, can cause a series of changes in the trachea, lung tissue, pulmonary blood vessels, and promotes the occurrence and development of COPD. In recent years, the development of epigenetics and molecular biology have provided new guidance for revealing the pathogenesis, diagnosis, and treatment of diseases. The latest research indicates that pulmonary vascular endothelial cell apoptosis initiates and participates in the pathogenesis of COPD. In this review, we summarize the current research on the epigenetic mechanisms and molecular biology of CS-induced pulmonary vascular endothelial cell apoptosis in COPD, providing a new research direction for pathogenesis of COPD and a new target for the diagnosis, treatment, and prevention of COPD.
Collapse
Affiliation(s)
- Qing Song
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Ping Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Xiang-Ming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Research Unit of Respiratory Disease, Diagnosis and Treatment Center of Respiratory Disease, Central South University, 139 Renmin Middle Road, Changsha, 410011, Hunan, China
| |
Collapse
|
34
|
Li L, Yang DC, Chen CH. Metabolic reprogramming: A driver of cigarette smoke-induced inflammatory lung diseases. Free Radic Biol Med 2021; 163:392-401. [PMID: 33387604 PMCID: PMC7870291 DOI: 10.1016/j.freeradbiomed.2020.12.438] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/23/2022]
Abstract
Cigarette smoking is a well-known risk factor for pulmonary diseases, including chronic obstructive pulmonary disease (COPD), asthma and pulmonary fibrosis. Despite major progress in dissecting the mechanisms associated with disease development and progression, findings only represent one aspect of multifaceted disease. A crucial consequence of this approach is that many therapeutic treatments often fail to improve or reverse the disease state as other conditions and variables are insufficiently considered. To expand our understanding of pulmonary diseases, omics approaches, particularly metabolomics, has been emerging in the field. This strategy has been applied to identify putative biomarkers and novel mechanistic insights. In this review, we discuss metabolic profiles of patients with COPD, asthma, and idiopathic pulmonary fibrosis (IPF) with a focus on the direct effects of cigarette smoking in altering metabolic regulation. We next present cell- and animal-based experiments and point out the therapeutic potential of targeting metabolic reprogramming in inflammatory lung diseases. In addition, the obstacles in translating these findings into clinical practice, including potential adverse effects and limited pharmacological efficacy, are also addressed.
Collapse
Affiliation(s)
- Linhui Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - David C Yang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, USA
| | - Ching-Hsien Chen
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine and Center for Comparative Respiratory Biology and Medicine, University of California Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
| |
Collapse
|
35
|
Xiong M, Guo M, Huang D, Li J, Zhou Y. TRPV1 genetic polymorphisms and risk of COPD or COPD combined with PH in the Han Chinese population. Cell Cycle 2020; 19:3066-3073. [PMID: 33103544 PMCID: PMC7714492 DOI: 10.1080/15384101.2020.1831246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
COPD is a common chronic disease with genetic predisposition. TRPV1 is mainly expressed in peripheral neuron which widely exists in entire respiratory tract. In present study, we aimed to study the relationship between single nucleotide polymorphisms (SNPs) of transient receptor potential vanilloid-1 (TRPV1) and the risk of chronic obstructive pulmonary disease (COPD) or COPD combined with pulmonary hypertension (PH) in Chinese Han population. A total of 1019 individuals, including 506 healthy volunteers and 513 COPD patients (150 patients combined with PH among them) were recruited in this study. Genomic DNA were extracted and sequenced. Genotype and allele frequencies of the TRPV1 SNPs among COPD, COPD combined with PH and control groups were compared. Then, the association of TRPV1 SNPs and smoking status were analyzed. Genotype frequencies of SNP rs3744683 had a significant difference in COPD patients with PH patients compared with control (p = 0.006) or COPD patients without PH patients (p = 0.016). Likewise, SNP rs3744683 was remarkedly associated with the risk of COPD (p = 0.004) in current-smoker groups which phenomenon was not observed in nonsmoker or former-smoker groups. Compared with the control group, there was a significant difference for the distribution of SNP rs4790521 alleles in the COPD group (p = 0.041). For further, logical regression analysis showed that SNP rs3744683 genotype of “TC” was a protective factor for PH in COPD patients compared with the genotype of “TT” (OR = 0.364, 95%CI = 0.159–0.829, p = 0.016). Our findings firstly revealed the relevance between TRPV1 SNPs and the risk for COPD/COPD combined with PH.
