1
|
Meegan JE, Rizzo AN, Schmidt EP, Bastarache JA. Cellular Mechanisms of Lung Injury: Current Perspectives. Clin Chest Med 2024; 45:821-833. [PMID: 39443000 PMCID: PMC11499619 DOI: 10.1016/j.ccm.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The alveolar-capillary barrier includes microvascular endothelial and alveolar epithelial cells and their matrices, and its disruption is a critical driver of lung injury during development of acute respiratory distress syndrome. In this review, we provide an overview of the structure and function of the alveolar-capillary barrier during health and highlight several important signaling mechanisms that underlie endothelial and epithelial injury during critical illness, emphasizing areas with potential for development of therapeutic strategies targeting alveolar-capillary leak. We also emphasize the importance of biomarker and preclinical studies in developing novel therapies and highlight important areas warranting future investigation.
Collapse
Affiliation(s)
- Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alicia N Rizzo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 148, Boston, MA 02114, USA
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
2
|
Schaaf KR, Landstreet SR, Putz ND, Gonski SK, Lin J, Buggs CJ, Gibson D, Langouët-Astrié CJ, Jetter CS, Negretti NM, Sucre JMS, Schmidt EP, Ware LB, Bastarache JA, Shaver CM. Matrix metalloproteinases mediate influenza A-associated shedding of the alveolar epithelial glycocalyx. PLoS One 2024; 19:e0308648. [PMID: 39312544 PMCID: PMC11419339 DOI: 10.1371/journal.pone.0308648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/28/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND The alveolar epithelium is protected by a heparan sulfate-rich, glycosaminoglycan layer called the epithelial glycocalyx. It is cleaved in patients with acute respiratory distress syndrome (ARDS) and in murine models of influenza A (IAV) infection, shedding fragments into the airspace from the cell surface. Glycocalyx shedding results in increased permeability of the alveolar-capillary barrier, amplifying acute lung injury. The mechanisms underlying alveolar epithelial glycocalyx shedding in IAV infection are unknown. We hypothesized that induction of host sheddases such as matrix metalloproteinases (MMPs) during IAV infection results in glycocalyx shedding and increased lung injury. MATERIALS AND METHODS We measured glycocalyx shedding and lung injury during IAV infection with and without treatment with the pan-MMP inhibitor Ilomastat (ILO) and in an MMP-7 knock out (MMP-7KO) mouse. C57BL/6 or MMP-7KO male and female mice were given IAV A/PR/8/34 (H1N1) at 30,000 PFU/mouse or PBS intratracheally. For some experiments, C56BL/6 mice were infected in the presence of ILO (100mg/kg) or vehicle given daily by IP injection. Bronchoalveolar lavage (BAL) and lung tissue were collected on day 1, 3, and 7 for analysis of glycocalyx shedding (BAL Syndecan-1) and lung injury (histology, BAL protein, BAL cytokines, BAL immune cell infiltrates, BAL RAGE). Expression and localization of the sheddase MMP-7 and its inhibitor TIMP-1 was examined by RNAScope. For in vitro experiments, MLE-12 mouse lung epithelial cells were cultured and treated with active or heat-inactivated heparinase (2.5 U/mL) prior to infection with IAV (MOI 1) and viral load and MMP-7 and TIMP-1 expression analyzed. RESULTS IAV infection caused shedding of the epithelial glycocalyx into the BAL. Inhibition of MMPs with ILO reduced glycocalyx shedding by 36% (p = 0.0051) and reduced lung epithelial injury by 40% (p = 0.0404). ILO also reduced viral load by 68% (p = 0.027), despite having no significant effect on lung cytokine production. Both MMP-7 and its inhibitor TIMP-1 were upregulated in IAV infected mice: MMP-7 colocalized with IAV, while TIMP-1 was limited to cells adjacent to infection. However, MMP-7KO mice had similar glycocalyx shedding, epithelial injury, and viral load compared to WT littermates, suggesting redundancy in MMP sheddase function in the lung. In vitro, heparinase treatment before infection led to a 52% increase in viral load (p = 0.0038) without altering MMP-7 or TIMP-1 protein levels. CONCLUSIONS Glycocalyx shedding and MMPs play key roles in IAV-induced epithelial injury, with significant impact on IAV viral load. Further studies are needed to understand which specific MMPs regulate lung epithelial glycocalyx shedding.
Collapse
Affiliation(s)
- Kaitlyn R. Schaaf
- Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Stuart R. Landstreet
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Nathan D. Putz
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Samantha K. Gonski
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jason Lin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Charity J. Buggs
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dustin Gibson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christophe J. Langouët-Astrié
- Division of Pulmonary and Critical Care, Department of Medicine, University of Colorado Anschutz, Denver, Colorado, United States of America
| | - Christopher S. Jetter
- Department of Neonatology, Monroe Caroll Children’s Hospital at Vanderbilt, Nashville, Tennessee, United States of America
| | - Nicolas M. Negretti
- Department of Neonatology, Monroe Caroll Children’s Hospital at Vanderbilt, Nashville, Tennessee, United States of America
| | - Jennifer M. S. Sucre
- Department of Neonatology, Monroe Caroll Children’s Hospital at Vanderbilt, Nashville, Tennessee, United States of America
| | - Eric P. Schmidt
- Division of Pulmonary and Critical Care, Department of Medicine, University of Colorado Anschutz, Denver, Colorado, United States of America
- Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Lorraine B. Ware
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Julie A. Bastarache
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Cell and Development Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Park SS, Ward R, Geraghty P, Garcia‐Arcos I. Extracellular glucose triggers metabolic reprogramming of cultured human bronchial epithelial cells and indirect fibroblast activation. FEBS Open Bio 2024; 14:1441-1454. [PMID: 38952051 PMCID: PMC11492325 DOI: 10.1002/2211-5463.13852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Glucose is essential for energy metabolism, and its usage can determine other cellular functions, depending on the cell type. In some pathological conditions, cells are exposed to high concentrations of glucose for extended periods. In this study, we investigated metabolic, oxidative stress, and cellular senescence pathways in human bronchial epithelial cells (HBECs) cultured in media with physiologically low (5 mm) and high (12.5 mm) glucose concentrations. HBECs exposed to 12.5 mm glucose showed increased glucose routing toward the pentose phosphate pathway, lactate synthesis, and glycogen, but not triglyceride synthesis. These metabolic shifts were not associated with changes in cell proliferation rates, oxidative stress, or cellular senescence pathways. Since hyperglycemia is associated with fibrosis in the lung, we asked whether HBECS could activate fibroblasts. Primary human lung fibroblasts cultured in media conditioned by 12.5 mm glucose-exposed HBECs showed a 1.3-fold increase in the gene expression of COL1A1 and COL1A2, along with twofold increased protein levels of smooth muscle cell actin and 2.4-fold of COL1A1. Consistently, HBECs cultured with 12.5 mm glucose secreted proteins associated with inflammation and fibrosis, such as interleukins IL-1β, IL-10, and IL-13, CC chemokine ligands CCL2 and CCL24, and with extracellular matrix remodeling, such as metalloproteinases (MMP)-1, MMP-3, MMP-9, and MMP-13 and tissue inhibitors of MMPs (TIMP)-1 and -2. This study shows that HBECs undergo metabolic reprogramming and increase the secretion of profibrotic mediators following exposure to high concentrations of glucose, and it contributes to the understanding of the metabolic crosstalk of neighboring cells in diabetes-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Sangmi S. Park
- Department of Cell BiologyState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
| | - Rafael Ward
- Department of MedicineState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
| | - Patrick Geraghty
- Department of Cell BiologyState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
- Department of MedicineState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
| | - Itsaso Garcia‐Arcos
- Department of Cell BiologyState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
- Department of MedicineState University of New York Downstate Health Sciences UniversityBrooklynNYUSA
| |
Collapse
|
4
|
Su CC, Zhang ZR, Liu JX, Meng JG, Ma XQ, Mo ZF, Ren JB, Liang ZX, Yang Z, Li CS, Chen LA. Vaporization of perfluorocarbon attenuates sea-water-drowning-induced acute lung injury by deactivating the NLRP3 inflammasomes in canines. Exp Biol Med (Maywood) 2024; 249:10104. [PMID: 38708425 PMCID: PMC11066214 DOI: 10.3389/ebm.2024.10104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024] Open
Abstract
Seawater-drowning-induced acute lung injury (SD-ALI) is a life-threatening disorder characterized by increased alveolar-capillary permeability, an excessive inflammatory response, and refractory hypoxemia. Perfluorocarbons (PFCs) are biocompatible compounds that are chemically and biologically inert and lack toxicity as oxygen carriers, which could reduce lung injury in vitro and in vivo. The aim of our study was to explore whether the vaporization of PFCs could reduce the severity of SD-ALI in canines and investigate the underlying mechanisms. Eighteen beagle dogs were randomly divided into three groups: the seawater drowning (SW), perfluorocarbon (PFC), and control groups. The dogs in the SW group were intratracheally administered seawater to establish the animal model. The dogs in the PFC group were treated with vaporized PFCs. Probe-based confocal laser endomicroscopy (pCLE) was performed at 3 h. The blood gas, volume air index (VAI), pathological changes, and wet-to-dry (W/D) lung tissue ratios were assessed. The expression of heme oxygenase-1 (HO-1), nuclear respiratory factor-1 (NRF1), and NOD-like receptor family pyrin domain containing-3 (NLRP3) inflammasomes was determined by means of quantitative real-time polymerase chain reaction (qRT-PCR) and immunological histological chemistry. The SW group showed higher lung injury scores and W/D ratios, and lower VAI compared to the control group, and treatment with PFCs could reverse the change of lung injury score, W/D ratio and VAI. PFCs deactivated NLRP3 inflammasomes and reduced the release of caspase-1, interleukin-1β (IL-1β), and interleukin-18 (IL-18) by enhancing the expression of HO-1 and NRF1. Our results suggest that the vaporization of PFCs could attenuate SD-ALI by deactivating NLRP3 inflammasomes via the HO-1/NRF1 pathway.
