1
|
Takao T, Matsui A, Kikutake C, Kan-O K, Inoue A, Suyama M, Okamoto I, Ito M. Maternal asthma imprints fetal lung ILC2s via glucocorticoid signaling leading to worsened allergic airway inflammation in murine adult offspring. Nat Commun 2025; 16:631. [PMID: 39805834 PMCID: PMC11730321 DOI: 10.1038/s41467-025-55941-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The root of asthma can be linked to early life, with prenatal environments influencing risk. We investigate the effects of maternal asthma on the offspring's lungs during fetal and adult life. Adult offspring of asthmatic mothers show an increase in lung group 2 innate lymphoid cell (ILC2) number and function with allergen-induced lung inflammation. Offspring of asthmatic mothers show phenotypic alteration of their lung ILC2s during fetal life, with increased expression of genes related to activation and glucocorticoid signaling. Furthermore, these offspring carry overlapping chromatin-accessible altered regions, including glucocorticoid receptor-binding regions in their lung ILC2s both at the fetal stage and adulthood, suggesting persistent prenatal epigenetic changes. Moreover, maternal exposure to glucocorticoids has similar effects on fetal lung ILC2s and contributes to allergen-induced lung inflammation during adulthood. Thus, asthma during pregnancy may have long-term effects on lung ILC2s in the offspring from the embryonic period, contributing to an increased risk of developing asthma.
Collapse
Affiliation(s)
- Tomoaki Takao
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ako Matsui
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Keiko Kan-O
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Azusa Inoue
- Laboratory for Epigenome Inheritance, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Tokyo Metropolitan University, Hachioji, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Isamu Okamoto
- Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Minako Ito
- Division of Allergy and Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
2
|
Balla J, Rathore AP, St John AL. Mechanisms and risk factors for perinatal allergic disease. Curr Opin Immunol 2024; 91:102505. [PMID: 39566249 DOI: 10.1016/j.coi.2024.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/19/2024] [Accepted: 10/26/2024] [Indexed: 11/22/2024]
Abstract
Allergies are among the top causes of chronic disease in children. Their pathogenesis classically involves T helper 2 (Th2)-type inflammation driven by IgE-mediated allergen sensing. Triggers influencing allergic disease occur early in life, including before birth. The immature fetal immune system and mucosal barriers undergo periods of plasticity that are open to longitudinal programming by maternal influence. Evidence supports the importance of the maternal immune system in shaping perinatal immunity, as the transfer of cytokines, antibodies, and cells promotes offspring protection from pathogens. However, the same components may lead to allergic predisposition. Maternal-fetal interactions are further modified by epigenetic, metabolic, dietary, and microbiome-mediated effects. Here, we review how diverse maternal exposures and mediators signal across the placenta and through nursing perinatally to promote future tolerance or enhance reactivity against allergens. Improved understanding of the mechanisms predisposing for allergic disease in early life can guide the development of new therapeutics and preventative lifestyle modifications.
Collapse
Affiliation(s)
- Jozef Balla
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore
| | - Abhay Ps Rathore
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore; Department of Pathology, Duke University Medical Center, Durham, North Carolina 27705, USA
| | - Ashley L St John
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169857 Singapore; Department of Pathology, Duke University Medical Center, Durham, North Carolina 27705, USA; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; SingHealth Duke-NUS Global Health Institute, Singapore.
| |
Collapse
|
3
|
Lajiness JD, Bloodworth JC, Blankenship RL, Kosins AE, Cook-Mills JM. Dendritic cell-specific deletion of PKCδ in offspring of allergic mothers prevents the predisposition for development of allergic lung inflammation in offspring. J Leukoc Biol 2024; 116:1432-1445. [PMID: 39312649 PMCID: PMC11599121 DOI: 10.1093/jleuko/qiae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024] Open
Abstract
In humans and in mice, maternal allergy predisposes offspring to development of allergy. In murine models, increased levels of maternal β-glucosylceramides are both necessary and sufficient for the development of allergic predisposition in offspring. Furthermore, increased numbers of CD11b+ dendritic cell subsets in the offspring of allergic mothers are associated with allergic predisposition. In vitro, β-glucosylceramides increase CD11b+ dendritic cell subset numbers through increased PKCδ signaling, but it is not known if enhanced PKCδ signaling in dendritic cells is required in vivo. We demonstrate that dendritic cell-specific deletion of PKCδ prevents the β-glucosylceramide-induced increase in CD11b+ dendritic cell subset numbers both in vitro as well as in vivo in the fetal liver of offspring of mothers injected with β-glucosylceramides. Furthermore, dendritic cell-specific deletion of PKCδ in offspring prevents the maternal allergy-induced increase in CD11b+ dendritic cell subsets and decreases allergen-induced interleukin-5 and eosinophilia in lungs of offspring. However, loss of PKCδ in dendritic cells did not prevent development of allergen-specific IgE. Our study provides mechanistic insight into the function of PKCδ in the origins of allergic disease beginning in utero as well as in the development of postnatal allergic lung inflammation.