Collapse
Affiliation(s)
- Mingmei Xiong
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Meihua Guo
- Department of Respiration, Guangzhou Chest Hospital , Guangzhou, China
| | - Dongjian Huang
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Jing Li
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| | - Yan Zhou
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University , Guangzhou, China
| |
Collapse
|
36
|
Association of resting energy expenditure and nutritional substrate oxidation with COPD stage and prediction indexes. Respir Med 2020; 174:106174. [PMID: 33086136 DOI: 10.1016/j.rmed.2020.106174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 11/23/2022]
Abstract
While increase in resting energy expenditure (REE) of COPD patients is generally accepted, there is a lack of information about nutritional substrates oxidation (NSO) in this specific population. The aim of this study was comparison of REE and NSO from indirect calorimetry between COPD patients and control subjects and to evaluate possible associations with the disease stage and prediction indexes. In this observational study, 50 consecutive outpatients with stable COPD (COPD group) were examined and compared with 25 volunteers without respiratory problems (control group). Body composition, REE and NSO were determined in all study participants. All COPD subjects underwent a comprehensive examination to determine COPD severity and prognostic scales. Measured REE values adjusted for body weight, fat-free mass (FFM), and body surface were approximately 10% higher in COPD patients than in the control group. Respiratory quotient (RQ) and non-protein RQ (nRQ) values were respectively 5% and 10% higher in the COPD group. Adjusted carbohydrate oxidation was almost two times higher in comparison with the control group. We found no differences in absolute values of lipid and protein oxidation between the groups. Correlation analysis proved a positive association of relatively expressed REE and oxidation of lipids, and a negative association of RQ, nRQ and oxidation of carbohydrates with the value of prediction indexes. In conclusion, our study demonstrated metabolic changes in COPD patients leading to increased values of REE and changes in NSO which were associated with the disease stage, and which can be applied for nutritional support in clinical practice.
Collapse
|
37
|
Dinger K, Koningsbruggen-Rietschel SV, Dötsch J, Alejandre Alcazar MA. Identification of Critical Windows of Metabolic Programming of Metabolism and Lung Function in Male Offspring of Obese Dams. Clin Transl Sci 2020; 13:1065-1070. [PMID: 32598577 PMCID: PMC7719392 DOI: 10.1111/cts.12811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/14/2020] [Indexed: 12/02/2022] Open
Abstract
Perinatal nutritional determinants known as metabolic programming could be either detrimental or protective. Maternal obesity in the perinatal period determines susceptibility for diseases, such as obesity, metabolic disorders, and lung disease. Although this adverse metabolic programming is well‐recognized, the critical developmental window for susceptibility risk remains elusive. Thus, we aimed to define the vulnerable window for impaired lung function after maternal obesity; and to test if dietary intervention protects. First, we studied the impact of high‐fat diet (HFD)‐induced maternal obesity during intrauterine (HFDiu), postnatal (HFDpost), or perinatal (i.e., intrauterine and postnatal (HFDperi) phase on body weight, white adipose tissue (WAT), glucose tolerance, and airway resistance. Although HFDiu, HFDpost, and HFDperi induced overweight in the offspring, only HFDperi and HFDiu led to increased WAT in the offspring early in life. This early‐onset adiposity was linked to impaired glucose tolerance in HFDperi‐offspring. Interestingly, these metabolic findings in HFDperi‐offspring, but not in HFDiu‐offspring and HFDpost‐offspring, were linked to persistent adiposity and increased airway resistance later in life. Second, we tested if the withdrawal of a HFD immediately after conception protects from early‐onset metabolic changes by maternal obesity. Indeed, we found a protection from early‐onset overweight, but not from impaired glucose tolerance and increased airway resistance. Our study identified critical windows for metabolic programming of susceptibility to impaired lung function, highlighting thereby windows of opportunity for prevention.
