1
|
Suzuki J, Hemmi T, Ida T, Ogata S, Yoshitake J, Matsunaga T, Ishida T, Numano Y, Kusano Y, Ikeda R, Nomura K, Sugawara M, Ohta N, Akaike T, Katori Y. Supersulfide formation in the sinus mucosa of chronic rhinosinusitis. Laryngoscope Investig Otolaryngol 2024; 9:e1261. [PMID: 39071205 PMCID: PMC11283289 DOI: 10.1002/lio2.1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 07/30/2024] Open
Abstract
Objectives Disruption of the oxidative stress defense system is involved in developing various diseases. Sulfur compounds such as glutathione (GSH) and cysteine (CysSH) are representative antioxidants in the body. Recently, supersulfides, including reactive persulfide and polysulfide species, have gained attention as potent antioxidants regulating oxidative stress and redox signaling. However, their involvement in the pathogenesis of chronic rhinosinusitis (CRS) remains unclear. Methods To clarify the changes in sulfur compounds within the sinus mucosa of each CRS subtype, we measured sulfur compound levels in the sinus mucosa of control individuals (n = 9), patients with eosinophilic CRS (ECRS) (n = 13), and those with non-ECRS (nECRS) (n = 11) who underwent sinus surgery using mass spectrometry. Results GSH and CysSH levels were significantly reduced, and the glutathione disulfide (GSSG)/GSH ratio, an oxidative stress indicator, was increased in patients with ECRS. Despite the absence of notable variations in supersulfides, patients with ECRS and nECRS exhibited a significant reduction in glutathione trisulfide (GSSSG), which serves as the precursor for supersulfides. Conclusions This study is the first quantitative assessment of supersulfides in normal and inflamed sinus mucosa, suggesting that sulfur compounds contribute to the pathogenesis of CRS. Level of Evidence N/A.
Collapse
Affiliation(s)
- Jun Suzuki
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Tomotaka Hemmi
- Department of OtolaryngologyTohoku Kosai HospitalSendaiJapan
| | - Tomoaki Ida
- Organization for Research PromotionOsaka Metropolitan UniversitySakaiJapan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Tetsuro Matsunaga
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious DiseasesAkita UniversityAkitaJapan
| | - Tomoyasu Ishida
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yuki Numano
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yusuke Kusano
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Ryoukichi Ikeda
- Department of Otolaryngology, Head and Neck SurgeryIwate Medical University School of MedicineYahabaJapan
| | - Kazuhiro Nomura
- Department of OtolaryngologyTohoku Kosai HospitalSendaiJapan
| | | | - Nobuo Ohta
- Division of OtolaryngologyTohoku Medical and Pharmaceutical University HospitalSendaiJapan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular ToxicologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yukio Katori
- Department of Otolaryngology, Head and Neck SurgeryTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
2
|
Miao Y, Zhong C, Bao S, Wei K, Wang W, Li N, Bai C, Chen W, Tang H. Impaired tryptophan metabolism by type 2 inflammation in epithelium worsening asthma. iScience 2024; 27:109923. [PMID: 38799558 PMCID: PMC11126962 DOI: 10.1016/j.isci.2024.109923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/16/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Previous researches indicate that tryptophan metabolism is critical to allergic inflammation and that indoleamine 2,3-dioxygenase 1 (IDO1), as a key enzyme, is known for its immunosuppressive properties. Therefore, we are aimed to explore whether tryptophan metabolism, especially IDO1, influences allergic asthma and clarify specific mechanism. With the analysis of clinical data, exploration in cell experiments, and verifying in HDM-induced asthma mice models, we finally found that in allergic asthma, low level of T1 cytokines along with high level of T2 cytokines inhibited the expression of IDO1 in airway epithelium, hampering the kynurenine pathway in tryptophan metabolism and decreasing the level of intracellular kynurenine (Kyn). As an endogenous ligand of aryl hydrocarbon receptor, Kyn regulated the expression of cystathionine-γ-lyase (CTH). Notably, in asthma models, enhancing either IDO1 or H2S relieved asthma, while inhibiting the activity of CTH exacerbated it. IDO1-Kyn-CTH pathway could be a potential target for treatment for allergic asthma.
Collapse
Affiliation(s)
- Yushan Miao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Caiming Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Shujun Bao
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Kunchen Wei
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Na Li
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Chen
- Department of Nephrology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hao Tang
- Department of Respiratory and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
3
|
Dilxat T, Shi Q, Chen X, Liu X. Garlic oil supplementation blocks inflammatory pyroptosis-related acute lung injury by suppressing the NF-κB/NLRP3 signaling pathway via H 2S generation. Aging (Albany NY) 2024; 16:6521-6536. [PMID: 38613798 PMCID: PMC11042940 DOI: 10.18632/aging.205721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/09/2024] [Indexed: 04/15/2024]
Abstract
Acute lung injury (ALI) is a major cause of acute respiratory failure with a high morbidity and mortality rate, and effective therapeutic strategies for ALI remain limited. Inflammatory response is considered crucial for the pathogenesis of ALI. Garlic, a globally used cooking spice, reportedly exhibits excellent anti-inflammatory bioactivity. However, protective effects of garlic against ALI have never been reported. This study aimed to investigate the protective effects of garlic oil (GO) supplementation on lipopolysaccharide (LPS)-induced ALI models. Hematoxylin and eosin staining, pathology scores, lung myeloperoxidase (MPO) activity measurement, lung wet/dry (W/D) ratio detection, and bronchoalveolar lavage fluid (BALF) analysis were performed to investigate ALI histopathology. Real-time polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to evaluate the expression levels of inflammatory factors, nuclear factor-κB (NF-κB), NLRP3, pyroptosis-related proteins, and H2S-producing enzymes. GO attenuated LPS-induced pulmonary pathological changes, lung W/D ratio, MPO activity, and inflammatory cytokines in the lungs and BALF. Additionally, GO suppressed LPS-induced NF-κB activation, NLRP3 inflammasome expression, and inflammatory-related pyroptosis. Mechanistically, GO promoted increased H2S production in lung tissues by enhancing the conversion of GO-rich polysulfide compounds or by increasing the expression of H2S-producing enzymes in vivo. Inhibition of endogenous or exogenous H2S production reversed the protective effects of GO on ALI and eliminated the inhibitory effects of GO on NF-κB, NLRP3, and pyroptotic signaling pathways. Overall, these findings indicate that GO has a critical anti-inflammatory effect and protects against LPS-induced ALI by suppressing the NF-κB/NLRP3 signaling pathway via H2S generation.
Collapse
Affiliation(s)
- Tursunay Dilxat
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Qiang Shi
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xiaofan Chen
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| | - Xuxin Liu
- Xinjiang Agricultural Vocational Technological College, Changji 831100, Xinjiang, China
| |
Collapse
|
4
|
Okolie A, Nigro MR, Polk S, Stubbs K, Chelliah S, Ohia SE, Liang D, Mbye YFN. Development and application of LC-MS/MS method for the quantification of hydrogen sulfide in the eye. Anal Biochem 2024; 687:115448. [PMID: 38158106 PMCID: PMC11359680 DOI: 10.1016/j.ab.2023.115448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
There are limited studies that report the physiological levels of H2S in the eye. The currently available UV/Vis methods lack the required sensitivity and precision. Hence, the purpose of this study was to develop and validate a sensitive and robust pre-column derivatization LC-MS/MS method to measure changes in H2S levels in tissues from isolated porcine eyes. H2S was derivatized and an LC-MS/MS method was developed to monitor the derivatized product, Sulfide-dibimane (Sdb) using a reverse phase Waters Acquity BEH C18 column (1.7 μm, 2.1 × 100 mm). H2S quantification was performed using multiple-ion reaction monitoring (MRM) in positive mode, with the transitions of m/z 415.0 → m/z 223.0 for Sdb and m/z 353.0 → m/z 285.0 for internal standard (griseofulvin). This method provided a suitable way to quantify H2S and was then successfully adapted to measure H2S levels in isolated porcine iris-ciliary body tissues previously treated in the presence or absence of varying concentrations of lipopolysaccharide (LPS, 5-100 ng/ml), a pro-inflammatory agent. Isolated iris-ciliary bodies (ICB) from porcine eyes were cut into quadrants of approximately 50 mg and homogenized using a 1:3 volume of homogenizing buffer. H2S in the supernatant was then derivatized with monobromobimane and quantified.
Collapse
Affiliation(s)
- Anthonia Okolie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Maria Rincon Nigro
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA; Karuna Therapeutics, Inc., Boston, 02110, USA
| | - Sharhazad Polk
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Keyona Stubbs
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Selvam Chelliah
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Sunny E Ohia
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Dong Liang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| | - Ya Fatou Njie Mbye
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| |
Collapse
|
5
|
Bahrami-Taghanaki HR, Hoseinzadeh H, Hamedi S, Nejad-Bajestani MJ, Esmaeilzadeh N, Abdollahzadeh H, Hoseini-asil S, Haghighi G, Bojdi A. The effect of Phytopaj ) Ferula assa-foetida L. oleo gum resin and tragacanth( in patients with COVID-19: A randomized clinical trial. AVICENNA JOURNAL OF PHYTOMEDICINE 2024; 14:152-165. [PMID: 38966627 PMCID: PMC11221772 DOI: 10.22038/ajp.2023.22800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 07/06/2024]
Abstract
Objective Exogenous hydrogen sulfide (H2S) has a positive effect on respiratory diseases. Oleo-gum of Ferula assa-foetida contains this compound. This study assessed the effects of Ferula assa-foetida L. oleo gum resin and tragacanth (Phytopaj) on patients with COVID-19. Materials and Methods A randomized, single-blinded, controlled trial (RCT) phase 2 was conducted in Mashhad on hospitalized COVID-19 patients. In this RCT, 122 patients were randomly assigned to either receive a 14-day oral phytopaj plus ordinary treatment or ordinary treatment only. Changes in peripheral blood lymphocyte count (LC) and blood oxygen saturation (PO2) were the endpoints. Results Mean±SD of PO2 in Phytopaj comparison ordinary treatment before intervention was 91.86±4.62 and 91.41±9.18, after the intervention it was 93.22±4.26 and 91.91±5.92 mmHg; before intervention, mean±SD of peripheral blood lymphocyte count was 1015.90±500.55, and 1104.28±543.61, and after intervention, it was 1652.27±921.38 and 1326.12±719.28/μL respectively. Conclusion Phyopaj is most useful in moderate stages of Covid19, and it is not recommended for elderly patients and patients with comorbidity until more insight is gained.
