1
|
Lingampally A, Truchi M, Mauduit O, Delcroix V, Vasquez-Pacheco E, Gautier-Isola M, Chu X, Khadim A, Chao CM, Zabihi M, Taghizadeh S, Rivetti S, Marega M, Moiseenko A, Hadzic S, Vazquez-Armendariz AI, Herold S, Günther S, Millar-Büchner P, Koepke J, Samakovlis C, Wilhelm J, Bartkuhn M, Braun T, Weissmann N, Zhang J, Wygrecka M, Makarenkova HP, Günther A, Seeger W, Chen C, El Agha E, Mari B, Bellusci S. Evidence for a lipofibroblast-to- Cthrc1 + myofibroblast reversible switch during the development and resolution of lung fibrosis in young mice. Eur Respir J 2025; 65:2300482. [PMID: 39401861 PMCID: PMC11799885 DOI: 10.1183/13993003.00482-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/24/2024] [Indexed: 02/08/2025]
Abstract
BACKGROUND Fibrosis is often associated with aberrant repair mechanisms that ultimately lead to organ failure. In the lung, idiopathic pulmonary fibrosis (IPF) is a fatal form of interstitial lung disease for which there is currently no curative therapy. From the cell biology point of view, the cell of origin and eventual fate of activated myofibroblasts (aMYFs) have taken centre stage, as these cells are believed to drive structural remodelling and lung function impairment. While aMYFs are now widely believed to originate from alveolar fibroblasts, the heterogeneity and ultimate fate of aMYFs during fibrosis resolution remain elusive. We have shown previously that aMYF dedifferentiation and acquisition of a lipofibroblast (LIF)-like phenotype represent a route of fibrosis resolution. METHODS In this study, we combined genetic lineage tracing and single-cell transcriptomics in mice, and data mining of human IPF datasets to decipher the heterogeneity of aMYFs and investigate differentiation trajectories during fibrosis resolution. Furthermore, organoid cultures were utilised as a functional readout for the alveolar mesenchymal niche activity during various phases of injury and repair in mice. RESULTS Our data demonstrate that aMYFs consist of four subclusters displaying unique pro-alveologenic versus pro-fibrotic profiles. Alveolar fibroblasts displaying a high LIF-like signature largely constitute both the origin and fate of aMYFs during fibrogenesis and resolution, respectively. The heterogeneity of aMYFs is conserved in humans and a significant proportion of human aMYFs displays a high LIF signature. CONCLUSION Our work identifies a subcluster of aMYFs that is potentially relevant for future management of IPF.
Collapse
Affiliation(s)
- Arun Lingampally
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- A. Lingampally and M. Truchi contributed equally
| | - Marin Truchi
- Université Côte d'Azur, UMR CNRS 7275 Inserm 1323, IPMC, FHU-OncoAge, IHU RespiERA, Valbonne, France
- A. Lingampally and M. Truchi contributed equally
| | - Olivier Mauduit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Vanessa Delcroix
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Esmeralda Vasquez-Pacheco
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Marine Gautier-Isola
- Université Côte d'Azur, UMR CNRS 7275 Inserm 1323, IPMC, FHU-OncoAge, IHU RespiERA, Valbonne, France
| | - Xuran Chu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, P.R. China
| | - Ali Khadim
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | | | - Mahsa Zabihi
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Sara Taghizadeh
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefano Rivetti
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Manuela Marega
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Alena Moiseenko
- Immunology and Respiratory Department, Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Stefan Hadzic
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ana Ivonne Vazquez-Armendariz
- University of Bonn, Transdisciplinary Research Area Life and Health, Organoid Biology, Life and Medical Sciences Institute, Bonn, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
| | - Pamela Millar-Büchner
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Janine Koepke
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Christos Samakovlis
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Jochen Wilhelm
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Marek Bartkuhn
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, W.G. Kerckhoff Institute, Bad Nauheim, Germany
| | - Norbert Weissmann
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - JinSan Zhang
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Malgorzata Wygrecka
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Helen P Makarenkova
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Andreas Günther
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Werner Seeger
- Department of Medicine II, Internal Medicine, Pulmonary and Critical Care, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Chengshui Chen
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- C. Chen, E. El Agha, B. Mari and S. Bellusci contributed equally to this article as lead authors and supervised the work
| | - Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- Cardio-Pulmonary Institute (CPI), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
- C. Chen, E. El Agha, B. Mari and S. Bellusci contributed equally to this article as lead authors and supervised the work
| | - Bernard Mari
- Université Côte d'Azur, UMR CNRS 7275 Inserm 1323, IPMC, FHU-OncoAge, IHU RespiERA, Valbonne, France
- C. Chen, E. El Agha, B. Mari and S. Bellusci contributed equally to this article as lead authors and supervised the work
| | - Saverio Bellusci
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
- Laboratory of Extracellular Lung Matrix Remodelling, Department of Internal Medicine, Cardio-Pulmonary Institute and Institute for Lung Health, Universities of Giessen and Marburg Lung Center (UGMLC), member of The German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
- C. Chen, E. El Agha, B. Mari and S. Bellusci contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
2
|
Harr TJ, Gupta N, Rahar B, Stott K, Medina-Guevara Y, Gari MK, Oler AT, McDermott IS, Lee HJ, Rasoulianboroujeni M, Weichmann AM, Forati A, Holbert K, Langel TS, Coulter KW, Burkel BM, Tomasini-Johansson BR, Ponik SM, Engle JW, Hernandez R, Kwon GS, Sandbo N, Bernau K. The fibronectin-targeting PEG-FUD imaging probe shows enhanced uptake during fibrogenesis in experimental lung fibrosis. Respir Res 2025; 26:34. [PMID: 39844185 PMCID: PMC11756063 DOI: 10.1186/s12931-025-03107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025] Open
Abstract
Progressive forms of interstitial lung diseases, including idiopathic pulmonary fibrosis (IPF), are deadly disorders lacking non-invasive biomarkers for assessment of early disease activity, which presents a major obstacle in disease management. Excessive extracellular matrix (ECM) deposition is a hallmark of these disorders, with fibronectin being an abundant ECM glycoprotein that is highly upregulated in early fibrosis and serves as a scaffold for the deposition of other matrix proteins. Due to its role in active fibrosis, we are targeting fibronectin as a biomarker of early lung fibrosis disease activity via the PEGylated fibronectin-binding polypeptide (PEG-FUD). In this work, we demonstrate the binding of PEG-FUD to the fibrotic lung throughout the course of bleomycin-induced murine model of pulmonary fibrosis. We first analyzed the binding of radiolabeled PEG-FUD following direct incubation to precision cut lung slices from mice at different stages of experimental lung fibrosis. Then, we administered fluorescently labeled PEG-FUD subcutaneously to mice over the course of bleomycin-induced pulmonary fibrosis and assessed peptide uptake 24 h later through ex vivo tissue imaging. Using both methods, we found that peptide targeting to the fibrotic lung is increased during the fibrogenic phase of the single dose bleomycin lung fibrosis model (days 7 and 14 post-bleomycin). At these timepoints we found a correlative relationship between peptide uptake and fibrotic burden. These data suggest that PEG-FUD targets fibronectin associated with active fibrogenesis in this model, making it a promising candidate for a clinically translatable molecular imaging probe to non-invasively determine pulmonary fibrosis disease activity, enabling accelerated therapeutic decision-making.
Collapse
Affiliation(s)
- Thomas J Harr
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Babita Rahar
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kristen Stott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Yadira Medina-Guevara
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Metti K Gari
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Angie T Oler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ivy Sohee McDermott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Morteza Rasoulianboroujeni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
| | - Ashley M Weichmann
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Amir Forati
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin- Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kelsey Holbert
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Trevor S Langel
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Kade W Coulter
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Brian M Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Bianca R Tomasini-Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Jonathan W Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Glen S Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Nathan Sandbo
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Ksenija Bernau
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792, USA.
| |
Collapse
|
3
|
Dong S, Fang H, Zhu J, Wu Z, Liu Y, Zhu J, Ma B, Chen Q, Yang Y. Inhalable siRNA Targeting IL-11 Nanoparticles Significantly Inhibit Bleomycin-Induced Pulmonary Fibrosis. ACS NANO 2025; 19:2742-2758. [PMID: 39791575 DOI: 10.1021/acsnano.4c15130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
For idiopathic pulmonary fibrosis (IPF), interleukin 11 (IL-11) is a pivotal cytokine that stimulates the transformation of fibroblasts into myofibroblasts, thus accelerating the progression of pulmonary fibrosis. Here, we develop an innovative inhalable small interfering RNA (siRNA) delivery system termed PEI-GBZA, which demonstrates impressive efficiency in loading siIL-11 targeting IL-11 (siIL-11) and substantially suppresses the differentiation of fibroblasts into myofibroblasts and epithelial-mesenchymal transition (EMT), reduces neutrophil and macrophage recruitment, and ultimately relieves the established fibrotic lesions in the IPF model. PEI-GBZA is prepared by modifying low-molecular-weight polyethylenimine (PEI) with 4-guanidinobenzoic acid (GBZA). The resulting PEI-GBZA may effectively encapsulate siIL-11 through a variety of interactions such as hydrophobic, hydrogen bonding, and electrostatic interactions, creating stable carrier/siIL-11 nanoparticles (PEI-GBZA/siIL-11 NPs). Upon inhalation, PEI-GBZA/siIL-11 NPs demonstrate effective retention in fibrotic lesions, leading to a marked mitigation of disease progression in a bleomycin-induced pulmonary fibrosis model. Impressively, this inhalation therapy exhibits negligible systemic toxicity. This work provides a universal and noninvasive RNA therapeutic delivery platform that holds significant promise for respiratory diseases. The potential for clinical application of this platform is substantial, offering a frontier for the treatment of IPF and potentially other pulmonary disorders.
Collapse
Affiliation(s)
- Shengting Dong
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Huapan Fang
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhiqiang Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yi Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Jiafei Zhu
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Benting Ma
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
4
|
Goto T, Sano A, Onishi S, Hada N, Kimata R, Matsuo S, Oyama S, Kato A, Mizuno H, Yamazaki M. Optimized digital workflow for pathologist-grade evaluation in bleomycin-induced pulmonary fibrosis mouse model. Sci Rep 2025; 15:2331. [PMID: 39833349 PMCID: PMC11747197 DOI: 10.1038/s41598-025-86544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal disorder of unknown etiology, characterized by interstitial fibrosis of the lungs. Bleomycin-induced pulmonary fibrosis mouse model (BLM model) is a widely used animal model to evaluate therapeutic targets for IPF. Histopathological analysis of lung fibrosis is an important method for evaluating BLM model. However, this method requires expertise in recognizing complex visual patterns and is time-consuming, making the workflow difficult and inefficient. Therefore, we developed a new workflow for BLM model that reduces inter- and intra-observer variations and improves the evaluation process. We generated deep learning models for grading lung fibrosis that were able to achieve accuracy comparable to that of pathologists. These models incorporate complex image patterns and qualitative factors, such as collagen texture and distribution, potentially identifying drug candidates overlooked in evaluations based solely on simple area extraction. This deep learning-based fibrosis grade assessment has the potential to streamline drug development for pulmonary fibrosis by offering higher granularity and reproducibility in evaluating BLM model.
Collapse
Affiliation(s)
- Toshiki Goto
- Research Division, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan
| | - Akira Sano
- ExaWizards Inc., 4-2-8 Shibaura, Minato-ku, Tokyo, 108-0023, Japan.
| | - Shinichi Onishi
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan
| | - Natsuko Hada
- Research Division, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan
| | - Rui Kimata
- ExaWizards Inc., 4-2-8 Shibaura, Minato-ku, Tokyo, 108-0023, Japan
| | - Saori Matsuo
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan
| | - Sohei Oyama
- Research Division, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan
| | - Atsuhiko Kato
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan
| | - Hideaki Mizuno
- Research Division, Chugai Pharmaceutical Co., Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan
| | - Masaki Yamazaki
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa, 244-8602, Japan.
| |
Collapse
|
5
|
Han S, Huang J, Yang C, Feng J, Wang Y. The histone demethylase KDM6B links obstructive sleep apnea to idiopathic pulmonary fibrosis. FASEB J 2025; 39:e70306. [PMID: 39781582 PMCID: PMC11712539 DOI: 10.1096/fj.202402813r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Obstructive sleep apnea (OSA) is increasingly recognized for its link to idiopathic pulmonary fibrosis (IPF), though the underlying mechanisms remain poorly understood. Histone lysine demethylase 6B (KDM6B) may either prevent or promote organ fibrosis, but its specific role in IPF is yet to be clarified. This study aimed to investigate the function and mechanisms of KDM6B in IPF and the exacerbating effects of OSA. We assessed KDM6B levels in lung tissues from IPF patients, IPF mouse models, and a dual-hit model combining OSA-associated intermittent hypoxia (IH) with bleomycin (BLM) or TGF-β1. We evaluated pulmonary fibrosis, myofibroblast activation, and oxidative stress. KDM6B levels were elevated in lung tissues from IPF patients and BLM-treated mice, as well as in TGF-β1-stimulated myofibroblasts. Importantly, IH significantly worsened BLM-induced pulmonary fibrosis and TGF-β1-induced myofibroblast activation, further amplifying KDM6B expression both in vivo and in vitro. Inhibition of KDM6B reduced pulmonary fibrosis and decreased fibroblast activation and migration in IPF and dual-hit models. Mechanistically, KDM6B inhibition led to decreased NOX4 expression and reduced oxidative stress. KDM6B plays a critical role in promoting pulmonary fibrosis and mediating the exacerbating effects of OSA on this condition. Our findings identify KDM6B as a novel potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Shuangyu Han
- Department of Respiratory and Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Jie Huang
- Department of Respiratory and Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Changqing Yang
- Department of Respiratory and Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Jing Feng
- Department of Respiratory and Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| | - Yubao Wang
- Department of Respiratory and Critical Care MedicineTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
6
|
Fischer A, Han W, Hu S, Häusl MM, Wannemacher J, Kadri S, Lin Y, Dai R, Christ S, Su Y, Dasgupta B, Sardogan A, Deisenhofer C, Dutta S, Kadri A, Güney TG, Correa-Gallegos D, Mayr CH, Hatz R, Stoleriu MG, Lindner M, Hilgendorff A, Adler H, Machens HG, Schiller HB, Hauck SM, Rinkevich Y. Targeting pleuro-alveolar junctions reverses lung fibrosis in mice. Nat Commun 2025; 16:173. [PMID: 39747171 PMCID: PMC11696612 DOI: 10.1038/s41467-024-55596-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Lung fibrosis development utilizes alveolar macrophages, with mechanisms that are incompletely understood. Here, we fate map connective tissue during mouse lung fibrosis and observe disassembly and transfer of connective tissue macromolecules from pleuro-alveolar junctions (PAJs) into deep lung tissue, to activate fibroblasts and fibrosis. Disassembly and transfer of PAJ macromolecules into deep lung tissue occurs by alveolar macrophages, activating cysteine-type proteolysis on pleural mesothelium. The PAJ niche and the disassembly cascade is active in patient lung biopsies, persists in chronic fibrosis models, and wanes down in acute fibrosis models. Pleural-specific viral therapeutic carrying the cysteine protease inhibitor Cystatin A shuts down PAJ disassembly, reverses fibrosis and regenerates chronic fibrotic lungs. Targeting PAJ disassembly by targeting the pleura may provide a unique therapeutic avenue to treat lung fibrotic diseases.