Collapse
Affiliation(s)
- Jacquelyn D Lajiness
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Jeffrey C Bloodworth
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Ross L Blankenship
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Allison E Kosins
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| | - Joan M Cook-Mills
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, United States
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
4
|
Martins Costa Gomes G, Da Silva Sena CR, Murphy VE, Hansbro PM, Starkey MR, Gibson PG, Mattes J, Collison AM. Cord blood granulocyte levels are associated with severe bronchiolitis in the first year of life. Clin Transl Immunology 2024; 13:e70004. [PMID: 39323541 PMCID: PMC11424167 DOI: 10.1002/cti2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
Objectives Bronchiolitis is a leading cause of infant hospitalisation in the first year of life, and it preferentially affects infants born to mothers with asthma. Here, we evaluate cord blood granulocytes in infants born to mothers with asthma participating in the Breathing for Life Trial (BLT), to investigate early life determinants of bronchiolitis hospitalisation within the first year of life. Methods Cord blood from 89 participants was collected into EDTA tubes and processed within 6 h of birth. Cells were stained in whole cord blood for eosinophils (CD45+, CD193+, CD16-), and neutrophils (CD45+, CD193-, CD16+). Medical records were reviewed for bronchiolitis hospitalisation in the first 12 months of life. Statistical analyses were conducted using Stata IC16.1. Results Logistic regression adjusted for caesarean section, gestational age, maternal smoking during pregnancy, foetal heart deceleration during labour, and season of birth revealed an association between cord blood eosinophil levels and bronchiolitis hospitalisation in the first 12 months of life with an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve of 0.943 (aOR = 1.35, P = 0.011). Neutrophils were associated with the risk of bronchiolitis hospitalisation in a univariable logistic regression (OR = 0.93, P = 0.029); however, there was no statistical significance in the adjusted model. Conclusions Higher eosinophil numbers in cord blood were associated with bronchiolitis hospitalisation in the first 12 months in a cohort of infants born to asthmatic mothers. This suggests that susceptibility to bronchiolitis in later life is influenced by the immune cell profile prior to viral infection.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Asthma and Breathing Program, Hunter Medical Research InstituteThe University of NewcastleNewcastleNSWAustralia
- School of Medicine and Public HealthThe University of NewcastleNewcastleNSWAustralia
| | - Carla Rebeca Da Silva Sena
- Asthma and Breathing Program, Hunter Medical Research InstituteThe University of NewcastleNewcastleNSWAustralia
- School of Medicine and Public HealthThe University of NewcastleNewcastleNSWAustralia
| | - Vanessa E Murphy
- Asthma and Breathing Program, Hunter Medical Research InstituteThe University of NewcastleNewcastleNSWAustralia
- School of Medicine and Public HealthThe University of NewcastleNewcastleNSWAustralia
| | - Philip M Hansbro
- Centre for InflammationFaculty of Science, School of Life Sciences, Centenary Institute and University of Technology SydneySydneyNSWAustralia
| | - Malcolm R Starkey
- Department of Immunology, School of Translational MedicineMonash UniversityMelbourneVICAustralia
| | - Peter G Gibson
- Asthma and Breathing Program, Hunter Medical Research InstituteThe University of NewcastleNewcastleNSWAustralia
- Department of Respiratory and Sleep MedicineJohn Hunter HospitalNewcastleNSWAustralia
| | - Joerg Mattes
- Asthma and Breathing Program, Hunter Medical Research InstituteThe University of NewcastleNewcastleNSWAustralia
- School of Medicine and Public HealthThe University of NewcastleNewcastleNSWAustralia
- Paediatric Respiratory & Sleep Medicine DepartmentJohn Hunter Children's HospitalNewcastleNSWAustralia
| | - Adam M Collison
- Asthma and Breathing Program, Hunter Medical Research InstituteThe University of NewcastleNewcastleNSWAustralia
- School of Medicine and Public HealthThe University of NewcastleNewcastleNSWAustralia
| |
Collapse
|
5
|
Robinson JL, Gatford KL, Clifton VL, Morrison JL, Stark MJ. The impact of maternal asthma on the fetal lung: Outcomes, mechanisms and interventions. Paediatr Respir Rev 2024; 51:38-45. [PMID: 38195368 DOI: 10.1016/j.prrv.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
Maternal asthma affects up to 17% of pregnancies and is associated with adverse infant, childhood, and adult respiratory outcomes, including increased risks of neonatal respiratory distress syndrome, childhood wheeze and asthma. In addition to genetics, these poor outcomes are likely due to the mediating influence of maternal asthma on the in-utero environment, altering fetal lung and immune development and predisposing the offspring to later lung disease. Maternal asthma may impair glucocorticoid signalling in the fetus, a process critical for lung maturation, and increase fetal exposure to proinflammatory cytokines. Therefore, interventions to control maternal asthma, increase glucocorticoid signalling in the fetal lung, or Vitamin A, C, and D supplementation to improve alveologenesis and surfactant production may be beneficial for later lung function. This review highlights potential mechanisms underlying maternal asthma and offspring respiratory morbidities and describes how pregnancy interventions can promote optimal fetal lung development in babies of asthmatic mothers.
Collapse
Affiliation(s)
- Joshua L Robinson
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia.
| | - Kathryn L Gatford
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Vicki L Clifton
- Mater Research Institute, University of Queensland, Brisbane, Australia
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Michael J Stark
- Robinson Research Institute, University of Adelaide, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia; Department of Neonatal Medicine, Women's & Children's Hospital, Adelaide, Australia.
| |
Collapse
|
6
|
Zaigham S, Bertelsen RJ, Dharmage SC, Schlünssen V, Jögi NO, Gomez LP, Holm M, Oudin A, Abramson MJ, Sigsgaard T, Jõgi R, Svanes C, Olin AC, Forsberg B, Janson C, Nerpin E, Johannessen A, Malinovschi A. An observational analysis on the influence of parental allergic rhinitis, asthma and smoking on exhaled nitric oxide in offspring. Nitric Oxide 2024; 149:60-66. [PMID: 38876398 DOI: 10.1016/j.niox.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Parental allergic diseases and smoking influence respiratory disease in the offspring but it is not known whether they influence fractional exhaled nitric oxide (FeNO) in the offspring. We investigated whether parental allergic diseases, parental smoking and FeNO levels in parents were associated with FeNO levels in their offspring. METHODS We studied 609 offspring aged 16-47 years from the Respiratory Health in Northern Europe, Spain and Australia generation (RHINESSA) study with parental information from the Respiratory Health in Northern Europe (RHINE) III study and the European Community Respiratory Health Survey (ECRHS) III. Linear regression models were used to assess the association between offspring FeNO and parental FeNO, allergic rhinitis, asthma and smoking, while adjusting for potential confounding factors. RESULTS Parental allergic rhinitis was significantly associated with higher FeNO in the offspring, both on the paternal and maternal side (percent change: 20.3 % [95%CI 5.0-37.7], p = 0.008, and 13.8 % [0.4-28.9], p = 0.043, respectively). Parental allergic rhinitis with asthma in any parent was also significantly associated with higher offspring FeNO (16.2 % [0.9-33.9], p = 0.037). However, parental asthma alone and smoking were not associated with offspring FeNO. Parental FeNO was not associated with offspring FeNO after full adjustments for offspring and parental factors. CONCLUSIONS Parental allergic rhinitis but not parental asthma was associated with higher levels of FeNO in offspring. These findings suggest that parental allergic rhinitis status should be considered when interpreting FeNO levels in offspring beyond childhood.