Collapse
Affiliation(s)
- Katharina Dinger
- Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Silke V Koningsbruggen-Rietschel
- Pediatric Pulmonology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Translational Experimental Pediatrics - Experimental Pulmonology, Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Department of Pediatric and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
38
|
Bertrams W, Griss K, Han M, Seidel K, Klemmer A, Sittka-Stark A, Hippenstiel S, Suttorp N, Finkernagel F, Wilhelm J, Greulich T, Vogelmeier CF, Vera J, Schmeck B. Transcriptional analysis identifies potential biomarkers and molecular regulators in pneumonia and COPD exacerbation. Sci Rep 2020; 10:241. [PMID: 31937830 PMCID: PMC6959367 DOI: 10.1038/s41598-019-57108-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/20/2019] [Indexed: 01/16/2023] Open
Abstract
Lower respiratory infections, such as community-acquired pneumonia (CAP), and chronic obstructive pulmonary disease (COPD) rank among the most frequent causes of death worldwide. Improved diagnostics and profound pathophysiological insights are urgent clinical needs. In our cohort, we analysed transcriptional networks of peripheral blood mononuclear cells (PBMCs) to identify central regulators and potential biomarkers. We investigated the mRNA- and miRNA-transcriptome of PBMCs of healthy subjects and patients suffering from CAP or AECOPD by microarray and Taqman Low Density Array. Genes that correlated with PBMC composition were eliminated, and remaining differentially expressed genes were grouped into modules. One selected module (120 genes) was particularly suitable to discriminate AECOPD and CAP and most notably contained a subset of five biologically relevant mRNAs that differentiated between CAP and AECOPD with an AUC of 86.1%. Likewise, we identified several microRNAs, e.g. miR-545-3p and miR-519c-3p, which separated AECOPD and CAP. We furthermore retrieved an integrated network of differentially regulated mRNAs and microRNAs and identified HNF4A, MCC and MUC1 as central network regulators or most important discriminatory markers. In summary, transcriptional analysis retrieved potential biomarkers and central molecular features of CAP and AECOPD.
Collapse
Affiliation(s)
- Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Kathrin Griss
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Maria Han
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Kerstin Seidel
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Andreas Klemmer
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Alexandra Sittka-Stark
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité - University Medicine Berlin, Berlin, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), Genomics Core Facility, Philipps-University of Marburg, Marburg, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University, Universities Giessen & Marburg Lung Center, German Center for Lung Research (DZL), Giessen, Germany
| | - Timm Greulich
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Claus F Vogelmeier
- Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Julio Vera
- Laboratory of Systems Tumor Immunology, Department of Dermatology, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, German Center for Lung Research (DZL), Marburg, Germany. .,Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, German Center for Lung Research (DZL), Marburg, Germany. .,Center for Synthetic Microbiology (SYNMIKRO), Philipps-University of Marburg, Marburg, Germany. .,German Center for Infection Research (DZIF), partner site Giessen-Marburg-Langen, Marburg, Germany.