Collapse
Affiliation(s)
- Adrian Fischer
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
| | - Wei Han
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany.
- Member of the German Center of Lung Research (DZL), Munich, Germany.
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany.
| | - Shaoping Hu
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
- Zhangzhou Health Vocational College, Zhangzhou, China
| | - Martin Mück Häusl
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Juliane Wannemacher
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Safwen Kadri
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yue Lin
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ruoxuan Dai
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Simon Christ
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Yiqun Su
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Bikram Dasgupta
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Aydan Sardogan
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Christoph Deisenhofer
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Subhasree Dutta
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Amal Kadri
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Tankut Gökhan Güney
- Institute of Regenerative Biology and Medicine(IRBM), Helmholtz Zentrum München, Munich, Germany
- Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Donovan Correa-Gallegos
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany
| | - Christoph H Mayr
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Rudolf Hatz
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
| | | | - Michael Lindner
- Asklepios Fachkliniken in Munich-Gauting, Munich, Germany
- University Department of Visceral and Thoracic Surgery Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anne Hilgendorff
- Helmholtz Zentrum München, Institute of Lung Biology & Disease, Group Mechanism of Neonatal Chronic Lung Disease, Member of the German Center of Lung Research (DZL), Munich, Germany
- Comprehensive Pneumology Center with the CPC-M bioArchive and Institute of Lung Health and Immunity, Helmholtz-Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Heiko Adler
- Member of the German Center of Lung Research (DZL), Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Munich, Germany
| | - Herbert B Schiller
- Helmholtz Munich, Research Unit for Precision Regenerative Medicine (PRM), Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Stefanie M Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Chinese Institutes for Medical Research, Beijing, China.
- Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Wang J, Zhu F, Liu Y, Luo R, Fan Z, Dai W, Wei S, Lin C. A novel mouse model of pulmonary fibrosis: twice-repeated oropharyngeal bleomycin administration mimicking human pathology. Biochem Cell Biol 2025; 103:1-7. [PMID: 39878201 DOI: 10.1139/bcb-2024-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and irreversible lung disease with high mortality and limited treatment options. While single-dose bleomycin-induced models are commonly used to investigate the pathogenesis of IPF, they fail to adequately replicate the complex pathological features in human patients, thereby hindering comprehensive investigations. Previous studies utilizing repetitive bleomycin injections have demonstrated a closer resemblance to human IPF pathology; however, the time- and resource-intensive nature of this approach presents significant drawbacks. Here, we propose a novel methodology involving twice-repeated oropharyngeal administration of bleomycin in mice, which closely mirrors the pathological manifestations observed in IPF patients. This model exhibited the honeycomb-like cyst formation, fibroblastic foci, bronchiolization of alveolar epithelium, emergence of metaplastic alveolar KRT5+ basal cells, and sustainability of these fibrotic phenotypes, thereby providing a robust model for IPF. Our findings establish a more efficient and translatable preclinical platform for investigating IPF pathogenesis and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Jingyu Wang
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Fengqing Zhu
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yuxuan Liu
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Renru Luo
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Zixuan Fan
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Wanqin Dai
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuwen Lin
- Department of Histology and Embryology, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
8
|
Zhao X, Li Y, Yang S, Chen Y, Wu K, Geng J, Liu P, Wang Z, Dai H, Wang C. Orderly Regulation of Macrophages and Fibroblasts by Axl in Bleomycin-Induced Pulmonary Fibrosis in Mice. J Cell Mol Med 2025; 29:e70321. [PMID: 39779468 PMCID: PMC11710931 DOI: 10.1111/jcmm.70321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Pulmonary fibrosis is a pathological manifestation that occurs upon lung injury and subsequence aberrant repair with poor prognosis. However, current treatment is limited and does not distinguish different disease stages. Here, we aimed to study the differential functions of Axl, a receptor tyrosine kinase expressing on both macrophages and fibroblasts, in the whole course of pulmonary fibrosis. We used mice with Axl total knockout, conditionally knockout in macrophages or fibroblasts, or treating with Axl inhibitors in inflammation or fibrosis stages to examine the effect of temporary dysfunction of Axl on bleomycin (BLM)-induced pulmonary fibrosis. Primary bone marrow-derived monocytes and primary fibroblasts from mice were used for cell-type-specific studies. Lung tissue and plasma samples were collected from idiopathic pulmonary fibrosis (IPF) patients and healthy controls to assess the Axl levels. We found that Axl inhibited the M1 polarisation of macrophages; inhibition of Axl during acute phase exacerbated inflammatory response and subsequent pulmonary fibrosis. On the other hand, Axl promoted the proliferation and invasion of the fibroblasts, partially by accelerating the focal adhesion turnover; inhibiting Axl during the fibrotic phase significantly alleviated pulmonary fibrosis. Consistently, phosphorylated Axl levels increased in fibrotic foci in the lung sample of IPF patients. In contrast, the soluble Axl (sAxl) level decreased in their plasma as compared to healthy controls. These results indicate that Axl may sequentially and differentially regulate macrophages and fibroblasts in acute and fibrosis phases, implying the necessity of a stage-specific treatment for pulmonary fibrosis. In addition, the activated Axl on fibroblasts may be reflected by the lowered plasma sAxl level, which may act as a biomarker for IPF. Trial Registration: ClinicalTrials.gov identifier: NCT03730337.
Collapse
Affiliation(s)
- Xinyu Zhao
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| | - Yupeng Li
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| | - Shengnan Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Respiratory and Critical Care MedicineTianjin Chest HospitalChina
| | | | - Kaiwei Wu
- Peking Union Medical CollegeBeijingChina
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
| | - Peipei Liu
- Department of Medicine and Women's Guild Lung InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zai Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
| | - Chen Wang
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| |
Collapse
|
9
|
Ouji-Sageshima N, Hiyama A, Kumamoto M, Kitabatake M, Hara A, Furukawa R, Hontsu S, Kawaguchi T, Sawabata N, Muro S, Ito T. Adipose-Derived Mesenchymal Stem Cells (ADSCs) Have Anti-Fibrotic Effects on Lung Fibroblasts from Idiopathic Pulmonary Fibrosis (IPF) Patients. Cells 2024; 13:2050. [PMID: 39768142 PMCID: PMC11674916 DOI: 10.3390/cells13242050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/27/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common type of fibrosis in lungs, characterized as a chronic and progressive interstitial lung disease involving pathological findings of fibrosis with a median survival of 3 years. Despite the knowledge accumulated regarding IPF from basic and clinical research, an effective medical therapy for the condition remains to be established. Thus, it is necessary for further research, including stem cell therapy, which will provide new insights into and expectations for IPF treatment. Recently, it has been reported that one of the new therapeutic candidates for IPF is adipose-derived mesenchymal stem cells (ADSCs), which have several benefits, such as easy accessibility and minimal morbidity compared to bone marrow-derived mesenchymal stem cells. Therefore, we investigated the possibility of ADSCs as a therapeutic candidate for IPF. Using human lung fibroblasts (LFs) from IPF patients, we demonstrated that human IPF LFs cocultured with ADSCs led to reduced fibrosis-related genes. Further analysis revealed that ADSCs prevented the activation of the ERK signaling pathway in IPF LFs via the upregulation of protein tyrosine phosphatase receptor-type R (PTPRR), which negatively regulates the ERK signaling pathway. Moreover, we demonstrated that intravascular administration of ADSCs improved the pathogenesis of bleomycin-induced pulmonary fibrosis with reduced collagen deposition in histology and hydroxyproline quantification and collagen markers such as the gene expression of types I and III collagen and α-smooth muscle actin (α-SMA) in a murine model. ADSC transfer was also investigated in a humanized mouse model of lung fibrosis induced via the infusion of human IPF LFs, because the bleomycin installation model does not fully recapitulate the pathogenesis of IPF. Using the humanized mouse model, we found that intravascular administration of ADSCs also improved fibrotic changes in the lungs. These findings suggest that ADSCs are a promising therapeutic candidate for IPF.
Collapse
Affiliation(s)
- Noriko Ouji-Sageshima
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (N.O.-S.); (A.H.); (M.K.); (A.H.); (R.F.)
| | - Aiko Hiyama
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (N.O.-S.); (A.H.); (M.K.); (A.H.); (R.F.)
| | - Makiko Kumamoto
- Department of Respiratory Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (M.K.); (S.H.); (S.M.)
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (N.O.-S.); (A.H.); (M.K.); (A.H.); (R.F.)
| | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (N.O.-S.); (A.H.); (M.K.); (A.H.); (R.F.)
| | - Ryutaro Furukawa
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (N.O.-S.); (A.H.); (M.K.); (A.H.); (R.F.)
| | - Shigeto Hontsu
- Department of Respiratory Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (M.K.); (S.H.); (S.M.)
| | - Takeshi Kawaguchi
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.K.); (N.S.)
| | - Noriyoshi Sawabata
- Department of Thoracic and Cardiovascular Surgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.K.); (N.S.)
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Kashihara 634-8521, Nara, Japan; (M.K.); (S.H.); (S.M.)
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara 634-8521, Nara, Japan; (N.O.-S.); (A.H.); (M.K.); (A.H.); (R.F.)
| |
Collapse
|
10
|
Liu Y, Tang P, Peng S, Zhong J, Xu Z, Zhong J, Su J, Zhong Y, Hu K. [ 18F]AlF-CBP imaging of type I collagen for non-invasive monitoring of pulmonary fibrosis in preclinical models. Eur J Nucl Med Mol Imaging 2024; 52:22-35. [PMID: 39172179 DOI: 10.1007/s00259-024-06888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Pulmonary fibrosis is an irreversible scar-forming condition for which there is a lack of non-invasive and specific methods for monitoring its progression and therapy efficacy. However, the disease is known to be accompanied by collagen accumulation. Here, we developed a novel positron emission tomography (PET) probe targeting type I collagen to evaluate its utility for the non-invasive assessment of pulmonary fibrosis. METHODS We designed a 18F-labeled PET probe ([18F]AlF-CBP) to target type I collagen and evaluated its binding affinity, specificity and stability in vitro. PET with [18F]AlF-CBP, CT, histopathology, immunofluorescence, and biochemical indice were performed to assess and quantify type I collagen levels and pulmonary fibrosis progression and treatment in murine models. Dynamic PET/CT studies of [18F]AlF-CBP were conducted to assess lung fibrosis in non-human primate models. RESULTS [18F]AlF-CBP was successfully prepared, and in vitro and in vivo tests showed high stability (> 95%) and type I collagen specificity (IC50 = 0.36 µM). The lungs of the fibrotic murine model showed more elevated probe uptake and retention compared to the control group, and there was a positive correlation between the radioactivity uptake signals and the degree of fibrosis (CT: R2 = 0.89, P < 0.0001; hydroxyproline levels: R2 = 0.89, P < 0.0001). PET signals also correlated well with mean lung density in non-human primate models of pulmonary fibrosis (R2 = 0.84, P < 0.0001). CONCLUSION [18F]AlF-CBP PET imaging is a promising non-invasive method for specific monitoring of lung fibrosis progression and therapy efficacy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Peipei Tang
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Simin Peng
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinmei Zhong
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zexin Xu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiawei Zhong
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Su
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuhua Zhong
- Department of Rehabilitation Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kongzhen Hu
- Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Farooq H, Luehmann HP, Koenitzer JR, Heo GS, Sultan DH, Kulkarni DH, Gunsten SP, Sashti RM, Huang T, Keller AR, Lavine KJ, Atkinson JJ, Wingler LM, Liu Y, Brody SL. Molecular imaging in experimental pulmonary fibrosis reveals that nintedanib unexpectedly modulates CCR2 immune cell infiltration. EBioMedicine 2024; 110:105431. [PMID: 39515027 PMCID: PMC11582469 DOI: 10.1016/j.ebiom.2024.105431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/16/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis is a challenging clinical problem with lung pathology featuring immune cell infiltrates, fibroblast expansion, and matrix deposition. Molecular analysis of diseased lungs and preclinical models have uncovered C-C chemokine receptor type 2 (CCR2)+ monocyte egress from the bone marrow into the lung, where they acquire profibrotic activities. Current drug treatment is focused on fibroblast activity. Alternatively, therapeutic targeting and monitoring CCR2+ cells may be an effective patient management strategy. METHODS Inhibition of CCR2+ cells and, as a benchmark, the clinical antifibrotic agent, nintedanib, were used in mouse lung fibrosis models. Lungs were evaluated directly for CCR2+ cell infiltration and by non-invasive CCR2+ positron emission tomography imaging (CCR2-PET). FINDINGS Lung CCR2+ cells were significantly elevated in the bleomycin model as determined by tissue evaluation and CCR2-PET imaging. A protective treatment protocol with an oral CCR2 inhibitor was compared to oral nintedanib. While we expected disparate effects on CCR2+ cells, each drug similarly decreased lung CCR2+ cells and fibrosis. Chemotaxis assays showed nintedanib indirectly inhibited C-C motif chemokine 2 (CCL2)-mediated migration of CCR2+ cells. Even delayed therapeutic administration of nintedanib in bleomycin and the silicosis progressive fibrosis models decreased the accumulation of CCR2+ lung cells. In these treatments early CCR2-PET imaging predicted the later development of fibrosis. INTERPRETATION The inhibition of CCR2+ cell egress is likely a critical controller for stabilising lung fibrosis, as provided by nintedanib. Imaging with CCR2-PET may be useful to monitor nintedanib treatment responses, guide decision-making in the treatment of patients with progressive pulmonary fibrosis, and as a biomarker for drug development. FUNDING National Institutes of Health (NIH), R01HL131908 (SLB), R35HL145212 (YL), P41EB025815 (YL), K01DK133670 (DHK); Barnes Jewish Hospital Foundation (SLB).