Collapse
Affiliation(s)
- S Zaigham
- Department of Clinical Sciences, Cardiovascular Epidemiology, Lund University, Malmo, Sweden; Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden.
| | - R J Bertelsen
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - S C Dharmage
- Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - V Schlünssen
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - N O Jögi
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - L Palacios Gomez
- El Torrejón Health Centre. Huelva, Andalusian Health Service, Huelva, Spain
| | - M Holm
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - A Oudin
- Division for Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - M J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - T Sigsgaard
- Department of Public Health, Research Unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - R Jõgi
- Lung Clinic, Tartu University Clinics, Tartu, Estonia
| | - C Svanes
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - A C Olin
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - B Forsberg
- Division for Sustainable Health, Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - C Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research Uppsala University, Uppsala, Sweden
| | - E Nerpin
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research Uppsala University, Uppsala, Sweden; School of Health and Welfare, Dalarna University, Falun, Sweden
| | - A Johannessen
- Centre for International Health, Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - A Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Kim B, Rothenberg ME, Sun X, Bachert C, Artis D, Zaheer R, Deniz Y, Rowe P, Cyr S. Neuroimmune interplay during type 2 inflammation: Symptoms, mechanisms, and therapeutic targets in atopic diseases. J Allergy Clin Immunol 2024; 153:879-893. [PMID: 37634890 PMCID: PMC11215634 DOI: 10.1016/j.jaci.2023.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Type 2 inflammation is characterized by overexpression and heightened activity of type 2 cytokines, mediators, and cells that drive neuroimmune activation and sensitization to previously subthreshold stimuli. The consequences of altered neuroimmune activity differ by tissue type and disease; they include skin inflammation, sensitization to pruritogens, and itch amplification in atopic dermatitis and prurigo nodularis; airway inflammation and/or hyperresponsiveness, loss of expiratory volume, airflow obstruction and increased mucus production in asthma; loss of sense of smell in chronic rhinosinusitis with nasal polyps; and dysphagia in eosinophilic esophagitis. We describe the neuroimmune interactions that underlie the various sensory and autonomic pathologies in type 2 inflammatory diseases and present recent advances in targeted treatment approaches to reduce type 2 inflammation and its associated symptoms in these diseases. Further research is needed to better understand the neuroimmune mechanisms that underlie chronic, sustained inflammation and its related sensory pathologies in diseases associated with type 2 inflammation.
Collapse
Affiliation(s)
- Brian Kim
- Kimberly and Eric J. Waldman Department of Dermatology, Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Xin Sun
- Department of Pediatrics, University of California, San Diego, Calif
| | - Claus Bachert
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Muenster, Muenster, Germany; First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY
| | | | - Yamo Deniz
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Sonya Cyr
- Regeneron Pharmaceuticals, Tarrytown, NY
| |
Collapse
|
8
|
Chen J, Lai X, Song Y, Su X. Neuroimmune recognition and regulation in the respiratory system. Eur Respir Rev 2024; 33:240008. [PMID: 38925790 PMCID: PMC11216688 DOI: 10.1183/16000617.0008-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimmune recognition and regulation in the respiratory system is a complex and highly coordinated process involving interactions between the nervous and immune systems to detect and respond to pathogens, pollutants and other potential hazards in the respiratory tract. This interaction helps maintain the health and integrity of the respiratory system. Therefore, understanding the complex interactions between the respiratory nervous system and immune system is critical to maintaining lung health and developing treatments for respiratory diseases. In this review, we summarise the projection distribution of different types of neurons (trigeminal nerve, glossopharyngeal nerve, vagus nerve, spinal dorsal root nerve, sympathetic nerve) in the respiratory tract. We also introduce several types of cells in the respiratory epithelium that closely interact with nerves (pulmonary neuroendocrine cells, brush cells, solitary chemosensory cells and tastebuds). These cells are primarily located at key positions in the respiratory tract, where nerves project to them, forming neuroepithelial recognition units, thus enhancing the ability of neural recognition. Furthermore, we summarise the roles played by these different neurons in sensing or responding to specific pathogens (influenza, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, human metapneumovirus, herpes viruses, Sendai parainfluenza virus, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Staphylococcus aureus, amoebae), allergens, atmospheric pollutants (smoking, exhaust pollution), and their potential roles in regulating interactions among different pathogens. We also summarise the prospects of bioelectronic medicine as a third therapeutic approach following drugs and surgery, as well as the potential mechanisms of meditation breathing as an adjunct therapy.