| |
Collapse
|
39
|
Cho HY, Kleeberger SR. Mitochondrial biology in airway pathogenesis and the role of NRF2. Arch Pharm Res 2019; 43:297-320. [PMID: 31486024 DOI: 10.1007/s12272-019-01182-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
A constant improvement in understanding of mitochondrial biology has provided new insights into mitochondrial dysfunction in human disease pathogenesis. Impaired mitochondrial dynamics caused by various stressors are characterized by structural abnormalities and leakage, compromised turnover, and reactive oxygen species overproduction in mitochondria as well as increased mitochondrial DNA mutation frequency, which leads to modified energy production and mitochondria-derived cell signaling. The mitochondrial dysfunction in airway epithelial, smooth muscle, and endothelial cells has been implicated in diseases including chronic obstructive lung diseases and acute lung injury. Increasing evidence indicates that the NRF2-antioxidant response element (ARE) pathway not only enhances redox defense but also facilitates mitochondrial homeostasis and bioenergetics. Identification of functional or potential AREs further supports the role for Nrf2 in mitochondrial dysfunction-associated airway disorders. While clinical reports indicate mixed efficacy, NRF2 agonists acting on respiratory mitochondrial dynamics are potentially beneficial. In lung cancer, growth advantage provided by sustained NRF2 activation is suggested to be through increased cellular antioxidant defense as well as mitochondria reinforcement and metabolic reprogramming to the preferred pathways to meet the increased energy demands of uncontrolled cell proliferation. Further studies are warranted to better understand NRF2 regulation of mitochondrial functions as therapeutic targets in airway disorders.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA.
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, 111 TW Alexander Dr., Research Triangle Park, NC, 27709, USA
| |
Collapse
|
40
|
Gong J, Zhao H, Liu T, Li L, Cheng E, Zhi S, Kong L, Yao HW, Li J. Cigarette Smoke Reduces Fatty Acid Catabolism, Leading to Apoptosis in Lung Endothelial Cells: Implication for Pathogenesis of COPD. Front Pharmacol 2019; 10:941. [PMID: 31555131 PMCID: PMC6727183 DOI: 10.3389/fphar.2019.00941] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Endothelial cell (EC) apoptosis contributes to cigarette smoke (CS)-induced pulmonary emphysema. Metabolism of glucose, glutamine, and fatty acid is dysregulated in patients with chronic obstructive pulmonary disease (COPD). Whether CS causes metabolic dysregulation in ECs leading to development of COPD remains elusive. We hypothesized that CS alters metabolism, resulting in apoptosis in lung ECs. To test this hypothesis, we treated primary mouse pulmonary microvascular ECs (PMVECs) with CS extract (CSE) and employed PMVECs from healthy subjects and COPD patients. We found that mitochondrial respiration was reduced in CSE-treated PMVECs and in PMVECs from COPD patients. Specifically, oxidation of fatty acids (FAO) was reduced in these cells, which linked to reduced carnitine palmitoyltransferase 1a (Cpt1a), an essential enzyme for carnitine shuttle. CSE-induced apoptosis was further increased when cells were treated with a specific Cpt1 inhibitor etomoxir or transfected with Cpt1a siRNA. L-Carnitine treatment augmented FAO but attenuated CSE-induced apoptosis by upregulating Cpt1a. CSE treatment increased palmitate-derived ceramide synthesis, which was reduced by L-carnitine. Although CSE treatment increased glycolysis, inhibiting glycolysis with 2-deoxy-d-glucose had no effects on CSE-mediated apoptosis in lung ECs. Conclusively, FAO reduction increases ceramide and apoptosis in lung ECs treated with CSE, which may contribute to the pathogenesis of COPD/emphysema.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Tanzhen Liu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lifang Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Erjing Cheng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuyin Zhi
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Lufei Kong
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hong-Wei Yao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Jianqiang Li
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
41
|
An Updated Overview of Metabolomic Profile Changes in Chronic Obstructive Pulmonary Disease. Metabolites 2019; 9:metabo9060111. [PMID: 31185592 PMCID: PMC6631716 DOI: 10.3390/metabo9060111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a common and heterogeneous respiratory disease, is characterized by persistent and incompletely reversible airflow limitation. Metabolomics is applied to analyze the difference of metabolic profile based on the low-molecular-weight metabolites (<1 kDa). Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of COPD. This review aims to summarize the alteration of metabolites in blood/serum/plasma, urine, exhaled breath condensate, lung tissue samples, etc. from COPD individuals, thereby uncovering the potential pathogenesis of COPD according to the perturbed metabolic pathways. Metabolomic researches have indicated that the dysfunctions of amino acid metabolism, lipid metabolism, energy production pathways, and the imbalance of oxidations and antioxidations might lead to local and systematic inflammation by activating the Nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway and releasing inflammatory cytokines, like interleutin-6 (IL-6), tumor necrosis factor-α, and IL-8. In addition, they might cause protein malnutrition and oxidative stress and contribute to the development and exacerbation of COPD.