Collapse
Affiliation(s)
- Hasan Farooq
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Hannah P Luehmann
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jeffrey R Koenitzer
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gyu Seong Heo
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Deborah H Sultan
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Devesha H Kulkarni
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sean P Gunsten
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Rekha M Sashti
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Tao Huang
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Amanda R Keller
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Jeffrey J Atkinson
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Laura M Wingler
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Steven L Brody
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
12
|
Leitz DHW, Konietzke P, Wagner WL, Mertiny M, Benke C, Schneider T, Morty RE, Dullin C, Stiller W, Kauczor HU, Mall MA, Duerr J, Wielpütz MO. Longitudinal microcomputed tomography detects onset and progression of pulmonary fibrosis in conditional Nedd4-2 deficient mice. Am J Physiol Lung Cell Mol Physiol 2024; 327:L917-L929. [PMID: 39437758 PMCID: PMC11684955 DOI: 10.1152/ajplung.00280.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease, which is usually diagnosed late in advanced stages. Little is known about the subclinical development of IPF. We previously generated a mouse model with conditional Nedd4-2 deficiency (Nedd4-2-/-) that develops IPF-like lung disease. The aim of this study was to characterize the onset and progression of IPF-like lung disease in conditional Nedd4-2-/- mice by longitudinal micro-computed tomography (CT). In vivo micro-CT was performed longitudinally in control and conditional Nedd4-2-/- mice at 1, 2, 3, 4, and 5 mo after doxycycline induction. Furthermore, terminal in vivo micro-CT followed by pulmonary function testing and post mortem micro-CT was performed in age-matched mice. Micro-CT images were evaluated for pulmonary fibrosis using an adapted fibrosis scoring system. Histological assessment of lung collagen content was conducted as well. Micro-CT is sensitive to detect the onset and progression of pulmonary fibrosis in vivo and to quantify distinct radiological IPF-like features along disease development in conditional Nedd4-2-/- mice. Nonspecific interstitial alterations were detected from 3 mo, whereas key features such as honeycombing-like lesions were detected from 4 mo onward. Pulmonary function correlated well with in vivo (r = -0.738) and post mortem (r = -0.633) micro-CT fibrosis scores and collagen content. Longitudinal micro-CT enables in vivo monitoring of the onset and progression and detects radiological key features of IPF-like lung disease in conditional Nedd4-2-/- mice. Our data support micro-CT as a sensitive quantitative endpoint for the preclinical evaluation of novel antifibrotic strategies.NEW & NOTEWORTHY IPF diagnosis, particularly in early stages, remains challenging. In this study, micro-CT is used in conditional Nedd4-2-/- mice to closely monitor the onset and progression of progressive pulmonary fibrosis in vivo. Together with high-resolution post mortem micro-CT, this allowed us to track how nonspecific lung lesions develop into key IPF-like features. This approach offers a noninvasive method to monitor pulmonary fibrosis, providing a quantitative endpoint for the preclinical evaluation of novel antifibrotic strategies.
Collapse
Affiliation(s)
- Dominik H W Leitz
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philip Konietzke
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Willi L Wagner
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Mara Mertiny
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Claudia Benke
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Schneider
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Rory E Morty
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg, University Hospital Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christian Dullin
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Translational Molecular Imaging, Max-Plank-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Diagnostic and Interventional Radiology, University Medical Center, Göttingen, Germany
| | - Wolfram Stiller
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Mark O Wielpütz
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
13
|
Yu R, Li S, Chen L, Hu E, Chai D, Liu Z, Zhang Q, Mao Y, Zhai Y, Li K, Liu Y, Li X, Zhou H, Yang C, Xu J. Inhaled exogenous thymosin beta 4 suppresses bleomycin-induced pulmonary fibrosis in mice via TGF-β1 signalling pathway. J Pharm Pharmacol 2024:rgae143. [PMID: 39579076 DOI: 10.1093/jpp/rgae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
OBJECTIVES Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fibrotic interstitial lung disease. The two drugs indicated for IPF have limited efficacy and there is an urgent need to develop new drugs. Thymosin β4 (Tβ4) is a natural endogenous repair factor whose antifibrotic effects have been reported. This study aimed to evaluate the effect of exogenous recombinant human thymosin beta 4 (rhTβ4) on pulmonary fibrosis. METHODS Pulmonary fibrosis was induced in mice with bleomycin, and rhTβ4 was administrated by nebulization following three strategies: early dosing, mid-term dosing, and late dosing. The rhTβ4 efficacy was assessed by hydroxyproline, lung function, and lung histopathology. In vitro, the effects of rhTβ4 on fibroblast and lung epithelial cell phenotypes, as well as the TGF-β1 pathway, were evaluated. KEY FINDINGS Aerosol administration of rhTβ4 could alleviate bleomycin-induced pulmonary fibrosis in mice at different stages of fibrosis. Studies conducted in vitro suggested that rhTβ4 could suppress lung fibroblasts from proliferating, migrating, and activation via regulating the TGF-β1 signalling pathway. In vitro, rhTβ4 also inhibited the epithelial-mesenchymal transition-like process of pulmonary epithelial cells. CONCLUSIONS This study suggests that nebulized rhTβ4 is a potential treatment for IPF.
Collapse
Affiliation(s)
- Rui Yu
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Shimeng Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Li Chen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Enbo Hu
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Zhichao Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Qianyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Yunyun Mao
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yanfang Zhai
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Kai Li
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Yanhong Liu
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, China
| | - Junjie Xu
- Institute of Biotechnology, Academy of Military Medical Sciences, 20 Dongdajie Street, Fengtai District, Beijing 100071, China
| |
Collapse
|
14
|
Vincenzi E, Buccardi M, Ferrini E, Fantazzini A, Polverini E, Villetti G, Sverzellati N, Aliverti A, Basso C, Pennati F, Stellari FF. A semi-automatic pipeline integrating histological and µCT data in a mouse model of lung fibrosis. J Transl Med 2024; 22:1040. [PMID: 39558387 PMCID: PMC11575023 DOI: 10.1186/s12967-024-05819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/31/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Drug discovery strongly relies on the thorough evaluation of preclinical experimental studies. In the context of pulmonary fibrosis, micro-computed tomography (µCT) and histology are well-established and complementary tools for assessing, in animal models, disease progression and response to treatment. µCT offers dynamic, real-time insights into disease evolution and the effects of therapies, while histology provides a detailed microscopic examination of lung tissue. Here, we present a semi-automatic pipeline that integrates these readouts by matching individual µCT volume slices with the corresponding histological sections, effectively linking densitometric data with Ashcroft score measurements. METHODS The tool first geometrically aligns the vertical axis of the µCT volume with the cutting plane used to prepare the histological sample. Then, focusing on the left lung, it computes the affine registration that identifies the µCT coronal slice that best matches the histological section. Finally, quantitative µCT imaging parameters are extracted from the selected slice. In a proof-of-concept test, the tool was applied to a bleomycin-induced mouse model of lung fibrosis. RESULTS The proposed approach demonstrated high accuracy and time effectiveness in matching µCT and histological sections minimizing manual intervention, with an overall success rate of 95%, and reduced time required to align µCT and histological data from 40 to 5 min. Significant correlations were found between quantitative data derived from µCT and histology data. CONCLUSIONS The precise combination of microscopic ex-vivo information with 3D in-vivo data enhances the accuracy and representativeness of tissue analysis and provides a structural context for omic studies, serving as the foundation for a multi-layer platform. By facilitating a detailed and objective view of disease progression and treatment response, this approach has the potential to accelerate the development of effective therapies for lung fibrosis.
Collapse
Affiliation(s)
| | - Martina Buccardi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
- Molecular Imaging Facility, Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, 43122, Parma, Italy
| | - Erica Ferrini
- Molecular Imaging Facility, Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, 43122, Parma, Italy
- ANTHEM (AdvaNced Technologies for Human-centrEd Medicine), Spoke 3, Milan, Italy
| | | | - Eugenia Polverini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Gino Villetti
- Molecular Imaging Facility, Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, 43122, Parma, Italy
| | | | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | | | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Franco Fabio Stellari
- Molecular Imaging Facility, Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, 43122, Parma, Italy.
| |
Collapse
|
15
|
Nakashima T. Lung cancer with comorbid interstitial pneumonia: Current situation and animal model development. Respir Investig 2024; 62:1183-1190. [PMID: 39442267 DOI: 10.1016/j.resinv.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Interstitial pneumonia includes a range of disorders affecting the lung interstitium, significantly impacting life expectancy, especially during acute exacerbations. Concurrently, lung cancer remains a leading cause of cancer-related deaths worldwide. The coexistence of these two conditions presents a formidable challenge, complicating diagnosis, treatment, and prognosis. This review explores the critical issues associated with lung cancer comorbid with interstitial pneumonia, focusing on diagnostic challenges, prognosis, treatment complications, and the lack of effective research tools. Diagnosing lung cancer in patients with interstitial pneumonia is complicated due to overlapping imaging features and the risks associated with biopsies. The prognosis is poorer for patients with both conditions, as interstitial pneumonia promotes a more aggressive lung cancer phenotype. Standard treatment for interstitial pneumonia can inadvertently facilitate lung cancer progression, while anticancer therapies often exacerbate interstitial pneumonia. To address the lack of appropriate research tools, a novel murine model combining orthotopic lung cancer cell transplantation with bleomycin-induced interstitial pneumonia was developed to better understand their interaction. This new murine model successfully mimics the human condition, demonstrating increased tumor growth, metastasis, and alterations in the tumor microenvironment, including elevated tumor-associated macrophages, cancer-associated myofibroblasts, and regulatory T cells, alongside decreased cytotoxic T lymphocytes. Lung cancer comorbid with interstitial pneumonia represents a severe clinical challenge due to diagnostic difficulties and treatment-related complications. The novel murine model offers a valuable tool for future research to develop effective therapies. Dedicated efforts are needed to address this complex pathophysiology to improve patient outcomes.
Collapse
Affiliation(s)
- Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
16
|
Buseghin D, Grandi A, Ferrini E, Villetti G, Ciccimarra R, Sverzellati N, Aliverti A, Pennati F, Stellari FF. Quantitative micro-CT-derived biomarkers elucidate age-related lung fibrosis in elder mice. Respir Res 2024; 25:393. [PMID: 39478545 PMCID: PMC11526612 DOI: 10.1186/s12931-024-03006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Idiopathic Pulmonary Fibrosis (IPF), prevalently affecting individuals over 60 years of age, has been mainly studied in young mouse models. The limited efficacy of current treatments underscores the need for animal models that better mimic an aged patient population. We addressed this by inducing pulmonary fibrosis in aged mice, using longitudinal micro-CT imaging as primary readout, with special attention to animal welfare. METHODS A double bleomycin dose was administered to 18-24 months-old male C57Bl/6j mice to induce pulmonary fibrosis. Bleomycin dosage was reduced to as low as 75% compared to that commonly administered to young (8-12 weeks-old) mice, resulting in long-term lung fibrosis without mortality, complying with animal welfare guidelines. After fibrosis induction, animals received Nintedanib once-daily for two weeks and longitudinally monitored by micro-CT, which provided structural and functional biomarkers, followed by post-mortem histological analysis as terminal endpoint. RESULTS Compared to young mice, aged animals displayed increased volume, reduced tissue density and function, and marked inflammation. This increased vulnerability imposed a bleomycin dosage reduction to the lowest tested level (2.5 µg/mouse), inducing a milder, yet persistent, fibrosis, while preserving animal welfare. Nintedanib treatment reduced fibrotic lesions and improved pulmonary function. CONCLUSIONS Our data identify a downsized bleomycin treatment that allows to achieve the best trade-off between fibrosis induction and animal welfare, a requirement for antifibrotic drug testing in aged lungs. Nintedanib displayed significant efficacy in this lower-severity disease model, suggesting potential patient stratification strategies. Lung pathology was quantitatively assessed by micro-CT, pointing to the value of longitudinal endpoints in clinical trials.
Collapse
Affiliation(s)
- Davide Buseghin
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
- ANTHEM (AdvaNced Technologies for Human-centrEd Medicine), Spoke 3, Milan, Italy
| | - Andrea Grandi
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, Parma, Italy
| | - Erica Ferrini
- ANTHEM (AdvaNced Technologies for Human-centrEd Medicine), Spoke 3, Milan, Italy
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, Parma, Italy
| | - Gino Villetti
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, Parma, Italy
| | | | | | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy.
| | - Franco Fabio Stellari
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.P.A, Parma, Italy.
| |
Collapse
|
17
|
Ezzo M, Spindler K, Wang JB, Lee D, Pecoraro G, Cowen J, Pakshir P, Hinz B. Acute contact with profibrotic macrophages mechanically activates fibroblasts via αvβ3 integrin-mediated engagement of Piezo1. SCIENCE ADVANCES 2024; 10:eadp4726. [PMID: 39441936 PMCID: PMC11498225 DOI: 10.1126/sciadv.adp4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
Fibrosis-excessive scarring after injury-causes >40% of disease-related deaths worldwide. In this misguided repair process, activated fibroblasts drive the destruction of organ architecture by accumulating and contracting extracellular matrix. The resulting stiff scar tissue, in turn, enhances fibroblast contraction-bearing the question of how this positive feedback loop begins. We show that direct contact with profibrotic but not proinflammatory macrophages triggers acute fibroblast contractions. The contractile response depends on αvβ3 integrin expression on macrophages and Piezo1 expression on fibroblasts. The touch of macrophages elevates fibroblast cytosolic calcium within seconds, followed by translocation of the transcription cofactors nuclear factor of activated T cells 1 and Yes-associated protein, which drive fibroblast activation within hours. Intriguingly, macrophages induce mechanical stress in fibroblasts on soft matrix that alone suppresses their spontaneous activation. We propose that acute contact with suitable macrophages mechanically kick-starts fibroblast activation in an otherwise nonpermissive soft environment. The molecular components mediating macrophage-fibroblast mechanotransduction are potential targets for antifibrosis strategies.