Collapse
Affiliation(s)
- Jie Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Xiaoyun Lai
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- These authors contributed equally to this work
| | - Yuanlin Song
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Lebold KM, Cook M, Pincus AB, Nevonen KA, Davis BA, Carbone L, Calco GN, Pierce AB, Proskocil BJ, Fryer AD, Jacoby DB, Drake MG. Grandmaternal allergen sensitization reprograms epigenetic and airway responses to allergen in second-generation offspring. Am J Physiol Lung Cell Mol Physiol 2023; 325:L776-L787. [PMID: 37814791 PMCID: PMC11068409 DOI: 10.1152/ajplung.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023] Open
Abstract
Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. DNA methylation is one form of epigenetic modification that regulates gene expression and is both inherited and modified by environmental exposures throughout life. Prenatal development is a particularly vulnerable time period during which exposure to maternal asthma increases asthma risk in offspring. How maternal asthma affects DNA methylation in offspring and what the consequences of differential methylation are in subsequent generations are not fully known. In this study, we tested the effects of grandmaternal house dust mite (HDM) allergen sensitization during pregnancy on airway physiology and inflammation in HDM-sensitized and challenged second-generation mice. We also tested the effects of grandmaternal HDM sensitization on tissue-specific DNA methylation in allergen-naïve and -sensitized second-generation mice. Descendants of both allergen- and vehicle-exposed grandmaternal founders exhibited airway hyperreactivity after HDM sensitization. However, grandmaternal allergen sensitization significantly potentiated airway hyperreactivity and altered the epigenomic trajectory in second-generation offspring after HDM sensitization compared with HDM-sensitized offspring from vehicle-exposed founders. As a result, biological processes and signaling pathways associated with epigenetic modifications were distinct between lineages. A targeted analysis of pathway-associated gene expression found that Smad3 was significantly dysregulated as a result of grandmaternal allergen sensitization. These data show that grandmaternal allergen exposure during pregnancy establishes a unique epigenetic trajectory that reprograms allergen responses in second-generation offspring and may contribute to asthma risk.NEW & NOTEWORTHY Asthma susceptibility is influenced by environmental, genetic, and epigenetic factors. This study shows that maternal allergen exposure during pregnancy promotes unique epigenetic trajectories in second-generation offspring at baseline and in response to allergen sensitization, which is associated with the potentiation of airway hyperreactivity. These effects are one mechanism by which maternal asthma may influence the inheritance of asthma risk.
Collapse
Affiliation(s)
- Katie M Lebold
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California, United States
| | - Madeline Cook
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Alexandra B Pincus
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Kimberly A Nevonen
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
| | - Brett A Davis
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
| | - Lucia Carbone
- Knight Cardiovascular Institute Epigenetics Consortium, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon, United States
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon, United States
| | - Gina N Calco
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Aubrey B Pierce
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Becky J Proskocil
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Allison D Fryer
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - David B Jacoby
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| | - Matthew G Drake
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon, United States
| |
Collapse
|
10
|
Kornfield J, De La Torre U, Mize E, Drake MG. Illuminating Airway Nerve Structure and Function in Chronic Cough. Lung 2023; 201:499-509. [PMID: 37985513 PMCID: PMC10673771 DOI: 10.1007/s00408-023-00659-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Airway nerves regulate vital airway functions including bronchoconstriction, cough, and control of respiration. Dysregulation of airway nerves underlies the development and manifestations of airway diseases such as chronic cough, where sensitization of neural pathways leads to excessive cough triggering. Nerves are heterogeneous in both expression and function. Recent advances in confocal imaging and in targeted genetic manipulation of airway nerves have expanded our ability to visualize neural organization, study neuro-immune interactions, and selectively modulate nerve activation. As a result, we have an unprecedented ability to quantitatively assess neural remodeling and its role in the development of airway disease. This review highlights our existing understanding of neural heterogeneity and how advances in methodology have illuminated airway nerve morphology and function in health and disease.
Collapse
Affiliation(s)
- James Kornfield
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Ubaldo De La Torre
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Emily Mize
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA
| | - Matthew G Drake
- OHSU Division of Pulmonary, Allergy, and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Mail Code UHN67, Portland, OR, 97239, USA.
| |
Collapse
|
11
|
Pant H, Hercus TR, Tumes DJ, Yip KH, Parker MW, Owczarek CM, Lopez AF, Huston DP. Translating the biology of β common receptor-engaging cytokines into clinical medicine. J Allergy Clin Immunol 2023; 151:324-344. [PMID: 36424209 DOI: 10.1016/j.jaci.2022.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/23/2022]
Abstract
The family of cytokines that comprises IL-3, IL-5, and GM-CSF was discovered over 30 years ago, and their biological activities and resulting impact in clinical medicine has continued to expand ever since. Originally identified as bone marrow growth factors capable of acting on hemopoietic progenitor cells to induce their proliferation and differentiation into mature blood cells, these cytokines are also recognized as key mediators of inflammation and the pathobiology of diverse immunologic diseases. This increased understanding of the functional repertoire of IL-3, IL-5, and GM-CSF has led to an explosion of interest in modulating their functions for clinical management. Key to the successful clinical translation of this knowledge is the recognition that these cytokines act by engaging distinct dimeric receptors and that they share a common signaling subunit called β-common or βc. The structural determination of how IL-3, IL-5, and GM-CSF interact with their receptors and linking this to their differential biological functions on effector cells has unveiled new paradigms of cell signaling. This knowledge has paved the way for novel mAbs and other molecules as selective or pan inhibitors for use in different clinical settings.
Collapse
Affiliation(s)
- Harshita Pant
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Timothy R Hercus
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Damon J Tumes
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Michael W Parker
- Bio 21 Institute, The University of Melbourne, Melbourne, Australia; St Vincent's Institute of Medical Research, Melbourne, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - David P Huston
- Texas A&M University School of Medicine, Houston, Tex; Houston Methodist Hospital and Research Institute, Houston, Tex.