Collapse
Affiliation(s)
- Cheng-Cheng Su
- Medical School of Chinese PLA, Beijing, China
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Critical Care and Respiration, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, China
| | - Zhao-Rui Zhang
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jin-Xia Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ji-Guang Meng
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiu-Qing Ma
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhen-Fei Mo
- Medical School of Chinese PLA, Beijing, China
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Ren
- Medical School of Chinese PLA, Beijing, China
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhi-Xin Liang
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zhen Yang
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Sun Li
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Liang-An Chen
- Department of Respiration, The Eight Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Zhu W, Wang F, Hu C, Zhao Q, Zhang D, Wang X, Hu B, Li J. GTS-21 attenuates ACE/ACE2 ratio and glycocalyx shedding in lipopolysaccharide-induced acute lung injury by targeting macrophage polarization derived ADAM-17. Int Immunopharmacol 2024; 129:111603. [PMID: 38310766 DOI: 10.1016/j.intimp.2024.111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Acute lung injury (ALI) has received considerable attention in intensive care owing to its high mortality rate. It has been demonstrated that the selective alpha7 nicotinic acetylcholine receptor agonist Gainesville Tokushima scientists (GTS)-21 is promising for treating ALI caused by lipopolysaccharides (LPS). However, the precise underlying mechanism remains unknown. This study aimed to investigate the potential efficacy of GTS-21 in the treatment of ALI. We developed mouse models of ALI and alveolar epithelial type II cells (AT2s) injury following treatment with LPS and different polarized macrophage supernatants, respectively. Pathological changes, pulmonary edema, and lung compliance were assessed. Inflammatory cells count, protein content, and pro-inflammatory cytokine levels were analysed in the bronchoalveolar lavage fluid. The expression of angiotensin-converting enzyme (ACE), ACE2, syndecan-1 (SDC-1), heparan sulphate (HS), heparanase (HPA), exostosin (EXT)-1, and NF-κB were tested in lung tissues and cells. GTS-21-induced changes in macrophage polarization were verified in vivo and in vitro. Polarized macrophage supernatants with or without recombination a disintegrin and metalloproteinase-17 (ADAM-17) and small interfering (si)RNA ADAM-17 were used to verify the role of ADAM-17 in AT2 injury. By reducing pathological alterations, lung permeability, inflammatory response, ACE/ACE2 ratio, and glycocalyx shedding, as well as by downregulating the HPA and NF-κB pathways and upregulating EXT1 expression in vivo, GTS-21 significantly diminished LPS-induced ALI compared to that of the LPS group. GTS-21 significantly attenuated macrophage M1 polarization and augmented M2 polarization in vitro and in vivo. The destructive effects of M1 polarization supernatant can be inhibited by GTS-21 and siRNA ADAM-17. GTS-21 exerted a protective effect against LPS-induced ALI, which was reversed by recombinant ADAM-17. Collectively, GTS-21 alleviates LPS-induced ALI by attenuating AT2s ACE/ACE2 ratio and glycocalyx shedding through the inhibition of macrophage M1 polarization derived ADAM-17.
Collapse
Affiliation(s)
- Weiwei Zhu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China; Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256600, Shandong, China
| | - Fengyun Wang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China
| | - Chang Hu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China
| | - Qiuyue Zhao
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China
| | - Dandan Zhang
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China
| | - Xiaozhi Wang
- Department of Critical Care Medicine, Binzhou Medical University Hospital, Binzhou 256600, Shandong, China.
| | - Bo Hu
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China.
| | - Jianguo Li
- Department of Critical Care Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, Hubei Province, China; Clinical Research Center of Hubei Critical Care Medicine, Wuhan 430071, Hubei, China.
| |
Collapse
|
6
|
Zehr EP, Erzen CL, Oshima K, Langouet-Astrie CJ, LaRiviere WB, Shi D, Zhang F, McCollister BD, Windham SL, Rizzo AN, Bastarache JA, Horswill AR, Schmidt EP, Kwiecinski JM, Colbert JF. Bacterial pneumonia-induced shedding of epithelial heparan sulfate inhibits the bactericidal activity of cathelicidin in a murine model. Am J Physiol Lung Cell Mol Physiol 2024; 326:L206-L212. [PMID: 38113313 PMCID: PMC11280675 DOI: 10.1152/ajplung.00178.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
Bacterial pneumonia is a common clinical syndrome leading to significant morbidity and mortality worldwide. In the current study, we investigate a novel, multidirectional relationship between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia. Using an in vivo pneumonia model, we demonstrate that highly sulfated heparan sulfate (HS) oligosaccharides are shed into the airspaces in response to MRSA pneumonia. In vitro, these HS oligosaccharides do not directly alter MRSA growth or gene transcription. However, in the presence of an antimicrobial peptide (cathelicidin), increasing concentrations of HS inhibit the bactericidal activity of cathelicidin against MRSA as well as other nosocomial pneumonia pathogens (Klebsiella pneumoniae and Pseudomonas aeruginosa) in a dose-dependent manner. Surface plasmon resonance shows avid binding between HS and cathelicidin with a dissociation constant of 0.13 μM. These findings highlight a complex relationship in which shedding of airspace HS may hamper host defenses against nosocomial infection via neutralization of antimicrobial peptides. These findings may inform future investigation into novel therapeutic targets designed to restore local innate immune function in patients suffering from primary bacterial pneumonia.NEW & NOTEWORTHY Primary Staphylococcus aureus pneumonia causes pulmonary epithelial heparan sulfate (HS) shedding into the airspace. These highly sulfated HS fragments do not alter bacterial growth or transcription, but directly bind with host antimicrobial peptides and inhibit the bactericidal activity of these cationic polypeptides. These findings highlight a complex local interaction between the pulmonary epithelial glycocalyx and antimicrobial peptides in the setting of bacterial pneumonia.
Collapse
Affiliation(s)
- Evan P Zehr
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Christopher L Erzen
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Kaori Oshima
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | | | - Wells B LaRiviere
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Deling Shi
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States
| | - Bruce D McCollister
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Samuel L Windham
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Alicia N Rizzo
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Julie A Bastarache
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, United States
| | - Alexander R Horswill
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| | - Eric P Schmidt
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | | | - James F Colbert
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado, United States
| |
Collapse
|
7
|
Bhattacharya M, Horswill AR. The role of human extracellular matrix proteins in defining Staphylococcus aureus biofilm infections. FEMS Microbiol Rev 2024; 48:fuae002. [PMID: 38337187 PMCID: PMC10873506 DOI: 10.1093/femsre/fuae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Twenty to forty one percent of the world's population is either transiently or permanently colonized by the Gram-positive bacterium, Staphylococcus aureus. In 2017, the CDC designated methicillin-resistant S. aureus (MRSA) as a serious threat, reporting ∼300 000 cases of MRSA-associated hospitalizations annually, resulting in over 19 000 deaths, surpassing that of HIV in the USA. S. aureus is a proficient biofilm-forming organism that rapidly acquires resistance to antibiotics, most commonly methicillin (MRSA). This review focuses on a large group of (>30) S. aureus adhesins, either surface-associated or secreted that are designed to specifically bind to 15 or more of the proteins that form key components of the human extracellular matrix (hECM). Importantly, this includes hECM proteins that are pivotal to the homeostasis of almost every tissue environment [collagen (skin), proteoglycans (lung), hemoglobin (blood), elastin, laminin, fibrinogen, fibronectin, and fibrin (multiple organs)]. These adhesins offer S. aureus the potential to establish an infection in every sterile tissue niche. These infections often endure repeated immune onslaught, developing into chronic, biofilm-associated conditions that are tolerant to ∼1000 times the clinically prescribed dose of antibiotics. Depending on the infection and the immune response, this allows S. aureus to seamlessly transition from colonizer to pathogen by subtly manipulating the host against itself while providing the time and stealth that it requires to establish and persist as a biofilm. This is a comprehensive discussion of the interaction between S. aureus biofilms and the hECM. We provide particular focus on the role of these interactions in pathogenesis and, consequently, the clinical implications for the prevention and treatment of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, United States
- Department of Veterans Affairs, Eastern Colorado Health Care System, Aurora, CO 80045, United States
| |
Collapse
|
8
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
9
|
Timm S, Lettau M, Hegermann J, Rocha ML, Weidenfeld S, Fatykhova D, Gutbier B, Nouailles G, Lopez-Rodriguez E, Hocke A, Hippenstiel S, Witzenrath M, Kuebler WM, Ochs M. The unremarkable alveolar epithelial glycocalyx: a thorium dioxide-based electron microscopic comparison after heparinase or pneumolysin treatment. Histochem Cell Biol 2023:10.1007/s00418-023-02211-7. [PMID: 37386200 PMCID: PMC10387119 DOI: 10.1007/s00418-023-02211-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Recent investigations analyzed in depth the biochemical and biophysical properties of the endothelial glycocalyx. In comparison, this complex cell-covering structure is largely understudied in alveolar epithelial cells. To better characterize the alveolar glycocalyx ultrastructure, unaffected versus injured human lung tissue explants and mouse lungs were analyzed by transmission electron microscopy. Lung tissue was treated with either heparinase (HEP), known to shed glycocalyx components, or pneumolysin (PLY), the exotoxin of Streptococcus pneumoniae not investigated for structural glycocalyx effects so far. Cationic colloidal thorium dioxide (cThO2) particles were used for glycocalyx glycosaminoglycan visualization. The level of cThO2 particles orthogonal to apical cell membranes (≙ stained glycosaminoglycan height) of alveolar epithelial type I (AEI) and type II (AEII) cells was stereologically measured. In addition, cThO2 particle density was studied by dual-axis electron tomography (≙ stained glycosaminoglycan density in three dimensions). For untreated samples, the average cThO2 particle level was ≈ 18 nm for human AEI, ≈ 17 nm for mouse AEI, ≈ 44 nm for human AEII and ≈ 35 nm for mouse AEII. Both treatments, HEP and PLY, resulted in a significant reduction of cThO2 particle levels on human and mouse AEI and AEII. Moreover, a HEP- and PLY-associated reduction in cThO2 particle density was observed. The present study provides quantitative data on the differential glycocalyx distribution on AEI and AEII based on cThO2 and demonstrates alveolar glycocalyx shedding in response to HEP or PLY resulting in a structural reduction in both glycosaminoglycan height and density. Future studies should elucidate the underlying alveolar epithelial cell type-specific distribution of glycocalyx subcomponents for better functional understanding.