Collapse
Affiliation(s)
- Maya Ezzo
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Katrin Spindler
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, Ontario, Canada
- School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Jun Bo Wang
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Dahea Lee
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Gilbert Pecoraro
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- School of Life Sciences, Reutlingen University, 72762 Reutlingen, Germany
| | - Justin Cowen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Pardis Pakshir
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Institute for Biomedical Science of the St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Deng X, Liu J, Zhou J, Shi Y, Song S, Chen J, Li Y, Yu B, Liang SH, Zhu X. Imaging Pulmonary Fibrosis and Treatment Efficacy In Vivo with Autotaxin-Specific PET Ligand [ 18F]ATX-1905. Mol Pharm 2024; 21:5171-5181. [PMID: 39186477 DOI: 10.1021/acs.molpharmaceut.4c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by unpredictable progression and limited therapeutic options. Current diagnosis relies on high resolution computed tomography (HRCT), which may not adequately capture early signs of deterioration. The enzyme autotaxin (ATX) emerges as a prominently expressed extracellular secretory enzyme in the lungs of IPF patients. The objective of this study was to evaluate the effectiveness of 18F-labeled ATX-targeted tracer [18F]ATX-1905, in comparison with [18F]FDG, for early fibrosis diagnosis, disease evolution monitoring, and treatment efficacy assessment in bleomycin-induced pulmonary fibrosis (BPF) models. To assess treatment efficacy, mice were treated with two commonly used drugs for IPF, pirfenidone or nintedanib, from Day 9 to Day 23 postbleomycin administration. Lung tissue assessments encompassed inflammation severity via H&E staining, and Ashcroft scoring via Masson staining, alongside quantification of ATX expression through ELISA. Positron emission tomography (PET) imaging employing [18F]FDG and [18F]ATX-1905 tracked disease progression pre- and post-treatment. The extent of pulmonary fibrosis corresponded to changes in ATX expression levels in the BPF mouse model. Notably, [18F]ATX-1905 exhibited elevated uptake in BPF lungs during the progression of the disease, particularly evident at the early stage (Day 9). This uptake was inhibited by an ATX inhibitor, PF-8380, underscoring the specificity of the radiotracer. Conversely, [18F]FDG uptake, peaking at Day 15, decreased subsequently, likely reflective of diminished inflammation. A 2-week treatment regimen using either pirfenidone or nintedanib resulted in notable reductions of ATX expression levels and fibrosis degrees within lung tissues, based on ELISA and Masson staining, as evidenced by PET imaging with [18F]ATX-1905. [18F]FDG uptake also decreased following the treatment period. Additionally, PET/CT imaging extended to a nonhuman primate (NHP) BPF model. The uptake of [18F]ATX-1905 (SUVmax = 2.2) was significantly higher than that of [18F]FDG (SUVmax = 0.7) in fibrotic lung tissue. Using our novel ATX-specific radiotracer [18F]ATX-1905 and PET/CT imaging, we demonstrated excellent ability in early fibrosis detection, disease monitoring, and treatment assessment within lungs of the BPF mouse models. [18F]ATX-1905 displayed remarkable specificity for ATX expression and high sensitivity for ATX alterations, suggesting its potential for monitoring varying ATX expression in lungs of IPF patients.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Junyi Liu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jianyuan Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yifan Shi
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shuang Song
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Bo Yu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322, United States
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| |
Collapse
|
19
|
Petersen AG, Korntner SH, Bousamaki J, Oró D, Arraut AM, Pors SE, Salinas CG, Andersen MW, Madsen MR, Nie Y, Butts J, Roqueta‐Rivera M, Simonsen U, Hansen HH, Feigh M. Reproducible lung protective effects of a TGFβR1/ALK5 inhibitor in a bleomycin-induced and spirometry-confirmed model of IPF in male mice. Physiol Rep 2024; 12:e70077. [PMID: 39394052 PMCID: PMC11469938 DOI: 10.14814/phy2.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024] Open
Abstract
This study comprehensively validated the bleomycin (BLEO) induced mouse model of IPF for utility in preclinical drug discovery. To this end, the model was rigorously evaluated for reproducible phenotype and TGFβ-directed treatment outcomes. Lung disease was profiled longitudinally in male C57BL6/JRJ mice receiving a single intratracheal instillation of BLEO (n = 10-12 per group). A TGFβR1/ALK5 inhibitor (ALK5i) was profiled in six independent studies in BLEO-IPF mice, randomized/stratified to treatment according to baseline body weight and non-invasive whole-body plethysmography. ALK5i (60 mg/kg/day) or vehicle (n = 10-16 per study) was administered orally for 21 days, starting 7 days after intratracheal BLEO installation. BLEO-IPF mice recapitulated functional, histological and biochemical hallmarks of IPF, including declining expiratory/inspiratory capacity and inflammatory and fibrotic lung injury accompanied by markedly elevated TGFβ levels in bronchoalveolar lavage fluid and lung tissue. Pulmonary transcriptome signatures of inflammation and fibrosis in BLEO-IPF mice were comparable to reported data in IPF patients. ALK5i promoted reproducible and robust therapeutic outcomes on lung functional, biochemical and histological endpoints in BLEO-IPF mice. The robust lung fibrotic disease phenotype, along with the consistent and reproducible lung protective effects of ALK5i treatment, makes the spirometry-confirmed BLEO-IPF mouse model highly applicable for profiling novel drug candidates for IPF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaohui Nie
- Enanta PharmaceuticalsWatertownMassachusettsUSA
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Faculty of HealthAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
20
|
Guan J, Yin L, Huang Q, Chen J, Liu H, Li J. m 6A methyltransferase ZC3H13 improves pulmonary fibrosis in mice through regulating Bax expression. Exp Cell Res 2024; 442:114255. [PMID: 39307407 DOI: 10.1016/j.yexcr.2024.114255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease. N6-methyladenosine (m6A) is a reversible RNA modification that was shown to be associated with IPF development. The present study aimed to explore the function and potential mechanism of the m6A methylation enzyme zinc finger CCCH-type containing 13 (ZC3H13) in IPF. In the study, bioinformatic screening yielded a differentially expressed m6A gene, ZC3H13, which was down-regulated in GEO microarrays, BLM-induced mouse models, and cellular models. Overexpression of ZC3H13 reduced histopathological damage of lung tissues in mice, mitigated fibrosis (including reduced α-SMA, collagen Ⅰ, and Vimentin levels, and elevated E-cadherin levels), decreased lung/body weight ratio and lung hydroxyproline levels, reduced oxidative stress (increased SOD activity and GSH-Px activity and decreased MDA levels), suppressed apoptosis within lung tissues and MLE-12 cells, promoted Bcl-2 expression, and inhibited Bax expression. Bax expression was found to be negatively correlated with ZC3H13 expression by correlation analysis. ZC3H13 could bind Bax mRNA and promote its m6A methylation through reading protein YTHDC1, thereby inhibiting its stability. Bax inhibition ameliorated BLM-induced MLE-12 cell dysfunction and partially abrogated the inhibition of MLE-12 cell function by ZC3H13 downregulation. In conclusion, m6A methyltransferase ZC3H13 impedes lung epithelial cell apoptosis and thus improves pulmonary fibrosis by promoting Bax mRNA m6A methylation and down-regulating Bax expression through reading protein YTHDC1.
Collapse
Affiliation(s)
- Jing Guan
- Department of Science and Education, The First Hospital of Changsha, Changsha, 410005, Hunan, China
| | - Lengyun Yin
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Qi Huang
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jiamei Chen
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Hui Liu
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Jianmin Li
- Department of Pulmonary and Critical Care Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China.
| |
Collapse
|
21
|
Bell JA, Davies ER, Brereton CJ, Vukmirovic M, Roberts JJW, Lunn K, Wickens L, Conforti F, Ridley RA, Ceccato J, Sayer LN, Johnston DA, Vallejo AF, Alzetani A, Jogai S, Marshall BG, Fabre A, Richeldi L, Monk PD, Skipp P, Kaminski N, Offer E, Wang Y, Davies DE, Jones MG. Spatial transcriptomic validation of a biomimetic model of fibrosis enables re-evaluation of a therapeutic antibody targeting LOXL2. Cell Rep Med 2024; 5:101695. [PMID: 39173635 PMCID: PMC11524965 DOI: 10.1016/j.xcrm.2024.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 02/26/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024]
Abstract
Matrix stiffening by lysyl oxidase-like 2 (LOXL2)-mediated collagen cross-linking is proposed as a core feedforward mechanism that promotes fibrogenesis. Failure in clinical trials of simtuzumab (the humanized version of AB0023, a monoclonal antibody against human LOXL2) suggested that targeting LOXL2 may not have disease relevance; however, target engagement was not directly evaluated. We compare the spatial transcriptome of active human lung fibrogenesis sites with different human cell culture models to identify a disease-relevant model. Within the selected model, we then evaluate AB0023, identifying that it does not inhibit collagen cross-linking or reduce tissue stiffness, nor does it inhibit LOXL2 catalytic activity. In contrast, it does potently inhibit angiogenesis consistent with an alternative, non-enzymatic mechanism of action. Thus, AB0023 is anti-angiogenic but does not inhibit LOXL2 catalytic activity, collagen cross-linking, or tissue stiffening. These findings have implications for the interpretation of the lack of efficacy of simtuzumab in clinical trials of fibrotic diseases.
Collapse
Affiliation(s)
- Joseph A Bell
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Elizabeth R Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Christopher J Brereton
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Milica Vukmirovic
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | | | | | - Leanne Wickens
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Franco Conforti
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Robert A Ridley
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - Jessica Ceccato
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; Department of Medicine, University of Padova, Padova, Italy
| | - Lucy N Sayer
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK
| | - David A Johnston
- Biomedical Imaging Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Andres F Vallejo
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK
| | - Aiman Alzetani
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Sanjay Jogai
- University Hospital Southampton, SO16 6YD Southampton, UK
| | - Ben G Marshall
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Aurelie Fabre
- Department of Histopathology, St. Vincent's University Hospital & UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Luca Richeldi
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Unità Operativa Complessa di Pneumologia, Università Cattolica del Sacro Cuore, Fondazione Policlinico A. Gemelli, Rome, Italy
| | | | - Paul Skipp
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK; University Hospital Southampton, SO16 6YD Southampton, UK
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Emily Offer
- Medicines Discovery Catapult, Alderley Edge, UK
| | - Yihua Wang
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, SO17 1BJ Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Donna E Davies
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Mark G Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, SO16 6YD Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton, SO16 6YD Southampton, UK; Institute for Life Sciences, University of Southampton, SO17 1BJ Southampton, UK.
| |
Collapse
|
22
|
Xue T, Zhang Q, Zhang T, Meng L, Liu J, Chai D, Liu Y, Yang Z, Jiao R, Cui Y, Gao J, Li X, Xu A, Zhou H. Zafirlukast ameliorates lipopolysaccharide and bleomycin-induced lung inflammation in mice. BMC Pulm Med 2024; 24:456. [PMID: 39285346 PMCID: PMC11406776 DOI: 10.1186/s12890-024-03273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Acute lung injury (ALI) is the result of damage to the capillary endothelia and the alveolar epithelial cell caused by various direct and indirect factors, leading to significant pulmonary interstitial and alveolar edema and acute hypoxic respiratory insufficiency. A subset of ALI cases progresses to irreversible pulmonary fibrosis, a condition with fatal implications. Zafirlukast is a leukotriene receptor antagonist licensed for asthma prevention and long-term treatment. This study demonstrated a significant improvement in lung tissue pathology and a reduction in inflammatory cell infiltration in models of lipopolysaccharide (LPS)-induced ALI and bleomycin (BLM)-induced lung inflammation following zafirlukast administration, both in vivo and in vitro. Moreover, zafirlukast was found to suppress the inflammatory response of alveolar epithelial cells in vitro and lung inflammation in vivo by reducing the activation of the TLR4/NF-κB/NLRP3 inflammasome pathway. In conclusion, zafirlukast relieved lung injury and the infiltration of inflammatory cells in the lung by regulating the TLR4/NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Tongtong Xue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Qianyi Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Lingxin Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Jing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Yuming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Zhongyi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Ran Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China
| | - Yunyao Cui
- Tianjin Jikun Technology Co., Ltd, Tianjin, 301700, People's Republic of China
| | - Jingjing Gao
- Tianjin Jikun Technology Co., Ltd, Tianjin, 301700, People's Republic of China
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Aiguo Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, College of Life Sciences, Nankai University, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, China.
| |
Collapse
|
23
|
Inada S, Nakashima T, Masuda T, Shimoji K, Sakamoto S, Yamaguchi K, Horimasu Y, Iwamoto H, Fujitaka K, Hamada H, Hattori N. Sex-related differences in efficacy of bone marrow-derived high aldehyde dehydrogenase activity cells against pulmonary fibrosis. Stem Cell Res Ther 2024; 15:304. [PMID: 39278922 PMCID: PMC11404015 DOI: 10.1186/s13287-024-03933-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024] Open
Abstract
BACKGROUND Although bone marrow-derived cells with high aldehyde dehydrogenase activity (ALDHbr) have shown therapeutic potential against various diseases in animal studies, clinical trials have failed to show concurrent findings. We aimed to clarify the optimal conditions for the efficacy of ALDHbr cells by using a murine bleomycin-induced pulmonary fibrosis model. METHODS We intravenously transferred male or female donor C57BL/6 mice-derived ALDHbr cells into recipient C57BL/6 mice under various conditions, and used mCherry-expressing mice as a donor to trace the transferred ALDHbr cells. RESULTS Pulmonary fibrosis improved significantly when (1) female-derived, not male-derived, and (2) lineage (Lin)-negative, not lineage-positive, ALDHbr cells were transferred during the (3) fibrotic, not inflammatory, phase. Consistent with the RNA-sequencing results, female-derived Lin-/ALDHbr cells were more resistant to oxidative stress than male-derived cells in vitro, and transferred female-derived Lin-/ALDHbr cells were more viable than male-derived cells in the fibrotic lung. The mechanism underlying the antifibrotic effects of Lin-/ALDHbr cells was strongly associated with reduction of oxidative stress. CONCLUSIONS Our results indicated that Lin-/ALDHbr cell therapy could ameliorate pulmonary fibrosis by reducing oxidative stress and suggested that their efficacy was mediated by sex-related differences. Thus, sex-awareness strategies may be important for clinical application of bone marrow ALDHbr cells as a therapeutic tool.
Collapse
Affiliation(s)
- Shugo Inada
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kiyofumi Shimoji
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Physical Analysis and Therapeutic Sciences, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
24
|
Yıldırım AB, Göl M, Yiğin A, Çimen L, Dinç H, Yıldız H, Kayar B. Therapeutic use of fisetin and pirfenidone combination in bleomycin-induced pulmonary fibrosis in adult male albino rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03363-6. [PMID: 39162796 DOI: 10.1007/s00210-024-03363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Pulmonary fibrosis is an important health problem; one of the drugs used in its treatment is pirfenidone (PFD). Fisetin (FST) is a flavonoid with antioxidative, anti-inflammatory, and antifibrotic effects. The aim of this study was to induce PF in rats with bleomycin (BLM) and to investigate the combined effect of PFD and FST in the treatment of fibrosis. In the study, 40 male Wistar rats were divided into five groups (n = 8). Sham group was administered saline on day 0 and BLM (5 mg/kg, i.t.) was administered to the other groups; BLM + PFD group: PFD (50 mg/kg) was administered every day between the first and 15th days; BLM + FST group: FST (25 mg/kg) was administered between the first and 15th days; BLM + PFD + FST group: PFD (50 mg/kg) and FST (25 mg/kg) were administered by gavage every day between the first and 15th days. At the end of the 15th day, BAL was performed under anaesthesia and lung tissues were removed. Histopathological, biochemical, and RT-PCR analyses were performed in the lung tissue. In our study, the concomitant use of FST and PFD caused downregulation of NF-κB p65, TGF-β1, and α-SMA expressions; downregulation of TIMP-1, MMP-2, and MMP-9 genes; downregulation of HYP, MPO, and MDA activity; decrease in the number of differential cells in BAL; and upregulation of GSH. This shows that FST and PFD have antifibrotic, antioxidative, and anti-inflammatory effects. Our results show that the combined use of PFD and FST in BLM-induced pulmonary fibrosis reduces extracellular matrix accumulation, downregulates the level of gelatinases and their inhibitors, and provides significant improvements in antioxidative defence parameters.