Collapse
Affiliation(s)
- Hamid Reza Bahrami-Taghanaki
- Department of Complementary and Chinese Medicine, Faculty of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamidreza Hoseinzadeh
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shokouhsadat Hamedi
- Department of Clinical Persian Pharmacy, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Jafari Nejad-Bajestani
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nayereh Esmaeilzadeh
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hasan Abdollahzadeh
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedehmasoume Hoseini-asil
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Haghighi
- Department of Traditional Medicine, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Amin Bojdi
- Department of Infectious Diseases and Tropical Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Du P, Tseng Y, Liu P, Zhang H, Huang G, Hu C, Chen J. Role of exhaled hydrogen sulfide in the diagnosis of colorectal cancer. BMJ Open Gastroenterol 2024; 11:e001229. [PMID: 38378656 PMCID: PMC10882367 DOI: 10.1136/bmjgast-2023-001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/05/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is often accompanied by increased excretion of hydrogen sulfide (H2S). This study aimed to explore the value of exhaled H2S in the diagnosis of CRC. METHODS A total of 80 people with normal colonoscopy results and 57 patients with CRC were enrolled into the present observational cohort study. Exhaled oral and nasal H2S were detected by Nanocoulomb breath analyser. Results were compared between the two groups. Receiver operating characteristic (ROC) curves were analysed and area under the curves (AUCs) were calculated to assess the diagnostic value of exhaled H2S. Meanwhile, the clinicopathological features, including gender, lesion location and tumour staging of patients with CRC, were also collected and analysed. RESULTS The amount of exhaled H2S from patients with CRC was significantly higher than that of those with normal colonoscopy results. The ROC curve showed an AUC value of 0.73 and 0.71 based on oral and nasal H2S detection, respectively. The exhaled H2S in patients with CRC was correlated with gender, lesion location and tumour progression, including depth of invasion, lymphatic metastasis and TNM (Tumor, Lymph Nodes, Metastasis) staging. CONCLUSION Exhaled H2S analysis is a convenient and non-invasive detection method for diagnosing CRC, suggesting a potential role in population screening for CRC.
Collapse
Affiliation(s)
- Peizhun Du
- Department of General Surgery, Huashan Hospital Fudan University, Shanghai, China
| | - Yujen Tseng
- Huashan Hospital Fudan University, Shanghai, China
| | - Pengcheng Liu
- Department of General Surgery, Huashan Hospital Fudan University, Shanghai, China
| | - Huilu Zhang
- Department of Digestive Diseases, Huashan Hospital Fudan University, Shanghai, China
| | - Guangjian Huang
- Department of General Surgery, Huashan Hospital Fudan University, Shanghai, China
| | - Cheng'en Hu
- Department of General Surgery, Huashan Hospital Fudan University, Shanghai, China
| | - Jian Chen
- Department of Digestive Diseases, Huashan Hospital Fudan University, Shanghai, China
| |
Collapse
|
7
|
Bartman CM, Schiliro M, Nesbitt L, Lee KK, Prakash YS, Pabelick CM. Exogenous hydrogen sulfide attenuates hyperoxia effects on neonatal mouse airways. Am J Physiol Lung Cell Mol Physiol 2024; 326:L52-L64. [PMID: 37987780 PMCID: PMC11279744 DOI: 10.1152/ajplung.00196.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Supplemental O2 remains a necessary intervention for many premature infants (<34 wk gestation). Even moderate hyperoxia (<60% O2) poses a risk for subsequent airway disease, thereby predisposing premature infants to pediatric asthma involving chronic inflammation, airway hyperresponsiveness (AHR), airway remodeling, and airflow obstruction. Moderate hyperoxia promotes AHR via effects on airway smooth muscle (ASM), a cell type that also contributes to impaired bronchodilation and remodeling (proliferation, altered extracellular matrix). Understanding mechanisms by which O2 initiates long-term airway changes in prematurity is critical for therapeutic advancements for wheezing disorders and asthma in babies and children. Immature or dysfunctional antioxidant systems in the underdeveloped lungs of premature infants thereby heightens susceptibility to oxidative stress from O2. The novel gasotransmitter hydrogen sulfide (H2S) is involved in antioxidant defense and has vasodilatory effects with oxidative stress. We previously showed that exogenous H2S exhibits bronchodilatory effects in human developing airway in the context of hyperoxia exposure. Here, we proposed that exogenous H2S would attenuate effects of O2 on airway contractility, thickness, and remodeling in mice exposed to hyperoxia during the neonatal period. Using functional [flexiVent; precision-cut lung slices (PCLS)] and structural (histology; immunofluorescence) analyses, we show that H2S donors mitigate the effects of O2 on developing airway structure and function, with moderate O2 and H2S effects on developing mouse airways showing a sex difference. Our study demonstrates the potential applicability of low-dose H2S toward alleviating the detrimental effects of hyperoxia on the premature lung.NEW & NOTEWORTHY Chronic airway disease is a short- and long-term consequence of premature birth. Understanding effects of O2 exposure during the perinatal period is key to identify targetable mechanisms that initiate and sustain adverse airway changes. Our findings show a beneficial effect of exogenous H2S on developing mouse airway structure and function with notable sex differences. H2S donors alleviate effects of O2 on airway hyperreactivity, contractility, airway smooth muscle thickness, and extracellular matrix deposition.
Collapse
Affiliation(s)
- Colleen M Bartman
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Marta Schiliro
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Critical Care Medicine, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Lisa Nesbitt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Kenge K Lee
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
8
|
Abolfazli S, Ebrahimi N, Morabi E, Asgari Yazdi MA, Zengin G, Sathyapalan T, Jamialahmadi T, Sahebkar A. Hydrogen Sulfide: Physiological Roles and Therapeutic Implications against COVID-19. Curr Med Chem 2024; 31:3132-3148. [PMID: 37138436 DOI: 10.2174/0929867330666230502111227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) poses a major menace to economic and public health worldwide. Angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) are two host proteins that play an essential function in the entry of SARS-- COV-2 into host cells. Hydrogen sulfide (H2S), a new gasotransmitter, has been shown to protect the lungs from potential damage through its anti-inflammatory, antioxidant, antiviral, and anti-aging effects. It is well known that H2S is crucial in controlling the inflammatory reaction and the pro-inflammatory cytokine storm. Therefore, it has been suggested that some H2S donors may help treat acute lung inflammation. Furthermore, recent research illuminates a number of mechanisms of action that may explain the antiviral properties of H2S. Some early clinical findings indicate a negative correlation between endogenous H2S concentrations and COVID-19 intensity. Therefore, reusing H2S-releasing drugs could represent a curative option for COVID-19 therapy.
Collapse
Affiliation(s)
- Sajad Abolfazli
- Student Research Committee, School of Pharmacy, Mazandaran University of Medical Science, Sari, Iran
| | - Nima Ebrahimi
- Student Research Committee, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Etekhar Morabi
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Jiang S, Chen H, Shen P, Zhou Y, Li Q, Zhang J, Chen Y. Gasotransmitter Research Advances in Respiratory Diseases. Antioxid Redox Signal 2024; 40:168-185. [PMID: 37917094 DOI: 10.1089/ars.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Significance: Gasotransmitters are small gas molecules that are endogenously generated and have well-defined physiological functions. The most well-defined gasotransmitters currently are nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S), while other potent gasotransmitters include ammonia, methane, cyanide, hydrogen gas, and sulfur dioxide. Gasotransmitters play a role in various respiratory diseases such as asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, lung infection, bronchiectasis, cystic fibrosis, primary ciliary dyskinesia, and COVID-19. Recent Advances: Gasotransmitters can act as biomarkers that facilitate disease diagnosis, indicate disease severity, predict disease exacerbation, and evaluate disease outcomes. They also have cell-protective properties, and many studies have been conducted to explore their pharmacological applications. Innovative drug donors and drug delivery methods have been invented to amplify their therapeutic effects. Critical Issues: In this article, we briefly reviewed the physiological and pathophysiological functions of some gasotransmitters in the respiratory system, the progress in detecting exhaled gasotransmitters, as well as innovative drugs derived from these molecules. Future Directions: The current challenge for gasotransmitter research includes further exploring their physiological and pathological functions, clarifying their complicated interactions, exploring suitable drug donors and delivery devices, and characterizing new members of gasotransmitters. Antioxid. Redox Signal. 40, 168-185.
Collapse
Affiliation(s)
- Simin Jiang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Haijie Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Pu Shen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yumou Zhou
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Qiaoyu Li
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
10
|
Stoppa G, Nuvolone D, Petri D, Centi L, Nisticò F, Crocetti E, Barbone F, Voller F. Exposure to low levels of hydrogen sulphide and its impact on chronic obstructive pulmonary disease and lung function in the geothermal area of Mt. Amiata in Italy: The cross-sectional InVETTA study. PLoS One 2023; 18:e0293619. [PMID: 37910515 PMCID: PMC10619772 DOI: 10.1371/journal.pone.0293619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND The geothermal power plants for electricity production currently active in Italy are all located in Mt. Amiata area in the Tuscany region. A cross-sectional survey was conducted in the framework of the regional project "InVETTA-Biomonitoring Survey and Epidemiological Evaluations for the Protection of Health in the Amiata Territories", using objective measures of lung function to investigate the role of hydrogen sulphide (H2S) in affecting the respiratory health of the population living in this area. METHODS 2018 adults aged 18-70 were enrolled during 2017-2019. Home and workplace addresses of participants were geocoded. Dispersion modelling was used to evaluate the spatial variability of exposure to H2S from the geothermal power plants' emissions. We estimated average long-term historical exposure to H2S and more recent exposure indicators. Chronic Obstructive Pulmonary Disease (COPD) was defined according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Multivariable logistic regressions were performed to investigate associations between outcome and exposure. RESULTS Our findings did not showed any evidence of an association between increasing H2S exposure and lung function impairments. Some risk reductions were observed: a -32.8% (p = 0.003) for FEV1<80% and a -51.7% (p = 0.001) risk decrease for FVC<80% were associated with interquartile increase (13.8 μg/m3) of H2S levels. CONCLUSION Our study provides no evidence that chronic exposure to low levels of H2S is associated with decrements in pulmonary function, suggesting that ambient H2S exposure may benefit lung function.