Collapse
Affiliation(s)
- Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
| | - Marie Lettau
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany.
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, 30625, Hannover, Germany
| | - Maria Linda Rocha
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
- Institute of Pathology, Vivantes Klinikum im Friedrichshain, 10249, Berlin, Germany
| | - Sarah Weidenfeld
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Diana Fatykhova
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
| | - Andreas Hocke
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Matthias Ochs
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 13353, Berlin, Germany
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10115, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| |
Collapse
|
10
|
Rizzo AN, Schmidt EP. The role of the alveolar epithelial glycocalyx in acute respiratory distress syndrome. Am J Physiol Cell Physiol 2023; 324:C799-C806. [PMID: 36847444 PMCID: PMC10042597 DOI: 10.1152/ajpcell.00555.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023]
Abstract
The alveolar epithelial glycocalyx is a dense anionic layer of glycosaminoglycans (GAGs) and proteoglycans that lines the apical surface of the alveolar epithelium. In contrast to the pulmonary endothelial glycocalyx, which has well-established roles in vascular homeostasis and septic organ dysfunction, the alveolar epithelial glycocalyx is less understood. Recent preclinical studies demonstrated that the epithelial glycocalyx is degraded in multiple murine models of acute respiratory distress syndrome (ARDS), particularly those that result from inhaled insults (so-called "direct" lung injury), leading to shedding of GAGs into the alveolar airspaces. Epithelial glycocalyx degradation also occurs in humans with respiratory failure, as quantified by analysis of airspace fluid obtained from ventilator heat moisture exchange (HME) filters. In patients with ARDS, GAG shedding correlates with the severity of hypoxemia and is predictive of the duration of respiratory failure. These effects may be mediated by surfactant dysfunction, as targeted degradation of the epithelial glycocalyx in mice was sufficient to cause increased alveolar surface tension, diffuse microatelectasis, and impaired lung compliance. In this review, we describe the structure of the alveolar epithelial glycocalyx and the mechanisms underlying its degradation during ARDS. We additionally review the current state of knowledge regarding the attributable effect of epithelial glycocalyx degradation in lung injury pathogenesis. Finally, we address glycocalyx degradation as a potential mediator of ARDS heterogeneity, and the subsequent value of point-of-care quantification of GAG shedding to potentially identify patients who are most likely to respond to pharmacological agents aimed at attenuating glycocalyx degradation.
Collapse
Affiliation(s)
- Alicia N Rizzo
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eric P Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Rizzo AN, Aggarwal NR, Thompson BT, Schmidt EP. Advancing Precision Medicine for the Diagnosis and Treatment of Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:1563. [PMID: 36836098 PMCID: PMC9966442 DOI: 10.3390/jcm12041563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common and life-threatening cause of respiratory failure. Despite decades of research, there are no effective pharmacologic therapies to treat this disease process and mortality remains high. The shortcomings of prior translational research efforts have been increasingly attributed to the heterogeneity of this complex syndrome, which has led to an increased focus on elucidating the mechanisms underlying the interpersonal heterogeneity of ARDS. This shift in focus aims to move the field towards personalized medicine by defining subgroups of ARDS patients with distinct biology, termed endotypes, to quickly identify patients that are most likely to benefit from mechanism targeted treatments. In this review, we first provide a historical perspective and review the key clinical trials that have advanced ARDS treatment. We then review the key challenges that exist with regards to the identification of treatable traits and the implementation of personalized medicine approaches in ARDS. Lastly, we discuss potential strategies and recommendations for future research that we believe will aid in both understanding the molecular pathogenesis of ARDS and the development of personalized treatment approaches.
Collapse
Affiliation(s)
- Alicia N. Rizzo
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Neil R. Aggarwal
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - B. Taylor Thompson
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Eric P. Schmidt
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
12
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
13
|
Abstract
New SARS-CoV-2 variants of concern and waning immunity demonstrate the need for a quick and simple prophylactic agent to prevent infection. Low molecular weight heparins (LMWH) are potent inhibitors of SARS-CoV-2 binding and infection in vitro. The airways are a major route for infection and therefore inhaled LMWH could be a prophylactic treatment against SARS-CoV-2. We investigated the efficacy of in vivo inhalation of LMWH in humans to prevent SARS-CoV-2 attachment to nasal epithelial cells in a single-center, open-label intervention study. Volunteers received enoxaparin in the right and a placebo (NaCl 0.9%) in the left nostril using a nebulizer. After application, nasal epithelial cells were retrieved with a brush for ex-vivo exposure to either SARS-CoV-2 pseudovirus or an authentic SARS-CoV-2 isolate and virus attachment as determined. LMWH inhalation significantly reduced attachment of SARS-CoV-2 pseudovirus as well as authentic SARS-CoV-2 to human nasal cells. Moreover, in vivo inhalation was as efficient as in vitro LMWH application. Cell phenotyping revealed no differences between placebo and treatment groups and no adverse events were observed in the study participants. Our data strongly suggested that inhalation of LMWH was effective to prevent SARS-CoV-2 attachment and subsequent infection. LMWH is ubiquitously available, affordable, and easy to apply, making them suitable candidates for prophylactic treatment against SARS-CoV-2. IMPORTANCE New SARS-CoV-2 variants of concern and waning immunity demonstrate the need for a quick and simple agent to prevent infection. Low molecular weight heparins (LMWH) have been shown to inhibit SARS-CoV-2 in experimental settings. The airways are a major route for SARS-CoV-2 infection and inhaled LMWH could be a prophylactic treatment. We investigated the efficacy of inhalation of the LMWH enoxaparin in humans to prevent SARS-CoV-2 attachment because this is a prerequisite for infection. Volunteers received enoxaparin in the right and a placebo in the left nostril using a nebulizer. Subsequently, nasal epithelial cells were retrieved with a brush and exposed to SARS-CoV-2. LMWH inhalation significantly reduced the binding of SARS-Cov-2 to human nasal cells. Cell phenotyping revealed no differences between placebo and treatment groups and no adverse events were observed in the participants. Our data indicated that LMWH can be used to block SARS-CoV-2 attachment to nasal cells. LMWH was ubiquitously available, affordable, and easily applicable, making them excellent candidates for prophylactic treatment against SARS-CoV-2.
Collapse
|
14
|
Langouët-Astrié C, Oshima K, McMurtry SA, Yang Y, Kwiecinski JM, LaRivière WB, Kavanaugh JS, Zakharevich I, Hansen KC, Shi D, Zhang F, Boguslawski KM, Perelman SS, Su G, Torres VJ, Liu J, Horswill AR, Schmidt EP. The influenza-injured lung microenvironment promotes MRSA virulence, contributing to severe secondary bacterial pneumonia. Cell Rep 2022; 41:111721. [PMID: 36450248 PMCID: PMC10082619 DOI: 10.1016/j.celrep.2022.111721] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/12/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Influenza infection is substantially worsened by the onset of secondary pneumonia caused by bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA). The bidirectional interaction between the influenza-injured lung microenvironment and MRSA is poorly understood. By conditioning MRSA ex vivo in bronchoalveolar lavage fluid collected from mice at various time points of influenza infection, we found that the influenza-injured lung microenvironment dynamically induces MRSA to increase cytotoxin expression while decreasing metabolic pathways. LukAB, a SaeRS two-component system-dependent cytotoxin, is particularly important to the severity of post-influenza MRSA pneumonia. LukAB's activity is likely shaped by the post-influenza lung microenvironment, as LukAB binds to (and is activated by) heparan sulfate (HS) oligosaccharide sequences shed from the epithelial glycocalyx after influenza. Our findings indicate that post-influenza MRSA pneumonia is shaped by bidirectional host-pathogen interactions: host injury triggers changes in bacterial expression of toxins, the activity of which may be shaped by host-derived HS fragments.