Collapse
Affiliation(s)
- Ayşegül Burçin Yıldırım
- Department of Histology and Embryology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey.
| | - Mehmet Göl
- Department of Physiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Akın Yiğin
- Department of Veterinary Genetics, Faculty of Veterinary, Harran University, Şanlıurfa, Turkey
| | - Leyla Çimen
- Department of Biochemistry, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Hikmet Dinç
- Department of Pharmacology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| | - Hamit Yıldız
- Department of Internal Diseases, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Begüm Kayar
- Department of Microbiology, Faculty of Medicine, Gaziantep Islam Science and Technology University, Gaziantep, Turkey
| |
Collapse
|
25
|
Burgy O, Mayr CH, Schenesse D, Fousekis Papakonstantinou E, Ballester B, Sengupta A, She Y, Hu Q, Melo-Narvaéz MC, Jain E, Pestoni JC, Mozurak M, Estrada-Bernal A, Onwuka U, Coughlan C, Parimon T, Chen P, Heimerl T, Bange G, Schmeck BT, Lindner M, Hilgendorff A, Ruppert C, Güenther A, Mann M, Yildirim AÖ, Eickelberg O, Jung AL, Schiller HB, Lehmann M, Burgstaller G, Königshoff M. Fibroblast-derived extracellular vesicles contain SFRP1 and mediate pulmonary fibrosis. JCI Insight 2024; 9:e168889. [PMID: 39315549 PMCID: PMC11457858 DOI: 10.1172/jci.insight.168889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/07/2024] [Indexed: 09/25/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal chronic lung disease characterized by aberrant intercellular communication, extracellular matrix deposition, and destruction of functional lung tissue. While extracellular vesicles (EVs) accumulate in the IPF lung, their cargo and biological effects remain unclear. We interrogated the proteome of EV and non-EV fractions during pulmonary fibrosis and characterized their contribution to fibrosis. EVs accumulated 14 days after bleomycin challenge, correlating with decreased lung function and initiated fibrogenesis in healthy precision-cut lung slices. Label-free proteomics of bronchoalveolar lavage fluid EVs (BALF-EVs) collected from mice challenged with bleomycin or control identified 107 proteins enriched in fibrotic vesicles. Multiomic analysis revealed fibroblasts as a major cellular source of BALF-EV cargo, which was enriched in secreted frizzled related protein 1 (SFRP1). Sfrp1 deficiency inhibited the activity of fibroblast-derived EVs to potentiate lung fibrosis in vivo. SFRP1 led to increased transitional cell markers, such as keratin 8, and WNT/β-catenin signaling in primary alveolar type 2 cells. SFRP1 was expressed within the IPF lung and localized at the surface of EVs from patient-derived fibroblasts and BALF. Our work reveals altered EV protein cargo in fibrotic EVs promoting fibrogenesis and identifies fibroblast-derived vesicular SFRP1 as a fibrotic mediator and potential therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivier Burgy
- INSERM U1231 Center for Translational and Molecular Medicine (CTM), Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital Dijon-Bourgogne, Dijon, France
| | - Christoph H. Mayr
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
| | - Déborah Schenesse
- INSERM U1231 Center for Translational and Molecular Medicine (CTM), Faculty of Health Sciences, Université de Bourgogne, Dijon, France
- Reference Center for Rare Pulmonary Diseases, University Hospital Dijon-Bourgogne, Dijon, France
- Department of Pulmonary Medicine and Intensive Care Unit, University Hospital Dijon-Bourgogne, Dijon, France
| | | | - Beatriz Ballester
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
- Faculty of Health Sciences, Universidad CEU Cardenal Herrera, CEU Universities, Valencia, Spain
| | - Arunima Sengupta
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Yixin She
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qianjiang Hu
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maria Camila Melo-Narvaéz
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Eshita Jain
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Jeanine C. Pestoni
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Molly Mozurak
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adriana Estrada-Bernal
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ugochi Onwuka
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christina Coughlan
- Division of Neurology, Department of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO) and
| | - Bernd T. Schmeck
- Department of Pulmonary Medicine and Intensive Care Unit, University Hospital Dijon-Bourgogne, Dijon, France
- Center for Synthetic Microbiology (SYNMIKRO) and
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
| | - Michael Lindner
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
- Paracelsus Medical Private University, Salzburg, Austria
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Clemens Ruppert
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
| | - Andreas Güenther
- Universities of Giessen and Marburg Lung Center (UGMLC) Giessen Biobank, Justus-Liebig-University Giessen, DZL, Giessen, Germany
- European IPF Registry (eurIPFreg), Center for Interstitial and Rare Lung Diseases, UGMLC, Justus-Liebig University Giessen, DZL, Giessen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Oliver Eickelberg
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna Lena Jung
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Herbert B. Schiller
- Institute of Experimental Pneumology, LMU University Hospital, Ludwig-Maximilians University, Munich, Germany
- Research Unit for Precision Regenerative Medicine, Helmholtz Munich, Munich, Germany
| | - Mareike Lehmann
- Institute for Lung Research, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Gerald Burgstaller
- Comprehensive Pneumology Center (CPC) with the CPC-M BioArchive and Institute of Lung Health and Immunity (LHI), Helmholtz Munich, Member of the DZL, Munich, Germany
| | - Melanie Königshoff
- Center for Lung Aging and Regeneration (CLAR), Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research Education and Clinical Center (GRECC) at the VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Morita S, Iwatake M, Suga S, Takahashi K, Sato K, Miyagi-Shiohira C, Noguchi H, Baba Y, Yukawa H. Establishment of a stem cell administration imaging method in bleomycin-induced pulmonary fibrosis mouse models. Sci Rep 2024; 14:18905. [PMID: 39143270 PMCID: PMC11325036 DOI: 10.1038/s41598-024-67586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a progressive disease caused by interstitial inflammation. Treatments are extremely scarce; therapeutic drugs and transplantation therapies are not widely available due to cost and a lack of donors, respectively. Recently, there has been a high interest in regenerative medicine and exponential advancements in stem cell-based therapies have occurred. However, a sensitive imaging technique for investigating the in vivo dynamics of transplanted stem cells has not yet been established and the mechanisms of stem cell-based therapy remain largely unexplored. In this study, we administered mouse adipose tissue-derived mesenchymal stem cells (mASCs) labeled with quantum dots (QDs; 8.0 nM) to a mouse model of bleomycin-induced pulmonary fibrosis in an effort to clarify the relationship between in vivo dynamics and therapeutic efficacy. These QD-labeled mASCs were injected into the trachea of C57BL/6 mice seven days after bleomycin administration to induce fibrosis in the lungs. The therapeutic effects and efficacy were evaluated via in vivo/ex vivo imaging, CT imaging, and H&E staining of lung sections. The QD-labeled mASCs remained in the lungs longer and suppressed fibrosis. The 3D imaging results showed that the transplanted cells accumulated in the peripheral and fibrotic regions of the lungs. These results indicate that mASCs may prevent fibrosis. Thus, QD labeling could be a suitable and sensitive imaging technique for evaluating in vivo kinetics in correlation with the efficacy of cell therapy.
Collapse
Affiliation(s)
- Saho Morita
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Mayumi Iwatake
- Institutes of Innovation for Future Society, Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| | - Sakura Suga
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Kazuomi Takahashi
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit Frontier, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Kazuhide Sato
- Institutes of Innovation for Future Society, Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Nagoya University Institute for Advanced Research, Advanced Analytical and Diagnostic Imaging Center (AADIC)/Medical Engineering Unit (MEU), B3 Unit Frontier, Nagoya University, Tsurumai-cho 65, Showa-ku, Nagoya, 466-8550, Japan
- Nagoya University Graduate School of Medicine, 65 Tsuruma, Showa-ku, Nagoya, 466-8550, Japan
- FOREST-Souhatsu, JST, Tokyo, Japan
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya, 466-8550, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institutes of Innovation for Future Society, Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
| | - Hiroshi Yukawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Institutes of Innovation for Future Society, Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
- Nagoya University Graduate School of Medicine, 65 Tsuruma, Showa-ku, Nagoya, 466-8550, Japan.
- Development of Quantum-Nano Cancer Photoimmunotherapy for Clinical Application of Refractory Cancer, Nagoya University, Tsurumai 65, Showa-ku, Nagoya, 466-8550, Japan.
- Institute of Quantum Life Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan.
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Chiba, 265-8522, Japan.
| |
Collapse
|
27
|
Sisson TH, Osterholzer JJ, Leung L, Basrur V, Nesvizhskii A, Subbotina N, Warnock M, Torrente D, Virk AQ, Horowitz JC, Migliorini M, Strickland DK, Kim KK, Huang SK, Lawrence DA. PAI-1 Interaction with Sortilin Related Receptor-1 is Required for Lung Fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.06.606812. [PMID: 39211273 PMCID: PMC11361096 DOI: 10.1101/2024.08.06.606812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Plasminogen activator inhibitor-1 (PAI-1) has been previously shown to promote lung fibrosis via a mechanism that requires an intact vitronectin (VTN) binding site. In the present study, employing two distinct murine fibrosis models, we find that VTN is not required for PAI-1 to drive lung scarring. This result suggested the existence of a previously unrecognized profibrotic PAI-1-protein interaction involving the VTN-binding site for PAI-1. Using an unbiased proteomic approach, we identified sortilin related receptor 1 (SorlA) as the most highly enriched PAI-1 interactor in the fibrosing lung. We next investigated the role of SorlA in pulmonary fibrosis and found that SorlA deficiency protected against lung scarring in a murine model. We further show that, while VTN deficiency does not influence fibrogenesis in the presence or absence of PAI-1, SorlA is required for PAI-1 to promote scarring. These results, together with data showing increased SorlA levels in human IPF lung tissue, support a novel mechanism through which the potent profibrotic mediator PAI-1 drives lung fibrosis and implicate SorlA as a new therapeutic target in IPF treatment.
Collapse
|
28
|
Mapping the lung fibrosis transcriptome of mice and men. Nat Genet 2024; 56:1550-1551. [PMID: 38969835 DOI: 10.1038/s41588-024-01833-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
|
29
|
Franzén L, Olsson Lindvall M, Hühn M, Ptasinski V, Setyo L, Keith BP, Collin A, Oag S, Volckaert T, Borde A, Lundeberg J, Lindgren J, Belfield G, Jackson S, Ollerstam A, Stamou M, Ståhl PL, Hornberg JJ. Mapping spatially resolved transcriptomes in human and mouse pulmonary fibrosis. Nat Genet 2024; 56:1725-1736. [PMID: 38951642 PMCID: PMC11319205 DOI: 10.1038/s41588-024-01819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis and limited treatment options. Efforts to identify effective treatments are thwarted by limited understanding of IPF pathogenesis and poor translatability of available preclinical models. Here we generated spatially resolved transcriptome maps of human IPF (n = 4) and bleomycin-induced mouse pulmonary fibrosis (n = 6) to address these limitations. We uncovered distinct fibrotic niches in the IPF lung, characterized by aberrant alveolar epithelial cells in a microenvironment dominated by transforming growth factor beta signaling alongside predicted regulators, such as TP53 and APOE. We also identified a clear divergence between the arrested alveolar regeneration in the IPF fibrotic niches and the active tissue repair in the acutely fibrotic mouse lung. Our study offers in-depth insights into the IPF transcriptional landscape and proposes alveolar regeneration as a promising therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Lovisa Franzén
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Martina Olsson Lindvall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Michael Hühn
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Victoria Ptasinski
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Laura Setyo
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Benjamin P Keith
- Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Astrid Collin
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Steven Oag
- Animal Science and Technology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Thomas Volckaert
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Annika Borde
- Bioscience In Vivo, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Joakim Lundeberg
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden
| | - Julia Lindgren
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Graham Belfield
- Translational Genomics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Sonya Jackson
- Late-Stage Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Ollerstam
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Marianna Stamou
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Patrik L Ståhl
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Stockholm, Sweden.
| | - Jorrit J Hornberg
- Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
30
|
Milara J, Roger I, Montero P, Artigues E, Escrivá J, Del Río R, Cortijo J. Targeting IL-11 to reduce fibrocyte circulation and lung accumulation in animal models of pulmonary hypertension-associated lung fibrosis. Br J Pharmacol 2024; 181:2991-3009. [PMID: 38679415 DOI: 10.1111/bph.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND AND PURPOSE IL-11 is a member of the IL-6 family of cytokine initially considered as haematopoietic and cytoprotective factor. Recent evidence indicates that IL-11 promotes lung fibrosis and pulmonary hypertension in animal models and is elevated in lung tissue of patients with pulmonary fibrosis and pulmonary hypertension. Fibrocytes are bone marrow-derived circulating cells that participate in lung fibrosis and pulmonary hypertension, but the role of IL-11 on fibrocytes is unknown. We investigated the role of IL-11 system on fibrocyte activation in different in vitro and in vivo models of lung fibrosis associated with pulmonary hypertension. EXPERIMENTAL APPROACH Human fibrocytes were isolated from peripheral blood of six healthy donors. Recombinant human (rh)-IL-11 and soluble rh-IL-11 receptor, α subunit (IL-11Rα) were used to stimulated fibrocytes in vitro to measure:- cell migration in a chemotactic migration chamber, fibrocyte to endothelial cell adhesion in a microscope-flow chamber and fibrocyte to myofibroblast transition. Mouse lung fibrosis and pulmonary hypertension was induced using either IL-11 (s.c.) or bleomycin (intra-tracheal), while in the rat monocrotaline (intra-tracheal) was used. In vivo siRNA-IL-11 was administered to suppress IL-11 in vivo. KEY RESULTS RhIL-11 and soluble rhIL-11Rα promote fibrocyte migration, endothelial cell adhesion and myofibroblast transition. Subcutaneous (s.c.) IL-11 infusion elevates blood, bronchoalveolar and lung tissue fibrocytes. SiRNA-IL-11 transfection in bleomycin and monocrotaline animal models reduces blood and lung tissue fibrocytes and reduces serum CXCL12 and CXCL12/CXCR4 lung expression. CONCLUSION AND IMPLICATIONS Targeting IL-11 reduces fibrocyte circulation and lung accumulation in animal models of pulmonary hypertension-associated lung fibrosis.