Collapse
Affiliation(s)
- Giorgia Stoppa
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| | - Daniela Nuvolone
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| | - Davide Petri
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| | - Letizia Centi
- Health Agency of South-East Tuscany, Arezzo (AR), Italy
| | | | - Emanuele Crocetti
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| | - Fabio Barbone
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Fabio Voller
- Unit of Epidemiology, Regional Health Agency of Tuscany, Florence (FI), Italy
| |
Collapse
|
11
|
Ozbek EN, Istanbullu H, Kızrak U, Alan Albayrak E, Sevin G, Yetik-Anacak G. The Effects of Novel Triazolopyrimidine Derivatives on H2S Production in Lung and Vascular Tonus in Aorta. Pharmacology 2023; 108:530-539. [PMID: 37696255 DOI: 10.1159/000533419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/31/2023] [Indexed: 09/13/2023]
Abstract
INTRODUCTION Hydrogen sulfide (H2S), known as a third gasotransmitter, is a signaling molecule that plays a regulatory role in physiological and pathophysiological processes. Decreased H2S levels were reported in inflammatory respiratory diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary hypertension. H2S donors or drugs that increase H2S have emerged as novel treatments for inflammatory respiratory diseases. We previously showed that resveratrol (RVT) causes vascular relaxation and antioxidant effects by inducing H2S production. In the current study, we synthesized a new molecule Cpd2, as an RVT analog. We examined the effect of Cpd2 and its precursor chalcone compound (Cpd1) on H2S formation under both healthy and oxidative stress conditions in the lung, as well as vascular relaxation in the aorta. METHODS Cpd2 synthesized from Cpd1 with microwaved in basic conditions. H2S formation was measured by H2S biosensor in the mice lungs under both healthy and pyrogallol-induced oxidative stress conditions in the presence/absence of H2S synthesis inhibitor aminooxyacetic acid (AOAA). The effect of compounds on vascular tonus is investigated in mice aorta by DMT myograph. RESULTS RVT and Cpd2 significantly increased l-cysteine (l-cys) induced-H2S formation in the lung homogenates of healthy mice, but Cpd1 did not. Superoxide anion generator pyrogallol caused a decrease in H2S levels in mice lungs and Cpd2 restored it. Inhibition of Cpd2-induced H2S formation by AOAA confirmed that Cpd2 increases endogenous H2S formation in both healthy and oxidative stress conditions. Furthermore, we found that both Cpd1 and Cpd2 (10-8-10-4 M) caused vascular relaxation in mice aorta. DISCUSSION AND CONCLUSION We found that Cpd2, a newly synthesized RVT analog, is an H2S-inducing molecule and vasorelaxant similar to RVT. Since H2S has antioxidant and anti-inflammatory effects, Cpd2 has a potential for the treatment of respiratory diseases where oxidative stress and decreased H2S levels are present.
Collapse
Affiliation(s)
- Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Huseyin Istanbullu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Umran Kızrak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Elif Alan Albayrak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gülnur Sevin
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
- Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet ali Aydınlar University, Istanbul, Turkey
| |
Collapse
|
12
|
Sinha S, Kumar S, Narwaria M, Singh A, Haque M. Severe Acute Bronchial Asthma with Sepsis: Determining the Status of Biomarkers in the Diagnosis of the Disease. Diagnostics (Basel) 2023; 13:2691. [PMID: 37627950 PMCID: PMC10453001 DOI: 10.3390/diagnostics13162691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bronchial asthma is a widely prevalent illness that substantially impacts an individual's health standard worldwide and has a significant financial impact on society. Global guidelines for managing asthma do not recommend the routine use of antimicrobial agents because most episodes of the condition are linked to viral respiratory tract infections (RTI), and bacterial infection appears to have an insignificant impact. However, antibiotics are recommended when there is a high-grade fever, a consolidation on the chest radiograph, and purulent sputum that contains polymorphs rather than eosinophils. Managing acute bronchial asthma with sepsis, specifically the choice of whether or not to initiate antimicrobial treatment, remains difficult since there are currently no practical clinical or radiological markers that allow for a simple distinction between viral and bacterial infections. Researchers found that serum procalcitonin (PCT) values can efficiently and safely minimize antibiotic usage in individuals with severe acute asthma. Again, the clinical manifestations of acute asthma and bacterial RTI are similar, as are frequently used test values, like C-reactive protein (CRP) and white blood cell (WBC) count, making it harder for doctors to differentiate between viral and bacterial infections in asthma patients. The role and scope of each biomarker have not been precisely defined yet, although they have all been established to aid healthcare professionals in their diagnostics and treatment strategies.
Collapse
Affiliation(s)
- Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, 33 KDA Avenue, Hotel Royal Crossing, Khulna Sadar, Khulna 9100, Bangladesh
| | - Santosh Kumar
- Department of Periodontology, Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, Gujarat, India
| | - Mahendra Narwaria
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, SG Highways, Ahmedabad 380054, Gujarat, India
| | - Arya Singh
- Asian Bariatrics Plus Hospital, V Wing-Mondeal Business Park, SG Highways, Ahmedabad 380054, Gujarat, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia
- Department of Scientific Research Center (KSRC), Karnavati School of Dentistry, Karnavati University, Gandhinagar 382422, Gujarat, India
| |
Collapse
|
13
|
Rosmark O, Kadefors M, Dellgren G, Karlsson C, Ericsson A, Lindstedt S, Malmström J, Hallgren O, Larsson-Callerfelt AK, Westergren-Thorsson G. Alveolar epithelial cells are competent producers of interstitial extracellular matrix with disease relevant plasticity in a human in vitro 3D model. Sci Rep 2023; 13:8801. [PMID: 37258541 DOI: 10.1038/s41598-023-35011-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Alveolar epithelial cells (AEC) have been implicated in pathological remodelling. We examined the capacity of AEC to produce extracellular matrix (ECM) and thereby directly contribute towards remodelling in chronic lung diseases. Cryopreserved type 2 AEC (AEC2) from healthy lungs and chronic obstructive pulmonary disease (COPD) afflicted lungs were cultured in decellularized healthy human lung slices for 13 days. Healthy-derived AEC2 were treated with transforming growth factor ß1 (TGF-β1) to evaluate the plasticity of their ECM production. Evaluation of phenotypic markers and expression of matrisome genes and proteins were evaluated by RNA-sequencing, mass spectrometry and immunohistochemistry. The AEC2 displayed an AEC marker profile similar to freshly isolated AEC2 throughout the 13-day culture period. COPD-derived AECs proliferated as healthy AECs with few differences in gene and protein expression while retaining increased expression of disease marker HLA-A. The AEC2 expressed basement membrane components and a complex set of interstitial ECM proteins. TGF-β1 stimuli induced a significant change in interstitial ECM production from AEC2 without loss of specific AEC marker expression. This study reveals a previously unexplored potential of AEC to directly contribute to ECM turnover by producing interstitial ECM proteins, motivating a re-evaluation of the role of AEC2 in pathological lung remodelling.
Collapse
Affiliation(s)
- Oskar Rosmark
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184, Lund, Sweden.
| | - Måns Kadefors
- Lung Biology, Department of Experimental Medical Science, Lund University, BMC C12, 22184, Lund, Sweden
| | - Göran Dellgren
- Transplant Institute and Department of Cardiothoracic Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Christofer Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Division of Respiratory Medicine and Allergology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
14
|
Smartphone-controlled biosensor for viral respiratory infectious diseases: Screening and response. Talanta 2023; 254:124167. [PMID: 36493567 PMCID: PMC9721129 DOI: 10.1016/j.talanta.2022.124167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Outbreaks of emerging viral respiratory infectious diseases (VRIDs) including coronavirus disease 2019 (COVID-19) seriously endanger people's health. However, the traditional nucleic acid detection required professionals and larger instruments and antigen-antibody detection suffered a long window period of target generation. To facilitate the VRIDs detection in time for common populations, a smartphone-controlled biosensor, which integrated sample preparation (electromembrane extraction), biomarker detection (red-green-blue model) and remote response technology (a built-in APP), was developed in this work. With the intelligent biosensor, VRIDs could be recognized in the early stage by using endogenous hydrogen sulfide as the biomarker. Importantly, it only took 15 min to accomplish the whole process of screening and response to VRIDs. Moreover, the experimental data showed that this smartphone-controlled biosensor was suitable for ordinary residents and could successfully differentiate non-communicable respiratory diseases from VRIDs. To the best of our knowledge, this is the first time that a smartphone-controlled biosensor for screening and response to VRIDs was reported. We believe that the present biosensor will help ordinary residents jointly deal with the challenges brought by COVID-19 or other VRIDs in the future.
Collapse
|
15
|
Chen H, Guan X, Liu Q, Yang L, Guo J, Gao F, Qi Y, Wu X, Zhang F, Tian X. Co-assembled Nanocarriers of De Novo Thiol-Activated Hydrogen Sulfide Donors with an RGDFF Pentapeptide for Targeted Therapy of Non-Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53475-53490. [PMID: 36413755 DOI: 10.1021/acsami.2c14570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen sulfide releasing agents (or H2S donors) have been recognized gasotransmitters with potent cytoprotective and anticancer properties. However, the clinical application of H2S donors has been hampered by their fast H2S-release, instability, and lack of tumor targeting, despite the unclear molecular mechanism of H2S action. Here we rationally designed an amphiphilic pentapeptide (RGDFF) to coassemble with the de novo designed thiol-activated H2S donors (CL2/3) into nanocarriers for targeted therapy of non-small-cell lung cancer, which has been proved as a one-stone-three-birds strategy. The coassembly approach simply solved the solubility issue of CL2/3 by the introduction of electron-donating groups (phenyl rings) to slow down the H2S release while dramatically improving their biocompatible interface, circulation time, slow release of H2S, and tumor targeting. Experimental results confirmed that as-prepared coassembled nanocarriers can significantly induce the intrinsic apoptotic, effectively arrest cell cycle at the G2/M phase, inhibit H2S-producing enzymes, and lead to mitochondrial dysfunction by increasing intracellular ROS production in H1299 cells. The mouse tumorigenesis experiments further confirmed the in vivo anticancer effects of the coassembled nanocarriers, and such treatment made tumors more sensitive to radiotherapy then improved the prognosis of tumor-bearing mice, which holds great promise for developing a new combined approach for NSCLC.