Collapse
Affiliation(s)
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sarah A McMurtry
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Yimu Yang
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA
| | - Jakub M Kwiecinski
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow 30387, Poland
| | - Wells B LaRivière
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA; Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jeffrey S Kavanaugh
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Igor Zakharevich
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, CO 80045, USA
| | - Deling Shi
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kristina M Boguslawski
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Sofya S Perelman
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Gouwei Su
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jian Liu
- University of North Carolina Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA
| | - Alexander R Horswill
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care, University of Colorado Denver, Aurora, CO 80045, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA 02115, USA
| |
Collapse
|
15
|
Jiang T, Hu W, Zhang S, Ren C, Lin S, Zhou Z, Wu H, Yin J, Tan L. Fibroblast growth factor 10 attenuates chronic obstructive pulmonary disease by protecting against glycocalyx impairment and endothelial apoptosis. Respir Res 2022; 23:269. [PMID: 36183124 PMCID: PMC9526324 DOI: 10.1186/s12931-022-02193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Background The defects and imbalance in lung repair and structural maintenance contribute to the pathogenesis of chronic obstructive pulmonary diseases (COPD), yet the molecular mechanisms that regulate lung repair process are so far incompletely understood. We hypothesized that cigarette smoking causes glycocalyx impairment and endothelial apoptosis in COPD, which could be repaired by the stimulation of fibroblast growth factor 10 (FGF10)/FGF receptor 1 (FGFR1) signaling. Methods We used immunostaining (immunohistochemical [IHC] and immunofluorescence [IF]) and enzyme-linked immunosorbent assay (ELISA) to detect the levels of glycocalyx components and endothelial apoptosis in animal models and in patients with COPD. We used the murine emphysema model and in vitro studies to determine the protective and reparative role of FGF10/FGFR1. Results Exposure to cigarette smoke caused endothelial glycocalyx impairment and emphysematous changes in murine models and human specimens. Pretreatment of FGF10 attenuated the development of emphysema and the shedding of glycocalyx components induced by CSE in vivo. However, FGF10 did not attenuate the emphysema induced by endothelial-specific killing peptide CGSPGWVRC-GG-D(KLAKLAK)2. Mechanistically, FGF10 alleviated smoke-induced endothelial apoptosis and glycocalyx repair through FGFR1/ERK/SOX9/HS6ST1 signaling in vitro. FGF10 was shown to repair pulmonary glycocalyx injury and endothelial apoptosis, and attenuate smoke-induced COPD through FGFR1 signaling. Conclusions Our results suggest that FGF10 may serve as a potential therapeutic strategy against COPD via endothelial repair and glycocalyx reconstitution. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02193-5. It is the first time to prove the confirm the endothelial glycocalyx impairment in COPD. FGF10 attenuates the development of emphysema and the shedding of glycocalyx induced by CSE in vivo. FGF10 alleviates smoke-induced endothelial apoptosis and glycocalyx repair through FGFR1/ERK/SOX9/HS6ST1 signaling.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China
| | - Weiping Hu
- Department of Critical Care and Respiratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China.,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.,Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China
| | - Changhao Ren
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Siyun Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China
| | - Zhenyu Zhou
- Department of Vascular Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hao Wu
- Department of Clinical Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China.
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, China. .,Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Lung Inflammation and Injury, Shanghai, 200032, China.
| |
Collapse
|
16
|
Sanches Santos Rizzo Zuttion M, Moore SKL, Chen P, Beppu AK, Hook JL. New Insights into the Alveolar Epithelium as a Driver of Acute Respiratory Distress Syndrome. Biomolecules 2022; 12:biom12091273. [PMID: 36139112 PMCID: PMC9496395 DOI: 10.3390/biom12091273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022] Open
Abstract
The alveolar epithelium serves as a barrier between the body and the external environment. To maintain efficient gas exchange, the alveolar epithelium has evolved to withstand and rapidly respond to an assortment of inhaled, injury-inducing stimuli. However, alveolar damage can lead to loss of alveolar fluid barrier function and exuberant, non-resolving inflammation that manifests clinically as acute respiratory distress syndrome (ARDS). This review discusses recent discoveries related to mechanisms of alveolar homeostasis, injury, repair, and regeneration, with a contemporary emphasis on virus-induced lung injury. In addition, we address new insights into how the alveolar epithelium coordinates injury-induced lung inflammation and review maladaptive lung responses to alveolar damage that drive ARDS and pathologic lung remodeling.
Collapse
Affiliation(s)
- Marilia Sanches Santos Rizzo Zuttion
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah Kathryn Littlehale Moore
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Chen
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Andrew Kota Beppu
- Women’s Guild Lung Institute, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jaime Lynn Hook
- Lung Imaging Laboratory, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence:
| |
Collapse
|
17
|
du Preez HN, Aldous C, Kruger HG, Johnson L. N-Acetylcysteine and Other Sulfur-Donors as a Preventative and Adjunct Therapy for COVID-19. Adv Pharmacol Pharm Sci 2022; 2022:4555490. [PMID: 35992575 PMCID: PMC9385285 DOI: 10.1155/2022/4555490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/07/2022] [Indexed: 12/11/2022] Open
Abstract
The airway epithelial glycocalyx plays an important role in preventing severe acute respiratory syndrome coronavirus 2 entry into the epithelial cells, while the endothelial glycocalyx contributes to vascular permeability and tone, as well as modulating immune, inflammatory, and coagulation responses. With ample evidence in the scientific literature that coronavirus disease 2019 (COVID-19) is related to epithelial and endothelial dysfunction, preserving the glycocalyx should be the main focus of any COVID-19 treatment protocol. The most studied functional unit of the glycocalyx is the glycosaminoglycan heparan sulfate, where the degree and position of the sulfate groups determine the biological activity. N-acetylcysteine (NAC) and other sulfur donors contribute to the inorganic sulfate pool, the rate-limiting molecule in sulfation. NAC is not only a precursor to glutathione but also converts to hydrogen sulfide, inorganic sulfate, taurine, Coenzyme A, and albumin. By optimising inorganic sulfate availability, and therefore sulfation, it is proposed that COVID-19 can be prevented or at least most of the symptoms attenuated. A comprehensive COVID-19 treatment protocol is needed to preserve the glycocalyx in both the prevention and treatment of COVID-19. The use of NAC at a dosage of 600 mg bid for the prevention of COVID-19 is proposed, but a higher dosage of NAC (1200 mg bid) should be administered upon the first onset of symptoms. In the severe to critically ill, it is advised that IV NAC should be administered immediately upon hospital admission, and in the late stage of the disease, IV sodium thiosulfate should be considered. Doxycycline as a protease inhibitor will prevent shedding and further degradation of the glycocalyx.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Westville Campus, Durban, South Africa
| | - Lin Johnson
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
18
|
Sargison L, Smith RAA, Carnachan SM, Daines AM, Brackovic A, Kidgell JT, Nurcombe V, Cool SM, Sims IM, Hinkley SFR. Variability in the composition of porcine mucosal heparan sulfates. Carbohydr Polym 2022; 282:119081. [PMID: 35123736 DOI: 10.1016/j.carbpol.2021.119081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Commercial porcine intestinal mucosal heparan sulfate (HS) is a valuable material for research into its biological functions. As it is usually produced as a side-stream of pharmaceutical heparin manufacture, its chemical composition may vary from batch to batch. We analysed the composition and structure of nine batches of HS from the same manufacturer. Statistical analysis of the disaccharide compositions placed these batches in three categories: group A had high GlcNAc and GlcNS, and low GlcN typical of HS; group B had high GlcN and GlcNS, and low GlcNAc; group C had high di- and trisulfated, and low unsulfated and monosulfated disaccharide repeats. These batches could be placed in the same categories based on their 1H NMR spectra and molecular weights. Anticoagulant and growth factor binding activities of these HS batches did not fit within these same groups but were related to the proportions of more highly sulfated disaccharide repeats.
Collapse
Affiliation(s)
- Liam Sargison
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Raymond A A Smith
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore.
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Alison M Daines
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Amira Brackovic
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Joel T Kidgell
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Victor Nurcombe
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore.
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| |
Collapse
|
19
|
Rizzo AN, Haeger SM, Oshima K, Yang Y, Wallbank AM, Jin Y, Lettau M, McCaig LA, Wickersham NE, McNeil JB, Zakharevich I, McMurtry SA, Langouët-Astrié CJ, Kopf KW, Voelker DR, Hansen KC, Shaver CM, Kerchberger VE, Peterson RA, Kuebler WM, Ochs M, Veldhuizen RA, Smith BJ, Ware LB, Bastarache JA, Schmidt EP. Alveolar epithelial glycocalyx degradation mediates surfactant dysfunction and contributes to acute respiratory distress syndrome. JCI Insight 2022; 7:154573. [PMID: 34874923 PMCID: PMC8855818 DOI: 10.1172/jci.insight.154573] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/03/2021] [Indexed: 12/03/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common cause of respiratory failure yet has few pharmacologic therapies, reflecting the mechanistic heterogeneity of lung injury. We hypothesized that damage to the alveolar epithelial glycocalyx, a layer of glycosaminoglycans interposed between the epithelium and surfactant, contributes to lung injury in patients with ARDS. Using mass spectrometry of airspace fluid noninvasively collected from mechanically ventilated patients, we found that airspace glycosaminoglycan shedding (an index of glycocalyx degradation) occurred predominantly in patients with direct lung injury and was associated with duration of mechanical ventilation. Male patients had increased shedding, which correlated with airspace concentrations of matrix metalloproteinases. Selective epithelial glycocalyx degradation in mice was sufficient to induce surfactant dysfunction, a key characteristic of ARDS, leading to microatelectasis and decreased lung compliance. Rapid colorimetric quantification of airspace glycosaminoglycans was feasible and could provide point-of-care prognostic information to clinicians and/or be used for predictive enrichment in clinical trials.