Collapse
Affiliation(s)
- Javier Milara
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Inés Roger
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Enrique Artigues
- Surgery Unit, University General Hospital Consortium, Valencia, Spain
| | - Juan Escrivá
- Thoracic Surgery Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Raquel Del Río
- Pharmacy Unit, University General Hospital Consortium of Valencia, Valencia, Spain
| | - Julio Cortijo
- CIBER de Enfermedades Respiratorias, Health Institute Carlos III, Valencia, Spain
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Research and teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
31
|
Mady B, Ibrahim HF, ElAziz Mm A, Basta M, Assem S, Ahmed Ali M, El Mottelib LMMAA. The potential ameliorating effect of vitamin E on bleomycin - induced lung fibrosis in adult albino rats. Int Immunopharmacol 2024; 136:112375. [PMID: 38823182 DOI: 10.1016/j.intimp.2024.112375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Lung fibrosis is a critical interstitial lung disease with poor prognosis. There is an urgent need to develop a proper and cost-effective therapeutic modality that can reverse and/or ameliorate lung fibrosis. Vitamin E is one of the widely investigated dietary antioxidants which has been linked to improvement of many health problems. The current study was conducted to evaluate the possible roles of vitamin E in prevention and treatment of bleomycin (BLM) induced lung fibrosis. Physiological, anatomical, histopathological and immunohistochemical studies were done to assess and compare between the structure and function of the lung tissue in lung fibrosis model, early and late treated groups with vitamin E. Furthermore, measurement of transforming growth factor-β(TGF-β), E-cadherin, Smad-3, BAX, BCL2, malondialdehyde (MDA), and superoxide dismutase (SOD) were done. The study revealed that administration of vitamin E helped to improve signs of lung fibrosis, as reflected by amelioration of structure and functions of lungs as well as the decrease in TGF-β levels and inhibition of α-SMA/collagen I profibrotic pathway. These findings highlight the importance of administration of vitamin E as a prophylactic agent prior to BLM therapy and as an adjuvant treatment in cases of lung fibrosis.
Collapse
Affiliation(s)
- Basma Mady
- Department of Human Anatomy and Embryology, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Mowassah Campus, Alexandria 21561, Egypt.
| | - Heba F Ibrahim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; Department of Medical Histology and Cell Biology, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Mowassah Campus, Alexandria 21561, Egypt
| | - Abd ElAziz Mm
- Department of Pathology, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Mowassah Campus, Alexandria 21561, Egypt
| | - Marianne Basta
- Department of Physiology, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Mowassah Campus, Alexandria 21561, Egypt
| | - Sara Assem
- Department of Medical Biochemistry, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Mowassah Campus, Alexandria 21561, Egypt
| | - Manal Ahmed Ali
- Veterinarian, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Mowassah Campus, Alexandria 21561, Egypt
| | - Lobna M M A Abd El Mottelib
- Department of Human Anatomy and Embryology, Faculty of Medicine, Alexandria University, Dr Fahmi Abdelmeguid St., Mowassah Campus, Alexandria 21561, Egypt; Department of Basic Medical Sciences, College of Dental Medicine, American University for Medical Sciences (AUMS), Eqaila, Block 6, Street 103, Building 2, Kuwait
| |
Collapse
|
32
|
Gobbo F, Martelli F, Di Virgilio A, Demaria E, Sarli G, Migliaccio AR. The Variation in the Traits Ameliorated by Inhibitors of JAK1/2, TGF-β, P-Selectin, and CXCR1/CXCR2 in the Gata1low Model Suggests That Myelofibrosis Should Be Treated by These Drugs in Combination. Int J Mol Sci 2024; 25:7703. [PMID: 39062946 PMCID: PMC11277099 DOI: 10.3390/ijms25147703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Studies conducted on animal models have identified several therapeutic targets for myelofibrosis, the most severe of the myeloproliferative neoplasms. Unfortunately, many of the drugs which were effective in pre-clinical settings had modest efficacy when tested in the clinic. This discrepancy suggests that treatment for this disease requires combination therapies. To rationalize possible combinations, the efficacy in the Gata1low model of drugs currently used for these patients (the JAK1/2 inhibitor Ruxolitinib) was compared with that of drugs targeting other abnormalities, such as p27kip1 (Aplidin), TGF-β (SB431542, inhibiting ALK5 downstream to transforming growth factor beta (TGF-β) signaling and TGF-β trap AVID200), P-selectin (RB40.34), and CXCL1 (Reparixin, inhibiting the CXCL1 receptors CXCR1/2). The comparison was carried out by expressing the endpoints, which had either already been published or had been retrospectively obtained for this study, as the fold change of the values in the corresponding vehicles. In this model, only Ruxolitinib was found to decrease spleen size, only Aplidin and SB431542/AVID200 increased platelet counts, and with the exception of AVID200, all the inhibitors reduced fibrosis and microvessel density. The greatest effects were exerted by Reparixin, which also reduced TGF-β content. None of the drugs reduced osteopetrosis. These results suggest that future therapies for myelofibrosis should consider combining JAK1/2 inhibitors with drugs targeting hematopoietic stem cells (p27Kip1) or the pro-inflammatory milieu (TGF-β or CXCL1).
Collapse
Affiliation(s)
- Francesca Gobbo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy; (F.G.); (G.S.)
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.M.); (A.D.V.)
| | - Antonio Di Virgilio
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.M.); (A.D.V.)
| | - Elena Demaria
- Department of Medical and Surgical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy;
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University, 40126 Bologna, Italy; (F.G.); (G.S.)
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
- Institute of Nanotechnology, National Research Council (Cnr-NANOTEC), c/o Campus Ecotekne, 73100 Lecce, Italy
| |
Collapse
|
33
|
Kamiya M, Carter H, Espindola MS, Doyle TJ, Lee JS, Merriam LT, Zhang F, Kawano-Dourado L, Sparks JA, Hogaboam CM, Moore BB, Oldham WM, Kim EY. Immune mechanisms in fibrotic interstitial lung disease. Cell 2024; 187:3506-3530. [PMID: 38996486 PMCID: PMC11246539 DOI: 10.1016/j.cell.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 07/14/2024]
Abstract
Fibrotic interstitial lung diseases (fILDs) have poor survival rates and lack effective therapies. Despite evidence for immune mechanisms in lung fibrosis, immunotherapies have been unsuccessful for major types of fILD. Here, we review immunological mechanisms in lung fibrosis that have the potential to impact clinical practice. We first examine innate immunity, which is broadly involved across fILD subtypes. We illustrate how innate immunity in fILD involves a complex interplay of multiple cell subpopulations and molecular pathways. We then review the growing evidence for adaptive immunity in lung fibrosis to provoke a re-examination of its role in clinical fILD. We close with future directions to address key knowledge gaps in fILD pathobiology: (1) longitudinal studies emphasizing early-stage clinical disease, (2) immune mechanisms of acute exacerbations, and (3) next-generation immunophenotyping integrating spatial, genetic, and single-cell approaches. Advances in these areas are essential for the future of precision medicine and immunotherapy in fILD.
Collapse
Affiliation(s)
- Mari Kamiya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Hannah Carter
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena S Espindola
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Tracy J Doyle
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Joyce S Lee
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Louis T Merriam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fan Zhang
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Leticia Kawano-Dourado
- Hcor Research Institute, Hcor Hospital, Sao Paulo - SP 04004-030, Brazil; Pulmonary Division, Heart Institute (InCor), University of Sao Paulo, São Paulo - SP 05403-900, Brazil
| | - Jeffrey A Sparks
- Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Cory M Hogaboam
- Division of Pulmonary and Critical Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| | - Edy Y Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Cox BP, Hannan RT, Batrash N, Raichura P, Sperling AI, Shim YM, Sturek JM. Local, Quantitative Morphometry of Fibroproliferative Lung Injury Using Laminin. Am J Respir Cell Mol Biol 2024; 71:23-29. [PMID: 38593005 PMCID: PMC11225868 DOI: 10.1165/rcmb.2023-0294ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/09/2024] [Indexed: 04/11/2024] Open
Abstract
Investigations into the mechanisms of injury and repair in fibroproliferative disease require consideration of the spatial heterogeneity inherent in the disease. Most scoring of fibrotic remodeling in preclinical animal models relies on the modified Ashcroft score, which is an ordinal rubric of macroscopic resolution. The obvious limitations of manual histopathologic scoring have generated an unmet need for unbiased, repeatable scoring of fibroproliferative burden in tissue. Using computer vision approaches on immunofluorescence imaging of the extracellular matrix component laminin, we generated a robust and repeatable quantitative remodeling scorer. In the bleomycin lung injury model, the quantitative remodeling scorer shows significant agreement with the modified Ashcroft scale. This antibody-based approach is easily integrated into larger multiplex immunofluorescence experiments, which we demonstrate by testing the spatial apposition of tertiary lymphoid structures to fibroproliferative tissue, a poorly characterized phenomenon observed in both human interstitial lung diseases and preclinical models of lung fibrosis. The tool reported in this article is available as a stand-alone application that is usable without programming knowledge.
Collapse
Affiliation(s)
| | | | - Noora Batrash
- University of Virginia School of Medicine, University of Virginia, Charlottesville, Virginia
| | | | - Anne I. Sperling
- Division of Pulmonary and Critical Care Medicine
- Beirne B. Carter Center for Immunology Research, and
| | | | - Jeffrey M. Sturek
- Division of Pulmonary and Critical Care Medicine
- Beirne B. Carter Center for Immunology Research, and
| |
Collapse
|
35
|
Guo B, Liu W, Ji X, Xi B, Meng X, Xie W, Sun Y, Zhang M, Liu P, Zhang W, Yan X, Chen B. CSF3 aggravates acute exacerbation of pulmonary fibrosis by disrupting alveolar epithelial barrier integrity. Int Immunopharmacol 2024; 135:112322. [PMID: 38788452 DOI: 10.1016/j.intimp.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/26/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive respiratory disorder characterized by poor prognosis, often presenting with acute exacerbation. The primary cause of death associated with IPF is acute exacerbation of IPF (AE-IPF). However, the pathophysiology of acute exacerbation has not been clearly elucidated yet. This study aims to investigate the underlying pathophysiological molecular mechanism in a mouse AE-PF model. C57BL/6J mice were intratracheally administered bleomycin (BLM, 5 mg/kg) to induce pulmonary fibrosis. After 14 days, lipopolysaccharide (LPS, 2 mg/kg) was injected via the trachea route. Histological assessments, including H&E and Masson staining, as well as inflammatory indicators, were included to evaluate the induction of AE-PF by BLM and LPS in mice. Transcriptomic profiling of pulmonary tissues identified CSF3 as one of the top 10 upregulated DEGs in AE-PF mice. Indeed, administration of exogenous CSF3 protein exacerbated AE-PF in mice. Mechanistically, CSF3 disrupted alveolar epithelial barrier integrity and permeability by regulating specialized cell adhesion complexes such as tight junctions (TJs) and adherens junctions (AJs) via PI3K/p-Akt/Snail pathway, contributing to the aggravation of AE-PF in mice. Moreover, the discovery of elevated sera CSF3 indicated a notable increase in IPF patients during the exacerbation of the disease. Pearson correlation analysis in IPF patients revealed significant positive associations between CSF3 levels and KL-6 levels, LDH levels, CRP levels, respectively. These results provide mechanistic insights into the role of CSF3 in exacerbating of lung fibrotic disease and indicate monitoring CSF3 levels may aid in early clinical decisions for alternative therapy in the management of rapidly progressing IPF.
Collapse
Affiliation(s)
- Bingnan Guo
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wenwen Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xuan Ji
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Respiratory Medicine, Yancheng Third People's Hospital, Yancheng, Jiangsu 224000, China
| | - Bin Xi
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xiao Meng
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wanwan Xie
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Yitian Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Maowei Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Pingli Liu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Wenhui Zhang
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China
| | - Xianliang Yan
- The Laboratory of Emergency Medicine, School of Second Clinical Medicine, Xuzhou Medical University, Department of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, China; Department of Emergency Medicine, Suining People's Hospital, Xuzhou 221225, Jiangsu, China.
| | - Bi Chen
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Xuzhou Medical University, Department of Respiratory Medicine, School of First Clinical Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221000, China.
| |
Collapse
|
36
|
Li Y, Xu H, Wang Y, Zhu Y, Xu K, Yang Z, Li Y, Guo C. Epithelium-derived exosomes promote silica nanoparticles-induced pulmonary fibroblast activation and collagen deposition via modulating fibrotic signaling pathways and their epigenetic regulations. J Nanobiotechnology 2024; 22:331. [PMID: 38867284 PMCID: PMC11170844 DOI: 10.1186/s12951-024-02609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND In the context of increasing exposure to silica nanoparticles (SiNPs) and ensuing respiratory health risks, emerging evidence has suggested that SiNPs can cause a series of pathological lung injuries, including fibrotic lesions. However, the underlying mediators in the lung fibrogenesis caused by SiNPs have not yet been elucidated. RESULTS The in vivo investigation verified that long-term inhalation exposure to SiNPs induced fibroblast activation and collagen deposition in the rat lungs. In vitro, the uptake of exosomes derived from SiNPs-stimulated lung epithelial cells (BEAS-2B) by fibroblasts (MRC-5) enhanced its proliferation, adhesion, and activation. In particular, the mechanistic investigation revealed SiNPs stimulated an increase of epithelium-secreted exosomal miR-494-3p and thereby disrupted the TGF-β/BMPR2/Smad pathway in fibroblasts via targeting bone morphogenetic protein receptor 2 (BMPR2), ultimately resulting in fibroblast activation and collagen deposition. Conversely, the inhibitor of exosomes, GW4869, can abolish the induction of upregulated miR-494-3p and fibroblast activation in MRC-5 cells by the SiNPs-treated supernatants of BEAS-2B. Besides, inhibiting miR-494-3p or overexpression of BMPR2 could ameliorate fibroblast activation by interfering with the TGF-β/BMPR2/Smad pathway. CONCLUSIONS Our data suggested pulmonary epithelium-derived exosomes serve an essential role in fibroblast activation and collagen deposition in the lungs upon SiNPs stimuli, in particular, attributing to exosomal miR-494-3p targeting BMPR2 to modulate TGF-β/BMPR2/Smad pathway. Hence, strategies targeting exosomes could be a new avenue in developing therapeutics against lung injury elicited by SiNPs.