| |
Collapse
|
12
|
Ortega MA, Gómez-Lahoz AM, Sánchez-Trujillo L, Fraile-Martinez O, García-Montero C, Guijarro LG, Bravo C, De Leon-Luis JA, Saz JV, Bujan J, García-Honduvilla N, Monserrat J, Alvarez-Mon M. Chronic Venous Disease during Pregnancy Causes a Systematic Increase in Maternal and Fetal Proinflammatory Markers. Int J Mol Sci 2022; 23:ijms23168976. [PMID: 36012236 PMCID: PMC9409364 DOI: 10.3390/ijms23168976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic venous disease (CVD) is a common vascular disorder characterized by increased venous hypertension and insufficient venous return from the lower limbs. Pregnancy is a high-risk situation for developing CVD. Approximately a third of the women will develop this condition during pregnancy, and similarly to arterial hypertensive disorders, previous evidence has described a plethora of alterations in placental structure and function in women with pregnancy-induced CVD. It is widely known that arterial-induced placenta dysfunction is accompanied by an important immune system alteration along with increased inflammatory markers, which may provide detrimental consequences for the women and their offspring. However, to our knowledge, there are still no data collected regarding cytokine profiling in women with pregnancy-induced CVD. Thus, the aim of the present work was to examine cytokine signatures in the serum of pregnant women (PW) with CVD and their newborns (NB). This study was conducted through a multiplex technique in 62 PW with pregnancy-induced CVD in comparison to 52 PW without CVD (HC) as well as their NB. Our results show significant alterations in a broad spectrum of inflammatory cytokines (IL-6, IL-12, TNF-α, IL-10, IL-13, IL-2, IL-7, IFN-γ, IL-4, IL-5, IL-21, IL-23, GM-CSF, chemokines (fractalkine), MIP-3α, and MIP-1β). Overall, we demonstrate that pregnancy-induced CVD is associated with a proinflammatory environment, therefore highlighting the potentially alarming consequences of this condition for maternal and fetal wellbeing.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences (Networking Research Center on for Liver and Digestive Diseases (CIBEREHD)), University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A. De Leon-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Jose V. Saz
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| |
Collapse
|
13
|
Lebold KM, Drake MG, Pincus AB, Pierce AB, Fryer AD, Jacoby DB. Unique Allergic Asthma Phenotypes in Offspring of House Dust Mite-exposed Mice. Am J Respir Cell Mol Biol 2022; 67:89-98. [PMID: 35363997 PMCID: PMC9273226 DOI: 10.1165/rcmb.2021-0535oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/01/2022] [Indexed: 11/24/2022] Open
Abstract
Asthma is a heterogeneous inflammatory airway disease that develops in response to a combination of genetic predisposition and environmental exposures. Patients with asthma are grouped into phenotypes with shared clinical features and biomarker profiles to help tailor specific therapies. However, factors driving development of specific phenotypes are poorly understood. Prenatal exposure to maternal asthma is a unique risk factor for childhood asthma. Here we tested whether maternal asthma skews asthma phenotypes in offspring. We compared airway hyperreactivity and inflammatory and neurotrophin lung signatures before and after allergen challenge in offspring born to mice exposed to house dust mite (HDM) or vehicle during pregnancy. Maternal HDM exposure potentiated offspring responses to HDM allergen, significantly increasing both airway hyperreactivity and airway eosinophilia compared with control mice. Maternal HDM exposure broadly skewed the offspring cytokine response from a classic allergen-induced T-helper cell type 2 (Th2)-predominant signature in HDM-treated offspring of vehicle-exposed mothers, toward a mixed Th17/Th1 phenotype in HDM-treated offspring of HDM-exposed mothers. Morphologic analysis determined that maternal HDM exposure also increased airway epithelial sensory nerve density and induced distinct neurotrophin signatures to support airway hyperinnervation. Our results demonstrate that maternal allergen exposure alters fetal lung development and promotes a unique inflammatory phenotype at baseline and in response to allergen that persists into adulthood.
Collapse
Affiliation(s)
- Katie M. Lebold
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California; and
| | - Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Alexandra B. Pincus
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Aubrey B. Pierce
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
14
|
Lewis BW, Britt RD. Maternal Allergen Exposures and Development of Asthma: Kids are Airways Nervy. Am J Respir Cell Mol Biol 2022; 67:8-9. [PMID: 35446226 PMCID: PMC9273220 DOI: 10.1165/rcmb.2022-0101ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Brandon W Lewis
- Nationwide Children's Hospital, 2650, Center for Perinatal Research, Columbus, Ohio, United States
| | - Rodney D Britt
- Nationwide Children's Hospital, 2650, Perinatal, Columbus, Ohio, United States.,The Ohio State University, 2647, Department of Pediatrics, Columbus, Ohio, United States;
| |
Collapse
|
15
|
Pascoe CD, Basu S, Schwartz J, Fonseca M, Kahnamoui S, Jha A, Dolinsky VW, Halayko AJ. Maternal diabetes promotes offspring lung dysfunction and inflammation in a sex-dependent manner. Am J Physiol Lung Cell Mol Physiol 2022; 322:L373-L384. [PMID: 35043678 DOI: 10.1152/ajplung.00425.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Exposure to maternal diabetes is increasingly recognized as a risk factor for chronic respiratory disease in children. It is currently unclear, however, whether maternal diabetes affects the lung health of male and female offspring equally. This study characterizes the sex-specific impact of a murine model of diet-induced gestational diabetes (GDM) on offspring lung function and airway inflammation. Female adult mice are fed a high-fat (45% kcal) diet for 6-weeks prior to mating. Control offspring are from mothers fed a low fat (10% kcal) diet. Offspring were weaned and fed a chow diet until 10-weeks of age, at which point lung function was measured and lung lavage was collected. Male, but not female offspring exposed to GDM had increased lung compliance and reduced lung resistance at baseline. Female offspring exposed to GDM displayed increased methacholine reactivity and elevated levels of pro-inflammatory cytokines (e.g. interleukin (IL)-1β, IL-5, and CXCL1) in lung lavage. Female GDM offspring also displayed elevated abundance of matrix metalloproteinases (MMP) within their airways, namely MMP-3 and MMP-8. These results indicate disparate effects of maternal diabetes on lung health and airway inflammation of male and female offspring exposed to GDM. Female mice may be at greater risk of inflammatory lung conditions, such as asthma, while male offspring display changes that more closely align with models of chronic obstructive pulmonary disease. In conclusion, there are important sex-based differences in the impact of maternal diabetes on offspring lung health that could signal differences in future disease risk.