Collapse
Affiliation(s)
- Alicia N. Rizzo
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | - Sarah M. Haeger
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | - Yimu Yang
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | | | - Ying Jin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine,,Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Marie Lettau
- Institute of Functional Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | - Lynda A. McCaig
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Nancy E. Wickersham
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - J. Brennan McNeil
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Igor Zakharevich
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado, USA
| | - Sarah A. McMurtry
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine
| | | | - Katrina W. Kopf
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Dennis R. Voelker
- Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Kirk C. Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado, Aurora, Colorado, USA
| | - Ciara M. Shaver
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - V. Eric Kerchberger
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ryan A. Peterson
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine,,Department of Biostatistics and Informatics, School of Public Health, University of Colorado, Aurora, Colorado, USA
| | | | - Matthias Ochs
- Institute of Functional Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | - Ruud A.W. Veldhuizen
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Bradford J. Smith
- Department of Bioengineering, and,Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Colorado, Aurora, Colorado, USA
| | - Lorraine B. Ware
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Julie A. Bastarache
- Department of Medicine and Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine,,Department of Medicine, Denver Health Medical Center, Denver, Colorado, USA
| |
Collapse
|
20
|
du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID-19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. FASEB J 2021; 36:e22052. [PMID: 34862979 DOI: 10.1096/fj.202101100rr] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022]
Abstract
The glycocalyx surrounds every eukaryotic cell and is a complex mesh of proteins and carbohydrates. It consists of proteoglycans with glycosaminoglycan side chains, which are highly sulfated under normal physiological conditions. The degree of sulfation and the position of the sulfate groups mainly determine biological function. The intact highly sulfated glycocalyx of the epithelium may repel severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) through electrostatic forces. However, if the glycocalyx is undersulfated and 3-O-sulfotransferase 3B (3OST-3B) is overexpressed, as is the case during chronic inflammatory conditions, SARS-CoV-2 entry may be facilitated by the glycocalyx. The degree of sulfation and position of the sulfate groups will also affect functions such as immune modulation, the inflammatory response, vascular permeability and tone, coagulation, mediation of sheer stress, and protection against oxidative stress. The rate-limiting factor to sulfation is the availability of inorganic sulfate. Various genetic and epigenetic factors will affect sulfur metabolism and inorganic sulfate availability, such as various dietary factors, and exposure to drugs, environmental toxins, and biotoxins, which will deplete inorganic sulfate. The role that undersulfation plays in the various comorbid conditions that predispose to coronavirus disease 2019 (COVID-19), is also considered. The undersulfated glycocalyx may not only increase susceptibility to SARS-CoV-2 infection, but would also result in a hyperinflammatory response, vascular permeability, and shedding of the glycocalyx components, giving rise to a procoagulant and antifibrinolytic state and eventual multiple organ failure. These symptoms relate to a diagnosis of systemic septic shock seen in almost all COVID-19 deaths. The focus of prevention and treatment protocols proposed is the preservation of epithelial and endothelial glycocalyx integrity.
Collapse
Affiliation(s)
- Heidi N du Preez
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Colleen Aldous
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Melvin R Hayden
- Division of Endocrinology Diabetes and Metabolism, Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA.,Diabetes and Cardiovascular Disease Center, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
22
|
Bangalore H, Carter MJ, Parmar K, Austin C, Shankar-Hari M, Hunt BJ, Tibby SM. Degradation of the Endothelial Glycocalyx Contributes to Metabolic Acidosis in Children Following Cardiopulmonary Bypass Surgery. Pediatr Crit Care Med 2021; 22:e571-e581. [PMID: 33950888 DOI: 10.1097/pcc.0000000000002746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Cardiopulmonary bypass surgery is complicated by metabolic acidosis, microvascular dysfunction, and capillary leak. The glycocalyx-a layer of proteins and sugars lining the vascular endothelium-is degraded during cardiopulmonary bypass. We aimed to describe the kinetics of glycocalyx degradation during and following cardiopulmonary bypass. We hypothesized that cleavage of negatively charged fragments of the glycocalyx would directly induce metabolic acidosis through changes in the strong ion gap (defined using Stewart's physicochemical approach to acid-base chemistry). We also investigated whether glycocalyx degradation was associated with failure of endothelial function and cardiovascular dysfunction. DESIGN Single-center prospective cohort study. SETTING Twenty-two bed surgical/medical PICU. PATIENTS Twenty-seven term infants and children requiring cardiopulmonary bypass surgery for the correction/palliation of congenital heart disease. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We recruited 27 patients, 5 days to 57 months old. We prospectively sampled plasma prior to, during, and following cardiopulmonary bypass at predefined time points. We measured plasma concentrations of interleukin-6 (inflammatory marker), heparan sulfate (negatively charged glycocalyx glycosaminoglycan), and syndecan-1 (neutrally charged glycocalyx protein). We defined the following outcome measures: metabolic acidosis (strong ion gap), renal dysfunction (fold change in creatinine), capillary leak (fluid bolus volume), cardiovascular dysfunction (Vasoactive Inotropic Score), and length of ventilation. In linear regression models, maximum measured heparan sulfate concentration (negatively charged) was associated with metabolic acidosis (p = 0.016), renal dysfunction (p = 0.009), and length of ventilation (p = 0.047). In contrast, maximum measured syndecan-1 concentration (neutrally charged) was not associated with these clinical endpoints (p > 0.30 for all). CONCLUSIONS Our data show that metabolic acidosis (increased strong ion gap) is associated with plasma concentration of heparan sulfate, a negatively charged glycosaminoglycan cleaved from the endothelial glycocalyx during cardiopulmonary bypass. In addition, cleavage of heparan sulfate was associated with renal dysfunction, capillary leak, and global markers of cardiovascular dysfunction. These data highlight the importance of designing translational therapies to protect the glycocalyx in cardiopulmonary bypass.
Collapse
Affiliation(s)
- Harish Bangalore
- Paediatric Intensive Care, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Michael J Carter
- Paediatric Intensive Care, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Kiran Parmar
- Thrombosis and Vascular Biology Research Group, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Conal Austin
- Department of Cardiology, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Institute of Women and Children's Health, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Manu Shankar-Hari
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, Guy's Hospital, London, United Kingdom
- Department of Intensive Care, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Beverley J Hunt
- Thrombosis and Vascular Biology Research Group, St Thomas' Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Shane M Tibby
- Paediatric Intensive Care, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
23
|
Targosz-Korecka M, Kubisiak A, Kloska D, Kopacz A, Grochot-Przeczek A, Szymonski M. Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors. Sci Rep 2021; 11:12157. [PMID: 34108510 PMCID: PMC8190434 DOI: 10.1038/s41598-021-91231-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/21/2021] [Indexed: 12/23/2022] Open
Abstract
Endothelial cells (ECs) play a crucial role in the development and propagation of the severe COVID-19 stage as well as multiorgan dysfunction. It remains, however, controversial whether COVID-19-induced endothelial injury is caused directly by the infection of ECs with SARS-CoV-2 or via indirect mechanisms. One of the major concerns is raised by the contradictory data supporting or denying the presence of ACE2, the SARS-CoV-2 binding receptor, on the EC surface. Here, we show that primary human pulmonary artery ECs possess ACE2 capable of interaction with the viral Spike protein (S-protein) and demonstrate the crucial role of the endothelial glycocalyx in the regulation of the S-protein binding to ACE2 on ECs. Using force spectroscopy method, we directly measured ACE2- and glycocalyx-dependent adhesive forces between S-protein and ECs and characterized the nanomechanical parameters of the cells exposed to S-protein. We revealed that the intact glycocalyx strongly binds S-protein but screens its interaction with ACE2. Reduction of glycocalyx layer exposes ACE2 receptors and promotes their interaction with S-protein. These results indicate that the susceptibility of ECs to COVID-19 infection may depend on the glycocalyx condition.
Collapse
Affiliation(s)
- Marta Targosz-Korecka
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Agata Kubisiak
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Damian Kloska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Aleksandra Kopacz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marek Szymonski
- Department of Physics of Nanostructures and Nanotechnology, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland
| |
Collapse
|
24
|
Wijesekara P, Liu Y, Wang W, Johnston EK, Sullivan MLG, Taylor RE, Ren X. Accessing and Assessing the Cell-Surface Glycocalyx Using DNA Origami. NANO LETTERS 2021; 21:4765-4773. [PMID: 34030445 PMCID: PMC8193633 DOI: 10.1021/acs.nanolett.1c01236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/21/2021] [Indexed: 05/30/2023]
Abstract
The cell-surface glycocalyx serves as a physiological barrier regulating cellular accessibility to macromolecules and other cells. Conventional glycocalyx characterization has largely been morphological rather than functional. Here, we demonstrated direct glycocalyx anchoring of DNA origami nanotiles and performed a comprehensive comparison with traditional origami targeting to the phospholipid bilayer (PLB) using cholesterol. While DNA nanotiles effectively accessed single-stranded DNA initiators anchored on the glycocalyx, their accessibility to the underlying PLB was only permitted by extended nanotile-to-initiator spacing or by enzymatic glycocalyx degradation using trypsin or pathogenic neuraminidase. Thus, the DNA nanotiles, being expelled by the physiologic glycocalyx, provide an effective functional measure of the glycocalyx barrier integrity and faithfully predict cell-to-cell accessibility during DNA-guided multicellular assembly. Lastly, the glycocalyx-anchoring mechanism enabled enhanced cell-surface stability and cellular uptake of nanotiles compared to PLB anchoring. This research lays the foundation for future development of DNA nanodevices to access the cell surface.