Collapse
|
42
|
Chen H, Li Z, Dong L, Wu Y, Shen H, Chen Z. Lipid metabolism in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:1009-1018. [PMID: 31190786 PMCID: PMC6524761 DOI: 10.2147/copd.s196210] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
Dysregulated lipid metabolism plays crucial roles in various diseases, including diabetes mellitus, cancer, and neurodegeneration. Recent studies suggest that alterations in major lipid metabolic pathways contribute to pathogenesis of lung diseases, including chronic obstructive pulmonary disease (COPD). These changes allow lung tissue to meet the energy needs and trigger anabolic pathways that initiate the synthesis of active molecules directly involved in the inflammation. In this review, we summarize the changes of catabolism and anabolism of lipids, lipid molecules including lipid mediators, lipid synthesis transcription factors, cholesterol, and phospholipids, and how those lipid molecules participate in the initiation and resolution of inflammation in COPD.
Collapse
Affiliation(s)
- Haipin Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Lingling Dong
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China.,State Key Lab of Respiratory Disease, Guangzhou, Guangdong, People's Republic of China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Respiratory Diseases, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
43
|
Tremblay BL, Guénard F, Lamarche B, Pérusse L, Vohl MC. Weighted gene co-expression network analysis to explain the relationship between plasma total carotenoids and lipid profile. GENES AND NUTRITION 2019; 14:16. [PMID: 31086608 PMCID: PMC6505263 DOI: 10.1186/s12263-019-0639-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Background Variability in circulating carotenoids may be attributable to several factors including, among others, genetic variants and lipid profile. However, relatively few studies have considered the impact of gene expression in the inter-individual variability in circulating carotenoids. Most studies considered expression of genes individually and ignored their high degree of interconnection. Weighted gene co-expression network analysis (WGCNA) is a systems biology method used for finding gene clusters with highly correlated expression levels and for relating them to phenotypic traits. The objective of the present observational study is to examine the relationship between plasma total carotenoid concentrations and lipid profile using WGCNA. Results Whole blood expression levels of 533 probes were associated with plasma total carotenoids. Among the four WGCNA distinct modules identified, turquoise, blue, and brown modules correlated with plasma high-density lipoprotein cholesterol (HDL-C) and total cholesterol. Probes showing a strong association with HDL-C and total cholesterol were also the most important elements of the brown and blue modules. A total of four and 29 hub genes associated with total carotenoids were potentially related to HDL-C and total cholesterol, respectively. Conclusions Expression levels of 533 probes were associated with plasma total carotenoid concentrations. Using WGCNA, four modules and several hub genes related to lipid and carotenoid metabolism were identified. This integrative analysis provides evidence for the potential role of gene co-expression in the relationship between carotenoids and lipid concentrations. Further studies and validation of the hub genes are needed. Electronic supplementary material The online version of this article (10.1186/s12263-019-0639-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bénédicte L Tremblay
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Frédéric Guénard
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Benoît Lamarche
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| | - Louis Pérusse
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,3Department of Kinesiology, Laval University, 2300 rue de la Terrasse, Quebec City, QC G1V 0A6 Canada