Collapse
Affiliation(s)
- Christopher D Pascoe
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Sujata Basu
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Jacquie Schwartz
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Mario Fonseca
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Shana Kahnamoui
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Aruni Jha
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Vernon W Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada.,Diabetes Research Envisioned and Accomplished in Manitoba, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew John Halayko
- Deptartment of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Biology of Breathing Group, The Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Taylor M, Pillaye J, Horsnell WGC. Inherent maternal type 2 immunity: Consequences for maternal and offspring health. Semin Immunol 2021; 53:101527. [PMID: 34838445 DOI: 10.1016/j.smim.2021.101527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
An inherent elevation in type 2 immunity is a feature of maternal and offspring immune systems. This has diverse implications for maternal and offspring biology including influencing success of pregnancy, offspring immune development and maternal and offspring ability to control infection and diseases such as allergies. In this review we provide a broad insight into how this immunological feature of pregnancy and early life impacts both maternal and offspring biology. We also suggest how understanding of this axis of immune influence is and may be utilised to improve maternal and offspring health.
Collapse
Affiliation(s)
- Matthew Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, The Kings Buildings, University of Edinburgh, West Mains Road, Edinburgh, EH9 3JT, UK.
| | - Jamie Pillaye
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - William Gordon Charles Horsnell
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK; Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Department of Pathology, Division of Immunology, Faculty of Health Science, University of Cape Town, Cape Town, 7925, South Africa.
| |
Collapse
|
17
|
Fang L, Roth M. Airway Wall Remodeling in Childhood Asthma-A Personalized Perspective from Cell Type-Specific Biology. J Pers Med 2021; 11:jpm11111229. [PMID: 34834581 PMCID: PMC8625708 DOI: 10.3390/jpm11111229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Airway wall remodeling is a pathology occurring in chronic inflammatory lung diseases including asthma, chronic obstructive pulmonary disease, and fibrosis. In 2017, the American Thoracic Society released a research statement highlighting the gaps in knowledge and understanding of airway wall remodeling. The four major challenges addressed in this statement were: (i) the lack of consensus to define “airway wall remodeling” in different diseases, (ii) methodologic limitations and inappropriate models, (iii) the lack of anti-remodeling therapies, and (iv) the difficulty to define endpoints and outcomes in relevant studies. This review focuses on the importance of cell-cell interaction, especially the bronchial epithelium, in asthma-associated airway wall remodeling. The pathology of “airway wall remodeling” summarizes all structural changes of the airway wall without differentiating between different pheno- or endo-types of asthma. Indicators of airway wall remodeling have been reported in childhood asthma in the absence of any sign of inflammation; thus, the initiation event remains unknown. Recent studies have implied that the interaction between the epithelium with immune cells and sub-epithelial mesenchymal cells is modified in asthma by a yet unknown epigenetic mechanism during early childhood.
Collapse
|
18
|
Eosinophils as Drivers of Severe Eosinophilic Asthma: Endotypes or Plasticity? Int J Mol Sci 2021; 22:ijms221810150. [PMID: 34576313 PMCID: PMC8467265 DOI: 10.3390/ijms221810150] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023] Open
Abstract
Asthma is now recognized as a heterogeneous disease, encompassing different phenotypes driven by distinct pathophysiological mechanisms called endotypes. Common phenotypes of asthma, referred to as eosinophilic asthma, are characterized by the presence of eosinophilia. Eosinophils are usually considered invariant, terminally differentiated effector cells and have become a primary therapeutic target in severe eosinophilic asthma (SEA) and other eosinophil-associated diseases (EADs). Biological treatments that target eosinophils reveal an unexpectedly complex role of eosinophils in asthma, including in SEA, suggesting that "not all eosinophils are equal". In this review, we address our current understanding of the role of eosinophils in asthma with regard to asthma phenotypes and endotypes. We further address the possibility that different SEA phenotypes may involve differences in eosinophil biology. We discuss how these differences could arise through eosinophil "endotyping", viz. adaptations of eosinophil function imprinted during their development, or through tissue-induced plasticity, viz. local adaptations of eosinophil function through interaction with their lung tissue niches. In doing so, we also discuss opportunities, technical challenges, and open questions that, if addressed, might provide considerable benefits in guiding the choice of the most efficient precision therapies of SEA and, by extension, other EADs.
Collapse
|
19
|
Drake MG, Cook M, Fryer AD, Jacoby DB, Scott GD. Airway Sensory Nerve Plasticity in Asthma and Chronic Cough. Front Physiol 2021; 12:720538. [PMID: 34557110 PMCID: PMC8452850 DOI: 10.3389/fphys.2021.720538] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Airway sensory nerves detect a wide variety of chemical and mechanical stimuli, and relay signals to circuits within the brainstem that regulate breathing, cough, and bronchoconstriction. Recent advances in histological methods, single cell PCR analysis and transgenic mouse models have illuminated a remarkable degree of sensory nerve heterogeneity and have enabled an unprecedented ability to test the functional role of specific neuronal populations in healthy and diseased lungs. This review focuses on how neuronal plasticity contributes to development of two of the most common airway diseases, asthma and chronic cough, and discusses the therapeutic implications of emerging treatments that target airway sensory nerves.