Collapse
Affiliation(s)
- Piyumi Wijesekara
- Department
of Biomedical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
| | - Ying Liu
- Department
of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
| | - Weitao Wang
- Department
of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
| | - Elizabeth K. Johnston
- Department
of Biomedical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
| | - Mara L. G. Sullivan
- Center
for Biologic Imaging, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, Pennsylvania, United States
| | - Rebecca E. Taylor
- Department
of Biomedical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
- Department
of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
- Department
of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
| | - Xi Ren
- Department
of Biomedical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
- Department
of Mechanical Engineering, Carnegie Mellon
University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
25
|
Paget TL, Parkinson-Lawrence EJ, Trim PJ, Autilio C, Panchal MH, Koster G, Echaide M, Snel MF, Postle AD, Morrison JL, Pérez-Gil J, Orgeig S. Increased Alveolar Heparan Sulphate and Reduced Pulmonary Surfactant Amount and Function in the Mucopolysaccharidosis IIIA Mouse. Cells 2021; 10:849. [PMID: 33918094 PMCID: PMC8070179 DOI: 10.3390/cells10040849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Mucopolysaccharidosis IIIA (MPS IIIA) is a lysosomal storage disease with significant neurological and skeletal pathologies. Respiratory dysfunction is a secondary pathology contributing to mortality in MPS IIIA patients. Pulmonary surfactant is crucial to optimal lung function and has not been investigated in MPS IIIA. We measured heparan sulphate (HS), lipids and surfactant proteins (SP) in pulmonary tissue and bronchoalveolar lavage fluid (BALF), and surfactant activity in healthy and diseased mice (20 weeks of age). Heparan sulphate, ganglioside GM3 and bis(monoacylglycero)phosphate (BMP) were increased in MPS IIIA lung tissue. There was an increase in HS and a decrease in BMP and cholesteryl esters (CE) in MPS IIIA BALF. Phospholipid composition remained unchanged, but BALF total phospholipids were reduced (49.70%) in MPS IIIA. There was a reduction in SP-A, -C and -D mRNA, SP-D protein in tissue and SP-A, -C and -D protein in BALF of MPS IIIA mice. Captive bubble surfactometry showed an increase in minimum and maximum surface tension and percent surface area compression, as well as a higher compressibility and hysteresis in MPS IIIA surfactant upon dynamic cycling. Collectively these biochemical and biophysical changes in alveolar surfactant are likely to be detrimental to lung function in MPS IIIA.
Collapse
Affiliation(s)
- Tamara L. Paget
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Emma J. Parkinson-Lawrence
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| | - Paul J. Trim
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Chiara Autilio
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Madhuriben H. Panchal
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Grielof Koster
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Mercedes Echaide
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Marten F. Snel
- Proteomics, Metabolomics and MS-Imaging Core Facility, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia; (P.J.T.); (M.F.S.)
| | - Anthony D. Postle
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.H.P.); (G.K.); (A.D.P.)
| | - Janna L. Morrison
- Early Origins Adult Health Research Group, Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Jésus Pérez-Gil
- Department of Biochemistry, Faculty of Biology and Research Institute Hospital 12 de Octubre (Imas12), Complutense University, 28003 Madrid, Spain; (C.A.); (M.E.); (J.P.-G.)
| | - Sandra Orgeig
- Mechanisms in Cell Biology and Disease Group, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (T.L.P.); (E.J.P.-L.)
| |
Collapse
|
26
|
Ma Y, Yang X, Chatterjee V, Wu MH, Yuan SY. The Gut-Lung Axis in Systemic Inflammation. Role of Mesenteric Lymph as a Conduit. Am J Respir Cell Mol Biol 2021; 64:19-28. [PMID: 32877613 DOI: 10.1165/rcmb.2020-0196tr] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence shows that after injury or infection, the mesenteric lymph acts as a conduit for gut-derived toxic factors to enter the blood circulation, causing systemic inflammation and acute lung injury. Neither the cellular and molecular identity of lymph factors nor their mechanisms of action have been well understood and thus have become a timely topic of investigation. This review will first provide a summary of background knowledge on gut barrier and mesenteric lymphatics, followed by a discussion focusing on the current understanding of potential injurious factors in the lymph and their mechanistic contributions to lung injury. We also examine lymph factors with antiinflammatory properties as well as the bidirectional nature of the gut-lung axis in inflammation.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, and
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, and
| | | | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, and.,Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| |
Collapse
|
27
|
Rizzo AN, Schmidt EP. ABO blood type: a window into the genetics of acute respiratory distress syndrome susceptibility. J Clin Invest 2021; 131:144075. [PMID: 33141764 PMCID: PMC7773403 DOI: 10.1172/jci144075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The genetic factors that determine a patient's risk for developing the acute respiratory distress syndrome (ARDS) remain understudied. In this issue of the JCI, Reilly and colleagues analyzed data from three cohorts of critically ill patients and observed an association between the ABO allele A1 and the onset of moderate-severe ARDS. This association was most notable in patients with non-pulmonary sepsis (an indirect, vasculature-targeted mechanism of lung injury) and persisted in patients who lacked epithelial expression of the A antigen, suggesting an endothelial mechanism of A1-associated ARDS susceptibility. Critically ill patients with blood type A had increased circulating concentrations of endothelium-derived glycoproteins such as von Willebrand factor and soluble thrombomodulin, and marginal lungs from blood type A donors were less likely to recover function during ex vivo perfusion. These findings implicate A antigen glycosylation of endothelial cells as a critical, genetically determined risk factor for indirect lung injury that may contribute to the mechanistic heterogeneity of ARDS.
Collapse
Affiliation(s)
- Alicia N. Rizzo
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, School of Medicine, University of Colorado, Aurora, Colorado, USA
- Department of Medicine, Denver Health Medical Center, Denver, Colorado, USA
| |
Collapse
|
28
|
Li J, Qi Z, Li D, Huang X, Qi B, Feng J, Qu J, Wang X. Alveolar epithelial glycocalyx shedding aggravates the epithelial barrier and disrupts epithelial tight junctions in acute respiratory distress syndrome. Biomed Pharmacother 2021; 133:111026. [PMID: 33378942 PMCID: PMC7685063 DOI: 10.1016/j.biopha.2020.111026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
The main pathophysiological mechanism of acute respiratory distress syndrome (ARDS) invovles the increase in alveolar barrier permeability that is primarily caused by epithelial glycocalyx and tight junction (TJ) protein destruction. This study was performed to explore the effects of the alveolar epithelial glycocalyx on the epithelial barrier, specifically on TJ proteins, in ARDS. We used C57BL/6 mice and human lung epithelial cell models of lipopolysaccharide (LPS)-induced ARDS. Changes in alveolar permeability were evaluated via pulmonary histopathology analysis and by measuring the wet/dry weight ratio of the lungs. Degradation of heparan sulfate (HS), an important component of the epithelial glycocalyx, and alterations in levels of the epithelial TJ proteins (occludin, zonula occludens 1, and claudin 4) were assessed via ELISA, immunofluorescence analysis, and western blotting analysis. Real-time quantitative polymerase chain reaction was used to detect the mRNA of the TJ protein. Changes in glycocalyx and TJ ultrastructures in alveolar epithelial cells were evaluated through electron microscopy. In vivo and in vitro, LPS increased the alveolar permeability and led to HS degradation and TJ damage. After LPS stimulation, the expression of the HS-degrading enzyme heparanase (HPA) in the alveolar epithelial cells was increased. The HPA inhibitor N-desulfated/re-N-acetylated heparin alleviated LPS-induced HS degradation and reduced TJ damage. In vitro, recombinant HPA reduced the expression of the TJ protein zonula occludens-1 (ZO-1) and inhibited its mRNA expression in the alveolar epithelial cells. Taken together, our results demonstrate that shedding of the alveolar epithelial glycocalyx aggravates the epithelial barrier and damages epithelial TJ proteins in ARDS, with the underlying mechanism involving the effect of HPA on ZO-1.
Collapse
Affiliation(s)
- Jun Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Deparetment of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, YanTai, Shandong, 264100, China
| | - Zhijiang Qi
- Deparetment of Pulmonary and Critical Care Medicine, Yantai Affiliated Hospital of Binzhou Medical University, YanTai, Shandong, 264100, China
| | - Dongxiao Li
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiao Huang
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Boyang Qi
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jiali Feng
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Jianyu Qu
- Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiaozhi Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Pulmonary and Critical Care Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China.
| |
Collapse
|
29
|
Delgadillo LF, Lomakina EB, Kuebel J, Waugh RE. Changes in endothelial glycocalyx layer protective ability after inflammatory stimulus. Am J Physiol Cell Physiol 2020; 320:C216-C224. [PMID: 33326314 DOI: 10.1152/ajpcell.00259.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Leukocyte adhesion to the endothelium is an important early step in the initiation and progression of sepsis. The endothelial glycocalyx layer (EGL) has been implicated in neutrophil adhesion and barrier dysfunction, but studies in this area are few. In this report, we examine the hypothesis that damage to the structure of the EGL caused by inflammation leads to increased leukocyte adhesion and endothelial barrier dysfunction. We used human umbilical vein endothelial cells enzymatically treated to remove the EGL components hyaluronic acid (HA) and heparan sulfate (HS) as a model for EGL damage. Using atomic force microscopy, we show reductions in EGL thickness after removal of either HA or HS individually, but the largest decrease, comparable with TNF-α treatment, was observed when both HA and HS were removed. Interestingly, removal of HS or HA individually did not affect neutrophil adhesion significantly, but removal of both constituents resulted in increased neutrophil adhesion. To test EGL contributions to endothelial barrier properties, we measured transendothelial electrical resistance (TEER) and diffusion of fluorescently labeled dextran (10 kDa molecular weight) across the monolayer. Removal of EGL components decreased TEER but had an insignificant effect on dextran diffusion rates. The reduction in TEER suggests that disruption of the EGL may predispose endothelial cells to increased rates of fluid leakage. These data support the view that damage to the EGL during inflammation has significant effects on the accessibility of adhesion molecules, likely facilitates leukocyte adhesion, and may also contribute to increased rates of fluid transport into tissues.