Collapse
Affiliation(s)
- Hong Chen
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiaoying Guan
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Qianqian Liu
- The Emergency Department, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Longcui Yang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Jun Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feng Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Wenzhou 325000, China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiongting Wu
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Feng Zhang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Wenzhou 325000, China
| | - Xiumei Tian
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- The Emergency Department, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| |
Collapse
|
16
|
Oza PP, Kashfi K. Utility of NO and H 2S donating platforms in managing COVID-19: Rationale and promise. Nitric Oxide 2022; 128:72-102. [PMID: 36029975 PMCID: PMC9398942 DOI: 10.1016/j.niox.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 01/08/2023]
Abstract
Viral infections are a continuing global burden on the human population, underscored by the ramifications of the COVID-19 pandemic. Current treatment options and supportive therapies for many viral infections are relatively limited, indicating a need for alternative therapeutic approaches. Virus-induced damage occurs through direct infection of host cells and inflammation-related changes. Severe cases of certain viral infections, including COVID-19, can lead to a hyperinflammatory response termed cytokine storm, resulting in extensive endothelial damage, thrombosis, respiratory failure, and death. Therapies targeting these complications are crucial in addition to antiviral therapies. Nitric oxide and hydrogen sulfide are two endogenous gasotransmitters that have emerged as key signaling molecules with a broad range of antiviral actions in addition to having anti-inflammatory properties and protective functions in the vasculature and respiratory system. The enhancement of endogenous nitric oxide and hydrogen sulfide levels thus holds promise for managing both early-stage and later-stage viral infections, including SARS-CoV-2. Using SARS-CoV-2 as a model for similar viral infections, here we explore the current evidence regarding nitric oxide and hydrogen sulfide's use to limit viral infection, resolve inflammation, and reduce vascular and pulmonary damage.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY, 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, 10091, USA.
| |
Collapse
|
17
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
18
|
Zhang J, Ma L, Liu Y, Tong X, Zhou Y. Hydrogen sulfide poisoning in forensic pathology and toxicology: mechanism and metabolites quantification analysis. Crit Rev Toxicol 2022; 52:742-756. [PMID: 36803204 DOI: 10.1080/10408444.2023.2168177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Historically, hydrogen sulfide (H2S) poisoning has extremely high and irreparable mortality. Currently, the identification of H2S poisoning needs to combine with the case scene analysis in forensic medicine. The anatomy of the deceased seldom had obvious features. There are also a few reports about H2S poisoning in detail. As a result, we give a comprehensive analysis of the related knowledge on the forensic aspect of H2S poisoning. Furthermore, we provide the analytical methods of H2S and its metabolite-which may assist in H2S poisoning identification.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tong
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
19
|
Hasanpour M, Safari H, Mohammadpour AH, Iranshahy M, Dehghan Nayyeri MJ, Farhadi F, Emami B, Iranshahi M. Efficacy of Covexir® (Ferula foetida oleo-gum) treatment in symptomatic improvement of patients with mild to moderate COVID-19: A randomized, double-blind, placebo-controlled trial. Phytother Res 2022; 36:4504-4515. [PMID: 35896167 PMCID: PMC9353293 DOI: 10.1002/ptr.7567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 COVID-19 pandemic has emerged as an unprecedented emergency state in healthcare system and global challenge. In recent decade, the function of exogenous H2 S in the treatment of respiratory diseases has been investigated using H2 S-donor agents. Ferula foetida is a medicinal plant that is traditionally used in respiratory diseases including asthma and viral respiratory diseases. The oleo-gum of this plant is a rich source of several organic sulfides including thiophenes, disulfides and polysulfide derivatives, which can act as H2 S-donor agents. The purpose of this study was to investigate the efficacy of Covexir® (F. foetida oleo-gum) treatment as a rich source of H2 S-donor compounds in clinical presentations of patients with COVID-19. The efficacy of Covexir® was evaluated in a randomized, double-blind, placebo-controlled trial in outpatients with COVID-19. Covexir® could significantly inhibit cough when compared to the placebo group (p < .01 and p < 001, respectively). Moreover, there was a significant difference (p < 001) between the two groups in dyspnea symptom at follow-up interval of 7 day after receiving Covexir®. Furthermore, on days 3 and 7, statistically significant differences were observed in myalgia, anorexia, anosmia, and sense of taste severity between two groups. Our findings revealed that Covexir® was very safe in the treatment of COVID-19 patients with mild to moderate symptoms and it can be recommended to improve clinical presentations of patients with COVID-19 such as cough, shortness of breath, myalgia, anorexia, anosmia, and sense of taste.
Collapse
Affiliation(s)
- Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hossein Safari
- Hasheminezhad HospitalMashhad University of Medical SciencesMashhadIran
| | | | - Milad Iranshahy
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | | | - Faegheh Farhadi
- Department of Pharmacognosy, School of PharmacyMashhad University of Medical SciencesMashhadIran,Herbal and Traditional Medicines Research CenterKerman University of Medical SciencesKermanIran
| | - Bahareh Emami
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
20
|
Ivashkin VT, Medvedev OS, Poluektova EA, Kudryavtseva AV, Bakhtogarimov IR, Karchevskaya AE. Direct and Indirect Methods for Studying Human Gut Microbiota. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:19-34. [DOI: 10.22416/1382-4376-2022-32-2-19-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Aim: To review the main methods of intestinal microbiota studying.Key points. Currently, molecular genetic methods are used mainly for basic research and do not have a unified protocol for data analysis, which makes it difficult to implement them in clinical practice. Measurement of short chain fatty acids (SCFA) concentrations in plasma provides the data, which can serve as an indirect biomarker of the colonic microbiota composition. However, currently available evidence is insufficient to relate the obtained values (SCFA levels and ratio) to a particular disease with a high degree of certainty. Trimethylamine N-oxide (TMAO) levels in the blood plasma and urine can also reflect the presence of specific bacterial clusters containing genes Cut, CntA/CntB and YeaW/YeaX. Therefore, further studies are required to reveal possible correlations between certain disorders and such parameters as the composition of gut microbiota, dietary patterns and TMAO concentration. Gas biomarkers, i.e. hydrogen, methane and hydrogen sulphide, have been studied in more detail and are better understood as compared to other biomarkers of the gut microbiome composition and functionality. The main advantage of gas biomarkers is that they can be measured multiple times using non-invasive techniques. These measurements provide information on the relative proportion of hydrogenic (i.e. hydrogen producing) and hydrogenotrophic (i.e. methanogenic and sulfate-reducing) microorganisms. In its turn, this opens up the possibility of developing new approaches to correction of individual microbiota components.Conclusions. Integration of the data obtained by gut microbiota studies at the genome, transcriptome and metabolome levels would allow a comprehensive analysis of microbial community function and its interaction with the human organism. This approach may increase our understanding of the pathogenesis of various diseases as well open up new opportunities for prevention and treatment.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. S. Medvedev
- M.V. Lomonosov Moscow State University; National Medical Research Center of Cardiology
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | - A. E. Karchevskaya
- I.M. Sechenov First Moscow State Medical University (Sechenov University); N.N. Burdenko National Medical Research Center of Neurosurgery; Institute of Higher Nervous Activity and Neurophysiology
| |
Collapse
|
21
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
22
|
Pozzi G, Gobbi G, Masselli E, Carubbi C, Presta V, Ambrosini L, Vitale M, Mirandola P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022; 11:cells11030325. [PMID: 35159135 PMCID: PMC8834412 DOI: 10.3390/cells11030325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Giuliana Gobbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Elena Masselli
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (P.M.)
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Valentina Presta
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Luca Ambrosini
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Marco Vitale
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Italian Foundation for the Research in Balneology, Via Po 22, 00198 Rome, Italy
| | - Prisco Mirandola
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- Correspondence: (E.M.); (P.M.)
| |
Collapse
|
23
|
Corvino A, Citi V, Fiorino F, Frecentese F, Magli E, Perissutti E, Santagada V, Calderone V, Martelli A, Gorica E, Brogi S, Colombo FF, Capello CN, Araujo Ferreira HH, Rimoli MG, Sodano F, Rolando B, Pavese F, Petti A, Muscará MN, Caliendo G, Severino B. H 2S donating corticosteroids: Design, synthesis and biological evaluation in a murine model of asthma. J Adv Res 2022; 35:267-277. [PMID: 35024201 PMCID: PMC8721254 DOI: 10.1016/j.jare.2021.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction Hydrogen sulfide (H2S) is a fundamental biological endogenous gas-mediator in the respiratory system. It regulates pivotal patho-physiological processes such as oxidative stress, pulmonary circulation, airway tone and inflammation. Objectives We herein describe the design and synthesis of molecular hybrids obtained by the condensation of several corticosteroids with different hydrogen sulfide releasing moieties. Methods All the molecules are characterized for their ability to release H2S both via amperometric approach and using a fluorescent probe. The chemical stability of the newly synthesized hybrid molecules has been investigated at differing pH values and in human serum. Results Prednisone-TBZ hybrid (compound 7) was selected for further evaluations. The obtained results from the in vitro and in vivo studies clearly show evidence in favor of the anti-inflammatory properties of the released H2S. Conclusions The protective effect on airway remodeling makes the hybrid Prednisone-TBZ (compound 7) as a promising therapeutic option in reducing allergic asthma symptoms and exacerbations.