| | - Marie-Claude Vohl
- 1Institute of Nutrition and Functional Foods (INAF), Laval University, 2440 Hochelaga Blvd, Quebec City, QC G1V 0A6 Canada.,2School of Nutrition, Laval University, 2425 rue de l'Agriculture, Quebec City, QC G1V 0A6 Canada
| |
Collapse
|
44
|
Qu J, Yue L, Gao J, Yao H. Perspectives on Wnt Signal Pathway in the Pathogenesis and Therapeutics of Chronic Obstructive Pulmonary Disease. J Pharmacol Exp Ther 2019; 369:473-480. [PMID: 30952680 DOI: 10.1124/jpet.118.256222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic lung disease with progressive airflow limitation and functional decline. The pathogenic mechanisms for this disease include oxidative stress, inflammatory responses, disturbed protease/antiprotease equilibrium, apoptosis/proliferation imbalance, senescence, autophagy, metabolic reprogramming, and mitochondrial dysfunction. The Wnt signaling pathway is an evolutionarily conserved signaling pathway that is abnormal in COPD, including chronic bronchitis and pulmonary emphysema. Furthermore, Wnt signaling has been shown to modulate aforementioned cellular processes involved in COPD. From this perspective, we provide an updated understanding of the crosstalk between Wnt signal and these cellular processes, and highlight the crucial role of the Wnt signal during the development of COPD. We also discuss the potential for targeting the Wnt signal in future translational and pharmacological therapeutics aimed at prevention and treatment of this disease.
Collapse
Affiliation(s)
- Jiao Qu
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Li Yue
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Jian Gao
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| | - Hongwei Yao
- The Second Affiliated Hospital, School of Pharmacy, Dalian Medical University, Dalian, Liaoning, China (J. Q., J. G.); The First Affiliated Hospital, School of Pharmacy, Anhui Medical University, Hefei, Anhui, China (J.Q., J.G.); Department of Orthopedics, Warren Alpert Medical School, Brown University/Rhode Island Hospital, Providence, Rhode Island (L.Y.); and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University Division of Biology and Medicine, Providence, Rhode Island (H.Y.)
| |
Collapse
|
45
|
Trade-offs in aging lung diseases: a review on shared but opposite genetic risk variants in idiopathic pulmonary fibrosis, lung cancer and chronic obstructive pulmonary disease. Curr Opin Pulm Med 2019. [PMID: 29517586 PMCID: PMC5895171 DOI: 10.1097/mcp.0000000000000476] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The process of aging involves biological changes that increases susceptibility for disease. In the aging lung disease IPF, GWAS studies identified genes associated with risk for disease. Recently, several of these genes were also found to be involved in risk for COPD or lung cancer. This review describes GWAS-derived risk genes for IPF that overlap with risk genes for lung cancer or COPD. RECENT FINDINGS Risk genes that overlap between aging lung diseases, include FAM13A, DSP and TERT. Most interestingly, disease predisposing alleles for IPF are opposite to those for COPD or lung cancer. Studies show that the alleles are associated with differential gene expression and with physiological traits in the general population. The opposite allelic effect sizes suggest the presence of trade-offs in the aging lung. For TERT, the trade-off involves cellular senescence versus proliferation and repair. For FAM13A and DSP, trade-offs may involve protection from noxious gases or tissue integrity. SUMMARY The overlap in risk genes in aging lung diseases provides evidence that processes associated with FAM13A, DSP and TERT are important for healthy aging. The opposite effect size of the disease risk alleles may represent trade-offs, for which a model involving an apicobasal gene expression gradient is presented.