Collapse
Affiliation(s)
- Luis F Delgadillo
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Elena B Lomakina
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Julia Kuebel
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| |
Collapse
|
30
|
Bihari S, Bannard-Smith J, Bellomo R. Albumin as a drug: its biological effects beyond volume expansion. CRIT CARE RESUSC 2020; 22:257-265. [PMID: 32900333 PMCID: PMC10692529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Albumin is the most abundant and perhaps most important protein in human blood. Research has identified many of albumin's possible roles in modulating acid-base balance, modifying inflammation, maintaining vascular endothelial integrity, and binding endogenous and exogenous compounds. Albumin plays a key role in the homeostasis of vascular endothelium, offering protection from inflammation and damage to the glycocalyx. Albumin binds a diverse range of compounds. It transports, delivers and clears drugs, plus it helps with uptake, storage and disposal of potentially harmful biological products. The biological effects of albumin in critical illness are incompletely understood, but may enhance its clinical role beyond use as an intravenous fluid. In this article, we summarise the evidence surrounding albumin's biological and physiological effects beyond its use for plasma volume expansion, and explore potential mechanistic effects of albumin as a disease modifier in patients with critical illness.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia. ,
| | - Jonathan Bannard-Smith
- Department of Critical Care, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Bihari S, Bannard-Smith J, Bellomo R. Albumin as a drug: its biological effects beyond volume expansion. CRIT CARE RESUSC 2020; 22:257-265. [PMID: 32900333 PMCID: PMC10692529 DOI: 10.1016/s1441-2772(23)00394-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Albumin is the most abundant and perhaps most important protein in human blood. Research has identified many of albumin's possible roles in modulating acid-base balance, modifying inflammation, maintaining vascular endothelial integrity, and binding endogenous and exogenous compounds. Albumin plays a key role in the homeostasis of vascular endothelium, offering protection from inflammation and damage to the glycocalyx. Albumin binds a diverse range of compounds. It transports, delivers and clears drugs, plus it helps with uptake, storage and disposal of potentially harmful biological products. The biological effects of albumin in critical illness are incompletely understood, but may enhance its clinical role beyond use as an intravenous fluid. In this article, we summarise the evidence surrounding albumin's biological and physiological effects beyond its use for plasma volume expansion, and explore potential mechanistic effects of albumin as a disease modifier in patients with critical illness.
Collapse
Affiliation(s)
- Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, Adelaide, SA, Australia. ,
| | - Jonathan Bannard-Smith
- Department of Critical Care, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rinaldo Bellomo
- Centre for Integrated Critical Care, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Frey A, Lunding LP, Ehlers JC, Weckmann M, Zissler UM, Wegmann M. More Than Just a Barrier: The Immune Functions of the Airway Epithelium in Asthma Pathogenesis. Front Immunol 2020; 11:761. [PMID: 32411147 PMCID: PMC7198799 DOI: 10.3389/fimmu.2020.00761] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 12/11/2022] Open
Abstract
Allergic bronchial asthma is a chronic disease of the airways that is characterized by symptoms like respiratory distress, chest tightness, wheezing, productive cough, and acute episodes of broncho-obstruction. This symptom-complex arises on the basis of chronic allergic inflammation of the airway wall. Consequently, the airway epithelium is central to the pathogenesis of this disease, because its multiple abilities directly have an impact on the inflammatory response and thus the formation of the disease. In turn, its structure and functions are markedly impaired by the inflammation. Hence, the airway epithelium represents a sealed, self-cleaning barrier, that prohibits penetration of inhaled allergens, pathogens, and other noxious agents into the body. This barrier is covered with mucus that further contains antimicrobial peptides and antibodies that are either produced or specifically transported by the airway epithelium in order to trap these particles and to remove them from the body by a process called mucociliary clearance. Once this first line of defense of the lung is overcome, airway epithelial cells are the first cells to get in contact with pathogens, to be damaged or infected. Therefore, these cells release a plethora of chemokines and cytokines that not only induce an acute inflammatory reaction but also have an impact on the alignment of the following immune reaction. In case of asthma, all these functions are impaired by the already existing allergic immune response that per se weakens the barrier integrity and self-cleaning abilities of the airway epithelium making it more vulnerable to penetration of allergens as well as of infection by bacteria and viruses. Recent studies indicate that the history of allergy- and pathogen-derived insults can leave some kind of memory in these cells that can be described as imprinting or trained immunity. Thus, the airway epithelium is in the center of processes that lead to formation, progression and acute exacerbation of asthma.
Collapse
Affiliation(s)
- Andreas Frey
- Division of Mucosal Immunology and Diagnostics, Research Center Borstel, Borstel, Germany.,Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany
| | - Lars P Lunding
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| | - Johanna C Ehlers
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Experimental Pneumology, Research Center Borstel, Borstel, Germany
| | - Markus Weckmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Department of Pediatric Pulmonology and Allergology, University Children's Hospital, Lübeck, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich and Helmholtz Center Munich, German Research Center for Environmental Health, Munich, Germany.,Member of the German Center for Lung Research (DZL), CPC-M, Munich, Germany
| | - Michael Wegmann
- Airway Research Center North, German Center for Lung Research (DZL), Borstel, Germany.,Division of Asthma Exacerbation & Regulation, Research Center Borstel, Borstel, Germany
| |
Collapse
|
33
|
Ochs M, Hegermann J, Lopez-Rodriguez E, Timm S, Nouailles G, Matuszak J, Simmons S, Witzenrath M, Kuebler WM. On Top of the Alveolar Epithelium: Surfactant and the Glycocalyx. Int J Mol Sci 2020; 21:ijms21093075. [PMID: 32349261 PMCID: PMC7246550 DOI: 10.3390/ijms21093075] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022] Open
Abstract
Gas exchange in the lung takes place via the air-blood barrier in the septal walls of alveoli. The tissue elements that oxygen molecules have to cross are the alveolar epithelium, the interstitium and the capillary endothelium. The epithelium that lines the alveolar surface is covered by a thin and continuous liquid lining layer. Pulmonary surfactant acts at this air-liquid interface. By virtue of its biophysical and immunomodulatory functions, surfactant keeps alveoli open, dry and clean. What needs to be added to this picture is the glycocalyx of the alveolar epithelium. Here, we briefly review what is known about this glycocalyx and how it can be visualized using electron microscopy. The application of colloidal thorium dioxide as a staining agent reveals differences in the staining pattern between type I and type II alveolar epithelial cells and shows close associations of the glycocalyx with intraalveolar surfactant subtypes such as tubular myelin. These morphological findings indicate that specific spatial interactions between components of the surfactant system and those of the alveolar epithelial glycocalyx exist which may contribute to the maintenance of alveolar homeostasis, in particular to alveolar micromechanics, to the functional integrity of the air-blood barrier, to the regulation of the thickness and viscosity of the alveolar lining layer, and to the defence against inhaled pathogens. Exploring the alveolar epithelial glycocalyx in conjunction with the surfactant system opens novel physiological perspectives of potential clinical relevance for future research.
Collapse
Affiliation(s)
- Matthias Ochs
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Correspondence:
| | - Jan Hegermann
- Research Core Unit Electron Microscopy and Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany;
| | - Elena Lopez-Rodriguez
- Institute of Functional Anatomy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Sara Timm
- Core Facility Electron Microscopy, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Geraldine Nouailles
- Department of Infectious Diseases and Respiratory Medicine, and Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Jasmin Matuszak
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| | - Szandor Simmons
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| | - Martin Witzenrath
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Department of Infectious Diseases and Respiratory Medicine, and Division of Pulmonary Inflammation, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany;
| | - Wolfgang M. Kuebler
- German Center for Lung Research (DZL), 10117 Berlin, Germany; (M.W.); (W.M.K.)
- Institute of Physiology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (S.S.)
| |
Collapse
|
34
|
LaRivière WB, Liao S, McMurtry SA, Oshima K, Han X, Zhang F, Yan S, Haeger SM, Ransom M, Bastarache JA, Linhardt RJ, Schmidt EP, Yang Y. Alveolar heparan sulfate shedding impedes recovery from bleomycin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1198-L1210. [PMID: 32320623 DOI: 10.1152/ajplung.00063.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pulmonary epithelial glycocalyx, an anionic cell surface layer enriched in glycosaminoglycans such as heparan sulfate and chondroitin sulfate, contributes to the alveolar barrier. Direct injury to the pulmonary epithelium induces shedding of heparan sulfate into the air space; the impact of this shedding on recovery after lung injury is unknown. Using mass spectrometry, we found that heparan sulfate was shed into the air space for up to 3 wk after intratracheal bleomycin-induced lung injury and coincided with induction of matrix metalloproteinases (MMPs), including MMP2. Delayed inhibition of metalloproteinases, beginning 7 days after bleomycin using the nonspecific MMP inhibitor doxycycline, attenuated heparan sulfate shedding and improved lung function, suggesting that heparan sulfate shedding may impair lung recovery. While we also observed an increase in air space heparanase activity after bleomycin, pharmacological and transgenic inhibition of heparanase in vivo failed to attenuate heparan sulfate shedding or protect against bleomycin-induced lung injury. However, experimental augmentation of airway heparanase activity significantly worsened post-bleomycin outcomes, confirming the importance of epithelial glycocalyx integrity to lung recovery. We hypothesized that MMP-associated heparan sulfate shedding contributed to delayed lung recovery, in part, by the release of large, highly sulfated fragments that sequestered lung-reparative growth factors such as hepatocyte growth factor. In vitro, heparan sulfate bound hepatocyte growth factor and attenuated growth factor signaling, suggesting that heparan sulfate shed into the air space after injury may directly impair lung repair. Accordingly, administration of exogenous heparan sulfate to mice after bleomycin injury increased the likelihood of death due to severe lung dysfunction. Together, our findings demonstrate that alveolar epithelial heparan sulfate shedding impedes lung recovery after bleomycin.