Collapse
Affiliation(s)
- Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Elisa Perissutti
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | - Era Gorica
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, via Bonanno, 6, I-56126 Pisa, Italy
| | | | | | | | - Maria Grazia Rimoli
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Federica Sodano
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria, 9, 10125 Torino, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Torino, Via Pietro Giuria, 9, 10125 Torino, Italy
| | - Francesca Pavese
- Genetic S.p.A., Via della Monica, 26 – 84083 Castel San Giorgio (SA), Italy
| | - Antonio Petti
- Genetic S.p.A., Via della Monica, 26 – 84083 Castel San Giorgio (SA), Italy
| | - Marcelo Nicolás Muscará
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508-000, SP, Brazil
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples «Federico II», Via D. Montesano, 49, 80131 Napoli, Italy
| |
Collapse
|
24
|
Ali FF, Mohammed HH, Elroby Ali DM. Protective effect of hydrogen sulfide against stress-induced lung injury: involvement of Nrf2, NFκB/iNOS, and HIF-1α signaling pathways. Cell Stress Chaperones 2022; 27:55-70. [PMID: 34881408 PMCID: PMC8821758 DOI: 10.1007/s12192-021-01248-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 10/19/2022] Open
Abstract
Stress is a common phenomenon that is attracting increasing attention. Hydrogen sulfide (H2S) is a gasotransmitter that plays an important role in many physiological and pathological events. Our study aimed to estimate the effect and the underlying mechanisms of the H2S donor, sodium hydrosulfide (NaHS), against immobilization stress (IS)-induced lung injury. Forty adult male rats were classified into control group, NaHS group, and IS groups with and without NaHS treatment. Serum was obtained to determine corticosterone (CORT), total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) levels. Lung H2S, nitric oxide (NO), inducible nitric oxide synthase (iNOS), and malondialdehyde (MDA) levels were measured. Lung expressions of H2S synthesizing enzymes and Western blot analysis of nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor 1 alpha (HIF 1α) were estimated. Histopathological changes and immunohistochemical assessment of nuclear factor kappa B (NF-κB) and caspase-3 were also done. Pretreatment with NaHS led to marked histological protection from lung damage seen in IS rats. Furthermore, pretreatment with NaHS before IS protected lung H2S levels and expressions of H2S-synthesizing enzymes. Similarly, the levels of CORT, TNF-α, IL-10, MDA, TAC, NO, iNOS, HIF-1 α, and nuclear Nrf2 and expressions of NF-kB and caspase 3 were all maintained at near control levels in contrast to that in the IS rats. In conclusion, NaHS is protective against stress-induced lung injury due to its antioxidant, anti-inflammatory, anti-fibrotic, and antiapoptotic effects. Thus, NaHS can be used to minimize stress complications on lung.
Collapse
Affiliation(s)
- Fatma F Ali
- Medical Physiology Department, Faculty of Medicine, Minia University, Minia, Egypt.
| | | | - Doaa M Elroby Ali
- Biochemistry Department, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| |
Collapse
|
25
|
Bourgonje AR, Offringa AK, van Eijk LE, Abdulle AE, Hillebrands JL, van der Voort PHJ, van Goor H, van Hezik EJ. N-Acetylcysteine and Hydrogen Sulfide in Coronavirus Disease 2019. Antioxid Redox Signal 2021; 35:1207-1225. [PMID: 33607929 DOI: 10.1089/ars.2020.8247] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Hydrogen sulfide (H2S) is one of the three main gasotransmitters that are endogenously produced in humans and are protective against oxidative stress. Recent findings from studies focusing on coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), shifted our attention to a potentially modulatory role of H2S in this viral respiratory disease. Recent Advances: H2S levels at hospital admission may be of importance since this gasotransmitter has been shown to be protective against lung damage through its antiviral, antioxidant, and anti-inflammatory actions. Furthermore, many COVID-19 cases have been described demonstrating remarkable clinical improvement upon administration of high doses of N-acetylcysteine (NAC). NAC is a renowned pharmacological antioxidant substance acting as a source of cysteine, thereby promoting endogenous glutathione (GSH) biosynthesis as well as generation of sulfane sulfur species when desulfurated to H2S. Critical Issues: Combining H2S physiology and currently available knowledge of COVID-19, H2S is hypothesized to target three main vulnerabilities of SARS-CoV-2: (i) cell entry through interfering with functional host receptors, (ii) viral replication through acting on RNA-dependent RNA polymerase (RdRp), and (iii) the escalation of inflammation to a potentially lethal hyperinflammatory cytokine storm (toll-like receptor 4 [TLR4] pathway and NLR family pyrin domain containing 3 [NLRP3] inflammasome). Future Directions: Dissecting the breakdown of NAC reveals the possibility of increasing endogenous H2S levels, which may provide a convenient rationale for the application of H2S-targeted therapeutics. Further randomized-controlled trials are warranted to investigate its definitive role.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annette K Offringa
- Microbiology and System Biology, Netherlands Organisation for Applied Scientific Research, Zeist, the Netherlands
| | - Larissa E van Eijk
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Amaal E Abdulle
- Division of Vascular Medicine, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter H J van der Voort
- Department of Critical Care Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ed J van Hezik
- Visiting Consultant Chest Physician, formerly Walcheren Hospital, Vlissingen, the Netherlands
| |
Collapse
|
26
|
Chirindoth SS, Cancarevic I. Role of Hydrogen Sulfide in the Treatment of Fibrosis. Cureus 2021; 13:e18088. [PMID: 34692303 PMCID: PMC8525665 DOI: 10.7759/cureus.18088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/18/2021] [Indexed: 12/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is a biological gas, the abnormal metabolism of which has associations with the pathogenesis of fibrosis. The purpose of this paper was to determine the potential of H2S in the prevention and treatment of fibrosis. The data is obtained mainly from articles found in the PubMed database using the keywords “fibrosis” and “hydrogen sulfide,” limiting the results to those published within the last 10 years. Some additional resources have also been used, such as books and articles within journals. Evidence of decreased H2S enzyme levels in animal models with fibrotic diseases has been found. The protective role of H2S has been validated by the administration of exogenous H2S donors in animal models with fibrosis. It is also evident that H2S is involved in complex signaling pathways and ion channels that inhibit fibrosis development. These findings support the role of H2S in the treatment of a variety of fibrotic diseases. A randomized controlled trial in fibrosis patients comparing the efficacy of exogenous H2S and placebo in addition to standard of care can be implemented to validate this further.
Collapse
Affiliation(s)
- Swathy S Chirindoth
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
27
|
Pozzi G, Masselli E, Gobbi G, Mirandola P, Taborda-Barata L, Ampollini L, Carbognani P, Micheloni C, Corazza F, Galli D, Carubbi C, Vitale M. Hydrogen Sulfide Inhibits TMPRSS2 in Human Airway Epithelial Cells: Implications for SARS-CoV-2 Infection. Biomedicines 2021; 9:1273. [PMID: 34572459 PMCID: PMC8469712 DOI: 10.3390/biomedicines9091273] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has now affected around 190 million people worldwide, accounting for more than 4 million confirmed deaths. Besides ongoing global vaccination, finding protective and therapeutic strategies is an urgent clinical need. SARS-CoV-2 mostly infects the host organism via the respiratory system, requiring angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) to enter target cells. Therefore, these surface proteins are considered potential druggable targets. Hydrogen sulfide (H2S) is a gasotransmitter produced by several cell types and is also part of natural compounds, such as sulfurous waters that are often inhaled as low-intensity therapy and prevention in different respiratory conditions. H2S is a potent biological mediator, with anti-oxidant, anti-inflammatory, and, as more recently shown, also anti-viral activities. Considering that respiratory epithelial cells can be directly exposed to H2S by inhalation, here we tested the in vitro effects of H2S-donors on TMPRSS2 and ACE2 expression in human upper and lower airway epithelial cells. We showed that H2S significantly reduces the expression of TMPRSS2 without modifying ACE2 expression both in respiratory cell lines and primary human upper and lower airway epithelial cells. Results suggest that inhalational exposure of respiratory epithelial cells to natural H2S sources may hinder SARS-CoV-2 entry into airway epithelial cells and, consequently, potentially prevent the virus from spreading into the lower respiratory tract and the lung.
Collapse
Affiliation(s)
- Giulia Pozzi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Elena Masselli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Giuliana Gobbi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Prisco Mirandola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Luis Taborda-Barata
- CICS-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal;
| | - Luca Ampollini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Paolo Carbognani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Cristina Micheloni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Francesco Corazza
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Daniela Galli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (G.P.); (E.M.); (G.G.); (P.M.); (L.A.); (P.C.); (C.M.); (F.C.); (D.G.); (M.V.)
- Italian Foundation for Research in Balneotherapy (FoRST), 00198 Rome, Italy
| |
Collapse
|
28
|
Pacitti D, Scotton CJ, Kumar V, Khan H, Wark PAB, Torregrossa R, Hansbro PM, Whiteman M. Gasping for Sulfide: A Critical Appraisal of Hydrogen Sulfide in Lung Disease and Accelerated Aging. Antioxid Redox Signal 2021; 35:551-579. [PMID: 33736455 DOI: 10.1089/ars.2021.0039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hydrogen sulfide (H2S) is a gaseous signaling molecule involved in a plethora of physiological and pathological processes. It is primarily synthesized by cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase as a metabolite of the transsulfuration pathway. H2S has been shown to exert beneficial roles in lung disease acting as an anti-inflammatory and antiviral and to ameliorate cell metabolism and protect from oxidative stress. H2S interacts with transcription factors, ion channels, and a multitude of proteins via post-translational modifications through S-persulfidation ("sulfhydration"). Perturbation of endogenous H2S synthesis and/or levels have been implicated in the development of accelerated lung aging and diseases, including asthma, chronic obstructive pulmonary disease, and fibrosis. Furthermore, evidence indicates that persulfidation is decreased with aging. Here, we review the use of H2S as a biomarker of lung pathologies and discuss the potential of using H2S-generating molecules and synthesis inhibitors to treat respiratory diseases. Furthermore, we provide a critical appraisal of methods of detection used to quantify H2S concentration in biological samples and discuss the challenges of characterizing physiological and pathological levels. Considerations and caveats of using H2S delivery molecules, the choice of generating molecules, and concentrations are also reviewed. Antioxid. Redox Signal. 35, 551-579.
Collapse
Affiliation(s)
- Dario Pacitti
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Chris J Scotton
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Vinod Kumar
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Haroon Khan
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Roberta Torregrossa
- Priority Research Centre for Healthy Lungs and Hunter Medical Research Institute, The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Faculty of Science, Centre for Inflammation, Centenary Institute, University of Technology Sydney, Sydney, Australia
| | - Matthew Whiteman
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
29
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
30
|
Wu X, Lu Y, Liu B, Chen Y, Zhang J, Zhou Y. A H2S-triggered two-photon ratiometric fluorescent theranostic prodrug for bio-imaging. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
31
|
Hydrogen Sulfide and the Immune System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:99-128. [PMID: 34302690 DOI: 10.1007/978-981-16-0991-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is the "third gasotransmitter" recognized alongside nitric oxide (NO) and carbon monoxide (CO). H2S exhibits an array of biological effects in mammalian cells as revealed by studies showing important roles in the cardiovascular system, in cell signalling processes, post-translational modifications and in the immune system. Regarding the latter, using pharmacological and genetic approaches scientists have shown this molecule to have both pro- and anti-inflammatory effects in mammalian systems. The anti-inflammatory effects of H2S appeared to be due to its inhibitory action on the nuclear factor kappa beta signalling pathway; NF-kB representing a transcription factor involved in the regulation pro-inflammatory mediators like nitric oxide, prostaglandins, and cytokines. In contrast, results from several animal model describe a more complicated picture and report on pro-inflammatory effects linked to exposure to this molecule; linked to dosage used and point of administration of this molecule. Overall, roles for H2S in several inflammatory diseases spanning arthritis, atherosclerosis, sepsis, and asthma have been described by researchers. In light this work fascinating research, this chapter will cover H2S biology and its many roles in the immune system.