Collapse
|
46
|
Zhuang W, Lian G, Huang B, Du A, Gong J, Xiao G, Xu C, Wang H, Xie L. CPT1 regulates the proliferation of pulmonary artery smooth muscle cells through the AMPK-p53-p21 pathway in pulmonary arterial hypertension. Mol Cell Biochem 2018; 455:169-183. [DOI: 10.1007/s11010-018-3480-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
|
47
|
Abstract
The lung is often overlooked as a metabolically active organ, yet biochemical studies have long demonstrated that glucose utilization surpasses that of many other organs, including the heart, kidney, and brain. For most cells in the lung, energy consumption is relegated to performing common cellular tasks, like mRNA transcription and protein translation. However, certain lung cell populations engage in more specialized types of energy-consuming behaviors, such as the beating of cilia or the production of surfactant. While many extrapulmonary diseases are now linked to abnormalities in cellular metabolism, the pulmonary community has only recently embraced the concept of metabolic dysfunction as a driver of respiratory pathology. Herein, we provide an overview of the major metabolic pathways in the lung and discuss how cells sense and adapt to low-energy states. Moreover, we review some of the emerging evidence that links alterations in cellular metabolism to the pathobiology of several common respiratory diseases.
Collapse
Affiliation(s)
- Gang Liu
- Division of Pulmonary, Allergy and Critical Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Ross Summer
- Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA;
| |
Collapse
|
48
|
Tang J, Zhou H, Sahay K, Xu W, Yang J, Zhang W, Chen W. Obesity-associated family with sequence similarity 13, member A (FAM13A) is dispensable for adipose development and insulin sensitivity. Int J Obes (Lond) 2018; 43:1269-1280. [PMID: 30301961 PMCID: PMC6456441 DOI: 10.1038/s41366-018-0222-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 11/28/2022]
Abstract
Background Obesity and its associated morbidities represent the major and most rapidly expanding world-wide health epidemic. Recent genome-wide association studies (GWAS) reveal that single nucleotide polymorphism (SNP) variant in the Family with Sequence Similarity 13, Member A (FAM13A) gene is strongly associated with waist–hip ratio (WHR) with adjustment for body mass index (BMI) (WHRadjBMI). However, the function of FAM13A in adipose development and obesity remains largely uncharacterized. Methods The expression of FAM13A in adipose tissue depots were investigated using lean, genetic obese and high fat diet-induced obese (DIO) animal models and during adipocyte differentiation. Stromal vascular cells (SVCs) or 3T3-L1 cells with gain and loss of function of FAM13A were used to determine the involvement of FAM13A in regulating adipocyte differentiation. Adipose development and metabolic homeostasis in Fam13a−/− mice were characterized under normal chow and high fat diet feeding. Results Murine FAM13A expression was nutritionally regulated and dramatically reduced in epididymal and subcutaneous fat in genetic and diet-induced obesity. Its expression was enriched in mature adipocytes and significantly upregulated during murine and human adipogenesis potentially through a peroxisome proliferator-activated receptor-gamma (PPARγ)-dependent mechanism. However, Fam13a−/− mice only exhibited a tendency of higher adiposity and were not protected from DIO and insulin resistance. While Fam13a−/− SVCs maintained normal adipogenesis, overexpression of FAM13A in 3T3-L1 preadipocytes downregulated β-catenin signaling and rendered preadipocytes more susceptible to apoptosis. Moreover, FAM13A overexpression largely blocked adipogenesis induced by a standard hormone cocktail, but adipogenesis can be partially rescued by the addition of PPARγ agonist pioglitazone at an early stage of differentiation. Conclusions Our results suggest that FAM13A is dispensable for adipose development and insulin sensitivity. Yet the expression of FAM13A needs to be tightly controlled in adipose precursor cells for their proper survival and downstream adipogenesis. These data provide novel insights into the link between FAM13A and obesity.