Collapse
Affiliation(s)
- Matthew G. Drake
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Cook
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Allison D. Fryer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - David B. Jacoby
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Gregory D. Scott
- Department of Pathology, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
20
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Martins Costa Gomes G, de Gouveia Belinelo P, Starkey MR, Murphy VE, Hansbro PM, Sly PD, Robinson PD, Karmaus W, Gibson PG, Mattes J, Collison AM. Cord blood group 2 innate lymphoid cells are associated with lung function at 6 weeks of age. Clin Transl Immunology 2021; 10:e1296. [PMID: 34306680 PMCID: PMC8292948 DOI: 10.1002/cti2.1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Offspring born to mothers with asthma in pregnancy are known to have lower lung function which tracks with age. Human group 2 innate lymphoid cells (ILC2) accumulate in foetal lungs, at 10‐fold higher levels compared to adult lungs. However, there are no data on foetal ILC2 numbers and the association with respiratory health outcomes such as lung function in early life. We aimed to investigate cord blood immune cell populations from babies born to mothers with asthma in pregnancy. Methods Cord blood from babies born to asthmatic mothers was collected, and cells were stained in whole cord blood. Analyses were done using traditional gating approaches and computational methodologies (t‐distributed stochastic neighbour embedding and PhenoGraph algorithms). At 6 weeks of age, the time to peak tidal expiratory flow as a percentage of total expiratory flow time (tPTEF/tE%) was determined as well as Lung Clearance Index (LCI), during quiet natural sleep. Results Of 110 eligible infants (March 2017 to November 2019), 91 were successfully immunophenotyped (82.7%). Lung function was attempted in 61 infants (67.0%), and 43 of those infants (70.5% of attempted) had technically acceptable tPTEF/tE% measurements. Thirty‐four infants (55.7% of attempted) had acceptable LCI measurements. Foetal ILC2 numbers with increased expression of chemoattractant receptor‐homologous molecule (CRTh2), characterised by two distinct analysis methodologies, were associated with poorer infant lung function at 6 weeks of age.” Conclusion Foetal immune responses may be a surrogate variable for or directly influence lung function outcomes in early life.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Patricia de Gouveia Belinelo
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Malcolm R Starkey
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Vanessa E Murphy
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Centenary UTS Centre for Inflammation Centenary Institute Sydney NSW Australia
| | - Peter D Sly
- Child Health Research Centre University of Queensland Brisbane QLD Australia
| | - Paul D Robinson
- Department of Respiratory Medicine The Children's Hospital at Westmead Sydney NSW Australia
| | | | - Peter G Gibson
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Sleep Medicine Department John Hunter Hospital Newcastle NSW Australia
| | - Joerg Mattes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Paediatric Respiratory & Sleep Medicine Department John Hunter Children's Hospital Newcastle NSW Australia
| | - Adam M Collison
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| |
Collapse
|
22
|
Halayko AJ, Pascoe CD, Gereige JD, Peters MC, Cohen RT, Woodruff PG. Update in Adult Asthma 2020. Am J Respir Crit Care Med 2021; 204:395-402. [PMID: 34181860 DOI: 10.1164/rccm.202103-0552up] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Andrew J Halayko
- University of Manitoba, 8664, SECTION OF RESPIRATORY DISEASES, Winnipeg, Manitoba, Canada.,University of Manitoba, 8664, Biology of Breathing Group, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher D Pascoe
- University of Manitoba, 8664, Physiology and Pathophysiology, Winnipeg, Manitoba, Canada.,University of Manitoba Children's Hospital Research Institute of Manitoba, 423136, Winnipeg, Manitoba, Canada
| | - Jessica D Gereige
- Boston University School of Medicine, 12259, Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Boston, Massachusetts, United States
| | - Michael C Peters
- University of California San Francisco, 8785, Pulmonary and Critical Care, San Francisco, California, United States
| | - Robyn T Cohen
- Boston University School of Medicine, 12259, Pediatrics, Boston, Massachusetts, United States
| | - Prescott G Woodruff
- UCSF, 8785, Division of Pulmonary and Critical Care Medicine, Department of Medicine and CVRI, San Francisco, California, United States;
| |
Collapse
|
23
|
|
24
|
Abstract
Eosinophils affect nerve structure and function in organs such as lungs and skin, which contributes to disease pathogenesis. We have developed methods for culturing primary sensory and parasympathetic neurons in multiple species and have refined these techniques for coculture with eosinophils. Eosinophil-nerve coculture has been an essential tool for testing interactions between these cell types. Here we describe methods for coculturing primary parasympathetic ganglia, vagal sensory nerves, and dorsal root sensory nerves with eosinophils.
Collapse
|
25
|
Pincus AB, Fryer AD, Jacoby DB. Mini review: Neural mechanisms underlying airway hyperresponsiveness. Neurosci Lett 2021; 751:135795. [PMID: 33667601 DOI: 10.1016/j.neulet.2021.135795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Neural changes underly hyperresponsiveness in asthma and other airway diseases. Afferent sensory nerves, nerves within the brainstem, and efferent parasympathetic nerves all contribute to airway hyperresponsiveness. Inflammation plays a critical role in these nerve changes. Chronic inflammation and pre-natal exposures lead to increased airway innervation and structural changes. Acute inflammation leads to shifts in neurotransmitter expression of afferent nerves and dysfunction of M2 muscarinic receptors on efferent nerve endings. Eosinophils and macrophages drive these changes through release of inflammatory mediators. Novel tools, including optogenetics, two photon microscopy, and optical clearing and whole mount microscopy, allow for improved studies of the structure and function of airway nerves and airway hyperresponsiveness.
Collapse
Affiliation(s)
- Alexandra B Pincus
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA.