Collapse
|
32
|
Roubenne L, Marthan R, Le Grand B, Guibert C. Hydrogen Sulfide Metabolism and Pulmonary Hypertension. Cells 2021; 10:cells10061477. [PMID: 34204699 PMCID: PMC8231487 DOI: 10.3390/cells10061477] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a severe and multifactorial disease characterized by a progressive elevation of pulmonary arterial resistance and pressure due to remodeling, inflammation, oxidative stress, and vasoreactive alterations of pulmonary arteries (PAs). Currently, the etiology of these pathological features is not clearly understood and, therefore, no curative treatment is available. Since the 1990s, hydrogen sulfide (H2S) has been described as the third gasotransmitter with plethoric regulatory functions in cardiovascular tissues, especially in pulmonary circulation. Alteration in H2S biogenesis has been associated with the hallmarks of PH. H2S is also involved in pulmonary vascular cell homeostasis via the regulation of hypoxia response and mitochondrial bioenergetics, which are critical phenomena affected during the development of PH. In addition, H2S modulates ATP-sensitive K+ channel (KATP) activity, and is associated with PA relaxation. In vitro or in vivo H2S supplementation exerts antioxidative and anti-inflammatory properties, and reduces PA remodeling. Altogether, current findings suggest that H2S promotes protective effects against PH, and could be a relevant target for a new therapeutic strategy, using attractive H2S-releasing molecules. Thus, the present review discusses the involvement and dysregulation of H2S metabolism in pulmonary circulation pathophysiology.
Collapse
Affiliation(s)
- Lukas Roubenne
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Roger Marthan
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- CHU de Bordeaux, Avenue du Haut Lévêque, F-33604 Pessac, France
| | - Bruno Le Grand
- OP2 Drugs, Avenue du Haut Lévêque, F-33604 Pessac, France;
| | - Christelle Guibert
- INSERM, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut-Lévêque, F-33604 Pessac, France; (L.R.); (R.M.)
- Centre de Recherche Cardio-Thoracique de Bordeaux, Univ Bordeaux, U1045, 146 Rue Léo Saignat, F-33000 Bordeaux, France
- Correspondence:
| |
Collapse
|
33
|
Abdelhafez AT, Gomaa AMS, Ahmed AM, Sayed MM, Ahmed MA. Pioglitazone and/or irbesartan ameliorate COPD-induced endothelial dysfunction in side stream cigarette smoke-exposed mice model. Life Sci 2021; 280:119706. [PMID: 34102190 DOI: 10.1016/j.lfs.2021.119706] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 01/18/2023]
Abstract
AIMS Cigarette smoking (CS) is the main cause of chronic obstructive pulmonary disease (COPD). Endothelial dysfunction is related to the severity of pulmonary disease in COPD. This study aimed to evaluate the effectiveness of single and combined administration of pioglitazone (Pio) and irbesartan (Irb) against COPD-induced endothelial dysfunction in mice and the involvement of NO and H2S in their effects. MATERIALS AND METHODS Adult male Swiss mice (n = 40, weighing 25-30 g) were assigned into 5 groups. The normal control group received 1% carboxy methyl cellulose (CMC). The CS group was exposed to CS and administered 1% CMC for 3 months. The CS + Pio, CS + Irb, and CS + Pio/Irb groups were subjected to CS and received Pio (60 mg/kg), Irb (50 mg/kg), and their combination respectively, daily orally for 3 months. Body weight gain, mean blood pressure, urinary albumin, serum NO and ET-1 levels with TNF-α and IL-2 levels in lung tissue and bronchoalveolar lavage were measured. Lung H2S and ET-1 levels, protein expression of PPARγ in lung and VEGF in lung and aortic tissues with histological changes were assessed. KEY FINDINGS Our results illustrated that CS induced a model of COPD with endothelial dysfunction in mice. Pio/Irb singly and in combination elicited protective effects against the pathophysiology of the disease with more improvement in the combined group. There is a strong correlation between NO and H2S as well as the other measured parameters. SIGNIFICANCE Collectively, both drugs performed these effects via their anti-inflammatory potential and increasing H2S and NO levels.
Collapse
Affiliation(s)
- Alaa T Abdelhafez
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M S Gomaa
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Asmaa M Ahmed
- Department of Pathology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Manal M Sayed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Marwa A Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
34
|
Sueiro-Olivares M, Scott J, Gago S, Petrovic D, Kouroussis E, Zivanovic J, Yu Y, Strobel M, Cunha C, Thomson D, Fortune-Grant R, Thusek S, Bowyer P, Beilhack A, Carvalho A, Bignell E, Filipovic MR, Amich J. Fungal and host protein persulfidation are functionally correlated and modulate both virulence and antifungal response. PLoS Biol 2021; 19:e3001247. [PMID: 34061822 PMCID: PMC8168846 DOI: 10.1371/journal.pbio.3001247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is a human fungal pathogen that can cause devastating pulmonary infections, termed "aspergilloses," in individuals suffering immune imbalances or underlying lung conditions. As rapid adaptation to stress is crucial for the outcome of the host-pathogen interplay, here we investigated the role of the versatile posttranslational modification (PTM) persulfidation for both fungal virulence and antifungal host defense. We show that an A. fumigatus mutant with low persulfidation levels is more susceptible to host-mediated killing and displays reduced virulence in murine models of infection. Additionally, we found that a single nucleotide polymorphism (SNP) in the human gene encoding cystathionine γ-lyase (CTH) causes a reduction in cellular persulfidation and correlates with a predisposition of hematopoietic stem cell transplant recipients to invasive pulmonary aspergillosis (IPA), as correct levels of persulfidation are required for optimal antifungal activity of recipients' lung resident host cells. Importantly, the levels of host persulfidation determine the levels of fungal persulfidation, ultimately reflecting a host-pathogen functional correlation and highlighting a potential new therapeutic target for the treatment of aspergillosis.
Collapse
Affiliation(s)
- Monica Sueiro-Olivares
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer Scott
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sara Gago
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Dunja Petrovic
- Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
- Université de Bordeaux, Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
| | - Emilia Kouroussis
- Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
- Université de Bordeaux, Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
| | - Jasmina Zivanovic
- Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
- Université de Bordeaux, Institut de Biochimie et Genetique Cellulaires (IBGC), Bordeaux, France
| | - Yidong Yu
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Marlene Strobel
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS)/Biomaterials, Biodegradables and Biomimetics (3B’s)—PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Darren Thomson
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Rachael Fortune-Grant
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sina Thusek
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Paul Bowyer
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF) Laboratory for Experimental Stem Cell Transplantation, Department of Internal Medicine II, University Hospital, Würzburg, Germany
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS)/Biomaterials, Biodegradables and Biomimetics (3B’s)—PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Elaine Bignell
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Jorge Amich
- Manchester Fungal Infection Group (MFIG), School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
35
|
Dominic P, Ahmad J, Bhandari R, Pardue S, Solorzano J, Jaisingh K, Watts M, Bailey SR, Orr AW, Kevil CG, Kolluru GK. Decreased availability of nitric oxide and hydrogen sulfide is a hallmark of COVID-19. Redox Biol 2021; 43:101982. [PMID: 34020311 PMCID: PMC8106525 DOI: 10.1016/j.redox.2021.101982] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is involved in a global outbreak affecting millions of people who manifest a variety of symptoms. Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is increasingly associated with cardiovascular complications requiring hospitalizations; however, the mechanisms underlying these complications remain unknown. Nitric oxide (NO) and hydrogen sulfide (H2S) are gasotransmitters that regulate key cardiovascular functions. METHODS Blood samples were obtained from 68 COVID-19 patients and 33 controls and NO and H2S metabolites were assessed. H2S and NO levels were compared between cases and controls in the entire study population and subgroups based on race. The availability of gasotransmitters was examined based on severity and outcome of COVID-19 infection. The performance of H2S and NO levels in predicting COVID-19 infection was also analyzed. Multivariable regression analysis was performed to identify the effects of traditional determinants of gasotransmitters on NO and H2S levels in the patients with COVID-19 infection. RESULTS Significantly reduced NO and H2S levels were observed in both Caucasian and African American COVID-19 patients compared to healthy controls. COVID-19 patients who died had significantly higher NO and H2S levels compared to COVID-19 patients who survived. Receiver-operating characteristic analysis of NO and H2S metabolites in the study population showed free sulfide levels to be highly predictive of COVID-19 infection based on reduced availability. Traditional determinants of gasotransmitters, namely age, race, sex, diabetes, and hypertension had no effect on NO and H2S levels in COVID-19 patients. CONCLUSION These observations provide the first insight into the role of NO and H2S in COVID-19 infection, where their low availability may be a result of reduced synthesis secondary to endotheliitis, or increased consumption from scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Paari Dominic
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States; Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States; Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| | - Javaria Ahmad
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Ruchi Bhandari
- Department of Epidemiology, School of Public Health, West Virginia University, Morgantown, WV, United States
| | - Sibile Pardue
- Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Juan Solorzano
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Keerthish Jaisingh
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Megan Watts
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Steven R. Bailey
- Department of Medicine, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - A. Wayne Orr
- Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Christopher G. Kevil
- Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, LA, United States
| | - Gopi K. Kolluru
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Department of Pathology, Louisiana State University Health Sciences Center-Shreveport, LA, United States,Corresponding author. Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, LA, United States.
| |
Collapse
|
36
|
Mendes SS, Miranda V, Saraiva LM. Hydrogen Sulfide and Carbon Monoxide Tolerance in Bacteria. Antioxidants (Basel) 2021; 10:729. [PMID: 34063102 PMCID: PMC8148161 DOI: 10.3390/antiox10050729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Hydrogen sulfide and carbon monoxide share the ability to be beneficial or harmful molecules depending on the concentrations to which organisms are exposed. Interestingly, humans and some bacteria produce small amounts of these compounds. Since several publications have summarized the recent knowledge of its effects in humans, here we have chosen to focus on the role of H2S and CO on microbial physiology. We briefly review the current knowledge on how bacteria produce and use H2S and CO. We address their potential antimicrobial properties when used at higher concentrations, and describe how microbial systems detect and survive toxic levels of H2S and CO. Finally, we highlight their antimicrobial properties against human pathogens when endogenously produced by the host and when released by external chemical donors.