Collapse
Affiliation(s)
- Jiazhen Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hongyi Zhou
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Khushboo Sahay
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Wenqiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.,Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Weiqin Chen
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
49
|
Yamada H, Hida N, Hizawa N. Effects of a single long-acting muscarinic antagonist agent and a long-acting muscarinic antagonist/long-acting β2-adrenoceptor agonist combination on lung function and symptoms in untreated COPD patients in Japan. Int J Chron Obstruct Pulmon Dis 2018; 13:3141-3147. [PMID: 30349222 PMCID: PMC6183692 DOI: 10.2147/copd.s179285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND A large body of evidence suggests that long-acting β2-adrenoceptor agonist (LABA)/long-acting muscarinic antagonist (LAMA) combinations induce a strong synergistic bronchodilatory effect in human isolated airways. Moreover, a recent post hoc analysis demonstrated clinical synergism between LABAs and LAMAs, which induces a synergistic improvement not only in lung function but also in dyspnea in COPD patients. AIM The aim of this study is to examine the baseline factors related to improvement in lung function or clinical symptoms that results from the administration of LAMA or LAMA/LABA and to compare the differences in improvement in lung function or clinical symptoms between LAMA and LAMA/LABA. METHODS Among 829 patients with COPD who were treated with LAMA or LAMA/LABA in our hospital, 112 patients (aged 40-89 years) matched the criteria. Of these 112 patients, 71 received LAMA (LAMA group) and 41 received LAMA/LABA (LAMA/LABA group) as the initial treatment. Various examination results such as lung function test values, symptom change, and frequency of exacerbations were compared between the two groups. RESULTS Compared with the monotherapy, the combination therapy significantly improved the FEV1, inspiratory capacity (IC), and total COPD assessment test (CAT) scores. Comparing the improvement in each domain of the CAT produced by the combination therapy with that of the monotherapy, larger improvements were found for the domains of going out and sleeping. The frequency of exacerbations during the 24 weeks was significantly lower in the combination therapy group than in the LAMA monotherapy group (P=0.034). Although no relationship was found between improvement in FEV1 and any pretreatment factors in the LAMA/LABA group, the improvement in the CAT score was strongly related to the baseline CAT score, smoking index, and air trapping index (P-value <1×10-4). CONCLUSION In this study of clinical practice, we found that LAMA/LABA combination therapy improved the clinical symptoms of COPD and IC and that the effects of the combination therapy were consistent with those observed in previous clinical trials.
Collapse
Affiliation(s)
- Hideyasu Yamada
- Department of Pulmonology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan,
- Department of Respiratory Medicine, Hitachinaka General Hospital, Hitachi Ltd, Hitachinaka, Ibaraki, Japan,
| | - Norihito Hida
- Department of Respiratory Medicine, Hitachinaka General Hospital, Hitachi Ltd, Hitachinaka, Ibaraki, Japan,
| | - Nobuyuki Hizawa
- Department of Pulmonology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan,
| |
Collapse
|
50
|
Dealing with Stress: Defective Metabolic Adaptation in Chronic Obstructive Pulmonary Disease Pathogenesis. Ann Am Thorac Soc 2018; 14:S374-S382. [PMID: 29161091 DOI: 10.1513/annalsats.201702-153aw] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mitochondrion is the main site of energy production and a hub of key signaling pathways. It is also central in stress-adaptive response due to its dynamic morphology and ability to interact with other organelles. In response to stress, mitochondria fuse into networks to increase bioenergetic efficiency and protect against oxidative damage. Mitochondrial damage triggers segregation of damaged mitochondria from the mitochondrial network through fission and their proteolytic degradation by mitophagy. Post-translational modifications of the mitochondrial proteome and nuclear cross-talk lead to reprogramming of metabolic gene expression to maintain energy production and redox balance. Chronic obstructive pulmonary disease (COPD) is caused by chronic exposure to oxidative stress arising from inhaled irritants, such as cigarette smoke. Impaired mitochondrial structure and function, due to oxidative stress-induced damage, may play a key role in causing COPD. Deregulated metabolic adaptation may contribute to the development and persistence of mitochondrial dysfunction in COPD. We discuss the evidence for deregulated metabolic adaptation and highlight important areas for investigation that will allow the identification of molecular targets for protecting the COPD lung from the effects of dysfunctional mitochondria.
Collapse
|