Collapse
Affiliation(s)
- Yan Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Hailin Xu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Ying Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yurou Zhu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, 410013, Hunan, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| | - Yanbo Li
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| | - Caixia Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China.
| |
Collapse
|
37
|
Peabody Lever JE, Li Q, Pavelkova N, Hussain SS, Bakshi S, Ren JQ, Jones LI, Kennemur J, Weupe M, Campos-Gomez J, Tang L, Lever JMP, Wang D, Stanford DD, Foote J, Harrod KS, Kim H, Phillips SE, Rowe SM. Pulmonary Fibrosis Ferret Model Demonstrates Sustained Fibrosis, Restrictive Physiology, and Aberrant Repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597198. [PMID: 38895273 PMCID: PMC11185733 DOI: 10.1101/2024.06.04.597198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rationale The role of MUC5B mucin expression in IPF pathogenesis is unknown. Bleomycin-exposed rodent models do not exhibit sustained fibrosis or airway remodeling. Unlike mice, ferrets have human-like distribution of MUC5B expressing cell types and natively express the risk-conferring variant that induces high MUC5B expression in humans. We hypothesized that ferrets would consequently exhibit aberrant repair to propagate fibrosis similar to human IPF. Methods Bleomycin (5U/kg) or saline-control was micro-sprayed intratracheally then wild-type ferrets were evaluated through 22 wks. Clinical phenotype was assessed with lung function. Fibrosis was assessed with µCT imaging and comparative histology with Ashcroft scoring. Airway remodeling was assessed with histology and quantitative immunofluorescence. Results Bleomycin ferrets exhibited sustained restrictive physiology including decreased inspiratory capacity, decreased compliance, and shifted Pressure-Volume loops through 22 wks. Volumetric µCT analysis revealed increased opacification of the lung bleomycin-ferrets. Histology showed extensive fibrotic injury that matured over time and MUC5B-positive cystic structures in the distal lung suggestive of honeycombing. Bleomycin ferrets had increased proportion of small airways that were double-positive for CCSP and alpha-tubulin compared to controls, indicating an aberrant 'proximalization' repair phenotype. Notably, this aberrant repair was associated with extent of fibrotic injury at the airway level. Conclusions Bleomycin-exposed ferrets exhibit sustained fibrosis through 22 wks and have pathologic features of IPF not found in rodents. Ferrets exhibited proximalization of the distal airways and other pathologic features characteristic of human IPF. MUC5B expression through native cell types may play a key role in promoting airway remodeling and lung injury in IPF.
Collapse
|
38
|
Tang W, Jiang H, Wu X, Wu G, Zhao C, Lin W, Zhu Y, Jiang G, Chen X, Huang H, He L. Metabolomic insights into pulmonary fibrosis: a mendelian randomization study. BMC Pulm Med 2024; 24:271. [PMID: 38844923 PMCID: PMC11155030 DOI: 10.1186/s12890-024-03079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND This study leverages a two-sample Mendelian Randomization (MR) approach to explore the causal relationships between 1,400 metabolites and pulmonary fibrosis, using genetic variation as instrumental variables. By adhering to stringent criteria for instrumental variable selection, the research aims to uncover metabolic pathways that may influence the risk and progression of pulmonary fibrosis, providing insights into potential therapeutic targets. METHODS Utilizing data from the OpenGWAS project, which includes a significant European cohort, and metabolite GWAS data from the Canadian Longitudinal Aging Study (CLSA), the study employs advanced statistical methods. These include inverse variance weighting (IVW), weighted median estimations, and comprehensive sensitivity analyses conducted using the R software environment to ensure the robustness of the causal inferences. RESULTS The study identified 62 metabolites with significant causal relationships with pulmonary fibrosis, highlighting both risk-enhancing and protective metabolic factors. This extensive list of metabolites presents a broad spectrum of potential therapeutic targets and biomarkers for early detection, underscoring the metabolic complexity underlying pulmonary fibrosis. CONCLUSIONS The findings from this MR study significantly advance our understanding of the metabolic underpinnings of pulmonary fibrosis, suggesting that alterations in specific metabolites could influence the risk and progression of the disease. These insights pave the way for the development of novel diagnostic and therapeutic strategies, emphasizing the potential of metabolic modulation in managing pulmonary fibrosis.
Collapse
Affiliation(s)
- Wuyinuo Tang
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China
| | - Huanyu Jiang
- School of basic medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinhui Wu
- Department of Geriatric, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Guanyi Wu
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China
| | - Chenchong Zhao
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China
| | - Wenbo Lin
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China
| | - Ying Zhu
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China
| | - Guowei Jiang
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China
| | - Xiuhua Chen
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China
| | - Hang Huang
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China
| | - Lvyuan He
- Department of Pulmonology, Jinhua TCM Hospital Affiliated to Zhejiang Chinese Medical University, Jinhua, Zhejiang, China.
| |
Collapse
|
39
|
Lin JH, Liu CC, Liu CY, Hsu TW, Yeh YC, How CK, Hsu HS, Hung SC. Selenite selectively kills lung fibroblasts to treat bleomycin-induced pulmonary fibrosis. Redox Biol 2024; 72:103148. [PMID: 38603946 PMCID: PMC11017345 DOI: 10.1016/j.redox.2024.103148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/01/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Interstitial lung disease (ILD) treatment is a critical unmet need. Selenium is an essential trace element for human life and an antioxidant that activates glutathione, but the gap between its necessity and its toxicity is small and requires special attention. Whether selenium can be used in the treatment of ILD remains unclear. METHODS We investigated the prophylactic and therapeutic effects of selenite, a selenium derivative, in ILD using a murine model of bleomycin-induced idiopathic pulmonary fibrosis (IPF). We further elucidated the underlying mechanism using in vitro cell models and examined their relevance in human tissue specimens. The therapeutic effect of selenite in bleomycin-administered mice was assessed by respiratory function and histochemical changes. Selenite-induced apoptosis and reactive oxygen species (ROS) production in murine lung fibroblasts were measured. RESULTS Selenite, administered 1 day (inflammation phase) or 8 days (fibrotic phase) after bleomycin, prevented and treated deterioration of lung function and pulmonary fibrosis in mice. Mechanistically, selenite inhibited the proliferation and induced apoptosis of murine lung fibroblasts after bleomycin treatment both in vitro and in vivo. In addition, selenite upregulated glutathione reductase (GR) and thioredoxin reductase (TrxR) in murine lung fibroblasts, but not in lung epithelial cells, upon bleomycin treatment. GR and TrxR inhibition eliminates the therapeutic effects of selenite. Furthermore, we found that GR and TrxR were upregulated in the human lung fibroblasts of IPF patient samples. CONCLUSIONS Selenite induces ROS production and apoptosis in murine lung fibroblasts through GR and TrxR upregulation, thereby providing a therapeutic effect in bleomycin-induced IPF.
Collapse
Affiliation(s)
- Jiun-Han Lin
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chen-Chi Liu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chao-Yu Liu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tien-Wei Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Chen Yeh
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chorng-Kuang How
- Division of Traumatology, Emergency Department, Taipei Veterans General Hospital, Taipei, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Han-Shui Hsu
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Shih-Chieh Hung
- Drug Development Center, Institute of Translational Medicine and New Drug Development, School of Medicine, Taiwan; College of Life Sciences, China Medical University, Taichung, Taiwan; Integrative Stem Cell Center, Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
40
|
Wahab A, Muhammad M, Ullah S, Abdi G, Shah GM, Zaman W, Ayaz A. Agriculture and environmental management through nanotechnology: Eco-friendly nanomaterial synthesis for soil-plant systems, food safety, and sustainability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171862. [PMID: 38527538 DOI: 10.1016/j.scitotenv.2024.171862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Through the advancement of nanotechnology, agricultural and food systems are undergoing strategic enhancements, offering innovative solutions to complex problems. This scholarly essay thoroughly examines nanotechnological innovations and their implications within these critical industries. Traditional practices are undergoing radical transformation as nanomaterials emerge as novel agents in roles traditionally filled by fertilizers, pesticides, and biosensors. Micronutrient management and preservation techniques are further enhanced, indicating a shift towards more nutrient-dense and longevity-oriented food production. Nanoparticles (NPs), with their unique physicochemical properties, such as an extraordinary surface-to-volume ratio, find applications in healthcare, diagnostics, agriculture, and other fields. However, concerns about their potential overuse and bioaccumulation raise unanswered questions about their health effects. Molecule-to-molecule interactions and physicochemical dynamics create pathways through which nanoparticles cause toxicity. The combination of nanotechnology and environmental sustainability principles leads to the examination of green nanoparticle synthesis. The discourse extends to how nanomaterials penetrate biological systems, their applications, toxicological effects, and dissemination routes. Additionally, this examination delves into the ecological consequences of nanomaterial contamination in natural ecosystems. Employing robust risk assessment methodologies, including the risk allocation framework, is recommended to address potential dangers associated with nanotechnology integration. Establishing standardized, universally accepted guidelines for evaluating nanomaterial toxicity and protocols for nano-waste disposal is urged to ensure responsible stewardship of this transformative technology. In conclusion, the article summarizes global trends, persistent challenges, and emerging regulatory strategies shaping nanotechnology in agriculture and food science. Sustained, in-depth research is crucial to fully benefit from nanotechnology prospects for sustainable agriculture and food systems.
Collapse
Affiliation(s)
- Abdul Wahab
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Murad Muhammad
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, China
| | - Shahid Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | | | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
41
|
Hussein ZA, Abu-Raghif AR, Tahseen NJ, Rashed KA, Shaker NS, Fawzi HA. Vinpocetine alleviated alveolar epithelial cells injury in experimental pulmonary fibrosis by targeting PPAR-γ/NLRP3/NF-κB and TGF-β1/Smad2/3 pathways. Sci Rep 2024; 14:11131. [PMID: 38750140 PMCID: PMC11096407 DOI: 10.1038/s41598-024-61269-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
This study aimed to investigate the potential anti-fibrotic activity of vinpocetine in an experimental model of pulmonary fibrosis by bleomycin and in the MRC-5 cell line. Pulmonary fibrosis was induced in BALB/c mice by oropharyngeal aspiration of a single dose of bleomycin (5 mg/kg). The remaining induced animals received a daily dose of pirfenidone (as a standard anti-fibrotic drug) (300 mg/kg/PO) and vinpocetine (20 mg/kg/PO) on day 7 of the induction till the end of the experiment (day 21). The results of the experiment revealed that vinpocetine managed to alleviate the fibrotic endpoints by statistically improving (P ≤ 0.05) the weight index, histopathological score, reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. It also alleviated tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators significantly elevated in bleomycin-only induced animals (P ≤ 0.05). Vinpocetine managed to express a remarkable attenuating effect in pulmonary fibrosis both in vivo and in vitro either directly by interfering with the classical TGF-β1/Smad2/3 signaling pathway or indirectly by upregulating the expression of Nrf2 enhancing the antioxidant system, activating PPAR-γ and downregulating the NLRP3/NF-κB pathway making it a candidate for further clinical investigation in cases of pulmonary fibrosis.
Collapse
Affiliation(s)
- Zeena A Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | - Ahmed R Abu-Raghif
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Nibras J Tahseen
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Bayan University, Baghdad, Iraq
| | | | - Nada S Shaker
- Department of Pharmacology and Toxicology, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | | |
Collapse
|
42
|
Spagnolo P, Maher TM. A Long and Winding Road: Drug Development in Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2024; 209:1072-1073. [PMID: 38445949 PMCID: PMC11092949 DOI: 10.1164/rccm.202402-0290vp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024] Open
Affiliation(s)
- Paolo Spagnolo
- Respiratory Disease Unit, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Toby M. Maher
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California Keck School of Medicine, Los Angeles, California; and
- Section of Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
43
|
Bärnthaler T, Ramachandra AB, Ebanks S, Guerrera N, Sharma L, Dela Cruz CS, Humphrey JD, Manning EP. Developmental changes in lung function of mice are independent of sex as a biological variable. Am J Physiol Lung Cell Mol Physiol 2024; 326:L627-L637. [PMID: 38375577 PMCID: PMC11380952 DOI: 10.1152/ajplung.00120.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024] Open
Abstract
Pulmonary function testing (PFT) in mice includes biomechanical assessment of lung function relevant to physiology in health and its alteration in disease, hence, it is frequently used in preclinical modeling of human lung pathologies. Despite numerous reports of PFT in mice of various ages, there is a lack of reference data for developing mice collected using consistent methods. Therefore, we profiled PFTs in male and female C57BL/6J mice from 2 to 23 wk of age, providing reference values for age- and sex-dependent changes in mouse lung biomechanics during development and young adulthood. Although males and females have similar weights at birth, females weigh significantly less than males after 5 wk of age (P < 0.001) with largest weight gain observed between 3 and 8 wk in females and 3 and 13 wk in males, after which weight continued to increase more slowly up to 23 wk of age. Lung function parameters including static compliance and inspiratory capacity also increased rapidly between 3 and 8 wk in female and male mice, with male mice having significantly greater static compliance and inspiratory capacity than female mice (P < 0.001). Although these parameters appear higher in males at a given age, allometric scaling showed that static compliance and inspiratory compliance were comparable between the two sexes. This suggests that differences in measurements of lung function are likely body weight-based rather than sex-based. We expect these data to facilitate future lung disease research by filling a critical knowledge gap in our field.NEW & NOTEWORTHY This study provides reference values for changes in mouse lung biomechanics from 2 to 23 wk of age. There are rapid developmental changes in lung structure and function of male and female mice between the ages of 3 and 8 wk. Male mice become noticeably heavier than female mice at or about 5 wk of age. We identified that differences in normal lung function measurements are likely weight-based, not sex-based.