Collapse
|
37
|
Suzuki Y, Saito J, Munakata M, Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int 2021; 70:181-189. [PMID: 33214087 DOI: 10.1016/j.alit.2020.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognised as the third important gas-signalling molecule, besides nitric oxide and carbon monoxide. H2S has been reported to be produced by many cell types in mammalian tissues and organs throughout the actions of H2S-generating enzymes or redox reactions between the oxidation of glucose and element of sulfur. Although the pathological role of H2S has not yet been fully elucidated, accumulative data suggest that H2S may have biphasic effects. Briefly, it mainly has anti-inflammatory and antioxidant roles, although it can also have pro-inflammatory effects under certain conditions where rapid release of H2S in tissues occur, such as sepsis. To date, there have been several clinical studies published on H2S in respiratory disorders, including asthma and chronic obstructive pulmonary disease (COPD). According to previous studies, H2S is detectable in serum, sputum, and exhaled breath, although a gold standard method for detection has not yet been established. In asthma and COPD, H2S levels in serum and sputum can vary depending on the underlying conditions such as an acute exacerbation. Furthermore, sputum H2S in particular correlates with sputum neutrophils and the degree of airflow limitation, indicating that H2S has potential as a novel promising biomarker for neutrophilic airway inflammation for predicting current control state as well as future risks of asthma. In the future, concurrent measures of H2S with conventional inflammatory biomarkers (fractional exhaled nitric oxide, eosinophils etc) may provide more useful information regarding the identification of inflammatory phenotypes of asthma and COPD for personalised treatment.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Junpei Saito
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan.
| | - Mitsuru Munakata
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| |
Collapse
|
38
|
Ganguly A, Ofman G, Vitiello PF. Hydrogen Sulfide-Clues from Evolution and Implication for Neonatal Respiratory Diseases. CHILDREN (BASEL, SWITZERLAND) 2021; 8:213. [PMID: 33799529 PMCID: PMC7999351 DOI: 10.3390/children8030213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) have been the focus of redox research in the realm of oxidative neonatal respiratory diseases such as bronchopulmonary dysplasia (BPD). Over the years, nitric oxide (NO) and carbon monoxide (CO) have been identified as important gaseous signaling molecules involved in modulating the redox homeostasis in the developing lung. While animal data targeting aspects of these redox pathways have been promising in treating and/or preventing experimental models of neonatal lung disease, none are particularly effective in human neonatal clinical trials. In recent years, hydrogen sulfide (H2S) has emerged as a novel gasotransmitter involved in a magnitude of cellular signaling pathways and functions. The importance of H2S signaling may lie in the fact that early life-forms evolved in a nearly anoxic, sulfur-rich environment and were dependent on H2S for energy. Recent studies have demonstrated an important role of H2S and its synthesizing enzymes in lung development, which normally takes place in a relatively hypoxic intrauterine environment. In this review, we look at clues from evolution and explore the important role that the H2S signaling pathway may play in oxidative neonatal respiratory diseases and discuss future opportunities to explore this phenomenon in the context of neonatal chronic lung disease.
Collapse
Affiliation(s)
- Abhrajit Ganguly
- Center for Pregnancy and Newborn Research, Department of Pediatrics, Section of Neonatal-Perinatal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.O.); (P.F.V.)
| | | | | |
Collapse
|
39
|
Schiliro M, Bartman CM, Pabelick C. Understanding hydrogen sulfide signaling in neonatal airway disease. Expert Rev Respir Med 2021; 15:351-372. [PMID: 33086886 PMCID: PMC10599633 DOI: 10.1080/17476348.2021.1840981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Airway dysfunction leading to chronic lung disease is a common consequence of premature birth and mechanisms responsible for early and progressive airway remodeling are not completely understood. Current therapeutic options are only partially effective in reducing the burden of neonatal airway disease and premature decline of lung function. Gasotransmitter hydrogen sulfide (H2S) has been recently recognized for its therapeutic potential in lung diseases. AREAS COVERED Contradictory to its well-known toxicity at high concentrations, H2S has been characterized to have anti-inflammatory, antioxidant, and antiapoptotic properties at physiological concentrations. In the respiratory system, endogenous H2S production participates in late lung development and exogenous H2S administration has a protective role in a variety of diseases such as acute lung injury and chronic pulmonary hypertension and fibrosis. Literature searches performed using NCBI PubMed without publication date limitations were used to construct this review, which highlights the dichotomous role of H2S in the lung, and explores its promising beneficial effects in lung diseases. EXPERT OPINION The emerging role of H2S in pathways involved in chronic lung disease of prematurity along with its recent use in animal models of BPD highlight H2S as a potential novel candidate in protecting lung function following preterm birth.
Collapse
Affiliation(s)
- Marta Schiliro
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | | | - Christina Pabelick
- Departments of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
40
|
Lignelli E, Palumbo F, Bayindir SG, Nagahara N, Vadász I, Herold S, Seeger W, Morty RE. The H 2S-generating enzyme 3-mercaptopyruvate sulfurtransferase regulates pulmonary vascular smooth muscle cell migration and proliferation but does not impact normal or aberrant lung development. Nitric Oxide 2021; 107:31-45. [PMID: 33338600 DOI: 10.1016/j.niox.2020.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/07/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023]
Abstract
Along with nitric oxide (NO), the gasotransmitters carbon monoxide (CO) and hydrogen sulfide (H2S) are emerging as potentially important players in newborn physiology, as mediators of newborn disease, and as new therapeutic modalities. Several recent studies have addressed H2S in particular in animal models of bronchopulmonary dysplasia (BPD), a common complication of preterm birth where oxygen toxicity stunts lung development. In those studies, exogenous H2S attenuated the impact of oxygen toxicity on lung development, and two H2S-generating enzymes were documented to affect pulmonary vascular development. H2S is directly generated endogenously by three enzymes, one of which, 3-mercaptopyruvate sulfurtransferase (MPST), has not been studied in the lung. In a hyperoxia-based animal model of BPD, oxygen exposure deregulated MPST expression during post-natal lung development, where MPST was localized to the smooth muscle layer of the pulmonary vessels in developing lungs. siRNA-mediated abrogation of MPST expression in human pulmonary artery smooth muscle cells in vitro limited baseline cell migration and cell proliferation, without affecting apoptosis or cell viability. In vivo, MPST was dispensable for normal lung development in Mpst-/-mice, and MPST did not contribute to stunted lung development driven by hyperoxia exposure, assessed by design-based stereology. These data demonstrate novel roles for MPST in pulmonary vascular smooth muscle cell physiology. The potential caveats of using Mpst-/- mice to study normal and aberrant lung development are also discussed, highlighting the possible confounding, compensatory effects of other H2S-generating enzymes that are present alongside MPST in the smooth muscle compartment of developing pulmonary vessels.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Selahattin Görkem Bayindir
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany
| | - Noriyuki Nagahara
- Isotope Research Laboratory, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602, Japan
| | - István Vadász
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Susanne Herold
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Werner Seeger
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; Institute for Lung Health (ILH), Justus Liebig University Giessen, Aulweg 130, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Member of the German Center for Lung Research (DZL), Parkstrasse 1, 60231, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, Aulweg 123, 35392, Giessen, Germany; CardioPulmonary Institute, Justus Liebig University Giessen, Klinikstrasse 33, Giessen, Germany.
| |
Collapse
|
41
|
Radermacher P, Calzia E, McCook O, Wachter U, Szabo C. To the Editor. Shock 2021; 55:138-139. [PMID: 32590692 PMCID: PMC7737870 DOI: 10.1097/shk.0000000000001602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 11/26/2022]
Affiliation(s)
| | | | | | - Ulrich Wachter
- Institute for Anesthesiological Pathophysiology and Process Engineering, University Hospital
- Ulm, Germany
| | - Csaba Szabo
- Chair of Pharmacology, OMI Department, Section of Science and Medicine, University of Fribourg
- Fribourg, Switzerland
| |
Collapse
|
42
|
Karaman Y, Kaya-Yasar Y, Bozkurt TE, Sahin-Erdemli I. Hydrogen sulfide donors prevent lipopolysaccharide-induced airway hyperreactivity in an in vitro model of chronic inflammation in mice. Basic Clin Pharmacol Toxicol 2020; 128:652-660. [PMID: 33369105 DOI: 10.1111/bcpt.13551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/24/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022]
Abstract
We aimed to investigate and compare the effects of rapid (NaHS) and slow (GYY4137 and AP39) hydrogen sulfide (H2 S) releasing donors on LPS-induced tracheal hyperreactivity and pro-inflammatory cytokine levels in lung tissues of mice. Tissues were isolated from male BALB/c mice and incubated with LPS (10 µg/mL) in tissue culture. The subgroups were incubated with NaHS, GYY4137 and mitochondria-targeted donor AP39. LPS incubation did not alter contraction response to carbachol, but enhanced 5-HT and bradykinin-induced contractions in tracheal rings, and elevated IL-1β, IL-6 and TNF-α levels in lung homogenates. NaHS at 300 µmol/L and 1000 µmol/L, GYY4137 at 30 µmol/L and 100 µmol/L, and AP39 at 30 nmol/L concentrations inhibited the tracheal hyperreactivity to 5-HT, whereas none of these donors affected the enhanced contraction to bradykinin. GYY4137 was also effective to inhibit 5-HT hyperreactivity acutely. In lung tissues, NaHS prevented the elevation of IL-1β level at 1000 μmol/L, and IL-6 and TNF-α levels at 100 μmol/L concentrations. Incubation with GYY4137 (100 µmol/L) and AP39 (30 nmol/L and 300 nmol/L) inhibited the increase in IL-6 and TNF-α levels, but not IL-1β at concentrations that they affected tracheal hyperreactivity. These results indicate that H2 S donors can decrease inflammation and prevent airway hyperreactivity.