| | - Allison D Fryer
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| | - David B Jacoby
- Oregon Health and Science University, 3181 SW Sam Jackson Park Road, BRB 440, Portland, OR, 97239, USA
| |
Collapse
|
26
|
de Gouveia Belinelo P, Collison AM, Murphy VE, Robinson PD, Jesson K, Hardaker K, de Queiroz Andrade E, Oldmeadow C, Martins Costa Gomes G, Sly PD, Usemann J, Appenzeller R, Gorlanova O, Fuchs O, Latzin P, Gibson PG, Frey U, Mattes J. Maternal asthma is associated with reduced lung function in male infants in a combined analysis of the BLT and BILD cohorts. Thorax 2021; 76:996-1001. [PMID: 33632766 DOI: 10.1136/thoraxjnl-2020-215526] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 12/22/2022]
Abstract
RATIONALE Asthma in pregnancy is associated with respiratory diseases in the offspring. OBJECTIVE To investigate if maternal asthma is associated with lung function in early life. METHODS Data on lung function measured at 5-6 weeks of age were combined from two large birth cohorts: the Bern Infant Lung Development (BILD) and the Australian Breathing for Life Trial (BLT) birth cohorts conducted at three study sites (Bern, Switzerland; Newcastle and Sydney, Australia). The main outcome variable was time to reach peak tidal expiratory flow as a percentage of total expiratory time(tPTEF:tE%). Bayesian linear hierarchical regression analyses controlling for study site as random effect were performed to estimate the effect of maternal asthma on the main outcome, adjusting for sex, birth order, breast feeding, weight gain and gestational age. In separate adjusted Bayesian models an interaction between maternal asthma and sex was investigated by including an interaction term. MEASUREMENTS AND MAIN RESULTS All 406 BLT infants were born to mothers with asthma in pregnancy, while 193 of the 213 (91%) BILD infants were born to mothers without asthma. A significant interaction between maternal asthma and male sex was negatively associated with tPTEF:tE% (intercept 37.5; estimate: -3.5; 95% credible interval -6.8 to -0.1). Comparing the model posterior probabilities provided decisive evidence in favour of an interaction between maternal asthma and male sex (Bayes factor 33.5). CONCLUSIONS Maternal asthma is associated with lower lung function in male babies, which may have lifelong implications on their lung function trajectories and future risk of wheezing and asthma.
Collapse
Affiliation(s)
- Patricia de Gouveia Belinelo
- Priority Research Centre GrowUpWell, University of Newcastle, Callaghan, New South Wales, Australia.,Viruses, Infections, Vaccines & Asthma Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Adam M Collison
- Priority Research Centre GrowUpWell, University of Newcastle, Callaghan, New South Wales, Australia.,Viruses, Infections, Vaccines & Asthma Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Vanessa E Murphy
- Priority Research Centre GrowUpWell, University of Newcastle, Callaghan, New South Wales, Australia.,Viruses, Infections, Vaccines & Asthma Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Paul D Robinson
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kathryn Jesson
- Priority Research Centre GrowUpWell, University of Newcastle, Callaghan, New South Wales, Australia
| | - Kate Hardaker
- Department of Respiratory Medicine, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Ediane de Queiroz Andrade
- Priority Research Centre GrowUpWell, University of Newcastle, Callaghan, New South Wales, Australia.,Viruses, Infections, Vaccines & Asthma Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Christopher Oldmeadow
- Viruses, Infections, Vaccines & Asthma Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell, University of Newcastle, Callaghan, New South Wales, Australia.,Viruses, Infections, Vaccines & Asthma Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Peter D Sly
- Centre for Children's Health Research, University of Queensland, South Brisbane, Queensland, Australia
| | - Jakob Usemann
- Department of Pulmonology, University Children's Hospital (UKBB), Basel, Switzerland.,Paediatric Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Rhea Appenzeller
- Department of Pulmonology, University Children's Hospital (UKBB), Basel, Switzerland.,Paediatric Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Olga Gorlanova
- Department of Pulmonology, University Children's Hospital (UKBB), Basel, Switzerland.,Paediatric Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Oliver Fuchs
- Department of Pulmonology, University Children's Hospital (UKBB), Basel, Switzerland.,Paediatric Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Philipp Latzin
- Department of Pulmonology, University Children's Hospital (UKBB), Basel, Switzerland.,Paediatric Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Peter G Gibson
- Viruses, Infections, Vaccines & Asthma Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Urs Frey
- Department of Pulmonology, University Children's Hospital (UKBB), Basel, Switzerland .,Paediatric Respiratory Medicine, Department of Paediatrics, Inselspital, University of Bern, Bern, Switzerland
| | - Joerg Mattes
- Priority Research Centre GrowUpWell, University of Newcastle, Callaghan, New South Wales, Australia .,Viruses, Infections, Vaccines & Asthma Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,Department of Paediatric Respiratory and Sleep Medicine, John Hunter Children's Hospital, New Lambton Heights, New South Wales, Australia
| |
Collapse
|
27
|
Mattes J, Collison A. Fetal Eosinophils Get on the Nerves of Airways. Early Origins of Bronchoconstriction. Am J Respir Cell Mol Biol 2020; 62:407-408. [PMID: 31899662 PMCID: PMC7110970 DOI: 10.1165/rcmb.2019-0438ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Joerg Mattes
- Paediatric Respiratory and Sleep MedicineJohn Hunter Children's HospitalNew Lambton Heights, New South Wales, Australiaand.,Priority Research Centre GrowUpWellUniversity of NewcastleNew Lambton Heights, New South Wales, Australia
| | - Adam Collison
- Priority Research Centre GrowUpWellUniversity of NewcastleNew Lambton Heights, New South Wales, Australia
| |
Collapse
|
28
|
Lebold KM, Jacoby DB, Drake MG. Inflammatory mechanisms linking maternal and childhood asthma. J Leukoc Biol 2020; 108:113-121. [PMID: 32040236 DOI: 10.1002/jlb.3mr1219-338r] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease characterized by airway hyperresponsiveness, inflammation, and remodeling. Asthma often develops during childhood and causes lifelong decrements in lung function and quality of life. Risk factors for childhood asthma are numerous and include genetic, epigenetic, developmental, and environmental factors. Uncontrolled maternal asthma during pregnancy exposes the developing fetus to inflammatory insults, which further increase the risk of childhood asthma independent of genetic predisposition. This review focuses on the role of maternal asthma in the development of asthma in offspring. We will present maternal asthma as a targetable and modifiable risk factor for childhood asthma and discuss the mechanisms by which maternal inflammation increases childhood asthma risk. Topics include how exposure to maternal asthma in utero shapes structural lung development with a special emphasis on airway nerves, how maternal type-2 cytokines such as IL-5 activate the fetal immune system, and how changes in lung and immune cell development inform responses to aero-allergens later in life. Finally, we highlight emerging evidence that maternal asthma establishes a unique "asthma signature" in the airways of children, leading to novel mechanisms of airway hyperreactivity and inflammatory cell responses.
Collapse
Affiliation(s)
- Katie M Lebold
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Matthew G Drake
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|