Collapse
Affiliation(s)
- Thomas Bärnthaler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Abhay B Ramachandra
- Department of Biomedical Engineering,Yale University, New Haven, Connecticut, United States
| | - Sadè Ebanks
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Nicole Guerrera
- Department of Medicine (Cardiovascular Medicine), Yale Translational Research Imaging Center, Yale University, New Haven, Connecticut, United States
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
| | - Jay D Humphrey
- Department of Biomedical Engineering,Yale University, New Haven, Connecticut, United States
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University, New Haven, Connecticut, United States
- VA Connecticut Healthcare System, West Haven, Connecticut, United States
| |
Collapse
|
44
|
Chen Y, Wang T, Liang F, Han J, Lou Z, Yu Y, Li J, Zhan T, Gu Y, Dong L, Jiang B, Zhang W, Wu M, Lu Y. Nicotinamide phosphoribosyltransferase prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Theranostics 2024; 14:2794-2815. [PMID: 38773984 PMCID: PMC11103509 DOI: 10.7150/thno.94482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024] Open
Abstract
Rationale: Idiopathic pulmonary fibrosis (IPF) is an irreversible, fatal interstitial lung disease lacking specific therapeutics. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme of the nicotinamide adenine dinucleotide (NAD) salvage biosynthesis pathway and a cytokine, has been previously reported as a biomarker for lung diseases; however, the role of NAMPT in pulmonary fibrosis has not been elucidated. Methods: We identified the NAMPT level changes in pulmonary fibrosis by analyzing public RNA-Seq databases, verified in collected clinical samples and mice pulmonary fibrosis model by Western blotting, qRT-PCR, ELISA and Immunohistochemical staining. We investigated the role and mechanism of NAMPT in lung fibrosis by using pharmacological inhibition on NAMPT and Nampt transgenic mice. In vivo macrophage depletion by clodronate liposomes and reinfusion of IL-4-induced M2 bone marrow-derived macrophages (BMDMs) from wild-type mice, combined with in vitro cell experiments, were performed to further validate the mechanism underlying NAMPT involving lung fibrosis. Results: We found that NAMPT increased in the lungs of patients with IPF and mice with bleomycin (BLM)-induced pulmonary fibrosis. NAMPT inhibitor FK866 alleviated BLM-induced pulmonary fibrosis in mice and significantly reduced NAMPT levels in bronchoalveolar lavage fluid (BALF). The lung single-cell RNA sequencing showed that NAMPT expression in monocytes/macrophages of IPF patients was much higher than in other lung cells. Knocking out NAMPT in mouse monocytes/macrophages (Namptfl/fl;Cx3cr1CreER) significantly alleviated BLM-induced pulmonary fibrosis in mice, decreased NAMPT levels in BALF, reduced the infiltration of M2 macrophages in the lungs and improved mice survival. Depleting monocytes/macrophages in Namptfl/fl;Cx3cr1CreER mice by clodronate liposomes and subsequent pulmonary reinfusion of IL-4-induced M2 BMDMs from wild-type mice, reversed the protective effect of monocyte/macrophage NAMPT-deletion on lung fibrosis. In vitro experiments confirmed that the mechanism of NAMPT engaged in pulmonary fibrosis is related to the released NAMPT by macrophages promoting M2 polarization in a non-enzyme-dependent manner by activating the STAT6 signal pathway. Conclusions: NAMPT prompts bleomycin-induced pulmonary fibrosis by driving macrophage M2 polarization in mice. Targeting the NAMPT of monocytes/macrophages is a promising strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Yaling Chen
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Tong Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fuxiang Liang
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jia Han
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhiling Lou
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yifan Yu
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jinsheng Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Tianwei Zhan
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Yuqing Gu
- Department of Pharmacology, School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital, Shaoxing, Zhejiang Province, China
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Clinical Pharmacology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Weiping Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ming Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yunbi Lu
- Department of Pharmacology, School of Basic Medical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
45
|
Alhakamy NA, Alamoudi AJ, Asfour HZ, Ahmed OAA, Abdel-Naim AB, Aboubakr EM. L-arginine mitigates bleomycin-induced pulmonary fibrosis in rats through regulation of HO-1/PPAR-γ/β-catenin axis. Int Immunopharmacol 2024; 131:111834. [PMID: 38493696 DOI: 10.1016/j.intimp.2024.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Pulmonary fibrosis is a chronic and progressively deteriorating lung condition that can be replicated in laboratory animals by administering bleomycin, a chemotherapeutic antibiotic known for its lung fibrosis-inducing side effects. L-arginine, a semi-essential amino acid, is recognized for its diverse biological functions, including its potential to counteract fibrosis. This study aimed to evaluate the antifibrotic properties of L-arginine on bleomycin-induced pulmonary fibrosis in rats. The administration of a single intratracheal dose of bleomycin resulted in visible and microscopic damage to lung tissues, an uptick in oxidative stress markers, and an elevation in inflammatory, apoptotic, and fibrotic indicators. A seven-day treatment with L-arginine post-bleomycin exposure markedly improved the gross and histological architecture of the lungs, prevented the rise of malondialdehyde and carbonyl content, and enhanced total antioxidant capacity alongside the activities of antioxidant enzymes. Also, L-arginine attenuated the expression of the pro-fibrotic factors, transforming growth factor-β and lactate dehydrogenase in bronchoalveolar lavage fluid. In the lung tissue, L-arginine reduced collagen deposition, hydroxyproline concentration, and mucus production, along with decreasing expression of α-smooth muscle actin, tumor necrosis factor-α, caspase-3, matrix metalloproteinase-9, and β-catenin. Moreover, it boosted levels of nitric oxide and upregulated the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), heme oxygenase-1 (HO-1), and E-cadherin and downregulating the expression of β-catenin. These findings suggest that L-arginine has preventive activities against bleomycin-induced pulmonary fibrosis. This effect can be attributed to the increased production of nitric oxide, which modulates the HO-1/PPAR-γ/β-catenin axis.
Collapse
Affiliation(s)
- Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulmohsin J Alamoudi
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Hani Z Asfour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Esam M Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
46
|
Lee HJ, Bernau K, Harr TJ, Rosenkrans ZT, Kessler GA, Stott K, Oler AT, Rahar B, Zhu T, Medina-Guevara Y, Gupta N, Cho I, Gari MK, Burkel BM, Jeffery JJ, Weichmann AM, Tomasini-Johansson BR, Ponik SM, Engle JW, Hernandez R, Kwon GS, Sandbo N. [ 64Cu]Cu-PEG-FUD peptide for noninvasive and sensitive detection of murine pulmonary fibrosis. SCIENCE ADVANCES 2024; 10:eadj1444. [PMID: 38598637 PMCID: PMC11006221 DOI: 10.1126/sciadv.adj1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease resulting in irreversible scarring within the lungs. However, the lack of biomarkers that enable real-time assessment of disease activity remains a challenge in providing efficient clinical decision-making and optimal patient care in IPF. Fibronectin (FN) is highly expressed in fibroblastic foci of the IPF lung where active extracellular matrix (ECM) deposition occurs. Functional upstream domain (FUD) tightly binds the N-terminal 70-kilodalton domain of FN that is crucial for FN assembly. In this study, we first demonstrate the capacity of PEGylated FUD (PEG-FUD) to target FN deposition in human IPF tissue ex vivo. We subsequently radiolabeled PEG-FUD with 64Cu and monitored its spatiotemporal biodistribution via μPET/CT imaging in mice using the bleomycin-induced model of pulmonary injury and fibrosis. We demonstrated [64Cu]Cu-PEG-FUD uptake 3 and 11 days following bleomycin treatment, suggesting that radiolabeled PEG-FUD holds promise as an imaging probe in aiding the assessment of fibrotic lung disease activity.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Ksenija Bernau
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Thomas J. Harr
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Zachary T. Rosenkrans
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Grace A. Kessler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Kristen Stott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Angie Tebon Oler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Babita Rahar
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Terry Zhu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Yadira Medina-Guevara
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Inyoung Cho
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Metti K. Gari
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Brian M. Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Justin J. Jeffery
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Ashley M. Weichmann
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Bianca R. Tomasini-Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
- Arrowhead Pharmaceuticals, 502 S. Rosa Rd., Madison, WI 53719, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Jonathan W. Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Glen S. Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Nathan Sandbo
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
47
|
Patel M, Post Y, Hill N, Sura A, Ye J, Fisher T, Suen N, Zhang M, Cheng L, Pribluda A, Chen H, Yeh WC, Li Y, Baribault H, Fletcher RB. A WNT mimetic with broad spectrum FZD-specificity decreases fibrosis and improves function in a pulmonary damage model. Respir Res 2024; 25:153. [PMID: 38566174 PMCID: PMC10985870 DOI: 10.1186/s12931-024-02786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/23/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Wnt/β-catenin signaling is critical for lung development and AT2 stem cell maintenance in adults, but excessive pathway activation has been associated with pulmonary fibrosis, both in animal models and human diseases such as idiopathic pulmonary fibrosis (IPF). IPF is a detrimental interstitial lung disease, and although two approved drugs limit functional decline, transplantation is the only treatment that extends survival, highlighting the need for regenerative therapies. METHODS Using our antibody-based platform of Wnt/β-catenin modulators, we investigated the ability of a pathway antagonist and pathway activators to reduce pulmonary fibrosis in the acute bleomycin model, and we tested the ability of a WNT mimetic to affect alveolar organoid cultures. RESULTS A WNT mimetic agonist with broad FZD-binding specificity (FZD1,2,5,7,8) potently expanded alveolar organoids. Upon therapeutic dosing, a broad FZD-binding specific Wnt mimetic decreased pulmonary inflammation and fibrosis and increased lung function in the bleomycin model, and it impacted multiple lung cell types in vivo. CONCLUSIONS Our results highlight the unexpected capacity of a WNT mimetic to effect tissue repair after lung damage and support the continued development of Wnt/β-catenin pathway modulation for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Mehaben Patel
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Yorick Post
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Natalie Hill
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Asmiti Sura
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Jay Ye
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Trevor Fisher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Nicholas Suen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Mengrui Zhang
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Leona Cheng
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Ariel Pribluda
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Hui Chen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Wen-Chen Yeh
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Yang Li
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Hélène Baribault
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA
| | - Russell B Fletcher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA, 94080, USA.
| |
Collapse
|
48
|
Cooley JC, Redente EF. Getting the Timing Right: Controlling BCL-2 Inhibition as an Antifibrotic Therapy. Am J Respir Cell Mol Biol 2024; 70:231-232. [PMID: 38259233 PMCID: PMC11478124 DOI: 10.1165/rcmb.2023-0436ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/22/2024] [Indexed: 01/24/2024] Open
Affiliation(s)
- Joseph C Cooley
- Department of Medicine National Jewish Health Denver, Colorado
- Department of Medicine University of Colorado School of Medicine Aurora, Colorado
| | - Elizabeth F Redente
- Department of Medicine University of Colorado School of Medicine Aurora, Colorado
- Department of Pediatrics National Jewish Health Denver, Colorado
| |
Collapse
|
49
|
Pennati F, Belenkov S, Buccardi M, Ferrini E, Sverzellati N, Villetti G, Aliverti A, Stellari FF. Multiphase micro-computed tomography reconstructions provide dynamic respiratory function in a mouse lung fibrosis model. iScience 2024; 27:109262. [PMID: 38433926 PMCID: PMC10907835 DOI: 10.1016/j.isci.2024.109262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Micro-computed tomography derived functional biomarkers used in lung disease research can significantly complement end-stage histomorphometric measures while also allowing for longitudinal studies. However, no approach for visualizing lung dynamics across a full respiratory cycle has yet been described. Using bleomycin-induced lung fibrosis and the antifibrotic drug nintedanib as a test model, we implemented a four-dimensional (4D) micro-CT imaging approach consisting of 30 reconstructed volumes per respiratory cycle, coupled with deep-learning-assisted segmentation of lung volumes. 4D micro-CT provided an accurate description of inhalatory and exhalatory lung dynamics under resting conditions and revealed an inflammation-related obstructive pattern at day 7, followed by a restrictive pattern associated with fibrosis development at day 21. A milder restriction and fibrotic pathology resulted from nintedanib treatment. The similarity of 4D micro-CT data with those produced by diagnostic measurements, also points to its great potential as an exploratory tool for the discovery of clinically relevant therapeutic compounds.
Collapse
Affiliation(s)
- Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | | | - Martina Buccardi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parma, Italy
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, Parma, Italy
| | | | - Gino Villetti
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy
| | - Franco Fabio Stellari
- Pharmacology and Toxicology Department Corporate Pre-Clinical R&D, Chiesi Farmaceutici S.p.A., Parma, Italy
| |
Collapse
|
50
|
Nizamoglu M, Alleblas F, Koster T, Borghuis T, Vonk JM, Thomas MJ, White ES, Watson CK, Timens W, El Kasmi KC, Melgert BN, Heijink IH, Burgess JK. Three dimensional fibrotic extracellular matrix directs microenvironment fiber remodeling by fibroblasts. Acta Biomater 2024; 177:118-131. [PMID: 38350556 DOI: 10.1016/j.actbio.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/12/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF), for which effective treatments are limited, results in excessive and disorganized deposition of aberrant extracellular matrix (ECM). An altered ECM microenvironment is postulated to contribute to disease progression through inducing profibrotic behavior of lung fibroblasts, the main producers and regulators of ECM. Here, we examined this hypothesis in a 3D in vitro model system by growing primary human lung fibroblasts in ECM-derived hydrogels from non-fibrotic (control) or IPF lung tissue. Using this model, we compared how control and IPF lung-derived fibroblasts responded in control and fibrotic microenvironments in a combinatorial manner. Culture of fibroblasts in fibrotic hydrogels did not alter in the overall amount of collagen or glycosaminoglycans but did cause a drastic change in fiber organization compared to culture in control hydrogels. High-density collagen percentage was increased by control fibroblasts in IPF hydrogels at day 7, but decreased at day 14. In contrast, IPF fibroblasts only decreased the high-density collagen percentage at day 14, which was accompanied by enhanced fiber alignment in IPF hydrogels. Similarly, stiffness of fibrotic hydrogels was increased only by control fibroblasts by day 14 while those of control hydrogels were not altered by fibroblasts. These data highlight how the ECM-remodeling responses of fibroblasts are influenced by the origin of both the cells and the ECM. Moreover, by showing how the 3D microenvironment plays a crucial role in directing cells, our study paves the way in guiding future investigations examining fibrotic processes with respect to ECM remodeling responses of fibroblasts. STATEMENT OF SIGNIFICANCE: In this study, we investigated the influence of the altered extracellular matrix (ECM) in Idiopathic Pulmonary Fibrosis (IPF), using a 3D in vitro model system composed of ECM-derived hydrogels from both IPF and control lungs, seeded with human IPF and control lung fibroblasts. While our results indicated that fibrotic microenvironment did not change the overall collagen or glycosaminoglycan content, it resulted in a dramatically alteration of fiber organization and mechanical properties. Control fibroblasts responded differently from IPF fibroblasts, highlighting the unique instructive role of the fibrotic ECM and the interplay with fibroblast origin. These results underscore the importance of 3D microenvironments in guiding pro-fibrotic responses, offering potential insights for future IPF therapies as well as other fibrotic diseases and cancer.
Collapse
Affiliation(s)
- Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| | - Frederique Alleblas
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Taco Koster
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Judith M Vonk
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Epidemiology, Groningen, the Netherlands
| | - Matthew J Thomas
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Eric S White
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, United States
| | - Carolin K Watson
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Karim C El Kasmi
- Immunology & Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Barbro N Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, the Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, the Netherlands.
| |
Collapse
|