Collapse
Affiliation(s)
- Yasemin Karaman
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| | - Yesim Kaya-Yasar
- Faculty of Pharmacy, Department of Pharmacology, Karadeniz Technical University, Trabzon, Turkey
| | - T Emrah Bozkurt
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| | - Inci Sahin-Erdemli
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Ankara, Turkey
| |
Collapse
|
43
|
Fuschillo S, Palomba L, Capparelli R, Motta A, Maniscalco M. Nitric Oxide and Hydrogen Sulfide: A Nice Pair in the Respiratory System. Curr Med Chem 2020; 27:7136-7148. [DOI: 10.2174/0929867327666200310120550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 01/15/2023]
Abstract
Nitric Oxide (NO) is internationally regarded as a signal molecule involved in several
functions in the respiratory tract under physiological and pathogenic conditions. Hydrogen Sulfide
(H2S) has also recently been recognized as a new gasotransmitter with a diverse range of functions
similar to those of NO.
Depending on their respective concentrations, both these molecules act synergistically or antagonistically
as signals or damage promoters. Nevertheless, available evidence shows that the complex
biological connections between NO and H2S involve multiple pathways and depend on the site of
action in the respiratory tract, as well as on experimental conditions. This review will provide an
update on these two gasotransmitters in physiological and pathological processes.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino (PU), Italy
| | - Rosanna Capparelli
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, (NA), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| |
Collapse
|
44
|
Li L, Liu Y, Wang Q, Wang Z, Cui L, Xu Y, Guan K. Levels of nasal exhaled hydrogen sulfide in the general population and allergic rhinitis patients. J Clin Lab Anal 2020; 35:e23678. [PMID: 33615571 PMCID: PMC7957977 DOI: 10.1002/jcla.23678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 11/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Objective measures used for the differential diagnosis and severity assessment of allergic rhinitis (AR) are still lacking. The involvement of hydrogen sulfide (H2S) in the development of AR indicates that nasal exhaled H2S (NeH2S) has potential as a biomarker to be used in AR patients. This study aimed to evaluate the application value of NeH2S measurement in the diagnosis and assessment of AR. Methods This study was a multi‐center cross‐sectional survey conducted in Northwestern China. Demographic information collection and rhinitis assessment were completed through questionnaires. The level of NeH2S and serum immunoglobulin E were measured. Results The level of NeH2S in general population ranged from 0 to 35 ppb, with a median value of 2 ppb. The NeH2S levels in seasonal allergic rhinitis (SAR) patients were significantly lower than those in general population (2 [1, 2.75] vs. 2 [2, 3] ppb; p = .023), and the NeH2S value of the SAR group tended to be lower than that of the non‐allergic rhinitis (NAR) group (2 [1, 2.75] vs. 2 [2, 3] ppb; p = .094). The subgroup of AR patients with symptoms lasting longer than 2 weeks per month had a lower NeH2S level compared with the subgroup of patients with symptoms lasting less than 2 weeks per month (2 [1, 2] vs. 2 [2, 3] ppb; p = .015). Conclusion This study described the distribution range of NeH2S levels in the general population. Further study with larger sample size was needed to clarify the relationship between NeH2S level and AR.
Collapse
Affiliation(s)
- Lisha Li
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yonglin Liu
- Department of Pediatrics, Shenmu Hospital, Shenmu, China
| | - Qiang Wang
- Department of Orthopedics, Shenmu Hospital, Shenmu, China
| | - Zixi Wang
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Le Cui
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yingyang Xu
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Kai Guan
- Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
45
|
Xu H, Shi X, Li X, Zou J, Zhou C, Liu W, Shao H, Chen H, Shi L. Neurotransmitter and neuropeptide regulation of mast cell function: a systematic review. J Neuroinflammation 2020; 17:356. [PMID: 33239034 PMCID: PMC7691095 DOI: 10.1186/s12974-020-02029-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The existence of the neural control of mast cell functions has long been proposed. Mast cells (MCs) are localized in association with the peripheral nervous system (PNS) and the brain, where they are closely aligned, anatomically and functionally, with neurons and neuronal processes throughout the body. They express receptors for and are regulated by various neurotransmitters, neuropeptides, and other neuromodulators. Consequently, modulation provided by these neurotransmitters and neuromodulators allows neural control of MC functions and involvement in the pathogenesis of mast cell–related disease states. Recently, the roles of individual neurotransmitters and neuropeptides in regulating mast cell actions have been investigated extensively. This review offers a systematic review of recent advances in our understanding of the contributions of neurotransmitters and neuropeptides to mast cell activation and the pathological implications of this regulation on mast cell–related disease states, though the full extent to which such control influences health and disease is still unclear, and a complete understanding of the mechanisms underlying the control is lacking. Future validation of animal and in vitro models also is needed, which incorporates the integration of microenvironment-specific influences and the complex, multifaceted cross-talk between mast cells and various neural signals. Moreover, new biological agents directed against neurotransmitter receptors on mast cells that can be used for therapeutic intervention need to be more specific, which will reduce their ability to support inflammatory responses and enhance their potential roles in protecting against mast cell–related pathogenesis.
Collapse
Affiliation(s)
- Huaping Xu
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyun Shi
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Xin Li
- School of Food Science, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Jiexin Zou
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chunyan Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Wenfeng Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Huming Shao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi Province, China
| | - Linbo Shi
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
46
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
47
|
Citi V, Martelli A, Brancaleone V, Brogi S, Gojon G, Montanaro R, Morales G, Testai L, Calderone V. Anti-inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H 2 S donors in COVID-19 therapy. Br J Pharmacol 2020; 177:4931-4941. [PMID: 32783196 PMCID: PMC7436626 DOI: 10.1111/bph.15230] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/19/2020] [Accepted: 08/02/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic caused by SARS-Cov-2 demands rapid, safe and effective therapeutic options. In the last decades, the endogenous gasotransmitter hydrogen sulfide (H2 S) has emerged as modulator of several biological functions and its deficiency has been associated with different disorders. Therefore, many H2 S-releasing agents have been developed as potential therapeutic tools for diseases related with impaired H2 S production and/or activity. Some of these compounds are in advanced clinical trials. Presently, the pivotal role of H2 S in modulating the inflammatory response and pro-inflammatory cytokine cascade is well recognized, and the usefulness of some H2 S-donors for the treatment of acute lung inflammation has been reported. Recent data is elucidating several mechanisms of action, which may account for antiviral effects of H2 S. Noteworthy, some preliminary clinical results suggest an inverse relationship between endogenous H2 S levels and severity of COVID-19. Therefore, repurposing of H2 S-releasing drugs may be a potential therapeutic opportunity for treatment of COVID-19. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
| | | | | | - Simone Brogi
- Department of PharmacyUniversity of PisaPisaItaly
| | | | | | | | - Lara Testai
- Department of PharmacyUniversity of PisaPisaItaly
| | | |
Collapse
|
48
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
49
|
Bartman CM, Schiliro M, Helan M, Prakash YS, Linden D, Pabelick C. Hydrogen sulfide, oxygen, and calcium regulation in developing human airway smooth muscle. FASEB J 2020; 34:12991-13004. [PMID: 32777143 PMCID: PMC7857779 DOI: 10.1096/fj.202001180r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/22/2022]
Abstract
Preterm infants can develop airway hyperreactivity and impaired bronchodilation following supplemental O2 (hyperoxia) in early life, making it important to understand mechanisms of hyperoxia effects. Endogenous hydrogen sulfide (H2 S) has anti-inflammatory and vasodilatory effects with oxidative stress. There is little understanding of H2 S signaling in developing airways. We hypothesized that the endogenous H2 S system is detrimentally influenced by O2 and conversely H2 S signaling pathways can be leveraged to attenuate deleterious effects of O2 . Using human fetal airway smooth muscle (fASM) cells, we investigated baseline expression of endogenous H2 S machinery, and effects of exogenous H2 S donors NaHS and GYY4137 in the context of moderate hyperoxia, with intracellular calcium regulation as a readout of contractility. Biochemical pathways for endogenous H2 S generation and catabolism are present in fASM, and are differentially sensitive to O2 toward overall reduction in H2 S levels. H2 S donors have downstream effects of reducing [Ca2+ ]i responses to bronchoconstrictor agonist via blunted plasma membrane Ca2+ influx: effects blocked by O2 . However, such detrimental O2 effects are targetable by exogenous H2 S donors such as NaHS and GYY4137. These data provide novel information regarding the potential for H2 S to act as a bronchodilator in developing airways in the context of oxygen exposure.
Collapse
Affiliation(s)
| | - Marta Schiliro
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Martin Helan
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Anesthesiology and Intensive Care, Masaryk University, Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital Brno, Brno, Czech Republic
| | - Y. S. Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - David Linden
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Christina Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
50
|
Dilek N, Papapetropoulos A, Toliver-Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 2020; 161:105119. [PMID: 32781284 DOI: 10.1016/j.phrs.2020.105119] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as an endogenous signaling gasotransmitter in mammals. It is produced by mammalian cells and tissues by various enzymes - predominantly cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) - but part of the H2S is produced by the intestinal microbiota (colonic H2S-producing bacteria). Here we summarize the available information on the production and functional role of H2S in the various cell types typically associated with innate immunity (neutrophils, macrophages, dendritic cells, natural killer cells, mast cells, basophils, eosinophils) and adaptive immunity (T and B lymphocytes) under normal conditions and as it relates to the development of various inflammatory and immune diseases. Special attention is paid to the physiological and the pathophysiological aspects of the oral cavity and the colon, where the immune cells and the parenchymal cells are exposed to a special "H2S environment" due to bacterial H2S production. H2S has many cellular and molecular targets. Immune cells are "surrounded" by a "cloud" of H2S, as a result of endogenous H2S production and exogenous production from the surrounding parenchymal cells, which, in turn, importantly regulates their viability and function. Downregulation of endogenous H2S producing enzymes in various diseases, or genetic defects in H2S biosynthetic enzyme systems either lead to the development of spontaneous autoimmune disease or accelerate the onset and worsen the severity of various immune-mediated diseases (e.g. autoimmune rheumatoid arthritis or asthma). Low, regulated amounts of H2S, when therapeutically delivered by small molecule donors, improve the function of various immune cells, and protect them against dysfunction induced by various noxious stimuli (e.g. reactive oxygen species or oxidized LDL). These effects of H2S contribute to the maintenance of immune functions, can stimulate antimicrobial defenses and can exert anti-inflammatory therapeutic effects in various diseases.
Collapse
Affiliation(s)
- Nahzli Dilek
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Tracy Toliver-Kinsky
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|