Collapse
Affiliation(s)
- W B LaRivière
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - S Liao
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - S A McMurtry
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - K Oshima
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - X Han
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - F Zhang
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - S Yan
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - S M Haeger
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - M Ransom
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - J A Bastarache
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - R J Linhardt
- Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York
| | - E P Schmidt
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado.,Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Y Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
35
|
Beller JP, Byler MR, Money DT, Chancellor WZ, Zhang A, Zhao Y, Stoler MH, Narahari AK, Shannon A, Mehaffey JH, Tribble CG, Laubach VE, Kron IL, Roeser ME. Reduced-flow ex vivo lung perfusion to rehabilitate lungs donated after circulatory death. J Heart Lung Transplant 2019; 39:74-82. [PMID: 31761511 DOI: 10.1016/j.healun.2019.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Current ex vivo lung perfusion (EVLP) protocols aim to achieve perfusion flows of 40% of cardiac output or more. We hypothesized that a lower target flow rate during EVLP would improve graft function and decrease inflammation of donation after circulatory death (DCD) lungs. METHODS A porcine DCD and EVLP model was utilized. Two groups (n = 4 per group) of DCD lungs were randomized to target EVLP flows of 40% (high-flow) or 20% (low-flow) predicted cardiac output based on 100 ml/min/kg. At the completion of 4 hours of normothermic EVLP using Steen solution, left lung transplantation was performed, and lungs were monitored during 4 hours of reperfusion. RESULTS After transplant, left lung-specific pulmonary vein partial pressure of oxygen was significantly higher in the low-flow group at 3 and 4 hours of reperfusion (3-hour: 496.0 ± 87.7 mm Hg vs. 252.7 ± 166.0 mm Hg, p = 0.017; 4-hour: 429.7 ± 93.6 mm Hg vs. 231.5 ± 178 mm Hg, p = 0.048). Compliance was significantly improved at 1 hour of reperfusion (20.8 ± 9.4 ml/cm H2O vs. 10.2 ± 3.5 ml/cm H2O, p = 0.022) and throughout all subsequent time points in the low-flow group. After reperfusion, lung wet-to-dry weight ratio (7.1 ± 0.7 vs. 8.8 ± 1.1, p = 0.040) and interleukin-1β expression (927 ± 300 pg/ng protein vs. 2,070 ± 874 pg/ng protein, p = 0.048) were significantly reduced in the low-flow group. CONCLUSIONS EVLP of DCD lungs with low-flow targets of 20% predicted cardiac output improves lung function, reduces edema, and attenuates inflammation after transplant. Therefore, EVLP for lung rehabilitation should use reduced flow rates of 20% predicted cardiac output.
Collapse
Affiliation(s)
- Jared P Beller
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Matthew R Byler
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Dustin T Money
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | | | - Aimee Zhang
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Yunge Zhao
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Mark H Stoler
- Departments of Pathology, University of Virginia, Charlottesville, Virginia
| | | | - Alexander Shannon
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - J Hunter Mehaffey
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Curtis G Tribble
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Victor E Laubach
- Departments of Surgery, University of Virginia, Charlottesville, Virginia
| | - Irving L Kron
- Departments of Surgery, University of Virginia, Charlottesville, Virginia; Department of Surgery, University of Arizona Department of Health Sciences, Tuscon, Arizona
| | - Mark E Roeser
- Departments of Surgery, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
36
|
Hippensteel JA, Uchimido R, Tyler PD, Burke RC, Han X, Zhang F, McMurtry SA, Colbert JF, Lindsell CJ, Angus DC, Kellum JA, Yealy DM, Linhardt RJ, Shapiro NI, Schmidt EP. Intravenous fluid resuscitation is associated with septic endothelial glycocalyx degradation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:259. [PMID: 31337421 PMCID: PMC6652002 DOI: 10.1186/s13054-019-2534-2] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Intravenous fluids, an essential component of sepsis resuscitation, may paradoxically worsen outcomes by exacerbating endothelial injury. Preclinical models suggest that fluid resuscitation degrades the endothelial glycocalyx, a heparan sulfate-enriched structure necessary for vascular homeostasis. We hypothesized that endothelial glycocalyx degradation is associated with the volume of intravenous fluids administered during early sepsis resuscitation. METHODS We used mass spectrometry to measure plasma heparan sulfate (a highly sensitive and specific index of systemic endothelial glycocalyx degradation) after 6 h of intravenous fluids in 56 septic shock patients, at presentation and after 24 h of intravenous fluids in 100 sepsis patients, and in two groups of non-infected patients. We compared plasma heparan sulfate concentrations between sepsis and non-sepsis patients, as well as between sepsis survivors and sepsis non-survivors. We used multivariable linear regression to model the association between volume of intravenous fluids and changes in plasma heparan sulfate. RESULTS Consistent with previous studies, median plasma heparan sulfate was elevated in septic shock patients (118 [IQR, 113-341] ng/ml 6 h after presentation) compared to non-infected controls (61 [45-79] ng/ml), as well as in a second cohort of sepsis patients (283 [155-584] ng/ml) at emergency department presentation) compared to controls (177 [144-262] ng/ml). In the larger sepsis cohort, heparan sulfate predicted in-hospital mortality. In both cohorts, multivariable linear regression adjusting for age and severity of illness demonstrated a significant association between volume of intravenous fluids administered during resuscitation and plasma heparan sulfate. In the second cohort, independent of disease severity and age, each 1 l of intravenous fluids administered was associated with a 200 ng/ml increase in circulating heparan sulfate (p = 0.006) at 24 h after enrollment. CONCLUSIONS Glycocalyx degradation occurs in sepsis and septic shock and is associated with in-hospital mortality. The volume of intravenous fluids administered during sepsis resuscitation is independently associated with the degree of glycocalyx degradation. These findings suggest a potential mechanism by which intravenous fluid resuscitation strategies may induce iatrogenic endothelial injury.
Collapse
Affiliation(s)
| | - Ryo Uchimido
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Patrick D Tyler
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ryan C Burke
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fuming Zhang
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Sarah A McMurtry
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | - James F Colbert
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA
| | | | - Derek C Angus
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donald M Yealy
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert J Linhardt
- Departments of Chemistry and Chemical Biology, Chemical and Biological Engineering, and Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Nathan I Shapiro
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric P Schmidt
- Department of Medicine, University of Colorado Denver, Aurora, CO, USA. .,Department of Medicine, Denver Health Medical Center, Denver, CO, USA.
| |
Collapse
|
37
|
Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019; 11:v11070596. [PMID: 31266258 PMCID: PMC6669472 DOI: 10.3390/v11070596] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) are composed of unbranched, negatively charged heparan sulfate (HS) polysaccharides attached to a variety of cell surface or extracellular matrix proteins. Widely expressed, they mediate many biological activities, including angiogenesis, blood coagulation, developmental processes, and cell homeostasis. HSPG are highly sulfated and broadly used by a range of pathogens, especially viruses, to attach to the cell surface.
Collapse
Affiliation(s)
- Valeria Cagno
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland.
| | - Eirini D Tseligka
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| | - Samuel T Jones
- School of Materials, University of Manchester, Manchester, M13 9PL, UK
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School, 1205 Geneva, Switzerland
| |
Collapse
|
38
|
Douglas IS, Bednash JS, Fein DG, Mallampalli RK, Mansoori JN, Gershengorn HB. Update in Critical Care and Acute Respiratory Distress Syndrome 2018. Am J Respir Crit Care Med 2019; 199:1335-1343. [PMID: 30958975 DOI: 10.1164/rccm.201903-0550up] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Ivor S Douglas
- 1 Pulmonary, Sleep and Critical Care Medicine, Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Joseph S Bednash
- 2 Acute Lung Injury Center of Excellence, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Rama K Mallampalli
- 4 Department of Medicine, The Ohio State University, Columbus, Ohio; and
| | - Jason N Mansoori
- 1 Pulmonary, Sleep and Critical Care Medicine, Department of Medicine, Denver Health Medical Center, Denver, Colorado
| | - Hayley B Gershengorn
- 5 Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
39
|
LaRivière WB, Schmidt EP. The Pulmonary Endothelial Glycocalyx in ARDS: A Critical Role for Heparan Sulfate. CURRENT TOPICS IN MEMBRANES 2018; 82:33-52. [PMID: 30360782 DOI: 10.1016/bs.ctm.2018.08.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endothelial glycocalyx is a glycosaminoglycan-enriched endovascular layer that, with the development of novel fixation and in vivo microscopy techniques, has been increasingly recognized as a major contributor to vascular homeostasis. Sepsis-associated degradation of the endothelial glycocalyx mediates the onset of the alveolar microvascular dysfunction characteristic of sepsis-induced lung injury (such as the Acute Respiratory Distress Syndrome, ARDS). Emerging evidence indicates that processes of glycocalyx reconstitution are necessary for endothelial repair and, as such, are promising therapeutic targets to accelerate lung injury recovery. This review discusses what has been learned about the homeostatic and pathophysiologic role of the pulmonary endothelial glycocalyx during lung health and injury, with the goal to identify promising new areas for future mechanistic investigation.
Collapse
Affiliation(s)
- Wells B LaRivière
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Eric P Schmidt
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Aurora, CO, United States.
| |
Collapse
|
40
|
Weidenfeld S, Kuebler WM. Shedding First Light on the Alveolar Epithelial Glycocalyx. Am J Respir Cell Mol Biol 2018; 59:283-284. [DOI: 10.1165/rcmb.2018-0108ed] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Sarah Weidenfeld
- Institute of PhysiologyCharité–Universitätsmedizin BerlinBerlin, Germany
| | - Wolfgang M. Kuebler
- Institute of PhysiologyCharité–Universitätsmedizin BerlinBerlin, Germany
- Keenan Research Centre for Biomedical ScienceSt. Michael’s HospitalToronto, Canada
- Department of Surgeryand
- Department of PhysiologyUniversity of TorontoToronto, Canada
| |
Collapse
|